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Representation of Optical Propagation Using Cellular Automata

Adrian Ankiewicz" and Yoshinori Nagai
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Abstract: Propagation of light in an array of optical guides produces various patterns, depending on
whether the material is linear or nonlinear for the power levels used. A parallel array can be used to
steer or split light. Our novelty here is to consider discretizing the propagation direction, in addition to the
transverse direction. We can then view the linear or nonlinear system in terms of cellular automata for
particular ‘rules’. This gives an insight into propagation which is different from the continuous approach
using differential equations. We give examples and comparisons to make our point.

Keywords: Cellular automata, propagation of light

INTRODUCTION

Light can propagate along parallel discrete optical
waveguides [1]. When light with unit power is launched
into a central waveguide (labeled n=0), competing
effects influence the propagation. Even for linear
materials, light can couple to the 2 neighboring guides

n =1, thus decreasing the central intensity. In turn,
each of these can couple to its near neighbors and so the
light spreads out or ‘diffracts’ with propagation distance,
z. The coupling involves the 2 neighbors and so can

be described by A4,,,(¢)—A,(t), or after another
(6)+ A, ()= 24, (£) . This is the

discrete version of a second derivative evaluated at
node n.  So the basic equation is

iteration, by A4

n+l

(1

By noting the recurrence relations for the Bessel functio
n of the first kind (J), we can easily see that the amplitu

idA—;lfl +cl4,,,(2) + 4, ,(2))=0.

de for guide n evolves as A4, (Z) =i"J (2cz), where
¢ is the coupling coefficient between guides [1,2]. Thus
the power in guide n is Jj (2¢z).
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If there is no material attenuation in the system, then
conservation of energy is easily verified by observing

0 2 o0

that P(z)= Y |4,| =D Ji(Q2cz)=1.

An example of this propagation is given in fig.1.
Various conservations laws also exist for cellular
automata (CA). The Bessel functions take the forms
of decaying sinusoids when the argument is not too
small. We will use this periodicity to demonstrate a
simple CA representation of the linear optical array
later in section 3(a).

An

PROPAGATION IN ARRAY OPTICAL W
AVEGUIDES

single input

et}

e 2 04 06 Ay
Propagation asis ) [mm]

Fig.1. Example of power being distributed to various
guides from a single input. The central part clearly
resembles the triangular chess-board discussed in the
CA description in part 3(a) and presented with the
matrix B.

If we use 2 or more inputs, then we can use unequal
initial phases to tilt the propagating beam. For example,
Fig.2 has 3 inputs, each of unit power, but the phase of
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the upper input is +90 degrees relative to the central one,

and the phase of the lower guide is -90 degrees relative

to the central one. As a result, the system acts like a

radar phased array and the beam is directed upwards.
phases:80,0,-90 degrees

0z 04 Y3 0%
Propagstion axis @ {mm}

Fig.2. Beam tilts upwards due to initial phase ramp.

In Fig.3 there are also 3 inputs, each of unit power, but
the phase of the upper input is -90 degrees relative to
the central one, and the phase of the lower guide is +90
degrees relative to the central one. As a result, the beam

is directed downwards.
phases-90,0,80 degrees

G0

205 1 v v v
a8 124 w4 58 L8
Propagation axis () jmm}

Fig.3 Beam tilts downwards due to initial phase ramp.

This spreading can be suppressed if the material is non-
linear, since there is an increment in refractive index
which is proportional to the local light intensity. To
account for this, we add a cubic term to the basic
equation and arrive at an Ablowitz-Ladik-type equation
[31:

i——dA;(z) v el () + 4, (2)+ k|4, ()P 4 (2)=0.

2

This is clearly a discrete version of the nonlinear
Schrodinger equation [5], and other terms can be added
to describe various effects. It has been shown that this
system supports front-like and quasi-rectangular (bright,
flat-top) solitons [3]. Since the transition region (from
‘0% to °1°) is very narrow, we can speculate that it may be
possible to use an even simpler model. In this conference
paper, we use cellular automata to investigate this

possibility.

In an earlier paper [4], we explained some principles
of a matrix approach to cellular automata, and showed
that soliton-type effects, such as fusion and elastic
collisions, are possible for some cellular automata with
quite simple nonlinear = evolution rules. We also
demonstrated a simple way of constructing such CA.
Certain forms can be used to represent optical solitons,

The use of spatial solitons brings the chance of
steering solitons [6] and making optical networks which
can be adapted in configuration as the need arises [7].

USING CELLULAR AUTOMATA TO
REPRESENT DISCRETE SOLITONS

(a) Linear propagation.
In section 1, we considered continuous solutions of eq.1.
Now the asymptotic form of the J Bessel function is

so we set the discretized propagation distance to be

T ..
z, = 8—(1 +2m) for m=0,1,2...., This is accurate for
C

In|<m, so we limit ourselves to this range. Then we find
that the amplitude in guide n at distance corresponding

to m will
be

An (Zm)zzl_ m_nﬂ): 21_ 1 l(inhn +l-n’fm).
i 2

Zilmel2

2
We define the normalized amplitude to be

B =l7z1fm+lA"(zm)=l(i"' +i" "), ~m<n<m.
2 2 2

For iteration m, we find that 2m+1 sites are occupied,
with almost half being zero. Hence the power in the
central region,

. m
P(Z)= Z |4,(z,) |2z7;47remains constant on
n=—-m
propagation and so even this rough calculation shows
the conservation of energy. Thus the intensity pattern
resembles an expanding chess-board with triangular
sides, as we have allowed for the 1/m decrease in
intensity for sites with label m. Here is the matrix
B[n,m] which gives the evolution of amplitude for
small values of m from m=0 to m=6 for

-5<n<s5:




00 0 0 0 1 0 0 0 OO
00 0 O ¢« 0 ¢« O 0 0O
B= 0600 0 -1 06 -1 0 -1 0 00
00 -i 0 -i 0 -i 0 —-i 00
61 0 1t 0 1 0 1 0 10
i 0 i 0 i 0 i 0" i 0 i

Hence there is a phase advance of 90 degrees with each
increment in m (ie. 12i>-12>-i2>1), and a guide
always has amplitude 0 if it had power in the previous
iteration. Clearly, B corresponds to a CA system with a
simple rule involving the site and its 2 nearest
neighbors only.

We now investigate this rule using the formalism
described in section 3 of our earlier work [4]. Clearly
this is a case with 5 levels, viz. {0,i,-1,-1,1}, so L=5. The
element occurring at position (j,k) depends on 3 factors,
namely a=m(j-1,k-1), b=m(j-1,k) and c=m(j-1,k+1), so
N=3. We expect a rule which is symmetric for the
swapping of elements ‘a’ and ‘c’. We find that

f(a,b,c)= %(b“ ~1)a +c)[ac(3a® - 4ac +3¢?) - 4]

This is indeed symmetric with respectto a <> c.
Also, if b is non-zero, then the element below it will be
zero, hence creating the chess-board pattern. The vector

x has 5° =125 elements. We find that

By = by = s S0, %y =30 oy =i
X5 =3i/4,xy, =i/4,x,, =—i/4

while

X =014, x5 =—1/4,%,0, ==3i/4,x,,, =3i/4.

The remaining elements are zero.
Here is a color representation of B:

1 3 1% 15 bt}

L Y L 2
 Exmes Casie T L
e ey . PR
A S

1 s 1 15 15
Fig.4. Evolution of CA for matrix B. Here
blue=1,red=i, green=-1,purple=-i and white=0. See
right hand side of fig.1. Clearly this resembles the
propagation in fig.1 (rotated 90°).

(b) Nonlinear effects
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Various terms can be added to the basic equation to
allow for higher-order nonlinearity and gain/loss in the
system [8]. Direct simulations can be used to solve these
array systems and even get some analytic results [9].
However, our aim here is rather different. We seek the
simplest models which can represent the interaction,
collision and repulsion of solitons. We give some
examples. Two solitons can merge and form a different
soliton, as shown in fig.5. Solitons moving left and right
collide with each other and pass through each other,
suffering only a lateral shift [5]. Here the CA in figs. 6
and 7 also show this feature. In each case, the lateral
shift is one unit. The behavior close to the collision site
differs in each case, whereas the behavior far from this
point is the same. This also occurred in the optical case
[e.g. see page 115 of ref.5]. The central rectangular-type
soliton which we discussed in the introduction is
represented by two or more ‘l’s in a row [see fig.8
below]. Figs. 5,6 and 7 all use the same rule form for f,
namely:

£=1/8 (a* (-2 (1+b) (2+b)+(-4+b (3+5 b)) c+(4+b (11+b))
¢?)-2 (2 (-14c) ct+b* (-1+4c) (4+c)+b ¢ (143 c))+a (4+b (-
243 ¢ (1+c)+b (-6+(-3+c) c)))).

The vector x is:

({0},{1/2},4-1/2},{0}, {-1/4},{-3/4},{1},{-3/4},{-
1/4},{1/2},{0},{-1/2},{-1/4},{3/8},{3/8},{-3/4},{-3/8},
(5/8},{-1/2},{0},{1/2},{-3/4},{3/8},{11/8},{-1/4},{1/8},
{1/8}1.

Fig.5. Fusion of unit {0,1,0} soliton with L={-1,1} to
form {1,0,1} soliton.
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T

Fig 6. Solitons collide, with even number of zeros
between them at start. Here 1 is indicated in green, -1
with blue and 0 with white. The collision is lossless, and
the solitons pass through each other with only a lateral
shift of one space. See ea.30 of [4].

1 b3

W 53
Y v

i 3 W s

Fig.7. Solitons collide, with odd number of zeros
between them at start. See €q.29 of [4]. Green=1
blue=-_l , white_=0.

1 5 10 13 20 5
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il
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T R Uy o LT T

Y v <t v c gy

1 B 141 0 p4
Fig.8. Reflections off a rectangular soliton—signal
reflected by ‘blocker’—see fig.10 of [10] and fig.4 of
[11]. Here green=1 and blue=-1 and white=0. So the
right-moving soliton, R, is {+1,-1} while the lefi-
moving soliton, L, is {-1,+1}.

In fig.8, we have used a different rule: £=1/2 (a-(-1+c) c-
a c+2 b’ M2 b (-14c?)-a? (1-2 bre-2 c2b? (-2+4 ¢2))).
Clearly, the L soliton, which consists of the set {-1,+1}
is effectively a phase ramp, and this produces the motion
(to the left). Similarly, the R soliton, which consists of
the set {+1,-1} is also a phase ramp, and it moves to the
right. The correspondence of L and R with figures 2 and
3 is clear.
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CONCLUSIONS

We have provided simulations of optical propagation
in an array and showed up analogies between these
simulations and the cellular automata appearing due to
iterated behavior. In the first. case, the propagation
variable (z) is continuous, whereas the iterations in CA
are plainly discrete. Hence it is fascinating to see the
connection between the two. The CA may be used to
gain insight into linear and nonlinear optical propagation
in waveguides.
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