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Abstract 

 

Research on infants’ online lexical processing has revealed substantial individual differences 

that are related to vocabulary development, such that infants with better lexical processing 

efficiency show greater vocabulary growth across time (Fernald, A., Perfors, A., & 

Marchman, V. A. (2006). Picking up speed in understanding: Speech processing efficiency 

and vocabulary growth across the 2nd year. Developmental Psychology, 42(1), 98-116.). 

While it is clear that individual differences in lexical processing efficiency exist and are 

meaningful, the theoretical nature of lexical processing efficiency and its relation to 

vocabulary size is less clear. In the present study we asked two questions: (i) is lexical 

processing efficiency better conceptualized as a central processing capacity or as an 

emergent capacity reflecting a collection of word-specific capacities, and (ii) is there 

evidence for a causal role for lexical processing efficiency in early vocabulary development? 

One hundred and twenty (N = 120) infants were tested on a measure of lexical processing at 

18-, 21-, and 24-months, and their vocabulary was measured via parent report. Structural 

equation modelling of the 18-month time point data revealed that both theoretical constructs 

represented in (i) fit the data. A set of regression analyses on the longitudinal data revealed 

little evidence for a causal effect of lexical processing on vocabulary, but a significant effect 

of vocabulary size on lexical processing efficiency early in development. Overall, the results 

suggest that lexical processing efficiency is a stable construct in infancy that may reflect the 

structure of the developing lexicon.      
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Individual Differences in Lexical Processing Efficiency and Vocabulary in Toddlers: A 

longitudinal investigation. 

Language development is characterised by significant yet stable individual differences 

(individual differences; e.g., Bates, Dale, & Thal, 1995; Bornstein, Hanh, & Putnick, 2016), 

which are measureable and developmentally significant from early in life (e.g., Brito et al., 

2016; Cristia, Seidl, Junge, Soderstrom, & Hagoort, 2014). One domain of language that is 

subject to significant individual differences is the lexicon, with large variability observed in 

both the growth rate and size of vocabulary across the lifespan. Explaining this variability is 

of important theoretical and practical significance. Theoretically, identifying sources of 

variation can reveal the mechanisms underlying development (Bates, Bretherton, & Snyder, 

1988; Kidd, Donnelly, & Christiansen, 2018). In practical terms, early vocabulary is a strong 

predictor of language development in other domains (e.g., grammar) and of important 

outcomes (e.g., educational performance and attainment). Thus understanding of the sources 

of early variability enables the potential early detection and remediation of developmental 

delay. In the current paper we report on an investigation of individual differences in infants’ 

online lexical processing efficiency and their longitudinal relationship with vocabulary 

development from 18 – 24 months, a period in which there is substantial vocabulary growth 

and reorganization in the linguistic system.  

Perhaps the most common measure of children’s early lexical processing efficiency 

(lexical processing efficiency) is the Looking-while-Listening Task (LWL; Fernald, Zangel, 

Portillo, & Marchman, 2008). In this task, children see two images side-by-side (a target and 

a distracter) and hear sentences such as “look at the bird.” The dependent measure of interest 

is their efficiency in recognizing the target word. This can be measured in two ways: the 

proportion of time spent looking at the target image after hearing the noun, or the time it 
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takes the children to look towards the target image on the trials in which they were looking at 

the distracter image while the target word was playing (their reaction time, RT).   

The LWL task appears to capture developmentally stable and meaningful individual 

differences. RTs and accuracy across time are significantly correlated (Fernald, Perfors & 

Marchman, 2006; Lany, Giglio & Oswald, 2018), and as would be expected, RTs are faster 

for older than younger children in both English (Fernald, Perfors & Marchman, 2006) and 

Spanish (Hurtado, Marchman and Fernald, 2008). Importantly, individual differences in LWL 

are related to other measures of linguistic competence measured concurrently, retrospectively 

and prospectively. Several studies have reported significant correlations between LWL 

measures and vocabulary size concurrently in infants (Fernald, Perfors, & Marchman, 2006; 

Fernald, Marchman & Weislder, 2013), and under some conditions this relationship can be 

observed by as young as 12 months (Lany, Giglio & Oswald, 2018). Moreover, in some 

circumstances infants with comparatively efficient lexical processing learn more words in a 

word-learning task than those with less efficient lexical processing (Lany, 2018).  

Retrospectively, individual differences in LWL at 24 months predict size of vocabulary, 

grammatical complexity and rate of growth in vocabulary over the first year (Fernald, 

Performs & Marchman, 2006). Prospectively, individual differences in LWL predict 

vocabulary growth (Fernald & Marchman, 2012; Lany, Giglio, & Oswald, 2018) and even 

broader expressive language abilities six years later (Marchman & Fernald, 2012).  

While the validity of the LWL task and its relation to vocabulary development are 

clear, the theoretical nature of the task is less so, as is the direction of the developmental 

relationship between lexical processing efficiency and vocabulary. In the current study we 

address these two issues, which we discuss in turn.  

The Nature of individual differences in Lexical Processing Efficiency  
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 Lexical processing efficiency is either operationalized as the mean RT on all trials in 

which the participant was looking to the distracter image prior to the onset of the target word, 

or the proportion of time the infant looks as the target compared to the distractor image. 

Because these measures are calculated over many words, they could conceivably be 

interpreted in two different ways. It is, for example, possible that average RTs or proportions 

on the LWL task reflect some central lexical or cognitive processing speed on which 

individuals vary, and which applies to all known words (from here on in, the central capacity 

account). Such a proposal is consistent with arguments that domain-general processing speed 

plays a fundamental role in the development of higher order cognitive processes (Kail & 

Sathouse, 1994), and adult psycholinguistic research that has shown non-linguistic processing 

capacity predicts lexical processing (e.g., Hintz et al., 2019), though in the present case, the 

capacity need not be domain general. On the other hand, it is plausible that average RTs 

reflect a collection of word-specific processing speeds (from here on in, the emergent 

capacity account). This approach captures the fact that many item-level features of words 

predict speed of lexical access (e.g., frequency, imageability, age of acquisition), which in 

some cases interacts with vocabulary knowledge (e.g., Mainz, Shao, Brysbaert, & Meyer, 

2017). An emergent capacity account is consistent with domain-specific theoretical 

approaches to automization, where increased experience with specific events automatizes 

(i.e., speeds up) processing (e.g., Logan, 1988).  

 These two accounts can in principle be statistically disentangled because they 

correspond to different classes of structural equation models, effects- and causal- indicator 

models (also called reflective and formative measurement models). The central capacity 

account corresponds to an effects-indicator model. Effects-indicator models assume that 

covariation in observed variables is caused by variation in some latent variable (i.e., in our 

case, a central processing capacity). Observed variables are modelled as a system of linear 
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regression equations, which each include the latent variable as a predictor and separate error 

terms. In the context of the LWL task, mean RTs for individual words would be modelled as 

shown in Figure 1 A, which illustrates the assumptions of an effects indicator model. The 

direction of the paths indicates that variation in the latent variable (e.g., a centralised lexical 

processing capacity) causes variation in the indicator variables (e.g., knowledge of words). 

Because of this, any covariation in the indicator variables is assumed to be due to their shared 

cause, the latent variable. Moreover, adding or removing indicator variables would not 

change the interpretation of the latent variable; they are exchangeable indicators of a pre-

existing theoretical entity (and thus, lexical processing speed should, all things being equal, 

be roughly equivalent for different words).  

[insert Figure 1 about here] 

It is common in psychology to conceptualize constructs in this manner. One example 

is IQ, where it is traditionally assumed that variation in IQ test scores is caused by g (as well 

as test-specific error). Therefore, increasing g would increase the scores on individual IQ 

tests, but increasing the error components of each individual test would not affect g. 

Moreover, adding an additional IQ test to a pre-existing battery would not change the 

interpretation of g.   

 Treating observed variables as effects indicators is common in psychology, but it is 

not the only possibility. We could also view the observed variables as causing the latent 

variable. A common example of this is SES (socio-economic status). While this construct 

may be measured by mother’s education, father’s education and number of books in the home 

(to identify only a few examples), it is difficult to conceive of these variables as effects of 

some underlying SES dimension; rather those variables define, or cause, SES. This 

conceptualization would lead to a different latent variable model, such as the one in Figure 

1B. This causal-indicator models assumes that RTs for each word combine to create some 
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general processing speed; that is, lexical processing speed is an emergent property of 

knowledge of individual words. This model corresponds to a single regression equation in 

which the latent variable is an outcome that has its own error term. In this case, the observed 

variables are called causal indicators, as opposed to effect indicators. Since they are causally 

prior to the latent variable, adding or removing causal indicator variables would change the 

definition of the latent variable (and thus, different words would result in different processing 

speeds). Moreover, this conceptualization makes no assumptions about the correlations 

between the causal indicators. This model corresponds to the emergent capacity account.   

 The merits of the distinction between these two sorts of models are still debated in the 

psychometric community (Bainter & Bollen, 2014; Howell, 2014; Markus, 2014; McCoach 

& Kenny, 2014; Wang, Engelhard Jr, & Lu, 2014; West & Grimm, 2014, Wildaman, 2014). 

In particular, this debate centres on whether the latent variables in causal-indicator models 

can be described as a measurement. However, there is no disagreement that effects-indicator 

models, such as factor analysis, assume latent variables that are causally prior to observed 

variables, or that a set of observed variables can be causally prior to latent variables within a 

structural equation model. Therefore, since the distinction between these two types of models 

maps onto a clear conceptual distinction within developmental psycholinguistics, comparing 

the fit of these models to developmental psycholinguistic data is warranted, regardless of 

whether they are considered measurement models1.  

 In fact, this distinction between causal- and effects- indicator models has been 

employed profitably within other areas in developmental psychology. For example, 

Willoughby and colleagues (2014, 2016) suggested that batteries of executive functioning 

tasks might be better modelled as causal rather than effect indicators. In a re-analysis of nine 

                                                           
1 We use the terms causal- and effects- indicator models, rather than formative and reflective 

measurement models, as they are more neutral with regard to this debate. 
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influential studies of EF, Willoughby et al (2014) found that 4 of the 9 studies failed a 

vanishing tetrad test, a test of model fit often used to determine whether effects indicators are 

appropriate. In a subsequent study, Willoughby et al. (2016) fit causal and effects-indicator 

models to EF data from a longitudinal study from ages 3 to 5. At ages 3 and 4, a nested 

vanishing tetrad test preferred the causal to effect indicator model and at age 5, there was a 

marginally significant trend favouring the causal-indicator model. The two models yielded 

radically different inferences about the developmental stability of EF. The effects-indicator 

model yielded two-week and two-year test/re-test reliabilities that were nearly equal (r = .99 

and r = .96, respectively), whereas the causal-indicator model yielded much larger two-week 

than two-year test/re-test reliabilities (r = .76 and r = .32, respectively). In other words, 

inferences about the developmental stability were greatly influenced by the choice of model: 

effects indicators suggested very little developmental variability in EF from 3-5 years 

whereas causal indicators suggested a great deal of variability. However, path coefficients 

from the latent variable to related variables (intelligence, academic achievement, and ADHD 

symptoms) were approximately equal in magnitude across the two models, indicating that 

inferences about the relationship between EF and other variables were not affected by the 

choice of model.  

 Interestingly, all of the research on individual differences in the LWL task has used 

mean RTs (or proportions) across all trials as their measure of lexical processing efficiency, 

which is conceptually similar to a causal-indicator model as it does not have word-specific 

error terms. Therefore, on top of the theoretically interesting question of whether individual 

differences in lexical processing efficiency are better explained by the central capacity 

account or emergent capacity account, it is also possible that inferences about the 

developmental stability of lexical processing efficiency and its relation to concurrently 

measured variables depends on which model is employed. This may explain the seemingly 
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small correlations between the LWL tasks at different time points (e.g., Fernald et al. (2006) 

reported correlations between average RTs over 3 month intervals ranging from .21 to .39). 

In the present study we sought to address these questions by fitting effects and causal-

indicator models (from here on in, the central capacity and emergent capacity models) to 

LWL data at 18 months.  

 Whether to conduct this analysis on RTs or proportions is unclear. On the one hand, 

RTs seem to more closely reflect what most researchers have in mind when they use the term 

efficiency in lexical processing efficiency. On the other hand, calculation of RTs requires 

researchers to drop trials on which participants were looking to the distracter image prior to 

the onset of the target word, thereby reducing the number of valid trials. Analysing 

proportions eliminates this problem as they can be calculated regardless of where the 

participant is looking prior to the onset of the target word. We, therefore, estimated these 

models on both RTs and proportions.  

Vocabulary Size and Developing Lexical Processing Efficiency 

There is a great deal of evidence that lexical processing efficiency is correlated with 

vocabulary size. For example, in a seminal longitudinal study from 15 to 25 months, Fernald, 

Perfors and Marchman (2006) found that LWL RT was correlated with concurrent 

vocabulary by 25 months and an accuracy measure was correlated with vocabulary by 21 

months. However, by 25 months both measures were significantly correlated with vocabulary 

size at 15, 18, 21 and 25 months, and when included in a multi-level model predicted more 

rapid vocabulary growth over the 10 month window. 

  While performance on the LWL task and vocabulary knowledge are clearly coupled, 

a possible causal relationship between lexical processing efficiency and vocabulary size has 

been difficult to determine. Fernald et al. (2006) postulated three possible explanations. First, 

it is possible that young children with more efficient lexical processing are able to free 
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cognitive resources in order to learn new words. Second, it is also possible that growth in 

vocabulary causes words to be represented in a more efficient manner, thereby facilitating 

processing. Third, it is possible that there is a bi-directional causal relationship between the 

two, with vocabulary improving lexical processing efficiency and lexical processing 

efficiency improving vocabulary.  

 Several additional longitudinal studies relevant to this question have been conducted, 

but none offers unambiguous evidence about the direction of the relationship between the 

variables. For example, Hurtado, Marchman and Fernald (2008) studied the relationship 

between maternal talk, lexical processing efficiency and vocabulary amongst Spanish-

speaking children from 18-24 months. They found that lexical processing efficiency at 24 

months mediated the relationship between maternal talk at 18 months, defined as the number 

of word tokens used during a free play session, and vocabulary at 24 months. In an additional 

model, they found that vocabulary at 24 months mediated the relationship between maternal 

talk at 18 months and lexical processing efficiency at 24 months. Similarly, Weisleder and 

Fernald (2013) found that the relationship between child-directed speech at 19 months and 

vocabulary size at 24 months was mediated by lexical processing efficiency (measured by 

proportion of time looking at target, rather than RT). While these studies suggest that 

variation in input variables is related to shared variance between vocabulary and lexical 

processing efficiency, they do not directly address the question of whether lexical processing 

efficiency affects vocabulary over and above prior vocabulary and vice versa.  

 Two studies provide more direct evidence that lexical processing efficiency predicts 

changes in vocabulary over and above previous vocabulary. First, Fernald and Marchman 

(2012) compared the vocabulary growth trajectories of typically developing and late-talking 

toddlers from 18 to 30 months. They found that late-talkers who exhibited more efficient 

lexical processing at 18 months exhibited faster vocabulary growth from 18 to 30 months. 
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This effect was not found for typically developing toddlers, which they interpret as a ceiling 

effect at the older time points. Second, Lany, Giglio, and Oswald, (2018) administered the 

LWL task and the CDI at 2 sessions, one in which participants were 12 months old and one in 

which they were between 15 and 18 months old. They found that lexical processing 

efficiency, as indexed by proportion of looks to target on trials in which the target word was 

known during the first session, was correlated with differences in percentile scores between 

CDI percentile scores in the first and second session. They also found that vocabulary during 

the first session did not predict either LWL variable during the second session or changes in 

LWL variables between the second and first sessions. However, as the authors point out, 

unlike the CDI percentile scores, during the second session, the LWL variables were not age-

controlled, and the relatively wide range of participant ages may be responsible for this non-

significant relationship.   

 In sum, the available evidence suggests a robust relationship between lexical 

processing efficiency and vocabulary by around 18 months. There is some evidence that 

lexical processing efficiency predicts subsequent vocabulary size over and above prior 

vocabulary size. However, whether vocabulary predicts subsequent lexical processing 

efficiency over and above prior lexical processing efficiency is less clear. Moreover, no 

attempts have been made to directly test whether there is a bidirectional causal relationship 

between the two variables.  

The Present Study 

The present study sought to address these outstanding questions regarding the 

theoretical nature of lexical processing efficiency and its developmental relationship with 

vocabulary size. A large sample of infants completed the Looking While Listening task, and 

their vocabulary was measured using the MacArthur Bates Communicative Development 

Inventory (Fenson, Marchman, Thal, Dale, Reznick & Bates, 2007) at 18, 21 and 24 months 
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of age. Our sample size and longitudinal design allowed us to examine the following research 

questions: 

1) Are individual differences in lexical processing efficiency at 18 months better 

explained by the central capacity or emergent capacity account? If there is strong 

evidence for one account or the other, does this conceptualization influence 

inferences about the stability of lexical processing efficiency from 18 to 24 

months and the strength of the relationship between lexical processing efficiency 

and vocabulary at 18 months? 

2) What is the nature of the developmental relationship between lexical processing 

efficiency and vocabulary size? Does variation in lexical processing efficiency 

predict variation in vocabulary size over and above prior vocabulary size? Does 

variation in vocabulary size predict variation in lexical processing efficiency over 

and above prior lexical processing efficiency? Is this direction unidirectional or 

bidirectional?  

Method 

Participants 

Data came from a cohort of children who are being followed as part of a larger 

longitudinal project that is tracking the interaction between language processing and language 

development from 9 months to 5 years (see Authors, 2018). Families were recruited from a 

medium-sized city in Australia. Inclusion criteria for the longitudinal study were: (i) full-term 

(at least 37 weeks gestation) babies born with a typical birth weight (> 2.5kg), (ii) a 

predominantly monolingual language environment (no more than 20% exposure to a 

language other than English; thus the children were acquiring Australian English as a first 

language), and (iii) no history of medical conditions that would affect typical language 

development, such as repeated ear infections, visual or hearing impairment, or diagnosed 
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developmental disabilities. Consistent with the demographics of the city, the sample was 

drawn from families high in socio-economic status. Approximately 75% of the parents had 

completed a bachelor degree or higher.  

 The Looking While Listening Task and the MacArthur Bates Communicative 

Development Inventory were administered at 18, 21 and 24 months. One hundred twenty (N 

= 120) of the original 130 participants recruited to the study at 9 months were still in the 

study at 18 months. Two participants were excluded because they were diagnosed with 

hearing problems. As different analyses included different variables, they are based on 

slightly different sample sizes. Sample sizes for each analysis are noted in the relevant tables.  

Materials 

The Looking While Listening task procedure was the largely the same at the three 

time points, except that the number of target words and, therefore, the number of trials 

differed. At 18 months, the task contained 8 target words (ball, bird, book, car, cat, dog, fish, 

and shoe), each repeated 6 times. At 21 months, the task contained 10 target words (all prior 

words, plus apple and flower) each repeated four times. At 24 months, the task contained 12 

target words (all prior words, plus frog and teddy) each repeated four times. Words were 

added at each time point in order to ensure that the infants would maintain interest in the task 

if they had memories of the previous targets from their last visit. Previous longitudinal 

studies have also taken this approach (e.g., Fernald et al., 2006). Words at each time point 

were selected so as to be familiar to a majority of participants during the previous session, 

which was determined by identifying words that a majority of the children knew as indicated 

by their MBCDIs from their previous visit three months prior.   

 On each trial, two images were presented on a 1920 x 1200 pixel screen for 7,000ms. 

The images were of approximately equal size and enclosed in 470 x 450 pixel boxes equal 

distances from the centre of the screen. After approximately 2000ms, an audio file, recorded 
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by a female native speaker of Australian English, in child-friendly natural speech, directed 

the child to the target image. The audio was timed so that the target word began playing at 

2,500ms. The target word was introduced using one of three carrier phrases (“look at the”, 

“where is the” or “find me the”).  

 Across trials, each image occurred equally often as a target and a distracter, and 

occurred equally often on the left and right side of the screen. In order to ensure that 

responses were not due to the visual salience of one target (or distracter) image, across trials, 

several images were used for each word. At 18 months, three images were chosen for each 

word (meaning each image occurred four times, twice as the target and twice as a distracter). 

At 21 and 24 months, two images were chosen for each word (again, each image occurred 

four times, twice as the target and twice as the distracter).  

  Four pseudo-randomised lists were created so that no target word was repeated 

within 3 trials and that the target image appeared on the same side of the screen on no more 

than 2 consecutive trials. Attention-getting fillers were played after every 6 trials. These were 

dynamic cartoons with encouraging audio (e.g., “Did you see it?!”) meant to keep the 

children engaged. Eye-tracking data was captured using a Tobii T60XL, sampling at a rate of 

60Hz. 

The MacArthur Bates Communicative Development Inventory: Words and Sentences 

(Fenson et al., 2007) was administered at 18, 21 and 24 months. Following Reilly et al., 

(2007), some minor changes were made to a small number of words to better capture the 

Australian dialect. This instrument contains 678 items. Throughout these analyses, we use 

total productive vocabulary score as our relevant vocabulary measure.  

Results 

All data and code for these analyses is freely available online: https://osf.io/3mxps/ 

The Nature of Lexical Processing Efficiency Measurements at 18 months 
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To explore the differences between the central and emergent capacity accounts, 

causal- and effects- indicator models were fit to both RTs and proportions for each word in 

lavaan (Roseel, 2012) using full information maximum likelihood to account for missing data 

where necessary. Structural equation models assume all exogenous variables follow a 

multivariate normal distribution. To accommodate this assumption, we followed two steps. 

First, for each variable we calculated skewness, kurtosis and the Shapiro Wilks test, and 

visually inspected QQ plots to determine violations of normality. Where necessary, variables 

were transformed and outliers were removed (details are discussed for each analysis 

separately). Second, all models were estimated using the robust maximum likelihood 

function.  

For each operationalization of lexical processing efficiency (RT and proportions), 

indicator variables were created for all target words at 18 months. Because the effects-

indicator models can only be estimated when the latent variable predicts at least two outcome 

variables, 21 month vocabulary and 21 month lexical processing efficiency were treated as 

outcome variables. In addition to being necessary for estimation of the models, including 

these models allowed us to examine whether inferences about the relationship between 

lexical processing efficiency and other variables was affected by the decision to use a causal- 

or effects- indicator variable. That is, do the different conceptualizations of lexical processing 

efficiency result in different statistical relationships to the outcome variables?  Following 

Willoughby et al (2016), we created variables that are conceptually similar to causal and 

effects indicator variables at 18, 21 and 24 months, and calculated intraclass correlation 

coefficients across the three time points.  

Models were fit to data including all words, regardless of whether parents reported 

that the child knew a given target word. While there are conflicting findings on whether item-

level data from the CDI predicts performance on preferential looking tasks (Houston-Price, 
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Mather, & Sakkalou, 2007; Styles & Plunkett, 2009), removing the target words greatly 

increased the amount of missing data and resulting models fit poorly. Moreover, given that 

lexical processing efficiency is conceptualized as a graded measure, and that CDIs at 18 

months only ask about production, it is possible that available CDI measures underestimate 

children’s processing of unreported words. Consistent with this argument, previous reported 

studies (Fernald et al 2006) have found that inferences about the relationship between lexical 

processing efficiency and other variables are generally unaffected by removing unknown 

words. 

Log RTs. Prior to calculating RTs, we removed trials in which participants were 

looking to the screen for less than 50% of the 3000 ms window between the onset of the 

target word and the offset of image (M = 7.14 trials, Range = 0 : 28). Then, following Fernald 

and Marchman (2012), we calculated the duration to the first look to the target image on trials 

in which they were (a) looking to the distracter image prior to the target word and (b) shifted 

to the target image within 300 and 1800ms after the onset of the target word. The first look to 

the target image was defined as the first fixation of at least 100ms to the target image. This 

resulted in an average of 14.20 trials per participant (Range = 4 : 26). The RTs were then log 

transformed2. At this point, our data preparation deviated from standard LWL studies. Prior 

studies calculated the average RT across all words. However, in order to compare the central 

capacity and emergent capacity accounts, we calculated average log RTs at the level of 

individual words for each participant. Because this task necessarily entails a large amount of 

missing data, most participants did not have values for all eight words. Of the 115 

participants for whom 18 month eye-tracking data were available, 40 participants had log 

RTs for all eight words, 31 had log RTs for seven words, 23 had log RTs for six words, 14 

                                                           
2 We used log RT rather than raw RT because we found log RTs were within the normal range for both 

skewness and kurtosis, thus satisfying the assumptions of normal structural equation models.  
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had log RTs for five words, 4 had log RTs four words and 3 had log RTs for three words. To 

strike a balance of including as many participants as possible, but minimizing the number of 

missing patterns from the dataset (because models with large amounts of missing data fit 

poorly), we excluded the 21 participants with log RTs for fewer than 6 words. The median 

number (and range) of trials available for each word are presented in Table 1.  

Descriptive statistics for all eight words, and the three outcome variables are 

presented in Table 2. As can be seen, 21 month vocabulary was not normally distributed, 

thereby violating the assumption of multivariate normally distributed exogenous variables. 

We, therefore, transformed vocabulary using the square root. The resulting distribution was 

closer to normal, according to both test statistics and visual inspection of QQ plots3. All other 

variables were approximately normally distributed.  

[insert Table 1 & Table 2 about here] 

Model fit statistics for each of the two models are presented in Table 3. Both models 

exhibited excellent fit according to several common fit indices. Table 4 presents standardized 

path coefficients to and from the latent variables in the two models. In the central capacity 

model, path coefficients from the latent lexical processing efficiency variable to the word-

specific RTs were all in the same direction, and all except shoe were statistically significant. 

In the emergent capacity model, all coefficients were of the same direction, but no coefficient 

was statistically significant. However, given the large number of parameters in this model, 

the standard errors for these coefficients were very large, and this model may have been 

under-powered to detect these effects. 

[insert Table 3 about here] 

Our next step was to compare model fit. The two models are not formally nested (i.e., 

there is no set of parameters in the emergent capacity model that can be set to 0 to get the 

                                                           
3 Results did not substantively differ when raw vocabulary was included in the model.  
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central capacity model), and therefore cannot be compared via a likelihood ratio test. 

However, the models are nested with respect to their vanishing tetrads. This allows a formal 

test of whether the central capacity model fits significantly worse than the emergent capacity 

model (Hipp, Bauer & Bollen, 2005). In particular, because the central capacity model 

assumes that all correlations between indicator variables are due to their shared latent 

variable, it implies that the differences in the products of certain pairs of covariances should 

be 0, so-called vanishing tetrads. On the other hand, because the emergent capacity model 

indicator model includes correlations between every pair of indicator variables, it assumes 

fewer should be 0. The two models can, therefore, be compared with a nested vanishing 

tetrad test. The central capacity model places more restrictions on the covariance structure 

than the emergent capacity model, and this allows model comparison via a nested vanishing 

tetrad test. A statistically significant nested vanishing tetrad test would imply that the central 

capacity model, which has fewer parameters, fits significantly worse than the emergent 

capacity model, which has more parameters. We conducted the nested vanishing tetrad test 

using the CTANEST SAS Macro (Hipp, Bauer & Bollen, 2005). The test was non-

significant, indicating that the central capacity model did not fit significantly worse than the 

emergent capacity model (χ²(27) = 9.97, p = .998) 

As can also be seen in Table 5, both models yielded significant relationships between 

the 18 month lexical processing efficiency variable and 21 month lexical processing 

efficiency and vocabulary. However, the magnitudes of the coefficients were larger for the 

emergent capacity model. A related question is whether these two approaches yield different 

conclusions about the developmental stability of lexical processing efficiency. To address this 

question, we constructed two indices that were conceptually similar to the central capacity 

and emergent capacity models using the data from the LWL task at 18, 21 and 24 months. To 

build emergent capacity indices, we took an average of the Z-scored log RTs for the eight 
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words given in the 18 month sessions at each of the 3 time points. To build central capacity 

indices, we fit linear mixed effects models with crossed random effects by items and words at 

18, 21 and 24 months, separately, and then extracted the by-participant random intercepts4. 

We then calculated the intraclass correlation coefficient on each of these estimates. We found 

that the ICC for the emergent capacity indices was .33 (CI =  21 : .46) and that the ICC for 

central capacity indices was .24 (CI = .11 : .36). While the ICC was slightly higher for the 

central capacity indices, the confidence interval overlapped with the value of the ICC for the 

emergent capacity indices, suggesting that the two procedures do not differ.  

[insert Tables 4 & 5 about here] 

Proportions.  As was the case prior to calculating RTs, we removed trials in which 

participants were looking to the screen for less than 50% of the 3000 ms. Trials were not 

excluded for any other reason. The proportion of looks to the target word was, then, the 

calculated for each trial. We applied the empirical logit transformation to these proportions, 

as we found this reduced the skew. We then averaged these empirical logit transformed 

proportions across words for each participant. Unlike the case with RTs, all but one 

participant had proportions for all 8 words. The distribution of several words still deviated 

from normal. Examination of QQ plot revealed this may be due to outliers. We, therefore, 

removed data points that exceeded 3 standard deviations from the mean of each word (n = 5).   

The median number (and range) of trials available for each word are presented in Table 1. 

Descriptive statistics for all eight words, and the three outcome variables are 

presented in Table 2. As was the case with RTs, vocabulary was not normally distributed and 

we, therefore, included the square root of vocabulary in both models.   

                                                           
4 The causal indicator indices were estimated using the same 8 words at all 3 time points. However, the effects-

indicator indices were estimated using all 8 words at 18 months, all 10 words at 21 months and all 12 words at 

24 months. This is because in causal indicator models, the meaning of the latent variable changes, depending on 

which indicator variables are used. However, in the effects-indicator model, the latent variables exists 

independently from the indicator variables, and its meaning should be the same, regardless of which indicators 

are used to estimate it.  
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Model fit statistics for each of the two models are presented in Table 3. Both models 

exhibited excellent fit according to several common fit indices. Table 4 presents standardized 

path coefficients to and from the latent variables in the two models. In the central capacity 

model, path coefficients from the latent lexical processing efficiency variable to the word-

specific RTs were all in the same direction expect for that for the word dog and all except 

car, cat and dog were statistically significant. In the emergent capacity model, all except 

coefficients except dog were in the same direction, and only that for bird was marginally 

statistically significant.  

To formally compare model fit for the two models, we again ran the nested vanishing 

tetrad test, which was non-significant, indicating that the central capacity model did not fit 

worse than the emergent capacity model (χ²(27) = 6.28, p = .999). To determine whether the 

models yielded different inferences, we again examined the implied relationships between 18 

month lexical processing efficiency and 21 month variables and the developmental stability 

of lexical processing efficiency from 18 to 24 months. As can be seen in Table 5, the path 

coefficients from 18 month lexical processing efficiency to 21 month lexical processing 

efficiency and 21 vocabulary were significant in both models but slightly larger in magnitude 

in the central capacity than emergent capacity model. ICCs for both conceptualizations were 

small with overlapping confidence intervals (.14, CI = .03 : .27 for the central capacity 

model; .18, CI = .06 : .31, for the emergent capacity).  

The Longitudinal Relationship between Lexical Processing Efficiency and Vocabulary 

In order to determine whether lexical processing efficiency predicted subsequent 

growth in vocabulary and whether vocabulary predicted subsequent growth in lexical 

processing efficiency, we estimated a set of regressions5. To examine the relationship 

                                                           
5 The ideal approach to addressing this question would be a random-intercept cross lagged path analysis. 

However, path analysis would not be able to easily accommodate the non-linear relationships between 

vocabulary at consecutive time points (described in more detail below).   
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between lexical processing efficiency and vocabulary, we predicted vocabulary at both 21 

and 24 months using the prior time point’s vocabulary and lexical processing efficiency. We 

followed the same method for lexical processing efficiency. For each set of analyses, we 

considered lexical processing efficiency defined using both RTs and proportions. Models 

with RTs as the dependent variable produced skewed residuals whereas those with log 

transformed RTs did not. We, therefore, used log transformed RTs in all analyses6.   

One possible explanation for any observed relationship between lexical processing 

efficiency and vocabulary is that variation in measured lexical processing efficiency is 

affected by variation in the number of target words the participant knows. While results of 

previous research are generally unaffected by including unreported words (Fernald et al 

2006), to control for this possibility we conducted all analyses using lexical processing 

efficiency calculated on all target words and lexical processing efficiency calculated using 

only the trials for which participants knew the target word according to their CDIs. As results 

were qualitatively similar across these two approaches, we report on analyses of all words in 

the main text but report parameter estimates from both analyses in tables.  

Table 6 contains descriptive statistics for the lexical processing efficiency variables, 

vocabulary and demographic variables from relevant subsamples across the three time points. 

To put our sample within context, we also report median vocabulary and interquartile range 

of vocabulary from the American sample of Wordbank (Frank, Braginsky, Yurovsky, & 

Marchman, (2016), since the Australian sample available on Wordbank completed a separate 

form. Consistent with their relatively high SES, our sample was above the median but within 

the interquartile range at all three time points. Tables 7 and 8 contain correlations between 

log RT and vocabulary at the three time points. As can be seen, when lexical processing 

                                                           
6 One participant was excluded from all regressions because, across all models, they had a very large Cook’s 

distance relative to other cases, suggesting they were greatly affecting regression lines. Examination of raw data 

revealed that they had an extremely high productive vocabulary at 18 months (412 words).  
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efficiency was operationalized as log RT, it was correlated with vocabulary at all time points 

when measured at 18 and 21 months, but 24 month RTs were correlated with 21 and 24 

month vocabulary only. When operationalized as proportions, 18 and 21 month lexical 

processing efficiency were correlated with all vocabulary measurements and 24 month lexical 

processing efficiency was correlated with concurrent vocabulary.  

[insert Tables 6, 7 & 8 about here] 

Changes in vocabulary. One complication in predicting changes in vocabulary size 

from lexical processing efficiency is that in the present sample the relationship between 

vocabulary sizes at consecutive time points is markedly non-linear (see Appendix). 

Determining whether lexical processing efficiency predicts vocabulary over and above prior 

vocabulary requires modelling this non-linearity. Therefore, prior to fitting models with 

lexical processing efficiency as a predictor, we fit a series of linear regressions predicting 

vocabulary (at both 21 months and 24 months) with increasingly higher order orthogonal 

polynomial terms for prior vocabulary. As can be seen in Table 9, at 21 months, the model 

with linear and quadratic terms of prior vocabulary fit nearly as well as the model with a 

cubic term. We thus selected the model with linear and quadratic terms for the sake of 

parsimony. At 24 months, the model with linear, quadratic and cubic terms for prior 

vocabulary was comparable to the model with the quartic term according to Adjusted R2 and 

slightly worse according to AIC. For the sake of parsimony, we decided to choose the model 

with linear, quadratic and cubic terms. To examine the effect of lexical processing efficiency, 

we added the lexical processing efficiency variables to the models identified above.  

[insert Table 9 about here] 

Parameter estimates for models of 21 month vocabulary are presented in Table 10 

When indexed with log RT, lexical processing efficiency at 18 months did not significantly 

predict 21 month vocabulary when controlling for 18 month vocabulary (b = -29.19, t(105) = 
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-.77, p = .441). However, when indexed by proportion of looks, lexical processing efficiency 

marginally significantly predicted increases in vocabulary size (b = 181.15, t(105) = 1.85, p = 

.067). Parameter estimates for models of 24 month vocabulary are presented in Table 11. 

When indexed with log RT, lexical processing efficiency at 21 months was non-significant 

after controlling for prior vocabulary (b = 40.61, t(102) = 1.34, p = .183). The results was the 

same when 21 month lexical processing efficiency was operationalised as proportion of looks 

(b = -40.86, t(103) = -.44, p = .664).  

[insert Tables 10 & 11 about here] 

Changes in lexical processing efficiency. There was no evidence for a non-linear 

relationship between measures of lexical processing efficiency across time periods. Adding 

polynomial terms to the models did not improve fit, so we do not report those analyses here. 

When lexical processing efficiency was operationalised using RT, examination of residuals 

indicated that linear models on log RT fit better than linear models on raw RT. When lexical 

processing efficiency was operationalised as a proportion, examination of residuals indicated 

that beta regressions (Smithson & Verkuilen, 2013) fit better than linear regressions7. 

Vocabulary was converted to Z-scores in order to facilitate interpretation of model 

coefficients.  

 As can be seen in Table 12, 18 month vocabulary significantly predicted 21 month log 

RTs over and above 18 month log RTs (b = -.04, t(104) = -2.65, p = .009) and marginally 

significantly predicted proportions (b = .05, Z = 1.82, p = .069). Table 13 shows that 21 

month vocabulary did not significantly predict 24 month log RTs over and above prior log 

RTs (b = -.02, t(98) = -.808, p = .421) or 24 month proportions over and above prior 

proportions (b = .04, Z = 1.14, p = .256).  

                                                           
7 Beta regression assumes a beta likelihood function, which is defined between 0 and 1, thereby accounting for 

the floor and ceiling effects, and consequent heteroscedasticity, inherent in proportions.  
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[insert Tables 12 & 13 about here] 

 Figure 2 depicts a schematic overview of the results of the longitudinal analyses. 

There was strong evidence for an effect of 18 month vocabulary on 21 month lexical 

processing efficiency over and above 18 month lexical processing efficiency, an effect that 

either significant or marginally significant over all four analyses. There was some evidence 

for an effect of 18 month lexical processing efficiency on 21 month vocabulary over and 

above 18 month vocabulary, an effect which was marginally significant when lexical 

processing efficiency was measured by proportions. There was no evidence for an effect of 

21 month lexical processing efficiency on 24 month vocabulary or 21 month vocabulary on 

24 month lexical processing efficiency.   

[insert Figure 2 about here] 

Discussion 

The present study had two goals. The first was to determine whether lexical 

processing efficiency is better conceptualized as a central or emergent processing capacity. 

To this end, we modelled 18 month LWL RTs using effects- and causal- indicator models, 

which we labelled the central and emergent capacity models, respectively. Both models 

displayed excellent fit according to conventional SEM fit indices. Moreover, inferences about 

the relationship between lexical processing efficiency and other constructs and inferences 

about the stability of lexical processing efficiency over time were similar in the two models. 

The second goal was to determine the relationship between vocabulary and lexical processing 

efficiency over time. We found clear evidence that 18 month vocabulary predicted 21 month 

lexical processing efficiency over and above 18 month LWL; however, this relationship was 

non-significant between 21 and 24 months. We found weaker evidence of an effect of 18 

month lexical processing efficiency on 21 month vocabulary over and above 18 month 

vocabulary, and no effect of 21 month LWL on 24 month vocabulary.  
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The Nature of individual differences in lexical processing efficiency 

Two points about the comparative fits of the capacity-limited and emergent capacity 

models warrant discussion. First, while we could not statistically distinguish between the two 

models, the coefficients from the emergent capacity model to the latent variable were all non-

significant. If the emergent capacity model were correct, one would expect these coefficients 

to be significant, as they cause variation in lexical processing efficiency. This pattern of non-

significant coefficients could be taken as evidence for the central capacity model. However, 

for log RTs all the coefficients were in the same (positive) direction, and for proportions all 

but one were in the same direction. Moreover, in both cases standard errors were quite large, 

which is unsurprising given the large number of parameters in the causal indicator model. If 

lexical processing efficiency reflects a constellation of word-specific processing speeds, one 

would expect the contribution of any one particular word to be quite small. As such, the data 

may have been underpowered to estimate these coefficients. Second, the nested vanishing 

tetrad test indicated that the central capacity model did not fit significantly worse than the 

emergent capacity model. Following the logic of a likelihood-ratio test, one is tempted to 

view this as evidence for the superiority of the central capacity model; the model with fewer 

parameters did not fit significantly worse and, therefore, is the more parsimonious option. 

However, we are uncomfortable with this logic. As the models are not nested in terms of their 

parameters, it is not clear that the central capacity model is more parsimonious than the 

emergent capacity model. We therefore conclude that there is no strong reason to prefer one 

model over the other.  

 One encouraging result of our comparison of the two models is that inferences about 

the stability of lexical processing efficiency and its relationship to other constructs did not 

vary substantially. Standardized path coefficients to 21 month vocabulary and lexical 

processing efficiency were significant in both models, and while they were larger for the 
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emergent than central capacity model when log RTs were used, they were larger for the 

central than emergent capacity when proportions were used. Moreover, the ICCs for the two 

models were of similar magnitudes with overlapping confidence intervals. This differs from 

the results of Willoughby et al (2016), who found that inferences about the developmental 

stability of executive functions depended critically on whether it was modelled using effects- 

or causal- indicators. Willoughby et al’s finding creates a challenge for developmental 

researchers in that their conclusions will be strongly affected by the theoretical assumptions 

implicit in their analytical strategy. Our results suggest that this might not be the case for 

researchers studying lexical processing efficiency. Given the similarity of results in these two 

models, researchers can ask questions about the stability of lexical processing efficiency and 

its relation to other variables without making strong assumptions about the theoretical nature 

of individual differences in lexical processing efficiency. However, it remains possible that, 

with more trials per item, inferences from these two approaches might differ more 

substantially.  

The longitudinal relationship between lexical processing efficiency and vocabulary 

development. 

 Fernald et al (2006) identified three possible causal explanations for the relationship 

between vocabulary and lexical processing efficiency during the second year of life: increases 

in lexical processing efficiency could lead to increases in vocabulary, increases in vocabulary 

could lead to increases in lexical processing efficiency, or there could be a bidirectional 

relationship between the two. Despite the fact that lexical processing efficiency and 

vocabulary were correlated at all three time points, our longitudinal design allowed us to 

disentangle these three possibilities. The current data rule out the possibility of a mono-causal 

relationship from lexical processing efficiency to vocabulary; there was strong evidence of a 

relationship an effect of 18 month vocabulary on 21 month vocabulary and only weak 
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evidence for an effect of 18 month lexical processing efficiency on 21 month vocabulary. We 

consider the possible explanations for an effect of vocabulary on lexical processing efficiency 

and a bidirectional relationship in turn.  

 Why might increases in vocabulary size lead to increases in lexical processing 

efficiency?  While this question has been considered less frequently than whether increases in 

lexical processing efficiency lead to increases in vocabulary, Fernald et al. (2006) speculated 

that increasing vocabulary size results in pressure to create more fine-grained representations 

of word forms. However, young infants already have fairly detailed phonological 

representations. For instance, Swingley and Aslin (2002) showed that infants as young as 15 

month olds are sensitive to initial-consonant mispronunciations of words, and recent work by 

Kidd, Junge, Spokes, Morrison, and Cutler (2018) has shown that some 9-month-old infants 

can rapidly create and access memories for newly presented words (for review of early 

lexical knowledge see Johnson, 2016). Thus other forces are likely to be at play. Moreover, 

any account the effect of vocabulary on lexical processing efficiency must explain why it 

existed from 18 to 21 but not 21 to 24 months.  

One possibility is the changing network structure of the lexicon between 18 and 24 

months. It is well understood that amongst adults, neighbourhood effects in the lexicon can 

be facilitatory or inhibitory, with semantic neighbourhood effects facilitating lexical access 

and phonological neighbourhood effects having an inhibitory effect (Chen and Mirman, 

2012). There is increasing evidence of both effects in children as young as 24 months. For 

example, Borovsky, Ellis, Evans and Elman (2016) found evidence of a facilitatory effect of 

semantic neighbourhood density in a Looking While Listening task at 24 months and Mani 

and Plunkett (2011) found evidence of inhibitory effects of phonological neighbourhood 

density in a priming task with 24 months. If lexical development over the second year of life 

is initially characterized by increased semantic neighbourhood density and then becomes 
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influenced by both phonological and semantic neighbourhood density, we could expect to see 

the pattern observed in the present study. Early growth in vocabulary would facilitate lexical 

processing efficiency increasing semantic neighbourhood density; later growth would be 

unrelated to lexical processing efficiency because of the countervailing effects of both 

semantic and phonological neighbourhood density. There is some indirect evidence 

supporting this account. Rämä, Sirri and Serres (2013) observed electrophyslogical evidence 

of semantic priming in high vocabulary but not low vocabulary 18 month olds, and Mani and 

Plunkett (2010; 2011) found no evidence of phonological neighbourhood effects at 18 months 

but did find effects at 24 months. Thus facilitative semantic neighbourhood effects appear 

developmentally prior to inhibitory phonological neighbourhood effects, and are related to 

vocabulary size. The influence of the structure of the lexicon on the LWL task and its relation 

to individual differences in vocabulary awaits further research.  

 Our analyses do not rule out the possibility of a bidirectional relationship between 

lexical processing efficiency and vocabulary, but evidence for an effect of lexical processing 

efficiency on vocabulary was relatively weak. At first glance, this finding seems inconsistent 

with two studies directly testing the effect of lexical processing efficiency on vocabulary, but 

these findings can be reconciled. First, Lany et al (2018) reported that 12 month LWL 

accuracy predicted changes in CDI percentile scores from between a first (12 months) and 

second (15 – 18 months) testing session, with infants who were more accurate on the LWL 

task exhibited bigger gains in their percentile scores on the CDI over the following months. 

Given the difference of ages between the samples, it is possible that the effects of lexical 

processing efficiency on vocabulary are larger at earlier ages and slowly diminish. This 

would be consistent with the 18 month correlation between lexical processing efficiency and 

vocabulary. However, it is also important to note that the difference scores used by Lany et al 

(2018) implicitly assume a linear relationship between vocabulary at consecutive time points; 
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whether this assumption is more plausible for percentile scores than raw vocabulary scores is 

unclear.  

 This finding also seems inconsistent with the results of Lany (2018), who found that 

participants with more efficient lexical processing as operationalized by RTs learned words 

more quickly under moderately challenging conditions than those with less efficient lexical 

processing. However, it may be that after 18 months, lexical processing efficiency plays a 

role in the initial stages of word-learning, but that the effect is too subtle to be observed in 

aggregate vocabulary size. For example, Storkel and Lee (2011) point out that learning a new 

word involves several partially separable but dependent cognitive processes, and that these 

differentially affect immediate and long-term retention of new words. Lexical processing 

efficiency may affect initial cognitive processes in detecting and encoding a novel word, and 

may therefore be more easily detectable in a laboratory-based novel word-learning task, but 

less detectable when the outcome measure is existing vocabulary.  

 More recent research suggests that the relationship between lexical processing 

efficiency and vocabulary may be quite complex.  In a study conducted concurrently with the 

present one, Peter et al. (2019) administered the Looking While Listening task at 19 months 

and examined how it predicted growth in lexical knowledge from 19 to 31 months. They 

found that for children with smaller vocabularies at 19 months, 19 month lexical processing 

efficiency predicted subsequent vocabulary growth, but for children with larger vocabularies 

at 19 months it did not. Examining such a relationship was not possible in the present study 

because of the relatively small number of time points.  

 Finally, we note that while they remain correlated later in development, our regression 

analyses did not detect a relationship between the variables after 21 months, such that they (at 

best) only predict themselves at 24 months. We should not be surprised at identity relations 

like this in longitudinal data, but the results suggest a cautionary note: we should be careful 
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about interpreting cross-variable effects (e.g., lexical processing efficiency predicting 

vocabulary) in this age range when prior variables have not been controlled. This is 

particularly important for capacity-limit explanations of development, which predict that 

development proceeds via domain-general increases in central processing speed that in turn 

support the learning of new words. While attractive, such explanations have been criticised 

across several domains for privileging capacity over knowledge (e.g., Cowan, Rouder, 

Blume, & Scott Saults, 2012; MacDonald & Christiansen, 2002), which in developmental 

studies are only controlled using cross-lagged longitudinal designs like ours. Thus future 

longitudinal studies, perhaps across a wider age range, should employ similar designs to 

better understand the theoretical nature of lexical processing efficiency and its role in 

vocabulary acquisition. 

Limitations 

The present research should be considered with two significant limitations in mind.  First, the 

data used in the structural equation models fit on the 18 month data were necessarily noisy.  

Indeed, RT data could be based on as few as one trial per word for each child. While more 

data were available for proportions, future research should consider designs which maximize 

the number of valid trials per participants. Increasing the number of trials may allow the 

models to better distinguish between these two conceptualizations. Second, our sample 

contains children predominantly from upper SES backgrounds. It is possible that the 

longitudinal relationship between vocabulary and lexical processing efficiency would differ 

in a more diverse sample given that both lexical processing efficiency and vocabulary are 

related to the quality of input (Weislder & Fernald, 2013). 

 Conclusions 

Lexical processing efficiency as measured by the LWL task is an important concept in 

research investigating individual differences in early language development, but the 
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interpretation of the developmental relationship has been unclear. In the current paper we 

investigated (a) the nature of individual differences on lexical processing efficiency tasks and 

(b) the longitudinal relationship between lexical processing efficiency and vocabulary over 

the second year of life. We found that lexical processing efficiency could be well modelled as 

both an emergent or central capacity, and found that there was a clear effect of 18 month 

vocabulary on 21 month lexical processing efficiency, possibly due to changes in the 

structure of the infant lexicon, and, at best, subtle effects of lexical processing efficiency at 

18 months on 21 month vocabulary. While the results suggest that data fit either a central 

capacity or emergent accounts of infant lexical processing efficiency, the longitudinal 

analysis provides greater evidence for a developmental account where lexical processing 

efficiency is closely tied to and predicted by infants’ vocabulary knowledge. Further research 

should examine how lexical network structure changes over the second year of life and 

beyond.  
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Tables 

 

Table 1. Number of valid trials per participant for log RTs and proportions  

 Log RTs Proportions 

 Median SD Range Median SD Range 

Ball 2 1.19 0 : 6 5 1.33 0:6 

Bird 2 1.26 0 : 6 6 1.08 2:6 

Book 2 1.1 0 : 6 6 1.02 2:6 

Car 2 1.29 0 : 6 6 1.07 1:6 

Cat 1.5 1.11 0 : 4 5 1.10 2:6 

Dog 2 .98 0 : 3 6 1.06 1:6 

Fish 2 1.21 0 : 3 5 1.09 1:6 

Shoe 2 1.2 0 : 5 5 .98 3:6 
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Table 2.  Descriptive Statistics   

 

Log RTs 

Mean SD Skewness Kurtosis Missing Shapiro Wilks 

(p value) 

Ball 6.60 .30 .16 2.62 4 .747 

Bird 6.64 .34 .29 2.59 9 .126 

Book 6.63 .35 -.05 2.68 5 .892 

Car 6.67 .28 .48 3.14 7 .124 

Cat 6.57 .34 .02 2.12 24 .165 

Dog 6.56 .29 .14 2.53 12 .699 

Fish 6.73 .31 -.07 2.63 9 .624 

Shoe 6.72 .33 -.46 3.59 7 .078 

Log RT 21 6.54 .19 .33 2.68 3 .289 

Vocab 21 220.9 140.9 .64 3.05 2 .007 

SQRT Vocab 21 13.99 5.06 -.16 2.52 2 .645 

       

Elogit Proportions       

Ball .46 1.24 .01 3.11 1 .491 

Bird 1.15 1.32 .08 3.29 0 .294 

Book 1.16 1.28 -.23 3.28 2 .040 

Car 1.19 1.69 -.20 3.84 2 .137 

Cat 1.55 1.35 .06 2.83 0 .213 

Dog 1.78 1.36 .19 3.49 1 .234 

Fish .55 1.32 -.48 2.89 1 .069 

Shoe .72 1.48 .10 3.54 0 .647 

Elog 21 1.45 .55 -.21 3.25 5 .344 

Vocab 21 221.15 143.33 .58 2.80 4 .280 

SQRT Vocab 21 13.96 5.16 -.15 2.38 4 .359 
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Table 3. Fit Statistics for Structural Equation Models 

 Log RT (n = 94) Proportions (n = 115) 

Model Centralized Emergent Centralized Emergent 

Chi Square χ2(34) = 33.47 

p = .493 

χ2(7) = 5.25, 

p = .630 

χ2(34) = 31.99, 

p = .567 

χ2(7) = 5.03, 

p = .656 

CFI 1.00 1.00 1.00 1.00 

TLI 1.01 1.09 1.05 1.12 

RMSEA .00 .00 .00 .00 

VTT  χ2(34) = 13.59 

p = .999 

χ2(7) = 3.98 

p = .782 

χ2(34) = 9.80 

p = ..999 

χ2(7) = 8.32 

p = .832 

Nested VTT χ2(27) = 9.97 

p = .998 

 χ2(27) = 6.27 

p = .999 

 

a .05 < p < .10 

* .01 < p < .05 

** .001 < .p < .01 

*** p < .001 
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Table 4. Indicator Variables from Structural Equation Models 

 Log RT (n = 94)  E Logit Proportions (n = 115) 

 Centralized Emergent Centralized Emergent 

Ball .718 (fixed) .231 (fixed) .360* .188 

Bird .562*** .189 .429* .352a 

Book .472** .082 .246* .195 

Car .433* .184 .184 .231 

Cat .554** .166 .098 .098 

Dog .378** .039 -.018 -.076 

Fish .478*** .021 .548 (fixed) .556 (fixed) 

Shoe .173 .115 .341* .114 
a .05 < p < .10 

* .01 < p < .05 

** .001 < .p < .01 

*** p < .001 
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Table 5. Regressions from Latent Variable in Structural Equation Models 

 Log RT (n = 94) E Logit Proportions (n = 115) 

 Central Emergent Central Emergent 

Vocab -.516*** -.697* .673*** .545** 

LPE  .621*** .927* .372* .291* 
a .05 < p < .10 

* .01 < p < .05 

** .001 < .p < .01 

*** p < .001 
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 Table 6. Descriptive Statistics for Variables at the Three Time Points.   

Vocab Wordbank is the median vocabulary size (and interquartile range) from the American 

sample on Wordbank for the relevant age group. 

  

 18 months 21 months 24 months 

 

RT 

848  

(156) 

769 

 (168) 

566  

(117) 

 

Log RT 

6.67  

(.18) 

6.56  

(.19) 

6.26  

(.18) 

 

Prop 

.63  

(.07) 

.68 

 (.06) 

.70  

(.07) 

Vocab present 

sample 

102 

(94) 

217 

(136) 

340 

(146) 

Vocab 

 Wordbank 

76 

(32 : 173) 

178 

(81 : 320) 

316 

(165 : 454) 

Age (in days) 568 

 (7) 

656  

(6) 

749 

 (8) 

Percentage Female 46% 46% 48% 

Caregiver 1  

Education 

3.96 

 (1.14) 

3.96  

(1.14) 

3.93 

 (1.15) 

Caregiver 2  

Education  

3.57 

 (1.55) 

3.53  

(1.54) 

3.51  

(1.54) 
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Table 7. Correlation Matrix for Log RTs 

 RT 18 RT 21 RT 24 Vocab 18 Vocab 21 Vocab 24 

RT 18 1.00      

RT 21 .45*** 1.00     

RT 24 .26** .27** 1.00    

Vocab 18 -.25** -.33*** -.18a 1.00   

Vocab 21 -.32*** -.40*** -.20* .85*** 1.00  

Vocab 24 -.35*** -.41** -.24* .70*** .90*** 1.00 
a .05 < p < .10 

* .01 < p < .05 

** .001 < .p < .01 

*** p < .001 
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Table 8. Correlation Matrix for Proportion 

 

 

 

 

 

 

 
a .05 < p < .10 

* .01 < p < .05 

** .001 < .p < .01 

*** p < .001 

  

 Prop 18 Prop 21 Prop 24 Vocab 18 Vocab 21 Vocab 24 

Prop 18 1.00      

Prop 21 .42*** 1.00     

Prop 24 .23* .21* 1.00    

Vocab 18 .37*** .31** .15 1.00   

Vocab 21 .43*** .38*** 17a .85*** 1.00  

Vocab 24 .43*** .37*** .20* .70*** .90*** 1.00 
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Table 9. Fit Statistics for Vocabulary Models with Non-Linear Terms 

 21 Month Vocab 24 Month Vocab 

 AIC Adjusted R2 AIC Adjusted R2 

Linear 1250.50 .71 1208.60 .80 

Linear + Quadratic 1229.57 .76 1188.94 .84 

Linear + Quadratic + Cubic 1229.45 .77 1182.07 .85 

Linear + Quadratic + Cubic + Quartic 1231.44 .76 1180.48 .85 
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Table 10. Regression Models Predicting 21 Month Vocabulary 

 LWL RT LWL Prop 

 All Trials No Unknown All Trials No Unknown 

Intercept 412.64 390.64 104.31a 114.32a 

Vocab 18 1192.73*** 1162.49*** 1158.19*** 1152.26*** 

Vocab 182 -318.69*** -307.32*** -305.96*** -311.87*** 

LWL -29.19 -25.19 181.15a 167.96a 

Adjusted R2 .76 .75 .77 .76 

N =  109 106 109 107 
a .05 < p < .10 

* .01 < p < .05 

** .001 < .p < .01 

*** p < .001 
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Table 11. Regression Models Predicting 24 Month Vocabulary 

 LWL RT LWL Prop 

 All Trials No Unknown All Trials No 

Unknown 

Intercept 78.55 71.87 371.60*** 341.08*** 

Vocab 21 1375.73*** 1374.55*** 1361.66*** 1350.27*** 

Vocab 212 -280.22*** -278.45*** -284.31*** -280.36*** 

Vocab 213 168.90** 168.44** 170.81** 166.92** 

LWL 40.61 41.65 -40.86 4.14 

Adjusted R2 .85 .85 .85 .85 

N  107 107 108 108 
a .05 < p < .10 

* .01 < p < .05 

** .001 < .p < .01 

*** p < .001 
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Table 12. Regression Models Predicting 21 Month lexical processing efficiency 

 LWL RT LWL Prop 

 All Trials No Unknown All Trials No Unknown 

Intercept 3.86*** 4.23*** -.18 .05 

LWL 18 .40*** .35** 1.47*** 1.12** 

Vocab 18 -.04* -.05* .05a .06* 

Adjusted R2 .24 .17 .21 .14 

N   107 104 108 105 
a .05 < p < .10 

* .01 < p < .05 

** .001 < .p < .01 

*** p < .001 
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Table 13. Regression Models Predicting 24 Month lexical processing efficiency 

 LWL RT LWL Prop 

 All Trials No Unknown All Trials No Unknown 

Intercept 4.89*** 5.23 .33 .35 

LWL 21 .21* .16 .79 .76 

Vocab 21 -.02 -.02 .04 .03 

Adjusted R2 .08 .04 .06 .05 

N  103 103 104 103 
a .05 < p < .10 

* .01 < p < .05 

** .001 < .p < .01 

*** p < .001 
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Figures 

  

Figure 1 A. Schematic of Effects-indicator 

model. 

Figure 1 B. Schematic of Causal indicator 

model. 
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Figure 2. Schematic relationship of the results of the longitudinal study. LPE = Lexical 

Processing Efficiency 
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Appendix A 

  

Figure A1. Left Panel: Relationship between 18 month and 21 month vocabulary. Right 

Panel: Relationship between 21 month vocabulary and 24 month vocabulary.  

 


