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A B S T R A C T

Machine learning now plays a pivotal role in our society, providing solutions to
problems that were previously thought intractable. The meteoric rise of this technology
can no doubt be attributed to the information age that we now live in. As data
is continually amassed, more efficient and scalable methods are required to yield
functional models and accurate inferences.

Simultaneously we have also seen quantum technology come to the forefront of
research and next generation systems. These technologies promise secure information
transfer, efficient computation and high precision sensing, at levels unattainable by their
classical counterparts. Although these technologies are powerful, they are necessarily
more complicated and difficult to control.

The combination of these two advances yields an opportunity for study, namely
leveraging the power of machine learning to control and optimise quantum (and more
generally complex) systems. The work presented in thesis explores these avenues of
investigation and demonstrates the potential success of machine learning methods in
the domain of quantum and complex systems.

One of the most crucial potential quantum technologies is the quantum memory.
If we are to one day harness the true power of quantum key distribution for secure
transimission of information, and more general quantum computating tasks, it will
almost certainly involve the use of quantum memories.

We start by presenting the operation of the cold atom workhorse: the magneto-optical
trap (MOT). To use a cold atomic ensemble as a quantum memory we are required
to prepare the atoms using a specialised cooling sequence. During this we observe
a stable, coherent optical emission exiting each end of the elongated ensemble. We
characterise this behaviour and compare it to similar observations in previous work.

Following this, we use the ensemble to implement a backward Raman memory. Using
this scheme we are able to demonstrate an increased efficiency over that of previous
forward recall implementations. While we are limited by the optical depth of the
system, we observe an efficiency more than double that of previous implementations.

The MOT provides an easily accessible test bed for the optimisation via some machine
learning techniques. As we require an efficient search method, we implement a new
type of algorithm based on deep learning. We design this technique such that the
artificial neural networks are placed in control of the online optimisation, rather than
simply being used as surrogate models.

We experimentally optimise the optical depth of the MOT using this method, by
parametrising the time varying compression sequence. We identify a new and unintu-
itive method for cooling the atomic ensemble which surpasses current methods.
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Following this initial implementation we make substantial improvements to the deep
learning approach. This extends the approach to be applicable to a far wider range
of complex problems, which may contain extensive local minima and structure. We
benchmark this algorithm against many of the conventional optimisation techniques
and demonstrate superior capability to optimise problems with high dimensionality.
Finally we apply this technique to a series of preliminary problems, namely the tuning
of a single electron transistor and second-order correlations from a quantum dot source.
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1 I N T R O D U C T I O N

Almost everything in the natural world can be thought of as some sort of optimisation
problem. Nature inherently optimises, with physical systems tending towards the
lowest energetic state. Evolutionary biology demonstrates to us that organisms which
show a natural tendency to adapt, will outperform and supersede their peers. Certainly
the need for optimisation comes from the finite reality of the natural world. That is
to say without restrictions such as resource scarcity and finite lifetimes, there would
be no need to bother with optimisation at all, outside of curiosity. We do, however,
live in a world which is confronted with scarcity and flux, requiring us to seek ever
more efficient solutions to problems. This is most evident with the meteoric rise of
communications and connected societies, presenting us with complex networking
and distribution problems requiring new, efficient methods to solve, even with ever
increasing computational power.

Complex quantum systems are now beginning to appear at the forefront of main-
stream technology, with promises of superior computational power, secure communi-
cations and solutions to so far intractable problems. It is still unknown as to whether
quantum computing will provide answers to intractable optimisation problems in the
general sense. In either case quantum computing and communication is potentially
interesting and useful enough on its own, to warrant further study. The design and
operation of such devices is however no trivial task, with sources of decoherence,
noise and extreme sensitivity to environmental conditions common to many quantum
systems. While quantum systems promise powerful capabilities, they are also fragile.
In the wake of this realisation, more attention has turned to issues regarding error
correction, control, and optimisation. The challenges associated with these causes are
the high dimensionality and inaccessibility of many quantum properties. Clearly in
the absence of greater computational power, one will have to conceive smarter ways of
dealing with such problems.

This thesis is essentially split into three parts, with the broader aim of addressing
optimisation in the context of quantum and high dimensional systems. The first part
introduces the concepts of quantum mechanics and the relevant cold atom theory
for understanding the second part, which details the behaviour of cold atoms in the
context of quantum information processing.

In the second part I detail some of the odd behaviours that can be observed in cold
atoms as well as the operation of a quantum memory protocol which aims to improve
on existing protocols. The work with cold atoms details the first attempts to improve
this system using some basic machine learning approaches. It also serves to highlight
the complexities of dealing with quantum information processes in the real world.
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The third part presents a new method for high dimensional optimisation, leveraging
the computational power of deep learning approaches. This algorithm is applied to the
optimisation of the cold atom ensemble, with the aim of improving future experiments,
the performance of which relies on the characteristics of the atom trap. This marks the
first instance of an online deep learning approach applied in an experimental setting. I
then go on to expand and improve the algorithmic approach, substantially improving
the performance of the algorithm on different benchmark problems. The improvement
of this algorithm leads to the application on additional quantum systems, highlighting
the powerful ability of this algorithm to operate efficiently in high dimensional spaces.

publications and contributions During the course of my PhD, I was involved
in a number of publications which are covered in this thesis. The first experimental
component of this thesis is covered in Ch. 5. I was responsible for the experimental
characterisation and was assisted by Anthony Leung. This work will be prepared for
publication following further characterisation of this effect.

Ch. 7 covers the first published work on a backwards Raman memory scheme:

• Vernaz-Gris, P., Tranter, A.D., Everett, J.L., Leung, A.C., Paul, K.V., Campbell,
G.T., Lam, P.K. and Buchler, B.C., 2018. High-performance Raman memory with
spatio-temporal reversal. Optics express, 26(10), pp.12424-12431.

This chapter covers a number of theoretical simulations which I developed with contri-
butions from Jesse Everett to the base code. I was also responsible for the development
and integration of the optimisation code with the simulations. The experimental compo-
nent of this chapter and the associated main result was performed in conjunction with
Pierre Vernaz-Gris. I was directly involved in the experimental design, construction
and measurement. Additionally I was responsible for the development and integration
of the machine learning component of the experiment.

The second published work is covered in Ch. 10, detailing the experimental optimi-
sation of the magneto-optical trap:

• Tranter, A.D., Slatyer, H.J., Hush, M.R., Leung, A.C., Everett, J.L., Paul, K.V.,
Vernaz-Gris, P., Lam, P.K., Buchler, B.C. and Campbell, G.T., 2018. Multiparameter
optimisation of a magneto-optical trap using deep learning. Nature communica-
tions, 9(1), pp.1-8.

In this work I was directly involved in the experimental design, construction and
measurement. Co-authors Harry Slatyer and Michael Hush were directly involved
in the development of the deep learning algorithm. I was also responsible for the
integration of the algorithm into the experimental setup and modifications to the
algorithm.

The work covered in Ch. 11 has been withheld from publication due to the opportu-
nity for commercialisation. I was independently responsible for the complete re-design
and subsequent improvements to the deep learning approach. The following works are
currently in preparation relating to the machine learning extensions:
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• Auto-Alignment of an experimental quantum optics experiment using actor-critic
algorithms. Other authors: Naomi Chaix-Eichel, Thibault Michel.

• Improving the sensitivity of gravimeter measurements with machine learning.
Other authors: Christian Freier, Kyle Hardman, Paul Wigley.

Information on these works can be found in the appendices. Additional works outlined
in Ch. 11 are also expected to yield publications, however the projects are still in the
preliminary stages and have not been mentioned above.

The final work I was involved in is not covered in this thesis, however the interested
reader may consult:

• Everett, J.L., Vernaz-Gris, P., Campbell, G.T., Tranter, A.D., Paul, K.V., Leung,
A.C., Lam, P.K. and Buchler, B.C., 2018. Time-reversed and coherently enhanced
memory: A single-mode quantum atom-optic memory without a cavity. Physical
Review A, 98(6), p.063846.





Part I

F U N DA M E N TA L S

"Exactly!" said Deep Thought. "So once you do know what the question
actually is, you’ll know what the answer means.”

- Douglas Adams, The Hitchhiker’s Guide to the Galaxy





2 L I G H T A N D M AT T E R W I T H Q U A N T U M
M E C H A N I C S

In order to reach a broader audience, initially we will cover the basics of quantum
mechanics to facilitate the reader in understanding the broader field and applications
of the work at hand. The interested reader may consider following [1] and [2] for a
more in depth discussion of the concepts introduced here.

2.1 what is quantum mechanics anyway?

While many physicists will often remark that no-one really "understands" quantum
mechanics, it is fortunate for us that the ability to perform quantum mechanical
calculations lies within our reach. In fact it is the language of quantum mechanics that
allows us to describe some of the most fundamental interactions in the natural world.
Until 1900, the physics of so called quantum mechanical systems (a definition which
we will limit to the interaction between a quantised object and some other system,
be it semi-classical or not) had been limited in their description by classical physics.
The origin of quantum mechanics is fuzzy in its conception, however, following the
first resolution to the "ultra-violet catastrophe" by Max Planck, the field of quantum
mechanics exploded into a frenzy of study and controversy with many out-right
rejecting the notion of lights quantised nature following Albert Einstein’s quantum
explanation of the photoelectric effect [3].

Fast forward to the present and still we are continuing to discover the rich and often
strange physics associated with quantum systems. This can be partly attributed to the
common language that quantum mechanics has provided, allowing the description of
the interaction between what would otherwise be distinct physical systems. Nowhere
has this become more apparent than the quest for quantum computing and communi-
cation infrastructures, where this language provides a common overlay covering single
donor semi-conductor and solid state physics all the way through to nuclear magnetic
resonance and quantum optics.

2.2 the basic theory

There are a number of equivalent descriptions of quantum mechanics mainly differ-
ing in their mathematical representation for the sake of convenience or conceptual
understanding. While one of the earliest conceptual methods was to construct a wave
function Ψ we will restrict our discussion to the more computationally convenient
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8 light and matter with quantum mechanics

Dirac notation. We wish to consider a state vector |ψ〉 which will represent our system’s
state. If we consider our state vector to reside in a complex vector space, then it must
be true that any given pure state can be decomposed into a linear combination of the
basis vectors that span our complex vector space. That is to say

|ψ〉 = ∑
i

ci |ei〉 , (2.1)

where ci are the complex coefficients and |ei〉 are orthonormal basis vectors of this
space. The complex vector space generally used in quantum mechanics is referred to
as a Hilbert space when possessing certain properties (see [1] for a more complete
description). In this formalism the probability of finding the system in the state |ei〉 is
simply given by |ci|2, where ∑i |ci|2 = 1.

2.2.1 Superposition

From this construction it follows that we can then have a state represented as a linear
combination of two basis states. In the example of a spin- 1

2 particle we can prepare the
state

|ψ〉 = 1√
2
(|↑〉+ |↓〉), (2.2)

where |↑〉 and |↓〉 represent the spin-up and spin down-states respectively. This linear
combination represents a coherent superposition where the system occupies both states
simultaneously. In this case upon measurement we find spin-up |〈↑|ψ〉|2 = 1

2 of the
time and similarly for spin-down. Superposition is a fundamental property of quantum
mechanics that forms the basis for many quantum computing algorithms as it may be
leveraged as a form of parallel computation in certain contexts.

2.2.2 Entanglement

In general entanglement in quantum mechanics refers to the phenomenon in which
the correlation between two or more systems cannot be explained by classical physics
[4]. Consider the Bell state defined between two spin- 1

2 systems as

|ψBell〉 =
1√
2
(|↑〉A |↓〉B − |↓〉A |↑〉B), (2.3)

where |i〉k describes the state of system k. As this state is superposed we expect that
upon measurement we should find the state in one of two states with equal probability.
However this state has the additional property that a measurement performed on
system A will determine the state of system B and vice versa. This property holds true
irrespective of the distance between A and B and led to the now famous Bell’s theorem
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[5] and associated experimental confirmations [6–8] that ruled out local realism theory
as an explanation for such phenomena.

2.2.3 Operators

An operator can be thought of as a transformation from one state to another. For
example, if we have a state |ψ〉 then we can define an operator Ô

Ô |ψ〉 =
∣∣ψ′〉 , (2.4)

where |ψ′〉 is the target state of the operation. A given state vector is said to be an
eigenstate of an operator if it satisfies the relation

Ô |ψ〉 = c |ψ〉 , (2.5)

where the eigenvalue c is in general a complex value, however if Ô is Hermitian then c
is real. Hermitian operators are also called observables, and a typical example of those
is

H |a〉 = Ea |a〉 , (2.6)

which will return the total energy of the system Ea.

2.2.4 Density matrix formalism

A state |ψ〉 is assumed to contain all the information regarding a system, and thus it is
called a pure state. The mean value of a given operator Ô is given by

〈Ô〉 = 〈ψ| Ô |ψ〉 , (2.7)

where 〈ψ|ψ〉 = 1. Alternatively, we can describe a pure system in what is called density
formalism which is given by

ρ = |ψ〉 〈ψ| = ∑
i,j

cij |ψi〉
〈
ψj
∣∣ , (2.8)

where cij = ci · c∗j . The expectation value of the operator now is

〈Ô〉 = Tr(ρÔ), (2.9)

where Tr denotes the trace.
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A statistical mixture of multiple pure states is also a valid state, and it is called a
mixed state. Utilizing the density matrix formalism, mixed states are represented as

ρ = ∑
i

pi |ψi〉 〈ψi| , (2.10)

with Tr(ρ) = 1. Here, pi, represent probabilities and therefore ∑i pi = 1. Thus, pure
states are only a subset of all possible quantum states. A straightforward way to
differentiate between pure and mixed states is the following: if ρ = ρ2 the state is pure,
otherwise it’s mixed.

2.3 classical atom light interactions

It is useful to consider the most basic picture of an atom with a single electron
interacting with a classical electric field. We can initially consider this in the semi-
classical picture and arrive at a number of useful quantities that are valid when the
electromagnetic field contains many photons with a weak atom-field coupling. These
assumptions are justified for many of the cases we will deal with.

2.3.1 Lorentz model

Consider an electron bound to an atom modelled as a damped harmonic oscillator. We
can consider a monochromatic electric field interacting with our atom given by

E(t) = ε̂E0e−iωt, (2.11)

where ε̂ is the polarisation unit vector, E0 is the amplitude and ω is the driving
frequency. We have used the dipole approximation (the atom is much smaller than the
wavelength) to remove any spatial dependence. From this, it follows that the force on
the electron due to the oscillating field will be

F = −eE, (2.12)

where e is the fundamental charge. We represent the average position of the electron x

mẍ + mγẋ + mω2
0x = −eε̂E0e−iωt, (2.13)

where m is the reduced mass of the electron, ω0 is the resonant frequency of the
harmonic potential, and Γ the damping rate is equivalent to the excited state decay
rate. If we assume a solution that has the same form as the driving field

x(t) = ε̂x0e−iωt, (2.14)
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then substituting into Eq. 2.13 we can obtain

x0 =
eE0/m

ω2 −ω2
0 + iΓω

. (2.15)

Now we have a complete expression for the electron displacement we can think about
the induced dipole moment

d = −ex = α(ω)E, (2.16)

where α is the polarizability describing the response of the atom to the applied electric
field. From this we find the polarizability to be,

α(ω) =
e2/m

ω2
0 −ω2 − iΓω

(2.17)

and through the relationship χ(ω) = Nα(ω)/ε0 we also find the susceptibility

χ(ω) =
e2N

mε0(ω2
0 −ω2 − iΓω)

, (2.18)

where N is the number density and ε0 is the vacuum permittivity. The complex
susceptibility describes the response of the atom to the applied field, with the imaginary
part describing the absorptive properties and the real part describing the dispersive
properties. We can define the complex refractive index in terms of this susceptibility as

ñ2 = 1 + χ(ω). (2.19)

2.3.2 Absorption cross-section

As the atomic vapours that we are dealing with have a low vapour pressure we can
take the complex refractive index to be

ñ(ω) ≈ 1 +
χ(ω)

2
, (2.20)

where the imaginary part of ñ(ω) gives us the absorption coefficient

a(ω) =
2ω

c
Im[ñ(ω)], (2.21)

where c is the speed of light. If we take our detuning from resonance ω0 to be small
then we recover the familiar Lorenztian absorption profile

a(ω) ≈ Ne2

mε0cΓ
(Γ/2)2

(ω0 −ω)2 + (Γ/2)2 . (2.22)
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We can use this to find the absorption cross section, σ(ω), via the relationship a(ω) =

σ(ω)N giving

σ(ω) =
σ0

1 + 4(∆/Γ)2 , (2.23)

where σ0 = σ(ω0) and ∆ = ω0 − ω. However this expression will only apply in the
case where the intensity of our driving field is much less than that of the saturation
intensity of our given transition.

2.3.3 Optical depth

A useful quantity when working with ensembles of atoms is optical depth. Here we
define optical depth as the quantity, d, for which an incident resonant field is attenuated
by a factor e−d. Such a measurement is challenging as ensembles with high optical
depth, such as those found in the present work, will attenuate resonant beams beyond
measurement capacity. Thus, it is useful to define resonant optical depth in terms of a
transmitted off-resonant beam. It follows from Eq. 2.23 that an off resonant beam will
instead experience an attenuation of

exp
(
− d

1 + 4(∆/Γ)2

)
. (2.24)

Thus we can define optical depth through a measurement of off resonant transmittance
as

d =
(
1 + 4(∆/Γ)2) · ln( I0

IT

)
, (2.25)

where IT is the intensity of the transmitted probe attenuated from a reference intensity
I0.

2.4 semi-classical picture

Unfortunately the classical picture of atom-light interactions will only take us so far.
For example, our previous discussion is limited to the case where we have a bright
classical field, but not so bright that we begin to saturate the populations of particular
transitions. Things start to become more complicated when dealing with quantised
states corresponding to orbital angular momentum and spin angular momentum.
Restricting our discussion to Hydrogen-like atoms1 we can begin to think about a more
quantum model for our atom.

1 The present work deals with alkali atoms such as 87Rb which can be thought of as Hydrogen-like as they
have one valence electron.
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2.4.1 Two level atom

Let us start by asssuming we have a single atom with an excited and ground state,
labelled |e〉 and |g〉 respectively, with resonant frequency ωeg. We also wish to define
some atomic operators in the {|e〉 , |g〉} basis. We will define three atomic operators, σ̂z,
σ̂+ and σ̂− which can be constructed as such

σ̂z = |e〉 〈e| − |g〉 〈g| σ̂+ = |e〉 〈g| σ̂− = |g〉 〈e| , (2.26)

where σ̂z is the Pauli spin matrix and σ̂± are effectively the atomic raising and lower
operators, respectively. The matrix representation of these operators corresponds to

σ̂z =

1 0

0 −1

 σ̂+ =

0 1

0 0

 σ̂− =

0 0

1 0

 . (2.27)

We wish to find the Hamiltonian of this system which should take the form H =

HA +HI , where HA is the free atom Hamiltonian and HI describes the atom-light
interaction.

To construct HA we consider the energy of the two states |e〉 and |g〉. Given the
resonant frequency ωeg, the energy difference between the two states is h̄ωeg. If we
define a zero point energy as being half way between these two states we then have

Ee =
1
2

h̄ωeg Eg = −1
2

h̄ωeg, (2.28)

where Ei is the energy of state i. From this construction it follows that we expect the
free atom Hamiltonian to take the form

HA =
1
2

h̄ωeg |e〉 〈e| −
1
2

h̄ωeg |g〉 〈g| =
1
2

h̄ωegσ̂z. (2.29)

We will consider a classical field E(t) decomposed into its counter rotating compo-
nents of frequency ω which is detuned ∆ from ωeg

E(t) =
ε̂E0

2

(
e−iωt + eiωt

)
(2.30)

= E+ + E−. (2.31)

To determine HI we consider the interaction between the atom and field to be the
dipole interaction similar to that of the classical case presented previously

HI = −d · E. (2.32)

Due to parity (〈g| d |g〉 = 〈e| d |e〉 = 0) we can consider only the cross terms in the
atomic dipole operator,

d = 〈g| d |e〉 |g〉 〈e|+ 〈e| d |g〉 |e〉 〈g| . (2.33)
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By choosing the phase appropriately we can simplify this expression further in terms
of the operators in Eq. 2.26. Similar to the electric field we may decompose the dipole
operator into its counter rotating components

d = 〈g| d |e〉 (σ̂+ + σ̂−) (2.34)

= d+ + d−, (2.35)

where d± ∼ e∓iωegt. If we expand our expression from Eq. 2.32 we get the expansion

HI = −d+ · E+ − d+ · E− − d− · E+ − d− · E−. (2.36)

The first and last term in this expression will be oscillating much faster (ω + ωeg)
whereas the central terms will be oscillating much more slowly (∆). We can neglect the
fast oscillating terms under the rotating wave approximation which reduces the above
to

HI = −d+ · E− − d− · E+. (2.37)

We can form our Hamiltonian in terms of the Rabi frequency, Ω

HI =
h̄Ω
2

(
σ̂−eiωt + σ̂+e−iωt

)
, (2.38)

where Ω = − 〈g| d |e〉 · ε̂E0/h̄. The Rabi frequency describes the coupling strength
between the two level atom and the field, as the inner product gives the overlap
between the atomic dipole and the electric field.

2.4.2 Optical Bloch equations

Until this point we have assumed a simple semi-classical model which has not charac-
terised certain processes we are familiar with such as spontaneous emission, in which
an excited atom will tend to decay to the ground state. Considering the Hamiltonian
that we have just constructed, we can think about the evolution of the density ma-
trix elements and how our system will evolve. A full derivation of these elements is
presented in [2, 9], however here for brevity we will simply present them:

∂tρee = i
Ω
2
(ρ̃eg − ρ̃ge)

∂tρgg = −i
Ω
2
(ρ̃eg − ρ̃ge)

∂tρ̃ge = −i∆ρ̃ge − i
Ω
2
(ρee − ρgg)

∂tρ̃eg = −i∆ρ̃eg + i
Ω
2
(ρee − ρgg).

(2.39)

Eq. 2.39 describes the evolution of the populations and coherences of our two level
system. Here the tilde is used to denote the elements of the density matrix in the rotating
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frame (assumed to be rotating at the frequency ω) for mathematical convenience. If
we consider the case of being on resonance with no external field (this is equivalent to
setting ∆ and Ω to 0) then we can consider adding some terms to account for a decay
rates with the following forms

∂tρee = −Γρee

∂tρgg = Γρee

∂tρ̃ge = −γρ̃ge

∂tρ̃eg = −γρ̃eg,

(2.40)

where Γ is simply our spontaneous decay rate from earlier and γ accounts for addi-
tional coherence decay. Physically it is clear that the Γ terms are facilitating population
shuffling from the excited to ground state thanks to spontaneous emission. The addi-
tional decay rate γ here corresponds to dephasing that doesn’t affect the populations,
for example atom-atom collisions. In the limit of homogeneous broadening where there
are no additional dephasing effects γ = Γ/2. Combining 2.39 and 2.40 we arrive at the
optical Bloch equations

∂tρee = i
Ω
2
(ρ̃eg − ρ̃ge)− Γρee

∂tρgg = −i
Ω
2
(ρ̃eg − ρ̃ge) + Γρee

∂tρ̃ge = −(γ + i∆)ρ̃ge − i
Ω
2
(ρee − ρgg)

∂tρ̃eg = −(γ− i∆)ρ̃eg + i
Ω
2
(ρee − ρgg).

(2.41)

2.4.3 Useful results

Now that we have determined the evolution of our system via the optical Bloch
equations there are a number of useful properties we can define.

saturation A fundamental difference between the classical and quantum treatment
of the atom is the excitation. While our harmonic oscillator may be excited to arbitrarily
high amplitudes, this is not true for our quantum mechanical system which will
undergo saturation. We can define a saturation parameter s given by

s =
Ω2/γΓ

1 + ∆2/γ2 . (2.42)
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Framing the steady state solution in terms of this parameter we can show that the
steady state population of the excited state tends to

ρee =
s/2

1 + s
. (2.43)

Thus a small intensity field will increase the excitation linearly with s, tending to 1
2

as s→ ∞. This effect is a major departure from our classical modelling and becomes
important when considering the properties of laser cooling (see Ch. 3).

scattering cross section As we have a altered the mechanism for illuminating
a quantum mechanical atom, so must we modify our expression for the scattering cross
section. We now have the updated expression

σ(ω) =
σ0

1 + 4∆2Γ2 + I/Isat
, (2.44)

where I/Isat is a rescaling of the incident intensity to the saturation intensity and
σ0 = h̄ωegΓ/2Isat.

power broadening If we consider the steady state population of the excited state
in the limit of a strong field we find the Lorentzian

ρee =
Ω2/4

∆2 + Ω2/2
. (2.45)

As stated previously this value should tend to a maximum of 1
2 in this limit, however

the full-width half-maximum of this Lorentzian is also
√

2Ω. This dependence on the
power of the driving field is known as power broadening, where the effective linewidth
of the transition is increased due to strong coupling with the field.

incoherent scattering An issue when considering atom-light interactions in the
context of coherent processes, is losses due to incoherent scattering. In the homogeneous
broadening case (γ = Γ/2), the incoherent scattering rate can be calculated in terms of
the saturation parameter as

RISc =
Γs2

2(1 + s)2 . (2.46)

It is important to note that while the incoherent scattering rate increases quadratically
with s, the coherent scattering rate only increases linearly.

2.4.4 Three level atom

A simple extension to the two level atom case is to consider a three level atom. The
structure of these transitions can take many forms however here we will consider a
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Figure 2.1: Three level Λ-scheme with two applied fields, a strong coupling field Ω and weak
probe field E , with frequencies ωes and ωeg respectively.

Λ type scheme (see Fig. 2.1). Here we will assume there exists three states, a ground
state |g〉, an excited state |e〉 and a meta-stable state (or second ground state) |s〉.
Additionally we will assume that there are optical transitions |g〉 → |e〉 and |s〉 → |e〉
with detuned frequencies ωeg and ωes, respectively. A similar treatment to the two level
system above can be taken. If we assign the excited state to have zero energy we can
determine the interaction Hamiltonian in the rotating frame as

HI =
h̄
2

(
Ωeg |e〉 〈g| e−iωegt + Ωes |e〉 〈s| e−iωest + c.c.

)
, (2.47)

where Ωji represents the Rabi frequency for transition |i〉 → |j〉. This system will behave
like an effective two level system in the regime of large detunings, driving populations
between the two ground states without any significant population occupying the
excited state. This effect is a result of the coherence between the dipole moments of
each transition. This convenient approximation will be used in Ch. 7.





3 L A S E R C O O L I N G

A particularly useful tool for the study of atom-light interactions is some form of
atomic trap. While there are many types of traps, for the present work we are mainly
concerned with a magneto-optical trap. For this we will need to introduce concepts
related to laser cooling and trapping.

3.1 doppler cooling

We require the ability to cool atomic species down to temperatures at which point the
atomic motion is either negligible or at the very least, conveniently small. A method
which was proposed simultaneously by Hänsch and Schawlow, and, Wineland and
Dehmelt [10, 11] in 1975, is to use laser light as a method for cooling gaseous media.
This method is known as Doppler cooling.

3.1.1 Doppler shift

Let us consider an atom illuminated by a single propagating field at some frequency ω.
In the case where the atom has non-zero or at least non-negligible velocity, we need to
take into account the Doppler shift associated with this velocity. This can be expressed
via the relationship

ωd = −k · v = −kv cos(θ), (3.1)

where ωd is the Doppler shift, v is the atomic velocity and k is the wavevector with
magnitude 2π/λ. This can have a significant effect when addressing optical transitions,
for example, for Rubidium at room temperature this can be on the order of 500 MHz.
This effect is responsible for the Doppler broadened transitions observed in atomic
vapours during an absorption measurement (see Fig. 4.5).

3.1.2 Spontaneous emission

An atom absorbing a photon results in a transfer of momentum from the optical field
to the atom. Similarly the process of spontaneous emission also results in a momentum
kick. This reshuffling of momenta is what allows the process of laser cooling. The
optical field will always have a momentum vector in the direction of propagation,
however spontaneous emission will occur in all directions, effectively averaging to zero

19
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net effect over many events. In this way we can define the force associated with such a
process as

F = h̄kRSc = h̄kΓρee, (3.2)

where RSc is the scattering rate derived in the steady state. We can thus frame this in
terms of s0 = s(∆ = 0), the saturation parameter at zero detuning as

F =
h̄kΓ

2
s0

1 + s0 + (2(∆−ωd)/Γ)2 , (3.3)

where we have also included the Doppler shift from Eq. 3.1. For higher intensities this
force will saturate at a maximum value ∼ h̄kΓ/2 as ρee → 1/2. However a discussion
about high intensities will become more complicated as stimulated emission begins to
play a role in momentum transfer.

3.1.3 1D optical molasses

Considering the 1-dimensional case of two counter-propagating optical fields we can
determine the force experienced by the atom in the low intensity limit. In this case we
consider a standing wave constructed from the two counter-propagating fields. We can
thus derive an average force Fav = −βD · v acting against the atomic velocity, where βD

is the damping coefficient and is given by

βD = − 8h̄k2∆s0

Γ(1 + s0 + (2∆/Γ)2)2 . (3.4)

From Eq. 3.4 we can see that if ∆ < 0 we end up with a situation where the atomic
motion is viscously damped. This resulting viscous force is referred to as optical
molasses.

doppler limit Considering the viscous damping force, in the absence of other
forces we would expect the temperature of our system to arrive at 0K. Clearly this
result is unphysical as there will be a number of heating effects that contribute to a
non-zero temperature. When undergoing spontaneous emission our sample will receive
momentum kicks of h̄k per event in random directions. This therefore must contribute
to heating of the system. The minimum energy we can expect to achieve is then simply
when the cooling rate and heating rate are in equilibrium. This minimum energy is
characterised as ED, the Doppler energy, with an associated Doppler temperature TD

ED =
h̄
8

(
Γ + 4|∆|2

2|∆|

)

TD =
h̄Γ
2kB

,

(3.5)
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Figure 3.1: Level structure for a fictitious atom with two levels with J=1 and 2 respectively. The
Clebsch-Gordan coefficients for each transition are indicated.

where kB is Boltzmann’s constant. This turns out to be a curious result as it is inde-
pendent of the atomic mass, optical wavelength or optical intensity (providing we
stay below the threshold for the low intensity regime). Experimental demonstrations
initially agreed with this limit, however, there quickly became mounting evidence that
this limit could be exceeded.

3.2 sub-doppler cooling

Experimental demonstrations began to show that sub-Doppler cooling was possible
[12] and it was theorised this arose from evolution of the internal atomic state [13].
Here we will present the approach for determining the origin of this increased cooling
capacity.

For simplicity it is instructive to consider a fictitious atom with ground states |g〉 and
|e〉 with total angular momentum Jg = 1 and Je = 2 respectively1. We will also assume
the Clebsch-Gordan coefficients2 shown in Fig. 3.1. A key component of sub-Doppler
cooling mechanisms is the light shift experienced by ground magnetic substates. In the
low intensity limit with two laser beams of intensity s0 Is the energy shift δg is given by

δg =
h̄∆s0C2

eg

1 + (2∆/Γ)2 , (3.6)

where Ceg is the relevant Clebsch-Gordan coefficient for the transition with a given po-
larisation. I will only consider the case of two counter-propagating circularly polarised
beams as this is what is used in the present work. If we consider the standing wave
created by these beams propagating in the z-direction we find that the electric field
amplitude is constant along z. The polarisation on the other hand is linear, with an
axis that varies helically along the z-direction. This is an important distinction from the
linear-⊥-linear case which has a spatially varying polarisation that modulates between
linear and circular as shown in Fig. 3.2. When this is the case the origin of the damping

1 While the atom is fictitious, the level scheme is still physical.
2 Clebsch-Gordan coefficients arise from angular momentum coupling. More information can be found in

[9]
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Figure 3.2: The resulting spatially varying polarisation as a result of counter propagating
fields in (a) linear-⊥-linear configuration and (b) σ+-σ− configuration. As can be
seen the polarisation modulates between linear and circular in the linear-⊥-linear
case whereas for circularly polarised fields the resulting polarisation is a linear
polarisation, the axis of which rotates about the propagation axis.

force can be explained in terms of Sisyphus cooling mechanisms as there is a spatially
varying light shift on the magnetic ground states [14]. However for the σ+-σ− case
there is no such spatial dependence of the light shift.

In the absence of such a light shift we require a new mechanism for the origin of
this damping force. Similar to Sec. 2.4.1 we can construct the coupling between the
atomic states and optical fields in terms of the Clebsch-Gordan coefficients and find the
average force acting on the atom in terms of the spatial dependence of this interaction.
This is to say that

F = 〈dV
dz
〉, (3.7)

where V is the coupling between the atom and optical fields. It can be shown that the
average force is given by [13]

F = h̄k
Γ
2

[
ρgg1

(
s+ −

s−
6

)
+ ρgg0

(
s+ − s−

2

)
+ ρgg−1

( s+
6
− s−

)
+Cr

(
s+ − s−

6

)
− 1

3
Ci

(
s+

∆− kv
Γ

+ s−
∆ + kv

Γ

) ]
,

(3.8)

where ρggi is the population of magnetic substate i and s± are the saturation parameters
for the σ± fields given by

s± =
Ω2/2

(∆∓ kv)2 + (Γ/2)2 . (3.9)
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The first 3 terms in Eq. 3.8 are effectively the radiation pressure forces from each beam
scaled by the populations of the magnetic substates. The final two terms correspond to a
force from an induced coherence between the |g1〉, and |g−1〉 magnetic substates which
undergo population redistribution through absorption-stimulated emission cycles. The
coefficients at the front of these terms are given by

Cr = Re
[
〈g1| ρ |g−1〉 e−2ikvt

]
Ci = Im

[
〈g1| ρ |g−1〉 e−2ikvt

]
. (3.10)

From Eq. 3.8 it follows that an atom in the |g1〉 will preferentially scatter from the σ+

field by a factor of 6, and conversely so for the |g−1〉 state.
The final piece to this mechanism is the population imbalance induced by atomic

motion. If we consider an atom to be moving along the z-direction with a velocity v,
then as mentioned previously the atom will see a linear polarisation rotating about
the axis of propagation. As the atom moves through this polarisation gradient the
quantisation axis, which is defined by the polarisation, also rotates. This rotation forces
optical pumping to occur as the population of the ground states lags behind the steady
state population defined by the rotating quantisation axis. The difference between the
populations can be quantified by

ρgg1 − ρgg−1 =
40 kv
17δ′g0

, (3.11)

where δ′g0 is the mean light shift of the |g0〉 state. Here we can see the explicit depen-
dence of the population imbalance on the velocity of our atom. As the atom moves
through the polarisation gradient, the population is optically pumped into the state
which is more likely to scatter counter-propagating photons. In this manner an atom
not at rest will experience an unbalanced radiation pressure force acting against its
motion. We expect that for a stationary atom the population will arrive at the steady
state with |g0〉 containing 9/17 of the population and the remaining population spread
evenly amongst the |g±1〉 states. We can calculate the damping coefficient for this
polarisation gradient cooling βP in the low-velocity regime as

βP = −120
17

∆Γh̄k2

5Γ2 + 4∆2 . (3.12)

3.2.1 Comparison to Doppler cooling

If we compare our new damping coefficient to that of Eq. 3.4 for Doppler cooling we
find some stark differences. For one this new factor is independent of laser power.
Secondly, for low velocity our new force is stronger than Doppler cooling by a factor
2|∆|/Γ. As we tend to higher velocities however this force will become approximately
equal to that of Doppler cooling. Given this new mechanism we expect that the final
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temperature should be lower than that of Doppler cooling. Indeed it can be shown that
we should expect the minimum energy to approach the recoil energy Er

Er = kBTr =
h̄k2

2M
. (3.13)

However in reality the lowest achievable energies will be a few times larger than
the recoil energy due to assumptions we have initially made about the atoms being
localisable in the polarisation gradient such that they only see one linear polarisation at
any given time. To achieve temperatures lower than the recoil limit one must resort to
techniques such as evaporative cooling, commonly used in the creation of Bose-Einstein
condensates (BECs).

3.2.2 Sisyphus cooling

An additional mechanism that is also responsible for cooling beyond the Doppler limit
is known as Sisyphus cooling and as mentioned previously, is a result of spatially
varying light shifts such as that found in a linear-⊥-linear configuration. Conceptually
if one considers an atom moving in the z-direction, then where the potential is spatially
dependent there is a net transfer between kinetic and potential energy as the atom
essentially "climbs" the potential. In the case of polarisation gradients when atoms
are at the top of the hill they are most likely to be optically pumped into the ground
state with a lower energy thanks to the spatially dependent light shift. This in turn
means that over many cycles the atom will experience a net loss of kinetic energy, thus
cooling the atom. In general Sisyphus cooling can be performed on an atomic system
with multiple levels, where kinetic energy can be exchanged as the atom traverses the
increasing potential. A choice of pumping is also required to switch the atomic system
back to the lower state with a net loss of kinetic energy.

3.3 magneto-optical traps

Atom-light interactions have long been a field of fundamental study, however as atom
trapping became common place the technology developed in the process of these
experiments has found its way into applications such as sensing [15] and quantum
memories [16]. While there are many types of atom traps we will restrict our discussion
to the MOT and instead direct the reader to [14] for a more detailed discussion regarding
other types of traps. In the case of the MOT we are trapping a large ensemble of atoms
with the aim of using the entire optical depth of our atomic cloud.

The first MOT was demonstrated in 1987 by Raab et al. [17] with Sodium atoms.
MOTs use a combination of the methods described in Secs. 3.1 and 3.2 as well as
magnetic fields to localise the atoms to a particular interaction region. This idea will
become important for our quantum memory applications (see Ch. 7).
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Figure 3.3: Coil geometries for creating a linear magnetic field across the central region. (a)
corresponds to Helmholtz configuration, whereas when one of the currents are
reversed as in (b) anti-Helmholtz is achieved with 0 field in the central region.

3.3.1 Magnetic fields

Let us consider two circular loops of wire with radius r aligned parallel to each other
and separated by the same distance s as shown in Fig. 3.3a. For the case when r = s
then we define this particular geometry as Helmholtz coils. The point of this particular
geometry is to create a uniform magnetic field when current is passed through the
loops. An alternate configuration is to run the current through the coils in opposite
directions as shown in Fig. 3.3b. This produces a linearly increasing magnetic field
from the centre of the trap which has B = 0. This is particularly useful as it provides
an easy way to define a central region to push our trapped atoms towards. In this
configuration the magnetic states of the atoms in the trap will undergo a position
dependent Zeeman shift. As the atoms move further away from the trap the detuning
of the magnetic states will shift relative to the detuning of the magnetically insensitive
state M f = 0. This asymmetry in the detuning will cause the atoms to scatter light
preferentially from the trapping beams that are opposed to the direction of motion
away from the trap, hence pushing the atoms towards the centre of the trap where
there is no preferential scattering.

3.3.2 Optical fields

In conjunction with the magnetic fields, a MOT requires optical cooling beams to trap
atoms. While 2D geometries exist we are mainly concerned with a 3D geometry such
as that shown in Fig. 3.4. Here there are 3 sets of σ+-σ− beam pairs which provide the
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Figure 3.4: Schematic showing the orientation of the cooling beams relative to the MOT coils.
Trapping and repump co-propagate after being combined on a polarising beam
splitter. Each pair of counter propagating beams are orthogonally polarised to
establish the needed standing wave. The direction of gravity is also noted in the
second orientation.

3D trapping potential. Given these 6 beams we have an intensity profile of the form
[18]

I(r) =
cε0E2

0
2

[6− 4(cos(kz) sin(ky) + cos(ky) sin(kx)− sin(kz) cos(kx))] . (3.14)

In addition to the cooling beams for optical molasses an additional beam is employed
known as the repump beam. So far we have considered atoms with a single transition,
where in reality atoms will have many addressable optical transitions. For example the
D2 line of Rubidium 87 has an excited state with 4 hyperfine states that are split by at
most 266 MHz. In this case if we were to apply only the cooling beam we would simply
optically pump our atoms into another state via off-resonant transitions. After this had
occurred our atoms would no longer be resonant to our cooling light and we would
lose the ability to trap. To mitigate this effect the repump beam is used to pump the
atoms out of this dark state and back into the state resonant with the cooling beams.

3.3.3 3D potentials and polarisation gradients

In Sec. 3.2 we described a mechanism for sub-Doppler cooling of atoms. Unfortunately
the extension from 1D to 3D is non-trivial and fails an intuitive explanation. For a
3D potential there are polarisation gradients in all directions due to the additional
beams, leading to spatially dependent light shifts and thus, Sisyphus cooling (see 3.2.2).
Experiments conducted have however observed temperatures below that of the Doppler
limit and thus are undergoing some form of polarisation gradient cooling [19, 20].



3.3 magneto-optical traps 27

3.3.4 Density restrictions and loss

For the applications at hand we will often be concerned with increasing the optical
depth of the atomic ensemble, thus increasing the atom-light coupling. For a small
number of atoms the density of the atomic cloud effectively scales linearly with the
number of trapped atoms. However as the density increases the trap will enter what
is called the multiple scattering regime. In this regime we find that the density will
be constrained to a maximum value independent of the number of atoms. This effect
originates from the fact that scattered light from the cooling process will be reabsorbed
by nearby atoms which introduces an interatomic repulsive force. Effectively one can
derive the steady state number of atoms by reconciling the capture rate and loss rate
[21, 22] given by

N = 0.1
A

σcol

(
vc

vT

)4

, (3.15)

where σcol is the collisional cross section, A is the surface area of the trap volume, vc

is the maximum capture velocity and vT is the thermal velocity of background atoms.
Collisions here are assumed to be between cold atoms and thermal background atoms
which will impart enough kinetic energy to kick atoms from the trap.

3.3.5 Time dependent MOTs

The steady state density of a MOT is fixed by the relationship between the loading
(addition of atoms to the trap) and loss rates, however it is advantageous to increase
the number of trapped atoms by varying some of these quantities in time. One such
method is known as a transient compression sequence. During a short period, after
some loading steady state has been reached, it is possible to increase the atom density
transiently by increasing the magnetic field strength and detuning the repump frequen-
cies. This is technique is often referred to as a temporal dark-SPOT. The purpose of
ramping the magnetic field strength is conceptually straight forward, reducing the
volume occupied by the cold atomic cloud, thus increasing the density in the interaction
region of interest.

The detuning of the repump frequency is a little more subtle [23]. The main idea
is that the limiting factor in density in the multiple scattering regime is the repulsive
force between atoms from the scattering of trapping light. Thus by increasing either
the detuning or intensity of the repump light, one can shelve the atoms in the centre
of the atomic cloud in a dark state where they will no longer participate in cooling,
however they will not contribute to any repulsive force either. Obviously this ramp
must be done over a timescale which does not facilitate a major loss of atoms from the
trap. In the current work we find that to be on the order of 10-20ms although this will
depend on the particular characteristics of the trap.
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Figure 3.5: Timing and coordination of the various control channels during static loading
followed by a temporal dark SPOT transient compression sequence.

Using these techniques experiments have been performed which have successfully
trapped 2.6 · 1010 Rubidium 87 atoms [24] and ∼ 1010 atoms in Sodium [23]. An
example of such a time dependent ramp is shown in Fig. 3.5.
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ATO M S A N D Q U A N T U M M E M O R I E S

“If people do not believe that mathematics is simple, it is only because they
do not realize how complicated life is.”

- John von Neumann





4 T R A P P I N G R U B I D I U M

As mentioned in Ch. 3, the study of light and matter generally requires confining the
atomic systems in some way, either singularly or as an ensemble. For the study of
quantum memories, we are more interested in trapping large numbers of atoms to
collectively enhance the interaction, and hence the memory efficiency. Building on
the techniques described in Ch. 3, we can now describe the operation of the MOT that
enables these experiments. I will describe the experimental setup and general operating
principles required to trap and form a cold atomic ensemble, however a more efficient
approach will be discussed in Pt. iii.

4.1 general setup

Experiments carried out in the present work involve 87Rb, a non-stable isotope of
Rb, however its decay rate is extremely slow [18]. Fig. 4.1 depicts the experimental
setup and the formation of a 87Rb cold atomic ensemble. Alkali metals are often
chosen as suitable candidates for atom light experiments mainly owing to their single
outer electron which can be thought to behave as a hydrogen-like atom. 87Rb has
two D-lines: the D1 transition 52S1/2 → 52P1/2 and the D2 transition 52S1/2 → 52P3/2.
Some of the more useful properties of these lines can be found in Tab. 4.1 with a
comprehensive list found in [18]. 133Cs and 23Na are also commonly used in MOTs,
however 87Rb has a few advantages for our application. Firstly, it has a smaller number
of hyperfine states which precludes the use of difficult pumping schemes as compared
to Cs. Additionally, the availability of low noise Ti:Sapph lasers and diode lasers at the
required wavelengths facilitate experimentation.

Property D1 D2

Wavelength (λ) ≈ 794.979 nm ≈ 780.241 nm
Linewidth (Γ) 2π · 5.746 MHz 2π · 6.065 MHz

Recoil Temperature (Tr) 348.66 nK 361.96 nK
Doppler Temperature (TD) − 146 µK

Table 4.1: Convenient optical and atomic properties for the D1 and D2 transitions of 87Rb. Trap-
ping is generally performed on the D2 line leaving the D1 for memory operations.

31
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Figure 4.1: Current experimental setup depicting a 87Rb MOT illuminated by the cooling beams
used for trapping. Also depicted is the glass cell attached to the vacuum chamber
and the magnetic field coils.

4.1.1 Vacuum system

To achieve a suitable trap lifetime and atomic density for the atom light experiments
we have designed, a MOT must be formed under ultra-high vacuum (UHV). As noted in
Eq. 3.15, the final steady state atom number will depend on the number of collisions
occurring with background atoms, thus a higher vacuum will allow us to form high
density ensembles. In general, the vacuum is deemed to be sufficient provided that
the background pressure remains ≤ 1 · 10−8 torr. For the present work, a background
pressure of 1− 5 · 10−9 torr is generally observed. To achieve such a vacuum, the entire
system must undergo a high temperature bakeout on the order of 120◦C for several
hours. A schematic of the vacuum chamber is presented in Fig. 4.2. Here the glass cell
is connected to the vacuum chamber which is pumped down to UHV. The ion-pump
continues to remove background ions liberated from the walls of the cell and other
surfaces. The dimensions of the cell allow us to form a MOT which is approximately 5
cm in length. Rb atoms are loaded into the vacuum chamber via a dispenser located on
the top side of the cell. The dispenser is a Rb salt which heats up under the application
of electrical current, this in turn liberates Rb atoms from the salt with isotopes at
natural abundance. Typically under normal operations, a dispenser will last upwards
of 5 years.

4.1.2 Laser cooling systems

Once the chamber is filled with 87Rb , we can now go about coalescing these atoms
into a cold atomic ensemble. This is done via the proper application of laser cooling
beams and magnetic fields. Generally the D2 line of 87Rb is used for trapping, as the
less complicated D1 is more suitable for memory operations. Figure 4.3 shows the
level scheme associated with the D2 line and the associated transitions of interest.
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Figure 4.2: Schematic of the 87Rb MOT vacuum chamber and associated glass cell. The cell is
coated on the external faces with anti-reflection coatings for 780− 795nm. Continu-
ous operation of the ion pump ensures the vacuum pressure remains on the order
of ∼ 10−9 Torr.
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Figure 4.3: D2 transition of 87Rb showing the detuned trapping and repump transitions used
when loading the MOT. The hyperfine splitting arises due to coupling between the
nuclear spin (I=3/2 for Rb) and the total angular momentum of the electron.
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Figure 4.4: Cooling beam geometry relative to the glass cell. The trapping and repump beams
co-propagate and are retro-reflected to create the standing waves in all 3-dimensions.
The trapping region is defined by the intersection of the three beams.

The trapping transition used is F = 2 → F′ = 3 while the repump transition is
F = 1→ F′ = 2. The trapping transition is chosen as it is a cycling transition providing
the best efficiency for trapping large numbers of atoms effectively. The beams used
for cooling and trapping are derived from MOGLabs tunable Littrow diode lasers
running at ≈ 780nm coupled with tapered amplifiers. Using the diode laser and tapered
amplifier combination, ∼ 400mW of trapping power and ∼ 80mW of repump power
can be delivered to the MOT. The trapping and repump beams are combined on a
beam splitter before being split into 3 separate beams to create the 3D trapping volume.
Fig. 4.4 shows the geometry of the combined cooling beams which are configured for
σ+-σ− operation via λ/4 wave plates. To create the standing wave in each dimension,
the cooling beams are retro-reflected with the assumption that the majority of the beam
intensity will be transmitted without significant attenuation by the atomic cloud.

4.1.3 Saturated absorption locking

While there are many ways to lock a laser to a given frequency, one of the easiest
ways when working with Rb is to use some form of saturated absorption spectroscopy
(otherwise known as Doppler-free spectroscopy). To successfully lock our diode lasers
to a given D2 hyperfine transition of 87Rb, we are required to control our laser frequency
to within ∼MHz. Fortunately, we can simply measure and lock to a given atomic line
using spectroscopy. However if one simply measures a probe transmitted through
a vapour cell containing Rb, one will quickly find that the hyperfine transitions are
completely washed out by the Doppler broadened linewidth (∼ 500MHz). To alleviate
this problem, saturated absorption may be used with a common setup during the
experiments in the present work as shown in Fig. 4.6. Here a retro-reflected strong
probe beam is sent through a 87Rb cell while the laser frequency is scanned over some
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Figure 4.6: Optical setup used to lock the diode laser onto the cooling transition. The saturated
absorption measurement provides a locking signal which can be locked to a partic-
ular hyperfine transition. This setup is cloned with the exception of the lock offset
block for locking a second diode laser onto the repump transition.

range of interest. While the frequency is detuned from the transition, there is no effect
and we see the standard Doppler broadened line. However, as we approach resonance
for a given transition, the probe beam will initially saturate atoms with a velocity close
to that of 0. On the second pass through the atoms, we will find an absorption dip
around this velocity class due to this saturation, corresponding to the Doppler free
linewidth of the transition. Fig. 4.5 shows the measured absorption profiles for the D1

transition. From these absorption profiles, a locking signal can be generated by either
modulating the laser diode current or a magnetic field (via driving coils surrounding
the Rb cell) and locked to using the standard Pound-Drever–Hall (PDH) technique [25].

4.1.4 Magnetic fields

To facilitate coalescence of cooled atoms towards the centre of the MOT, we require 3D
coils to produce the desired magnetic field. For quantum memory experiments, it is
advantageous to elongate the MOT in the direction of probe propagation. This helps
to maximise the usable optical depth of the ensemble rather than wasting atoms in a
spherical distribution around the centre of the trap. This is achieved using race-track
coils in anti-Helmholtz configuration, which are elongated along the propagation axis.
Fig. 4.7 shows the coil geometry relative to the glass vacuum cell and the resultant
field. During steady state loading, the magnetic field gradient in the trapping volume
is generally around 6 Gs/cm, spiking up to 28 Gs/cm at the peak of the transient
compression sequence.

An additional challenge to quantum memory experiments is that any extraneous
fields will substantially decrease the memory life time and the effectiveness of opti-
cal pumping and cooling. To this end, we are also required to implement 3 sets of



4.1 general setup 37

0

≥Bmax

z

Figure 4.7: Geometry of the race track coils used to generate the elongated MOT. The dashed
box in the centre represents the location of the vacuum cell with the storage axis
for memory operations labelled as the z-axis. The field profiles are simulated using
a FDTD simulation in COMSOL. The field magnitude is given at a slice though the
centre axis which posses radial symmetry about the z-axis. The vector field arrows
are logarithmically scaled to the magnitude of the field. For clarity the field from
the capping coils is not shown which would add additional confinement along the
z-axis.

Helmholtz coils to cancel any background magnetic fields such as that from the Earth.
To ensure field uniformity and optical access, the diameter of the coils is much greater
than that of the experimental region and covers the entire extent of the optical table
(2.4× 1.2 m). During the transient compression phase, there will be rapidly changing
magnetic fields which necessarily will induce Eddy currents into surrounding magnetic
materials. To mitigate this, where possible non-magnetic metals or plastics are used.
Additionally the vacuum chamber and cell are elevated off the table via a Delrin mount,
further reducing the effect of Eddy currents induced in the optical table and mounts.

4.1.5 Optical pumping

It is often advantageous or necessary to work out of a particular magnetic sublevel
(m f ). In the case of quantum memory experiments, often the choice of transitions
to work with is dictated by their relative strength, with the goal being to choose
transitions which maximise memory efficiency. In any case, without optical pumping,
the population of the atomic vapour will be spread amongst the various m f states.
Optical pumping can be achieved by applying a bias field along the axis of propagation
and using a suitably polarised pumping beam to shuffle the population to the desired
m f state. The bias field is implemented using a set of Helmholtz coils to ensure the
field across the atomic ensemble is uniform.
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4.2 experimental control

Simply having a MOT running in steady state can be achieved with minimal electronics
as all that is required is PDH locking to keep the diode lasers on the correct transition.
However for more complicated experiments such as those involving quantum memories
and atom light interactions, a larger degree of precision and control is required.

4.2.1 Generalised experimental control

The type of experiments with which we are concerned can be characterised by individ-
ual experimental runs which contain procedural subsets that are performed sequentially.
This experimental run is then repeated at an effective duty cycle. For example, in a
typical quantum memory experiment, the different procedures in an experimental run
may be MOT loading, MOT compression, polarisation gradient cooling (PGC)/optical
pumping, probe propagation and measurement. The general control schematics of the
experiment are shown in Fig. 4.8. Here there are three asynchronous control loops
that can run on FPGAs or any device that is capable of real time I/O operations. The
first loop is concerned with the locking of various lasers systems. This will always
run in the background and is independent of the main experimental loop. The second
loop controls acquisition operations, using a National Instruments acquisition card (NI
5761). Timing for this loop is triggered by experimental timing. The third loop is the
experimental loop which simply serves to implement control decisions at a specified
time. Control decisions in this context simply correspond to either digital or analogue
outputs, which may be connected to any relevant piece of lab equipment. Timing
instructions are received by a National Instruments control chassis running a TCP
client. The job of the TCP client is to connect to a designated address and establish a
TCP socket connection over which the timing information will be sent.

4.2.2 Python RunBuilder

As the demanding timing requirements are segmented and delegated to FPGAs,
construction of experimental runs can occur outside of the real-time operating system
and LabVIEW oriented system of the National Instruments chassis. This has a few key
advantages, namely that of a more convenient and developed language for constructing
graphical user interfaces for ease of use and data manipulation in an interpretive
language. The structure of the RunBuilder client treats each channel as an object which
may correspond to a physical, digital or analogue channel. Each of these channel objects
will contain a list of time-value pairs corresponding to the physical value that an output
should reflect at the relevant time. A complete record of the behaviour of all connected
channels can then be constructed and exported to the FPGAs via the TCP server. The
FPGAs will cycle through these values according to the precise timing of the single cycle
timed loops, which guarantee timing precision. In this way arbitrary experimental runs
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Figure 4.8: Schematics of the control scheme used for experimental control. The modular
setup allows for automated experimental control which is useful for optimisation
purposes. Extensions can be included as addons to each system. FPGA code is
contributed by Geoff Campbell.

can be constructed for any conceivable experiment. Due to the modular construction of
the experimental timings, automatic sweeps and measurements can be preprogrammed
and automatically executed. This will become important for optimisation purposes
described in Pt. iii.

4.2.3 Atom loading

Using the experimental timing control, a generalised procedure for loading atoms
into the trap can be constructed. This can be segmented into three main sections,
loading, compression and PGC. During these stages, control is exerted over the trapping
detuning frequency, repump detuning frequency and magnetic field strength of the
trapping coils. Initially, we assume that there are only thermal atoms in the trapping
volume. From this, an initial loading stage is used which aims at capturing a subset
of these thermal atoms and loading them into the trap. While the duration for this
can vary, typically this stage will last for about 400ms. The second stage is known
as the compression stage. This stage is aimed at increasing the optical density in
the interaction region (the region through which our probe beam will propagate).
Pt. iii will cover in more detail the specifics behind finding an optimal sequence for
future experiments using machine learning techniques. However for the quantum
memory experiments covered in Part ii, variations of the temporal dark SPOT method
described in Sec. 3.3.5 are used. This period will last on the order of 10-20ms. The
final part of the sequence is the PGC stage immediately after the compression. This
stage combines optical pumping and PGC to cool the atomic vapour down further and
facilitate pumping into the correct hyperfine and magnetic sublevel (dependent on the
experiment).
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4.3 characterisation and measurement

4.3.1 Optical depth

As mentioned previously, OD is a useful quantity for determining the interaction
strength along the propagation axis. As the OD grows, this measurement becomes
erroneous when measured close to resonance. However it is possible to measure the
OD still by taking absorption measurements at multiple detunings and fitting Eq. 2.25

to the absorption data. It should be noted that the OD will not only characterise the
atomic density but rather the atomic density subject to the coupling between the optical
mode and the atomic vapour. This will be a function of the beam parameters and the
particular transition that the OD is measured on. Such comparison between ODs in
different setups is somewhat fraught with danger. For optimisation purposes we may
compare relative ODs to determine whether we have improved the trapping efficiency
as the beam parameters and transition are held constant.

4.3.2 Imaging

It is often useful to look at the transverse profile of the atomic vapour for a number
of reasons. Firstly in the case of the MOT used in the current work which has a cigar
profile, one can use side imaging to diagnose issues regarding the laser cooling and
magnetic fields. More commonly though, it is useful to align the optical pumping and
probe beams.

Imaging can be done under two different conditions, fluorescence and absorption.
Fluorescence imaging is the easier of the two and involves capturing scattered light
from the laser cooling process on a CCD camera. Measurements taken under emission
can be used to calculate the total atom number using some simple assumptions [18].
Absorption measurements are similar in setup with the addition of an off resonant
expanded beam which is used to probe the transverse OD of the ensemble. Unlike
the fluorescence measurement, the absorption measurement is destructive as it will
optically pump the atoms during measurement. However in this way, it can be a more
informative tool being that it is transition selective by construction. A schematic of the
experimental imaging setup is shown in Fig. 4.9 along with an example of both types
of measurement.

4.3.3 Temperature

Measurement of the temperature of the atomic vapour is often of interest as the
expansion rate of the ensemble will tie directly into the memory lifetime. The ensemble
temperature can be estimated via a ballistic drop, where the atoms are released from the
trap (laser cooling and magnetic fields turned off) and allowed to undergo acceleration
due to gravity as well as ballistic expansion. The velocity of the atomic ensemble,
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Figure 4.9: Experimental schematic for transverse imaging of the MOT. An example of both
a fluorescence emission image and absorption image are shown. Note that the
intensity of the absorption image has been inverted.

corrected for acceleration due to gravity, can then be used to determine the temperature
of the ensemble. We assume an initial distribution [26]

N(x, y, z, t) =
1√

8πσ2
x σ2

y σ2
z
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[
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2

(
(x− gt2/2)2
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, (4.1)

where N is the atomic density distribution, σi is the Gaussian radius of the expanded

cloud in the i-axis at time t with the form σi =
√

σ2
i0 + σ2

v t2 where σ2
i0 is the initial

radius and σ2
v is the radial velocity. Note here that we have taken the x-direction to be

the vertical direction, consistent with the experimental setup. The radial velocity will
depend on the temperature of the cloud via the relation

T =
M
kB

σ2
v . (4.2)

From this relation, we can determine the temperature of the ensemble using the
absorption imaging techniques described in Sec. 4.3.2. Fig. 4.10 shows an experimental
measurement where the atomic ensemble has undergone ballistic expansion. The
depicted ensemble is undergoing expansion and widening, whilst also accelerating
due to gravity.
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Figure 4.10: Ballistic drop measurement of the ensemble temperature with acceleration due to
gravity. The images are captured under absorption measurement on the F = 1→
F = 2 transition of the D2 line. The measured temperature of the ensemble above
is on the order of ∼ 240 µK.
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During the course of performing quantum memory experiments we observed a phe-
nomena that we have simply come to call the atomic emission. This is characterised
simply by a coherent axial emission along the direction of highest optical depth which
can be sustained with only the trapping beams. We have performed experiments to
characterise this emission and determine its source, the details of which are covered in
this chapter.

5.1 literature

It has been known since Dicke first introduced the concept of superradiance to the
atomic community [27] that ensembles of emitters can cooperate to create a kind
of enhanced interaction, known as superradiance. Effectively, one can think of the
ensemble of atoms acting like a single large atom with a collective decay, enhancing
the rate of emission as N2, where N is the number of atoms [28]. Frequency shifts
due to this collective behaviour can also be observed in the absorption and emission
properties [29]. Since the initial conception there have been a number of demonstrations
of superradiance in different systems such as ions [30, 31], quantum dots [32] and
nanoplasmonics [33].

In quantum optics, it is often the case that the dimensions of the atomic ensemble are
larger than the wavelength of the light, which complicates the situation somewhat. In
this case, the collective emitters can still cooperatively enhance the stimulated emission
via the use of entanglement between the N atoms in the ensemble [34, 35]. However,
another effect similar to this behaviour can be observed which is sometimes referred to
as superradiant light scattering [36]. Demonstrations of such included superradiant
Rayleigh scatting in a BEC [37–39] where the scattering event provides a feedback
mechanism for directional scattering.

The study into coherent scattering between emitting dipoles then was also examined
from an optomechanical perspective with the assistance of cold atoms. Cold atoms,
such as those in a MOT, can provide the densities required to exhibit the non-linearities
associated with a high optical depth [40]. For the most part, however, these studies
focused on cold atoms confined to some sort of resonator such as an optical cavity,
with one of the earliest demonstrations showing preferential scattering into a cavity
mode for a perpendicular pump beam [41]. The authors also observed that there was
a frictional force present which decelerated the centre-of-mass motion of the atoms.

43



44 atomic emission

Additionally, BECs in cavities have also been shown to undergo the same process as
well as exhibiting a quantum phase transition into a self organised supersolid [42].

After these initial results, the phenomenonllow termed self-organisation was studied
in cold atomic gases [43], especially within the context of collective atomic recoil lasing
[44]. One of the defining characteristics of self organisation is pattern formation, which
had been observed in non-linear optics before [45, 46]. The spatiotemporal structures
emerge spontaneously when the system is driven from equilibrium, usually by an
external pump beam of some description. These structures arise from dipole forces
exerted on atoms by incident pump light [47]. It has also been shown that this can
lead to atomic bunching, which can greatly enhance the non-linear response of a cold
atomic gas [48, 49]. In the case of this self organisation into effective density gratings,
light is preferentially scattered depending on the orientation of the pump with respect
to the ensemble. In particular Ref. [49] shows that an optical cavity is not required to
establish a feedback mechanism for self organisation.

Following this, there are few demonstrations in the literature of free-space self
organisation and optical patterns. The most similar to the current work at hand is
[50], which reported the observation of an optical emission from a 87Rb MOT. In this
work an elongated MOT similar to that of the present work, was illuminated with a
pair of weak counter-propagating pump beams (F = 2 → F′ = 3 on the D2 line) to
create a standing wave while trapping of the MOT is halted. The result of this is the
emission of two axial beams from the atoms, which decays due to atom loss. The
authors demonstrated a steady state regime, which could be attained by turning down
the intensity of the trapping beams and running the counter-propagating pumps.
This emission also presented multimode properties such as different far field spatial
patterns.

In follow up works [51, 52], the authors demonstrated a similar effect with counter-
propagating lin-⊥-lin polarised light. The linearly polarised standing wave provides a
mechanism for Sisyphus cooling, tightly confining the atoms to the lattice sites in the
standing wave. Here, a fluctuation in the initial atomic distribution and optical fields
can trigger a cascading wave-mixing effect to generate additional optical fields. These
patterns however fluctuate shot-to-shot (on the order of atomic motion) indicating
non-equllibrium phenomena.

Pattern formation in cold atomic ensembles is an ongoing research topic. For a more
detailed look at the dynamics and theory associated with this phenomenon I direct
the reader to the thesis of B. Schmittberger [53]. I will now outline our experimental
observations and the key differences to the work described so far.

5.2 experimental setup

As described in Ch. 4, we begin by creating an elongated 87Rb MOT approximately 5 cm
in length. With this setup, the OD typically achieved on the F = 1→ F′ = 2 transition
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Figure 5.1: Experimental setup used when observing the atomic emission. Unlike the previous
examples in the literature we do not require any additional beams other than those
needed for laser cooling. The emission exits the atomic ensemble parallel to the axis
with the highest optical depth. The inset shows a typical spatial pattern associated
with the emitted mode.

of the D1 line was on the order of ∼ 500− 600. As mentioned previously, examples
in the literature have required the use of an additional pump beam to kick start and
sustain the superradiant type phenomenon. Uniquely however, we find that over a
certain OD threshold the emission will kick start and sustain itself. Generally for this to
occur the trapping detuning must be kept in the range −32−−42 MHz. The repump
frequency was found in general to have little effect on the behaviour of the emission
other than mediating the atom number, as such it was left at −9 MHz detuned. The
geometry of the emission and trapping fields is indicated in Fig. 5.1. To characterise
the emission, detection setups could be placed at either end of the MOT’s major axis
where the emission exits the cell and magnetic field regions.

5.3 characterisation

Initially attempts were made to characterise the properties of the emission as it was an
unexpected occurrence, given that the atoms were in a steady state trapping condition.
This process highlighted a number of interesting features which are outlined below.

5.3.1 Steady state time dependence

The MOT can be run in a steady state regime, corresponding to the static loading
phase depicted in Fig. 3.5. When running in this mode, the optical detunings and
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magnetic fields are kept constant. Running the atoms in the steady state condition, the
emission effectively runs continuously, as the main mechanism for loss is collisions
with thermal atoms. As the MOT is running as per normal, the loss rate is already in
equillibrium with the loading rate. Unlike [50] we do not require the trapping beams
to be run at a lower power and can run the MOT continuously as would generally be
done for achieving maximum atom number. A photodetector is placed at one side
of the emission to measure the optical power as a function of time. Fig. 5.2 shows
the acquired signals for two different trapping detunings where the magnetic field
gradient is held constant at 6 Gs/cm. As is shown, the emission will generally oscillate
within some characteristic frequency range dependent somewhat on the detuning of
the trapping frequency. This frequency will change spontaneously over the course of a
run, indicating sensitivity characteristic of the symmetry breaking observed in other
works.

To determine the optical frequency of the light being emitted, the beat note between
the emission and a reference beam was observed. Through this, it was determined
that the emitted light is the same frequency as the trapping light to within ≤ 1 MHz,
limited by the sampling rate of the photodetector. Additionally, by beating the emission
directly with the trapping light we also find that the emission and trapping light are
coherent.

5.3.2 Compression time dependence

While the majority of the MOT experimental cycle is static loading, the transient com-
pression sequence varies the parameters in an attempt to reach a higher density. We
observe, during this sequence, a dependence of the emission power on the atomic
density. As mentioned previously, during an experimental run, it is typical to per-
form a transient compression sequence. Due to the symmetry of the trap the MOT

is compressed towards the region of highest density. During this compression we
observed the intensity of the emission increasing to a plateau, corresponding to the
maximum density achievable. Fig. 5.3 shows the increase in emission intensity along
with the time dependence of the magnetic field and repump frequency. The last 10 ms
of the 20 ms compression run is shown as this is where the emission starts to appear
past some critical density for this choice of trapping detuning. The plateau can be
explained as the atom number saturates, due to competing effects of atom loss due to
the decrease in repump efficiency and increased magnetic field potentials. At the end
of the compression sequence, the atom loss rate is higher than that of the steady state
regime. This is due to the fact that the final control values in the transient sequence, are
suboptimal for trapping atoms. Thus, the MOT will tend towards the new equilibrium
condition, imposed by these new control values. It can also be seen from Fig. 5.3 that
the emission continues to oscillate as per the steady state regime. However in this case
it is possible to observe the spontaneous jump from different characteristic frequencies.
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Figure 5.2: Observed time dependence of the atomic emission for two different detunings. The
dominant oscillation frequency is given in the inset of each plot. A larger detuning
also corresponds to a lower steady state atomic density.
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Figure 5.3: Measurement of the emission power showing the dependence on atom number
during a transient compression sequence. The top row shows the evolution of the
emission optical power over time. The bottom row shows the transient compression
sequence parameters where the magnetic field is ramped from 6 Gs/cm to 28
Gs/cm and the repump frequency is detuned to induce a temporal dark SPOT.
The highlighted area is expanded in the second column where the characteristic
oscillation is once again observed. The compression sequence lasts for 20 ms
however only the final 10ms is shown as the emission does not start until a
critical density is reached for this lower trapping detuning of −32 MHz. The
time dependence of the density for this sequence is depicted in Fig. 5.4.

Fig. 5.4 shows how the density and atom number changes during the compression
sequence. We expect the relative density of the MOT to increase at the expense of total
atom number. In the region where the emission originates the density is increasing.
The critical density seen in Fig. 5.3, corresponding to the sudden appearance of the
emission at 2 ms, occurs at 12 ms in Fig. 5.4.

5.3.3 Polarisation

The polarisation of the emission can be measured by construction of a basic polarimeter
such as that shown in Fig. 5.5. By rotating the angle of the polariser, one can trace
out a trajectory on the polarisation ellipse which can be fit to the equation adapted
from [54] for when the fast axis of the quarter waveplate is kept at 0 degrees. Fig.
5.6 shows the measured intensity variation as a function of α, which can then be
fit to determine the Stokes parameters. Due to the changing nature of the emission
which jumps spontaneously between spatial patterns determining the polarisation is
somewhat inaccurate. The large errors associated with each measurement are a direct
result of the oscillations that occur during the steady state emission. Due to this, the
polarisation is also changing faster than we are able to measure it. From this we can
only draw the conclusion that the polarisation is indeed shifting as the emission drives
its own instabilities. This conclusion is supported by observations using a CCD after a
PBS, which show unstable areas of polarisation localised in the emission.
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Figure 5.4: MOT density and absorption as a function of compression time. Here the total
absorption is not a strict measure of atom number but is ∝N. The right plot shows
the evolution of the spatial distribution of the MOT as the transient compression
sequence continues. Here, absorption images have been integrated to show the
distribution of the ensemble along the x-axis (see Fig. 5.1). The shift towards the
right of the distribution is a result of imbalanced trapping beam powers due to the
retro-reflecting geometry. As expected the density increases leading to a narrow
spatial distribution, which is radially symmetric around the z-axis, similar to a
cigar.

Figure 5.5: Polarimeter setup for determining the Stokes parameters. Either α or β may be
swept and the intensity measured. This does necessitate the ability to measure
faster than physical changes in the system that may manifest separate polarisations.
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Figure 5.6: Change in measured intensity as a function of polariser angle. From these measure-
ments an approximate polarisation can be obtained by fitting the Stokes parameters.
However the dynamic nature of the emission precludes an accurate measurement
as evidenced by the large errors associated with each measurement.

5.3.4 Feedback

As it had been observed that the emission was coherent and exhibited the characteristics
of a non-linear unstable system, a natural question to ask may be what affects the
strength of this emission. A particularly interesting phenomena that can be observed
is a gain and feedback type response when retro reflecting one side of the emission
back through the MOT. By placing a CCD at one end and a mirror at the other, the
maximum amount of overlap between the emitted mode and retro reflected mode
can be achieved. However the emitted modes are rapidly divergent, meaning that to
collect all of the reflected mode into the detector would require a lens of a substantial
diameter. This comes with a technichal issue however, as a larger lens would collect
more of the scattered light from the MOT as a result of the laser cooling process. This
would in turn decrease the signal to noise ratio. The emitted modes themselves are
poorly defined, which also precludes the use of a pinhole setup and, as seen in Sec.
5.3.3, have a non-static or poorly-defined polarisation.

The observed pulsing behaviour of the emission, with a retro reflected mode, is
shown in Fig. 5.7 for a trapping detuning of −35 MHz. All of the traces displayed are
a result of running the MOT in the steady state regime and letting the emission freely
evolve. We observe a kind of superradiant effect where the emission will self reinforce
to produce a steady pulsing behaviour. The total optical power of these traces can be as
high as 1.8± 0.4 times that of the emission without retro-reflection. However, as can be
observed from the trace of row 3 of Fig. 5.7, the maximum instantaneous optical power
observed can be ∼ 3− 4 times that of the non-retro reflected case. We expect that the
total optical power of the emission should be higher, given we are not collecting the
full retro reflected mode due the divergence of the emission. An additional feature
is that during periods of stable oscillation, not only is the maximum optical power
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Figure 5.7: Measured oscillation patterns observed with a photodetector upon retro reflection
of the emission from one side of the MOT. It can be seen that the retro reflected
mode helps to reinforce the oscillations seen previously. The trapping detuning
used is −35MHz which can be directly compared to Fig. 5.2 without retro reflection.
The respective periodogram is given for each trace in the second column, often
multiple spectral components are present which are distinct from harmonics.
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Figure 5.8: (a)-(d) Far field profiles of the emitted modes from the atomic ensemble. The
intensity is measured relative to the highest emitted intensity. The mode structure
shown in (a) corresponds to the high intensity pulsing from Fig. 5.7. The trap
detuning for (a)-(d) is constant at −35 MHz, with each image representing a
different oscillatory behaviour. We have observed similar patterns are present for
the full range of detunings at which this phenomena occurs.

higher, but the troughs in-between the pulses is also lower, suggesting that the atoms
are collectively emitting and suppressing.

5.3.5 Far field profile

By measuring the far field profile it is possible to characterise the optical modes that
make up the emission. Fig. 5.8 shows some typical spatial modes that have been
observed during the free evolution of the emission with retro reflection. Each pattern
also exhibits different oscillatory behaviour and different intensities. As the OD of
the MOT for these experiments is high (∼ 500− 600) distortion of the modes due to
lensing by the ensemble is necessarily observed. The spatial patterns exhibit a distinct
resemblance to the observed spatial patterns in the previous works which involved a
pump beam creating a spatial organised structure [51–53]. The authors propose that the
atoms self organise into bunched density gratings (see Sec. 5.3.6). Similar to previous
works we also observe the spontaneous switching between modes that one would
expect to occur as a result of a spatial reorganisation of the atomic ensemble. While
previous works noted that this can occur on the order of 50 µs, we observe a much
faster time scale of ≤ 2µs as limited by the camera shutter speed. As our temperature
is ∼ 2 orders of magnitude higher than previous work, we expect our velocity to be 1
order of magnitude higher. This would correspondingly lower the characteristic time
for an atom to travel between adjacent lattice sites of bunching sites, to on the order of
what we observed to be the switching time for these spatial mode jumps.

5.3.6 Physical description

Given the nature of the spatial pattern evolution and the collective radiative effects
observed in the previous sections we can conclude that the observed effect is a result
of a spontaneous self organisation of the atoms into bunched density gratings. The
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preferential scattering and formation can be thought of as being a result of non-linear
atom-light effects as a result of the bunching, which introduces additional non-linear
terms into the susceptibility [53]. Thus we end up with two main effects to describe
the observed phenomena, preferential scattering into an axial mode and wave mixing
effects to generate patterns from the bunching induced non-linearity.

The main difference between this effect and previous results is that the system will
spontaneously begin and moderate this behaviour in the absence of an external pump
beam. In our case the pump beam is a result of collective preferential scattering into
the axial mode. Further evidence of this is that for a fixed detuning we observe that by
compressing the MOT along the axial direction using the capping coils to reduce the
aspect ratio of the atomic ensemble we can effectively turn-off this phenomena. This
preferential scattering can then be coherently enhanced to produce the amplification
and suppression effects seen in Fig. 5.7. Currently the conjecture for describing the
frequency of the intensity oscillations is the motion of the atoms within the trapping
potential modified by the preferentially scattered light. The complex nature of the
emitted mode, which is ill-defined, precludes a simple calculation of this frequency.
However we would expect this to be on the order of ∼kHz which occupies the correct
order of magnitude for the observed oscillation frequencies.

The far field patterns observed in Fig. 5.8 are effectively the same as seen in previous
work [51–53], which have been shown to be a result of wave mixing effects within
the ensemble induced via the density grating. The reduction in fidelity between our
results and previous work is likely due to the effective pump in our system having an
ill-defined spatial mode and polarisation which will introduce additional perturbations
and instabilities into the imposed density grating. Additionally lensing due to the high
OD will perturb the modes.

5.4 conclusions and outlook

The unexpected appearance of a coherent beam emitted from the cold atomic ensemble
presented an opportunity to study a unique phenomenon. While similar effects have
been observed in the literature, the present work demonstrates the first observation
of this effect without the use of an additional pump beam, instead finding this effect
to be self driven from preferential scattering in the atomic ensemble. This preferential
scattering again leads to the spatial self organisation of the atoms into an effective
density grating. Following this we also observe the far field profiles that one would
expect from wave mixing processes.

There are however still a number of questions that remain unanswered to be ad-
dressed in future work. Due to the ill-defined nature of the pump beam a better option
than analytical treatment is an empirical measurement to determine the behaviour
and structure of the atomic bunching. This could be achieved by probing vibrational
resonances [55]. Such a measurement and characterisation will help to confirm the
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present conjecture regarding the observed intensity oscillations. Additionally it may
be prudent to perform more accurate polarisation measurements by post-selecting the
mode shape observed on the CCDs with the polarisation measurements. This capability
is unattainable with the current CCDs due to the fast switching of the modes. Further
characterisations could also be undertaken to determine the frequency and polarisation
of different spatial elements within the emission, such as the wave mixing components.
Additional investigation into this phenomena may help to further the understanding of
cold atom dynamics and present new opportunities for coherent atom-light interactions
which may be useful for quantum information processes.



6 Q U A N T U M M E M O R I E S

This chapter will introduce the foundations required for understanding quantum
memories and the research conducted in relation to quantum memories in the present
work.

6.1 quantum computing and memories

The world has recently seen the rise of an information economy, where services and
wealth creation can be based entirely on the processing of information. The advent
and technological rise of computing technology and commercial electronics was of
course the main contributor to this in the last four decades, along with distributed
communication and information networks such as the internet. Now the backbone of
our society is heavily dependent on these technologies and services, following what
could be described as the path of least resistance towards scalability.

A natural question that should arise is what is the follow up to this technology,
what possibly could compete with this in an information age? With the success of
Von Neumann type architectures [56] it is hard to imagine another type of computing
technology that might follow. While additional architectures have been proposed
such as that of biomimetic technologies [57–59], computing architectures that mimic
biological processes, the next step that has received the most attention is that of
quantum computing. Proposed quantum computing architectures themselves are in
general no different to the Von Neumann model of computing, generally containing
a processor and some form of storage and interconnects. The main advantage touted
by proponents of this technology is of course the promise of superior computing
power [60], leveraging the unique properties of quantum mechanical systems such
as entanglement and superposition to efficiently compute the answers to common
problems [61, 62]. While the work on quantum algorithms1 continues, one of the most
useful examples that is often flagged as the “killer-app” is Shor’s algorithm [63] for
efficiently finding the prime factors of a given integer. Of course advances in such
a problem have the potential to reshape the encryption and secure communication
landscape, however for the most part this can be easily mitigated with so called
quantum hardened encryption [64], which adds additional transforms and hashes that
cannot be efficiently computed by a quantum computer. Nevertheless there remains a
good case for quantum computing such as complex calculations in quantum chemistry
[65] that can enable drug discovery or determine the solution to the nitrogen fixing

1 quantumalgorithmzoo.org has a large showcase of useful algorithms for the interested reader.
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problem that could enable efficient and scalable means of food production. For a more
detailed review on quantum computing, I direct the reader towards the review by
Steane [61] or Nielsen and Chuang’s book [62] for a good introduction.

Quantum computation may refer to information processing alone, but often this term
is taken to mean not only the information processing aspect, but instead includes by
assumption the entire architecture involved. Consider for example a standard personal
computer [56], be it desktop, laptop or hand held device. Whatever the device may
be it will necessarily spend a large amount of its time doing nothing. The nature
of these devices is that they are not always required to be doing something, so a
large percentage of their runtime will be spent with the CPU at idle, which is to say
waiting for instructions. However even when idle information still needs to be stored.
At any given time the CPU will make calls to the on-board RAM and potentially
the permanent storage such as HDDs or SSDs. Memory is indeed a large part of the
complex operations undertaken in information processing. Take for example the case
of a simulation, where the result of one calculation depends on another, or perhaps
several. It is often the case that these results may not be available at the same time
for a variety of reasons, thus they must somehow be stored. For quantum computing,
one might naively assume that a storage operation could happen as it does now: with
some copy operation into RAM or storage. However the naivety of this view comes
from neglecting the no-cloning theorem present in quantum mechanics [66]. Effectively
the no-cloning theorem prohibits the cloning of an unknown quantum state. Since
the whole point of quantum computing is to encode our information on the quantum
states of our chosen architecture, this will effectively prohibit us from copying our
state into some form of memory, without either destroying much of the information
we have encoded or already knowing the outcome of the computation. Another way of
rephrasing this argument is simply, quantum information cannot be transmitted over a
classical channel efficiently, i.e. any classical memory. Thus it follows that to perform
quantum computation in the general sense we will of course need quantum memories
as well.

An additional application of quantum memories presents itself in the realm of
communications. In recent history there has been much controversy regarding the
right to privacy among the members of nation states, with unsolicited spying having
been uncovered in several nations, both domestic and international. Regardless of an
individuals philosophical views on privacy rights, there will always remain a case
for the secure transmission of data between two points, be it financial, medical or
military. The search for a provably secure method of transmission was first answered
in the seminal paper describing the BB84 protocol [67, 68]. This is the first example
of a quantum key distribution protocol for provably secure communications based
on non-commuting variables, to create a one-time pad encryption scheme. This is
of course all well and good but the more practical question remains, how does one
send quantum information between two (or more) parties? Often light is used as the
transmission medium [69] however if the parties are separated by continents or even
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line of sight, this process will require some form of repeater. This is due to the fact
that optical fibres over long distances will reduce the fidelity of transmitted states such
that distances greater than 100km are no longer feasible. As noted previously one
cannot use a classical repeater and instead must resort to a quantum repeater. Each
repeater in some sense requires a quantum memory to facilitate the required operations
of a quantum repeater such as entanglement swapping [70]. Thus to construct a full
quantum network, quantum memories are a must.

6.2 quantum memory theory

In Ch. 2 we introduced the atom-light theory relevant for understanding laser cooling
and coherent interactions. I will now address the relevant theory for understanding
atom-light interactions in the context of atomic ensembles which is presented in the
present work.

6.2.1 Collective operators

Generally up until this point we have considered single emitters or atoms interacting
with some optical field. In the case of a MOT we require a description of a collective
excitation as our ensemble of two level atoms interacts an optical field. Firstly we define
our atomic operators σ̂ij to represent the atomic coherence between the |i〉 and |j〉 states.
We wish to assume the ensemble has a high enough density such that we can treat it as
a continuous distribution. In doing so we can consider slicing our ensemble into thin
slices along our propagation direction (z-direction) where each slice contains Nz � 1
atoms. This allows us to define the collective atomic operators as

σ̂µµ(z, t) =
1

Nz

Nz

∑
i=1

σ̂i
µµ(t) (6.1)

σ̂eg(z, t) =
1

Nz

Nz

∑
i=1

σ̂i
eg(t)e

−iωeg(t−zi/c). (6.2)

We can now describe the behaviour of the ensemble over some length [0, L] in the
z-direction.

6.2.2 Extension to Λ-system

For quantum memory operations it will be advantageous to work with a three level
system. The reasons for this are simply a matter of memory performance. If one tries
to store a coherent excitation on the excited state of a given atom then the maximum
memory lifetime one can expect to achieve is dictated by the excited state lifetime Γ.
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Figure 6.1: Depictions of various three level schemes. For the present work we are most
concerned with (a) the Λ-scheme, however there also exists the (b) Ξ and (c) V
configurations.

Thus for our purposes it is useful to consider how one might go about storing on a long
lived ground state. A number of 3 level schemes exist as shown in Fig. 6.1 however we
will primarily deal with the Λ scheme shown in Fig. 6.1a.

Suppose we have a 3-level atom as we did in Sec. 2.4.4 with states |g〉, |e〉 and |s〉
constituting a Λ-type scheme. As shown in [71] one can derive the collective operators
for a three level system as

σ̂µµ(z, t) =
1

Nz

Nz

∑
i=1

σ̂i
µµ(t) (6.3)

σ̂eg(z, t) =
1

Nz

Nz

∑
i=1

σ̂i
eg(t)e

−iωeg(t−zi/c) (6.4)

σ̂es(z, t) =
1

Nz

Nz

∑
i=1

σ̂i
es(t)e

−iωes(t−zi/c) (6.5)

σ̂sg(z, t) =
1

Nz

Nz

∑
i=1

σ̂i
sg(t)e

−i(ωeg−ωes)(t−zi/c). (6.6)

In general we consider a weak probe Ê with frequency ωp that couples the states |e〉
and |g〉, and a strong classical control field Ωc with frequency ωc that couples the states
|e〉 and |s〉. We will assume that the control field is large compared to the probe and
thus spatially uniform across the ensemble, allowing us to approximate the problem as
1 dimensional.

A full treatment of the derivation for the equation of motion of each of these operators
can be found in [72–74], however for brevity we will simply present them:
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∂tσ̂gg = −igÊ σ̂eg + igÊ †σ̂ge +
Γ
2

σ̂ee + Γcoll(σ̂ss − σ̂gg) (6.7)

∂tσ̂ss = −igΩcσ̂es + igΩ∗c σ̂se +
Γ
2

σ̂ee + Γcoll(σ̂gg − σ̂ss) (6.8)

∂tσ̂ee = igÊ σ̂eg + igΩcσ̂es − igÊ †σ̂ge − igΩ∗c σ̂se − Γσ̂ee (6.9)

∂tσ̂es = iΩ∗c (σ̂ee − σ̂ss) + igÊ †σ̂gs − (γes − i(∆− δ))σ̂es (6.10)

∂tσ̂ge = igÊ(σ̂gg − σ̂ee) + iΩcσ̂gs − (γge + i∆)σ̂ge (6.11)

∂tσ̂gs = iΩ∗c σ̂ge − igÊ σ̂es − (γgs + iδ)σ̂gs, (6.12)

where Γcoll is a decay term corresponding to transitions induced by collisions, g is
the atom-light coupling strength, γij are relaxation rates for the ij coherences due
to dephasing and collisions, ∆ = ωes − ωc is the one photon detuning and δ =

ωeg −ωp − ∆ is the two photon detuning. The convenience we have employed here is
to work in the weak coupling regime. This allows us to take a similar approach as in
Sec. 2.4 where we worked with a bright classical field, while making the substitution

Ωc → gÊ . (6.13)

In this way Ê still may be a quantised field. Additionally we can make some further
assumptions to simplify these equations of motion. In the case where the probe field
is weak and the control field is strong we assume that the steady state population is
effectively all in the ground state |g〉, which is to say

σ̂gg ≈ 1 σ̂ee ≈ 0 σ̂ss ≈ 0 σ̂es ≈ 0. (6.14)

In this case we may simplify Eqs. 6.7-6.12 to only

∂tσ̂ge = igÊ + iΩcσ̂gs − (γge + i∆)σ̂ge (6.15)

∂tσ̂gs = iΩ∗c σ̂ge − (γgs + iδ)σ̂gs, (6.16)

which correspond to the atomic polarisation and atomic coherence respectively. A
common notation within the literature is to refer to the atomic coherence as a spin-
wave. We now have a set of equations describing the evolution of the atomic state,
however we must also include a term for the propagating probe field as the interaction
is spatially distributed amongst the extent of the ensemble. Taking the equation for
the propagation of light in an atomic ensemble with N atoms (assuming a uniform
distribution of atoms)

(∂t + c∂z)Ê(z, t) = igNσ̂ge(z, t), (6.17)
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and combining with Eqs. 6.15-6.16 we now have a series of coupled differential equa-
tions that describe our interaction between the two fields and the atom. The control
field is assumed to uniformly illuminate the ensemble such that it is not treated with a
propagation equation. It is convenient to define two new operators [71]

P̂(z, t) =
√

Nσ̂ge Ŝ(z, t) =
√

Nσ̂gs, (6.18)

referred to as the polarisation operator and spin-wave operator respectively. We can
reformulate our set of coupled equations using these operators as

(∂t + c∂z)Ê = ig
√

NP̂ (6.19)

∂tP̂ = ig
√

NÊ + iΩcŜ− (γge + i∆)P̂ (6.20)

∂tŜ = iΩ∗c P̂− (γgs + iδ)Ŝ, (6.21)

where we see the the collective enhancement that gives rise to a coupling strength up to
g
√

N. Additionally in contrast to [71] we are neglecting the noise terms for simplicity.
It is also useful in this case to define our on resonance OD as d = g2NL/Γc. We will
also rescale our optical field by

√
c/Γ and transition to a moving frame z′ = z + ct.

Finally we replace the spatial coordinate with a normalised position ξ which spans
[0, 1]. Written in terms of OD, d, our equations now become

∂ξ Ê = i
√

dP̂ (6.22)

∂tP̂ = i
√

dΓÊ + iΩcŜ− (γge + i∆)P̂ (6.23)

∂tŜ = iΩ∗c P̂− (γgs + iδ)Ŝ. (6.24)

6.2.3 Raman transitions

The name generally given to the type of interaction we are describing is a Raman
transition or Raman line, where a coherent absorption process occurs between the
two ground states via the excited state. This type of coherent interaction is useful as
previously mentioned for storing light on a long lived ground state, but is also used as a
spectroscopic technique in various fields. A common approximation to make to further
simplify the equations of motion is known as the Raman limit. In this case we wish
to assume the one photon detuning is much larger than the natural line width of the
excited state which is to say, ∆� Γ. If we assume that the excited state mostly remains
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empty in this case and does not vary dramatically, we may adiabatically eliminate the
excited state such that ∂tP̂ = 0. In this case we can now find an expression for P̂ as

P̂ =

√
dΓÊ + ΩcŜ
∆− iγge

. (6.25)

Substituting this into our equations of motion we now have the simplified equations
of motion

∂tŜ = i
√

dΓ
Ω∗c
∆′
Ê − (γ′ + iδ′)Ŝ (6.26)

∂ξ Ê =
idΓ
∆′
Ê + i

√
dΩc

∆′
Ŝ, (6.27)

where the following substitutions have been made

∆′ =
∆2 + γ2

ge

∆ + iγge
γ′ = γgs +

γge|Ωc|2

∆2 + γ2
ge

δ′ = δ− ∆|Ωc|2

∆2 + γ2
ge

. (6.28)

It is clear from Eq. 6.28 that there is now additional loss from control field scattering
as a result of power broadening of the excited state linewidth. This will contribute
directly to increasing spin relaxation, to the detriment of memory lifetime. Additionally
the two photon detuning is modified by the AC-Stark shift which will shift the energy
of the atomic levels. While in general this is accounted for automatically experimentally
by tuning to the resonance of a given transition for a given control field power, it
can also be useful in modifying energy levels to engineer useful interactions between
incident optical fields and atoms in this state.

In the absence of dispersion, the equations of motion we have derived here behave
as if the atom was a two level system. For the cases we are interested in this will be
generally true, however it is not the case for all systems where excited states may be
close enough to have a significant effect.

6.3 efficacy and loss

For a quantum memory to be of any practical use there are a number of criteria that
a candidate technology must satisfy in some fashion to obtain the coveted title of
“useful quantum memory”, as after all a fibre loop is by some definitions a quantum
memory. The following serves as an overview of quantities considered to be useful for
a quantum memory to have.
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6.3.1 Efficiency

Potentially the most simple measure of a memories usefulness is efficiency, which
is defined as a ratio between the input and output energies. As a quantum memory
cannot perform a copy operation due to the no-cloning theorem, the general operation
of a quantum memory can be simplified as storage and retrieval of the input state.
During this process, any losses (such as atomic motion or incoherent scattering in our
case) will contribute to a decrease in memory efficiency. The lower baseline is 50% as
this is what is required to beat the no-cloning theorem, i.e. a memory scheme could be
replaced by attempting to clone the state. This can be framed in terms of security, which
is to say that if the memory is performing below this threshold then it is impossible to
tell whether the stored state is the true state or a cloned copy of the state which has
been stored elsewhere. Formally the efficiency of a quantum memory can be stated

η =
|ER|
|EI |

, (6.29)

where ER and EI correspond to the energy of the retrieved and input states respectively.

6.3.2 Lifetime

The lifetime of a quantum memory is another feature which has a classical analog,
however the definitions may vary in certain cases. In all cases it is measured with
respect to the decay of the output state with respect to the input state, be it 50%, 1/e
or 1/e2. The relevant lifetime will of course depend on the desired application, for
example repeaters may require anywhere from milliseconds to hundreds of seconds
depending on the application [67]. In general, similar to efficiency, it is better to have
this quantity be as large as possible.

6.3.3 Bandwidth

The bandwidth of a quantum memory is important when considering the practical
aspects of storing pulses of light. Typically a quantum memory based on some ensemble
will have a bandwidth limited by the linewidth of the atomic transitions, for our cold
atom case this will be on the order of MHz. However single photons generated from
quantum dots (QDs) or conventional spontaneous parametric down conversion (SPDC)
will have bandwidths on the order of GHz to THz [75]. Photon generation in atomic
ensembles can mediate this problem to some degree by providing bandwidth and
frequency matched photons however the brightness and efficiency of these sources is
generally far lower than that of SPDC and QDs. Additionally high bandwidth is useful
for things like pulse multiplexing and dual mode storage.
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6.3.4 Fidelity

Fidelity is the first more “quantum” quantity that we attribute to memory performance.
Simply measuring the efficiency of an operation does not ensure that the quantum
nature of the encoded information has survived the process. For example, if we imagine
an operation where an optical pulse is incident on a detector and we measure this
pulse and then create a pulse with the same temporal shape and energy then in effect
our pseudo-operation could have unity efficiency. However our fidelity in this case
should be small as we destroyed all the encoded quantum information during our
readout process. One way of formulating fidelity is to consider the input and output
state of our quantum memory. In effect we wish to measure the overlap between the
two states, thus we could define fidelity as

F = |〈ψout|ψin〉|2, (6.30)

where ψ represents the respective output and input states. We have assumed in this
definition that our states are both pure states. However, using the wave function is not
ideal as it is not experimentally accessible. In the more general case where we may
have a mixed state we instead can define our fidelity as

F =

(
Tr
√√

ρoutρin
√

ρout

)2

, (6.31)

where the ρ’s denote the output and input states represented as density matrices [76].
As the density matrix may be reconstructed using some form of tomography process,
this measure of fidelity is more experimentally accessible.

6.3.5 Multi-mode capacity

Storage of a single mode in a quantum memory makes any practical device limited
in capability. To create a more general purpose device it is advantageous to have the
ability to store multiple modes independently such that information may be retrieved
and stored independently in each mode. If a device can store information in more than
one mode it is said to be multi-mode. One of the most basic multi-mode structures
is the storage of different spatial modes in a quantum memory [77]. However one
may also devise schemes for splitting the available bandwidth into discrete spectral
components, or temporally multiplexing incoming pulses.
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6.3.6 Additional considerations

The quantities listed above are the most commonly reported within literature and
arguably the most useful to consider. However, there are a number of other features
that one may consider in the search for a useful quantum memory.

integration To Integrate with existing technologies and infrastructures, such as
optical fibre backbones that network the globe, there are a few practical considerations.
One such consideration is the suitability of the operating wavelength. Telecom networks
are generally designed to operate at an optical wavelength of 1550 nm. This is due
to the inherently low loss (∼ 0.2dB/km [78]) of optical fibres at this wavelength
which simplifies long haul transmission infrastructure. It is conceivable that any
practical memory will either need to operate at this wavelength, or alternatively at
some wavelength that can be up/down-converted to this wavelength [79].

miniaturisation The commercial success of optical fibre networks is due in part
to the “plug-and-play” nature of this technology as it has matured. Simply put, racks
can be hot-swapped which contain amplifiers, multiplexers, lasers and other relevant
technology to run a communication network. It is necessary that any competing
memory architecture has at least the potential capability to be miniaturised at some
point in the future. This limits the usefulness of techniques that will rely on large and
energy intensive devices such as cryostats, dilution fridges or vacuum chambers. With
miniaturisation generally comes a decrease in manufacturing cost as well which will
at some point play a role. Additionally quantum repeater setups will inevitably make
it onto space based communication systems. When housed in a satellite the cost of
implanting a technology is directly related to the size and weight of a given component,
thus miniaturisation is an important factor for future quantum network infrastructure.

in-memory operations An interesting prospect which is not a blanket criteria
for all quantum memories, is the ability to perform operations within a memory. This
extends the usefulness of a quantum memory beyond that of simple storage operations,
introducing an ability to perform light matter interactions in a controlled manner.
It has been shown that linear optical quantum computing can be performed using
only quantum memories [80] and other strategies such as stationary light provide a
promising avenue for performing cross phase modulation in-memory [81, 82].

controllable While initially the qualifier “controllable” seems a blatantly obvious
condition for any useful quantum memory, the actual intent is more subtle. For example
while an atomic frequency comb is in essence controllable, in that the frequency comb
is written into the ensemble and a state is stored, the time at which the state is retrieved
is fixed by this initial operation. This means the time at which the state is returned
is not necessarily reconfigurable unless using an additional spin shelving techniques
[83]. In general this will introduce additional losses and reduce memory efficiency. The
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debate regarding the exact definition of configurable is outside the scope of the present
work, but it suffices to say that the more configurable and controllable a memory is,
the more useful it will be in general. For example fully on-demand quantum memories
can be used in efficient distributed quantum computing schemes [84].

6.4 quantum memory literature

The definition of a quantum memory can be quite broad depending on the nomencla-
ture used. For the purposes of this review I am mainly interested in optical quantum
memories that one might intend for use in quantum interconnects and repeaters. I
will try to categorise this into similar groups based on the architecture and protocols
involved.

6.4.1 Delay lines and cavities

As mentioned before, one of the simplest approaches to implementing a quantum
memory is using a delay line, usually in the form of a fibre spool. Referring back to
our measures of efficacy, it is not difficult to see that only some of these criteria are not
met. Efficiency of delay lines will depend on whether it is a free space line such as a
Harriott delay line or fibre spool. In general working at telecom wavelength 1550 nm,
for a 15 km delay line we would expect 3 dB of loss corresponding to an efficiency of
∼ 50% with a 70 µs delay.

The use of high-Q photonic-crystal cavities has also been explored as an avenue for
compact tunable delays by modifying the quality factor, Q, via a transverse pumping
beam [85]. A delay of up to 1.45 ns was demonstrated, however the efficiency of this
method quickly drops off with higher delay times.

The lack of controllability limits the application of either process to quantum memo-
ries and repeater technologies. In general a more on demand approach is required to
facilitate useful memory operations, however such processes have found applications in
heralding single photon sources. These delays are also generally useful for on-demand
entanglement creation as demonstrated in [86].

6.4.2 Slow light and EIT

Slow light is the name generally given to any effect that results in the slowing of
an optical pulse propagating in some medium. An example is the controllable slow
light effect that is observed to accompany EIT. The idea is to use the non-linear effect
that is present during the two-photon absorption process, for example in a Λ-type
system. When the two-photon detuning is close to resonance the probe absorption
is greatly reduced which is also accompanied by an extreme change in dispersion in
this transparency window [87]. This dispersion modification in turn reduces the group
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velocity of the propagating pulse, effectively compressing the pulse such that a large
pulse may fit entirely within an atomic ensemble. With the pulse contained within
the medium (generally some atomic ensemble) the control field intensities can be
adiabatically ramped to 0, effectively closing the transparency window and transferring
the optical energy into atomic excitation. Later when one wishes to retrieve the stored
pulse, the control field is adiabatically increased again, opening the transparency
window and releasing the stored pulse [88].

The initial theoretical groundwork for EIT was laid by Harris et al. in 1990 [89] show-
ing that the application of this strong coupling field one could obtain a transparency
window. The first experimental demonstration was followed shortly in 1991 by Boller
et al. in Strontium [90]. It was then realised that EIT had the potential to operate as a
protocol for quantum memories in atomic ensembles [91, 92], which has been studied
and demonstrated in both warm [93, 94] and cold atoms [95, 96]. Notably in a recent
result Hsiao et al. demonstrated a retrieval efficiency >90% in cold Cs atoms [97].
EIT has also demonstrated high fidelity with polarisation degrees of freedom [98, 99],
spatial light structures [100] and squeezed light [101]. Storage times for EIT can vary
from µs and ms in atomic vapours (warm and cold) through to seconds in solid state
memories [102, 103].

6.4.3 Atomic frequency comb

As noted in section 6.3.6 atomic frequency combs (AFCs) have been proposed as a
potential scheme for implementing a quantum memory [104]. This scheme requires at
least a two level system with states |g〉 and |e〉, however it is useful to have an additional
metastable ground state |s〉 for shelving purposes. The AFC quantum memory scheme
is depicted in Fig. 6.2. Regarding the |g〉 → |e〉 transition we wish to have a narrow
linewidth, corresponding to long coherence times, but with large inhomogeneous
broadening. That is to say that the collective absorption profile of the ensemble is larger
than an individual atom. The idea is then to spectrally shape this broadened transition
such that for some detuning, ∆, atoms that are integer multiples of ∆ remain in |g〉,
while all other atoms are shelved in some auxiliary state that will not take part in this
protocol. This shelving operation may be done via some optical pumping process. If
the width of the frequency comb is denoted Γ, a pulse that is spectrally larger than ∆
but smaller than Γ may be completely absorbed, provided the spectral density of the
ensemble is high enough. The collective state will de-phase, later re-phasing after a
time 2π/∆ which corresponds to a collective re-emission. By shelving this collective
excitation on the state |s〉 with an additional coupling beam, this storage time can be
extended to Ts + 2π/∆, where Ts is limited by the coherence time of the spin-wave.

While the initial observation of this photon echo effect occurred as early as the 1980s
[105] it wasn’t until much later that the use of AFC as a quantum memory protocol
was proposed [104] and subsequently demonstrated [106, 107]. Currently the highest
efficiency achieved with AFC to date is 56% [83] using an impedance matched cavity
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Figure 6.2: Preparation of an inhomogeneously broadened ensemble into an atomic frequency
comb with comb spacing ∆. Once the atomic ensemble has been prepared a signal
field may be stored and additionally shelved on a metastable state to increase the
storage lifetime.

with a solid state crystal embedded inside. However the appeal of the AFC protocol
is not so much the efficiency but rather the inherent multi-mode storage capabilities,
with 64 single photon mode [69] and 1060 classical mode storage [108] having been
demonstrated. Frequency multiplexing has also been demonstrated on AFC platforms
[109, 110], as well as entanglement operations between telecom wavelength photons
and AFC memories [111].

6.4.4 Raman memory

Raman scattering was first proposed as a quantum memory [112, 113] as a way to lever-
age the long lived Raman coherence with high efficiency. The situation is in some ways
similar to EIT except that the desired outcome is that the probe light is fully absorbed
and coherently stored on the metastable state via consecutive read/write pulses. An
absorption window is opened at some far detuning as opposed to a transparency win-
dow. The bandwidth of the memory is effectively dynamically created by the control
field by dressing the atomic states and providing a larger bandwidth for the probe
field to couple to [114]. As shown in Sec. 6.2.3 the effective Raman dynamics operate at
large detunings which is also advantageous to avoid inhomogeneous dynamics such
as Doppler broadening. A disadvantage of this technique is the requirement for large
control field intensities which introduces four wave mixing noise, however it has been
demonstrated that this can be heavily supressed with the addition of a surrounding
cavity [115].

Raman memories have been extensively demonstrated in warm atomic vapours [114,
116] with a recent paper demonstrating an efficiency as high as 82% [117]. Additionally
by using the vibrational states of Hydrogen molecules [118] and phonon modes in
diamond [119], THz bandwidths have also been demonstrated. Raman memories have
also been demonstrated in cold atom ensembles [120–122] as they provide a better
platform for efficiency with less Doppler broadening.
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A simple way to improve the efficiency of the Raman memory is to use a backward
retrieval protocol [114, 123]. The retrieval of the stored signal field relies on the
symmetric reversal of the storage dynamics, as such the optimal spin-wave has an
initially small amplitude with the largest amplitude at the exit interface. This situation
cannot be created with a forward retrieval geometry providing a straight forward
argument for using a backward retrieval geometry. Generally this type of scheme is not
used due to the experimental overhead required to implement such a setup, however it
has demonstrated success in improving the efficiency of Raman processes [124].

6.4.5 Controlled reversible inhomogeneous broadening

In AFC we see that the scheme takes advantage of inhomogeneous broadening to
produce a frequency bandwidth that may be used for the creation of a frequency
comb. An alternate approach, that allows on-demand retrieval of stored photons, is to
have some mechanism which renders the inhomogeneous broadening controlled and
reversible. So called controlled reversible inhomogeneous broadening (CRIB) schemes
were born from the idea of using photon echoes as a quantum memory. If we consider
an ensemble absorbing a signal probe which has been inhomogeneously broadened,
then we expect different parts of the ensemble to accumulate phase e−iδjt where δj is
the detuning of the jth atom due to this broadening [125]. The aim is to rephase the
atomic ensemble such that when all the phases of the atoms are equal, a re-emission
of the stored signal is recovered. One way this is possible is to invert the detunings
experienced by the ensemble, such that the ensemble now rephases symmetrically after
dephasing for a time tp with re-emission occurring at 2tp. Other methods rely on the
use of π-pulses to induce the rephasing of the population, however this requires a
complete population inversion which can be difficult to achieve efficiently.

6.4.5.1 Gradient echo memory

An example of a CRIB type memory, that uses a spatially dependent field to create the
inhomogeneous broadening of the atomic ensemble, is gradient echo memory (GEM).
This scheme is depicted in Fig. 6.3. As the broadening is spatial, different frequency
components of the stored pulse will be stored at different spatial locations, thus the
spin-wave observed is simply the Fourier transform of the input signal. Generally the
gradient imparted will be monotonic as this has the additional bonus that when the
gradient is flipped, re-emitted light is only resonant with the current spatial location,
thus upon exiting the ensemble, the signal experience little to no re-absorption as
the signal is off resonant with other spatial locations. This allows GEM schemes to
obtain high efficiencies. Additionally the simplified control of the broadening (usually
magnetic fields or AC-Stark shifts) and spatial storage of frequency components allows
a GEM type scheme to perform spectral processing.

Initially GEM was demonstrated in a solid state memory (yttrium with praseodymium
dopants) using linearly dependent electric fields, yielding an efficiency of 26% limited
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Figure 6.3: Storage of an input optical pulse in an ensemble with a spatially dependent
inhomogeneous broadening. After some storage time the sign of the broadening is
reversed and the stored pulse is re-emitted. The relative frequency of the transition
for a given spatial location is depicted by the colouring.

by OD [126]. Following this GEM was demonstrated in warm ensembles [127, 128] and
cold ensembles [16, 129] using Rb, both with efficiency up to 87% using magnetic field
gradients as the CRIB mechanism. Using this high efficiency technique GEM has also
demonstrated higher order spatial-mode storage [77] and dual-rail storage capabilities
[130].

6.4.5.2 Revival of silenced echo

Another demonstrated CRIB scheme is revival of silenced echo (ROSE), which seeks to
reduce the complexity of the ensemble preparation such as with GEM [131]. In this
scheme after initial absorption, the ensemble is re-phased with a π-pulse, however the
photon echo is suppressed. A second π-pulse then re-phases the ensemble a second
time, yielding signal retrieval. While this scheme indeed simplifies the preparation step,
it does increase the fidelity required in the π-pulse re-phasing as this occurs multiple
times. Efficiencies up to 40% have been demonstrated with this protocol [132].

6.4.6 Summary

From the literature review above it is clear that quantum memories are still an active
area of research and development with a rich array of potential candidates, from
schemes to platforms, available at present. Fig. 6.4 shows an overview of the main
schemes presented with the maximally achieved figure for each metric. There is still
much remaining work to create a useful quantum memory in terms of the additional
metrics discussed in Sec. 6.3.6, for example miniaturisation. However the last decade
has seen much progress including the first realisation of a memory efficiency greater
than 90%. In the present work we will be mainly concerned with improvements to the
Raman memory scheme, using the Rb MOT presented in previous chapters.
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Figure 6.4: Summary of the maximum results for four parameters of interest for each of
the main quantum memory schemes currently being pursued. Note that this is
independent of platform and as such concurrent access to the maximum of each
metric may not necessarily be possible. However this does serve as a useful guide
to illustrate the successes of each scheme.



7 B A C K W A R D R A M A N M E M O R Y

In the previous chapters I have covered the basic theoretical framework for describing
the operation of a quantum memory. This chapter will cover the theoretical basis for the
operation of a backward Raman memory and report on the experimental demonstration
of this memory.

7.1 from scattering to memory

In Sec. 6.2.3 we briefly introduced the notion of a Raman transition or Raman scattering.
For a 3 level Λ-scheme, this inelastic scattering occurs via a virtual energy level which
is detuned from the excited state by a frequency ∆ as shown in Fig. 7.1a. By applying a
far detuned optical field from the ground state to this virtual energy state, the emission
of a Stokes photon (in the case where |g〉 has a lower energy than |s〉, the converse
situation will lead to an anti-Stokes photons) can be affected. This emitted photon will
have greater/lower energy corresponding to the energy difference between the |g〉 and
|s〉 states, as one of the atoms in the ensemble has been transferred to the |s〉 state.

The emission of the Stokes/anti-Stokes photons can be enhanced by stimulating
Raman scattering where an additional strong coupling field is used to stimulate this
emission. The population shuffling that occurs as atoms are transferred to the |s〉
creates the collective atomic excitation known as a spin-wave that was outlined in
Sec. 6.2.2. This process is coherent, the quantum nature of the information stored
on the light1 will be preserved when mapped onto the atomic excitation, with the
converse also being true during a recall operation. It is now that we have arrived at the
Raman memory scheme illustrated in Fig. 7.1. Here a weak signal field is mapped onto
the spin-wave via a strong classical coupling field, using the described two photon
resonance.

7.2 forward raman memory

As discussed in Sec. 6.4.4 it is more common for Raman type experiments to involve
a forward recall geometry generally due to experimental simplicity. We previously
derived Eqs. 6.22 - 6.24 that describe the interaction of a 3-level Λ-scheme with a bright
classical control field and a weak probe.

1 The exact reasoning behind this can be discussed in the context of the Jaynes-Cummings model of
atom-light interactions and the linearity of the operators involved. This is however outside the scope of
the work at hand.

71
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Figure 7.1: (a) Stimulated Raman scattering process with 2 optical fields applied to a 3-level
system. The anti-Stokes photon has gained energy from the difference between the
two ground state energies. The transition of an atom between the ground states
can be used as a quantum memory protocol by considering the timings shown in
(b). The S operator is the spin-wave coherence that is generated as a result of this
storage operation.

7.2.1 Memory protocol

The Raman memory protocol uses a read and write pulse applied to the atomic
ensemble. A bright classical control field facilitates the use of the Raman absorption
line, to store the incident probe light as an atomic spinwave. After absorption the
control field is switched off until some time later at which point a read pulse is used to
restore the stored probe. This approach is laid out diagrammatically in Fig. 7.1b.

It is useful to consider the dynamics of the absorption taking place as a result of the
coherent interaction being driven by the presence of the control field. The susceptibility
for a 3-level atom is given by

χ(ω) =
2a0

k
iΓ

Γ− i∆ + |Ωc|2(γgs − iδ)−1
, (7.1)

where a0 is the on resonance absorption coefficient and k is the wavevector [2]. If the
one-photon detuning is swept we can map out the resonance and phase shift associated
with the interaction of the fields with the 3-level atom. As expected, if Ωc → 0 then
we simply recover the Lorentzian absorption profile for a 2-level atom shown in Fig.
7.2a. The addition of the control field displays the EIT effect used for the slow light
and two-photon resonant Raman memory schemes. As we increase the two-photon
detuning we find the emergence of the narrow Raman absorption line that is used
for memory purposes as shown in Fig. 7.2c. As noted before, the strong control field
dresses the atomic states and controls the width of the absorption profile which is
given by ΓR = Ω2

c Γ
4∆2 .
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Figure 7.2: χ(ω) for different probe detunings and control configurations. For each subplot the
blue curve represents the imaginary (absorptive) part of χ and the green dashed
curve gives the real (dispersive) part. (a) shows the case where Ωc = 0 which returns
the Lorenztian profile for a 2-level atom. (b) shows the two photon resonance case
where δ = 0. Here the EIT window is observed. (c) shows the emergence of the
narrow Raman absorption line where the two-photon resonance δ = 10Γ. The inset
shows the narrow absorption line starting at 10.0γ. For all plots the parameters
used are Γ = Ωc = 5 and γgs = 0.
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7.2.2 Numerical simulation

To study the operation of a Raman memory we can numerically solve these equations.
While we have previously derived the Raman approximation, it is relevant to the
current work to consider the full 3-level treatment as the experimental implementation
in our system does not necessarily warrant the use of the far detuned approximation
(for an ensemble this is ∆� dΓ). The Raman memory can be demonstrated numerically
by simulating the equations of motion (Eqs. 6.22 - 6.24). Further information regarding
the simulation procedure and use of fruit fly algorithm can be found in Appendix
B. I will first examine the case of operating on the narrow Raman line which results
from a non-zero two-photon detuning (δ 6= 0). The most simple case of turning off the
control field is simply a “hard-off” or piecewise function. Fig. 7.3 shows the result of
such a simulation where the input probe pulse is a Gaussian pulse of width Γ. The
simulation is run on a system similar to the best performance we have observed in
our MOT corresponding to an OD = 1000. The control field Rabi frequency is set to
29Γ, ∆ = 100Γ and δ = 10Γ. It can be seen from Fig. 7.3 during the write stage the
probe pulse is mapped onto the atomic spin-wave, corresponding to the extinction
of the control field. Here it remains during storage until the read pulse is applied
which corresponds to the re-emission of light from the ensemble. It can be noted that
rapid oscillations occur at the switching of the control field. This effect is due to the
immediate extinction of the control field, which is non-physical. It effectively is a
manifestation of the oscillating light-shift from the abrupt extinction of the bright field.
Additionally in this simulation γgs is taken to be negligible (γgs ≈ 0).

Clearly in this simulation there is much room for improvement as the efficiency is
only ≈ 26%. Efficiency here can be gained from two improvements. Firstly the operation
on the narrow Raman line at far detuning requires a large amount of control field
power. While we could improve the recall by increasing the power of the control field,
we can relax this requirement by operating in an intermediate scheme of two-photon
resonance (i.e. δ = 0), relaxing this power requirement. Fig. 7.4 shows a simulation of
the two-photon resonant Raman memory with a hard control field, optimised for recall
efficiency (≈ 84%). The optimised Rabi frequency is found to be 10.5Γ, which is 87%
less power than that of the far detuned memory. It can be noted however there still
remains appreciable pulse distortion on the recalled signal.

The second improvement that can be made is to optimally shape the control field
pulse to optimally map the optical excitation to a spin-wave coherence. Additionally
this will also reduce scattering loss from applying the control field for longer than
necessary. While such optimal shaping can be done in an analytical sense with some
assumptions (see [133] for a good discussion) we can also solve this numerically
similar to an online optimisation which will be thoroughly presented in Pt. iii. Details
regarding the optimisation process can be found in Appendix B. Given the input probe
field is a Gaussian generated from some laser source as this maps efficiently onto the
atomic ensemble, the ideal control shape should also look like some Gaussian. The free
parameters we wish to control are the Rabi frequency of the read and write pulses,



7.2 forward raman memory 75

Input (z=-1)
Output (z=1)
Ωc

0

1

Ω
  (arb.)
c

0

1

0 8

1

-1

0 8

Write
Storage

Read

0 8

N
or

m
al

is
ed

 D
is

ta
nc

e
Write

Storage
Read

0

1

|E| |S|

|E
| (

ar
b.

)

a b

c

Time (Γt)

Time (Γt) Time (Γt)

2 2

2

Figure 7.3: Numerical simulation of a Raman memory. Plots (a) and (b) show the amplitude
of the electric field (probe) and spin-wave operators respectively. The atoms are
assumed to extend uniformly over the normalised distance −1→ 1. Intuitively it
can be seen that the incident probe pulse is mapped onto the atomic spin-wave
(write + storage) and converted back to a propagating field some time later (read). (c)
shows the time trace that could be measured experimentally with a photo-detector.
The recall efficiency is ≈ 26%.
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Figure 7.4: Numerical simulation of a Raman memory operating on two-photon resonance.
The control field has been optimally placed and the Rabi frequency optimally tuned
to produce a maximum efficiency of ≈ 84%.
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the initial input pulse timing and the width of the read and write pulses. As the read
and write pulses should have the same width this provides a total of 4 parameters
to optimise. Fig. 7.5 shows the results of this optimisation which yields a memory
efficiency of ≈ 91%. Note that we have made a trade-off between efficiency and a
minor amount of pulse distortion, corresponding to pulse compression. This however
can be corrected by increasing the width of the read pulse. The Rabi frequency of the
write and read pulses corresponds to 5.8Γ and 8.5Γ respectively. Some pulse distortion
will always be present due to the fact that the re-phasing of the ensemble is driven by
control field inducing free induction decay. Additionally efficiency will always be lost
to incoherent absorption as the field propagates through the ensemble upon recall.

7.3 backward configuration

It is possible to increase the efficiency of the Raman memory by adding an additional
optical field and applying the read control pulse in the counter propagating direction.
Due to the phase matching condition, it is possible to ensure the recalled signal is
mapped onto a counter propagating coherence. As shown by [134] for the re-phasing
operation to produce a complete time reversal process, it is also required that the
detunings of the read and write pulses are anti-correlated. To include this additional
field in the simulation, we need to re-write the equations of motion we had previously
derived to include these terms. To simplify the numerical procedure it is advantageous
to move to the adiabatic limit, such that P̂ is adiabatically eliminated. This is a valid
approximation as it was observed in the previous simulations that P̂ remains negligibly
populated, despite the closer detuning. Starting from Eqs. 6.26 - 6.28 we add the counter
propagating fields to obtain

∂tŜ = i
√

dΓ
Ω∗+
∆′+
Ê+ + i

√
dΓ

Ω∗−
∆′−
Ê− − (γ′ + iδStark)Ŝ (7.2)

∂ξ Ê± = ±
( idΓ

∆′±
Ê± +

i
√

dΩ±
∆′±

Ŝ
)
, (7.3)

where the + subscript indicates forward propagating fields and − similarly denotes the
backward propagating fields. The third term in expression Eq. 7.2 has been simplified
to include all the scattering terms into γ′. Working on two-photon resonance, δ′ reduces
to the total Stark shift from the control fields. Using this simplified model the backward
and forward retrieval schemes can be compared. Fig. 7.6 shows a simulated direct
comparison using this model which has been optimised for both schemes independently.
The maximum efficiency for the forward retrieval is found to be ≈ 75% which is lower
than the previous simulation due to the inclusion of control field scattering and Stark
shift terms. Additionally the efficiency is also reduced by incoherent absorption as the
field propagates through the ensemble as a high OD of ≈ 1000 is used. It can be seen
from Fig. 7.6a that the recalled pulse is distorted, as well as exhibiting a comb like
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Figure 7.5: Numerical simulation of a Raman memory operating on two-photon resonance
showing (a) the electric field operator amplitude, (b) the spin-wave operator magni-
tude and (c) the time trace of the input, recall and control fields. The control field
has been optimally shaped as a series of two Gaussian pulses to give an efficiency
of ≈ 91%. Note, the control fields have been normalised to the read pulse Rabi
frequency.



78 backward raman memory

structure from the free induction decay associated with the control field re-phasing the
atomic coherence. These effects can be mitigated by employing the backward retrieval
scheme shown in Fig. 7.6b. Using this scheme the absorption process is simply time
reversed and the only pulse distortion that is observed is a compression due to the high
intensity recall pulse. This can be mitigated as before by increasing the pulsewidth to
account for this distortion. Using this scheme a maximum retrieval efficiency of 94% is
observed. The relevant operators for each configuration are shown in Fig. 7.6c-h.

7.3.1 Phase matching

To maximise storage efficiency it is necessary to ensure that the overlap between the
generated and optimal spin-waves is maximised. This is achieved for co-linear storage,
however due to non-degeneracy of the ground states, there is necessarily a mismatch
between the probe and control wave vectors. To maximise this overlap it is necessary
to introduce an angle between the probe and control field pairs, θ, which will ensure
the retrieved probe is co-linear as shown in Fig. 7.7. This angle will be modified by
the presence of the large OD ensemble which introduces dispersion, however this can
be corrected experimentally with careful alignment. Additionally atomic motion will
reduce the retrieval efficiency if 2π/|∆k| < D, where D is the distance over which the
atoms travel during the storage time and ∆k is the wave vector of the spin-wave. For a
87Rb MOT with a temperature of ≈ 200 µK this limits the storage time to on the order
of 280 ms. 2 However the more relevant time scale is the few milliseconds that it takes
for the atoms to accelerate due to gravity out of the interaction volume. To ensure
the stored and retrieved probe are co-linear, the atomic states must be chosen such
that the storage state |s〉 is energetically lower than that of the initial ground state |g〉,
otherwise only the control fields may be made co-linear.

7.4 experimental implementation

As shown in the prior sections, the backwards retrieval configuration has a number
of advantages over that of a forward Raman memory. While most studies of Raman
memories have been conducted in warm atomic vapours, which are advantageous for
their experimental simplicity, there are a number of useful qualities cold atom systems
exhibit, justifying the increased experimental complexity. Firstly the low temperatures
reduce losses due to diffusion associated with phase matching, atom-atom collisions
and broadening. Usually the OD associated with cold systems is comparatively lower
than that of warm systems, however the cold atom system in the present work is
capable of generating an OD on the order of 1000 on particular transitions. As such
the cold atom experiment outlined in Ch. 4 is uniquely suited to perform such an

2 Here I have assumed a ground state splitting of 6.8 GHz for 87Rb.
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Figure 7.6: Numerical simulation of a Raman memory operating on two-photon resonance
using the simplified two level model. The forward retrieval time trace is shown in
(a) with a efficiency of 75%. (c) - (e) shows the magnitude of the operators. The
backward retrieval time trace in (b) yields an efficiency of 94% with (f) - (h) showing
the magnitude of the operators. The simulation parameters used are OD = 1000,
∆± = ±33Γ, δ = 0 and [Ωwrite, Ωread] = [3.31, 11.54] and [4.0, 10.7] for the forward
and backward retrieval respectively. In both cases the Gaussian read/write pulses
were optimised for Rabi frequency, write input time and pulse bandwidth, with
the bandwidth being kept symmetric for simplicity. The respective bandwidths
were Γ for the input pulse, 1.8Γ and 2.2Γ for the forward and backward retrieval
respectively.
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Figure 7.7: Phase matching conditions required to satisfy the co-linear storage and retrieval
of the probe fields. The plotted vectors correspond to the wave vectors of each
respective field. The difference in their wave vectors determine the wave vector of
the atomic spin-wave.

experiment. Here we will detail the experimental implementation of the backward
retrieval configuration on the 87Rb MOT.

7.4.1 Memory scheme

The memory is chosen to operate on the D1 line due to the reduced complexity of the
level structure. As the storage state must be energetically lower than that of the initial
ground state we choose |g〉 =

∣∣52S1/2, F = 2, m f = 2
〉
, |s〉 =

∣∣52S1/2, F = 1, m f = 0
〉

and |e〉 =
∣∣52P1/2, F′ = 1

〉
as this leverages the strongest Clebsch-Gordan coefficients.

This also allows the polarisation filtering to be applied as the control and probe beams
can be orthogonal circularly polarised. Additionally the choice of an edge m f state
allows for a high optical pumping efficiency.

7.4.2 Atom Preparation

The preparation of the atomic ensemble is performed according to Sec. 4.2.3, on the
D2 transition of 87Rb. The trapping fields are red detuned from the F = 2 → F′ = 3
transition while the repump runs red detuned on the F = 1→ F′ = 2 resonance. The
ensemble must be optically pumped into the m f = 2 Zeeman sub-level required for
the memory scheme. A 0.5 Gs bias field is applied along the storage (longitudinal) axis
of the ensemble, which enforces the quantisation axis. An optical pumping beam, with
intensity ∼ 0.7 mW/cm2, is derived from the trapping field line which is σ+-polarised
to pump atoms into the |g〉 state, while the repump field is applied to clear out the
F = 1 level.

7.4.3 Optical Fields

A schematic of the optical paths is shown in Fig. 7.8. The laser light for the probe
and control is generated by a MSquared SolsTiS titanium-sapphire laser which is
locked to |s〉 → |e〉 transition on the D1 line of 87Rb using a saturated absorption
lock. Two separate optical paths are used to produce the control and probe light.
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Figure 7.8: Optical setup for generating the correct frequencies used in the experimental
implementation of the backward Raman memory. Beams are fibre coupled to the
MOT table where the main vacuum chamber assembly is located.

The control fields are symmetrically detuned 230 MHz about the |s〉 → |e〉 transition,
using two separate double passed acousto-optic modulators (AOMs) which select
the anti-symmetric diffraction orders. The probe light needs to be resonant on the
|g〉 → |e〉 transition. This is achieved on the second optical line where a fast electro-
optic modulator (EOM) is used to generate 6.8 GHz side-bands. This modulated light
is sent to a ring cavity which is used to filter to particular sidebands. The sidebands
can be locked to using PDH locking, providing the ground state splitting shift in the
probe frequency that is required. The difference in one-photon detuning is imparted
via an additional AOM after the cavity. This is also used to temporally shape the probe
field from continuous wave to a Gaussian temporal profile. Both the probe and control
beams are fibre coupled into polarisation maintaining fibres, such that they can be
placed on the main experimental optical table. Separation of the laser sources and
main experimental table is crucial to remove major sources of magnetic and electrical
interference such as GHz sources and Faraday isolators that may affect the operation
of the memory. Due to constraints of the fibre EOM, the probe is generally on the
order of 1 mW of optical power at the fibre output. The control beam is limited by
the damage threshold of the optical fibres and is generally on the order of 200 mW at
the fibre output, which is then divided into the forward and backward controls fields.
By performing the frequency shifting of the control fields on the MOT table, phase
noise between the control fields is minimised compared to separate fibres and any
fluctuations in intensity due to temperature drift is common to both control fields.



82 backward raman memory

7.4.4 Alignment and detection

Fig. 7.9 shows a schematic of the beam path and detection scheme involved. The
ground state splitting of 6.8 GHz enforces an angle of θ = 6 mrad between the control
and probe beam to satisfy phase matching conditions for counter propagating fields.
Experimentally this provides a challenge when it comes to both alignment and filtering
of the control beam from the probe beam that we wish to measure. A folded beam path
of 6 m was used to add an additional level of filtering (in concert with polarisation
filtering). An unfortunate consequence of this was the introduction of interferometric
instability from vibrational modes of the large posts used to elevate the beams to
the MOT height. While this bears no consequence for the detection of a single run, it
however increases the complexity of the alignment process, often requiring a large
number of iterative steps to achieve sufficient alignment. This setup will drift over the
course of an acquisition session and requires daily realignment. The optical pumping
beam is injected with a small pick-off mirror in a similar way to the control fields and
propagates along the axis of the MOT with a small angle. This angle is optimised to
achieve maximum pumping efficiency. Beams are aligned to the atomic emission (see
Ch. 5) using CCD cameras at distinct distances. Alignment to the emission enforces
that the beams are incident on the most dense region of the MOT, post compression
sequence, providing a higher fidelity alignment than side imaging. The final fine
alignment is performed using Raman lines and absorption measurements.

As shown in Fig. 7.9, two calibrated continuous mode avalanche photo-detectors
(APDs) were used on either end of the path length to measure the transmitted leakage
and recall efficiencies. The dual detection setup allows for both the input and recall
pulses to be measured within a single experimental run such that all losses involved are
common to both modes. Incoherent absorption due to the large OD can be accounted
for by measuring the difference between the forward probe with and without atoms
present, subject to no coupling beams. Using this technique at a one-photon detuning
of 230 MHz, loss due to incoherent absorption is ∼ 5%.

We carry out spatial, temporal and polarisation filtering to remove leakage of the
control field, which is many orders of magnitude brighter than the probe. Polarisation
filtering is achieved using a Glan-Taylor prism which provides ∼ 30 dB of isolation.
Additionally the probe beams are focused through a 150 µm pin-hole which gives
approximately 90% transmission, with 15 dB of further isolation. A significant amount
of control field leakage is visible on the APDs even after all this filtering. This can be
finally removed temporally by placing a pick-off on 0th order of the normally blocked
second-pass, of the control field AOMs. This provides a relevant timing for the control
field which can be used to subtract the control field from the APD signals.
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Figure 7.9: Simplified schematics of the optical path length and detection setup used for
detecting the backward recalled probe. (a) shows the folded beam path used to
elevate the optical fields to the MOT height. Phase matching and filtering requires
that the total optical path length is 6m from when the probe and control are
combined. (b) shows the detection scheme used during the quantum memory
experiment. Note that for simplicity the angle is exaggerated and that normally the
entire probe interaction region is illuminated by the control fields.

7.4.5 Machine learned compression and PGC sequence

The final efficiency of the memory is highly dependent on the final density of the atoms
within the interaction volume. This is because we rely on the collective interaction of the
atoms with the incident probe. To this end, the compression sequence was optimised
via a Gaussian process (GP) optimisation method implemented using the M-LOOP
package [135]. The compression sequence used is an optimised version of the temporal
dark SPOT outlined in Sec. 3.3.5. The magnetic field and repump frequency ramps are
parameterised by two parameters each, corresponding to the gradient and offset of a
linear ramp of the form x0t + x1 which is sampled at 1 ms intervals for the 20 ms of
ramp duration. By clipping the values of the ramp to within the physical limits and
safe boundaries of the experimental setup, the GP learner can find the optimum ramp
values. An additional 6 parameters were devoted to set the trapping detuning during
a 1 ms PGC phase. Meanwhile the trapping and repump fields are applied without
the magnetic trapping coils. Upon the completion of this stage the optical pumping
sequence is carried out. The GP learner is used in a online optimisation context where
feedback is received via an off resonant probe (∼ −50 MHz) that is sent through the
atomic ensemble. The absorption of this probe is measured and provided to the GP

learner as a proxy for OD. This optimisation can be run daily to combat experimental
fluctuations and can provide OD improvements of up to 20%. A full diagram of the
loading and memory timings are shown in Fig. 7.10.
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Figure 7.10: Relative timings of the experimental run for loading the atomic ensemble, com-
pression, PGC, optical pumping and the experimental memory run. The dead time
is included to allow the dissipation of eddy currents induced from fast switching
of the magnetic field coils. Figure is adapted from [136].

7.5 experimental results

By implementing the methods described above, a backwards retrieval Raman memory
was successfully demonstrated. The OD was calibrated by fitting the Raman line shift
to different control field powers. The OD was measured to be ≈ 500 during the time at
which the Raman memory was operated.

7.5.1 Storage efficiency

Initially a Gaussian pulse, of pulse-width3 5 µs, is stored in the memory with the
optimal control pulse-width corresponding to a Gaussian preceding the probe by 5 µs
with a width of 9 µs. This pulse width is consistent with the simulated optimum pulse
results shown in Fig. 7.6. The efficiency of the memory operation fluctuates on a daily
basis due to experimental conditions such as fluctuations in the Rubidium dispenser
rate, magnetic environment and laser stability. The highest reproducible efficiency
for a storage time of one pulse width was found to be 65± 6%. The error associated
with this measurement owes to the optical losses in the complicated optical path,
which can fluctuate on the order of minutes. An example of the memory operation
with a similar efficiency is shown in Fig. 7.11. Here the recalled pulse has been
optimised experimentally to preserve the pulse-width of the input pulse and thus a
high temporal overlap. At the time of the publication [136], these results represented

3 pulse-width here is defined as 1/e2.
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Figure 7.11: Experimentally observed storage and backward recall of a 5 µs width pulse using
the backward Raman memory protocol. The efficiency of the storage operation
shown here is 63± 6% for a storage time of 5 µs. The time axis is zeroed to the
centre of the forward control pulse as this is the mechanism that controls the
timing of the memory operation. The backward control field is centred on 15 µs.

the highest efficiency optical Raman memory observed, compared with previous
efficiencies residing around 30%. Additionally this figure also represented the first
Raman memory to operate above the 50% threshold set by the no-cloning theorem.
However this has notably been improved upon by Guo et al. who recently achieved a
high performance memory with an observed efficiency up to 82% [117].

A useful metric for comparison of various quantum memory protocols is the time-
bandwidth product which characterises the bandwidth and storage time via the relation
T∆ω, where T is the storage time and ∆ω is the bandwidth. This is useful as often the
characteristics of different platforms and protocols can be vastly different, whereas
the time-bandwidth product allows one to quantify the number of pulses one could
typically expect to store during the decay time of the memory. Raman type memories
which often have a high bandwidth sometimes are not capable of storing efficiently,
for example in comparison to GEM memories (∼ 87% efficiency). In the present imple-
mentation we were able to demonstrate the efficient storage of a 360 ns width signal
for 1.5 µs as shown in Fig. 7.12. This operation has a time-bandwidth product of 160,
corresponding to the maximum we were able to observe during this experiment. This
puts the operation of our memory in a high fidelity regime where efficiency has not
sacrificed the bandwidth and vice-versa. For comparison the results by Guo et al. [117]
report a time-bandwidth product of 86.

7.5.2 Storage decay

To characterise the dynamics of the memory operation it is important to examine the
decay properties of the memory. This can be performed by increasing the storage time
and recalling the stored pulse to examine the decay in efficiency as shown in Fig. 7.13.
There are effectively two main contributors to the decay in efficiency, inhomogeneities
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Figure 7.12: High bandwidth storage operation yielding a time-bandwidth product of 160. The
pulse stored has a 1/e2-width of 360ns and is stored for one pulse width for a
retrieval efficiency of 40%. The characteristic decay time is found to be τ = 60 µs.
Figure is adapted from [136].

in the magnetic field environment causing de-phasing and atomic motion. The atomic
motion is characterised by a Gaussian distribution which accounts for atoms moving
out of the interaction beam. Here we have taken diffusion to be effectively negligible as
the distance travelled during the storage time is�λŜ, the wavelength of the spin-wave.
Any additional magnetic field inhomogeneities will also add an exponential decay
term as they modify the coherence of the stored state, which is crucial to the time
reversal symmetry leveraged in the backwards Raman scheme. Thus to characterise
the performance of the memory we fit the equation

η(t) = η0 e−t2/2τ2
v e−t/2τB , (7.4)

where η0 is the memory efficiency at a recall time of 0, τv is the decay time due to
atomic motion and τB is the decay time due to magnetic interference. The fit shown in
Fig. 7.13 yields η0 = 0.63± 0.01, τv = 160± 8µs and τB = 127± 10µs, where the errors
are determined from the standard error of the fit parameters.

While there is some ability to limit the atomic velocity contribution by cooling the
sample, acceleration due to gravity is always present. During the memory protocol
the optical and magnetic trapping fields cannot be active, meaning this acceleration
is unavoidable with the current experimental configuration. This issue can in some
manner be avoided by aligning the storage axis with gravity, such that the only
meaningful velocity is due to ballistic expansion, however this would require a complete
experimental overhaul.

As discussed previously in Sec. 4.1.4, cancellation of the Earth’s magnetic field and
eddy currents is achieved by compensation coils and the isolation from magnetic mate-
rials. While these are effective methods there still remains some amount of magnetic
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Figure 7.13: Experimentally observed efficiency decay as a function of storage time. Atomic
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as described by Eq. 7.4 which determines the fit shown in green. Errors in the
efficiencies are determined from the standard deviation of the experimental
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inhomogeneity which causes de-phasing effects during memory operation. It may be
possible to remove such effects by increasing the shielding however this would add
considerable experimental overhead. Additionally, the applied bias field homogeneity
could be further improved by redesigning the coils. The storage time achievable is
sufficient however for most general applications.

7.5.3 Losses

There are still a number of experimental challenges that remain to be addressed if
the efficiency of this protocol is to be further increased. While further increasing the
one photon-detuning could remove loss due to incoherent absorption, this would only
account for a ∼ 5% loss in efficiency. Additionally the control fields used to read/write
the input states cannot be considered to be of uniform intensity. Inhomogeneities
in the control field power will create spatially dependent light-shifts and dephasing
mechanisms, contributing to losses. The field inhomogeneity is due to the practical
challenge of creating a uniform beam while maintaining the optical power required
for efficient storage. In future experimental redesigns it may be possible to design
a telescope using cylindrical lenses which can better utilise available power while
satisfying this condition.
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7.6 conclusions and outlook

The possibility for the improvement of the Raman memory protocol via the use of
the backward retrieval scheme has been predicted for some time without receiving
experimental validation. I present here numerical simulations and the first experimental
implementation, which demonstrate the strengths of the backward retrieval case in a
optically dense ensemble of atoms. The result at hand, which is an important milestone,
more than doubled previous efficiency benchmarks set by forward retrieval protocols
with a modest time-bandwidth product of 160.

Improvements to this experiment mostly come in the form of attempts to increase
efficiency. As mentioned, already control field inhomogeneity can be decreased as one
of the main contributors to loss. Future research directions will include machine learned
compression and loading cycles which will find a balance between high optical depth
and low temperatures. This will limit losses to atomic motion within the ensemble.
The ground work for such machine learning endeavours is laid out in Part iii. While
the current work relies on relatively bright input states, a large amount of work is
continuing into the inclusion of the low bandwidth single photon source developed
by the experimental quantum optics group at the University of Queensland [75]. This
provides an opportunity for further study as it will allow high efficiency retrieval of
truly quantum states of light (Fock states). However this will also introduce stringent
filtering requirements as the control fields used in the current setup will more than
likely preclude any ability to detect at the single photon level. A final research direction
of some promise is the ability to construct arbitrarily shaped control fields using
machine learning methods to optimise the storage and recall efficiency of input states.
This could vastly reduce the power requirement while increasing operating fidelity.



Part III

M A C H I N E L E A R N I N G

“The most exciting phrase to hear in science, the one that heralds the most
discoveries, is not "Eureka!" (I found it!) but "That’s funny..." ”

- Issac Asimov





8 I N T R O D U C T I O N TO M A C H I N E L E A R N I N G

Machine learning has progressed rapidly in the last decade, finding more widespread
applications than anyone initially predicted. In some sense this explosion in research
and technology is similar to automation in the manufacturing sector. Tasks that were
deemed intractable for software or machines were suddenly within reach. Certainly
one of the great successes of machine and deep learning frameworks has been in the
realm of image recognition. A naive perspective on the classification of images may
be mislabelled as trivial, after all humans do it on a day to day basis. Clearly there
exists some mapping between visual information and categorical labelling. Upon closer
inspection however this mapping is quite complex, information used by an observer
has multiple layers. For example there is visual data such as colour, material properties
and shape which are all important. However there is also contextual information which
can be obtained without direct measurement such as size, location and adjacent objects.
Combining all of this information to produce meaningful results can be a daunting
task.

An illustrative example is to simplify the task even further, let us for the moment
consider task of determining if, given a particular visual scene, there exists a door. This
is a task undertaken by humans daily, but remains a challenging concept for robotics
researchers designing free-agents that interact with the real world. If presented with a
door most people, past a certain age, can correctly identify with high efficiency that
the object they are presented with is in fact a door, irrespective of cultural and social
differences. The key here is "past a certain age". This implies that at some point we learnt
what a door was, newborn children are of course unlikely to perform this task with
meaningful efficacy. This information was assimilated from repeated interaction with
such objects through many different sources, both physical (such as tactile feedback,
operation, and watching others operate) and contextual (such as reading about doors
in books, and seeing them in movies and TV shows). The exact mechanism of how
this occurs is still up for debate, but it is clear that humans can learn new information
through many different channels.

Now consider how one might programatically solve such a problem. Let us say we
have access to visual information, such as through a camera. A basic approach may
be to scan the scene for rectangular shaped objects and compare their similarity to a
database of door images that we have collected. This similarity measure may include
many metrics such as material and size. This approach quickly falls down on a few
fronts though. Firstly if I were to show a circular door, this approach will fail to identify
it. So we modify this first stage and look for circles and rectangles. This new occurrence
will also substantially increase the number of entries to the door database. In fact
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each new occurrence of a door will increase the dataset required to effectively identify
doors, this will also decrease the speed of my algorithm which relies on lookups and
comparisons. A model such as this requires massive overhead in terms of information
to function accurately. It also has high efficiency within the training set, i.e. my known
list of doors, but extremely poor generalisability outside of the training set, i.e. doors I
have never seen before.

So how may we improve this algorithm further? Well, looking at this from a human
perspective I might say, doors are human sized or larger openings that allow the
transition to different domains. This abstract definition covers the majority of doors,
but requires me to have some contextual information such as the size of objects I’m
looking at, and the distinction between two areas that may be divided by a door. Size
information can be obtained contextually, or physically by measurement. This is to say
if given a photo of a scene I can identify a door if there are things around it which
have a generally standardised set of sizes, i.e. chairs, bookcases and other household
items. If it’s not a photo I can just measure it of course. In this case I have increased the
complexity of my algorithm. I now need to identify objects in a scene to get a sense
of size. I am also required to determine domains, such that I may identify whether a
door is involved. An implementation of such an algorithm would not require me to
catalogue every door, or even every household object to compare sizes to. The cost of
this is that I may misclassify things more often. For example a relatively large window
may look like a door, it even functions similar to a door, but I should not classify it as a
door. However while I loose some efficacy in the training set, my algorithm can much
better generalise to different contextual situations and new doors.

A detail that we have glossed over above is exactly how one may gain contextual
information programatically from a scene as this is not, in general, a trivial task. In the
following sections I will lay the foundation for general machine learning techniques
and deep learning as a platform for efficient computation of these seemingly hard
problems.

8.1 what is machine learning anyway?

In general machine learning refers to any process that attempts to distil an algorithmic
approach to solve a particular problem using computational means. This distinguishes
this process from simply assigning a skilled operator/human to the task. In general this
is achieved by starting with some complex model which represents a mapping from
the inputs to outputs and incrementally adjusting the free parameters until the desired
outcome is achieved. This will not necessarily be a unique model, but it is a model
with some measure of accuracy. This process of incrementally adjusting the model
parameters is referred to as training or learning [137]. Ideally the trained model will
be able to generalise to performing this task outside the set of training data, at which
point the model can be said to have learned the task. This model can then be deployed
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as the algorithmic approach to solve this particular problem, with this particular set of
inputs and outputs.

8.1.1 Types of machine learning

Categorising the types of machine learning is a complex task given the overlap in
methodology. Broadly machine learning (ML) can be divided into three major categories:
supervised learning, unsupervised learning and reinforcement learning. Supervised
learning is the most common comprising of classification and regression type problems.
The term supervised implies that labelled training data is used to train the models on
the expected mapping. For example in image classification a set of training data may
consist of k, m×n-dimensional images, which have a corresponding list of k labels. The
output in this case may be a vector representing the probability of the input image
being classified as a particular label. State of the art algorithms have demonstrated
accuracies of up to ∼ 88% on the ImageNet database, which contains more than 14
million natural images [138, 139].

Unsupervised learning in contrast works with data that has no labels. Unsupervised
learning aims to find hidden patterns or structures in unclassified data. In this scheme,
the models are not so much attempting to provide a "right" answer, but instead explor-
ing structures within the data which can provide inference [140]. These techniques can
perform complex tasks such as anomaly detection [141] or clustering, where often it is
the case that the figure of merit for detecting such an event is unknown or difficult to
formulate.

Finally there is reinforcement learning (RL). This style of learning is generally aimed
at learning to interact with an environment, or system, in some efficient manner.
RL algorithms inform agents to maximise some reward or performance parameter,
making them ideal for control systems and games. Most recently an algorithm named
AlphaZero has demonstrated a mastery of the classic games, Chess, Shogi and Go,
outperforming the respective classical algorithms considered to be state of the art [142].

Fig. 8.1 depicts the difference between each of these approaches. While in general
these distinctions between the models hold, in practice a complete model will often
employ multiple approaches, for optimal performance.

8.2 deep learning

I have described a number of machine learning methods that are aimed at solving
practical problems. However, the detail that is mostly glossed over is the models (and
training). Construction of a model that can represent data in some meaningful way and
potentially provide a useful mapping is a problem that has existed in machine learning
since its conception. Until recently, construction of these models and representations
required a careful, engineered approach to ensure stability and efficacy. The advent of
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Figure 8.1: Comparison between the different model types during the training stage. Once
each model is considered trained, the prediction stage would simply consist of
passing the input for each model to receive an output.

deep learning techniques provided a convenient and computationally efficient means
to perform such a mapping. Deep learning in essence refers to the representation of a
mapping from input to output data using multiple layers of representation. This is done
by constructing multiple layers of simple non-linear elements, that can approximate
a desired mapping to some accuracy [143]. The important aspect of this approach is
that these intermediate layers are not designed in the sense of early machine learning
algorithms, but instead are learned.

8.2.1 Artificial neural networks

The building blocks of deep learning approaches are known as ANNs, layers of con-
nected elements which can be used to approximate functions. ANNs derive their name
from neural networks such as that found in the brain, after which ANNs are loosely
modelled1. A neuron is the base structure in these networks and performs the mapping

f (x) = A(x ·w + b), (8.1)

where x is the input data, f is the output of the neuron, A is some non-linear activation
function where the input is scaled by some weight matrix w, and b is a bias term. Note

1 As we learn more about the human brain through efforts in neuroscience, this becomes even more loose.
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we have not assumed the dimension of x or f , and in-fact they need not be the same.
The activation function here is designed to mimic a phenomenon observed in the brain.
Neurons in the brain will "fire" once a threshold electrical potential builds up across
the cell wall. This is in essence how neurons in the brain process information [144]
and is the basis for physical approaches looking to emulate this spiking behaviour for
computing purposes [145].

8.2.2 Function approximation

We are interested in the ability to approximate some arbitrary function, as this is the
core problem we need to address in our representation. If we assume our input resides
in some space I and our output resides in some space O, then we are interested in
determining a function, f , that creates a mapping, f : I → O. In reality, access to this
function is a difficult problem, so instead we wish to find some function f ∗ which
is approximately equal to f , such that, ε = | f (x)− f ∗(x)| is sufficiently small. The
definition of sufficiently small will of course depend on the problem.

8.2.3 Multilayer perceptrons

One way to represent a function is to use the most basic form of neural network, known
as a multilayer perceptron (MLP). Fig. 8.2a shows the optimal configurations for one
and two neuron networks aimed at approximating a Gaussian function. Here we have
arbitrarily chosen the tanh activation function. MLPs consist of layers of neurons (also
called perceptrons), with weighted connections between some, or all, of the neurons in
adjacent layers. Returning to our definition for a neuron, it is not hard to see that the
ability to represent an arbitrary function will be extremely limited. Effectively this will
only be a rescaling of the activation function. However with the addition of a second
neuron we can begin to construct a larger class of functions. With the addition of one
extra neuron we can already begin to represent a highly non-linear function. As the
complexity of the function we wish to approximate increases so will the number of
layers and neurons needed to represent this function. Fig. 8.2b shows the extension
to two connected layers. Here as the input propagates through the graph it will be
rescaled and offset via the weights and biases. For a given neuron n in layer m, we
denote the input to the neuron’s activation function

zn
m = ∑

i
A(zi

m−1) · wi
m−1,m + bn

m, (8.2)

where the sum is performed over each connected neuron, wi
m−1,m are the weights

between layer m and the previous layer, bn
m is the bias for neuron n, and A is the

activation function for the previous neurons. The output of this neuron is thus A(zn
m).
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Figure 8.2: (a) Approximation of a Gaussian function using two network structures with 1
layer (depth 1). The first structure consists of a single neuron and poorly approxi-
mates the function. With the addition of a second neuron we can already begin to
approximate a Gaussian with high efficiency. The labelled parts of the neuron show
the construction of the operations from input to output. The weights and biases for
optimal overlap are given for both networks. Weights are depicted as connecting
lines, whereas biases are shown in or above the circles. Each circle represents either
neurons or input/outputs. (b) depicts a network with two layers that are fully
connected. As the input propagates through the graph, from left to right, the input
is constantly rescaled and offset with the weights and biases. Additionally at each
neuron the non-linear activation function A is applied.

Thus it is clear successive layers will apply the non-linear activation function, resulting
in a highly non-linear mapping from input to output.

While a simple one dimensional mapping may require few neurons as above, a
MLP for image processing may require millions of interconnected neurons. Provided
our network dimensions are high enough we can always find some combination
of functions that provide the approximate mapping we require [146]. The question
becomes how to learn this mapping.

8.2.4 Loss functions

Let us suppose we have some model, f (x; θ). We wish to approximately perform the
mapping, f : x→ y, subject to the model parameters θ. Our goal will be to determine θ,
such that our mapping is accurate, to within some acceptable error. For any method that
requires us to learn the model parameters θ, we will need to have some measure of how
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close we are to the "truth" or actual values, y. In general this is called a loss function2,
the choice of which will depend on the specific application. For example if the output
of the model represents a probability distribution p(y|x;θ), such as in classification
where the output vector corresponds to a discrete probability density function, an
appropriate choice of loss function is the cross-entropy between the training data and
predictions [143]. For the work at hand we will almost exclusively deal with the mean
squared error (MSE) given by

MSE =
1
N

m

∑
i=1

(yi − ỹi)
2, (8.3)

where ỹ are the predicted values and m is the number of samples in the training data.
The loss function in this case is simply a measure of the average distance from the
predicted values to the truth. While this is a common loss function, one may use any
kind of loss function providing it is smooth and differentiable, as will become clear in
the following sections.

8.2.5 Training neural networks

So far I have described the general topology of a MLP and the associated loss function
that is required to determine the accuracy of the output. Now we must understand
how to go about training these models, from some initialised state, to a useful model.
A method for achieving this is known as backpropagation, but to implement this we
require gradient descent. [147].

gradient descent If we consider each parameter θi ∈ θ, our aim is to find an
update rule that we may apply iteratively, that takes us closer to a representation of
our function. An update rule that may be applied simply is gradient descent

θt+1
i = θt

i − α
∂L(x, θt

i )

∂θi
, (8.4)

where the t superscript denotes the time step, L is the loss function and α is a scaling
factor known as the learning rate. Effectively at each time step the parameters are
adjusted, descending the gradient of the loss function, thus reducing the loss. The size
of this step is dictated by α, which in more advanced algorithms becomes adaptive (see
[148]). The parameters that we are interested in updating in our model are the weights
and biases of the MLP we described in Eq. 8.2.

2 In the literature this is also called a cost function, but I will use loss to differentiate it from the optimisation
cost function.
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Figure 8.3: Structure and connected weights and biases to form a 3× 3 MLP. The indicated
neurons have been chosen to display how information flows through the network
as a function of the weights and biases. The central neurons (n=2) have been
highlighted to demonstrate which weights feed into the neuron from each respective
layer. It is assumed that all neurons have the same activation function a(x). Two
neuron indices are required to distinguish the weights, however we have dropped
the second index for clarity since we will only deal with the central neurons. Note
that the superscript is not an exponent, but instead are neuron indices.

8.2.6 Backpropagation

From Eq. 8.4 it is clear that we will need access to the gradient of the loss function.
Considering the nested structure of the neurons inside the MLP, it is not immediately
straightforward how to access this gradient. This is where backpropagation comes in.
For the remainder of the discussion we will refer to the notation used in Fig. 8.3, which
gives the schematic for a fictional MLP structure that will inform this discussion. Our
aim is to determine ∂L/∂θi where θi is one of the weights in our model. Let us start
with the weights, where we will break this into two separate cases.

final layer Let’s assume that our weight is in the final layer, we will denote this
weight w2

lo. The partial derivative of the loss function can be expressed explicitly using
the chain rule

∂L
∂w2

lo
=

∂z2
o

∂w2
lo

∂No,out

∂z2
o

∂L
∂No,out

. (8.5)
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Each of these terms can be calculated with relative ease. The first term corresponds
to the change in the input with respect to the weight. Since z2

o = ∑n a(zn
l )w

n
lo + bo, this

derivative is simply the output from the previous neuron N2
l,out = a(z2

l ). The second
term is the change in the output with respect to the input. The neuron takes the input
and applies the activation function, thus this term is simply the derivative of the
activation function. The final term is the change in the loss function with respect to the
output and is a simple calculation. For the MSE with a single training sample, it simply
reduces to 2(yi − No,out). We can now compute the derivative and apply the update
rule given by Eq. 8.4.

hidden layer Let us now suppose instead that the weight belongs to a hidden
layer, i.e. any layer other than the final layer. For illustration let us suppose it is the
weight w2

kl . As before we can use the chain rule to expand our derivative,

∂L
∂w2

kl
=

∂z2
l

∂w2
kl

∂N2
l,out

∂z2
l

∂L
∂N2

l,out
(8.6)

Similar to before the first and second terms simply become the output from the
previous layer before scaling and the derivative of the activation function. The third
term requires more care however. A change in the output of neuron N2

l will change
every output that it is connected to in the final layer. In our simplified model we have
only one output neuron, but for the sake of generality let’s assume we had P neurons
in the last layer. Then the third term can be found by adding the constituent parts,

∂L
∂N2

l,out
=

∂z1
o

∂N2
l,out

∂L
∂z1

o
+

∂z2
o

∂N2
l,out

∂L
∂z2

o
+ · · ·+ ∂zP

o

∂N2
l,out

∂L
∂zP

o
(8.7)

For our example we will only have the second term from the above equation, however
we can treat all terms in the same fashion. The first factor is simply the change in the
input of the last layer with respect to the output of our current layer. This yields w2

lo.
The second factor is the change in the loss function with respect to the input of the
last layer. Conveniently this is simply the same as Eq. 8.5 divided by a factor ∂z2

l /∂w2
kl .

Since we have already computed these terms we can simply propagate this backwards
and use the result we previously calculated. In fact this applies to all the terms in Eq.
8.7 and is how backpropagation works. If we start by calculating the gradients at the
back of our graph (at the output), then we will have precomputed elements needed for
the next layer. This entire process can be repeated for the biases with no appreciable
difference.
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8.3 hyperparameters

The ability to train a neural network is only part of the job. There are a number of
choices prior to training that will effect how well the model performs. The parameters
of these are generally called hyperparameters.

8.3.1 Layers and neurons

The effectiveness of a model is in many cases determined by the choice of network
structure. In the case of a MLP this relates simply to the number of hidden layers and
neurons per layer. It is not necessary that the number of neurons remains constant
throughout the network. There is no hard rule for how many layers or neurons a model
should have when aiming to represent a particular data set. It is not true that the
addition of more layers and neurons leads to increased accuracy, often the opposite is
true overfitting may become an issue. In general one can empirically find a threshold
in which the number of neurons per layer is suitable for the data at hand. However
one may wish to impose certain restrictions such as in an autoencoder type setup [149].
Autoencoders are an unsupervised learning technique that attempt to learn a signal
whilst ignoring the noise in a data set. This is done with a network structure where
the number of neurons towards the center of the network decreases, before increasing
again towards to the output. The idea is that the reduced representation (less neurons)
will prioritise the signal as this information is common to the dataset, whilst noise is
suppressed being common only to the sample.

While it is not easy to exactly quantify in what manner the depth (layer number) and
neuron number will affect the model, Fig. 8.4 serves as an illustration to demonstrate
the dependence in a 1D case. As can be seen increasing the depth allows the model to
fit more complex components such as the data with increasing frequency even while
undergoing exponential decay. However towards the upper end overfitting starts to
become more prevalent. This could be improved by increasing the size of the training
set. The introduction of more neurons increases the complexity of the representation
of each data point within the model. As such the model begins to overfit the data on
a shorter time scale. It can also be seen that the training becomes less stable due to
the introduction of local minima into the loss landscape. Local minima can cause the
training algorithm to become trapped, worsening or halting the training. This manifests
as sharp spikes in the loss function over time.

8.3.2 Regularisation

One of the ways to mitigate overfitting in deep learning models is known as regularisa-
tion. Regularisation aims to incentivise the training process to learn the model, in a
way that does not lead to overfitting. The most common of these are listed below in
more detail. For a complete discussion on regularisation, I direct the reader to [143].
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l1 and l2 By modifying the cost function of the model to include penalties for
undesirable training outcomes, the training process can be incentivised to learn more
general fits. L2 penalties are the most commonplace modification, adding a cost that
is proportional to the sum of the square of the weight magnitudes, ∑ |wi|2. This has
the effect of forcing the model to use all of the weights, dictating that no single weight
should be large. L1 loss is less commonly used however is still important. The cost
term is proportional to the sum of the weight magnitudes, ∑ |wi|. This has a sort of
opposite effect to L2, instead returning sparse estimates. This is useful as it includes
variable selection into the training process. For large models this is computationally
efficient, as variables that have little or no effect in the model are disregarded.

dropout This technique, as implied by the name, deactivates a percentage of
neurons (and their subsequent inputs and outputs) during iterations of the training
stage. The effect is that the model cannot rely on any one specific set of weights or
neurons to fit the data, instead it must learn a more generalised model. The introduced
randomness also helps induce training noise, which is useful to stop the gradient
descent algorithms from getting caught in local minima.

early stopping In some cases when using a validation set, kept aside from the
training set, it is possible to avoid overfitting by monitoring the validation loss. When
the model begins to overfit then it no longer represents the general trend or structure
inherent in the data, instead tailoring specifically to the training data. This can be
observed as an increase in the validation loss after a certain point, while the training
loss continues to decrease. If the model training is halted when this begins to occur,
then overfitting can be avoided.

data augmentation Data augmentation aims to reduce overfitting by increasing
the size of the training data set. In many cases acquiring new data may be impossible
or costly. In this case the existing data set may be extended by augmenting existing
samples. For example, if one was designing a model to detect handwritten characters,
then the data set may be extended by performing random transformations on the
training images, such as scaling, shifting, shearing etc. Care must be taken when
augmenting the dataset so as not to introduce biases or remove important information,
which may in fact decrease the accuracy of the model.

bagging and ensembles Bootstrap aggregating (bagging) is an ensemble method
that aims to reduce problems relating to generalisation by combining the parameters
of several trained models. The general idea is that from some random starting initiali-
sation, the errors introduced during training will not be common to all models, thus
they can be averaged out using different models. Bagging takes this one step further
by constructing different datasets which are sampled from the initial data set with
replacement. Each model is then trained on its own respective data set, with the final



8.3 hyperparameters 103

0.0

-0.4
-0.2

0.2
0.4
0.6

100

10-1

10-2

0 1Time

0 20KEpochs

f(t
)

Lo
ss

0 1Time

0 20KEpochs

0 1Time

0 20KEpochs

20% Dropout L2 (10-4) No Regulatisation

Figure 8.5: Different regularisation strategies applied to a MLP of depth 4 with 32 neurons per
layer. The overfitting tendency is mitigated via the use of dropout and L2 regu-
larisation. Note that the loss cannot be compared directly as the L2 regularisation
includes a term into the loss function. In general the choice of activation function is
decided empirically.

model being an averaged model of this ensemble.

In general some combination of these regularisation methods will be used to mit-
igate overfitting. Care must be taken to ensure that the model is not over regularised as
this can lead to unintended underfitting. Fortunately this can be measured empirically
by comparing the predictions of the model to the desired outcomes. Fig. 8.5 shows a
direct comparison between three regularisation techniques, applied to a similar data
set to that of Fig. 8.4. It can be seen that the overfitting can be mitigated using these
strategies.

8.3.3 Activation functions

There are a number of activation function choices that will change the behaviour of the
model. Any non-linear function can in practice serve as an activation function, however
there are a few qualities that are convenient for an activation function to possess. In
general they are monotonic functions that exhibit some sort of switch like behaviour,
effectively turning on at some point. Monotonicity also helps with convergence during
training operations. The activation function should also be continuously differentiable.
Additionally it should be computationally efficient to compute this derivative, as this
will be performed extensively during training. A few of the more common activation
functions, along with the predictions from a trained model using these functions, is
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Figure 8.6: Different activation functions applied to the neurons of a MLP of depth 4, with 32

neurons per layer. The activation function is plotted below the fit of each model to
the random walk data.

shown in Fig. 8.6. The choice of activation function will determine the properties of the
model fit. For example RELU is preferred in image processing for its ability to create
hard boundaries in feature space. For regression an activation such as tanh or GELU
[150] may be preferred to generate smooth features.

8.3.4 Initialisation

The initialisation of the weights and biases of a model can have a significant impact
on the ability of the network to learn. This can be most easily intuited by considering
an example where the output data sits in the range, [−10, 10] for some set of inputs
X. If initialised poorly, the model may output values on a range [−100, 100] or greater,
and possibly not symmetric around 0. In this case the distance between the desired
representation and the starting representation is much bigger than it needs to be. The
exact distance will depend on structures within the data itself. Training could become
difficult or intractable in the worst case. This however can be mitigated in two ways.
Firstly normalising the input and output data ensures that the order of magnitude
of the weights is somewhat independent of the dataset, as it is always performing a
mapping between two normalised distributions. Secondly a method developed by He et
al. [151], known as He normal initialisation, provides a robust method for initialisation,
which takes into account the size of the previous layer. The weights are still initialised
randomly, however, their size is restricted, providing an efficient gradient descent.
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8.3.5 Training algorithms

So far when talking about training models I have only referenced gradient descent (GD).
However the truth of that matter is that if we were only to use GD then we would have
a hard time training our network. If we have chosen our activation functions correctly,
the loss landscape should be smooth and differentiable. However this is not to say that
there will not be local minima, as neural nets are non-convex (see Ch. 9). Additionally,
for efficient training we wish to use batches of data rather than singular training points
at a time.

An extension to GD is stochastic gradient descent (SGD), which seeks to estimate the
gradient using a batch of training data. This estimate introduces a source of noise, as
such this method is less likely to get stuck in local minima, as the gradients never
truly go to 0. A trade off is that the learning rate must be decreased over time as
even at the optimal point the gradient estimate will be non-zero. Pure SGD can be
slow to converge so it is common place to add momentum to speed up this process.
Momentum effectively keeps a running average for past gradients (subject to some
decay) that accumulates, similar to physical momentum [152]. This can help to escape
local minima and traverse steep gradients quicker.

A popular training approach now is to use algorithms with adaptive learning
rates/momentum such as AdaGrad [153] or Adam [148]. Indeed Adam is possibly
the most popular approach to neural net training at present. Both methods present
approaches to adaptive learning rates/momentum, which attempt to estimate the step
size that should be taken based on the previous gradients and momenta.

The correct choice of training algorithm will depend on the problem at hand. For
example in certain circumstances Adam may be faster than SGD but less stable around
the minima. An approach that is often taken is to get close to a trained model using
Adam, then switch to using a suitably tuned SGD algorithm to finish the process. There
are also a number of hyperparameters that relate to the training process that may be
tweaked.

learning rate Whether the algorithm in question has an adaptive learning rate or
not, the learning rate will need to be chosen. The implementation of learning rate will
differ for different algorithms, however, it generally will relate to the step size taken
towards the minimum. Choosing the learning rate is done empirically, by looking at
the training loss as a function of epoch. From this trend it can be determined whether
the learning rate requires decay (in the case of SGD) or whether other decays should
be increased such as momentum decay in the case of Adam.

batch size The batch size controls how many samples will be used to perform a
parameter update at a time. Choosing the batch size will depend on the data and the
response of the model. Smaller batch sizes will tend to learn short term characteristics
of the dataset more readily, while large batch size will tend to average over short term
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fluctuations. The level of compromise between these two effects will depend on the
problem.

epochs This parameter sets how many training steps will be performed. In a single
training step the parameters will be updated once per batch. This can be performed
multiple times until a desired accuracy is acquired or, more likely, the validation loss
starts to increase.

8.3.6 Choosing hyperparameters

As it can be seen there are a large number of hyperparameters that must be chosen in
order to create a suitably functioning model. The difficulty in getting these parameters
right will depend on the type of model and the structure of the data. Hyperparameters
may be chosen and optimised by hand, or by using the model output as an empirical
measure of performance. They can also be selected using a grid search or optimisation
method, however, this can be costly for larger models. Normalisation of the input and
output data reduces this complexity by enforcing certain hyperparameters that depend
on the data to be independent.

8.4 extended networks

So far I have only talked about the most basic model, MLPs, however there are a
number of extensions to deep learning models that are useful for different contexts
[154]. I will discuss a few of the main models in the following3.

8.4.1 Convolutional neural networks

A simple extension are models known as CNNs. CNNs are models that include layers that
enact convolution kernels on multidimensional input data, or data that has some rela-
tionship with nearby data points. First proposed in 1989 [155], CNNs have demonstrable
success with applications in image processing and audio processing. The idea that
CNNs attempt to exploit is that higher dimensional data structures contain information
as series/arrays of data points, rather than individually. Take for example an image of
a house. Given any one pixel, it is difficult to tell what this might belong to, but looking
at the general shapes in a picture (peaked roof, flat vertical walls, exterior openings
such as windows and doors) one can quickly identify a house. Kernel operations have
existed in image processing for a long time, however, they have always been engineered
to perform a particular task. CNNs seek to learn these kernels to produce accurate
representations of higher dimensional structures. Some examples of image kernels are
shown in Fig. 8.7, along with a general CNN structure used for image classification.

3 For a full discussion I refer the interested reader to [143] for a number of excellent overviews and insights.



8.4 extended networks 107

In
pu

t

Conv 1 Pool 1 Conv 2 Pool 2

MLP

O
ut

pu
t

Apple

a b c

d

Figure 8.7: Demonstration of different convolutional filters that can be applied to images. (a)
shows the original image of a house, (b) a horizontal edge detect kernel and (c)
a vertical edge detect kernel. (d) Shows a standard CNN architecture that may be
used for image classification. The pooling layers reduce the dimensionality of each
layer, while the ’conv’ layers perform a convolution. Original image in (a) by Luke
Stackpoole.

8.4.2 Recurrent neural networks

Models that are designed to handle sequential data, such as text or time series traces,
are known as recurrent neural networks (RNNs) [156]. These models are particularly
useful when information needs to be shared across different parts of the model. This
can be particularly important when dealing with data such as langauges. For example
consider the sentence, "I just ate an apple." There are many ways that I may rephrase
this sentence and a language model would need to learn each of those examples.
However, if a model is capable of sharing information between different parts of the
model, this allows processing to occur irrespective of the structure.

8.4.3 Actor-critic and Deep Q networks

Deep Q networks and AC networks are used in reinforcement learning to approximate
optimal policies for control. The idea is that policies (decisions based on a set of inputs)
may be learned via an ANN or similar structure by repeatedly interacting with a system.
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From this an optimal policy for exploiting a desired behaviour or outcome may be
learned. AC networks will be further discussed in Ch. 11.

8.4.4 Generative adversarial networks

A relatively recent addition to the deep learning models is the introduction of generative
adversarial networks (GANs) [157]. As implied by the name, this architecture involves
two competing models in order to learn to generate new data. The first network is
a generator, which simply generates new data given some random seed input. The
second network is the discriminator, which aims to determine whether the input
data was sampled from the generator or the training set, given as a probability. The
basic incentive structure is zero-sum (although this can be modified) such that the
discriminator is rewarded for correctly classifying the data, while the generator is
rewarded for fooling the discriminator. When the model has converged then the
generators output is indistinguishable from the training set and the discriminator
outputs a 50% probability in all cases. While GANs can be notoriously difficult to train,
they have demonstrated success in photo realistic human faces [158] and recovering
data from images in astronomy [159].
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Optimisation problems are everywhere. It is an empirical fact, that the natural world
is continually performing optimisation tasks through different means. Thus it is no
wonder that naturally optimisation problems permeate our society. Most people will
have come across even a basic problem at some point in their life: optimal route for
picking up multiple passengers or optimal spending pattern for achieving certain
goals. For simple tasks often the solution can be calculated analytically or with a brute
force approach; consider all the options and select the best. However in the real world
with problems that have many complex, interacting variables, this becomes quickly
intractable. As with many questions in life, the answer to the question "how do I find
an optimal solution" is, it depends. In this chapter we will attempt to elucidate this
problem and present a new approach to solve complex optimisation tasks. The field of
numerical optimisation is diverse and we will not seek to cover it in its entirety, but
instead focus on the area that is most pertinent to the current work.

9.1 convex vs non-convex

The distinction between convex and non-convex problems is an important one. Let us
start with the general form of an optimisation problem [160]

min
x∈Rp

f (x) | x ∈ C, (9.1)

where x is the controllable variable(s), f is some objective function that defines the
performance, and C is the constraint set that x is subject to. Out aim here is to minimise
the objective function, subject to our constraints. Whether the problem is convex is
determined by the objective function and its respective properties. The constraint set
can also determine whether a problem is convex or not by segmenting regions of the
objective function. A problem is deemed to be convex if a line may be drawn between
any two points on the function with the line remaining above the function at all times. If
this is not true then the problem is said to be non-convex. A diagramatic representation
of this is shown in Fig. 9.1.

Convex problems are substantially easier to optimise due to the inherent lack of
steep local minima. Many conventional methodologies are extremely efficient at this
task. However there are unfortunately a great number of problems that are non-convex,
in fact most problems can be coded as non-convex optimisation problems.
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Convex Non-convex

Figure 9.1: Two different objective function topologies demonstrating the difference between
convex and non-convex functions. The red section of the non-convex landscape
represents a violation of the convex constraint. The presence of local minima in the
landscape breaks prevents the use of efficient convex optimisers to consistently find
the global minimum.

Non-convex topologies range from trivial to extremely difficult to optimise over, for
a few reasons. A given landscape may contain many, steep local minima, saddle points,
flat regions and widely varying curvature. Generally speaking non-convex optimisation
is at least NP-hard, additionally lacking the tool kits generally available for convex
optimisation [160]. This is generally due to the fact that theoretical guarantees or
considerations are either weak or missing entirely. Convergence on a non-convex space
is also difficult or impossible to measure without a priori knowledge of the landscape
itself.

9.2 solving non-convex problems: a review

There do exist methods for solving non-convex problems aside from simply heavily
sampling the entire landscape (an approach which quickly becomes intractable). One
approach is to attempt to approximate the problem such that it becomes convex [161].
Once the problem is convex, appropriate methodologies may be applied to find an
approximate solution which provides a starting point for a local-solver to take over.

9.2.1 Global optimisation

Global optimization strategies such as Bayesian optimisation/Gaussian process also
provide a method for solving optimisation problems, however this can be slower than a
grid search if evaluation of the objective function is fast. These processes represent the
parameters as multivariate distributions and update their expectation values according
to the observed data. Gaussian process optimisers have demonstrated success in many
problems such as optimising the formation process of BECs [135, 162] and improving
muon shielding [163]. Often, global optimisation strategies in general aim to solve
the problem approximately, with local optimizers providing local convergence [164].
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A common approach is to combine local optimisation with grid or random searches,
such that a series of local optima are identified, from which the best optimum can be
selected. This method has been used to optimise the operation of fast gates for ion trap
quantum computing [165]. Generally global optimisation is applied to problems with
low dimensionality, where finding the true global optimum is of high value. This is
due to the fact that these methods are computationally and time intensive.

9.2.2 Evolutionary algorithms

Biologically inspired, evolutionary algorithms (EAs) are a class of algorithms starting
with a population of candidate models that are mixed, selected and controlled [166].
The idea is to mimic Darwinian evolution in order to select well-performing models,
thus many of these methods can be derivative free, decreasing the number of function
evaluations. EAs perform well when the number of optimisation parameters is large
[167] and have been applied successfully to design problems [168, 169], event selection
in high energy physics [170], chip design [171] and quantum gate operation [172].
A downside to EAs is that they require tuning to perform well, with tuning of the
hyperparameters often being problem specific. Improper tuning can lead to issues
regarding convergence and local minima traps.

9.2.3 Stochastic methods

Stochastic optimisation (SO) is the name given to algorithms which perform probabilistic
operations as a means of accelerating the optimisation process. The simplest form of
SO is to randomly pick points until you find a good one, however such a strategy is
bound to perform poorly on average. While EAs could be included in here, I will take
this to refer to more inherently probabilistic methods such as Monte-Carlo methods
and simulated annealing [173]. In the case of Monte Carlo methods, parameters receive
random shifts which may be accepted as the new parameter set if they are below
the minimum observed. Simulated annealing takes a similar approach however the
probability of accepting the parameter change follows a "cooling schedule", analogous
to an annealing substance. Both methods suffer from convergence issues, which is
probabilistic and generally slow. However as they are not greedy algorithms, they
are less likely to be susceptible to local minima traps [174]. Such SO methods have
demonstrated success in optimising neural network models [175], solving the travelling
salesman problem [176] and finding ground states of unknown potentials [177].

9.2.4 Metaheuristics

Metaheuristics are a class of iterative processes that exist outside of optimisation
algorithms. Metaheuristics do not provide any guarantee regarding convergence or
theoretical rigour, but instead are observed empirically to provide approximate solu-
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tions to difficult problems [178]. They are based on the idea that an efficient search
for solutions may be performed by balancing the exploration-exploitation trade off in
an empirically valid manner [179]. As such many of these algorithms are organically
inspired such as the fruit fly optimization algorithm [180] used in Ch. 7. EAs denote
a category of metaheuristics, however there are a number of categories that are also
naturally inspired such as particle swarm algorithms [181] and water wave optimization
[182]. The number of different metaheuristics is vast, with many being variants on
the same process, I direct the reader to [178] for a comprehensive list. Despite their
abundance, particle swarm algorithms in particular have been applied to a number of
problems including antenna control [183], cancer classification [184] and speech coding
[185] to name a few. A comprehensive review of the applications can be found in [186].

9.2.5 Neural net surrogates

An approach using ANNs is differential evolution or other EAs, accelerated using
surrogate models [187–189]. A surrogate model is a model which is evaluated instead
of the actual objective function. The surrogate model provides an estimate of the
cost landscape. Some approaches use ANNs as a surrogate approximation to the true
objective function, which can be optimised over. In this case evaluation of the surrogate
model can be parallel and extremely well optimised, often quicker than the more
complicated model or physical system. This has demonstrated success in many technical
applications such as microwave circuitry [190] and aerofoil design [191].

9.2.6 Summary and issues

The inherent structure of non-convex landscapes creates a complex optimisation prob-
lem that has attracted a lot of attention due to its real world value. A number of
approaches to tackle this problem are outlined above with varying degrees of speed
and success. An existing problem with all the algorithms above is that approaches
seeking an exact solution necessarily scale badly with the problem dimensionality. As
such for large problems, on which the current work focuses, it is necessary to take a
more approximate approach similar to that of surrogates or metaheuristics. Addition-
ally, there remains the problem of generality. There exists a no-free-lunch theorem for
optimisation algorithms [192], which is to say that averaged over all possible landscapes
all algorithms perform equally well. Unless something is known about the landscape
then it is difficult to choose the correct efficient approach. With all this in mind I will
now present a new approach that aims to alleviate some of these problems.
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9.3 deep learning approach

Deep learning coincidentally turned out to be extremely good at distinguishing struc-
tures in high dimensional data sets [154]. This realisation coupled with efficient methods
for training and evaluation makes it an ideal candidate for representation of a complex
cost landscape, as is done in surrogate methods. The method we present is the first
instance of ANNs in charge of both model representation and decision making processes
in the context of optimisation. The pseudocode for this algorithm is given in Alg. 1.
The idea behind the algorithm is that the ANNs will not only be the surrogate model
but also be in charge of generating the next points for testing based on the inherent
instability of the training and independent initialisations.

Algorithm 1 Deep learning based optimisation algorithm

nets← 3 {number of ANNs ≥ 1}
locals ← 100 {number of local learners}
N ← number of parameters
samples← 2N
memory← [ ]
f ← objective function
DE ← differential evolution learner (pseudo-random)
Initialise ANNs

{Begin the initial sampling}
for i = 0 to samples do

next← DE
cost← f (next)
append (cost, next)→ memory

end for

{Begin main optimisation loop}
while halt condition not met do

for k = 0 to nets do
train ANNk on memory
preds← [ ]
{Find best predicted parameters}
for l = 0 to locals do

next← LBFGS on ANNk output, started at random point
append (cost, next)→ preds

end for
best_pred← argmin(preds[:, 0])
new_params← preds[best_pred, 1]
cost← f (next)
append (cost, next)→ memory

end for
{Inject some random point to avoid bias}
next← DE
cost← f (next)
append (cost, next)→ memory

end while
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Figure 9.2: Different predicted landscapes from the ANNs trained on the sampled (grey) data.
With a sparse sampling of the landscape the neural networks will disagree as to the
location of the best minima, facilitating exploration.

9.3.1 Multiple networks

The use of multiple networks in this algorithm has an advantage similar to that of
bagging and ensemble methods in general [193]. One of the main problems with opti-
misation metaheuristics is determining the ratio between exploration and exploitation.
Often this requires tuning of a particular parameter. In the present work this is handled
automatically through the stochastic nature of the ANN training process. Consider
the situation where a function is sparsely sampled, the samples of which we wish to
use to train our ANN model. After performing the training, the representation of the
function will be accurate around the sampled data points, but won’t have any reference
elsewhere. Thus an ensemble of networks trained on the same sparse data set will
often predict different global minima, an example of this is shown in Fig. 9.2. Each
predicted minimum can then be tested in succession, verified or not, and finally added
to the memory. In this way the exploration of the landscape is facilitated by the lack of
knowledge in a particular region. In the limit of dense sampling, the models will agree
on the function structure which can be used as a rudimentary measure of convergence.

For this method to be successful we require that the models overfit the data, if only
somewhat slightly. This ensures the networks are more exploratory in the limit of sparse
sampling. Intuitively the amount of over fitting will determine the level of exploration,
which can then be tuned with regularisation. In this way, the models will not necessarily
represent the landscape completely and accurately, but their representation will be
useful. The discovery of a steep minimum will bias the models towards exploring this
area, in which case exploitation is effected. We term this method a stochastic artificial
neural network (SANN).

9.3.2 Generating predictions

The advantage of the SANN surrogate models is that generating a new point is as simple
as optimising over the predicted landscape (see Fig. 9.2). This operation is far quicker
than optimising over the actual objective function for a number of reasons. First the
evaluation of the SANN models is generally much quicker than the objective function,
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especially if the objective function is tied to the operation of a physical system. Secondly,
as a result of the network graph approach to tensor models taken in Tensorflow [194]
and similar libraries, the gradients required for efficient search methods such as LBFGS
[195] are efficiently calculated. A new point is generated by starting multiple local
LBFGS searches at randomised points in parameter space. The minimum point found
by these searches is then used as the next predicted point. These searches can be
performed in parallel as the SANN models can be cloned, whereas the true objective
function may instead only be operated serially, such as in the case of a physical system.

9.3.3 Pseudo-random learner

The inclusion of the DE learner aims to provide an unbiased stream of data into the
memory. DE is an EA that has demonstrated success on many optimisation tasks [196].
The inclusion of DE ensures that the algorithm never truly stops exploring, even after
the models have converged (providing of course the convergence criteria of the DE is not
reached). In practice one could use any algorithm, however it is better to use something
that is initially exploratory in nature, as it is in charge of generating the initial sampling.
To this end an EA with a relatively large population is suitable. Throughout the learning
process the convergence of the DE learner is much slower than that of the SANN, thus
while it is geared towards optimisation, the sampling will appear more exploratory, or
pseudo random compared to the SANN predictions.

9.3.4 Initial sampling

The initial sampling is performed by the DE learner and forms the basis for initially
training the SANN. Empirically it was found that the number of initial samples should
be at least 2N, where N is the number of controllable parameters to optimise. However
this will depend on the landscape and can be altered depending on the initial sampling.
In general it is better to have a variety of objective function values in the initial training
set, as this will allow the SANN to better generalise. However this is not imperative, it
may just mean the absence of such will produce a slower optimisation. An improvement
over this sampling method is presented in Ch. 11.

9.3.5 In-loop optimisation

The main optimisation is performed as an in-loop optimisation, which is to say the
minima identified by the SANN are tested, providing the next best guesses of where
to go. In many cases, the objective function will directly represent the behaviour of a
physical system. After the initial sampling, the SANN is given complete control of the
system performance subject to a number of bounds. While the SANN models themselves
are not bounded, the bounds are included in the LBFGS minima search. By having
the SANN operate in loop, the search for the global minima can be more efficient, by
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biasing the search with the generalised landscape represented by the SANN models.
This can be extremely useful if evaluation of the objective function is costly. After each
evaluation, the cost and parameter pairs are added to the memory, on which the SANN

will be retrained to represent this updated information, similar to a Bayesian update
process. In this way the algorithm continues improving its knowledge regarding the
true objective function landscape.

9.3.6 Function evaluations

For the most part we will be concerned with how efficient the algorithm is in terms of
function evaluations rather than computational time. The justifications for this is that in
many cases, evaluation of the objective function is costly in either time, or resources. In
either case, for a high dimensional system many of the methods previously discussed
require many evaluations to perform effectively. This algorithm instead compromises
on computational efficiency, as each network is re-trained after generating a new point,
which is a costly process. We assume that this process is faster or comparable to the time
at which it takes to evaluate the objective function, allowing us to leverage the power
of the SANN to access better predictions about the next best point. Additionally with
multiple networks training in parallel, one can choose the number of networks such
that a new point is always ready to be tested. It will often be true that the evaluation of
the objective function is much slower than the training process for example in physical
experiments found in quantum optics (see Ch. 10) and industrial applications. This
compromise in computational efficiency allows the SANN to generate more informed
predictions, ultimately leading to the accelerated optimisation process (in terms of
function evaluations). In general we can specify the network size such that the objective
function is always evaluating and never waiting on a prediction.

9.3.7 Testing efficacy

During the design of Alg. 1, the efficacy was tested by benchmarking on a 10 dimen-
sional problem with an objective function of the form

f =
√

∑
i
(xi − xmin,i)2, (9.2)

where xi represents the ith candidate parameter and xmin,i represents the minimum
coordinate for the ith parameter which is randomised at the start of the problem.
Effectively, each parameter represents an offset polynomial in that dimension, which
should be a fairly easy optimisation. Fig 9.3 shows the results of such a benchmark in
which multiple algorithms were applied to the problem of Eq. 9.2. The implementation
of Gaussian process and differential evolution are through the M-LOOP package while
the fruit fly implementation follows that of Appendix B. The SANN consisted of 3
ANNs with a network structure of 5 hidden layers, with 64 neurons per layer. Only one
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Figure 9.3: Benchmark of different optimisations on the random polynomial problem. The best
performing algorithm in terms of best minima found is the neural net algorithm
(NN), followed by Gaussian process (GP), fruit fly (FF) and differential evolution
(DE). Algorithms are restricted to 200 function evaluations (including training for
the neural nets).

optimisation run is shown here, however this result is indicative of the results observed
on repeated benchmarks. Further benchmarks and improvements are detailed in Ch.
11. As shown in Fig. 9.3, the SANN finds a better minimum than the other algorithms.
It also approaches the minimum quicker. It should be noted that in general the SANN is
a global optimiser and the final optimisation in the region surrounding the best known
minimum should be performed with a local optimiser for best accuracy.





10 O P T I M I S I N G A M A G N E TO - O P T I C A L
T R A P

In Pt. i and ii, the case was made for the use of a cold atomic ensemble for quantum
information purposes, such as a quantum memory. One of the main limitations in
many of these experiments is the scarcity of OD, due to the inherent difficulties in
efficiently trapping cold atoms. This chapter will report on the application of the deep
learning algorithm presented in the previous chapter to this problem and resulting
experimental results.

10.1 the problem

The dynamics of the steady state operation of MOTs are well described by various works
[13, 55, 197]. The limit of the theory, in this case, is that approximations generally rely
on the operating regime meeting certain assumptions such as steady state dynamics,
low intensity, small OD or far detuning. Presently, it remains a challenging endeavour
to construct a quantitative description that captures the complete atomic dynamics
outside of these approximations. Unfortunately, for work such as that presented in
previous chapters and quantum memory schemes in general, this regime is exactly
where one is required to operate such a system. The complexity in completing such a
description mostly owes to the complex dynamics involved which, when extended to 3
dimensions, become computationally intractable, involving many-body interactions,
polarisation and intensity gradients, and complex scattering processes [197, 198]. The
result of this is that many processes aimed at improving OD revolve around the use of
intuition to create adiabatic ramps such as that presented in Sec. 3.3.5. Despite this there
have been indications that operating outside of this regime can increase the efficiency
of collection into cold ensembles [199], including an experimental demonstration of BEC

formation without evaporative cooling [200]. From this it is evident that the area that
could yield the biggest improvement in atom number, and hence OD, is the transient
compression sequence of a typical experimental run.

10.1.1 Parametrisation

Parametrising the relevant experimental controls is a tricky endeavour. Choose the
wrong parametrisation and the landscape can become extremely complicated, pre-
cluding efficient search via optimisation. While in general there is no rule for how
to choose this, as with an ansatz in solving differential equations, it helps to know
something about the problem. For example, if the problem exhibits periodic behaviour
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it may be useful to parametrise in a way that exploits this (e.g. a periodic basis). During
the compression sequence we wish to exert control over three main parameters over
a period of 20 ms: trapping detuning frequency, repump detuning frequency and
magnetic coil current. Intuitively we expect that the resulting time-value profiles of
each should probably be monotonic, however we have already performed such an
optimisation, as demonstrated in Sec. 7.4.5. For this optimisation we wish to assume
nothing about the presumed nature of the ramps involved. Instead we wish to apply
only the physical constraints of the system, thus allowing the optimisation to explore
the full range of potential behaviours. The simplest parametrisation that allows such
expressivity is allowing piece-wise arbitrary control over a set of values, at regularly
sampled intervals in each control channel. To implement this the duration of the 20
ms compression sequence is subdivided into 21 time value pairs for each of the three
channels, giving a total of 63 optimisation parameters. The final parameter in each
sequence sets each respective channel to the value for the PGC sequence immediately
proceeding the transient compression, thus each parameter represents a 1 ms duration
in the transient ramp. This choice of parametrisation balances granular control dur-
ing the sequence whilst keeping the dimensionality of the problem small enough to
perform an effective optimisation. It is clear that a human operator could not hope to
efficiently optimise these parameters by hand and would quickly succumb to biases
based on intuition and perceived efficacy of the solution.

10.1.2 Online approach

Previous machine learning techniques with deep learning have demonstrated success
with quantum systems, such as optimal control [201–203], design [204, 205] and
prediction [206]. However these approaches are performed in an offline setting, relying
on prior information. Online approaches have been demonstrated using Gaussian
process models [135] and EAs [207–209]. The approach I present here is the first online
approach to leverage the power of deep learning.

Online optimisation is well suited to this experiment, due to the nature of the
duty cycle implementation and need for efficient exploration. The experiment is run
continuously at a frequency of ≈ 2 Hz. The MOT loading (preparation, PGC and
compression) accounts for 99% of the duty cycle, with < 1% reserved for measurement
and experimentation. However the majority of atoms will not leave the trap between
cycles as the atom drop during experimentation (which occurs when the atom trapping
is ceased during quantum memory operations) does not last long enough to facilitate
the full loss of atoms. Thus atoms are accumulated over successive runs until an
equilibrium value is reached, at which point a measurement of the performance
occurs. The performance of the trap will often vary on a scale of 1-2 hours due to
various physical drift sources, such as the Rb dispenser, laser power and frequency
drift, and alignment drift due to temperature fluctuations. This drift precludes offline
optimisation which would require a relatively dense sampling to accurately represent
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Figure 10.1: Experimental implementation of the online deep learning algorithm for optimisa-
tion of the OD. The feedback like loop starts by (a) sampling the response of the
MOT via a probe beam for different parameter sets. These parameter, cost pairs are
then used by (b) the SANN to train a representative model of the cost landscape.
(c) shows the mapping between parameters and cost indicated by the line colour,
observed over the experimental acquisition (lower cost is an improvement). The
SANN predicts the next best set of parameters to examine. Parameters that are
found by the SANN during a minima search are passed to the experimental controls
(d) to be implemented experimentally.

the cost landscape, especially for a 63 dimensional optimisation. In this case it is
advantageous to use an efficient online optimiser that can directly target the search
without wasting evaluations in uninteresting parameter regions. Previously discussed
methods require far too many function evaluations to efficiently optimise the landscape
before drift becomes significant.

10.2 experimental implementation

The application of the deep learning algorithm to the experimental setup described
in Ch. 4 is outlined in Fig. 10.1. The main barrier to entry is achieving automated
experimental control, as this optimisation can (and should) be performed faster than a
human operator. Fortunately as noted in Sec. 4.2, this is accessible by design and can
simply be included as a module in the python RunBuilder. For the remainder of this
section I will outline the different parts of the complete experimental process and its
corresponding complexities.
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10.2.1 (a) Cold atoms and measurement

For each new set of parameters, atoms currently in the trap must be relinquished.
Without dropping the trap, atoms present in the trap can remain in the MOT, even with
a new set of parameters with worse performance. These atoms would not otherwise
have been trapped and while they will eventually leave the trap, the time taken to reach
this new equilibrium is far greater than dropping the trap and reloading the MOT.
An assumption of this method is that each run, or test of parameters, is independent
from the last. Without the MOT drop this assumption is broken as current runs become
correlated with the performance of the previous runs.

The atoms are prepared as outlined in Sec. 4.2.3, with the exception of the adiabatic
ramps for our three control parameters, which are now replaced with the piecewise
functions generated from our parameters. The final stage after the new compression
sequences, is a 1 ms PGC stage and optical pumping, where final cooling takes place
followed by optically pumping the atoms into the m f = 2 magnetic sublevel with a
σ+-polarised beam, detuned from the F = 2→ F′ = 3 D2 transition. The exact detuning
of the trapping beam during PGC and optical pumping beam is set by the final point of
the machine learned compression sequence, as this frequency is controlled by an AOM

common to both paths.
Up until this point we have not yet defined how to measure whether the system is

performing well. As we are interested in improving the OD of the system, measuring
this quantity would appear to be the correct technique. However as OD increases,
gaining an accurate measurement becomes more difficult. For this method to work we
do not require that we have an exact measure of OD, simply it is advantageous to have
a fast measure of some quantity that is related to OD. For this we send an off-resonant
probe pulse through the atomic ensemble which is measured on the other side by a
bucket photo detector (PD). This probe provides us with a straightforward absorption
measurement which will monotonically increase with OD. Our cost function in this
case can be simply defined as

cost =
1

Ire f

∫ T

0
p(t) dt, (10.1)

where Ire f is the integral of a reference pulse sent through without atoms and p(t) is
the PD signal acquired for a time T. The cost function defined above returns a scalar
value, where a larger value corresponds to less absorption and thus lower OD, and
vice versa. An important addition is the scaling factor of the reference pulse. Before the
new parameters are implemented and the atoms have been removed from the trap, a
reference pulse is sent through which is used to appropriately scale the cost function.
This removes fluctuations due to laser intensity, which were found to be a problem
during experimentation. For the duration of the experiment the probe was detuned
from the F = 1 → F′ = 2 D1 transition. It was found that a detuning of −90 MHz
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provided a good signal to noise ratio for the higher OD runs, while not precluding the
optimiser from exploring lower OD regimes.

It has been demonstrated and catalogued before, that artificial agents will often cheat
the task presented to them, if provided an opportunity to do so [210]. This system is
no different, and oftentimes one must be careful to design the cost or measurement in
such a way that removes such an opportunity. In the case of the present work, the agent
has little ability to cheat at the task at hand, but over the course of experimentation
we were able to identify one such case. In the high OD regime probe light which is
close to resonance, can be lensed by the ensemble. While the optimiser does not have
control over the relative position of the MOT, it can control the relative expansion to
some degree with the magnetic fields. When approaching high OD, in certain cases the
AI was able to cheat, by controlling the expansion such that less light (sometimes no
light) was incident on the detector not via absorption, but by lensing. This problem was
easily rectified by increasing the detuning and placing a large 2 inch optic (f=50 mm
lens) to capture and focus the light onto the PD. However such problems are common
and demonstrate the need to verify solutions generated by the optimisation process.

The measurement of the cost occurs after approximately 10− 15 experimental cycles
from the time of the MOT drop, although for poor parameter sets this can be substan-
tially quicker as there is no loading time. The cost value sent to the SANN is monitored
by repeated measurement of the cost at each cycle. Once the cost has reached an
equilibrium value, within experimental noise, the acquired cost is sent to the SANN. In
this regime 1 data point is gathered every 5− 10 seconds on average.

10.2.2 (b) SANN training and minimisation

Once the relevant quantities have been measured to construct the cost function, the
cost is sent to the SANN to be evaluated for training. As described in Sec. 9.3, once
each of the predictions from the SANN has been tested, the returned costs are added
to the running memory and the SANN is trained. We require that the SANN produce
new predictions to test experimentally, which are found by an ensemble of L-BFGS
local optimisers. For this optimisation task the SANN is comprised of 3 neural networks.
The structure of each network is a depth of 5 with 64 neurons per layer. This network
structure affords the required expressivity, while still allowing the networks to be
trained in a sufficiently short time such that the experiment is not waiting for this
computation. The networks are trained on modest hardware using only CPUs (Intel
i7-920 2.67 GHz). Each respective network is trained using the Adam algorithm with
early stopping and L2 regularisation. As we expect the response of the parameters to
be generally smooth, GELU is used as the choice of activation function.
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10.2.3 (c-d) Predictions and implementation

Continual application of the SANNs training and prediction loop leads to survey of the
parameter landscape in a fashion that balances exploration and exploitation. Visualising
a 63 dimensional space is not an easy task, graphically or otherwise, however due to
the nature of the parameters constituting ramps it is possible to plot the generated
ramps with respect to their relative cost as is done in Fig. 10.1c. Here we begin to see
the emergence of particular ramp shapes that lead to a better performance (lower cost).
Visualisation as such also allows the intuitive investigation into the importance of given
parameter values. For example, in all cases the final point of the compression sequence
must pass through a particular value to perform well. It is important to note that while
each point is connected by a straight line, experimentally the switching time is� 1 ms,
and thus the resultant sequence will instead look like piecewise steps.

Each of these predicted parameter sets is passed to the control systems which will
implement the physical values. To ensure the stability of the optimisation a number
of monitors were put in place which ensure that key systems remain locked. This
corresponds to the trapping, repump and probe lasers, which require frequency stabil-
ity to ensure a valid optimisation. In the case where one of these fell out of lock, the
optimisation loop was halted and any measurements during that time automatically
disregarded. As the networks train on the running memory, this is as simple as remov-
ing the offending cost and re-testing the parameter set. Following the implementation
of the parameters on the experiment, the loop continues with part (a) and is repeated
until some stopping criterium is reached. The criteria for halting the optimisation are:
a maximum number of runs reached, convergence of the neural nets to a satisfactory
regime, experimental drift tolerance exceeded, or human intervention.

10.3 experimental results

While a number of experimental optimisation runs were performed on the cold atom
system, I will examine the best achieved result for the initial part of this discussion.
Sec. 10.3.6 will cover the identified local minima. Fig. 10.2 gives a complete overview
of the best experimental optimisation result achieved. As shown in Fig. 10.2b the AI

learner initially samples the landscape for the first 126 runs. After this the SANN begins
the initial training on these training examples, with a batch size of 32. Once the initial
training is complete, subsequent training on new examples will be much shorter. The
SANN will begin to generate predictions after this initial training. The initial predictions
fall within the same relative range as the DE algorithm owing to the early stopping
techniques used to try and mitigate overfitting. However after only 100 runs the SANN

is clearly and substantially outperforming the DE learner. Spikes in observed cost as a
result of the SANN occurring later on correspond to an increased rate of exploration,
as a result of overfitting. This is due to the fact that the SANN is now in a parameter
region that is not changing much, with repeated observations, and thus it becomes
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more likely to overfit the data. The optimisation was halted after a total of 703 runs on
the grounds of convergence, with the optimal solution found at run 583.

10.3.1 Human and machine ramps

The human optimised ramp shown in Fig. 10.2a was optimised via manual adjustment
and with the aid of a Gaussian process learner. The only difference between the
constraints applied to this problem and the machine learned solution, are the biases
and intuition applied to the problem, from the perspective of the skilled operator. In this
case this solution builds on knowledge of the adiabatic ramps proposed as temporal
dark SPOTs, and the intuitive understanding of the theory describing the steady state
operation. The AI learner is however not burdened by such intuition and so called
rationalities, placing merit on each possible combination until informed otherwise by
the cost. As such the machine learner produces a completely unintuitive ramp, shown
in Fig. 10.2c. Immediately there are a number of striking differences between this and
the human solution. Firstly the solution is not monotonic, instead varying rapidly
between the control rails, as determined by the physical limits. Secondly the solution is
not continuous, showing little to no correlation between successive parameters. The
stark contrast between the two solutions, highlights the fact that it is extremely unlikely
that a human operator would seek to construct a solution with such a profile.

10.3.2 Quantifying success

Following the successful optimisation of the MOT loading, it is important to verify
the physical behaviour of the system to determine that the intended behaviour is
adhered to. As the absorption measurement is not a strict measure of OD, this should
be the first port of call. A proper OD measurement can be obtained by varying the
probe detuning symmetrically around resonance and fitting to Eq. 2.25. The observed
absorption profiles are shown in Fig. 10.2d which correspond to ODs of 560± 8 and
960± 20, for the human and machine runs respectively. Thus the machine learned run
has improved the optical depth by 81± 3%.

The observed increase in OD is also supported by the side absorption images shown
in Fig. 10.2e. These integrated traces show the increase in optical depth around the
centre of the distribution. It can also be seen that not only is the learned sequence
increasing optical depth in the central region, but additionally shows a distribution of
atoms above the main ensemble which does not vary substantially from run to run.
While this feature does not contribute to usable OD, it is a feature that is only present
in the learned sequences. This is further seen in the integrated traces shown below the
absorption images, where the cloud can be seen as a tail on the distribution.
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Figure 10.2: Results of the 63 dimensional optimisation using the in-loop AI algorithm. (a)
Shows the original human ramp which was optimised using a Gaussian process
learner. (b) the progression of the measure cost as a function of run number. The
neural nets significantly outperform the DE learner with the optimal solution
identified at run 583. The bottom plot of (b) shows the historical minimum. The
resulting optimal ramp is shown in (c) displaying features which are neither
continuous nor monotonic. The corresponding OD measurements for each run
are shown in (d) with an OD of 580± 8 and 960± 20 for the human and machine
runs respectively. The orange line represents the probe detuning during the opti-
misation. (e) shows a quantitative comparison between the human and machine
learned ramps effect on the atomic ensemble. Side profile absorption imaging
shows a distinct difference in density in the centre region with a halo of atoms
surrounding the machine learned ramp. The integration of these absorption plots
is shown below the side images on a logarithmic scale, with the dashed boxes
indicating the integration region that is chosen to be free of image distortions.
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10.3.3 Time dependence

As the compression sequence is time dependent, it is useful to look at the side ab-
sorption imaging over different parts of the run. Due to the variation of the repump
and trapping frequencies, the atoms will often occupy different states throughout
the sequence. To perform the imaging one must first pump the atoms into the state
resonant with the imaging beam so as to image the entire population. This can be
achieved by simply applying the trapping beam briefly (imaging is on the repump
transition) to optically pump into the correct state. Fig. 10.3 shows a collection of
selected side absorption images taken for both sequences using this technique. It can be
seen that as expected the human sequence compresses the atoms monotonically. This
is not the case for the machine learned run. Instead the machine learned run applies
a multi-modal technique and releases the compression partially during the sequence.
This is especially evident when comparing the images taken at 6 and 13 ms. These
dynamics are similar to the release-and-capture techniques applied in optical lattices
to increase lattice occupancy [211]. It should be noted that the images in Fig. 10.3 are
not calibrated for OD and are instead modified for maximum visibility. Additionally
the integrated trace at 1 ms intervals for each sequence is shown in Fig. 10.4. Here the
evolution of the atomic spatial distribution is shown, with the monotonic nature of the
human scheme clearly visible, compared to the machine learned scheme.

10.3.4 Temperature

One of the consequences of performing a transient compression sequence is heating of
the ensemble. There a few mechanisms for this, the first is that increasing the density
will increase the number of re-scattering events that contribute to heating an atom.
The second mechanism relates to the increased mean laser intensity experienced by a
trapped atom, which can add additional heating rates [212]. The temperature of the
ensemble can be monitored at different points throughout the compression sequence by
performing a ballistic drop measurement at each point. Fig. 10.5 displays the evolution
of the ensemble temperature over the course of the two respective sequences. The
temperature of the human scheme increases over the course of the sequence nearly
doubling from the start of the sequence. The temperature of the machine learned run
is much more volatile, however the final 4 ms is spent cooling the ensemble, with
the final temperature arriving at approximately 40% less than that of the human run.
Additionally this late cooling feature is consistent across other minima observed in
other optimisation runs.

10.3.5 Monitoring convergence

For global optimisation tasks, the idea of convergence has little meaning outside of
certain classes of problem. A fortunate consequence of the approach taken with the
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Figure 10.3: Side absorption images of the MOT at chosen times, to illustrate the difference
in compression. While the human optimised sequence compresses the ensemble
monotonically, the machine learned sequence opts for a multimodal technique,
releasing the compression partially during the sequence. Note these images are
not calibrated for OD.
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Figure 10.5: Evolution of ensemble temperature as a function of compression time. Each point
is determined by performing a ballistic drop measurement after applying the
sequence up until that time.
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SANN model is that the model is continually making predictions on the efficacy of the
proposed parameter sets. Thus we define the optimisation as having converged when
the following set of criteria are met:

1. Each network in the SANN predicts the minima to be at the same point on average
(ignoring exploration).

2. Each prediction generated by the SANN matches the observed cost value (ignoring
exploration), i.e. the SANN well describes the local area.

3. Exploration is no longer yielding better minima after having explored for a time
relevant to the scale of the problem.

Once the convergence criteria have been met the optimisation can be halted if it
is deemed appropriate. Note that our convergence criteria above do not indicate
convergence to a global optimum but instead are more a statement of the SANNs

capacity to continue efficient exploration. In the case of more complex landscapes
these criteria become more difficult to satisfy and detect. In the case of the current
optimisation the landscapes are relatively smooth. An advantage of the SANN network
is that post optimisation one still has access to the representative landscape of the
models. Using the model we can plot one dimensional slices for each parameter to
observe the representative landscape as shown in Fig. 10.6. As seen in Fig. 10.6b the one
dimensional slices are generally smooth corresponding to a minimum in the vicinity
of these parameters. Fig. 10.6c shows the measures that can be monitored during
an optimisation run to determine convergence. The first plot shows the convergence
between the predicted and measured cost, scaled to the true cost. This effectively
shows how optimistic the SANN is regarding a given set of parameters. The difference
between these two values is shown in the second plot of Fig. 10.6c. The final plot
shows the normalised distance from the current set of parameters to the best known
set of parameters. This can be used to determine where in the parameter space the
SANN is exploring. The overlap between the predicted and measured cost coupled with
the increased exploration towards the end of the run satisfies criteria 2 and 3, while
condition 1 is met via the networks exploring the same local area.

10.3.6 Solution efficacy and local minima

A natural question one might ask is for how long does the solution perform/remain
valid. Many machine learning applications struggle with the problem of generality
and will often find a solution unique to the system at hand at a given time. For
our system, this is not the case. We find that the solution continued to function
better than the human solution, with the same relative increase being demonstrably
stable over a period of 6 months. However the solution itself is likely unique to this
particular system in some fashion. That is to say the idiosyncrasies of the control
system and experimental set-up that are unique to this system, are potentially being
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Figure 10.6: Outputs from the SANN network models. (a) shows the optimal run with the
highlighted points being used to generate the similarly coloured slices in (b). The
blue curves represent every other parameter slice not highlighted. (c) shows the
convergence between the measured and predicted cost according to the SANN with
the red region corresponding to experimental noise. The difference between these
two values is shown in the middle plot of (c) with a moving average. The lower
plot of (c) shows the distance of a given parameter set from the best observed
parameter set which can be used as a measure of exploration within the space.

exploited by the AI to produce this increase. This is in some way supported by two
observations. Firstly by running the optimisation with an experimental fault, the
AI in certain cases produced entirely new solutions that did not perform as well,
however still outperformed the human scheme. In this case the new solutions exploited
faults, or simply compensated for them. Secondly upon redesign of the laser systems
and modifications to the magnetic field driving circuit, the solutions needed to be
re-optimised.

In addition to the best solution, through repeated application of the optimisation
algorithm, a class of local minima were discovered that corresponded to ODs up
to within a few percent of the best solution. Fig. 10.7 shows several of these local
minima and their corresponding relative OD value. Due to the granular nature of
the parametrisation it is difficult to find a correlation between these values. Through
examination of these solutions, it would appear that the efficacy of the solution is
less dependent on the absolute value of any given parameter, but instead relies more
heavily on the value of a parameter relative to those around them with common blocks
appearing in some of the solutions.

While the performance of any sequence will fluctuate with the daily experimental
conditions, we find that the relative efficacy of each sequence is relatively constant.
This finding allows us to conclude that the solutions found by the AI learner, represent
a robust physical mechanism rather than only exploitation of the intricacies of the
experimental setup.
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Figure 10.7: Other identified local minima with their corresponding OD value. Multiple local
minima can be identified via repeated application of the optimisation algorithm.
Due to the large nature of the space there are classes of local minima with similar
values.

10.3.7 Physical mechanisms

The stark contrast between the adiabatic ramps of the human sequence and the machine
learned sequence, brings forth questions as to what physical mechanism could be at
work here. An unfortunate consequence of working with cold atomic ensembles
is that many of the dynamics of interest are either extremely difficult to measure or
unattainable. With the current experimental setup we are in general limited to ensemble
measurements, such as temperature, OD and state occupancy, due to the high atom
number. That being said, there are a few key observations which provide hints as to
the physics being exploited.

The dynamics of the MOT will change depending on the number of atoms present.
This can be split into three main categories as shown by [197]: the temperature limited
regime, multiple scattering regime and two component regime. For our static loading
case we expect the MOT to be in the temperature limited regime, having relatively low
density and with a spatial distribution close to that of Gaussian. Here the occupied
volume is given by the temperature. As we approach the maximally loaded trap and/or
begin compression, we enter the multiple scattering regime. In this regime the radiation
trapping effect (re-scattering of trapping photons to cause heating) becomes relevant
and, in this case, the density of the cloud is independent of the number of trapped
atoms. In the centre of the trap the confining force is stronger due to the magnetic fields
effect of the optical pumping. If this central region becomes filled then atoms will spill
into the surrounding, weaker confinement region. In this case the atoms in the weaker
confinement region will spread out with a radius much larger than that of the central
dense region. This constitutes the two-component regime. Observing the absorption
images of Fig. 10.2e we can see some evidence of this multimodal distribution.

The problem with the above treatment is that this only valid for the static regime,
whereas transient regimes introduce complications. When operating transiently it may
be that a given scheme can be considered quasi-static, moving from one static regime
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Figure 10.8: Absorption images of the MOT captured during the compression sequence without
pumping into the imaging state. The population will sometimes occupy the dark
state for a period before finally ending up in that state towards the end of the run.

to the next, if the variation is small or slow enough. This is the case for the adiabatic
sequence, but is however not true for the machine learned sequence which switches
at the same rate or faster than the reconfiguration of the atomic distribution which is
observed to take on the order of 'ms. Given the similar atomic distribution obtained
by the learned sequence, it is likely that the transient path arrives at the two-component
regime via a non-adiabatic path. It should be noted that this pathway may not be
attainable for all systems e.g. nanofibres and different MOT setups. However there may
be other pathways for which this deep learning approach may provide an avenue for
discovery.

The temperature of the machine learned run is also consistently lower than that
of the optimised adiabatic ramp. As the OD measurement is performed after the
PGC, optical pumping and dead time (as would be the case for an quantum memory
experiment), there is a non-zero amount of time for which the ensemble undergoes
ballistic expansion, lowering OD. Atom loss will also occur if atoms in the trap are
resonant to the trapping light. It can be observed that during the course of the learned
sequence, the population will switch between the trapping and repump states as
evidenced by Fig. 10.8. We theorise that this switching allows the machine learner to
continue filling the trap (in concert with the release and capture style mechanism)
while avoiding loss due to heating from radiation pressure and light assisted collisions.

These conclusions are supported in part by the observation that in the limit of low
atom number the optimisation process cannot find runs that outperform the adiabatic
run. In this case the system cannot leave the multiple scattering regime and enter the
two-component regime due to lack of atom number, thus it is no surprise that this
solution cannot outperform the adiabatic ramp.

10.4 summary and future directions

Here I have presented the first experimental application of a deep learning directed
optimisation algorithm, to a complex physical system, the magneto-optical trap. Using
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the newly proposed algorithm in Ch. 9, a new transient compression sequence was
identified which increased the OD of the ensemble by 81± 3%. Additionally this learned
scheme also lowered the temperature of the ensemble by ∼ 40%. In the preceding
section, I propose a possible explanation for the increased effectiveness of the new
scheme, linking back to the different regimes explored by early pioneers in the field of
cold atoms.

There remains a number of unexplored avenues that can be addressed by future
research. For starters, the proposed explanation regarding the different operating
regimes can be further explored and quantified by a series of careful measurements
regarding the loss rate and density of the ensemble, measurements that were not
attainable during the current work. Unfortunately due to the complexity of the system
involved simulation is intractable and development of such a theory is outside the
scope of the current work.

Another direction is further exploration of the ability of the optimiser to find so-
lutions. The optimal solution shows values which are hard against the parameter
limits, corresponding to the physical limits of the system. To this end, a second MOT is
currently being designed and constructed. With these limitations in mind, the physical
constraints of the system have been expanded to accommodate larger detunings and
higher magnetic field gradients. This will allow us to explore the possibility of whether
the physical limits of the system are an artefact, or feature, of the optimisation.

In general this method has the potential to uncover rich physics, not bounded by
human intuition. As quantum technology becomes more integrated and common place,
in-loop optimisation will likely become a goto tool to actively improve the performance
of such systems. To this end I believe that the application of this technique to other
problems has much to offer.
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In the previous two chapters, I presented a new kind of deep learning algorithm for
optimisation purposes. While this algorithm is effective, the basic implementation does
allow for some flaws regarding more complicated landscapes. In this chapter I will
present improvements to this algorithm in an effort to improve relative strengths and
address weaknesses. I will also present a number of benchmarks of this new algorithm.
The new algorithm is a complete re-write in terms of the code base and additional
features, it is named Acuminata.

11.1 previous issues

After running some benchmarks on the old algorithm it became apparent that while it
worked well for certain landscapes, it was underperforming as the objective function
became more complicated. Fig. 11.1a shows an example of such a problem, an arbitrarily
constructed ’eggshell’ like function with a global minimum centred on some point. The
objective function for an N dimensional version of this problem is given by

X = [x1, . . . , xN ] (11.1)

f (X) = ∑
i
(−2 sinc((xi − xmin,i)) + 1) · (1− e−(xi−xmin,i)

2/3), ∀i ∈ [1 . . . N], (11.2)

where xmin,i gives the point at which a given parameter, xi, will return the minimum
value. For a 50 parameter problem, the neural net approach described previously is
able to outperform the Gaussian process and DE algorithms, however as shown in
Fig. 11.1b, the fruit fly algorithm is outperforming the current algorithm substantially.
Complicated structures are observed to trap the SANN in regions of steep local minima,
even with the DE learner providing additional information. In this case the SANN

effectiveness is limited by the exploration ability of the DE learner which is far slower
than the fruit fly algorithm. Additionally the effectiveness of the SANN is highly
dependent on the initial sampling of the data. With more complicated landscapes this
sampling becomes more crucial to the success of the algorithm and oftentimes the
results are highly variable as a result.

135
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Figure 11.1: Optimisation over an eggshell benchmark function. (a) shows the general land-
scape shape for a 1 dimensional parameter slice, the total function for a multi-
dimensional problem is simply the addition of each of these profiles. (b) shows
the results of a 50 dimensional optimisation run using the previous deep learning
algorithm, fruit fly, differential evolution and Gaussian process. As can be seen
the fruit fly algorithm is now outperforming the neural nets.

11.2 method improvements

Fortunately many of the previously identified issues can be rectified by making some
simple observations. There is an old adage that also applies in the machine learning
field, ’garbage in, garbage out’. This statement summarises the fact that machine learning,
while powerful, is not magic. If one feeds any given model nonsense data, then
one should expect to receive nonsense answers. This is true also in the context of
optimisation. The power of our approach relies on the ability of deep learning to
generalise the landscape in an efficient and meaningful manner. However, if the
algorithm has never seen any good points, how can it possibly be expected to produce
a good prediction? Clearly this will be limited by the effectiveness of our sampling.
Furthermore, escaping local minima has thus far been left up to the stochastic elements
of the algorithm, be it overfitting or the DE learner. While this approach will eventually
yield results, the assumption that this process should be entirely stochastic is to throw
away valuable, learned information about the landscape. In the following section I will
outline various improvements to the algorithm and their respective motivations.

11.2.1 General cost functions

Until now we have assumed nothing about the physical landscape, be it structure,
shape or otherwise. This is done to preserve generality in the approach to solving these
problems. However many landscapes that are found within the physical world, that
we may be interested in solving, often have certain characteristics. For example, there
may be an overall coarse structure, the approximation of which is the starting point
for many surrogate techniques. Consider the two cost landscapes shown in Fig. 11.2.
Sub-figure (a) denotes a particularly hard problem to solve, if one has not sampled
well, then potentially the algorithm will have no knowledge of one, or many, of these
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Figure 11.2: Two separate objective function landscapes with different characteristics that pose
a difficult optimisation problem. (a) presents a sampling problem, as knowledge
of different parts of the landscape does not facilitate inference as to new local
minima. (b) is a complex landscape that presents a more friendly approach, while
there are local minima, an approximate solution to the problem can help to infer
the location of better parameters (shown in green).

minima. Furthermore this information cannot be gained from knowledge of other parts
of the landscape. (b) denotes another complex problem, and could be worsened by
increasing the steepness of each local minimum, however a simplified model of the
region can facilitate exploration of more valuable regions. While both problems can
be solved with a stochastic approach, a more realistically valuable approach would be
to use the information inherent in the landscape where possible. Thus we arrive at an
assumption that we will use: the cost landscape has some useful coarse structure. In
many real world applications this assumption is justified. Note that this assumption
does not preclude us from solving either (a) or (b), it just allows us to accelerate the
solutions for certain classes of problem.

11.2.2 The sampling problem

The effectiveness on the SANN network is heavily tied to the sampling for a number
of reasons. Firstly, the initial sampling will create an initial bias in the network. As
the training occurs continually on an ever increasing data set, the initial bias imparted
by the sampling is difficult to remove, as it is continually reinforced. Secondly any
introduced bias is reinforced via the fit-predict procedure, as the networks are more
likely to predict good results in certain areas if they already return a good result.
Due to this, it is important to impart as little bias as possible during the sampling
process to produce better generalisations. The question of sampling is difficult, as is
quickly discovered by taking the naive approach. One might assume taking a uniform
distribution in each parameter will produce the desired outcome. Such an approach
is shown in Fig. 11.3. Taking the distance between any sampled point and the centre
of the parameter space allows a measure of the region of the objective function that
is being sampled. For a uniform distribution in parameter space we can see that the
distribution is not uniform in distance (see the histogram of Fig. 11.3). The problem of
course with this, is that the SANN will receive initially sampled data biased towards
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Figure 11.3: Sampling method, where samples are determined by taking a uniform sampling
of each parameter, to determine the coordinates in the objective function space.
The scatter plot shows the distribution of 1000 samples. The histogram shows
the frequency of the distance from the centre of the space (0, 0, 0), which is not a
uniform distribution.

a particular region of the objective landscape. As the training mechanism will bias
towards more heavily sampled areas, already we have imparted a bias to the SANN.
We wish instead to find a sampling technique that attempts to sample uniformly in
terms of the distance, while still being stochastic in nature.

improved sampling method As shown in Fig. 11.3, sampling the parameters
uniformly will create a distribution in distance space similar to a spherical surface with
a characteristic width. The SANN will necessarily benefit from an unbiased sampling
method which is difficult to attain, due to the unknown nature of the objective function.
However we have empirically observed that for landscapes that exhibit coarse global
features, modifications towards an unbiased sampling method provide the SANN with
enough information to build an effective rudimentary model of the space.

11.2.3 Local minima methods

An observed issue with the previous algorithm is the proclivity to get stuck in local
minima, especially if they are steep. Defining whether a minimum is global or local
requires knowledge of the cost landscape, however for the most part we will always
assume that any minimum encountered is local, facilitating exploration of the landscape.
We wish to implement some method to escape local minima that takes advantage of
knowledge of the landscape gained over time. Different methods for escaping local
minima have been proposed in different contexts, such as restarts in derivative free
optimisation [213], or momentum in gradient descent optimisers [148].

identifying local minima First one must establish criteria for determining if the
algorithm is stuck in a local minimum. This is done by simply assessing how long
the SANN has been in the region around the best known parameters. This is simply a
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tolerance on the distance from the best known set of parameters. This tolerance can be
modified to change the behaviour of the algorithm, forcing more or less exploration. For
the most part the SANN will tend to get stuck in steep local minima, thus this technique
of measuring the average localisation of the algorithm is an effective technique.

bumping techniques The techniques used to escape local minima are termed
bumping techniques, as they effectively try to ’bump’ the SANN out of local minima.
The techniques can be categorised into two main categories, stochastic and informed.
The stochastic methods perform similar to that of Monte Carlo methods, choosing
random parameters close to the local minimum. Informed methods attempt to use
information gained from observed parameters up to this point, to infer the next best
parameters. Without a priori knowledge of the objective function landscape, we are
unable to determine which method will be the most effective for a given problem. As
such, each method is cycled during the optimisation when it has been determined the
SANN is stuck.

11.2.4 Exploration by overfitting

In general machine learning problems, overfitting is an undesirable behaviour that can
decrease the generality of a given model. As mentioned previously, this algorithm relies
on the willingness of the neural nets that comprise the SANN to overfit the observed
data to some extent. This overfitting can be tuned via the regularisation coefficient
applied to the weights, examples of which are given on the Ackley test problem in Fig.
11.4. As shown, this parameter can be crucial to the success of the algorithm, as too
much or too little exploration will reduce the effectiveness of the algorithm. This choice
of parameter will, in some manner, be mildly problem dependent. In general, this
parameter can be chosen to bias towards exploration, in conjunction with exploitation
methods.

11.2.5 Local exploitation

The effectiveness of a given global optimisation technique will always in some manner
depend on the trade-off made between exploration and exploitation. The SANN is
generally effective at regulating its exploration, however there are times when the
networks can get stuck in certain areas via introduced biases or explore too much.
Oftentimes it can be instructive to force the networks back to a particular area to
reduce these biases and facilitate local exploration or exploitation. This also removes
some of the dependence associated with the regularisation on the problem. The time
spent in either exploration or exploitation can be determined dynamically for problems
where one mode may be favoured over another. It was observed that the optimisation
algorithm is stable with a 1:1 duty cycle between exploration and exploitation, subject
to neither mode finding better minimum.
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Figure 11.4: Different regularisations applied to the neural networks of the SANN to produce
different exploration results. For the higher regularisation a lack of overfitting
reduces exploration and thus the effectiveness of the algorithm. Conversely, too
much overfitting also hampers to the effectiveness of the algorithm which avoids
exploitation. To perform effectively, the algorithm is required to balance explo-
ration and exploitation, as is the case for the middle plot which has identified a
better minimum. The L2 regularisation coefficient for each optimisation run is
noted above each plot.

11.2.6 New data generation

The previous version of the algorithm included a DE algorithm, to ensure a non-
biased source of data and facilitate continued exploration. With the inclusion of the
aforementioned bumping, exploration and exploitation techniques, the algorithm no
longer requires the inclusion of this learner. The inclusion of these techniques is effective
and stochastic enough that the evaluations otherwise reserved for the DE learner can
be better utilised by the SANN predictions.

11.2.7 Improved performance

Applying the complete set of techniques outline above we can observe the performance
of the new algorithm applied to the Ackley test problem. I have previously mentioned
this problem, however we will now define it formally. The Ackley function is one of
a number of optimisation benchmark functions used to assess the performance of a
given procedure. The Ackley function is non-convex and defined as,

f (x) = −a exp

−b

√√√√ 1
N

N

∑
i=1

x2
i

− exp

(
1
N

N

∑
i=1

cos(cxi)

)
+ a + e

f (xmin) = 0, where xmin = (0, . . . , 0)

(11.3)
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Figure 11.5: Ackley test problem landscape shown as both a 3-dimensional and contour plot,
for the 2 parameter problem. The landscape exhibits a number of local minima
with a global minimum at the centre of the landscape. The contour plot is shown
for a smaller region of [−5, 5] around the global minimum, illustrating the different
length scales of the eggshell structure.

where the recommended settings are, a = 20, b = 0.2 and c = 2π. Here, e is
Euler’s number. This complicated function creates a difficult landscape with many local
minima and a single steep global minimum at 0, with the problem generally solved
within the bounds [−32, 32]. Fig. 11.5 depicts the 2-dimensional landscape which can
be generalised to N dimensions.

To ascertain the performance of this algorithm with respect to the old algorithm
and other popular methods of optimisation, we can attempt to optimise the Ackley
function for a high number of dimensions, as this is what the deep learning algorithms
do well, and, what this algorithm was designed for. Fig. 11.6 shows the results of a 100
dimensional test problem, where it is shown that the new algorithm is significantly
outperforming the old algorithm and other popular techniques. The new algorithm
(labelled AC after the naming of the code, Acuminata) initially only samples for 50
points before beginning the SANN prediction procedure. The initial discrete jumps
in the first 50 runs correspond to the improved sampling technique, which has no a
priori information. It can be seen that the improved sampling also provides a better
representation of cost function in the initial 50 samples. This improvement does not
vary substantially on repeated attempts. Additionally the switch between exploration
and exploitation modes can be observed, with the exploration modes corresponding to
the high cost evaluations interspersed throughout the optimisation.

11.3 optimisation benchmarks

As noted briefly, there are a number of benchmark functions that are used to test
the efficacy of a given technique. The appeal of using deep learning is the ability
of the algorithm to generalise in high dimensional data sets. We are thus interested
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Figure 11.6: Benchmark results of multiple optimisation algorithms on a 100 dimensional
Ackley test problem. The costs observed by other optimisation algorithms indicate
that they are not yet within the main central region of the global minimum and
are still stuck on the local minima located on the initial edge. The benchmark
algorithms are the old neural net algorithm (NN), fruit fly (FF), differential
evolution (DE), Gaussian process (GP) and Acuminata (AC).

to determine how the algorithm scales with the problem dimensionality. For many
global optimisation techniques, it is known that with increasing problem dimensions
the efficacy of the solution found (for a fixed number of evaluations) often decreases
dramatically. To test this, each algorithm is given 2000 evaluations with which to find
the global optimum, for a problem of dimension N. For each benchmark function
the number of dimensions is increased up to 300 dimensions, to identify the scaling
of each algorithm’s performance with problem dimensionality. A handful of bench-
mark problems common to the optimisation space were chosen as test problems, the
specifications of which are given in Table. 11.1.

Fig. 11.7 shows the results of these benchmarks with increasing dimensions. As the
fruit fly (FF) algorithm was found to outperform the other algorithms on the benchmark
functions at hand, only the FF algorithm has been included for reference. FF is run 5

times (each with 2000 evaluations) on each problem to give an indication as to the
variance of the method. Acuminata by contrast is approximately as stable in achieving
its final value. With the interests of compute time in mind (FF is far cheaper in terms
of compute time), Acuminata was tested once per dimension. However, one can still
gather information on the methods variance via the portrayed linear relationships.
As is shown in Fig. 11.7, Acuminata scales approximately linearly with increasing
dimensions for each benchmark function, substantially outperforming FF for higher
dimensions. From Fig. 11.7, it can be seen that Acuminata has the most trouble with
the Hoop and Alpine functions. This is possibly due to the varying length scale of the
features in each problem. However, despite this, Acuminata still scales better than FF

for higher dimensions.
This series of benchmarks demonstrates Acuminata’s effectiveness on a number of

different benchmark functions. This is also evidence that the improvements to the
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Figure 11.7: Results of applying the fruit fly (blue) and Acuminata (green) to different bench-
mark problems. The first plot shows the representative landscapes for a 2D version
of each problem. The scatter plots represent the best cost found for each problem
with increasing dimensions.
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Name Functional Form

Ackley f (x) = −20 exp
(
−0.2

√
1
N ∑N

i=1 x2
i

)
− exp

(
1
N ∑N

i=1 cos(2πxi)
)
+ 20 + e

D = [−32, 32], f (x) = 0 @x = [0 . . . 0]

Alpine f (x) = ∑N
i=1 |xi · sin(xi) + 0.1xi|

D = [0, 10], f (x) = 0 @x = [0 . . . 0]

Griewank f (x) = 1 + ∑N
i=1

x2
i

4000 −∏N
i=1 cos

(
xi√

i

)
D = [−600, 600], f (x) = 0 @x = [0 . . . 0]

Hoop f (x) = ∑N−1
i=1 fH(xi, xi+1) where,

fH(x, y) = (x2 + y2)0.25 · (sin
(
50(x2 + y2)0.1))2 + 1

D = [−100, 100], f (x) = 0 @x = [0 . . . 0]

Parabola f (x) = ∑N
i=1 xi − x2

i,min

D = [−600, 600], f (x) = 0 @x = [x1,min . . . xN,min], xi ' U (−100, 100)

Table 11.1: Definitions, domians and minima of the various benchmark functions used. All
benchmark functions are found within optimisation literature as standard test
problems.

method have removed biases inherent in the previous methodology and increased the
general efficacy of the approach.

11.4 real world applications

Following the completion of Acuminata, it has been applied to a number of physical
systems with demonstrable success. While Acuminata was designed with experimental
optimisation in mind, the classes of problem that it can be applied to extend beyond this
application. Put simply, there are a number of optimisation use cases within industry
where the evaluation of an objective function are expensive, yet require optimisation
through some method. For example within manufacturing there are machines which
require manual optimisation by some experienced human operator. This can be an
extremely costly process, with the knowledge of how to perform such an optimisation
difficult to transfer in many cases.

To test the efficacy of Acuminata in a real world setting, a number of projects have
been undertaken which comprise difficult optimisation tasks within a physics setting.
These are outlined in the following sections.

11.4.1 Single electron transistor

Silicon quantum computing has attracted much attention in recent years due to the
promise of scalable architectures that can leverage the extensive technology employed
by the semiconductor industry [214, 215]. While there are a number of approaches to
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Figure 11.8: Results of the optimisation of the single electron transistor operating point using
Acuminata. While only 4 dimensional, the problem has a complex structure with
experimental drift. The blue line is the observed costs and the green line is the
running best. The 4 parameters correspond to sensor top gate, sensor left barrier
gate, sensor right barrier gate and source drain bias of the single electron transistor.

quantum computing with silicon, one of the more promising is the confinement of
single electrons within a silicon metal-oxide-semiconductor quantum dot device [216,
217]. These devices have demonstrated 1 qubit operations with control fidelities above
99.9% [218, 219] and 2 qubit control fidelities above 94% [217]. In all of these cases
however, the operation of these quantum devices requires a certain amount of tuning.
In particular readout of these devices occurs by monitoring the tunnelling of a single
electron from the quantum dot to an attached reservoir via a single electron transistor
charge sensor [220, 221]. The charge sensitivity of this device can be dynamically
adjusted via the voltage of four attached gates, which are patterned onto the silicon
substrate [220]. For the optimisation we wish to control 4 gates: sensor top gate, sensor
left barrier gate, sensor right barrier gate and source drain bias. This set of gates controls
the electron occupancy. Choosing the operating parameters before initiating control
is generally achieved by performing a grid search which identifies a good operating
regime. Due to the complex nature of the parameters, this requires a fine grain grid
and/or an experienced human operator to be effective. Additionally the system can
drift in a time shorter than the grid search completion, adding to the complexity of the
search.

This system provides an ideal test bed for Acuminata, although the dimensions are
small the landscape is complex due to the nature of the physics involved, containing
many local minima. Fig. 11.8 shows the results of a 4 parameter optimisation which
successfully identified a number of operating points. The cost is measured by acquiring
a charge readout, with a given set of parameters, and calculating the variance of a
set of moving variances. The ideal operating point is where the noise on the signal is
small, but the charge jump can be easily discriminated from a zero reading. As can be
seen, the cost landscape is extremely complicated, with small changes in parameters
corresponding to a large change in the cost function.

metaselection As there are many operating points that may be selected, we
employ a kind of metaselection post optimisation. This is done by taking the best
10 points and measuring their efficacy. Certain points will remain stable over long
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Figure 11.9: 10 dimensional Ackley problem with a drift that increases over time. Without the
compensation the algorithm struggles to follow the minimum. With compensation
Acuminata follows the drift in the landscape over time. The first 200 runs of each
optimisation constitute training.

time periods (hours to days), while other operating regimes will only exhibit transient
efficacy on a much shorter time scale (seconds to minutes). As such if the same 10
points are measured after some time, these quasi-stable points can be identified and
the best can be selected as the operating parameters.

combating drift A feature of this system that makes conventional optimisation
difficult is the inherent sensitivity to temperature and stray electrical and magnetic
fields, producing experimental drift. In general, for effective optimisation the observed
experimental drift must be longer than it takes to acquire a single experimental run.
This is not a stringent requirement with a majority of experimental setups satisfying this
criteria. Drift compensation can be implemented by including an attention like system
into the training methods. An example of this inclusion’s effectiveness is shown in
Fig. 11.9. Here drift is added to the 10 dimensional Ackley problem (in all dimensions)
which the algorithm is required to track. It can be seen without the compensation the
algorithm has difficulty following the drifting parameters due to the inherent biases in
the model. However with compensation enabled, Acuminata will follow the drift while
continuing to optimise. This type of compensation is not a feature that can be easily
implemented on many of the global search strategies, which rely on a static landscape.
However, the training and predictions of Acuminata and the deep learning, provide a
flexible and intuitive structure for the inclusion of many such mechanisms.

After a solution has been identified, the observed parameter and cost pairs can be
examined to determine the relative relationships between the parameters. This also
allows one to investigate what parameters are drifting, and which parameters have
more effect on the systems performance.
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11.4.2 Quantum dot frequency shaping

Many quantum information processes in quantum optics rely on the ability to ex-
perimentally create single photon states for use as qubits. This often has stringent
requirements such as indistinguishability, on demand generation and purity (i.e. a
vanishing probability of multiple photon states). A promising platform for generating
single photons is quantum dots embedded in cavity structures, having demonstrated
high brightness while maintaining high indistinguishability [222]. Single quantum
dots can be positioned within InGaAs pillar microcavities, in situ, using lithographic
techniques, providing a pathway to scalable fabrication [223]. A remaining challenge is
the reduction of noise introduced during the pumping process. For the quantum dot to
emit a single photon it must first be coherently excited from the ground state, generally
by a pump laser of some description. However, this provides an obvious challenge:
pump light used to excite the quantum dot may be scattered by the cavity, introducing
noise photons. Filtering can be attempted with polarising optical elements, given that
the pump can operate with a defined polarisation. However, this will also facilitate the
filtering of single photons emitted with this polarisation, reducing the brightness and
efficiency.

One possible avenue to alleviating this problem is to spectrally shape the pump to
preserve excitation efficiency, whilst simultaneously maximising the spectral separation
between the pump and single photon emissions. Recently it has been demonstrated
that this coherent driving can occur with a dichromatic approach [224]. However, this
can also introduce additional losses within the solid state structure, which need to
be carefully accounted for. This approach provides another case for deep learning
optimisation, as the exact dynamics of a QD system can be difficult to characterise.
Online optimisation of such a structure only requires some ability to measure the
performance of the source, with the complexities simply contained in the system
response. Arbitrary spectral shaping can be obtained using a setup as depicted in Fig.
11.10 [225]. As depicted, a SLM can be used to spectrally shape an incident beam by
applying different 2D pixel masks. The full 2D pixel array of the SLM provides a high
dimensional space that can be optimised, with a number of applicable parametrisations.
Such a space is an ideal use case for the deep learning optimisation approach.

Currently, the optimisations that have been trialled have focused on using second
order correlation measurements as the cost function, thus improving the spectral filter-
ing by reducing the noise. Preliminary results have also shown promise in potentially
optimising other components of the system. The ability to improve the brightness of
the source while maintaining characteristics, such as indistinguishability and singluar
photons, is a problem that plagues all single photon sources.
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Figure 11.10: General experimental setup for performing spectral shaping using a spatial
light modulator (SLM). A diffraction grating is used to spatially separate the
spectral components of an incident optical pulse. The SLM is positioned at the
Fourier plane and can be used to modify the phase and amplitude of the different
spectral components, by applying masks to the SLM pixels. The filtered beam is
then recombined on a second diffraction grating.

11.5 further machine learning applications

Acuminata demonstrates the potential success of deep learning methods when applied
correctly to a problem. The ability to efficiently explore higher dimensional spaces
opens up a number of experimental opportunities that were previously out of reach.

11.5.1 Actor-critic networks

One such example is the problem of reinforcement learning applied to experimental
setups. While reinforcement learning covers a wide variety of methods, I am mainly
concerned with the AC network approach. In short, reinforcement learning aims to learn
the best way to map a situation to an action, maximising some numerical reward [226]. A
simple, naive approach to this may be a trial-and-error approach for example. However
the field of reinforcement learning presents many more sophisticated approaches. In
essence AC networks attempt to solve this problem by simultaneously learning the
policy and value functions, for a given environment. A policy function provides a
mapping between the current state of the environment and an action to be taken.
An effective policy is one that always maximises our predefined measure of success,
a reward function. The value function, on the other hand, maps a given state to a
potential value. This value represents the total cumulative reward that an agent can
expect to gain starting from a given state, i.e. while many paths may lead you to your
goal, some paths will be better than others. While the reward function offers immediate
feedback, the value network offers information regarding the long term value of a
given state.

A schematic diagram of an AC network is presented in Fig. 11.11. The actor and critic
models constitute neural networks of some form, generally MLPs. The actor model
takes as an input the current state of the environment and maps to an action to perform.
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Figure 11.11: Actor critic schematic for reinforcement learning. The actor enacts an action
on the environment and is provided feedback by the critic in terms of the TD
error. The critic learns the value of each state which provides the basis for advice
provided to the actor network.

The resultant reward and next state is fed to the critic which assesses the value of the
state by the temporal difference TD error. The only feedback the actor receives is from
the critic which informs the actor network how to improve its response. AC models
are a fairly recent development in RL but they have demonstrated success in sequence
prediction [227]. At present, the application of AC models to auto-alignment of an
optical system is being pursued, the details of which are presented in Appendix A.

11.5.2 Learning transfer functions

A transfer function is a function which theoretically maps a system’s inputs to its
outputs. For a system with a given set of inputs u and outputs y, we are interested in
determining the transfer function, G(s), such that

Y(s) = G(s) ·U(s)→ G(s) =
Y(s)
U(s)

(11.4)

where Y(s) and U(s) are the Laplace transforms of the output and inputs respectively.
If one has access to the input and output functions then the transfer function is simply
a deconvolution between y and u. However deconvolution operations are numerically
difficult, often unstable and in certain cases unattainable by direct calculation. In some
cases it is possible to infer a transfer function based on the behaviour of the system. This
relies on the ability to infer the correct transfer function, based on a measure of correct
system performance. This necessitates the ability to construct arbitrary functions, a feat
that quickly becomes a high dimensional problem if the function exhibits even minor
complexity. A scalable approach to this problem is presented in Appendix C, in the
context of precise gravitational sensing using cold atom interferometry.
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11.6 summary and outlook

In this chapter I have presented a number of improvements to the deep learning opti-
misation approach, presented in Ch. 9, comprising a complete re-write into Acuminata
V1.0. The improvements facilitate the ability of the algorithm to efficiently explore high
dimensional spaces, with complicated and non-convex structures. The benchmarks
presented in this chapter clearly demonstrate the ability of this method to scale to
extremely high dimensions compared to that of conventional optimisation methods.
The cost for this performance gain, is computational time. This method lends itself to
physical situations, however, when the the objective function can be efficiently com-
puted methods such as FF are to be favoured. Future improvements to the efficiency of
training and minimisation procedures will help to improve this. The efficacy of Acumi-
nata was also demonstrated on two additional physical systems, which are continuing
work. Finally this chapter closes with additional applications in machine learning that
are currently being concluded, with preliminary results found in Appendices A and C.

While the improvements in Acuminata are substantial, the application to additional
systems will continue to yield improvements and additions, improving efficacy of
the method. Potential future projects include, but are not limited to, optimisation
of quantum memory pulses and storage operations, optimisation of 1 and 2 qubit
gate pulses and readout in silicon based QDs, unitary operation design from sets
of quantum gates and brightness optimisation in QD single photon sources. Aside
from optimisation, there is also substantial opportunity for using the AC control type
algorithms to integrate with quantum experiments which require online active control.
The methods outlined for the transfer function construction allow a general purpose
method for constructing arbitrary functions, which can prove useful as a basis for pulse
construction in different bases, further facilitating optimisation techniques described
above.



12 C O N C L U S I O N

The work covered in this thesis has been broadly aimed at both implementation of
improved protocols for quantum memories and the subsequent optimisation of such
systems in the general sense. Initially we covered the operation of a magneto-optical
trap, a tool used by scientists for decades in fundamental studies of matter light
interaction. Here we found a novel characteristic of the high OD, elongated ensemble.
Namely, that this setup facilitates the coherent emission of scattered light spontaneously
along the axis of highest OD. While this effect has been observed before, this is the
first instance of such an effect occurring without prior stimulation from an additional
beam. Additionally this coherent emission provides a method for aligning experimental
beams to the highest density region of the ensemble.

Following this, the implementation of a Raman quantum memory with backward
retrieval was detailed. We showed with simulation, that one can expect enhanced
performance from backward retrieval dynamics, by sidestepping many of the pitfalls
of forward configurations. However this configuration requires careful alignment to
perform adequately. Fortunately the atomic emission provides a convenient mechanism
for aligning these beams to the high OD region of the MOT. We demonstrated an
efficiency of 65 ± 6% with a time-bandwidth product of 160. This marks the first
experimental implementation of a backward Raman memory.

OD is the limit of many atomic quantum memory implementations, as it necessarily
governs the interaction strength between incident optical fields and the atomic ensem-
ble. With this in mind, we wished to increase the performance of the quantum memory
schemes implemented in the cold atom MOT, by increasing the OD using machine learn-
ing. This push yielded the first application of a neural network controlled algorithm to a
physical system, in an online optimisation context. The transient compression sequence
was targeted as the point of optimisation, as this potentially could contain the most rich
dynamics. Using this method we successfully improved the OD of the ensemble from
580± 8→ 960± 20. This method also uncovered a non-standard method for traversing
different MOT regimes, and produces a much higher OD ensemble, with a lower final
temperature.

Following the success of this approach to our physical system, we went on to explore
the efficacy of this algorithm in different contexts. Unsurprisingly, for more complicated
landscapes this algorithm was outperformed by some more mature approaches such
as FF algorithm. A number of substantial improvements were made to the algorithm
which avoided these pitfalls, improving the performance of this algorithm beyond
conventional techniques. Through a series of standardised benchmarks we find that the
performace of this new algorithm, known as Acuminata, scales linearly with the prob-
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lem dimensions, up to at least 300 dimensions. Following this marked improvement, I
presented some additional physical systems to which we are applying Acuminata and
some preliminary results.

Finally, we touched on the future machine learning applications that we are presently
pursuing, namely that of the AC control algorithm for auto alignment and the construc-
tion of a transfer function from experimental gravimeter and seismometer data. Both of
these projects are detailed in the appendix and are currently undergoing preparation
for publication.

Future research directions

There are a number of opportunities for extending the research outlined in this thesis.
Firstly, there is the possibility to further study the atomic emission, as this may provide
some insight into the collective behaviour of the ensemble and open further pathways
to atom-light interactions. This can come in the form of more detailed measurements
and characterisation, along with attempts to distil a simplified model.

Quantum memory investigations are continuing on many different platforms and
there remains no shortage of future research directions for this system. To present these
methods as viable quantum memory technologies we must continue to increase the
efficiency of this system. By using the tools outlined in this thesis for machine learning
it should be possible to improve the memory performance via optimisation. This can
be extended to the single photon regime, with the possibility of learning efficient gate
operations in memory, such as cross-phase modulation.

The deep learning approach to physical systems has opened up a myriad of opportu-
nities for future research, some of which are being pursued already. On the optimisation
side of things, we wish to continue applying this algorithm to novel physical systems,
in both the quantum and classical domain. It has already demonstrated a propensity to
elicit non-intuitive and physically interesting solutions to problems. We expect that the
application of this algorithm to more systems will yield breakthroughs in research and
help to facilitate quantum technology design and implementation.

In terms of general machine and deep learning techniques applied to physical
systems, there is seemingly no end to the possible research directions. The actor-critic
methods have the potential to be applied to a wide variety of control problems in
the quantum domain, such as unitary gate design and device control. The ability
to traverse high dimensional landscapes efficiently also opens up opportunities for
construction of arbitrary pulse sequences using the methods described in Appendix C.
Another potential avenue is the application of surrogate models to predicting chaotic
and complex systems, to facilitate control and predictive methods.

To summarise, we have shown that even systems as studied and common as a
magneto-optical trap, can still demonstrate surprising physics. Furthermore, that the
application of machine learning to physics problems has the potential to yield novel
and rich dynamics, unburdened by the limits of human intuition.
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A A C TO R - C R I T I C M O D E L F O R A U TO
A L I G N M E N T

An incalculable amount of time and effort is spent on aligning optical systems for
quantum optics experiments and large scales experiments, such as LIGO. In general
this is done by a human operator as the exact situation will determine the way in which
this alignment should be performed. Once a given system is aligned, barring any major
incident, the main source of mis-alignment is natural drift, which can be accounted
for with various control and locking systems. One of the problems with designing a
generalised auto-alignment system is that there is no standardised setup. That is to say
each optical experiment or system will have its own characteristic lengths, lenses, optical
devices and beam characteristics. Additionally aberrations and errors introduced by
these optical elements will be unique to a given setup. This is generally suited to an
experienced human operator, who can generally intuit the methods required to align a
given system, having prior knowledge of how to work with a particular, or series, of
optical elements.

a.1 reinforcement learning platform

The generalised idea of RL is to learn an optimal policy for interacting with a system.
A policy defines how an agent, interacting with the environment, will act when faced
with a particular state of the system. In some ways this is analogous to the stimulus-
response model in psychology [226], as the policy does not perform any evaluation or
retrospection regarding the chosen behaviour. Indeed if a policy is said to be optimal,
no evaluation is required. To determine an optimal policy, we include a reward function,
which defines the criteria for determining the efficacy of a particular action. A reward
function seeks to parametrise the world in some way. For example, if my aim is to keep
a plant alive, watering the plant could return a positive reward. Here I may measure the
’healthiness’ of the plant to determine my reward for the action of watering. Conversely
putting the plant in a microwave oven should probably return a negative reward. The
final key ingredient is the value function which seeks to provide information on the
value of arriving at a particular state, by quantifying how much reward one can expect
from a state in the future. It is not hard to see where calculating the value of a state
would be useful. Many processes can be dealt with by determining a simple set of
rules. For example in the game of chess, one rule might be, do not allow the queen to
be captured. While this is a good rule for most situations, there are certain situations
where it is advantageous to sacrifice the queen in order to achieve checkmate. In this
case, calculating the value of the states would be very powerful, as it allows one to
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determine an immediate win to the game. Determining the value function is often
a non-trivial task. Considering a simple and deterministic game such as tic-tac-toe,
it is clear to see that one can simply calculate all possible move combinations and
have an exact measure of a given state’s value. The same cannot be said for chess,
with estimates placing the total number of possible games in excess of 10120 [228].
Clearly brute force is not the way to go for such problems. In practice value functions
are learned through an agent’s interaction with the environment. The combination of
rewards and value estimation provides the mechanism with which the policy will be
formed, the exact implementation of which depends on the approach.

a.2 general actor-critic

In Sec. 11.5.1 we introduced the concept of the AC network and its associated struc-
ture. To summarise, the AC structure contains two neural networks, an actor and a
critic. These two networks work in tandem to learn the policy and value function
simultaneously by interacting with the environment. The actor represents the policy,
simply taking as an input the current state of the system, and performing an action on
the environment. The critic seeks to approximate the value function, the idea being
that an ANN should be good at representing the high dimensional structures of the
value function. The question is of course how to inform the networks, to improve the
on-policy performance.

a.2.1 Temporal difference learning

As shown in Fig. 11.11, both the actor and critic learn from feedback via the TD error. TD

learning is considered to be a combination of ideas from both Monte Carlo and dynamic
programming approaches [226]. TD aims to learn from experience by providing an
immediate update to the value function, given by

V(st)← V(st) + α
[
Rt+1 + γV(st+1)−V(st)

]
, (A.1)

where V is the value function evaluated on some state s at time t, α is a learning rate
and Rt+1 is the observed reward for the new state. The constant γ scales how much
emphasis should be placed on the expected value of the state following the initial
state. The total calculated value inside the brackets, scaled by α, is known as the TD

error, often denoted by δt. The approach above is a special case of TD learning known
as TD(0), as it provides an immediate update after only one step. TD methods are a
bootstrapping method, as the estimate they provide is in some fashion based on an
estimate. This can offer advantages to Monte Carlo algorithms which in contrast only
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update after the completion of an episode. In the case of long episodes this can be
tedious and costly. Currently it is an open question as to which method converges first.

a.2.2 Network losses

The AC networks are updated according to a set of losses, that adjust the response of the
networks based on observed system response. Using the TD error, both the actor and
critic networks are updated simultaneously. For each system interaction, we calculate
the TD error, δt, as stated in Eq. A.1. The actor loss is based on the policy gradient loss
and is defined by

Lactor = − ln(π(At|st, θ)) · δt, (A.2)

where At, st are the action and system state at time t, θ represents the networks weights
and π is the policy. The appearance of the logarithm is due to the definition of the
policy gradient [229]. Effectively, this loss function allows the actor to learn the correct
policy via the TD error, by scaling the probability of performing that action.

The critic loss function simply needs to provide some mechanism for feedback,
relating to the correct value of the state. The critic estimates a value for the state, based
on the estimated value of the next state, with a discount factor, and the observed
reward. The value function is supposed to reflect the value that an agent can expect to
receive, when starting from a given state. Thus, the loss function of the critic is simply
the mean squared error between the observed value and the previous value. This can
be stated formally as

Lcritic = MSE(Rt+1 + γV(st+1), V(st)). (A.3)

Using Eqs. A.2 and A.3, we can train the algorithm using our gradient descent
algorithms, as per usual. In this case we use the Adam algorithm, which will adaptively
change the learning as training progresses.

a.2.3 Network design

We design the network by testing on a basic problem. The test function consists of a
continuous action space, with a goal position somewhere in the space. The reward is
set to monotonically decrease with distance from this goal. When the agent has reached
a position within 5% of the goal (±0.1), the problem is termed complete. An additional
reward is assigned for how close the agent is to the target position. For the purposes of
testing we use the reward function
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r(x) = −|x− 2|+ 5 (A.4)

Rt+1 = 10 · [r(xt+1)− r(xt)] + δdone · (10000 + e−(xt+1−2)2·100) · e−Nstep/100, (A.5)

where r(x) is a reward function with the maximum at x = 2, Nsteps is the number of
steps taken by the agent thus far and δdone is a delta function = 1 when the problem
is considered complete, and 0 otherwise. Eq. A.5 defines the reward for a given time
step, arriving at the state xt+1. The first term defines a differential reward, based on the
movement of the agent with respect to the goal. The second term corresponds to an
additional reward for solving the problem. Solving the problem yields an immediate
spike in the reward of 10000, with a further reward given based on how close the agent
was to the goal. In this problem the goal is located at x = 2. The additional reward
is reduced by an exponential factor of how many steps it took to get there. This is
necessary to ensure the agent reaches the goal in the shortest number of steps possible,
by penalising behaviour that is not exclusively leading to the goal. The problem is
solved on the interval [−3, 3] with the action space restricted to lie within this same
interval.

Clearly this problem is trivial and could be solved easily by a gradient ascent
algorithm, however its value is in the ability to test the effect of different network
structures and hyperparameters. To solve this problem, we construct an actor-critic
agent with the parametrisation

xt → A(x)→ at ∼ N (µ, σ) (A.6)

xt → V(x)→ vx. (A.7)

Here the actor network maps a given state to an action, which is normally distributed.
This is achieved by having the actor network map to a µ and σ for a given state. This
distribution is sampled to determine the action that should be taken. The value network
simply maps a given state to its approximate value.

Even with such a simple problem, the performance of the agent can be quite sensitive
to the hyperparameters. Potentially the most important component of the agent is
the critic (value) network. This is because estimates produced by the critic directly
inform the actor as to how to interact with the system, as well as providing an estimate
as to the long term value of a state. As such, a poor estimate of the value function
will ultimately lead to poor agent performance, and in some cases divergence. We
observe that for certain choices of network structure, the critic training can become
inherently unstable. An example of this is shown in Fig. A.1, which contains the episode
history for two separate agents. The agents have identical network structures for the
critic, 2 hidden layers with 400 neurons per layer. The only difference between the
two layers is the activation functions used. As shown in Fig. A.1, the network with
RELU activations fails to converge on an optimal solution. 400 neurons per layer is a
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Figure A.1: AC agent episode history when attempting to learn the problem. The only difference
between the two agents is the activation function used in the value network, RELU
in (a) and GELU in (b).

far more complex network than is needed to solve this problem, but it is chosen to
exacerbate an underlying problem. It is known that vanishing and exploding gradients
are a problem in training neural networks [230, 231]. This can occur if careful thought
is not given to the network structure and learning rates of the AC networks. In this
case, GELU manages to converge on a solution as it is slightly more robust to these
problems. However it can be demonstrated for high learning rates that this problem
once again occurs.

By benchmarking on this problem, we find that one can optimise the hyperparameters
to provide a fast and robust search of the solution space. In the present case, we find
that a modest critic network provides robust performance, consisting of 2 hidden layers
with, 5 GELU activated neurons per layer. For the actor network, 2 hidden layers with,
40 GELU activated neurons per layer is used. The actor network could be reduced in
size also, however we find that it has less effect on the algorithms performance. At
each episode the networks are trained using the TD(0) error, with which 3 training
steps are taken. To demonstrate the general efficacy of these parameter choices, we
also demonstrate this agent applied to the same problem as before, where Eq. A.4 is
replaced with a modified 1D Ackely function, given by

r(x) = 20− Ackley(x− 2). (A.8)

This produces a maximum reward at x = 2 with the structure shown in Fig. A.2b. As
is demonstrated in Fig. A.2a, the AC agent can also solve this problem. The structure
of the problem can be increased by multiplying the input to the Ackley function by
some constant. This has the effect of adding more local minima and a steeper gradient
around the maximum. Doing so, such that the entire Ackley domain is scaled into
our reduced interval [−3, 3], we find that the AC agent can still solve this problem,
unencumbered by the increased structure.
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Figure A.2: AC agent applied to the 1D Ackley function. (a) shows the episodic performance of
the agent applied to this problem. (b) shows the structure inherent in the Ackley
function that determines the reward structure. Clearly it is no longer monotonic.

a.3 physical problem

Now that we have defined our AC agent, we are required to define the problem we
wish to solve. As previously mentioned, we wish to create an automatic alignment
system for optical experiments. The general experimental layout is shown in Fig. A.3.
Six actuators control the alignment of the beam into a ring cavity. Four actuators
are dedicated to 2 steering mirrors, which allow the agent to beam-walk. The final 2
actuators control the position of 2 lenses, which alter the beam waist and position. The
present modes are monitored by scanning the cavity frequency with the back mirror
mounted on a piezo. The cavity scan signal is monitored on the PD. A CCD is also
used for mode selection, such that the correct mode on the PD scan can be determined
via the mode’s spatial profile. The system produces a number of challenges. Due to
the mode structures, the optimisation is necessarily non-convex, unless a tight region
around the optimum alignment is selected. Additionally, drift due to temperature and
other external factors is present, modifying the alignment efficacy. Finally, the actuators
also exhibit hysteresis, which can be corrected somewhat with proper control, however,
it is still a significant challenge to the optimisation.

The reward function is determined by measuring the intensity of a particular peak.
The reward can be formulated in many ways, for example it can simply be the intensity
of the peak, the change in intensity or some measure of mode purity from the CCD.
For the majority of testing, we use the intensity of the peak as the reward.

a.4 algorithmic approaches

The AC agent constitutes the main algorithm of interest in this experiment. The AC

model has a few distinct advantages that make it an advantageous approach. Firstly,
drift is less of an issue, as the AC agent simply learns to control the system within this
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Figure A.3: Optical setup for the auto alignment experiment into a cavity. 6 actuators are used
to walk the beam, to maximise a particular mode. The cavity is scanned using a
piezo to determine the present modes.

drift. This can also be countered somewhat, by assigning rewards based on the relative
change in intensity. Secondly, while training may take longer than a standard deep
learning network, once the network is trained it can also act as a control algorithm,
correcting for drift and fluctuation after alignment is complete.

We wish to benchmark the AC agent against a number of algorithms. Acuminata is
an obvious choice, given its ability to operate in high dimensional spaces. However as
noted in previous chapters, this is an approximate global method, not an accurate local
method. To improve the performance of the deep learning approach it will be necessary
to determine a point at which the optimisation has become convex. At this point we
can kick off a local optimiser, such as LBFGS, to refine the alignment. Given the drift
and hysteresis present in the system, stochastic gradient descent may be a better choice.
Additionally, as the parameter space is low, we can also test the FF algorithm, as we
expect this to yield good results in the low parameter number regime.

a.4.1 Data acquisition and reward

The cavity frequency is scanned using a piezo at a frequency of 10Hz. The cavity
spectrum is acquired and the peak of interest identified. During initial testing we are
interested in the relative height of a given peak (usually the TEM00 mode). Thus we
identify this peak and measure the intensity from the PD. From this intensity we can
formulate a cost function or reward, depending on the algorithm. For Acuminata, we
can simply define the cost as the negative of the intensity, thus a higher intensity is a
lower cost.

Defining a reward function for the AC network is a little more complicated. Here our
reward function must try to assign a reward to actions that are considered desirable.
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Assigning the intensity as the reward is a simple approach, however, we also require
that our algorithm reaches some final state that is considered aligned. In this case
we have to assign a ’done’ condition, which has a large reward associated with the
completion of the goal. As we wish the intensity to continually increase, we expect that
this goal should also tend to increase over time. One way to implement this is to assign
rewards that are proportional to the relative improvement of the peak (see Sec. A.5.2).

a.5 preliminary results

Initially we start by testing the ability of the algorithms to align the cavity setup using
only the steering mirrors. The lenses should have far less of an effect on the beam
position. However, the mirrors will have the ability to remove all signal from the cost
function, corresponding to no light going through the cavity. Although there are only 4
optimisation parameters, there will be large sections of parameter space which yield
no signal.

a.5.1 Acuminata

We start by testing Acuminata, the results of which are shown in Fig. A.4. We provide
experimental bounds on the actuators of ±5000 steps from a reference point at 0.
These bounds allow the algorithm to align the beam such that it may exceed the
cavity aperture. For this optimisation, the beam starts with a beam waist which is
not matched to the cavity, but is sufficient for some light to be transmitted. The cost
function we wish to minimise corresponds to the intensity of the TEM00 peak. This
peak is initially determined using a reference trace coupled with a CCD measurement.
Acuminata performs 50 initial samples to determine the initial relationship between the
parameters. As can be seen from Fig. A.4a, during the initial sampling only one value
is observed that corresponds to any meaningful transmission. By 100 runs Acuminata
has determined that the optimum value lies outside of this position and begins moving
the actuators away from this position. By run 250 the minimum, within measurement
error, has been reached. Fig. A.4b shows the progression of the actuator position over
the course of the optimisation.

a.5.2 Actor-Critic

Using the network structure outlined in Sec. A.2.3, we apply the AC model to the
alignment problem. Fig. A.5 shows the results of the preliminary optimisation. As
shown by the increasing frequency of high rewards, the AC model is learning how to
align the system from random starting positions. It can be seen from Fig. A.5b that
there still remains a large amount of variation on the actuator position, even for high
rewards. This is due to the nature of the stopping condition we have implemented,
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Figure A.4: Preliminary alignment using Acuminata. (a) shows the observed costs during the
optimisation which lasted for 751 runs. (b) shows the position of the actuators as
determined by Acuminata. The four actuators being controlled correspond to two
separate steering mirrors with x and y control.

which forces the model to reach an ever increasing threshold before arriving at a
terminal state. The state is characterised by the value of a designated peak on the PD

signal. Thus the terminal state is simply a threshold value based on the measured
intensity of this peak. The reward function is constructed such that the model receives
an exponentially increasing reward the closer it is to this threshold. Upon exceeding
this, a significantly larger additional reward is received, proportional to intensity of the
peak. Upon exceeding the threshold 3 times, the terminal state intensity is increased.

The AC model requires a larger amount of tuning compared to other algorithms, such
as Acuminata. This is due to the nature of the RL approach which uses a bootstrapping
method for approximating the value function. The noise and hysteresis in the system
necessarily perturbs the accuracy of this approximation. The model must therefore be
tuned correctly to limit the effect of noise at the expense of slower training.

It should be noted the AC network should not be directly compared to the per-
formance of Acuminata in this circumstance. While Acuminata aims at immediately
optimising the system, the AC network is attempting to optimise and learn a generalised
control scheme. The history of the reward function will necessarily appear to be more
variable due to the fact that the AC network starts in a random position and works its
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way to the best position. The advantage of this approach over Acuminata is that the AC

network should be able to handle drift and hysteresis if parametrised properly. The AC

model learns a generalised control method and could potentially be used as a coarse
alignment tool in a daily routine.
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Figure A.5: Preliminary alignment using the Actor-Critic model. (a) shows the cumulative
reward and final state for each episode. (b) shows the cumulative reward and final
state for episodes which achieved a cumulative reward greater than 400.

a.6 continuing work

Further work on this problem can be roughly divided into three sections: benchmarking,
AC tuning and extensions. It is important to determine the best approach to solving this
problem by benchmarking different algorithmic approaches such as fruit fly, Monte-
Carlo and gradient descent. We expect that due to the inherent noise and non-convex
nature of the problem Acuminata will outperform these methods, however, it is still
important to characterise each method. Furthermore, Acuminata can be extended
to include a local optimiser, such as LBFGS, that can be enabled when convergence
is reached. This will ensure the identified minimum is optimised locally, possibly
providing a better alignment than human operators.

Tuning is still required to get the AC network running efficiently. While we have
demonstrated some success in learning to align the system we still have yet to demon-
strate a stable approach to reaching this outcome. Improvements can also be made to
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the reward function to increase this stability. Finally, the indication of the system state
can be improved to better represent the experimental setup. Currently the actuator
position is used as the system state. Drift and hysteresis mean that these parameters
don’t accurately represent the system over time. A better method may be to feed a
down-sampled cavity trace to the AC model as a representation of the state. This would
provide complete and accurate information as to the misalignment of the cavity. We
have also yet to test the ability of the AC model to align the system after intentional
misalignment once it has learnt to control the system.

There are further extensions which have the potential to yield interesting and useful
results. In the preliminary results we have only used the 4 actuators attached to the
steering mirrors. This can be extended to the full 6 actuators which will allow algorithms
to adjust the beam size and divergence as well. Further coupling improvements could
be gained by including an SLM to correct for aberrations. The introduction of a CCD
camera to characterise the state could be used to allow the algorithm to align to specific
higher order modes. In this case the reward/cost function could be altered to determine
the purity of the transmitted mode.



B F R U I T F LY O P T I M I S AT I O N

The fruit fly (FF) algorithm was originally introduced by [180], as a global search
metaheuristic for solving optimisation problems. FF is inspired by the search patterns
of fruit flies, when searching for a source of food. The procedure used in the current
work, in pseudo code, is given in Alg. 2.

Algorithm 2 Fruit fly metaheuristic

tol ← 1 · 10−5 {step tolerance}
max_iter ← {maximum iterations to solve}
x0 ← [0 . . . 0]
f0 ← ∞
bounds← {list of (xmin, xmax)}
iter ← 0 {current iterations}
pop← [ ] {list of FF agents objects}
while iter < max_iter do

if iter 6= 0 then
best_ f , best_x = max(pop. f ), pop.x[argmax(pop. f )]
x0 ← best_x
f0 ← best_ f

end if
for xarr in pop.x do

index ← randint(0, x0.size)
xnext ← x0
xmin, xmax = bounds[index]
radius← (xmin − xmax)/2
progress← iter/max_iter
step← radius · exp(ln(tol) · progress) · U (−1, 1)
xnext[index]← xnext[index] + step
xarr ← xnext

end for
iter ← iter + 1

end while

This algorithm is used in various parts of this thesis to solve optimisation tasks,
where speed of evaluation is crucial. The population, denoted as pop, contains a list of
agents that evaluate an objective function during their search. If the task can be run in
parallel, then each agent can also evaluate the function in parallel. A problem given
to the population is required to have two things, an objective function and a list of
bounds for each parameter. Using these two components the FF procedure facilitates a
random walk around the space, similar to that of a Monte Carlo method. However as
the problem progresses the step size becomes smaller, according to the tolerance and
maximum iterations.

167



168 fruit fly optimisation

b.1 raman memory simulation

Using this method, the parameters of the Raman memory simulation performed in
XMDS [232], which was detailed in Ch. 7, can be optimised. The problem is defined
by four controllable parameters, the write pulse timing, read/write pulse width,
write pulse power and read pulse power. To evaluate the objective function, each of
these parameters is written into the XML file used by XMDS to compile the C code
simulation. The python script executes the XMDS simulation which outputs the results
of the simulation to a HDF5 file. This file is opened by the python script, which uses
the output to calculate the cost. Here the cost is simply defined as the ratio between
the integral of the output and input pulses, providing a measure of the efficiency.
The actual cost used by FF is c(ε) = 1− ε, where ε is the efficiency. The code for this
simulation can be found at [233].



C L E A R N I N G T R A N S F E R F U N C T I O N S

Atom interferometry has attracted much interest for its applicability to precision
sensing of inertial forces, such as acceleration and rotations. For a complete description
of the theory and experimental complexities involved with atom interferometry, I direct
the interested reader to [234]. Briefly, atoms are loaded into a MOT under UHV and
cooled to temperatures on the order of µK. At these low temperatures, the cooled
ensemble will begin to exhibit wavelike properties. These cooled atoms are then either
dropped or launched vertically, where they undergo a splitting and recombination,
interferometry sequence. The different phase, acquired from the unique interferometer
paths taken by the matter-waves, can be used to precisely characterise local acceleration
due to gravity. However, it is also possible to use these techniques for sensing other
inertial forces [235, 236].

One of the problems that needs to be addressed experimentally is vibration isolation.
Due to the nature of the interferometry involved, vibrations on optical elements,
especially that of the retro-reflecting Raman beam mirror, introduce additional phase
noise. Generally there are two approaches to dealing with this problem: active isolation
systems and post-correction. Active isolation can be implemented using a passive
vibration isolation stage, with active feedback from a low noise seismometer to voice-
coil actuators [237, 238]. Post correction uses the error signal from the seismometer
to record vibrations common to the mirror. These can then be filtered out in post.
This additional method is useful for removing vibrations that are outside of the gain
bandwidth of the active isolation feedback. As shown in [234], this can substantially
improve the sensitivity of the gravity measurement.

We are interested in decreasing the noise of the interferometer measurements, by
using post corrected values from the seismometer data. A simple correction that can be
applied is

gVib =
1

T2

∫ 2T

0
f (t) · S(t) dt, (C.1)

where S(t) are the seismometer measurements for an experiment time 2T. f (t) is the
sensitivity function of the interferometer and is given by

f (t) =

t if t ≤ T

2T − t if t > T.
(C.2)
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The implicit assumption is that the accelerations returned by the seismometer, is indeed
the actual acceleration. However, in practice, the seismometer will have a response that
is really a convolution between the true acceleration and the transfer function of the
measurement apparatus. This includes the seismometers, filters and electronics. Thus
instead we have

S(t) = h(t) ∗ a(t), (C.3)

where h(t) is the transfer function of the experimental apparatus, convolved with the
true acceleration, a(t). This convolution operation will affect the accuracy of the post
correction as it necessarily filters the acceleration signal. While it is advantageous to
correct for this, obtaining the transfer function directly can be difficult, or in certain
circumstances, unattainable. To circumvent this issue we employ a novel machine
learning strategy.

c.1 machine learning approach

We require some method to learn the transfer function, or more generally, the form
of an arbitrary function. Unlike regression, we do not have a candidate model to
start from, as we assume the transfer function of intermediary devices in the signal
processing and analogue-to-digital conversion are unknown. There exist methods for
developing functional relationships within data, such as symbolic regression [239, 240].
While in practice symbolic regression can be powerful, solution detection can be slow
and difficult to converge. As we do not require a free form expression to describe
our transfer function, we present an approach that instead allows us to leverage the
computational speed of global optimisation approaches, such as FF.

Our approach is to represent the transfer function in frequency space, by gener-
ating filters from orthogonal basis functions. Once we have obtained the transfer
function, we can perform a deconvolution operation (simple division) to obtain the
true accelerometer values.

c.1.1 Function parametrisation

There are a number of possible ways to parametrise the space that we wish to construct.
Unlike the previous approach in Ch. 10, piecewise control of the individual frequencies
is not the best approach. Firstly, this problem quickly become intractable with spectral
resolution. Additionally, it is unlikely that, physically, the frequency response would
have such sharp features. Quickly changing features can also introduce artefacts into the
fast Fourier transforms, altering the true value. While there are a number of orthogonal
basis that we may construct our function from, we opt for the Legendre polynomials.
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Figure C.1: First five Legendre polynomials. The polynomials form an orthogonal basis from
which arbitrary functions can be constructed.

The first five polynomials are shown in Fig. C.1. These polynomials allow for the
construction of smooth transfer functions, in a domain that is closer to that of the likely
transfer function. Other bases, such as the Fourier series, can also be used. However,
as the function is not expected to be periodic, this basis requires many more basis
functions, to accurately represent the transfer function.

The full parametrisation consist of N parameters, such that N is even. We require
this, as we will construct both the real and imaginary parts of the transfer function in
the following fashion

Re
[
H(ω)

]
=

N/2

∑
i=0

ci · Pi(ω) (C.4)

Im
[
H(ω)

]
=

N/2

∑
i=0

ci+N/2 · Pi(ω), (C.5)

where Pi is the ith Legendre polynomial, ci is the ith scaling coefficient and H(ω) is the
transfer function. Here the Legendre polynomials are scaled so that they span the range
of ω. The aim is to learn the coefficients, ci, such that we have an approximate form for
H. These coefficients become the parameters we will perform the global optimisation
on. Fortunately, this task can also be performed in parallel and does not rely on serial
operation, greatly increasing the speed of the computation. Since this function can be
evaluated quickly, we will use FF algorithm to solve this optimisation task.

c.2 method testing

To verify that we can infer a transfer function applied to a set of data, we begin by
testing the method on some synthetic test cases. We start by generating some multi-
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Figure C.2: Original generated spectrum centered around 50Hz, filtered with a narrow band
filter. This test set is used to test recovery of the original spectrum via the proposed
method.

modal test data, centred on 50Hz with a 1/e2 bandwidth of 12.7Hz. Additionally we
add some noise with a bandwidth of 40Hz. As shown in Fig. C.2, we perturb this
distribution by applying a convolution with some narrow band filter. We will attempt
to recover the original spectrum, by minimising the MSE between the recovered and
original signal. In reality we would not have access to this signal, however, we can
formulate the cost function in other ways, as outlined in the proceeding section.

After performing the optimisation, we can see from Fig. C.3 that we have recovered
the spectrum, after applying a deconvolution operation with our learned transfer
function. We find that the relative deviation is highest at the edge of the spectrum. This
is to be expected as these errors contribute the least to the overall signal, and hence to
the MSE loss. This could be altered by defining a better loss metric.

c.2.1 Cost function

In the real problem, we do not have perfect information regarding the true signal.
Instead we must construct a cost function relevant to the experimental set-up, and
desired outcome. If we were simply to minimise the residuals, then we could uninten-
tionally remove the slow drift in local gravity that we are trying to measure. The aim is
to decrease environmental vibrations without removing the real gravity variation. A
way around this problem is to minimise the two sample variance between the residuals
of two adjacent runs. Doing so is equivalent to calculating the first point of the Allan
variance curve [241]. This forces the optimisation to learn a transfer function that
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Figure C.3: Results of a test optimisation aimed at recovering the original signal. (a) shows the
overlap between the original and recovered spectrum. (b) shows the same overlap
but on a logarithmic scale. The edges of the spectrum show most relative divergence.
(c) shows a comparison between the time series for the original, recovered and
filtered signals. (d) shows the progression of the optimisation loss as a function of
function evaluations.
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returns the right variance in the short term, without removing the characteristic longer
term drift in g. For the optimisation we use the cost function

C(X) =

√√√√ 1
N − 1

N−1

∑
i=1

([
gAI,t − gVib,t

]
−
[
gAI,t+1 − gVib,t+1

])2, (C.6)

where gAI,t and gVib,t are the atom interferometer residuals and vibrational correction at
time t respectively. The construction of the cost function also constrains the solutions to
be physical, as non-physical phenomena such as violating causality would be selected
against by the comparison of the signals.

c.2.2 Avoiding overfitting

As we are seeking to fit an arbitrary function, to minimize some average property over
our samples, there is the possibility for the algorithm to overfit. This can be combated
by monitoring a validation loss. Approximately 12.5% of the data is reserved as a
validation set, which will not take part in calculation of the cost function during the
optimisation run. This validation loss can be monitored to determine whether the
learned transfer function generalises to, as of yet, unseen data.

c.3 continuing work

We are currently in the process of applying this method to some gravity measurements,
using a data set acquired from Humboldt University [234]. The aim is to provide a
series of sensitivity benchmarks, with respect to various approaches, i.e. no correction,
active isolation, and post correction.
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