To the Editor:

Recently, a novel syndrome of combined immunodeficiency, allergy, and “auto”inflammation caused by mutations in the ARPC1B gene has been reported. Analysis of patient-derived hematopoietic cells has shown a defect in actin polymerization, which resulted in a wide range of clinical manifestations and immunologic-hematologic features. We report on the immunologic, cellular, and molecular phenotypes in 14 patients with biallelic ARPC1B mutations and variable clinical presentations (Fig 1, A and B; see Fig E1, A, and Table E1 in this article’s Online Repository at www.jacionline.org; for case descriptions, see this article’s Online Repository at www.jacionline.org), helping to delineate the broad spectrum of this novel disease and presenting unreported insights into cell-intrinsic defects involving regulatory T (Treg) cells and natural killer (NK) cells, potential players in the immune dysregulation and susceptibility to viral infections observed in these patients. The disease-causing variants are diverse and scattered throughout the gene (Fig E1, B; Table E1). Patient (P) 4, P12, and P14 have Nepalese ancestry and share the same variant, suggesting a founder mutation. In all patient samples tested, ARPC1B protein was undetectable by Western blotting and we identified an increased—although variable—expression of the ARPC1A isoform (see Fig E2 in this article’s Online Repository at www.jacionline.org).

The disease is characterized by a very early clinical onset (mean, 2 months; range, 1-6 months) (see Table E2 in this article’s Online Repository at www.jacionline.org). Presenting symptoms included skin rash, infections, and gastrointestinal bleeding. Most patients (79%) (Fig 1, A) suffered from recurrent or severe bleeding episodes, most frequently represented by enterorrhagia. Platelet counts were reduced (see Table E3 in this article’s Online Repository at www.jacionline.org), with normal volume in most cases. An increased rate and/or abnormal severity of respiratory infections, skin rash, and infections, and gastrointestinal bleeding are common features. In P3, CMV sialadenitis and lymph node enlargement were observed, which has not been reported previously.

A combined immunodeficiency with severe infections, inflammation, and allergy caused by ARPC1B deficiency

FIG 1. Clinical features, imaging, and histology of relevant tissues in affected patients. A, Frequencies of clinical manifestations in ARPC1B-deficient patients (detailed in Table E8). B-D, Diffuse warts, eczema, and skin vasculitis in P7. E, Sialadenitis and lymph node enlargement in P3. CMV, cytomegalovirus; GH, growth hormone.
tract infections (including pneumonia, bronchopneumonia, and bronchiolitis), and skin infections (including abscesses, erysipelas, extensive warts [Fig 1, B], and molluscum contagiosum), were observed in 71% and 50% of the patients, respectively, whereas severe, protracted bacterial gastrointestinal infections have been diagnosed in a minority of individuals (see Tables E2 and E4 in this article’s Online Repository at www.jacionline.org).

As summarized in Fig 1, A, and Table E5 (in this article’s Online Repository at www.jacionline.org), common manifestations of immune dysregulation included moderate-to-severe eczema, which was observed in 57% of cases (Fig 1, C), associated with food allergy (anaphylactic reactions) and asthma. Cutaneous vasculitis was noted in 69% of patients, presenting as a maculopapular rash, erythema nodosum, or vasculitic purpura (Fig 1, D). In all cases investigated with a skin biopsy, leukocytoclastic vasculitis was diagnosed. Arthritis was present in 23% of patients. One child presented with 23 episodes of macrophage activation syndrome, followed by the appearance of enlarged lymph nodes, splenomegaly, and episodes of sialadenitis (Fig 1, E).

FIG 2. Immune cell abnormalities. A, Representative plots of the altered B-lymphocyte staining (left panel), B-lymphocyte percentage (middle panel), and CD19 expression (geometric mean fluorescence intensity, right panel) in ARPC1B-deficient patients. For CD4⁺ and CD8⁺ T-cell subsets (naive, memory, and effector-memory populations), see Fig E1. B, Treg-cell subset analysis with a representative dot plot showing percentage of Treg cells (CD4⁺CD25RAPOSCD127⁻), and Treg FOXP3 and Helios expression. C, FOXP3 and Helios expression of in vitro expanded Treg cells from patient and control (lines connect each patient with their own healthy relative used as control). D, FACS plots showing the proliferation of allogeneic T-responder cells (T resp) measured by cell-trace violet (CTV) dilution. The stimulated and unstimulated T resp without Treg cells are shown in blue. Treg cells from controls (in gray) and patients (in red) were cultured at different ratios with T resp cells while stimulated with anti-CD3/CD28. E, Quantification of CD4 and CD8 T resp-cell suppression by Treg cells. F, NK cells of patients were functionally evaluated against the K562 cell line by CD107A expression experiments. Resting NK cells (left panel) and IL-2-stimulated cells (right panel) were evaluated and compared with 10 healthy controls. All controls are represented by healthy adults. Bars indicate means ± SD, and a star indicates statistical significance as assessed by Mann-Whitney test (P < .05). Stim, Stimulated; unstim, unstimulated.
levels were abnormal, with markedly increased IgA and IgE in almost all cases (Table E6). In contrast to Wiskott-Aldrich Syndrome or DOCK8 deficiency, the humoral response to polysaccharide vaccine was normal in most cases (see Table E7 in this article’s Online Repository at www.jacionline.org). The T-cell subset distribution was abnormal, with low percentages of naive CD4+ and CD8+ T cells (see Fig E3, A and B, in this article’s Online Repository at www.jacionline.org). In vitro T-cell proliferation in response to combination of anti-CD3+ + anti-CD28+, cytokines (IL-15, IL-2), and mitogens was largely normal, whereas response to low-dose CD3 and antigens was definitive in some cases (Table E7). The TCR repertoire was persistently oligoclonal in 2 of 7 tested patients and transiently oligoclonal in 1 patient (Fig E3, C; Table E6). The proportion and phenotype of Treg cells was variable (Fig 2, B; see Fig E4, A, in this article’s Online Repository at www.jacionline.org); however, in vitro expanded Treg cells showed decreased expression of all T-cell markers including FOXP3, Helios, CD25, and CTLA-4 (Fig 2, A; Table E6). Treg-cell suppressor activity against CD4+ and CD8+ T allogeneic responder cells was defective (Fig E4, C). An increase in the CD3-CD56brightCD16−reg NK-cell subpopulation (27% in P2, 24% in P3, and 21% in P4) was noted when tested (P2, P3, and P4) (see Fig E5 in this article’s Online Repository at www.jacionline.org; data not shown). Impaired NK-cell degranulation in the presence of K562 cells was observed and similarly to patients with Wiskott-Aldrich Syndrome IL-2 response to TNF-blocking agents was unsatisfactory. To date, 5 patients have been treated with HSCT. Two patients have a medium-long-term follow-up of 1 and 6 years, respectively, and are in good health and off all medication (P2 and P6). The other 3 patients (P3, P9, and P12) have only recently been transplanted, and they are alive and well, with resolution of all "auto"inflammatory features.

In conclusion, our cohort delineates a more detailed and larger spectrum of ARPC1B deficiency phenotypes compared with previous reports. The clinical defect appears to be characterized by recurrent bacterial and viral infections, extensive eczema, allergies, thrombocytopenia, and skin vasculitis, together with bleeding often manifested as early onset gastric hemorrhage and hemorrhagic colitis. The eczematous skin phenotype can be explained by immune-mediated allergic responses and the anaphylactic reactions can be avoided by elimination of food allergens from the diet. The defective Treg-cell function is suggested to be involved in both the exaggerated Th2 responses and IgE reactivity against allergens. Defects in cytoskeleton rearrangement, altered immunologic synapses formation, and reduced chemotaxis have been recently identified in ARPC1B-deficient patients’ T cells, suggesting that they may play a role in the susceptibility to infections. In addition, patients’ NK cells show a peculiar phenotypic profile and an impaired functionality including both migration defects and NK-cell dysfunction, which may well contribute to the predisposition to viral infections seen in ARPC1B-deficient patients. The neutrophil and macrophage abnormalities may explain the susceptibility of the patients to bacterial infections in the presence of normal antibody levels. Although careful monitoring, antimicrobial prophylaxis, and adequate treatment are mandatory to prevent and counter infections, the immunodysregulation contributing to vasculitis and arthritis requires immunosuppression. The unique and variable combination of clinical features makes ARPC1B deficiency a complex disease entity for which HSCT is considered a curative treatment option.

Stefano Volpi, MD, PhDb,c
Maria Pia Cicalese, MD, PhDf
Paul Tjutjehnburg, MDf,g
Anton T. J. Tool, PhD
Eloy Cuadrado, PhD
Marwan Abu-Halawehb
Hamid Ahanchian, MD
Raed Alzyoud, MD
Zeynep Coban Akdemir, PhD
Federica Barzaghi, MD
Alexander Blank, MDb
Bertrand Boisson, PhDm,n
Cristina Bottino, PhD
Immacolata Brigida, PhD
Roberta Cuorsi, MDb
Jean-Laurent Casanova, MDb, PhDm,n,q
Sabrina Chiesa, PhD
Ivan Kingyue Chiu, MD
Gregor Dückers, MD
Anselm Enders, MD
Hans Christian Erichsen, MD
Lisa R. Forbes, MD
Tomasz Gambin, PhD
MarcoGattorno, MD
Ehsan Ghayoor Karimiani, MDb, PhD
SiviliaGilian, MD
Michael S. Gold, MD, FRACP, MChB, FCP, DCH
Eva-Maria Jacobsen, PhD
Machiel H. Jansen, BSd,e
Jovanka R. King, PhD, FRACP, FRCPA, BMBS, B Pod, DCH
Ronald M. Laxer, MDCM, FRCPC
James R. Lapski, MD, PhD
Emily Mace, PhD
Stefania Marchenaro, PhD
Reza Manooonian, PhD
Alexander B. Meijer, PhD
Tim Niehues, MD
Luigi D. Notarangelo, MD
Jordan Orange, MD, PhD, FAAAF
Ulrich Pannicke, MD
Chris Pearson, MD
Paolo Picco, MD
Patrick J. Quinn, MBBS, FRACP
Ansgar Schuh, MD
Filiz Seeborg, MD
Ashjørg Stray-Pedersen, MD, PhD
Hasan Tawamime, PhD
Ester M. M. van Leeuwen, MSc
Alessandro Auni, MDb, PhD
Rae Yeung, MD, PhD, FRCPCh, m
Klaus Schware, MDb,f
Taco W. Kuijpers, MD, PhDf

From "Clinica Pediatrica e Reumatologia, Centro per le malattie Autoinflamatorie e Immunodenze, Istituto Giannina Gaslini, Genova, Italy; "DINOGLI, Università degli Studi di Genova, Genova, Italy; "Pediatric Immunohematology, San Raffaele Hospital and San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy; "the Department of Pediatric Immunology, Rheumatology and Infectious
The study was partly supported by grants of the Italian Ministero della Salute (Project/C224). *Equal first authors.

VOLUME 143, NUMBER 6
J ALLERGY CLIN IMMUNOL

Medicine, University of Adelaide and Department of Allergy and Clinical Transplantation for Primary Immunodeficiency Disorders, Amman, Jordan; iBaylor-Hopkins Center for Mendelian Genomics, University of Maryland, Baltimore, MD, and Howard Hughes Medical Institute, New York, NY; iiCenter for Child and Adolescent Medicine, Helios-Clinic, Krefeld, Germany; iiiDepartment of Immunology and Infectious Disease, John Curtin School of Medical Research and Centre for Personalised Immunology, Australian National University, Canberra, ACT, Australia; ivSection of Paediatric Medicine and Transplantation, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway; vInstitute of Computer Science, Warsaw University of Technology, Warsaw, Poland; viiiInstitute of Molecular and Clinical Sciences Institute, St George’s, University of London, Cranmer Terrace, London, United Kingdom; ixInnovative Medical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; xMedical Genetics Unit and “A. Nocivellii” Institute for Molecular Medicine, Spedali Civili Hospital, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; xiDiscipline of Pediatrics, School of Medicine, University of Adelaide and Department of Allergy and Clinical Immunology, Women’s and Children’s Health Network, Adelaide, South Australia, Australia; xiiDepartment of Biotechnology and Genetics Engineering in Philadelphia University, Amman, Jordan; xiiiDivision of the Rheumatology, Department of Paediatrics and Department of Medicine, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada; xivDepartment of Pediatrics, Baylor College of Medicine, Houston, TX; xvTexas Children’s Hospital, Houston, TX; xviIstituto Gianna Gaslini, Genova, Italy; xviiMedical Research, RILD Welcome Wolfson Centre, Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter and Genetics and Molecular Cell Sciences Research Centre, St George’s University of London, London, United Kingdom; xixDepartment of Plasma Proteins, Sanquin Research and Landsteiner Laboratory AMC, University of Amsterdam, Amsterdam, The Netherlands; xxDepartment of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD; xxDepartment of Transfusion Medicine and Immunogenetics, University of Amsterdam, Amsterdam, The Netherlands; xxIstituto Gianna Gaslini, Genova, Italy; xxxNorwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway; xixInstitute of Human Genetics of Leipzig, Leipzig, Germany; Departments of “Pediatries and 10 Immunology, Institute of Medical Science, University of Toronto, Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and xivInstitute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg – Hessen, Ulm, Germany. E-mail: stefanovolpi@gaslini.org, Or: t.w.kuijpers@amc.nl.

†Equal first authors.

The study was partly supported by grants of the Italian Ministero della Salute (Programma di Ricerca Corrente 2011-2013-C22/C224) and Fondazione Telethon (TIGER Core grant C6). L.D.N. is supported by the German Federal Ministry of Education and Research (BMBF) and the German Research Foundation (DFG) as part of the “CIBERSAM” Collaborative Research Center 937. T.G. is supported by the Fondazione Cassa di Risparmio di Modena and the Italian Ministry of Health (Ricerca Corrente Grant 2015-2016). E.L. was supported by a grant from the German Research Foundation (DFG) (SFB 706). T.L. is supported by a grant from the Bundesministerium für Bildung und Forschung to the University of Ulm (PID NET; 01GM1517B). This study was supported by a starting grant from the University Hospital Ulm to A.B., as well as by a grant for the Center of Immunodeficiencies Amsterdam (CIDa).

Disclosure of potential conflict of interest: The authors declare that they have no relevant conflicts of interests.

REFERENCES

Available online February 13, 2019.
http://dx.doi.org/10.1016/j.jaci.2019.02.003