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Wheat farming provides 28.5% of global cereal production.
After steady growth in average crop yield from 1950 to 1990,
wheat yields have generally stagnated, which prompts the
question of whether further improvements are possible.
Statistical studies of agronomic parameters such as crop yield
have so far exclusively focused on estimating parameters
describing the whole of the data, rather than the highest
yields specifically. These indicators include the mean or
median yield of a crop, or finding the combinations of
agronomic traits that are correlated with increasing average
yields. In this paper, we take an alternative approach and
consider high yields only. We carry out an extreme value
analysis of winter wheat yield data collected in England and
Wales between 2006 and 2015. This analysis suggests that,
under current climate and growing conditions, there is
indeed a finite upper bound for winter wheat yield, whose
value we estimate to be 17.60 tonnes per hectare. We then
refine the analysis for strata defined by either location or
level of use of agricultural inputs. We find that there is no
statistical evidence for variation of maximal yield depending
on location, and neither is there statistical evidence that
maximum yield levels are improved by high levels of crop
protection and fertilizer use.
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1. Introduction

Wheat is one of the most important food crops in the world. Current global annual production levels of wheat
stand at 756.8 million tonnes [1], two-thirds of which is used for human consumption in food staples such as
bread. As a result of sustained improvements to crop varieties and agricultural technology, there was a
progressive and very large increase in wheat yields over the second half of the last century [2]. Despite
this, there are concerns for the future growth of crop yield, the main one arguably being climate change.
Recent literature has focused on forecasting the behaviour of crops in a changing climate [3-6], and found
that a global temperature increase may lead to a yield reduction in cereal crops in certain regions. At the
same time, current projections point to major increases in demand for food and livestock feed, as well as
rising demand for biofuels due to a progressive shift of major economic powers to generating energy via
renewable sources [7]. Understanding the drivers of crop yield, and specifically quantifying the upper
bound of yield, is of crucial importance to successfully address the challenge of global food security.

We tackle this question with the example of agricultural production in the UK, where wheat is the most
widely grown arable crop [8], and the most planted variety of wheat is winter wheat (or Triticum aestivum).
UK wheat yields have risen from a little over 2 tonnes per hectare in the early twentieth century [9] to
current averages of approximately 8 tonnes per hectare [8]. It is, however, apparent that average UK wheat
yields have stagnated over the last 20 years [10], even though the understanding of climate mechanisms and
biotechnology has made huge progress over this period. The phenomenon of stagnant average wheat yield
is not limited to the UK; it has, for instance, been noted in continental Europe as well [11]. Based on this
observation, one may wonder whether wheat yields have reached a maximal or near-maximal level; in any
case, substantial variation in observed wheat yield levels exists, and in the context of food security we seek
to estimate the maximum achievable yield of winter wheat under current technologies and growing conditions.

We address this question using extreme value analysis, which is a statistical framework used to model
the atypically high events which only occur with a very small probability. Extreme value theory has
found applications in numerous fields, the most prominent examples being environmental science
[12-14] and insurance and finance [15-17]. Other applications include engineering [18,19] and
toxicology [20]. More recently, extreme value analysis has been used in epidemiology to estimate the
probability of severe pneumonia and influenza epidemics [21], and in the field of demography with a
discussion of whether there is a finite upper bound on human lifespan [22]. Applications of extreme
value analysis in the agricultural sciences have so far concentrated on financial aspects, for instance
commodity price fluctuations [23,24], rather than agronomic factors such as yield. The focus of the
applied statistical literature on understanding agricultural yield variability has typically been to
estimate average yield levels and understand the relationships that drive them using central, rather
than extreme, statistical methodology such as principal component and path coefficient analyses [25-28].

In our context, the extreme value analysis of yields stands for modelling the highest yields. We carry out
this analysis using data on winter wheat yields collected in England and Wales by the Farm Business Survey
(FBS) between 2006 and 2015. Let us highlight here that our objective is not to estimate the notion of yield
potential, which is equal to the yield of a crop under ideal conditions (no pest, disease, nutrient or water
stresses), or the related notion of water-limited yield potential [29,30]. The estimation of these quantities
typically requires the use of sophisticated computer models to simulate crop growth in specified
conditions [31,32]; our goal is rather to estimate the distribution of the highest yields attained in a real-
world setting and under observed farming practices in order to estimate a practical upper bound on
yield given current technology and conditions.

Our analysis of the highest wheat yields can also be refined to take growing conditions into account. In the
literature, forecasts for winter wheat yields have been calculated for geographical regions, such as the
Nomenclature of Territorial Units for Statistics level 1 (NUTSI1) regions in Germany and France [33] or
administrative regions in the UK defined by the Met Office [34]. This makes it possible to assess the
variation in yield levels depending on climate and practices. The effect of the use of agricultural inputs,
mainly fertilizers and crop protection, on average yield levels is also of interest; it is important, in this
respect, to assess the trade-off between an improvement in yield and potential damage to the environment
that may result from excessive use of those inputs. It has thus been found in the literature that the use of
crop protection and fertilizer does indeed generally improve yield, but that a moderate level of these
inputs typically brings the same improvement as higher levels without incurring the same risks to the
environment and human health [35-37]. Using further information contained in the FBS database, we
carry out extreme value analyses of winter wheat yield depending on location and level of crop protection
and fertilizer use. We then compare the conclusions of each of these analyses, and contrast them with the
interpretation of the extreme value analysis of the full, non-stratified sample of yields.
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Figure 1. Annual yield boxplots using the FBS data collected over the whole of England and Wales. The average sample size for
each year is 695.

The structure of the paper is as follows. We first describe the data from the FBS as well as our models
and estimators for high yields in this dataset. We then give an account of the implementation of those
techniques, first on the full dataset, then on the data stratified by location, and finally on the data
stratified by spending on agricultural inputs, with an emphasis on estimated maximum yield levels. A
Discussion section concludes with additional comments and ideas for further work.

2. Data and methods

2.1. Data: Farm Business Survey

The FBS collects information about farm businesses in England and Wales, to give a yearly overall perspective of
the agricultural and economic performance of farms. Each year, approximately 2300 farms take part in the survey.
On average, 695 were involved with the production of winter wheat from 2006 to 2015, each having 76 observed
variables, among which were yield, region and fertilizer and crop protection costs, to which we restrict our
attention. To take inflation into account, the financial data are adjusted to their 2010 equivalent [38]. Summary
boxplots of the data are provided in figure 1. In terms of productivity, 2012 was a year of low wheat yields as
a result of poor weather conditions, according to the UK Department for Environmental, Food and Rural
Affairs (DEFRA) [39]. In 2015, DEFRA reported that wheat yields had reached their highest level since 1990
[40]; that year, the crops benefited from optimal growing conditions during the spring and summer months.
To remove any duplication of high-yielding farms, we decided that for each farm which took part in
the survey at least once, we would retain its maximum yield over all the years in which they have
contributed to the FBS. Constructing the yearly recordings in this manner results in a sample of n =
1536 unique farms. Theoretical and practical justification for this way of constructing the data can be
found in the electronic supplementary material, Sections A and B. Furthermore, the farms incur a
number of costs, among which are spending on agricultural inputs such as crop protection and
fertilizers; these are used to evaluate the impact of the use of agricultural inputs on high yield levels.
To ensure anonymity and guarantee reasonably large sample sizes, the farms’ locations are studied
using the macro-regions east England, north England, and west England and Wales. These regions are
constructed by grouping together the NUTS1 administrative regions in the UK (figure 2) as follows:

— East England: East Midlands, East of England, London and South East England;
— North England: North East England, North West England and Yorkshire & Humberside;
— West England and Wales: West Midlands, South West England and Wales.

2.2. Method: extreme value analysis

Extreme value analysis provides a powerful statistical framework for the analysis of the highest values of
a variable summarizing a physical or natural phenomenon [41,42], in our case yields. Denoting the yield
of a farm by X, and given a high value ¢ of yield, extreme value theory proposes that a yield X larger than
t approximately follows a generalized Pareto distribution. In other words, for high ¢,

Yy -1/y
PX—-t<y|X>H~H,xpwy =1- (1 +%) , 2.1)
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Figure 2. Administrative subdivision of the UK in NUTS1 regions (source: Met Office).

for all y >0 such that 1 + yy/o(t) > 0. In this equation, y is a shape parameter which controls the behaviour
of the extremes of X, while o(t) is a positive scale parameter. For y = 0, H, ;(y) becomes H)(y) =1 — exp
(—y/o(t). A typical choice of the threshold ¢ is a high data point in the full sample, so that the final
sample is made of the k highest yields, where this effective sample size k is small relative to the total
size n of the sample of data.

A popular method of parameter estimation for the shape and scale parameters in equation (2.1) based
on collected data is maximum likelihood (ML), for which a full theoretical analysis is available [43]. In
particular, when y>—1/2 and under a classical second-order condition making it possible to quantify
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the gap between the actual underlying right tail and the tail of the associated generalized Pareto [ 5 |
distribution, the ML estimator (¥, 6x) of (y, o), based on the k highest yields within the sample of
yield data, will be asymptotically normal:

A 1 iy A+ —(1+7)>
(yk, Uk)~N2<(y,l), kV>, Wlthv_(—(l+y) 1401y ) (2.2)

This allows approximate confidence intervals based on asymptotic normality for (y, o) to be constructed.

In order to apply equation (2.2), a choice must be made for the parameter k. For small k, according to
equation (2.2), the variance of ¥; will be very high, so that the curve k — %, will be very erratic; for large k,
the estimation method will tend to use non-extreme yields and therefore introduce substantial bias in the
results. Hence the desirability of choosing a value k which is neither too small nor too large. In practice,
such values of k often appear in the form of a stability region where k is high enough that the estimates
¥; have stabilized, but low enough that the extremes remain a recognizable feature of the data. Such
techniques have been studied extensively in the probabilistic and statistical literature [44—48].

*sosi/Jeunof/6106uiysgnd/aposjedos

=

The type of extremes the data exhibits can then be determined based on the estimate of y. In %)
particular, y <0 implies that there exists a finite maximal value x* of the yield X: indeed, the condition ;
1+yy/o(t)>0 in equation (2.1) entails in this case y <—o(t)/y. For such distributions, an estimate of ! }E
the upper bound x* (also called right endpoint) is ©
6 PN

=t—2, @3

Yk i

i

where ;. denotes the (k + 1)th highest value in the sample. The uncertainty for this endpoint estimator can
also be quantified, in the sense that, given that y <0 we have [42, §4.5.1 p. 147]

ok * 1 o
i~ +7I?><%><N(O,1+4y+5y2+2y3+274), .4)
k

Just as in equation (2.2), this approximation makes it possible to construct confidence intervals for the
true maximum yield.

It is noteworthy that when the approximate confidence interval based on asymptotic normality for
the shape parameter, produced via equation (2.2), contains 0, the confidence interval produced by this
approximation may underestimate uncertainty at the upper end of the confidence interval, by not
accounting for the theoretical possibility of a heavy tail which would imply an unbounded maximum
yield. That being said, wheat production in the UK’s temperate climate is characterized by high
input-high output biological relationships, with farmers applying high input levels of nitrogen as they
aim to produce for high yield [49] rather than economically optimal yields. It is also known that
biological cropping systems, such as winter wheat farms, typically exhibit diminishing productivity
functions with respect to input-output relationships [50,51], and even more strongly, that an over-
application of inputs can lead to marginal yield reductions. In the context of the agricultural input-
intensive UK commercial production of wheat, this means that the high levels of wheat yields that we
observe in our data are quite likely to be of the order of magnitude of maximum wheat yield; in any
event, it is very unlikely that an arbitrarily large yield is physically and biologically possible (a related
point is made in [52]).

At the same time, the Gaussian confidence interval may overestimate uncertainty at the lower end of
the confidence interval, since this lower bound is not constrained to be larger than the maximum value in
the sample (a clear lower bound for the true value of the endpoint). This is especially important when the
estimate ¥, is close to zero, because then the presence of the factor 1/ in equation (2.4) typically makes
this lower bound unreasonably conservative. For this reason, we propose to use the interval

.« 196 ¢ N N N N
{max(to,xk—\/EX?QX\/1+4yk+Sy,%+2yi+2yﬁ>,
k

5(*+1.96X6'k><
TVE TR

as an approximate 95% confidence interval for the maximum yield x*, where t;, denotes the maximum
value in the sample. Note that truncating the interval at level f, does not affect its coverage
probability in practice because, by definition, the true value x* of the right endpoint must be larger
than t, with probability 1. An alternative technique that better accounts for the uncertainty at the
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Figure 3. (a) Plot of the ML estimate of the shape parameter ¥, (b) plot of the estimate of the endpoint x*. Both plots give the
estimates as a function of the effective sample size k taken for the estimation, with corresponding approximate 95% Gaussian
confidence intervals. Estimates for sample sizes smaller than 15 and greater than 400 are omitted due to large variance and
large bias, respectively.

lower end of the confidence interval is given by the profile likelihood method for a once-in-m years return
level (e.g. [53]), letting m — oo. This method, however, will by construction produce a confidence interval
unbounded to the right when the related confidence interval for the shape parameter contains 0, since it
cannot exclude the possibility of a heavy tail and thus of an infinite right endpoint. In view of our above
arguments on the impossibility of an arbitrarily large yield, we do not think that using such intervals is
advisable in our context and would therefore recommend to adopt the above calculation based on the
Gaussian approximation; we have nonetheless included some profile likelihood calculations of
extreme return levels for yield in the electronic supplementary material, Section C to give an idea of
how this method behaves on the present dataset.

Estimating the maximum yield under current farming conditions and providing such confidence
intervals for these estimates is precisely the objective of our data analysis in the next section, carried
out on the FBS data.

3. Results

To estimate the maximum value of yield, we first have to choose the threshold for our extreme value
modelling of yield, or equivalently the number k of high data points employed. We do so by
representing the curve of ML estimates of the shape parameter y as a function of k in figure 3. These
estimates are calculated using the shape function of the R package evir [54]. The R codes used to
produce the analyses of the data are provided in the electronic supplementary material. Figure 3
suggests that the ML estimate 7, is very stable for k between 100 and 250, implying that the largest
250 observed yields are a suitable sample of data on which to base our analysis of high yields. The
choice k=250 corresponds to taking the threshold t=1t50=10.69 tonnes per hectare, and the ML
estimate for the shape parameter y is then 7,5 = —0.11(—0.22,0.00) (throughout, all confidence
intervals are calculated at the approximate 95% confidence level). With this negative shape parameter
estimate and the corresponding ML estimate 0,50 = 0.76 (0.65, 0.91) for the scale parameter (produced
using the gpd function part of the R package evir), we find, using formula (2.3), a finite right
endpoint estimate X35, = ta50 — 0250/ ¥250 = 17.60(14.02, 23.75) tonnes per hectare. These results, along
with those of our subsequent analyses, are shown in table 1. This estimate of a finite upper bound for
winter wheat yield agrees with the physical intuition that yield per hectare should be bounded by a
maximum yield which cannot be exceeded. The current verified records for UK and worldwide wheat
yields are 16.52 (observed in 2015) and 16.79 (observed in New Zealand in 2017 and confirmed by
Guinness World Records) tonnes per hectare, suggesting that our estimated value of 17.60 tonnes per
hectare is a sensible estimate of this maximum possible yield.

Although this extreme value analysis of winter wheat yield provides an estimate of the maximum
attainable yield per hectare, this does not give any idea of the potential variation of wheat yields
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Table 1. Maximum yield level estimates x* for the full dataset and the data stratified with respect to region or spending on

agricultural inputs, along with a summary of sample sizes, threshold choices, shape estimates 7 and scale estimates o
Numbers in brackets next to shape, scale and maximum yield estimates represent approximate 95% confidence intervals.
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depending on geography or growing conditions. These two questions are the focus of our next two
refined analyses.

3.1. Difference in geographical regions

Because there is variation in winter wheat yields across England and Wales [40], it is important to carry
out regional analyses of yield. Past studies have, for instance, assessed the evolution over time of winter
wheat yields for 13 administrative regions in the UK [34]. It is, however, likely that dividing our sample
of n=1536 data points according to such a fine regional partition will result in samples that are too small
to be able to carry out a meaningful extreme value analysis. To address this need for reasonable sample
sizes and our idea of identifying potential regional variation of high yields, we decided to regroup farms
using the macro-regions west England and Wales, north England and east England. This results in
sample sizes of, respectively, 435, 331 and 770, which are appropriately large for our extreme value
analysis. We also note that, in addition to containing the highest number of farms, east England has a
larger average yield per hectare figure compared to the other two regions. Based on this geographical
subdivision, we carry out an extreme value analysis similar to the global analysis of the previous
section to model regional high yields. This is justified by classical likelihood ratio tests [55,56] based
on the generalized Pareto model, which show that the model appropriate to the description of high
yields depends indeed on the chosen region; we do not report the results of such tests here for the
sake of brevity. The regional shape parameter estimates, as a function of effective sample size, are
plotted in figure 4.

As table 1 shows, all three regions reassuringly give negative shape parameter estimates, albeit with
wider confidence intervals; this was expected since stratifying decreases the available sample size and
therefore increases uncertainty. These shape parameter estimates, together with matching estimates of the
regional scale parameter, make it possible to produce estimates of regional upper bounds for yield using
formula (2.3). These estimates are 17.68 (13.25, 29.11) tonnes per hectare for west England and Wales,
15.91 (13.59, 21.20) for north England, and 17.81 (14.02, 26.98) for east England. The wide confidence
intervals on these extreme value estimates make it impossible to suggest that, at the 95% level, there are
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Figure 4. ML estimates of , for west England and Wales (a), north England (b) and east England (c).

regional differences between maximal yields across the three considered regions, although we do mention
that the point estimate of maximal yield is noticeably lower for north England. We conclude this analysis
by mentioning that although the point estimates of maximal yield in west England and Wales and east
England are slightly higher than the point estimate across the whole dataset, the increase is statistically
insignificant and appears to be due to the fluctuations of the maximum yield estimate as a function of the
effective sample size k. There is therefore no inconsistency between these stratified results and our earlier
global analysis.

3.2. Difference in inputs

Fertilizer and crop protection use for large-scale agricultural activities has long been at the centre of a vigorous
debate. A number of academic studies across disciplines have debated their effects on public health and the
environment along with how to effectively control their use [57-63]; outside academic contexts, European
Union policymakers and legislators voted in April 2018 an almost complete ban on neonicotinoids due to
their effects on honeybees and other pollinators. This motivates our idea of assessing whether the effect of
agricultural inputs on maximal wheat yield levels can be identified. We divide the sample of n =1536
farms into three equally sized groups according to their expenditure on fertilizers and crop protection: low
(less than £271.50 per hectare per year, corresponding to the bottom third in terms of expenditure),
medium (between £271.50 and £370.10 per hectare per year, corresponding to the middle third), and high
(greater than £370.10 per hectare per year, corresponding to the top third). Based on this stratification by
spending, and again in view of likelihood ratio tests indicating to us that the appropriate model for high
yields indeed depends on input level, we carry out an extreme value analysis similar to the above regional
analysis. Shape parameter estimates are represented in figure 5.

All three categories give negative shape parameter estimates, although the estimate for low input
levels lies outside the confidence interval for the estimate of the shape parameter estimate of the full
yield data, suggesting a significant difference in the behaviour of high yields for low spenders. The
associated upper limit estimates for yield are 14.27 (12.85, 16.52), 16.40 (13.28, 24.99) and 19.18 (14.02,
33.58) for low, medium and high use of inputs, respectively. The value and uncertainty on the
maximal yield estimates for low spending on inputs do suggest that the use of fertilizer and crop
protection improves the maximum attainable yield; however, and despite a point estimate of maximal
yield being higher for the biggest consumers of these inputs than for average users, the uncertainty on
our estimates does not provide significant evidence that spending a larger amount of capital on
fertilizer and crop protection improves maximal yield levels.

4, Discussion and conclusion

Our analysis of 10 years of recent winter wheat production data, collected in England and Wales by the
FBS, indicates that annual winter wheat yields per hectare have a finite upper bound which we estimate
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Figure 5. ML estimates of y, for low input levels (a), medium input levels (b) and high input levels (c).

to be 17.60 tonnes. Our model, based on the use of a generalized Pareto distribution suggested by the
framework of extreme value analysis, was also adapted to the estimation of regional maximal yields
and maximal yields as a function of spending on agricultural inputs. These estimates seem plausible,
and show that:

— Although the maximum yield point estimate for north England is lower than the corresponding ones
for west England and Wales and east England, there is insufficient statistical evidence to suggest that
north England farms cannot reach the estimated maximum yield of 17.60 tonnes per hectare.

— There is an increase in maximum yield from low to high use of fertilizer and crop protection,
although the difference between the maximal yields of medium and high spenders on these inputs
is not statistically significant.

To use our ML estimators of the shape and scale parameters, and then deduce an estimate of the right
endpoint of yield, we had to make the distributional assumption that yields above a sufficiently high
threshold approximately follow a generalized Pareto distribution. The quality of this approximation is
a critical factor in the performance of the estimators, and may lead to poor estimates if the underlying
distribution of high yields is too far from our model. To make our estimates robust against a potential
departure from the model, we could have presented a semi-parametric approach instead, such as
probability weighted moment estimators [64] or the moment estimator [65]. Both of these estimators
are flexible in the sense that their validity is not rooted in the generalized Pareto assumption, but the
price to pay for this is their higher asymptotic variance compared to the ML estimator [42]. It turns
out that, in our preliminary analyses, these semi-parametric alternatives gave shape and scale
parameter estimates close to the ML estimate, which encouraged us to prefer the latter for its
narrower confidence intervals.

The second part of our analysis was an effort to assess the dependence of the maximum yield on
location of a farm. The point estimate of maximal yield in north England, which is 15.91 tonnes per
hectare, is actually lower than the verified record for this region, which is also the UK record of 16.52
tonnes per hectare, attained in a Northumberland farm in 2015. This data point, which is not part of
the data from the FBS and hence not taken into account in our methodology, is well within the
confidence interval calculated for the maximum yield in north England and thus not inconsistent with
our results. Analysing the reasons behind this extremely high yield reveals that, while the north of
England typically suffers from increased rainfall, lower temperatures and limited sunshine compared
to the southern part of the UK, this was not the case in 2015 [40]. A fruitful avenue of further work
would be to gather sufficient climate data in order to design a model of the influence of weather
parameters upon winter wheat yields. Such a model would also be very useful when accounting for
the effect of climate change on maximum yield levels.

The third and final part of our extreme value analysis, stratified with respect to spending on
agricultural inputs, suggested that there is not a statistically established increase in maximum yield
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arising from a large use of crop protection and fertilizers. Our findings, consistent with previous studies
[49,66], indicate the potential for an upper-level marginal input use reduction while still obtaining high
yields, providing high food production potential, increased farmer profit and reduced environmental
footprint. Our statistical analyses demonstrate no significant difference in extreme yield between
medium and high input use, and that additionally there was no significant difference in maximum
yield across the three regions within the dataset, implying that soil type and weather variation are, on
aggregate, not the main drivers of high yields within the data.

One important question which we have not addressed here is to determine what factors make the
large difference between a yield close to maximum (estimated to be 17.60 tonnes per hectare) and
typical yield (approx. 8 tonnes per hectare). Attention to detail in agricultural production practice has
been previously cited as a key profitability driver [67], and exploring the managerial drivers of
performance with an extreme value theory approach represents a potentially fruitful area of research
work. It would also be informative to re-test the hypothesis of the difference in maximum attainable
yields against different fertilizer and crop protection input use levels from a larger sample of data, for
example, drawn from European wide data or from the USA. This would reduce the width of the
confidence intervals for the estimates of maximum yield stratified according to spending in
agricultural inputs. The potentially large yield gains to be made, starting from average yield levels,
imply that detailed farm-level studies of agricultural practice with statistically relevant numbers of
observations would be worthwhile. Another interesting question, which is beyond the scope of the
present paper and to be addressed in future research, is to find a precise model for the description of
high levels of yield as a function of agricultural input use and location. This could be done by, for
instance, letting the scale or shape parameter (or both) vary smoothly as a function of input level or
geographical coordinates, as described for instance in [68]. Such an analysis would allow for the
prediction of the high and maximum levels of yield attainable under given biological and physical
circumstances, and would thus be important for agricultural policy and decision-making.
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