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Accurate prediction of binding energies for two-
dimensional catalytic materials using machine learning
Julia Melisande Fischer,[a] Michelle Hunter,[b] Marlies Hankel,[b] Debra J. Searles,[b, c]

Amanda J. Parker,[a] and Amanda S. Barnard*[d]

The binding energy of small molecules on two-dimensional
(2D) single atom catalysts influences their reaction efficiency
and suitability for different applications. In this study, the
binding energy on single metal atoms to N-doped graphene
defects was predicted using random forest regression based on
approximately 1700 previously generated density functional
theory simulations of catalytic reactions. Three different struc-
tural feature groups containing hundreds of individual struc-

tural features were created and used to characterise the active
sites. This approach was found to be accurate and reliable using
either fully relaxed output structures or pre-simulation input
structures, with coefficients of determination of R2 =0.952 and
R2 =0.865, respectively. The ability to predict optimal 2D-
catalysts before undertaking expensive quantum chemical
calculations is an attractive basis for future research, and could
be extended to other 2D-materials.

1. Introduction

Heterogeneous catalysis often takes place on scarce and
expensive metals. Single atom catalysts (SACs) have attracted
significant interest because they catalyse reactions using single
metal atoms instead of a metal surface, which can reduce the
amount of metal required by at least three orders of
magnitude.[1] This has the potential to reduce the cost of the
catalyst as well as reducing the quantity of heavy metals
required. In early studies single Pt atoms were dispersed on a
ceramic substrate (FeOx),

[2] and found to be 2–3 times more
active than usually used Au nanoparticle on FeOx for CO
oxidation. This discovery led to testing SACs for other reactions
such as hydrogen evolution reaction (HER) or water-gas shift
reaction (WGS).[3,4]

Along with ceramics, defective graphene surfaces have
been shown to provide an ideal substrate to stabilise single
metal atoms and serve as active catalysts (see Figure 1a),[5,6] and
recently shown to be engineerable based on the adsorption of
different surface groups.[7] Pairs of SACs separated by different
degrees on graphene-based materials have also been shown to

be effective (see Figure 1b–1f). For example, in a combined
experimental and computational study on the oxygen reduction
reaction (ORR), a synergistic effect between two single metal
atoms on a nitrogen/carbon-based catalyst was proposed.[8] It
was shown that paired single cobalt and platinum atoms have a
mass activity for ORR that is 267 times higher than commercial
platinum on carbon. The calculations were performed on a N-
doped graphene (GR) defect, and further studies showed that a
different N-doped GR defect with Co and Pt metal atoms could
also catalyse HER.[9] Potentially, with the appropriate N-doped
GR defects and two metal atoms, an even more efficient catalyst
for different reactions could be created.[10] The strength of
interaction between the metal atoms and the reactants and
intermediates is critical to their performance, and is known to
be correlated to the local environment of the metal centre.[11,12]

This includes the geometric coordination of the surface to the
metal as well as the electronic environment. To make informed
decisions about where to start and what materials to pursue, it
would be desirable to predict which of the potential metal pairs
have the right strength of adsorption for the relevant
adsorbates a priori.

Finding optimal metal pairs and the right 2D-support
environment requires multiple experiments with a high level of
precision and control. Scientists have to firstly confirm the
thermochemical stability of the system, and secondly identify
different configurations of atoms and molecules adsorbed on
the surfaces.[13] Given the large number of possible metals and
GR-defect combinations, even a high-throughput approach can
become prohibitively expensive. In the case of the paired single
metal catalysts, the possible combinations of metals comprising
the catalyst increases by orders of magnitude. The problem is
even greater when moving to other 2D-materials. This type of
exploration is challenging for conventional synthesis and
characterisation workflows, but is ideally suited to computa-
tional materials design where the composition and environ-
ment can be controlled explicitly, in a more cost effective
manner.[14,15] Computationally, the most likely adsorption site
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and configuration is determined by the strongest binding
energy from multiple calculations. Detailed quantum chemical
calculations are capable of determining the binding energy of
the specific species and defect configurations, but an exhaus-
tive search can rapidly become too computationally intensive at
this level of sophistication.[16,17] Moreover, at this stage, it is not
clear which information from these calculations is most
effective in generating future predictions of binding energies.

Machine learning is a useful tool for scanning over a large
number of possible new materials and it does not require all
these decisions to be made at the outset.[18–20] Machine learning
is capable of identifying patterns in complicated multivariate
data, and inferring relationships between structural features
such as the type of GR defect, type of metal, and a functional
property such as the binding energy.[19,21–24] It has been
successfully used to predict important properties of graphene
in the past.[25–27] In cases such as these, the success and
usefulness of machine learning models is heavily influenced by
the choice of features used to describe the material. Feature
extraction and engineering is the process of converting data
into non-redundant derived values suitable for machine learn-
ing, which ideally can also assist in the interpretation of the
data.[29] Some features may be scientifically intuitive, such as
molecular features including bond lengths or angles,[30] or
topological features such as relative distances,[31] while others
such as molecular fingerprints are not.[32] Topological features

from quantum mechanical energy optimisation calculations are
extracted from three-dimensional atomic coordinates. They are
typically one-dimensional quantities (e.g. distance or angle
values), or two-dimensional quantities such as distribution
functions.[33] SACs on defective (continuous) graphene present a
particularly interesting case for feature extraction, being some-
thing in between a purely molecular and a periodic solid
system, characterised by both different adsorption sites and
different adsorbates.

Binding energy prediction can be achieved with a variety of
different algorithms[34–37] including neural networks (e.g. deep
learning), tree-based models (e.g. gradient boosting trees, extra
tree or random forest) and kernel methods (e.g. support vector
machine (SVM)). The best algorithm for materials prediction
depends on the data set and the research objective,[38,24]

however, tree-bases algorithms have the advantage of being
able to process different types of data (categorical or on a
continues scale) and generate a list of important features,
making them flexible and interpretable. Among the available
tree-based models random forests have been shown to perform
well with a high dimensional feature spaces,[39] as is typical of
low dimensional SACs.

In this study, we apply machine learning to predict the
binding energy of molecules on metal atoms stabilised with
doped, defective graphene, based on an large number of
electronic structure simulations and an extensive search of the

Figure 1. Typical configurations of the six different pores supporting single metal atoms or paired single metal atoms that were considered in this study.
Atoms are coloured in grey (carbon), blue (nitrogen), pink (cobalt) and brown (platinum).
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feature space. Considerable focus has been given to feature
extraction and engineering to determine which types of
features are most suitable to describe this hybrid system, and
how applicable they will be to other 2D-materials. As a tacit
desire of the research community is to use machine learning to
inform research planning and experimental design, we also take
this opportunity to determine whether reliable predictions can
be made based on inputs used to generate the data alone,
rather than the outputs from costly calculations. We used
random forest (RF) and support vector machine (SVM), as both
methods are well suited to small data sets with a large feature
space.[38] We find that both methods are capable of predicting
the binding energy from input (unrelaxed) configurations with
an accuracy of R2 =0.865 for RF and 0.866 for SVM. This could
be particularly useful to assist in the pre-selection of a few
specific structures out of thousands of possibilities, and reduce
the number of simulations required by orders of magnitude.
Our newly defined features giving rise to these results can
similarly be applied in other machine learning predictions of
any structure/property relationship.

2. Methods

2.1. Data set collection

The data set was comprised of 1694 single structure density
functional theory (DFT) optimisation calculations on rectangular
sheets of graphene-based material with an area 20×17 Å. Each
of the systems contained different nitrogen doped pores to
stabilise single or pairs of metal atoms (Fe, Pt, Co and Ni). Here
metal atoms are part of the surface. In this set, there are 96
surface structures without adsorbates and 1587 structures with
adsorbates.

All of the original optimisation calculations are performed
using the same density functional and computational hyper-
parameters (such as super-cell volume, mass of carbon, and
number of k-points), as described in previous publications.[8–10]

Details to the calculations are in the Supporting Information.
The structures have been separated into five groups

depending on the number of carbon vacancies and the number
of nitrogen dopants, as illustrated in Figure 1. The notation is
NxVy for x number of nitrogen and for y number of vacancies.
As we can see, the active sites are either a double pore
(2xN4V2, Figure 1b) or pores large enough to stabilise two
metal atoms (N6V4, N6V6, N8V4, and N8V10, Figures 1c–1f). In
the cases of N6 V4 and N8 V4, all possible combinations of the
four metals (Pt, Co, Ni and Fe) were captured, and a subset of
combinations for 2xN4V2, N6V6 and N8V10, as summarised in
Table 1. The adsorbed species were H*, O*, OH* and OOH*.

While this is not an exhaustive ensemble of possible config-
urations, there is sufficient structural and chemical diversity to
provide considerable insights into 2D-catalyst design.

The surface structures were formed by removal and replace-
ment of C atoms with N atoms in graphene. The pores were
then filled with different metals and energy optimised with
DFT. The input structures for the binding energy calculation are
partly arbitrarily selected and partly automatically generated
based on previous optimised structures with other metals. The
arbitrary structures are molecules in either their DFT gas-phase
geometry or previous optimised geometries on a similar surface
on different surface sites and orientations. The automatically
generated structures were all generated from the same set of
adsorption site and geometries for molecules.

Table 2 shows the partitioning of the data by adsorbed
species, where O* and H* include any number of oxygen and
hydrogen atoms adsorbed in a structure, eg. one or two H*. In
2/3 of the hydrogen calculations there was a single hydrogen
adsorbed, and in 1/3 there were 2 H-atoms on the surface. In
four systems, a coverage of up to seven hydrogen were tested.
As we can see from Table 1 and Table 2, the data set shows
significant frequency imbalances for both the pore type and
adsorbate species. For all models the data set was stratified
with regards to these two features during cross-validation.

2.2. Machine learning algorithms

Regression was undertaken with random forest (RF) regressors
that average over an ensemble of decision trees trained on the
data.[40] Although they are more computationally expensive and
difficult to implement than other methods, they generally lower
the risk of over-fitting, are more accurate when dealing with
high variance features and require limited hyper-parameters
(requiring only the number of trees and depth, which is
optional). Overall, the RF cost is still very small and only takes
minutes compared to the hours and days of quantum
simulations. Accuracy of the regression models was assessed by
maximising the coefficient of determination (R2), with under-
fitting (bias) and over-fitting (variance) evaluated through
comparisons of the R2 from the cross-validation of the 80/20
train/test split. The split values were chosen as the dataset is
small compared to the type of datasets these algorithms were
intended for. Different splitting values (e.g. 75/25) gave slightly
lower scores in pre-tests, but the learning curve (Figure S1 in
Supporting Information) shows that the accuracy and general-
isable of the prediction is largely unaffected with a training set
of at least 1200 sample instances.

Random forests are collections of multiple decision trees.
For a single tree at each node, the data is split into two groups
(e.g. with a binary separation of a feature such as ‚Fe‘; iron (1)

Table 1. Partitioning of the data set by pore type.

Type of
Surface

N6V4 N8V4 2x(N4V2) N6V6 N8V10

No. of
samples

847 554 42 66 78

Table 2. Partitioning of the data set by adsorbate species.

Type H* OH* OOH* O*

No. of samples 585 423 332 247
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or no iron (0)). Splitting based on feature values is repeated at
each node until a leaf is reached. Each leaf predicts a narrow
range of the binding energy, or the exact binding energy is the
tree is deep. Features are selected by the mean reduction in
tree impurity, which is the best estimation of the binding
energy in this case.[41] The results from the trees are averaged to
predict a single result. An advantage of RF is that features can
be ordered depending on how many of the trees require the
feature to make a decision, providing interpretable feature
importance profiles.

To compare the results of RF we have also used support
vector regression (SVR). Based on statistical learning, SVR is a
type of support vector machine (SVM) that is known to
generalise well on unseen data. SVR is characterized by the use
of kernels, sparse solutions, and Vapnik-Chervonenkis control of
the margin and the number of support vectors, resulting in an
effective tool in real-value function estimation. With an
appropriate kernel function, complex problems can be easily
addressed. One of the main advantages of SVR is that its
computational complexity does not depend on the dimension-
ality of the input space, but SVR does required more refinement
than RF during implementation (hyper-parameter optimisation).
Details of the SVR results in this study are provided in the
Supporting Information.

K-fold cross-validation (CV) is a re-sampling procedure that
provides an important measure of how well each model and
hyper-parameter set generalises to unseen (validation) data.
During CV the training set is split into a number of (k) folds,
with a single fold reserved as a ‘hold-out’ fold for validation,
while the model/hyper-parameter set is trained on the remain-
ing (k-1) folds. A test of the performance of the model on the
hold-out set provides single CV score, analogous to a series of
smaller test/train splits. This process is repeated k times, with
each fold contributing a validation score when assigned as the
‘hold-out’. The mean of the k validation scores provides the CV
score, while the standard deviation in the individual validation
test scores offers a measure of confidence in the consistency of
the model hyper-parameter set. In this study, we have defined
CV uncertainty as 5 standard deviations in the CV set. For SVM
the hyper-parameters were selected with grid-search and CV.
These are: C=100, cache_size=200, coef0=0.0, degree=3,
epsilon=0.1, gamma=0.001, kernel= ’rbf’. For RF, there is no
restriction on tree depth and 5,000 trees were used to train the
model.

3. Results

Using the data set described in the Methods section, we began
by collecting a list of conventional molecular features that
define the scope of the study. This includes the total number of
atoms of each element; the number of metal atoms; the
distance between the two metals (0 represents only one atom
in the system); the number of surface atoms; the number of
valence electrons on the separated metals; the number of
vacancies in the GR sheet; the adsorbate-type, and the type of
GR pore. All of these features represent inputs to the original

electronic structure simulation that remain unchanged follow-
ing structural relaxation, but their importance in determining
an optimal 2D-SAC are largely unknown.

The feature list was expanded to include other output
features characterising the interatomic network that changes as
a result of the DFT structure optimisation, each describing the
system in different ways. We include periodic information to
capture the structure of the graphene-based material (radial
distribution) as well as molecular information to capture the
surface chemistry (bond lengths and angles), and statistical
information to capture the overall structural heterogeneity. For
2D-catalyst materials each of these three feature groups alone
could describe the system uniquely. This can be understood
from the fact that each feature group uses the 3D-atomic
coordinates in a different way and every sample instance can
be distinguished from every other sample instance.

The topological features were extracted from the interatom-
ic configurations contained in the input or output structure
files. These three structural features groups were then used
with the unrelaxed structures to predict the binding energy of
the adsorbed molecules purely from the input before the
density functional theory (DFT) calculations of the adsorbate.
For these 1694 sample instances, 96 surface structures and the
adsorbed molecules (O*, OOH*, OH* and H*) were optimised
with DFT.

3.1. Feature generation

The new topological features X are sorted into three different
topological feature groups. These are bond lengths and angles
Xba, statistical features Xstat and partial radial distances XPRD.

Xba [ Xstat [ XPRD ¼ X (1)

Firstly, considering the connectivity as a primary descriptor,
inter-atomic bond lengths and angles were calculated for all
atoms participating in the pore or adsorbate. The carbon atoms
participating in the pore were designated within a distance of
2.1 Å from the centrosymmetric point between the two
adjacent N atoms. Distances between all atom tes (H, O, N, C,
Fe, Pt, Co and Ni) were calculated for each atom pair and all
distances below 2.1 Å were classified as bonds, after testing
different cutoffs (see Supporting Information). Bond angles
were calculated for all atoms with two or more bonds.

The specific species (bond length and angle) at each site
were recorded to generate a feature list for C� N, Pt� O� H, etc.
This naming convention is consistent for all sample structures
in the data set, with values that are specific to a given structure.
The metals were also treated collectively as ‘M’ in addition to
the specific metals (Pt, Co etc). These generalised bond lengths
and angles (i. e. M� N, M� O� H, etc) were captured to maximise
the number of features Xba that can be defined. All the bond
lengths and angle feature values xba were normalised by the
mean of all equivalent types of bond lengths or angles in all
samples:
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xba ¼
x � m

m
; xba 2 Xba (2)

where x is the distance or angle between specific atoms, and m

is the ensemble average, defined as

m ¼
1
Nx

XNx

i¼1

xi (3)

with Nx being the total number of samples with a non-zero
value of x. In cases where x is not defined (such as a Pt–N bond
in structures without Pt) the feature was set to � 1 to allow for
discrimination and omission during subsequent machine learn-
ing. Failure to tag these cases in this way results in an
inconveniently high number of NaNs that cannot be identified
and eliminated.

Secondly, in recognition that many experimental character-
isation methods measure averaged values over entire samples,
the mean �x and standard deviation xstd of all bond lengths and
angles xi for each individual sample, partitioned by atom type,
were also calculated. These mean features �x were also
normalised. We separated C� C bonds from the whole system
(Std/Mean CC bond length) from C� C bonds roundabout the
pore (Std/Mean of bond C C). Nba is the total number of a
specific bond length or angle in a single sample.

�x ¼
1
Nba

XNba

i¼1

xi; �x 2 Xstat (4)

xstd ¼
1
Nba

XNba

i¼1

ðxi � �xÞ; xstd 2 Xstat (5)

Thirdly, considering distribution functions as primary de-
scriptors, a series of discrete distances and angles were
compiled for a specific number of atoms; referred to as the
partial radial distance (PRD), and partial angular radial distribu-
tion (PARD). In this context partial reflects the fact that only the
a limited number of atoms are included, depending on the
substrate structure. As mentioned above, the centre of the pore
was defined as the centrosymmetric point between the N
dopants, which is insensitive to the exact position of the metal,
buckling or other distortions affecting 2D-materials which may
not be supported by a metal substrate, and is consistent for
pores with one or two metal atoms.

PARD was defined as the corresponding angle from the first
N-atom (N1) to the centre of the pore to the atom in the
neighbour list. Including more neighbours in the PRD or PARD
is superfluous, as it only captures more carbon atoms from the
GR surrounding the pore but does not change the description
of the active site; a smaller number of neighbours risks missing
some of the critical atoms participating in the active site itself.
In each case we have numbered the feature in order of
occurrence (with respect to the original list of atoms in the

structural file), though any other ordering or naming conven-
tion would also suffice. Overall this process resulted in 36
distances and 35 angles.

~rc ¼
1
NN

XNN

i¼1

~ri (6)

xj ¼ ~rj � ~rc
�
�

�
�; fnjjnj � n36g � XPRD (7)

qj ¼ arccos
~rc � ~rN1ð Þ � ~rnj � ~rc

� �

~rc � ~rN1ð Þj j ~rnj � ~rc
� ��
�

�
�

 !

; fqjjnj � n36g � XPRD (8)

Here, NN is the number of nitrogen atoms in the sample
with the coordinates~ri, which are used to calculate the vector
to the centre of the pore ~rc. From all calculated distances xj,
between the ~rc and all atoms in the system ~rj only the 36
shortest distances and their corresponding angle qj are used for
PRD features XPRD. This method of choosing a specific number
of atoms close to an adsorption centre (instead of all atoms in
an area or in the whole structure) gives the advantage of
creating a fixed number of features for systems where the total
number of atoms can vary.

In total, this feature extraction process provided 1031
features for output and 1218 for input structures: 17 general-
ised, 688 (819 input) bond lengths and angles, 269 (311 input)
statistical averages and standard deviations, and 71 PRD and
PARD. The number of features for input and output is different,
as these are automatically generated from the structures with a
cutoff of 2.1 Å for bond lengths. After energy optimisation
fewer atom pairs are below that value, which means fewer
features are generated. The advantage of this method is that it
can be implemented for any number of atoms and any 2D-
system.

3.2. Dimension reduction

With so many features, it is almost certain that many will be
highly correlated, but it will not be immediately obvious which
ones. To identify and eliminate strongly correlated features we
used a correlation matrix and automatically retained all features
below 90% correlation (see tables S1-S2 in Supporting
Information). Failure to eliminate strongly correlated features
results in a variance error (overfitting). The 459 (output) and
583 (input) features retained for subsequent analysis and the
635 eliminated features, for completeness, are listed in the
Supporting Information in tables S3–S6.

3.3. Regression

3.3.1. Prediction from output structures

Using the retained topological features we investigated their
relationship with the target property label, the binding energy
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(output from the original electronic structure simulations), and
generated feature importance profiles to predict how the
binding energy of adsorbates to graphene SACs may be tuned
in practice. We have used random forest regression with 5,000
estimators (due to the large number of features) and no
maximum tree depth (which means the nodes are expanded
until all leaves are pure or until all leaves contain fewer than 2
samples). This model gave a training score of R2 =0.990, and a
testing score of R2 =0.952, as shown in Figure 2. The cross-
validation score is 0.936 when using purely energy optimised
structures to generate features, here referred to as output data.
These results were confirmed using support vector regression
which gave a training score of R2 =0.994, and a testing score of
0.965 (the details of which are provided in the Supporting
Information, Figure S6).

Structures with a residual over an absolute value of 1 eV are
referred to as high variance structures (HVS). When using
output data we found only seven HVS; three lower and four
higher than the calculated (true) value. There is no clear trend
in these predicted HVS values in terms of a specific structure,
but six of the HVS were with hydrogen.

The 20 most important features for predicting the binding
energy are shown in Figure 3 on a log scale. In this list five
features are statistical (one mean and four standard deviations),
ten are based on connectivity (three bond lengths and seven
angles), and four are from pair distributions (three PRD and one
PARD). Eight of the top 20 involve the generalised metal atom
(M), but only one with the specific metal species (which
contrasts with SVR, shown in Figure S5 of the Supporting
Information). Half of these top 20 features are angular. This
result indicates that three-body features contain more informa-
tion than two-body features, and suggests that the higher level
of specificity provided by the individual metals is not necessary
for most SACs with RF. The binding energy can be confidently
predicted using averaged measures of the pore structure of the

type collected from spectroscopic instruments, and metal-
dependent trends are either already in the general distances or
in the noise. This is counter-intuitive but very useful, as it
supports the possibility of directly using outputs from standard
characterisation instruments on a large scale. As would be
intuitively expected, the input feature ‘Adsorbate-type’ is also
highly influential.

To better explain some of the features, three important
features (one from each category) were plotted in Figure 4. In
each plot the distribution of sample instances vs the binding
energy is shown, with a separation of the different adsorbate
species. The left plot shows the standard deviation of the H� O
distance. The standard deviation is zero for all H, O and OH
instances as well as for OOH, where the second H� O distance is
larger than 2.1 Å. When only focusing on the yellow (OOH)
markers, it is clear that the highest binding energies have a
larger second OH distance than the 2.1 Å and hence ‘std of
bond H_O’=0. Chemically, the stronger OOH bonds to the
surface the longer the O� O bond, which increases the distance
of the surface bonded O to the H, and decreases the direct OH
bond length. As a result the standard deviation of the H� O
bond increases.

In Figure 4, the middle plot shows the distance of the first
oxygen-metal distance normalised by the mean of all metal
oxygen distances vs the binding energy. The value � 1 indicates
systems with H adsorbed or without an oxygen metal distance
below 2.1 Å; i. e. for a few systems, oxygen atoms were placed
on the carbon or nitrogen atoms of the pore. For all other
systems, the O_M1 instances are approximately 0.

In Figure 4, the right plot is the feature PRD8 vs the binding
energy. Here the distances are from the middle of the pore to
the 8th atom in the system of the 36 closest atoms, which are
between 2.4 to 4.0 Å depending in the pore structure and
independent of the adsorbate type.

Figure 2. Scatter plot predicting the binding energy on N-doped porous graphene paired single atoms metal catalysts using random forest regression. The
training set is shown in yellow and the test set in green, providing training and testing scores of R2 =0.990 and R2 =0.952, respectively.
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3.3.2. Prediction from input structures

While models predicting the patterns in observations is
instructive, predicting possible outcomes based on input
parameters alone is highly desirable.

By repeating the feature extraction process on the input
structures before the electronic structure relaxation we devel-

oped values for the 1218 features, which were reduced to 583
by eliminating strongly correlated features using a correlation
matrix with 90% threshold (see Supporting Information). We
then repeated the machine learning using the same hyper-
parameters to aid comparison. We find that the input data was
remarkably capable of predicting the (output) binding energy
with a testing accuracy of R2 =0.834 with 5-fold cross-validation

Figure 3. Feature importance profiles on a log scale showing the top 20 retained features for predicting the binding energy on porous graphene single atoms
metal catalysts using random forest regression.

Figure 4. The distribution of three output features (from left to right: Standard deviation of the H_O distance, first mean normalised O� M distance, and 8th
atom from the partial radial distance, respectively) vs the binding energy. The sample instances are coloured by their adsorbate type: blue – OH, yellow –
OOH, green – O and red – H.

ChemCatChem
Full Papers
doi.org/10.1002/cctc.202000536

5115ChemCatChem 2020, 12, 5109–5120 www.chemcatchem.org © 2020 Wiley-VCH GmbH

Wiley VCH Dienstag, 13.10.2020

2020 / 176256 [S. 5115/5120] 1

http://orcid.org/0000-0002-4784-2382


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

and a CV score of R2 =0.865. These results are shown in
Figure 5. This high score evidences similar performance to the
RF model trained on hundreds of features that required
thousands of CPU hours to generate, and is confirmed using

SVR to predict the binding energy with R2 =0.866 (see
Supporting Information, Figure S8).

When using only the input structures, the 20 most
important features, shown in Figure 6, differ from the order

Figure 5. Scatter plot predicting the binding energy on porous graphene single atoms metal catalysts using random forest regression and only input features.
The training set is shown in yellow and the test set in green, providing training and testing scores of R2 =0.978 and R2 =0.865, respectively.

Figure 6. Feature importance profiles on a log scale showing the top 20 retained features for predicting the binding energy based on the input structures of
porous graphene single atoms metal catalysts using random forest regression.
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obtained using the outputs of electronic structure relaxations.
The top 20 input features include eight distributions, three
statistical features, six based on connectivity and three general
features defining the input space. We see a decreased reliance
on bond lengths and angles and an increased importance of
distributional features, but a similar dependence on three-body
features. The ‘Adsorbate type’, the ‘Pore type’ and ‘O’ (the
number of oxygen atoms) are notable additions to the list.
From all the metals included in this only Fe appears on the list
more often than the generalised metal ‘M’.

In the case of the input feature set there are 21 HVS (12
over-predicted and nine under-predicted HVS), all but one of
which were from the arbitrarily produced input structures.
There is no clear trend regarding adsorbate species but nine of
these HVS have the same pore structure (N6V6), three are from
the double pore 2x(N4V2), and two are from N8V10. This might
be attributed to the fact that these pores are under-represented
in the data set. When we restrict the study to the two most
dominant pore structures (N8V4, N6V4) a higher accuracy of
R2 =0.900 can be achieved (see Figure S3 in the Supporting
Information). However, including these under-represented
pores does reduce the number of HVS in the most important
catalytic pores (N8V4, N6V4); improving the accuracy where it
matters most. Increasing the diversity of the GR-defect reduces
the over-fitting to the two main systems.

In Figure 7, the distribution of three input structure features
vs the binding energy are shown and categorised by the
adsorbate species. In the left plot, the standard deviation of the
H� O distance is shown. Compared to Figure 4 we can see that
the values are spread over a wider range, but most a close to
0.43, which is attributable to how the dataset was created. The
first calculations were randomly distributed and the intra
molecular distances could vary considerably. Based on these
results later calculations used automatically produced input
structures, so the yellow markers are aligned at a certain value.

The middle plot of Figure 7 shows the mean normalised
metal oxygen distance. There are two main difference to the
output structure distribution shown in Figure 4. Firstly, at a

value of � 1, there are more OH instances for input structures
than for output structures. This is because initially more
molecules were placed more than 2.1 Å away from the metal
atom and their position changed during the DFT relaxation.
Secondly, as we saw for the ‘Std of bond H_O’ feature, the
range of values is wider for input features.

For the right plot in Figure 7, the PRD8 feature distribution
for input structures is shown. Here we see an alignment of the
markers at the same PRD8 value and different binding energy
(e.g. at 3.9 Å). With the value 2.884707 Å, there are 32
occurrences. This highlights that the values of the PRD features
depend on the SAC system or adsorption site, resulting in a
distribution between 2.4 to 4 Å.

Further analysis was undertaken on the 17 features which
are not structure-related (see Supporting Information table S3),
with the exception of the distance between the two metals in
the input structure. Here R2 =0.704 with a MAE of 0.526 are
attained with 5-fold cross-validation. This drop in accuracy was
expected as no adsorption site is defined, nor any information
about the 2-D surface provided, and serves to highlight the
importance of combining domain knowledge with interpretable
machine learning models, rather than relying on scores alone.

To determine if this approach can reduce the number of
calculations required to describe SACs, we also tested the HER
predicted binding energy. Here the binding strength of hydro-
gen should be in a range of � 0.15 to � 0.33 eV to be more
efficient than Pt/C.[42] In our test set there were 119 systems
with hydrogen, 19 of which were predicted to be in this range,
and 11 of which were DFT calculated to be in the range. With
such a small dataset it is unclear if these instances include the
strongest binding sites, but the fact that the method could
select 19 from 119 calculations is a testament to the potential
for reducing the number of overall calculations required to
identify SACs for HER.

Figure 7. The distribution of three input structure features (from left to right: Standard deviation of the H� O distance, first mean normalised O� M distance
and 8th atom from the partial radial distance) vs the binding energy. The sample instances are coloured by their adsorbate type: blue – OH, yellow – OOH,
green – O and red – H.
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4. Discussion

In this study we have used regression to predict the binding
energy for a range of different adsorbates on graphene SACs.
We show that producing a large feature space with three
different feature groups can predict the binding energy
accurately from output structures (R2 =0.952), or from input
structures with an accuracy of R2 =0.865. The input data set
consisted of 1587 unique samples and no high performance
computing, except for relaxing the 96 surface structures with
DFT. The features are automatically produced from the overall
input structures and are applicable to various types of reactions,
GR-defects and 2D-structures. The feature extraction methods
used herein are equally applicable to classifications where a
range of binding energies is predefined depending on the
desired energy. However, in the present work the adsorbates
have different ranges with considerable overlap, making
classification less useful to this study.

As eluded to above, there were imbalances in the distribu-
tion of samples; some pore structures were under-represented.
One of three under-represented structures were visibly deficient
and produced a high number of HVSs. This indicates that while
the calculation of different adsorbate species and systems can
be used to increase the sample size for the prediction of a
species or pore structure, this does not always mean that
minority structures will be predicted well. In our case we
estimate that at least 78 samples of a specific group have to be
included to reduce the number of HVSs. The number of HVSs
can also be reduced by automatically generating input
structures from previously quantum mechanically relaxed
surfaces; saving time, number of overall DFT calculations and
improving machine learning accuracy.

The distribution features were also found to be particularly
important for predicting the binding energy. In the Supporting
Information we show the prediction with a higher and lower
number of PRD features (26, 46 and 56 PRD) (see table S2) to
further investigate this trend. We found no noticeable differ-
ence between any of these numbers and the accuracy of the
trained models, either for the input or output data sets. For all
systems 36 PRD includes all pore atoms and atoms adsorbed
and was therefore considered the optimal balance between
information and computational efficiency in this case. For other
systems, where a ring or set of (under-coordinated) atoms
around the adsorption site are assigned as the reference, fewer
atoms in the PRD or PARD distributions may be sufficient. If the
adsorption site does not include a defect other selection
processes will be needed, but we recommend restricting the
range of the number of redundant features where the values
do not change. The same applies to the inclusion of bond
lengths and angles.

Comparing the importance of the top 20 features from
regression on output and input data sets, one of the most
important features is the adsorbate type (encoded via classi-
fication with a number from 1 to 4), followed by angular three-
body and interatomic two-body interactions. This means that if
a specific angle exists the energy can be better estimated with
the angle value than with the bond distances alone. We used

three different ways to describe the pore structurally, all of
which are represented in the top 20 features from both input
and output data sets.

In the top 20 features from output data set the non-specific
metal ‘M’ appears in eight features while a specific metal, ‘Fe’
only appears once. This is not the case for input structures,
where more ‘Fe’ than ‘M’ are of relevance. This is reflected in a
previous publication, as the binding energies observed over the
Fe containing surface changed significantly, while with the
other metals the potential energy profile seemed very flat. This
indicates that all other metals (Pt, Co, Ni) can be treated equally
when purely regarding topological features (as opposed to
chemical or electronic features), but Fe is clearly a special case
worth of more focused research. Undoubtedly other 2D-
materials would benefit from similar investigations.

Another point worth mentioning is that, as mentioned
above, the RF features are selected and split by a node in two
parts by a certain value. This could mean that a structural
feature is selected on its existence rather than by a distance (or
angle) value being larger or smaller a certain average. For Fe
and the general metal ‘M’ this could mean that when using the
output structures the distances between metals and adsorbed
species are more diverse and can be well separated in RF-leaves
by the general distance to the metal ‘M’. On the other hand,
when using only input structures, metal and adsorbate
distances are less diverse as a lot of structures are automatic
prepared. In this case the algorithm may only check if a bond
(e.g. O_Fe1) exists with a value larger than � 1. In a further
node (e.g. the ‘Std of angle N_M_N’) this would give more
information of the specific surface and further improve the
binding energy prediction, as this angle was optimised in the
surface structure calculation. It has been previously reported
that the environment of the metal atoms is correlated to the
binding energy which further emphasises that the geometric
description of the accurate DFT optimised surface with the
approximated adsorption site of adsorbate are important
descriptors for machine learning studies of catalysts.

Overall this study shows that for small material data sets, a
large feature space with diverse and automated structural
feature descriptions can be useful in planning future workflows
and focusing calculations on the materials that matter most. For
example, to explore HER one would automatically create
multiple potential adsorption sites or multiple different poten-
tial active sites, then estimate the binding energies with our RF
model. These estimated energies could then be screened and a
limited subset of structures calculated with quantum chemical
simulations. These results could then be added to the data set
and the models retrained until self-consistency is achieved.
Running the machine learning algorithm to estimate binding
energies only takes minutes on a laptop, while each calculation
takes hours or days on multi-core high performance super-
computers. Once the optimum binding energy is found the
specific systems can become the target of more detailed
analysis.
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5. Conclusion

Three different descriptors were created to predict the binding
energy of small molecules on N-doped GR defects, consisting of
hundreds of general, molecular and statistical features. These
include discrete partial radial distribution of distances and
angles from the center of the defect, bond lengths and angles
below 2.1 Å, and the mean and standard deviation of these
bond lengths and angles. Using random forest regression these
features were shown to accurately predict the binding energy
of various molecules on metals using output structures relaxed
from quantum chemical simulations with R2 =0.952, and
unrelaxed input structures requiring no costly simulations with
R2 =0.865. These results were confirmed with support vector
regression, and features from all three groups were confirmed
as important in determining the results.

With this method, the expensive computational testing of
different adsorbates configurations and sites for SAC can be
reduced. This could save resources and researchers’ time by
finding the right material morphology and composition. As this
method predicts most structures binding energy within 1 eV
and many materials can be excluded because they are beyond
that. However, that is not sufficient to determine a good
catalyst where the differences of 0.1 eV is significant for the
performance. Nevertheless, it is a inexpensive method for
screening a wide range of 2D-materials followed by more
accurate calculations. Particular for the ORR, three binding
energies are necessary to predict the performance (reduce the
overpotential). Here ruling out materials because one species is
predicted to be too strongly or weakly bond, saves the
calculation of three adsorbed species.

The ability to estimate the binding energy and structural
feature importance from input structures, whether automati-
cally to sample a configuration space or manually based on
domain knowledge or intuition, allows machine learning to be
used as a research planning tool, in addition to providing
analysis. We found that generating structures based on domain
knowledge or intuition increases the number of high variance
structure (where models perform poorly) but increases the
diversity of the training data and increases the overall accuracy
of well-represented materials. Ideally, a homogeneous input set
would be used, where domain knowledge is incorporated and
captured during automated structure generation, so all struc-
tures are equally created.

While we currently exclude other property labels such as
the magnetic moment or charges on specific atoms, the
features extracted herein are applicable to other structure/
property relationships, and will form the basis for future work.
The same principle applies to other 2D-materials, defects and
catalytic reactions.
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