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Abstract

Among many well-designed techniques for dimension reduction, the Principal

Component Analysis (PCA) is one of the most popular and applicable methods.

In this thesis, we address the challenges encountered when modelling and fore-

casting the high-dimensional data with PCA related methods in three problems.

In Chapter 2, we propose a two-style factor model to improve the forecasting

of high-dimensional time series. The model pursues two types of low-dimensional

features for the original high-dimensional time series, with one type summarizes

the common time-serial trend, and the other one represents the common varia-

tions. The two types of features benefit the forecasting and the model fitting,

respectively. The dynamic PCA and the static PCA are utilized in a sequential

way to estimate the features in the model. We show the proposed method enjoys

good statistical performance and illustrate the advantages of it with various sim-

ulating studies. By modelling and forecasting the US mortality data, we show

that our method provides more accurate forecasts, especially comparing to the

Lee-Carter model, which is the most popular model in mortality analysis.

In Chapter 3, we continue to study the mortality modelling. Classical mor-

tality models usually assume the factor loadings, which capture the relationship

between age variables and latent common factors, are time-invariant. This as-

sumption, however, is too restrictive in reality, as mortality datasets typically

span a long period of time. In order to reflect the changing relationship between

age variables and latent common factors, we introduce a factor model with time-

varying factor loadings to model the mortality data. Accordingly, two forecasting

methods are proposed for which the estimated time-varying factor loadings are

predicted using local linear regression and inheriting historical value (the naive

method), respectively. In the empirical data analysis and the simulation studies,

ix
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x

the proposed method can recover the time-varying factor loadings and signifi-

cantly improve the mortality forecasting. As further study, we propose a method

to estimate the optimal “boundary” between the short-term and long-term fore-

casting, which is favored by the two forecasting methods, respectively. In view

of this, a hybrid forecasting method can be utilized, which consists of the local

regression method before the optimal boundary and the naive method thereafter.

In Chapter 4, we propose a novel robust PCA for high-dimensional data in

the presence of various kinds of heterogeneities, such as outliers, heteroscedas-

tic noise, and heavy-tailed variables. The method is based on a characteristic-

function-type of transformation. Besides the typical outliers, the proposed method

has the unique advantage of dealing with heavy-tail-distributed data, whose co-

variances could be nonexistent (positively infinite, for instance). We show the

merit and the cost of the method by studying the estimation accuracy of the

reconstruction error and the impact of the transformation on a spiked covariance

structure. In addition, simulation studies show the advantage of our method on

data with heterogeneities. At last, we apply the method to classify mice with dif-

ferent genotypes in a biological study based on their protein expression data and

find that our method is more accurate on identifying abnormal mice comparing

to the standard PCA.
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Chapter 1

Introduction

1.1 Overview

Principal component analysis (PCA) was firstly proposed and discussed by Pear-

son [1901] and Hotelling [1933] as a statistical dimension reduction method, which

aimed to represent multivariate data onto a lower dimensional space, while min-

imizing the loss of information. Since developed, applications of PCA have been

widely investigated in many areas such as physics, biology and economics, as

discussed in Jolliffe [2002]. Thanks to the development of computer science in

recent years, a vast number of data are being collected for statistical analysis

and the dimension of data or number of variables are growing dramatically, see

for example, Huang et al. [2010]; Hyndman et al. [2013]; Ando and Bai [2017].

Among many well-designed techniques for dimension reduction, PCA is one of

the most applicable methods and it can be easily interpreted. Hence, as a pow-

erful dimension reduction technique, PCA has once again became attractive to

many researchers.

Nonetheless, the growth of the dimension has also lead to the increased com-

plexity of the data collected (Fan et al. [2018a]). While PCA is still a powerful

tool for reducing the dimension of such data, it faces challenges as the complex-

ity of the data increases. To address these challenges, we adapt traditional PCA

methods for high-dimensional data with different types and structures in this

thesis. More specifically, the following statistical challenges related to PCA are

considered:

1
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2 Introduction

• Chapter 2: extracting low-dimensional features which are ideal for the fore-

casting of mortality data;

• Chapter 3: recovering the changing relationship between age variables and

common features in age-specific mortality data to improve model fitting

and forecasting;

• Chapter 4: reducing dimension when high dimensional data contain varies

kinds of heterogeneities, such as outliers and heavy-tail-distributed vari-

ables.

The outline of the thesis is as follows. Note that each chapter uses their own

mathematical notations.

In the rest sections of this chapter, we discuss the relationship between PCA

and the factor model, provide literature on modelling and forecasting the age-

specific mortality data using factor models, and review literature about dynamic

PCA and robust PCA. We also point out our contributions in those sections.

In Chapter 2, we propose a two-style factor model to seek linear features that

attain optimal forecasting of the US age-specific mortality data. The age-specific

mortality data is a representative high-dimensional time series data, as it contains

death rate for a given age at a specific year and the number of years is comparable

to the number of age groups. The model pursues two types of low-dimensional

features for the mortality data, with one type summarizes the common time-

serial trend, and the other one represents the common variations. The dynamic

PCA and the static PCA are utilized in a sequential way to estimate the features

in this model, which allows the two types of features benefit the forecasting

and the model fitting, respectively. We show the proposed method enjoys good

statistical performance in the sense that both types of features have equally fast

convergence rates. Various simulating studies illustrate the advantages of the new

method over the standard PCA and the dynamic PCA. We use rolling-window

method to evaluate the forecasting performance of our method comparing to
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§1.1 Overview 3

other classical methods on the US mortality data. It shows that the two-style

factor model do provides better forecasts on the US mortality data, especially

comparing to the Lee-Carter model (Lee and Carter [1992]), which is the most

popular model in mortality analysis.

In Chapter 3, we continue to study the mortality modelling. Many mortality

models, such as the Lee-Carter and its variants, assumed the relationship be-

tween a given age and mortality level (the common factor in factor model) is

time-invariant. This assumption is usually too restrictive in reality as mortality

datasets typically span a long period of time. Driving forces such as medical im-

provement of certain diseases, environmental changes, and technological progress

may influence the relationship of different variables significantly. To recover the

changing relationship between age variables and latent common factors, we in-

troduce a factor model with time-varying factor loadings to model the mortality

data. The time-varying factor loadings are estimated by a local version of PCA

proposed by Su and Wang [2017], which is a semi-parametric kernel method.

Based on the time-varying factor model, two forecasting methods are proposed

to extrapolate the time-varying factor loadings into feature. One method uses

local linear regression and the other inherits the most recent historical value (the

naive method). In the simulation studies, we show that the time-varying model

provides more accurate forecasts than the classical model when the true factor

loading is changing over time. This is because the time-varying model is able

to recover the changing factor loading while the classical model can not. We

show the proposed method can significantly improve the mortality forecasting by

comparing it to other mortality models with mortality data of varies countries

and forecasting horizons. As further study, we propose a novel approach based

on change point analysis to estimate the optimal “boundary” between the short-

term and long-term forecasting, which is favored by the two forecasting methods,

respectively. In view of this, a hybrid forecasting method can be utilized, which

consists of the local regression method before the optimal boundary and the naive

© Lingyu He – 12 November 2020



4 Introduction

method thereafter.

In Chapter 4, we propose a novel robust PCA for the dimension reduction of

high-dimensional data in the presence of various kinds of heterogeneities, such as

outliers, heteroscedastic noise, and heavy-tailed variables. The estimation of the

standard PCA is based on covariance matrix, while the sample covariance matrix

is sensitive to outliers. Devlin et al. [1981] showed that the usual estimator of the

covariance matrix can lead to misleading estimation of the principal components

under the presence of outlying observations. Furthermore, heavy-tail-distributed

data also poses challenges to the inference of standard PCA, as their covariance

matrix could be nonexistent (positively infinite, for example). As a result, the

standard PCA is not robust to the presence of outliers or heavy-tailed variables.

To address the above difficulties simultaneously, in Chapter 4, we propose a novel

robust PCA based on a transformation related to characteristic function. The

transformed sample covariance matrix shrinks the impact of outliers or heavy-

tailed errors. We show the method is more robust than the classical PCA, in

the sense that it has small excess risk of the reconstruction error even applied

to extremely heavy-tailed data whose covariances could be nonexistent. We also

study the behavior of the large eigenvalues under a spiked covariance model to

illustrate the impact of the transformation on the spike structure. In addition,

we show the advantages of our method in the sense of the mean squared recon-

struction error compared with the standard PCA by a variety of simulations. At

last, we apply the method to a mice data from Higuera et al. [2015]. The data

consists protein expressions of mice with different genotypes in a biological study.

The robust PCA provides more accurate classifications for normal and abnormal

mice comparing to the standard PCA.

Appendix A provides additional simulations and the proof for Chapter 2.

Appendix B provides additional empirical applications for Chapter 3.

Next, let us review related methods and literature in the following sections.

© Lingyu He – 12 November 2020



§1.2 Factor model and PCA for high dimensional data 5

1.2 Factor model and PCA for high dimensional

data

Factor analysis and principal component analysis (PCA) are two widely used

statistical methods. It is shown in Fan et al. [2013] that PCA can be used for

the factor analysis in the presence of spiked eigenvalues under high-dimensional

setting. In Chapter 2 and 3, we use factor models to model the underlying high-

dimensional data and adapt PCA methods to estimate corresponding factors and

factor loadings. In this section, we discuss some mathematical details of PCA

and factor model, as well as their relationship. One can refer to Fan et al. [2013,

2018a] and Fan et al. [2018b] for more detailed discussion.

We first summary the standard PCA here. Let y = (y1, . . . , yp)> be a random

vector taking values in Rp with mean zero and covariance matrix Σ. With this

formalism, standard PCA seeks projection direction vectors, β1, . . . , βk ∈ Rp,

such that

β1 ∈ argmax
‖β‖2=1

β>Σβ, β2 ∈ argmax
‖β‖2=1,β⊥β1

β>Σβ, β3 ∈ argmax
‖β‖2=1,β⊥β1,β2

β>Σβ, . . . .

Mathematically, the optimal solution for {βi}R
i=1 are the R eigenvectors corre-

sponding to the top R eigenvalues of Σ. Given BR := (β1, β2, . . . , βR), the goal

of dimension reduction is achieved by projecting the original high dimensional

data onto the low dimensional subspace S ⊂ Rp of dimension R (R < p) spanned

by columns of BR. Since BR captures the most variation in the dataset, the pro-

jected data B>
Ry approximately preserves the geometric properties of the original

data, which are amenable to downstream statistical analysis (Fan et al. [2018a]).

In applications, the unknown population covariance matrix Σ is replaced by the

sample covariance matrix Σ̂ in order to estimate the projection direction vectors.

Factor model is a frequently used method in actuarial, economic and financial

studies (for example, Stock and Watson [2002]; Cairns et al. [2006]; Ando and Bai
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[2017]). It aims to capture dependence across multivariate variables by assuming

several “common factors” (Anderson [1963]; Bai and Ng [2002]; Lam et al. [2011];

Fan et al. [2018b]). Those common factors summarize the dependence of the

whole multivariate data and the number of common factors are usually much

smaller than the number of variables. In recent decades, literature such as Bai

and Ng [2002]; Fan et al. [2013] studied the factor model under high-dimensional

settings. A typical factor model for Y = (y1, . . . , yn) (n observations of the

random vector y defined in the last paragraph) is constructed as follows:

yij = µj + b>
j f i + εij , i = 1, . . . ,n, j = 1, . . . , p, (1.2.1)

where yij is the jth response of the ith observation yi = (yi1, . . . , yip)>, µ =

(µ1, . . . ,µp)> is the intercept, bj (R× 1) is vector of factor loadings, f i (R× 1)

is the vector of R common factors, and εi = (εi1, . . . , εip)> is the error term

independent of f i. In model 1.2.1, only yij ’s are observable.

Let B = (b1, . . . , bp)> (p×R) be the factor loading matrix. Then based on

the model 1.2.1, Σ, the covariance matrix of y, is given by

Σ = Bcov(f i)B
> + Σε, Σε = (σε,jr)1≤j,r≤p = cov(εi). (1.2.2)

It is easy to obtain that the columns of B are the eigenvectors of the matrix

Bcov(f i)B
> corresponding to its non-zero eigenvalues. The literature on high-

dimensional factor models (Bai and Ng [2002]) usually assume that the R non-

zero eigenvalues (R is assumed to small compared to p and n, e.g. fixed) of

Bcov(f i)B
> diverge at rate O(p) and all the eigenvalues of Σε are bounded

as p → ∞. The assumption holds when there is a spiked eigenvalue structure

in Σ, that is a non-negligible fraction of eigenvalues larger than the rest (Fan

et al. [2018a]). Hence, under a spiked covariance structure, columns of B are

close to the eigenvectors corresponding to the top R eigenvalues of Σ, which
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means B is close to BR obtained by the PCA. Fan et al. [2013] showed that

the PCA and factor analysis are approximately the same if ‖Σε‖2 = o(p). In

view of this, PCA can be used to estimate the factor model when n, p → ∞.

Therefore, in Chapter 2 of this thesis, we utilize PCA methods to estimate the

factors and factor loadings in the proposed two-style factor model and study

statistical properties of the estimators by assuming a spiked covariance structure

under high-dimensional setting.

1.3 PCA for high-dimensional time series

We review literature about PCA for high-dimensional time series in this section.

In many areas such as economics, finance and medical studies, the data interested

for analysis are often serial dependent. For example, in bio-medical research, time

improvement of the patients’ treatment can be studied via longitudinal data, as

the empirical study in Martinussen and Scheike [2000]; in finance, Ando and Bai

[2017] tried to identify the sources of the co-movement of international stock

returns. The mortality data studied in Chapter 2 and 3 is a representative high-

dimensional time series data, which is important for forecasting death rate or life

expectancy (Lee and Carter [1992]).

Traditionally, the application of PCA relying on the assumption that the

observations are independent. However, when applied to time series data, the

standard PCA, or static PCA, fails to take into account the potentially valuable

information carried by the past values of the time series under study. Because

mathematically the static PCA is only based on the variance-covariance ma-

trix but not the auto-covariance. To amend this drawback, dynamic PCA has

been developed as a remedy for time series. An early work of dynamic PCA

can be found in Brillinger [1975], where the author estimated PCs based on the

Fourier transforms of the eigenvectors of spectral matrices. That is to say, dy-

namic PCA involves both the variance-covariance matrix and time-lagged auto-
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covariance matrix when solving the subspace that contains the most variations

of the original data. In other words, the variation of data not only refers to the

cross-sectional complexity of data but also the temporal dependence. Depending

on the targets, different varieties of dynamic PCA have also been developed re-

cently. Hörmann et al. [2015] developed and studied a dynamic functional PCA

for functional data analysis, which extended the method of Brillinger [1975] in a

functional setup; Lam et al. [2011]; Lam and Yao [2012] studied factor modeling

for high-dimensional time series based on dynamic PCA and provided inference

for relevant estimators; Peña and Yohai [2016] generalized the dynamic PCA to

adapt data with non-stationarity, nonlinearity, or outliers.

Our work in Chapter 2 is closely related to Lam and Yao [2012]. In their

method, only auto-covariance matrices are involved in estimating of factors and

factor loadings, as they assumed the original high-dimensional time series come

from a low dimensional factor process. However, when the original data are gen-

erated from a more complicated factor structure which contains both time-serial

dependent factors and temporally unrelated factors, both variance-covariance

and auto-covariance matrices should be involved. The two-style factor model

proposed in Chapter 2 aims to handle such kind of factor structure and we show

the subspace spanned by eigenvectors that maximize the covariance does not rep-

resent the same subspace extracted from auto-covariance. Following a two-step

estimation procedure, we extract two types of factors: one type of factors summa-

rize most of the temporal dependence and are extracted via eigendecomposition

of auto-covariance matrices; the other type of factors represent most of the vari-

ations after eliminating the temporally dependent factors and are captured by

variance-covariance matrix. Lam and Yao [2012] also investigated a two-step

procedure for their model. Their two steps are both based on auto-covariance

matrices, hence provide two kinds of factors with the ones from the first step

have stronger strength, or faster convergence rate, than those from the second

step. The two kinds of factors in the method of Chapter 2, however, are both
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strong factors in the sense that they are established based on auto-covariance

and variance, respectively. More details are in Chapter 2 and the corresponding

Appendixes.

1.4 Mortality data and mortality forecasting

We briefly discuss mortality data and methods for mortality modelling and fore-

casting in this section. A comprehensive review of the methods since 1980 can

be found in Booth and Tickle [2008]. Millossovich et al. [2018] summarized more

recent developments and provided the R package to implement those models.

The mortality datasets studied in this thesis come from the Human Mortality

Database(HMD 91). HMD contains original calculations of death rates and life

tables for the populations in 40 countries and areas, as well as the input data

used in constructing those tables. In Chapter 2, the data obtained from HMD

includes the annual age-sex-specific information of the number of exposures to

risk, the number of deaths, and the central death rate, for ages from 0 to 110+

(age 100 and above) during the period from 1933 to 2016 for the US population.

In Chapter 3, besides the the US mortality data, we also study the age-specific

mortality rates of other countries including Australia, Canada, France, Italy, and

Japan. The age-specific mortality data consists of annually observations on death

rates of a population under each age, hence the age variables are usually as many

as the yearly observations for each age. In view of this, age-specific mortality

rates are high-dimensional time series.

Mortality forecasting is important for various areas, such as actuarial science,

demography, and government policymaking. Because age-specific mortality data

are usually high dimensional, many existing stochastic mortality models follow

the framework of factor models. Lee-Carter model (Lee and Carter [1992]) is one

of the most influential such kind of methods. In Lee-Carter model, one common

factor is extracted and defined as Mortality Index, and the factor loadings capture
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the relationship between the age variables and the mortality index. Then the

forecasting of the mortality rates is obtained by forecasting the mortality index

with classical univariate time series model. The method is easy to implement

and interpret, hence it is popular in mortality forecasting.

Since there is only one factor in the Lee-Carter model, Booth et al. [2002],

Renshaw and Haberman [2003], and Yang et al. [2010] extended the Lee-Carter

framework to incorporate more common latent factors for mortality modeling

in different countries. Hyndman and Ullah [2007] generalized the Lee-Carter

method under the functional data setting and also allowed more common factors.

To handle outliers in the mortality index, Li and Chan [2005] combined the Lee-

Carter model with time series outlier analysis and proposed an outlier-adjusted

model. Additionally, the Cairns-Blake-Dowd (CBD) model, a prominent variant

of the Lee-Carter model and introduced by Cairns et al. [2006], includes a cohort

effect term in the Lee-Carter model. More recently, Richman and Wuthrich [2019]

utilized Neural Network to extend the Lee-Carter model to multiple populations.

With the similar purpose, Shang and Haberman [2020] proposed methods to

forecast multiple functional time series in a group structure with the functional

model in Hyndman and Ullah [2007].

The work in this thesis contribute to two aspects of mortality modelling and

forecasting. Firstly, Chapter 2 aims to improve the mortality forecasting by

seeking the most suitable factors. The goal is achieved by the newly proposed two-

style factor model and the corresponding two-step estimation approach. Secondly,

Chapter 3 focuses more on improving the fitting of the factor loadings, which

also leads to more accurate forecasting. Time-varying factor model is applied

to mortality forecasting in Chapter 3, which was not considered in mortality

forecasting literature to the best of our knowledge. The assumption of time-

invariant factor loadings in Lee-Carter model and its variants is not realistic for

mortality data spanning a long period of time, hence time-varying model provides

better model fitting by relaxing this assumption.
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1.5 Robust PCA methods

There have been a lot of robust variants of PCA proposed in the statistical

literature for dealing with the non-robustness issue encountered by applying the

standard PCA. One can refer to Chapter 10.4 in Jolliffe [2002] for a comprehensive

review of the robust estimation of principal components in the early decades and

refer to Maronna et al. [2019] for an introduction of the robust statistics. Our

robust PCA in Chapter 4 is more robust than the classical PCA in the sense that

it performs well even when the covariance matrix of the data is inexistent.

In the rest of this section, we review the robust PCA methods in the literature

and summarize them into several classes following the survey in She et al. [2016].

The largest group of robust PCA methods is the robust covariance matrix based

method. It is a simple and natural idea to replace the sample covariance matrix

with a robust covariance matrix estimate in the standard PCA and then extract

the eigenvectors from this estimate as the projection directions. In fact, every

new robust covariance matrix estimator has a new robust PCA method associated

with it (Jolliffe [2002]). Some earlier work of the robust covariance matrix esti-

mation can be found in Campbell [1980], Devlin et al. [1981], and Davies [1987],

in which they achieved the robustness by utilizing the Mahalanobis distance, M-

estimator, or S-estimator. Croux and Haesbroeck [2000] studied some such kinds

of robust covariance matrix estimators by examining the influence function and

efficiency for the results of PCA. Recently, with the amount of data getting large,

researchers are more focusing on studying the covariance matrix under high di-

mensional settings. For example, Chen et al. [2018] introduced a concept called

“matrix depth” and studied the convergence rate for the “deepest” covariance

matrix, which was the proposed robust covariance matrix estimator, under high

dimensional regimes; Fan et al. [2019] proposed a method to robustly recover co-

variance matrix using the factor model for high dimensional data; Avella-Medina

et al. [2018] presented robust matrix estimators aiming to relax the usual sub-
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Gaussian assumption and fit a much richer class of distributions. See also Fan

et al. [2017]; Minsker [2018] and the references therein. There are some lim-

itations of the above-mentioned methods. Firstly, as some of the estimations

involve iterative or re-sample procedure, the computational cost is high, espe-

cially when the sample and dimension are both large. Secondly, in order to plug

in the robust covariance matrix estimators to estimate the principal components,

the population covariance matrix needs to exist. For some heavy-tailed distribu-

tions, however, the covariance matrix can be positive infinite, i.e. the population

covariance matrix of the data does not exist. Hence, performing the standard

PCA might be initially unreasonable. On the other hand, the proposed method

in Chapter 4 solves this issue and is valid under the aforementioned situation.

Another important class is the projection based method. The initial idea of the

standard PCA is to find directions which maximize the variance of the projected

data, sequentially. Hence, another natural idea is replacing the scale measure of

the projected data with a robust one. The projection-pursuit method proposed

by Li and Chen [1985] utilizes a projection-pursuit index instead of the variance

to measure the dispersion of the projections. While the original algorithm is

computer intensive, several alternatives have been provided to improve the effi-

ciency as well as the computation time of the projection based method, which

include Rousseeuw and Croux [1993]; Croux and Ruiz-Gazen [1996, 2005], etc.

In addition, Hubert et al. [2005] proposed a method called “ROBPCA” for high

dimensional data, which combines the projection pursuit idea with the robust

covariance matrix estimation.

More recently the low rank matrix approximation based method is popular in

computer science. Triggered by the need of methods to deal with huge datasets

in areas such as image processing and Web analysis, researchers in computer

science have done a lot of work on PCA. They view the PCA as a low-rank

matrix recovering problem and to achieve the robustness, robust loss functions

are utilized in the optimization problem. For example, Wright et al. [2009] showed
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that combining the solutions to nuclear norm minimization for low-rank recovery

and l1−minimization for error correction perfectly recovers a low-rank matrix

from large but sparse errors with high probability. Candès et al. [2011] proved

that under some suitable assumptions, it is possible to recover both the low-rank

and the sparse components exactly by solving a convex program called Principal

Component Pursuit. Further variations such as Zhao et al. [2014] considered

more complicated noise component. For a comprehensive review of the robust

subspace learning, one can refer to Bouwmans et al. [2017].

Our method proposed in Chapter 4 is different from the above methods. We

project the original data onto another space to achieve the robustness. This kind

of idea was also implemented by Locantore et al. [1999], in which they proposed

robust method by projecting the original data onto the unit sphere (centered at

the spatial median). Their method is specifically for a kind of functional image

data, while our method is more general.
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Chapter 2

Data-adaptive Dimension

Reduction for Mortality

Forecasting

2.1 Introduction

The age-specific human mortality data consists of observations on either the

death numbers or the death rates of a population under each age, measured for

each historical year. Accurate forecasting of mortality data plays a crucial role in

demography and actuarial science. For instance, the life expectancy and present

value of life annuity are highly related to the future mortality rates. According

to the life table published by Social Security Administration [2019], from 2016 to

2095, the life expectancy, which is the average remaining years of life at a specific

year, for a male aged 66 in the US will rise from 17.2 to 21.7 years. Meanwhile,

the present value (price) of the corresponding life annuity, which pays annuities

beginning from the year of age 66 until death, will change from $13.94 to $16.70

per $1. Even a small amount of change for the price of the annuity is crucial for

insurance companies and social security. Suppose the annual payments is $20000

and there are 50000 individuals under cover, then every $0.5 lower pricing will

result in a $500 million shortfall. Thus a better mortality forecasting, which

guarantees a more accurately estimating of life expectancy and pricing of life

15
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annuity, is crucial to reduce the social security risks.

This chapter aims to model and forecast the age-specific mortality data of

the US population in the Human Mortality Database (HMD) (91) obtained in

July 2018. After preprocessing, the annual age-specific death rates under study

consist of a matrix data with 84 yearly observations (1933-2016) for 91 ages (0-

90). Modelling and forecasting mortality data poses a challenge for traditional

statistical analysis and multivariate time series analysis, as the dimension 91 is

comparable to the sample size (or time length) 84. This high dimensional setting

incurs curse of dimensionality. Dimension reduction is a remedy method that

extracts representative features or patterns of available high dimensional data.

Statistical analysis on extracted features and recovery of corresponding inference

on original data are common techniques in high dimensional data analysis. How-

ever, optimal features for specific statistical inference are rarely studied. This

chapter contributes to seeking linear features to attain optimal forecasting of the

US mortality data. Roughly speaking, a linear feature is linear combination of

annually death rates over total 91 ages, which is a univariate time series that

summarized a 91-dimensional time series linearly. Before introducing the formal

statistical model, we analyse the US mortality data qualitatively and interpret

the features in pursuit intuitively.

We consider the logarithms of the death rates because this transformation

makes positive-valued original data spread over total real-value set, which results

in easier statistical modelling and losing no generality (Booth and Tickle [2008]).

As illustration, Table 2.1 shows the structure of the historical log death rates as

well as the purpose of forecasting. It demonstrates a classical problem: modelling

and forecasting a high dimensional time series. Through two descriptive graphs

we investigate the characteristics of the 91 time series under study. While Figure

2.2 exhibits relations of mortality data for all ages at different years, Figure 2.1

illustrates time-serial trend for each age. US mortality data possess quite sys-

tematically distinct characteristics. Firstly, the death rates are decreasing over
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the years in common. Secondly, similar curves from different years in Figure 2.2

state that mortality at different ages has strong relations, especially consecutive

ages. These crucial points create the opportunity of utilizing common informa-

tion among ages in forecasting. More specifically, we can consider the features

that represent the common time-serial trend at most to benefit the forecasting

and the features that capture the common variations to help improve the model

fitting. As two types of features are different in the sense of representing differ-

ent characteristics of the mortality data, we will build a two-style factor model

to capture those features. In fact, linear features with most variation help im-

prove model fitting while those with larger auto-covariance enhance modelling

efficiency, which play significant roles in accurate forecasting.

Table 2.1: The Log Central Death Rates of the US
Historical data Forecasts

1933 1934 1935 . . . 2016 2017 2018 . . .

0 −2.792 −2.681 −2.789 . . . . . . ? ? ?
1 −4.661 −4.551 −4.720 . . . . . . ? ? ?
2 −5.437 −5.328 −5.486 . . . . . . ? ? ?
3 −5.775 −5.735 −5.816 . . . . . . ? ? ?
4 −6.038 −6.011 −6.031 . . . . . . ? ? ?
5 −6.227 −6.200 −6.210 . . . . . . ? ? ?

. . . . . . . . . . . . . . . . . . ? ? ?
90+ . . . . . . . . . . . . . . . ? ? ?

A large body of literature study diverse models on mortality forecasting. A

detailed review is provided in Booth and Tickle [2008]. One seminal paper on

US mortality forecasting is Lee and Carter [1992]. Lee-Carter model is the most

prominent method for forecasting mortality rates, and it is used by the US Bu-

reau of the Census as the benchmark model (Hollmann et al. [1999]). Lee-Carter

model is also from a dimension-reduction point of view, which first extracts the

common features of mortality for all ages, then makes use of these common fea-

tures’ forecasts to recover forecasting on mortality data. By utilizing principal

component analysis (PCA), Lee-Carter model pursues common features that re-
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Figure 2.1: The Log Central Death Rates,
years 1933 − 2016 for ages 0 to 90+.
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Figure 2.2: The Log Central Death Rates,
ages 0 to 90+ for years 1933 − 2016.

tain the most variation of mortality data. As a popular dimension reduction

technique, PCA can be traced to that of Anderson [2003]; Jolliffe [2002]). Dif-

ferently from the static PCA (the standard PCA used in the Lee-Carter model),

several papers search for common features that drive the time-serial dependence

of the original high dimensional time series. Brillinger [1975] and Hörmann et al.

[2015] extended the static PCA to dynamic PCA, which extract features from a

Fourier transformation on covariance and auto-covariances with different time-

lags. Lam et al. [2011] and Chang et al. [2018] extracted dynamic features by

assembling auto-covariances in another way while excluding the covariance.

As analyzed above, linear features represent common variation and common

temporal trend should be different. Based on this point, we propose a two-step

dimension reduction approach to seek these two kinds of features, both of which

play significant roles in accurate forecasting. We decompose mortality data into

three parts: a strong dynamic part driven by a lower-dimensional factor time

series; a weak dynamic but strong variation part represented by another lower-

dimensional factor time series; and an error part that is a high dimensional time

series with weak serial dependence as well as small variation. The description

of the error part illustrates the aim of such modelling is to capture dynamic
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common features and static features as most as possible. Estimation of this

two-type factor model is carried out by an eigenanalysis for an auto-covariance

matrix and a covariance matrix, respectively. Through investigating asymptotic

properties of the proposed method, the estimating for two kinds of factors have

equally fast rates of convergence.

We show that our proposed method is capable to improve the forecasting of

the US mortality rates compared to the benchmark methods. Moreover, from the

application for estimating life expectancy and pricing the life annuity, we find

that Lee-Carter method tend to lower estimate those value while our method

provides close result to the true value, when using the data of 1933 to 1986 as

training set and those of 1987 to 2016 as test set. Using the same training and

test sets, Lee-Carter methods tends to price lower for around $0.2 to $0.4 per

$1 annual payment, which is indeed a big risk for social security considering the

large amount of payments and population under cover in the real world. On the

other hand, the price from our method is about $0.02 higher per $1, which is a

remarkable improvement.

The rest of the chapter is organized as follows. In Section 2.2, the details

of the model are described, including the estimation and forecasting method.

We also provide a practical algorithm of the proposed method in Section 2.2.

The asymptotic properties of the proposed method are presented in Section 2.4

and the corresponding proof is in Appendix A.2. In Section 2.3, we discuss the

relationship and difference of our proposed method with static PCA and dynamic

PCA. We present simulations of those difference in Section 2.5. Also in Section

2.5, we show the out of sample forecasting performance of our method compared

to conventional methods with several examples. In Section 2.6, we compare the

forecasting performance of our method with conventional methods on the US

age-specific mortality rates. Finally, We apply our method to do a long term

forecasting on the US population and comparing the computed future remaining

life expectancy and the present value of life annuity with those obtained by Lee-
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Carter model. The conclusion is presented in Section 2.7.

The notations in this chapter are summarized here. For an p× n matrix C,

we denotes its transpose as C>, the square root of the maximum eigenvalue of

CC> as ‖C‖, and the square root of the smallest nonzero eigenvalue of CC>

as ‖C‖min. For a k × k matrix F , λi(F ) indicates the i-th largest eigenvalue

of the matrix F . For a non-symmetric matrix S, we use σj (S) to denote the

singular value of the matrix S, which corresponds to the j-th largest eigenvalue

of the matrix SS>. Ip represents p−dimensional identity matrix. All vectors

are column vectors. The notation a � b means that a = O(b) and b = O(a).
i.p.−→ denotes convergence in probability. We use P ,T → ∞ to denote that P and

T go to infinity jointly.

2.2 Model and estimation

Let mt = (m1,t,m2,t, . . . ,mP ,t)
> be the US age-specific death rates in year

t, where mp,t is the death rate for age p in year t with p = 1, 2, . . . ,P and

t = 1, 2, . . . ,T . The historical mortality data is available annually from the

year 1933 to the year 2016 for ages from 0 to 90+. For high dimensional

time series {mt, t = 1, 2, . . . ,T}, the time-serial length and the dimension are

T = 84 and P = 91, respectively. We will propose a two-step dimension

reduction model on the log transformation of mt which is denoted by yt =

(ln(m1,t), ln(m2,t), . . . , ln(mP ,t))
>. It is worth noting that building a model is

much easier on yt than that on mt because mt take non-negative values.

In this section, we will first introduce a two-step dimension reduction model

on the historical mortality data. Secondly a forecasting procedure based on

extracted features will be provided.
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2.2.1 Two-style factor model

As analyzed in last section, death rates for all 91 ages possess common features

that drive common time-serial trend and common variation, respectively. This

leads us to the following two-style factor model: for any t = 1, 2, . . . ,T (T = 84),

yt = Bk
(1)
t + ut, (2.2.1)

ut = Ak
(2)
t + εt, (2.2.2)

where k
(1)
t =

(
k
(1)
1t , k(1)2t , . . . , k(1)r1t

)>
is an r1 × 1 latent process with r1 < P , which

represents common temporal trends; B = (b1, b2, . . . , br1) is a P × r1 unknown

deterministic coefficients matrix; similarly, k
(2)
t =

(
k
(2)
1t , k(2)2t , . . . , k(2)r2t

)>
is an

r2 × 1 latent process with r2 < P , which indicates common variation among all

ages; A = (a1, a2, . . . , ar2) is the corresponding P × r2 unknown deterministic

coefficients matrix; and εt is an error component.

Here we assume r1 and r2 are both unknown positive integers. Once P is

much larger than (r1 + r2), an effective dimension reduction is achieved because

the original time series yt is driven by a much lower dimensional time series(
k
(1)
t , k

(2)
t

)
. We also call model (2.2.1) and (2.2.2) the factor models with k

(1)
t

and k
(2)
t being common factors, respectively. And B and A are the corresponding

factor loadings, respectively. Factor model is a popular dimension reduction

model in high dimensional statistics, which is investigated in huge amounts of

literature including Lam and Yao [2012], Lam et al. [2011], Bai [2002].

It is noted that this two-style factor model involves two kinds of common

factors k
(1)
t and k

(2)
t , which represent common temporal trends and common

variation among all p ages, respectively. These two kinds of common factors are

necessary in producing good forecasting results.

Because all elements in the model are unknown, including factor loadings and

common factors, we should impose identification conditions to make the model
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well-defined. First, we assume that the rank of factor loadings B and A are

equal to r1 and r2, respectively. Otherwise, the two parts Bk
(1)
t and Ak

(2)
t can

be represented in terms of factor models with even lower dimension. Moreover,

as factors and factor loadings are all unknown, for any r1 × r1 invertible matrix

H , if we substitute the factor model part
(

B, k
(1)
t

)
with

(
BH , H−1k

(1)
t

)
, the

term Bk
(1)
t is unchanged. It is also true for the term Ak

(2)
t . To avoid such

matters, we impose the following assumption.

Assumption 2.1. Orthogonal Condition. B>B = Ir1, A>A = Ir2, where Ir1

and Ir2 are r1 × r1 and r2 × r2 identity matrices, respectively.

Under Assumption 2.1, the factor loading B and the common factor k
(1)
t are

determined up to an orthogonal matrix H , and the same for the pair
(

A, k
(2)
t

)
.

In this way, Assumption 2.1 provides identification conditions between common

factors and the corresponding factor loadings. It is also a common identification

condition for factor models used in literature including Bai [2002], Lam and Yao

[2012].

Secondly, we consider the identification between the two kinds of factor mod-

els. As mentioned earlier, the two kinds of factor parts represent common tempo-

ral trends and common variation of the data, respectively. Intuitively, we think

the first common factor part possess stronger time serial dependence than the

second factor part. Formally, we use the auto-covariance to distinguish the two

parts, which is reasonable since auto-covariance can describe strength of time-

serial dependence. Before introducing Assumption 2.2, we specify some notations.

Σ
(1)
k (`) := cov

(
k
(1)
t , k

(1)
t+`

)
and Σ

(2)
k (`) := cov

(
k
(2)
t , k

(2)
t+`

)
are auto-covariance

of k
(1)
t with lag ` and that of k

(2)
t with lag `, respectively. For any matrix C, let

||C|| be the square root of the maximum eigenvalue of CC> and ||C||min be the

square root of the smallest nonzero eigenvalue of CC>.

Assumption 2.2. Identification between k
(1)
t and k

(2)
t .

∣∣∣∣∣∣∣∣Σ(1)
k (`)

∣∣∣∣∣∣∣∣ � P 1−δ1 �∣∣∣∣∣∣∣∣Σ(1)
k (`)

∣∣∣∣∣∣∣∣
min

,
∣∣∣∣∣∣∣∣Σ(2)

k (`)
∣∣∣∣∣∣∣∣ � P 1−δ2 �

∣∣∣∣∣∣∣∣Σ(2)
k (`)

∣∣∣∣∣∣∣∣
min

, where 0 ≤ δ1 < δ2 ≤ 1.
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Assumption 2.2 imposes different orders for eigenvalues of the auto-covariance

matrices for the two kinds of common factors. The order P 1−δ1 for k
(1)
t is larger

than the order P 1−δ2 for k
(2)
t as δ1 < δ2, which ensures that the time-serial

dependence of k
(1)
t is stronger than that of k

(2)
t . In view of this, Assumption

2.2 identifies the two kinds of factor models via their time-serial dependence. In

other words, the first factor model part extracts common factors with stronger

time-serial dependence, which also takes higher priority in the forecasting. This

kind of identification condition is utilized in Lam and Yao [2012].

Thirdly, we distinguish the second kind of factor part from the error compo-

nent of the model. After extracting the common temporal trends in the first part

of the model, the aim on better forecasting stimulate us to pursue further neces-

sary features in the data. Compared with the factor k
(1)
t , the factor part k

(2)
t has

weaker time-serial dependence. It has little interest for forecasting improvement.

However, it implies large amounts of common variation of the data. Neglecting

it will result in bad model fitting of the original data. As better model fitting

also plays an important role in forecasting improvement, we would like to keep

them in the dimension reduction as well.

Assumption 2.3. Identification between k
(2)
t and εt.

1
T

∑T
t=1 k

(2)
t k

(2)>
t

i.p.−→ Σ
(2)
k (0) > 0, as P ,T → ∞. Here Σ

(2)
k (0) is a deterministic

r2 × r2 positive definite matrix.

Assumption 2.3 is a common condition on factor model in the sense of the

factors representing most variation of the data. It is used in Bai [2002].

At last, we impose some conditions on the error component.

Assumption 2.4. Error components.

1. E (εit) = 0. {εt : t ≥ 1} is strictly stationary.

2. ∑P
i=1

∑P
j=1

∑T
t=1

∑T
s=1 |E (εitεjs)| = O(NT ) and ∑P

i=1
∑

j 6=i |σε,ij | = O(P ),

where σε,ij := E (εitεjt).
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Condition (2) of Assumption 2.4 ensure that weak cross-sectional dependence

and time-serial dependence in the error component. This condition indicates that

no obvious common variation and common temporal trends involved in the error

component.

In summary, Assumptions 2.1-2.4 create a well-defined two-style factor model

(2.2.1) and (2.2.2). Next, we will consider how to estimate the two kinds of

common factors for further forecasting.

2.2.2 Estimation approach

Based on the identification between k
(1)
t and k

(2)
t , the factor k

(1)
t will play a

leading role in the auto-covariance matrix Σy(`) := cov (yt, yt+`) with ` being a

positive integer. To see this point clearly, we do some calculation under the case

of k
(1)
t and k

(2)
t being independent. Then it follows from (2.2.1) and (2.2.2) that

Σy(`) = BΣ
(1)
k (`)B> + AΣ

(2)
k (`)A> + Σε(`), (2.2.3)

where Σε(`) = cov (εt, εt+`).

With Assumption 2.2 and Assumption 2.4, BΣ
(1)
k (`)B> is the leading term

of Σy(`) in the sense of spectral norm. As auto-covariance matrices are not

symmetric, we consider the matrix

L(`) := Σy(`)Σy(`)
>. (2.2.4)

It is easy to obtain that the columns of B are the eigenvectors of the matrix

BΣ
(1)
k (`)Σ

(1)
k (`)>B> corresponding to its non-zero eigenvalues. In fact, if C =

(b1, . . . , bP −r1) is a P × (P − r1) matrix for which (B, C) forms a P ×P orthog-

onal matrix, that is C>B = 0 and C>C = IP −r1 , then we have(
BΣ

(1)
k (`)Σ

(1)
k (`)>B>

)
C = 0. That is, the columns of C are eigenvectors of

BΣ
(1)
k (`)Σ

(1)
k (`)>B> corresponding to zero eigenvalues.
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Furthermore, the matrix BΣ
(1)
k (`)Σ

(1)
k (`)>B> is the leading term of the ma-

trix L(`) in the sense of spectral norm. Hence the columns of B are close to the

eigenvectors of the matrix L(`) corresponding to non-zero eigenvalues, approxi-

mately.

In terms of the analysis above, the eigendecomposition of L(`) provides a

recovery method of the factor loading B. Note that we use ` = 1 in the estimation

step, because the estimation of B is not sensitive to ` and the correlation is often

at its strongest at the small time lag (Lam and Yao [2012]). Besides, after

analyzing the US mortality data, we also find ` = 1 is enough for the forecasting.

Back to the two-style factor model (2.2.1) and (2.2.2), given an estimator for

the first factor part, the recovery of the second factor part is more straightforward.

In fact, the model is reduced into a simpler form

yt − Bk
(1)
t = Ak

(2)
t + εt. (2.2.5)

Under Assumption 2.3, (2.2.5) is a classical factor model which can be estimated

by the standard (static) PCA. See Fan et al. [2013].

In summary, the proposed novel dimension reduction method has two steps.

The first step is to extract useful features which has good forecasting behaviors by

a dynamic PCA procedure. The second step is to extract features, that retain the

variations for each age by performing static PCA. After the dimension reduction,

we get two sets of features, with which we would like to recover yt as follows:

ỹt =
r1∑

i=1
bik

(1)
it +

r2∑
i=1

aik
(2)
it , (2.2.6)

where k(1)it is the ith feature extracted in the first step, which is a linear com-

bination of the log scale age-specific death rates at time t, k(2)it is that in the

second step, r1 > 0 and r2 > 0 are the number of features extracted in two

steps respectively which satisfy r1 + r2 < P , and bi : P × 1, ai : P × 1 are the
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corresponding coefficients of the two sets of linear combinations. Hence, Ỹ =

[ỹ1, ỹ2, . . . , ỹT ] is a low-dimensional representation of Y = [y1, y2, . . . , yT ], as

rank{Ỹ } ≤ r1 + r2 < P . Next we describe how we can get this low-dimensional

representation 2.2.6 by the two-step dimension reduction in details.

The first step

Firstly, we assume that {yt}t=1,2,...,T is covariance stationary and consider the

following matrix

L1 = Σy(1)Σy(1)>,

where Σy(1) = cov(yt, yt−1). As L1 is a symmetric matrix, it can be decom-

posed as L1 = QΛQ>. P × P matrix Q consists of the orthogonal eigenvectors

of L1 in the columns and the columns are arranged such that the corresponding

eigenvalues are in descending order. Λ is a P ×P diagonal matrix with eigenval-

ues of L1 as the diagonal elements in descending order. As Q is an orthogonal

matrix, we have Q>Q = QQ> = I. Let µy = E(yt), then we have

yt − µy = QQ>(yt − µy).

By some simple rearrangement and let bi be the ith column of of Q, which is

the eigenvector corresponding to the ith largest eigenvalue of L1, we have

yt − µy =
r1∑

i=1
bib

>
i (yt − µy) +

P∑
i=r1+1

bib
>
i (yt − µy). (2.2.7)

Without loss of generality, we assume µy = 0 in the following analysis. Let

k
(1)
it = b>

i (yt − µy) = b>
i yt, and ut =

∑P
i=r1+1 bib

>
i (yt − µy) =

∑P
i=r1+1 bik

(1)
it .
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Then we can rewrite equation 2.2.7 as

yt =
r1∑

i=1
bik

(1)
it + ut. (2.2.8)

Then the linear combination k
(1)
it , i = 1, 2, . . . , r1, are the features representing

the time-serial trend, which have good forecasting behaviors.

The second step

The second step is equivalent to do a static PCA on ut in 2.2.8. Let Σu(0) =

var(ut), then the desired matrix for the second step is:

L2 = Σu(0)Σu(0)>.

Conducting eigen-decomposition on L2 and let ai be the eigenvector correspond-

ing to the ith largest eigenvalue of L2. Then similar to that in the first step,

k
(2)
it = a>

i ut is the jth feature extracted from the second step, which captures

the common variation. Then ut can be expressed as:

ut =
r2∑

i=1
aik

(2)
it + εt, (2.2.9)

where εt =
∑P

i=r2+1 aik
(2)
it . We can choose a r2 < (P − r1) such that E(‖ε>

t εt‖)

is small enough. Then ∑r2
i=1 aik

(2)
it , t = 1, 2, . . . ,T is a low-dimensional represen-

tation of ut, t = 1, 2, . . . ,T .

Finally combining equation 2.2.8 and 2.2.9, we have:

yt =
r1∑

i=1
bik

(1)
it +

r2∑
i=1

aik
(2)
it + εt,
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and let

ỹt =
r1∑

i=1
bik

(1)
it +

r2∑
i=1

aik
(2)
it , (2.2.10)

which is a low-dimensional representation of yt we get after the two-step dimen-

sion reduction procedure.

2.2.3 Forecasting

Recall that after the dimension reduction on the log scale death rate yt, we get a

low-dimensional representation 2.2.10. Following Lee and Carter [1992], we can

forecast yT+h by forecasting the features k(1)i,T+h and k
(2)
i,T+hfirst. In order to get

the forecasts k̂(1)i,T+h and k̂
(2)
i,T+h, we model {k(1)it : i = 1, 2, . . . , r1}t=1,2,...,T and

{k(2)it : i = 1, 2, . . . , r2}t=1,2,...,T with standard time sires models and conduct

h-step ahead forecasting with the models. Then together with 2.2.10, the h-step

ahead forecasting for yT+h is

ỹT+h =
r1∑

i=1
bik̂

(1)
i,T+h +

r2∑
i=1

aik̂
(2)
i,T+h,

where k̂(1)i,T+h and k̂(2)i,T+h are predicted values of the features in h years after time

T , h = 1, 2, . . . .

Consequently, instead of conducting P forecasting models, we only need r̂1 +

r̂2 < P forecasting models. In our simulation and application on the US mortality

data, we choose ARIMA(p, d, q) model to forecast the time series, and we use

BIC to choose the parameters p, d, q for each model.

2.2.4 Practical algorithm

The practical procedure for the dimension reduction and forecasting is summa-

rized in Algorithm 1.
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Algorithm 1: Data-adaptive Dimension Reduction for Mortal-
ity Forecasting

Input: Data Y = [y1, . . . , yT ] ∈ RP ×T ; Desired rank ≤ P .
Output: Low-dimensional representation of Y ; h−steps ahead forecasts

of yT , h = 1,2, . . . .
Dimension Reduction Step 1:

1 Compute the sample mean y = T−1∑T
t=1 yt;

2 Compute the sample auto-covariance matrix
Σ̂y(1) = 1

T −1
∑T −1

t=1 (yt+1 − y)(yt − y)>;
3 Compute sample matrix for the first step L̂1 = Σ̂y(1)Σ̂y(1)>;
4 Conduct eigendecomposition on L̂1 and get b̂1, . . . , b̂r̂1 , the eigenvectors

corresponding to the largest r̂1 eigenvalues of L̂1;
5 Compute the first sets of features

k̂
(1)
it = b̂

>
i (yt − y), i = 1, . . . , r̂1, t = 1, . . . ,T ;

Dimension Reduction Step 2:
6 Compute ût = (yt − y) −∑r̂1

i=1 b̂ik̂
(1)
it ;

7 Compute sample the covariance matrix of ût, Σ̂u(0) = 1
T

∑T
t=1 ûtû

>
t ;

8 Compute sample matrix for second step L̂2 = Σ̂ε(0)Σ̂ε(0)>;
9 Conduct eigendecomposition on L̂2 and get â1, . . . , âr̂2 , the eigenvectors

corresponding to the largest r̂2 eigenvalues of L̂2;
10 Compute the second sets of features

k̂
(2)
it = â>

i ût, i = 1, . . . , r̂1, t = 1, . . . ,T ;
11 Compute ŷt = y +

∑r̂1
i=1 b̂ik̂

(1)
it +

∑r̂2
i=1 âik̂

(2)
it , t = 1, . . . ,T , and the

estimated low-dimensional representation of Y is Ŷ = [ŷ1, . . . , ŷT ];
Forecasting Step:

12 Fit k̂(1)it , i = 1, . . . , r̂1, t = 1, . . . ,T and k̂
(2)
it , i = 1, . . . , r̂2, t = 1, . . . ,T

with standard ARIMA(p,d,q) models respectively;
13 Compute k̂(1)i,T+h, k̂(2)j,T+h, the h−step ahead forecasts of the features, with

the fitted ARIMA models; i = 1, . . . , r̂1; j = 1, . . . , r̂2;
14 Compute the h−step ahead forecasts for yT by

ŷT+h = y +
∑r̂1

i=1 b̂ik̂
(1)
i,T+h +

∑r̂2
i=1 âik̂

(2)
i,T+h.
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In our simulation and analysis of the US mortality data, we estimate the value

of both r1 and r2 by the criterion,

r̂ = argmin
1≤i≤R

λ̂i+1

λ̂i

, (2.2.11)

where λ̂i, i = 1, 2, . . . ,R are the eigenvalues of L̂1 or L̂2 in descending order,

and max(r1, r2) < R < P . This criterion is justified in Lam and Yao [2012] and

Ahn and Horensten [2013] for auto-covariance matrices and covariance matrices

on high dimensional data, respectively.

As mentioned in Lam and Yao [2012], in practice, the parameter R is cho-

sen as 1
2 min(P ,T ). It is worthy being mentioned that the number of nonzero

eigenvalues of the sample matrix L̂1 and L̂2 is no larger than min(P ,T ).

2.3 Relationship with existing methods

The methods which forecast mortality via features’ forecasting date back to the

Lee-Carter model (60). For general comparison, consider the following one factor

model

yx,t = ln(mx,t) = ax + bxkt + ux,t,

where ax is a constant for each x, kt is an unobserved time series (the feature

summarizing the the original high-dimensional time series), bx is the loading of

the feature kt to each age x, and ux,t is the error term. One can recover the

h−step ahead forecasting of yx,t via the forecasting of kt. Therefore, how we

extract the feature kt by dimension reduction is the main difference.
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2.3.1 Static PCA method

The most popular method for mortality modelling, the Lee-Carter model, utilizes

static PCA to estimate kt. The extracted feature kt, which performs the most im-

portant role in the forecasting, represents the principal component that explains

the most of the variance of the original data. It, however, doesn’t take the serial

dependence along time for the original data into consideration. Mathematically,

the estimation solves the following objective

max
b

var(b>yt)

to get k̃t = b̃
>
(yt − ȳ), t = 1, . . . ,T . This solution has the smallest average

squared reconstruction error E(‖u>
t u‖2) [Brillinger, 1975], while does not seem to

have strong forecasting ability. For example, suppose yt = (y1t, y2t, . . . , ypt)>, t =

1, 2 . . . ,T , with y1t and y2t have huge variances and very weak time serial depen-

dence, while the rest have small variances but strong time serial dependence.

Performing static PCA on yt will get a principal component which puts most of

the loading on y1t, y2t. The forecasting based on this principal component will

heavily depend on the pattern of y1t, y2t and not make use of the strong serial

dependence information of the rest, which may lead to a misleading forecasting.

On the other hand, the first step of our proposed method extracts kt from

the auto-covariance matrix, which contains sufficient time-serial dependence in-

formation. Thus it is expected to have stronger forecasting ability comparing to

the feature extracted by the static PCA.

2.3.2 Dynamic PCA method

There are several dynamic PCA methods available to do the dimension reduction,

which usually involve the auto-covariance matrices and also utilize the time-serial

dependence information, for example, Lam et al. [2011], Hörmann et al. [2015],
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Brillinger [1975], and Chang et al. [2018]. Those methods can be used to extract

feature kt as well. For comparison purpose with our method, we consider one of

them described in the following.

Define Σy(`) = cov(yt, yt+`), ` = 0, 1, 2, . . . , and nonnegative definite matrix

L =
`0∑

`=0
Σy(`)Σy(`)

> (2.3.1)

With matrix 2.3.1, kt can be estimated by k̂t = b̂
>
(yt − ȳ), t = 1, . . . ,T , where

b̂ is the estimated eigenvector of the sample matrix L̂ corresponding to its largest

eigenvalue. This is similar to Hörmann et al. [2015] and Brillinger [1975], but

assigns different weights on those covariances, while in Lam et al. [2011], it does

not include Σy(0). If `0 = 0, it is the same with the static PCA. If `0 = 1, L can

be seen as a combination of the two steps in our method. If `0 > 1, L aggregates

more lagged covariances than our method.

There are similarities and advantages of our method compared with dynamic

PCA. On one hand, the first step of our method is motivated by the dynamic

PCA that makes use of the auto-covariance matrices to obtain forecasting ability

for the features. While from the empirical and simulating studies, we find the

lag 1 auto-covariance is enough for the mortality data and data with similar

structure. To make the method simple and easy to apply, our method only

involves the most useful auto-covariance. If the data structure changes, more

information may need to be included. On the other hand, we intend to maximize

the forecasting ability instead of balancing several characteristics of the features.

The dynamic PCA provides only one set of features which balance the information

of the temporal trend and the variation, while our proposed method extracts two

sets of features via a step-wise procedure. The first sets of features represent

the temporal trend, which benefit the forecasting, and the second parts capture

variations which provides sufficient information for the recovering and also good

for the forecasting. The features are linear combinations of the original data and
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Figure 2.3: The directions of the features; A comparison between the DPCA and
SWPCA.

the coefficients forming these linear combinations represent the directions which

the original data is transformed to. Therefore, we can visualize the features by

the directions. Figure 2.3 shows a simple example of the estimated directions for

our method and the dynamic PCA. Data is generated the same as in Example

1 described in Section 2.5 with P = 3 and T = 20 . The red arrow is the first

direction for the dynamic PCA (DPCA), and the blue ones are those for the first

step and the second step of our method (SWPCA), respectively. It is clear that

they are different directions and the red one can be seen as a direction which

makes a trade-off on the other two. In addition, if we take a detailed look at the

matrix L, we find that it is actually hard to tell and explain what information

is contained in this matrix, as it is a mix of several auto-covariances and the

variance matrix. Our method, on the other hand, is stepwise, thus it has a clear

goal for each step.
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2.4 Asymptotic properties

In this section, we establish the rates of convergence for the two-step estimators

of the factor loadings. Additional to the Assumptions 2.1-2.4, we impose the

following assumptions for the asymptotic theory.

Assumption 2.5. Relation between the error and the factors. εt independent of

k
(1)
t and k

(2)
t .

Remark 2.1. For simplicity of techniques and without loss of generality, the

Assumption 2.5 assumes independent relationship between the error component

and the two kinds of factors.

Assumption 2.6. Relation between k
(1)
t and k

(2)
t . Suppose that

∣∣∣∣∣∣∣∣Σ(21)
k (`)

∣∣∣∣∣∣∣∣ �∣∣∣∣∣∣∣∣Σ(12)
k (`)

∣∣∣∣∣∣∣∣
min

,
∣∣∣∣∣∣∣∣Σ(12)

k (`)
∣∣∣∣∣∣∣∣ = O

(
P 1− δ2

2

)
, where Σ

(21)
k (`) = cov

(
k
(2)
t+`, k

(1)
t

)
,

Σ
(12)
k (`) = cov

(
k
(1)
t+`, k

(2)
t

)
and δ2 is defined in Assumption 2.2.

Remark 2.2. The order of the eigenvalues of Σ
(21)
k (`) is not specified in As-

sumption 2.6. The reason is that the information involved in Σ
(21)
k participate in

the recovery of the factor k
(1)
t . The order of

∣∣∣∣∣∣Σ12
k (`)

∣∣∣∣∣∣ is restricted in order to

make it not involved in the leading term when recovering k
(1)
t .

Assumption 2.7. Dimension Condition. P
T → c ∈ (0, ∞).

Remark 2.3. The setting of the dimension P and the sample size T being com-

parable is under consideration because the number of ages is comparable to the

length of time series for US mortality data. Note that when P and T are on the

same order, the estimators for the eigenvalues and the eigenvectors may be no

longer consistent. See Lam and Yao [2012], [Ahn and Horensten, 2013]. How-

ever, the ratio based estimators for r1 and r2 can still work well.

Assumption 2.8. {
(

k
(1)
t , k

(2)
t , εt

)
: t ≥ 1} is strictly stationary with finite

fourth moments.
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Theorem 2.1. In addition to Assumptions 2.1 - 2.8, we assume that

P 1−δ1

T
= o(1), as P ,T → ∞. (2.4.1)

Then we have the following convergent rates

∣∣∣∣∣∣B̂ − B
∣∣∣∣∣∣ = Op

( 1
T 1/2

)
,
∣∣∣∣∣∣Â − A

∣∣∣∣∣∣ = Op

( 1
T 1/2

)
. (2.4.2)

Remark 2.4. Two kinds of factors are both strong factors in the sense of auto-

correlation and variance, respectively. It is reasonable to obtain fast rates of

convergence for both of them. In view of this, our proposed two-step estimators

have good statistical performance, which is an advantage for forecasting improve-

ment. Based on identification condition between factors and factor loadings, B is

determined up to an orthogonal matrix. Due to technical proofs (some techniques

in Lemma A.3), the estimator B̂ here is the estimator up to an identity matrix.

2.5 Simulations

In this section, we use simulated data to illustrate the advantages of the two-step

dimension reduction method. For descriptive convenience, we use “SWPCA” to

represent our method, “CPCA” to represent the static PCA method which was

described in Section 2.3, and “DPCA” to represent the dynamic PCA method

described in Section 2.3 with `0 = 1.

For all the three examples, we first examined the variance and serial depen-

dence (lag 1 auto-covariance) of the first estimated factor by the three methods,

respectively. Secondly, we evaluated the serial dependence and the variations

remained in the error terms for the three methods. Finally, we compared the

forecasting performance for the 1 step and 5 steps ahead forecasting with the

root mean squared forecasting error (FRMSE).

We show that our method extracts the feature with the largest auto-covariance
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and leave the least information in the error terms. As a result, the two-step

dimension reduction method provides the best forecasting results for all the three

examples. The details of the simulations are described in the rest of this section.

More simulation studies can be find in the Appendix A.1.

2.5.1 Data generating processes

We generate three simulation examples according to the following two-factor

model:

yt = bkt + awt + εt

where a and b are two independent P × 1 vectors with elements generated from

a uniform distribution U(0, 1) and εt is a P × 1 error term with elements in-

dependently generated from a normal distribution N(0, 0.22). For all the three

examples, {kt}t=1,2,...,T is generated from AR(1) model with coefficient 0.8, while

{wt}t=1,2,...,T are different for each example.

• For example 1, {wt}t=1,2,...,T is generated from N(0, 1), which indicates the

series of wt are independent;

• For example 2, we add time-serial dependence to the feature wt, hence

{wt}t=1,2,...,T is generated from AR(1) model with coefficient 0.05;

• At last in example 3, we increase the dependence in the series of wt and

generate them from AR(1) model with coefficient 0.2.

2.5.2 Performance evaluation criterion

Firstly, we show the variance and serial dependence (lag 1 auto-covariance) of

the first estimated factor of the three methods, respectively. The variance and
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serial dependence of the first estimated factor are computed as follows:

Time variance
(
k̂t

)
= 1

T −1
∑T

t=1
(
k̂t − 1

T

∑T
j=1 k̂j

)2
,

Time dependence
(
k̂t

)
= 1

T −2
∑T −1

t=1
(
k̂t − 1

T

∑T
j=1 k̂j

) (
k̂t+1 − 1

T

∑T
j=1 k̂j

)
,

where k̂t is the estimated first feature at time t. Especially, for our method, we

compare the estimated first feature from the first step as it is the feature which

intends to improve the forecasting power. Besides, we also report the sum of the

aforementioned quantities:

Mix(k̂t) = Time variance(k̂t) + Time dependence(k̂t).

Secondly, we investigate the dependence and the variation remained in the

error terms as follows:

Time variance (ε̂·t) = 1
P

∑P
p=1

(
1

T −1
∑T

t=1
(
ε̂pt − 1

T

∑T
j=1 ε̂pj

)2)
,

Time dependence (ε̂·t) = 1
T (T −1)

∑T
t1=1

∑T
t2=1,t2 6=t1 |cov (ε̂·t1 , ε̂·t2)| ,

Cross-sectional variance (ε̂p·) = 1
T

∑T
t=1

(
1

P −1
∑P

p=1
(
ε̂pt − 1

P

∑P
j=1 ε̂jt

)2)
,

Cross-sectional dependence (ε̂p·) = 1
P (P −1)

∑P
p1=1

∑P
p2=1,p2 6=p1 |cov (ε̂p1·, ε̂p2·)| ,

where ε̂pt is the the error term for age p at time t, ε̂·t is error terms for all ages
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at time t, ε̂p· is the error terms across all time for age p, and

cov (ε̂·t1 , ε̂·t2) = 1
P

∑P
p=1

(
ε̂pt1 − 1

P

∑P
j=1 ε̂jt1

) (
ε̂pt2 − 1

P

∑P
j=1 ε̂jt2

)
,

cov (ε̂p1·, ε̂p2·) = 1
T

∑T
t=1

(
ε̂p1t − 1

T

∑T
j=1 ε̂p1j

) (
ε̂p2t − 1

T

∑T
j=1 ε̂p2j

)
.

To evaluate the forecasting performance, we show the the 1 step and 5 steps

ahead root mean squared error, which is computed by

FRMSE(h) =
(∑h−1

i=0 ‖ŷT −i − yT −i‖2
2

hP

)1/2

where h = 1, 5 (the forecasting length), ŷT −i is obtained by forecasting with

{y1, y2, . . . , yT −h}, and yT −i is the true value in the forecasting horizon.

2.5.3 Simulation results

We try different sets of (P ,T ): (50, 50), (50, 100), (100, 100), (100, 200), (200, 200),

as we would like to evaluate the performance under the situations that P and T

are comparable. The results are shown in Table 2.2 to Table 2.5.

From Table 2.2, we can see that the CPCA method provides feature k̂t with

the largest variance, while the first step of our method (SWPCA) captures k̂t

with the largest lag 1 auto-covariance, which summarizes most of the time serial

dependence information of the original data. These simulated results corroborate

the analysis in Section 2.3.

On the other hand, we can see that the DPCA method provides a k̂t with the

largest sum of variance and lag 1 auto-covariance. Our method utilizes the same

information with the DPCA, while we have two steps. When we compare the

feature from our first step with that of the DPCA method, it is not surprising

that DPCA one has larger Mix(k̂t). However, our second step provides features
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Table 2.2: Variance and Dependence of k̂t

Time variance (k̂t) Time dependence (k̂t) Mix (k̂t)

(P , T ) CPCA DPCA SW-
PCA

CPCA DPCA SW-
PCA

CPCA DPCA SW-
PCA

Example 1 (AR(1) 0.8 + N(0,1))

(50, 50) 51.102 51.008 48.750 29.015 29.437 30.174 80.117 80.445 78.923
(50, 100) 53.436 53.330 51.577 31.843 32.304 32.938 85.279 85.635 84.515
(100, 100) 107.483 107.263 103.799 64.119 65.070 66.341 171.601 172.333 170.139
(100, 200) 110.269 110.037 107.091 67.532 68.517 69.651 177.801 178.554 176.742
(200, 200) 221.091 220.619 214.682 135.760 137.762 140.053 356.851 358.381 354.735

Example 2 (AR(1) 0.8 + AR(1) 0.05)

(50, 50) 51.000 50.909 48.941 29.409 29.806 30.429 80.409 80.715 79.371
(50, 100) 53.085 52.986 51.430 31.958 32.382 32.940 85.043 85.368 84.371
(100, 100) 107.666 107.466 104.384 65.591 66.440 67.541 173.257 173.906 171.925
(100, 200) 110.047 109.838 107.249 68.630 69.497 70.471 178.677 179.335 177.719
(200, 200) 221.705 221.278 216.268 139.463 141.213 143.102 361.168 362.492 359.369

Example 3 (AR(1) 0.8 + AR(1) 0.2))

(50, 50) 51.572 51.498 50.033 31.392 31.685 32.093 82.964 83.183 82.126
(50, 100) 54.963 54.889 53.942 35.265 35.556 35.873 90.228 90.445 89.815
(100, 100) 108.933 108.778 106.789 69.386 69.996 70.666 178.319 178.774 177.455
(100, 200) 110.179 110.024 108.342 71.475 72.086 72.697 181.655 182.110 181.039
(200, 200) 224.522 224.200 220.766 147.018 148.273 149.494 371.541 372.472 370.260
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that capture the remaining variance, which is a necessary supplement for the first

step to ensures that the final sets of features provide good fitting to the original

data.

From Table 2.3 and 2.4, we can see that our method always provides the error

terms with the smallest time and cross-sectional variance and dependence. It

shows that SWPCA can capture most of the time-serial dependence and variation

information of all the ages among the three methods. The better model fitting

performance of our method is supported by these results.

Table 2.3: Variance across Time and Sections of the error terms
Time Variance (ε̂·t) Cross-sectional Variance (ε̂p·)

(P , T ) CPCA DPCA SWPCA CPCA DPCA SWPCA

Example 1 (AR(1) 0.8 + N(0,1))

(50, 50) 0.141 0.142 0.038 0.145 0.146 0.038
(50, 100) 0.146 0.146 0.038 0.148 0.151 0.038
(100, 100) 0.147 0.147 0.039 0.151 0.153 0.039
(100, 200) 0.151 0.151 0.039 0.154 0.156 0.039
(200, 200) 0.152 0.152 0.039 0.156 0.158 0.039

Example 2 (AR(1) 0.8 + AR(1) 0.05)

(50, 50) 0.142 0.142 0.038 0.145 0.147 0.038
(50, 100) 0.148 0.148 0.038 0.150 0.152 0.038
(100, 100) 0.147 0.148 0.039 0.151 0.153 0.039
(100, 200) 0.150 0.150 0.039 0.153 0.155 0.039
(200, 200) 0.152 0.152 0.039 0.155 0.158 0.039

Example 3 (AR(1) 0.8 + AR(1) 0.2))

(50, 50) 0.144 0.144 0.038 0.148 0.149 0.038
(50, 100) 0.150 0.150 0.038 0.152 0.153 0.038
(100, 100) 0.151 0.151 0.039 0.154 0.156 0.039
(100, 200) 0.154 0.154 0.039 0.157 0.159 0.039
(200, 200) 0.155 0.155 0.039 0.159 0.161 0.039

Finally in Table 2.5, we show the the 1 step and 5 steps ahead root mean

square errors for the three examples. Overall, our method (SWPCA) has the

smallest FRMSE for all the examples while the CPCA method performs the worst

on the forecasting. The phenomenon tell us that the features extracted via the

auto-covariance matrix is better than the ones from the covariance matrix, in the
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Table 2.4: Covariance across Time and Sections of error terms
Time dependence (ε̂·t) Cross-sectional dependence (ε̂p·)

(P , T ) CPCA DPCA SWPCA CPCA DPCA SWPCA

Example 1 (AR(1) 0.8 + N(0,1))

(50, 50) 0.067 0.067 0.005 0.072 0.073 0.005
(50, 100) 0.069 0.069 0.004 0.074 0.075 0.003
(100, 100) 0.069 0.069 0.003 0.075 0.076 0.003
(100, 200) 0.071 0.071 0.003 0.076 0.078 0.002
(200, 200) 0.072 0.072 0.002 0.078 0.079 0.002

Example 2 (AR(1) 0.8 + AR(1) 0.05)

(50, 50) 0.067 0.067 0.005 0.072 0.073 0.005
(50, 100) 0.070 0.070 0.004 0.075 0.076 0.003
(100, 100) 0.069 0.069 0.003 0.075 0.076 0.003
(100, 200) 0.071 0.071 0.003 0.076 0.078 0.002
(200, 200) 0.072 0.072 0.002 0.078 0.079 0.002

Example 3 (AR(1) 0.8 + AR(1) 0.2))

(50, 50) 0.069 0.068 0.005 0.074 0.075 0.005
(50, 100) 0.071 0.071 0.004 0.076 0.077 0.003
(100, 100) 0.072 0.072 0.003 0.077 0.078 0.003
(100, 200) 0.074 0.074 0.003 0.079 0.080 0.002
(200, 200) 0.074 0.074 0.002 0.080 0.081 0.002
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view of the forecasting accuracy. Moreover, the SWPCA has smaller forecasting

error than the DPCA indicates that, extracting the different types of features

sequentiality can benefit the forecasting more than mixing them together.

Table 2.5: 1 Step and 5 Steps Ahead Forecasting RMSE
1 Step Ahead 5 Steps Ahead

(P , T ) SWPCA CPCA DPCA SWPCA CPCA DPCA

Example 1 (AR(1) 0.8 + N(0,1))

(50, 50) 0.808 0.829 0.822 1.046 1.053 1.051
(50, 100) 0.774 0.793 0.787 1.000 1.004 1.004
(100, 100) 0.789 0.812 0.804 1.046 1.054 1.053
(100, 200) 0.790 0.814 0.807 1.029 1.035 1.034
(200, 200) 0.800 0.819 0.812 0.986 0.996 0.993

Example 2 (AR(1) 0.8 + AR(1) 0.05)

(50, 50) 0.827 0.850 0.844 1.039 1.049 1.047
(50, 100) 0.802 0.818 0.813 1.041 1.049 1.046
(100, 100) 0.804 0.826 0.820 1.025 1.028 1.028
(100, 200) 0.790 0.810 0.802 0.993 0.998 0.995
(200, 200) 0.787 0.807 0.800 0.986 0.993 0.991

Example 3 (AR(1) 0.8 + AR(1) 0.2))

(50, 50) 0.791 0.809 0.805 1.039 1.045 1.043
(50, 100) 0.799 0.812 0.808 1.034 1.037 1.035
(100, 100) 0.756 0.771 0.766 1.035 1.039 1.040
(100, 200) 0.813 0.825 0.822 1.011 1.018 1.015
(200, 200) 0.787 0.803 0.799 1.008 1.017 1.015

In summary, our methods (SWPCA) provides a dimension reduction method

that gives more accurate forecasts for the high dimensional time series data sim-

ulated in this section. In the Appendix A.1, more special simulated cases are

presented.

2.6 Analysis of the US mortality data

In this section, we discuss the analysis of our method applied on age-specific

mortality data of the US. The data is the mortality data of the US population

in the Human Mortality Database (HMD) (91) obtained in July 2018. HMD
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contains original calculations of death rates and life tables for the populations in

40 countries and areas, as well as the input data used in constructing those tables.

The data we originally obtained from HMD includes the annual age-sex-specific

information of the number of exposures to risk, the number of deaths, and the

central death rate, for ages from 0 to 110+ (age 100 and above) during the period

from 1933 to 2016. We focus our analysis on the age-specific central death rates

of the total sex population. As the mortality data for advanced ages are measured

sparsely which is mentioned in Lee and Carter [1992], death rates for the older age

group (from age 91 to 110+) are summarized and incorporated into a modified

death rate for age 90+. In view of this, the annual age-specific death rates under

study consist of a matrix data with 84 yearly observations (1933-2016) for 91 ages

(0-90). Following Lee and Carter [1992], we consider the log transformed central

death rates [ln(mp,t)]P ×T , where P = 91,T = 84, for modeling purposes. By

doing so, we can guarantee that the estimated and predicted central death rates

are non-negative. We show the better reconstruction and forecasting performance

of our proposed method compared to the static PCA and dynamic PCA in this

section. Moreover, we explain that the two-step dimension reduction is necessary

on the mortality data by examining the factor loadings of the features. At last,

we illustrate that improving the accuracy of the predicted death rates is crucial

with two applications.

2.6.1 Stationarity

As the log central death rates are not stationary time series, we modified the first

step of the dimension reduction part in our method (SWPCA) to deal with the

non-stationary issue, which is summarized in Algorithm 2.

The difference of Algorithm 2 and the first step in Algorithm 1 is, instead of

obtaining b̂i by the eigenvectors of Σ̂y(1)Σ̂y(1)>, we get it from Σ̂d(1)Σ̂d(1)>.

Because yt is not stationary, Σ̂y(1)Σ̂y(1)> is not a good estimator for the pop-
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Algorithm 2: Modified First Step of the Dimension Reduction
Input: Data Y = [y1, . . . , yT ] ∈ RP ×T ;

yt = (ln(m1,t), ln(m2,t), . . . , ln(mP ,t))
>.

Output: k̂(1)it , which is described in the first step of our method (see
2.2.8).

Dimension Reduction Step 1:
1 Compute dt = yt − yt−1 and d = T−1∑T −1

t=2 dt, t = 2, 3, . . . ,T ;
2 Compute

Σ̂d(1) =
1

T − 1

T −1∑
t=2

(dt+1 − d)(dt − d)>

and Σ̂d(1)Σ̂d(1)>;
3 Compute b̂i : P × 1 by the eigenvector corresponding to the ith largest

eigenvalue of Σ̂d(1)Σ̂d(1)>,where i = 1, 2, . . . , r̂1. r̂1 is chosen by the
method introduced in Section 2.2;

4 Compute y = T−1∑T
t=1 yt and k̂

(1)
it = b̂

>
i (yt − y).

ulation lag 1 auto-covariance of yt.

We now explain the reason for using Σ̂d(1)Σ̂d(1)>. From dt = yt − yt−1,

we have yt = yt−1 + dt = yt−2 + dt−1 + dt = · · · =
∑t

i=−∞ di. With the

coefficients bi, di can be expressed as di =
∑P

j=1 bjϕij where ϕij = b>
j di, thus

yt =
t∑

i=−∞
di =

t∑
i=−∞

 P∑
j=1

bjϕij

 =
P∑

j=1

bj

t∑
i=−∞

ϕij

 =
P∑

j=1
bjψtj ,

where ψtj =
∑t

i=−∞ ϕij . Thus when performing the dimension reduction, the

coefficients to form a low-dimensional representation of ut should be the same as

those of yt. If dt is stationary, Σ̂d(1)Σ̂d(1)> is a good estimator for Σd(1)Σd(1)>.

Then eigenvectors of Σ̂d(1)Σ̂d(1)> are better estimators of the factor loadings

than those of Σ̂y(1)Σ̂y(1)>. We did stationary tests on the lag 1 differenced series

of each age separately, and more than 72% of the ages have a stationary result

under significant level 0.1. This might not be enough to say ut is stationary, but

for this dataset, it is better than the original log central death rates.
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Due to the same reason, we make the same modification for the static PCA

and the dynamic PCA methods when comparing using the US mortality data.

Thus from now on, “CPCA” and “DPCA” refers to the static PCA and dynamic

PCA which deal with the non-stationary issue, respectively. In addition, for

comparison purpose, we also apply the static PCA method without considering

the non-stationary issue, which is exactly the same as the method in Lee and

Carter [1992] and we call it “Lee-Carter” in the following sections for convenience.

2.6.2 Revisit the structure of the US mortality data

In this section, we have a further discussion about the suitability of the SWPCA

for the US mortality data. We examine the variance and time serial dependence

of the central death rates of the US. Because we modified the first step of the

SWPCA according to Section 2.6.1, instead of examining the original data, we

check the first difference of log central death rates for each age. That is, for each

age p, we compute the variance and lag 1 autocorrelation (representing the time

serial dependence) of dp,2, dp,3, . . . , dp,T , where dp,t = log (mp,t) − log (mp,t−1),

p = 0, 1, . . . , 90+, and T = 84. The results are shown in Figure 2.4.

In Figure 2.4, the top red plot shows the variances of dp,· for age p =

0, 1, . . . , 90+, and the bottom blue line shows the lag 1 autocorrelation of dp,·.

From the plot, we see that the variances of ages from 5 to 13 are larger than

those of ages from 25 to 40, while the lag 1 autocorrelations of ages from 5 to

13 are smaller than those of ages from 25 to 40. This is the same structure with

the Example 5 in the simulation (in Appendix A.1). In addition, we have seen

previously that the death rates of all ages have similar patterns, which indicates

that information from part of the ages can be borrowed to help with the forecast-

ing of other ages. Thus the first step of the proposed method would like to use

information from the ages with powerful forecasting ability, such as ages 25 to

40, to help with the forecasting of other ages with weak correlations, ages 5 to 13
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Figure 2.4: Variance and Time serial dependence of ages

for instance. On the other hand, the parts with powerful forecasting ability do

not contain sufficient variations. For example, most of the variation is contained

in younger ages while they do not all have large correlations. Therefore, the

second step of our method utilizes static PCA to help retain sufficient variation

of the original data, which is necessary for the final recovery for forecasting. As

a result, SWPCA is particularly suitable for the US mortality data. In the next

section, we examine the model fitting performance of the two-step dimension

reduction method and illustrate the necessity of both steps using the estimated

factor loadings in the following section.

2.6.3 Model fitting performance comparison

In this section, we check the performance of the SWPCA on reconstructing (fit-

ting) the original data. We apply SWPCA, Lee-Carter, CPCA, and DPCA on

the logarithm of central rates of death and compare the fitting performances us-

ing the root mean square error (RMSE). Based on the criteria in Section 2.2, all

the methods choose only one feature. For SWPCA, we have r̂1 = 1 and r̂2 = 1.

Table 2.6 and Table 2.7 show the RMSEs of the four methods for selected ages
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(5, 25, 50, 65 and 85) and years (1933, 1953, 1993, and 2015) respectively, along

with the overall RMSE of the whole data. From the tables, the RMSEs of the

SWPCA are lower than those of the other three methods, which shows that SW-

PCA has a better fitting performance. As we described before, the two steps of

the SWPCA guarantee that it captures sufficient variations of the original data

and results in a good low-dimensional representation. In addition, we see that

the RMSEs of Lee-Carter are smaller than those of CPCA. It implies that the

fitting performance on the log central death rates is worse for static PCA if we re-

vise the method to deal with non-stationarity. This phenomenon may be caused

by special characteristics of the mortality data, which is interesting to explore

further.

Table 2.6: RMSE, for some specific ages
Age SWPCA Lee-Carter CPCA DPCA

5 0.051 0.061 0.289 0.255
25 0.058 0.120 0.178 0.179
50 0.051 0.064 0.107 0.117
65 0.038 0.086 0.122 0.148
85 0.045 0.066 0.076 0.115

RMSE 0.054 0.080 0.146 0.149

Table 2.7: RMSE, for some specific years
Year SWPCA Lee-Carter CPCA DPCA

1933 0.074 0.148 0.179 0.162
1953 0.047 0.092 0.154 0.158
1993 0.063 0.082 0.147 0.150
2015 0.076 0.111 0.245 0.258

RMSE 0.054 0.080 0.146 0.149

We can also visualize the fitting performances of the four methods via plots.

Figure 2.5 shows the actual and fitted log central rates of death for selected ages

(5, 25, 50, 65 and 85) over all historical years from 1933 to 2016, while Figure

2.6 shows the actual and fitted log central rates of death for selected years (1933,

1953, 1993 and 2005) over all ages from 0 to 90+. The black lines represent the
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Figure 2.6: Log Death Rates, ages 0 to
90+ for years 1933, 1953, 1993, 2015. Ac-
tual and Fitted

actual log central rates of death; the red, light blue, green and blue dashed lines

show the reconstructed log central rates of death using SWPCA, Lee-Carter,

CPCA, and DPCA respectively. From Figure 2.5, we see that the SWPCA

captures the time-serial patterns well for all selected ages even when there is

curvature, such as the paths of ages 25, 65 and 85. However, the Lee-Carter,

CPCA and DPCA failed to recover the time-serial dependence appropriately and

hence provide worse reconstruction results than the SWPCA. From Figure 2.6,

we see that the four methods provide similar reconstructions for ages 0 to 20. For

ages 20 to 40, the mortality patterns changed and SWPCA shows a better recon-

struction performance than the other three methods. The four models perform

similarly again for ages 40 and above with the SWPCA’s fitting performance

slightly better than the other three, especially for the year 2015. Hence, it shows

that the SWPCA captures both time-serial (time dimension) dependence and

cross-sectional (age dimension) variation well and exhibits advantages over the

other three methods especially when the mortality trends change.
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2.6.4 Forecasting performance comparison

In this section, we show that our method can forecast the central death rates of

the US more accurately than the other methods. We compare the forecasting

performance of SWPCA, Lee-Carter, CPCA, DPCA, and the univariate ARIMA

using rolling window out-of-sample forecasting. The univariate ARIMA model

is fitted with time series of each age independently and the model structure

is selected based on Bayesian information criterion (BIC); we refer to this as

“individual” model. The individual model is included for comparison, as we

would like to show that conducting dimension reduction before the forecasting is

necessary, especially in the long term.

We use data of years from 2007 to 2016 as the test set and the historical data

of previous years as the training set for modeling and testing purposes. Table 2.8

shows the forecasting root mean square errors (FRMSEs) of 1 to 25 steps ahead

forecasts using the five methods. For each forecast, we have 10 rolling window

sub-training sets for the 10 test years and the values presented in the table are the

averages of the 10 rolling window FRMSEs. Figure 2.7 plots the results shown

in Table 2.8. We see that as the length of prediction steps increases, the perfor-

mance of all methods get worse. This is because the longer-term forecasting is

always harder and contains more uncertainty. The individual model has the best

forecasting accuracy when h ≤ 10, while performs worse in the long-term com-

pared with the SWPCA and the Lee-Carter. This is because the individual model

focuses on capturing the mortality pattern of each age vector, which ignores the

dependence among different ages and overlooks the cross-sectional common in-

formation. So, in the short term, individual factors dominate the forecasting

performance, and the individual model performs best. However, the long-term

mortality forecasting provides important assumptions for various actuarial prac-

tices and government policymaking, such as life insurance and annuities pricing

and reserving, asset liability management of pension funds, and the solvency
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Figure 2.7: Comparison of the forecasting performance on the US data: Rolling Win-
dow FRMSE

analysis of social securities. In the long term, different ages share similar drivers

of the mortality variation, such as technology innovation, health improvement,

wars, and epidemics. So common factors dominate the forecasting performance

in the long term, and dimension reduction plays a crucial role in recovering the

common information from the high dimensional mortality data. Comparing the

four dimension reduction methods (SWPCA, Lee-Carter, CPCA, and DPCA),

we find that the SWPCA has the smallest FRMSEs for all h, and hence the

best out-of-sample forecasting performance. The empirical analysis shows that

SWPCA successfully extracts features with powerful forecasting ability and pro-

vides a good representation to recover the mortality forecasting from the features’

forecasting.

2.6.5 Analysis of two-style factor model on mortality Data

Recall that the two-style factor model intends to capture two kinds of common

features for mortality data among all ages: common temporal trends and common

variation. Now we would like to analysis the necessity and the behavior of the

proposed model on the mortality data under study.

Figure 2.8 provides the estimation of {up,t : t ≥ 1} for all p = 1, . . . ,P , which
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Table 2.8: Comparison of the forecasting performance on the US data: Rolling Window
FRMSE

h SWPCA Lee-Carter CPCA DPCA Individual

1 0.090 0.116 0.224 0.238 0.038
2 0.100 0.124 0.229 0.244 0.056
3 0.109 0.131 0.235 0.250 0.071
4 0.116 0.138 0.240 0.255 0.080
5 0.122 0.144 0.245 0.261 0.090
6 0.129 0.149 0.250 0.266 0.100
7 0.132 0.152 0.253 0.270 0.106
8 0.136 0.155 0.256 0.274 0.113
9 0.139 0.159 0.259 0.278 0.123
10 0.145 0.163 0.264 0.283 0.140
11 0.150 0.167 0.267 0.286 0.151
12 0.154 0.172 0.270 0.289 0.169
13 0.156 0.175 0.272 0.291 0.186
14 0.161 0.180 0.275 0.294 0.207
15 0.168 0.187 0.279 0.298 0.223
16 0.173 0.193 0.282 0.301 0.244
17 0.174 0.197 0.283 0.302 0.258
18 0.172 0.200 0.284 0.303 0.274
19 0.167 0.202 0.282 0.301 0.282
20 0.160 0.203 0.280 0.299 0.266
21 0.159 0.209 0.281 0.300 0.267
22 0.171 0.221 0.289 0.308 0.268
23 0.187 0.236 0.298 0.318 0.268
24 0.209 0.255 0.311 0.331 0.271
25 0.222 0.268 0.320 0.340 0.272

Mean 0.152 0.180 0.269 0.287 0.181
Median 0.156 0.175 0.272 0.291 0.186
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Figure 2.8: Estimation of ut on the US mortality Data

is the residual of the first step. After extracting the common temporal trends in

the first step, it is expected that there is relatively weak common temporal trend

existed in the residual up,t. Compared with Figure 2.1 that illustrates the time-

trends in original mortality data, Figure 2.8 indeed demonstrates weak common

time-trends for all ages, in view of different time-tendency for the young ages

from that of the old ages.

Next, we investigate the extracted features from the two kinds of factor mod-

els, respectively. As analyzed earlier, the estimation for the two parts is based

on the eigendecomposition of the two matrices L̂1 and L̂2, respectively. The first

line of Figure 2.9 shows all the eigenvalues of the two matrices. The spikeness

is obvious and the ratio-based statistic will estimate r1 and r2 as 1 intuitively.

Then the bottom line of Figure 2.9 provides the eigenvectors of L̂1 and L̂2 cor-

responding to their largest eigenvalue respectively. By comparing them, factor

loadings from the two parts of factor models are quite different from each other.
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Figure 2.9: 1st Principal Component in Two Steps

A natural question may arise: other than conducting the second factor mod-

elling, whether is it enough to keep two factors in the first step? Figure 2.10

shows that the second eigenvector of L̂1 is different from the first eigenvector

extracted by the second step, which ensures the necessity of the second factor

modelling. Roughly speaking, the second principal component (PC) in the first

step represents weaker common temporal trend than the first PC, but stronger

than the left PCs. However, the aim of our second step is to pursue features

possessing most common variation of the residual after the first step. Although

the extracted factor in the second step also has weaker common temporal trend
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Figure 2.10: 2nd PC in Step 1 and 1st PC in Step 2

than that is extracted in the first step, it is not the second PC of the first step

in view of Figure 2.10. Furthermore, in terms of eigenvalues of the matrix L̂1

in Figure 2.11, the second eigenvalue is not separable with others well except

the first one. This phenomenon indicates that keeping the second PC may not

increase sufficiently large amount of common temporal trends. In this case, the

increased flexibility of keeping the 2nd PC will make this method undeserved.

2.6.6 Application of the mortality forecasting

In this section, we use the forecast of mortality to perform two applications:

predicting the life expectancies and pricing the life annuities. The life expectancy

describes the expected average remaining number of years prior to death for a

person reached a specific age. Usually it can be reported in two different forms

based on the mortality rates (period and cohort). The period life expectancy for

a given year of each age is calculated based on the mortality rates for that single

year, while the cohort life expectancy is estimated based on the mortality rates for

the series of years in which the person will actually reach each succeeding age if

the individual survives (The Board of Trustees of the Federal OASDI Trust Funds

[2019]). For example, according to Table V.A4 and V.A5 in the 2019 report of
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Figure 2.11: Eigenvalues of Step 1

The Board of Trustees of the Federal OASDI Trust Funds [2019], a male in the US

aged 65 in year 2018 is expected to live another 18.1 years before death on a period

basis while 18.9 years on a cohort basis. We will compare the estimated cohort

and period life expectancy from our proposed method (SWPCA) with those from

the Lee-Carter model. In addition, related to the cohort life expectancy, another

interesting and crucial problem is, how much would an individual pay for an

insurance which provides annual payments after the retirement until the death?

We will compare the present values (price, per $1) of the life annuities based on

the estimated cohort life expectancies from different methods.

In the following part, we compute the actuarial life expectancy for an indi-

vidual aged x at year T (ex,T ) as follows,

ex,T =
w−x−1∑

t=1
tpx,T ,

where w is the assumed maximum age, and tpx,T =
∏t−1

j=0 (1 − 1qx+j,T ) is the

probability that a person aged x at year T will survive to age x+ t. For the

period life expectancy, 1qx+j,T = mx+j,T , and for the cohort life expectancy,

1qx+j,T = mx+j,T+j , where mx,t is the death rate of a person aged x at year
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t from the mortality table. In addition, for simplicity, we assume 1 −m90+,T

represents the probability that a person age 90 will survive to the maximum age

w. Further, we calculate the present value of the life annuity (PVx,T ) for an

individual purchased at age x in year T and beginning to make payments $1

annually after age 66 until death or aged 90 (which one happens first) as below:

PVx,T =


∑90−x

t=1 tpx,T /(1 + i)t if x ≥ 66

PV66,T+(66−x)/(1 + i)66−x if x < 66

where i = 2%, which is the interest rate, tpx,T =
∏t−1

j=0 (1 − 1qx+j,T ) and 1qx+j,T

= mx+j,T+j , which is on a cohort basis and the same with the calculation for

the cohort life expectancy. We let the life annuities end at age 90 for simplicity

as the mortality rates for extreme older ages need more detailed analysis, which

is beyond the scope of this chapter. The age 66 is the retirement age for most

individuals in the US. Hence, for an individual younger than 66, PVx,T is the

price for a deferred life annuity. Similar calculation can be find in Cunningham

et al. [2012] , McCarthy and Mitchell [2001], and Warshawsky [1988]).

In order to compare the out-of-sample performance of our method (SWPCA)

and the Lee-Carter model, we define the data for years 1933 to 1986 as the

training set and the data for the last 30 years (1987 to 2016) as the test set.

We first forecast the mortality rates of the test set with the training set using

the SWPCA and the Lee-Carter method, respectively. Then we calculate ex,T

(cohort and period) and PVx,T using the actual mortality rates as well as the

forecasting mortality rates from two methods, respectively.

With more accurate mortality forecasts, how much can the SWPCA method

improve the prediction of the life expectancies and the pricing of the life annuities?

Table 2.9 shows the forecast mean squared error (FMSE) and the forecast mean

absolute error (FMAE) for the SWPCA method and the Lee-Carter model, which
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are computed by,

FMSE =
1
N

∑
x

∑
t

(ŷx,t − yx,t)
2,

FMAE =
1
N

∑
x

∑
t

|ŷx,t − yx,t|,

where ŷx,t is the estimated value (computed with forecast death rates from the

SWPCA or Lee-Carter), yx,t is the true value (computed with actual death rates),

N is the number of estimates (it is different for the period and cohort life ex-

pectancies). It can be seen from the table that for all the three applications, the

estimations from the SWPCA have smaller FMSEs and FMAEs comparing with

those from Lee-Carter method. Particularly, from the FMAEs of the present

values of life annuities, we can see that, on average, the pricing error is $0.13 for

Lee-Carter and only $0.038 for SWPCA with annual payment $1. The better

performance of SWPCA is lead by the more accurately mortality forecasting.

Table 2.9: FMSE and FMAE of life expectancies (cohort and period) and present
values of annuities (annual payment $1 and interest rate 2%)

FMSE FMAE

period life
ex-

pectancy

cohort life
ex-

pectancy

pv of life
annuity

period life
ex-

pectancy

cohort life
ex-

pectancy

pv of life
annuity

Lee-Carter 0.593 0.076 0.027 0.687 0.211 0.130
SWPCA 0.080 0.009 0.003 0.215 0.072 0.038

Figure 2.12 and Figure 2.13 show the cohort and period life expectancies for

an individual aged 66 at different years. The red line is the value computed from

historical death rates, the green one is the value computed with the forecast from

the SWPCA and the blue line is that from the Lee-Carter method. From Figure

2.12, we see that the three lines are close to each other before 1970, which is

due to the less forecast involved in the calculation for those years. After 1970,

when involving more forecast, the Lee-Carter method tends to estimate the life

expectancies lower while the SWPCA is close to the true value with slightly
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Figure 2.12: Comparison of the predicted
life expectancies from the SWPCA and
Lee-Carter with the true values (cohort)
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Figure 2.13: Comparison of the predicted
life expectancies from the SWPCA and
Lee-Carter with the true values (period)

higher estimations for some years. From Figure 2.13, we see that the output of

SWPCA is always more close to the the true values while both the SWPCA and

Lee-Carter tend to estimate lower for the second half the time horizon.

Table 2.10 exhibits the life expectancies (cohort and period) and the present

values of annuities with annual payment $1 and interest rate 2% for some selected

ages and years (for some years and ages there are no forecast involves, hence we

use ∗ to mark them). We can see that for the life expectancies, all the values from

the SWPCA are closer to the true values than those from the Lee-Carter method,

except that of (2000, 75). On the other hand, the Lee-Carter method tends to

price lower than the empirical true values for around $0.20 to $0.40 per $1 of

the life annuity, while SWPCA provides very accurately pricing with a maximum

$0.02 error per $1 annual payment. Although the difference looks very small, it

is indeed a big risk for life insurers or social security. To illustrate the financial

impact on the industry, we can consider the pricing for individuals aged 65 in year

1990. The price from the Lee-Carter method is $0.3 lower and from the SWPCA

is $0.02 higher per $1 compared with the empirical true price. Suppose the

annual payment for an individual is $18000 and the number of people purchased
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this insurance is 50000. Then according to the Lee-Carter method, the insurance

company will have a $270 million shortfall (270million = 0.3 × 18000 × 50000),

which is a huge risk. On the other hand, SWPCA will have a $18million surplus.

Although it also mis-priced the insurance, the surplus will not put the company

or the social security into a risky situation. In summary, our method improves

the estimating of life expectancies and prices the life annuities more accurately

by forecasting the mortality rates better.

Table 2.10: Selected life expectancies (cohort and period) and the present values of
annuities (annual payment $1 and interest rate 2%)

period life expectancy cohort life expectancy pv of life annuity

(year, age) true Lee-
Carter

SW-
PCA

true Lee-
Carter

SW-
PCA

true Lee-
Carter

SW-
PCA

(1950, 25) 45.81 * * 50.14 49.62 50.11 5.72 5.55 5.72
(1960, 35) 37.59 * * 40.86 40.34 40.84 6.98 6.77 6.97
(1970, 45) 29.19 * * 31.99 31.45 31.97 8.50 8.25 8.50
(1980, 55) 22.59 * * 23.87 23.29 23.84 10.37 10.06 10.36
(1990, 65) 15.95 15.29 15.85 16.52 15.95 16.51 12.64 12.27 12.63
(2000, 75) 9.60 9.45 9.89 10.09 9.68 10.12 8.63 8.33 8.65

2.7 Conclusion

This chapter focus on forecasting the US mortality data with a two-step di-

mension reduction method. Particularly, we analyzed the data structure of the

age-specific central death rates of the US and proposed a new dimension reduc-

tion method especially suitable for forecasting this kind of data. We have found

that the death rates for all the ages have similar patterns, which indicates com-

mon time-serial trend can be extracted to improve the forecasting of the data. In

addition, variations among the death rates of all the ages is also crucial to provide

more accurate fitting and benefit the forecasting. We make use of those char-

acteristics to proposed the new method and find that this method can provide

better forecasting results comparing with static PCA and dynamic PCA method.
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To the best of our knowledge, this is the first work to especially consider the fore-

casting ability of dimension reduction. The novel dimension reduction method

(SWPCA) can be seen as a two-style factor model, with estimations from the

stepwise combination of static PCA (used in the Lee-Carter model) and dynamic

PCA. It extracts two kinds of features that represent the common temporal trend

and common variations receptively, which are both helpful for improving the fore-

casting accuracy. We simulated examples with the two-style factor model and we

can clearly see that the SWPCA outperforms the other considered methods.

The detailed empirical analysis shows that the method is suitable and neces-

sary for the mortality data in the US. Moreover, we find that the better forecast-

ing of mortality from our method can improve the prediction of the corresponding

life expectancy and life annuity. Hence the forecasting results of the SWPCA can

be used to conduct important decisions in Actuarial science, such as providing

advice for social security, pricing life insurances, and making the decision on re-

quired future cash reserves. Furthermore, we find in the long-term forecasting,

recovering the mortality forecasting via features’ forecasting is preferred than

that via age-individually.
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Chapter 3

Time-varying Factor Model for

Mortality Forecasting

3.1 Introduction

Mortality forecasting is an important topic in various areas, such as demogra-

phy, actuarial science and government policymaking. Most age-specific mortality

data are high-dimensional time series. The factor model approach is one of the

most popular methods to model high-dimensional time series, which represents

the data matrix by a few latent common factors. Common factors describe com-

mon information shared by cross-sections, while factor loadings reflect the linear

relationship between the original variables and the common factors. There is a

large literature discussing factor models, including but not limited to Anderson

[1963], Pena and Box [1987]), Stock and Watson [2002], Bai and Ng [2002], Bai

[2009], Lam and Yao [2012] and Chang et al. [2018].

Many existing stochastic mortality models use the factor model approach. As

an application of the classical factor model (with time-invariant factor loadings),

Lee and Carter [1992] (Lee-Carter Model) is one of the most prominent methods

for mortality forecasting, which is employed by the US Bureau of the Census

as the benchmark model to predict long-run life expectancy (Hollmann et al.

[1999]). The common factor extracted by the Lee-Carter model is defined as

Mortality Index, and the factor loadings capture the relationship between the age

61
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variables and the mortality index. Since there is only one factor in the Lee-Carter

model, Booth et al. [2002], Renshaw and Haberman [2003] and Yang et al. [2010]

extended the Lee-Carter framework to incorporate more common latent factors

for mortality modeling in different countries. To deal with possible outliers in

the mortality index, Li and Chan [2005] proposed an outlier-adjusted model by

combining the Lee-Carter model with time series outlier analysis. Additionally,

Booth et al. [2006] compared the Lee-Carter model with four other variants by

applying them to mortality data of multiple populations. Tuljapurkar et al.

[2000] examined mortality rates over five decades for the G7 countries using the

Lee-Carter model. Lundström and Qvist [2004] and Booth et al. [2004] applied

the Lee-Carter model to mortality data of Sweden and Australia, respectively.

A summary of the variants of the Lee-Carter model is discussed in Booth and

Tickle [2008].

In the existing literature of mortality factor models, factor loadings, which

capture the relationship between age variables and latent common factors, are

usually assumed to be time-invariant over time (we call factor models with time-

invariant factor loadings ‘classical factor models’ in this chapter). For example, in

Lee-Carter model, there is only one factor and the time-invariant factor loading

represents the age-related sensitivity to the mortality improvement. However,

since mortality datasets typically span a long period of time, it is restrictive to

assume that the factor loadings are time-invariant. Driving forces such as med-

ical improvement of certain diseases, environmental changes, and technological

progress may influence the relationship of different variables significantly. Booth

et al. [2002] studied the violation of the invariance assumption in the mortality

data of Australia and suggested to find an optimal fitting period during which

the factor loadings were invariant to improve the fit of the classical model. Their

approach, however, needs to manually select the fitting period and hence loses

the information of early years. In recent years, there is a rich literature on time-

varying factor models to capture the dynamics and structural changes in factor
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loadings for macroeconomic variables modeling, for example, see Breitung and

Eickmeier [2011] and Chen et al. [2014]. However, there has been no litera-

ture on mortality modeling which allows factor loadings to change smoothly over

time, to the best of our knowledge. Li and O’Hare [2017] and Li et al. [2015]

used semi-parametric approaches to extend the CBD models [Cairns et al., 2009]

by allowing for time-varying coefficients, which can free model assumptions and

show superior short-term forecasting performance. However, CBD models are

only suitable for old-age mortality modeling, and the factors (regressors) are

observable. Unfortunately, for Lee-Carter model and many of its variants, the

factors are unobserved, which makes it difficult to model and estimate. To fill

those gaps, we introduce a factor model with time-varying factor loadings as an

extension of the classical factor model based on Su and Wang [2017]. By devel-

oping corresponding estimation and forecasting methods, this new model can be

used for mortality modeling and forecasting.

As the time-varying factor model allows for time-varying factor loadings, it

provides more flexibility in model fitting, which, however, also poses challenges in

model forecasting. Besides forecasting the common factors, factor loadings also

need to be extrapolated into the future. In this chapter, we provide two fore-

casting methods of the factor loadings, one uses the local linear regression to roll

over the time-varying factor loadings into the future; while the other one inherits

the value of the factor loading from the last time period and remain invariant in

the future. These two forecasting methods are called the local regression method

and the naive method, respectively. Their details are described in Section 3.2.

Empirical results using the mortality data from different populations show that

the time-varying factor models provides more accurate out-of-sample forecasting

results than the classical factor model.

The existing literature suggests that different forecasting horizons may favour

different models. For example, Bell [1997] found that a simple random walk with

drift model for age-specific mortality rates yields the most accurate 1-step-ahead
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forecast compared to other six methods on the US data. Hyndman and Ullah

[2007] introduced a method which outperformed the method proposed by Lee

and Miller [2001] in the long-term forecasting. Specifically, we have found in

the literature that semi-parametric or non-parametric methods may be more

suitable for short-term forecasting. For example, the semi-parametric model

developed in Li et al. [2015] can produce superior 5-year-ahead forecasting results.

CMI [2009] employed the P-splines model (Currie et al. [2004]) for short-term

forecasting to generate the initial rates of mortality improvement. Our empirical

applications in Section 3.5.3 also suggest that the time-varying model based on

local regression (non-parametric forecasting) is better for short-term forecasting,

while the time-varying model based on naive method (parametric forecasting) is

better for long-term forecasting. Then where is the optimal ‘boundary’ between

short-term (based on the local regression method) and long-term (based on the

naive method) forecasting? We propose a novel approach based on change point

analysis [Bai, 2010] to estimate the optimal ‘boundary’ and apply it to mortality

data of multiple countries. Additionally, we conduct simulation studies to show

the performance of the time-varying factor model under different scenarios and

investigate under which conditions it preforms better than the classical factor

model.

The rest of the chapter is organized as follows. Section 3.2 introduces the time-

varying factor model and its estimation approach. The forecasting methods based

on the time-varying factor model are also discussed in detail. Section 3.3 discusses

the relative advantages of the local regression method and the naive method

in the short-term and long-term forecasting, respectively. We then propose an

approach based on change point analysis to estimate the ‘boundary’ between

short-term and long-term forecasting, which is favoured by the local regression

method and the naive method respectively. Section 3.4 introduces the datasets

and empirical evidence of time-varying factor loadings. Section 3.5 applies the

proposed methods to age-specific mortality data of multiple countries and shows
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the advantages of the proposed methods. Section 3.6 conducts simulation studies

to investigate the performance of the time-varying factor model under different

scenarios. Section 3.7 concludes the chapter. Appendix B.1 provides the gender-

specific empirical results using the time-varying factor model. Appendix B.2

presents the estimations of the optimal boundaries for varies countries with a

variety of forecasting horizons.

3.2 Time-varying factor model

Let mx,t denote the central death rate for age x in year t, where x = 1, 2, . . . ,N

and t = 1, 2, . . . ,T . Thus, {mx,t}x=1,2,...,N ,t=1,2,...,T is a N -dimensional time

series with T observations. Since mortality rates are always positive numbers,

we use the log transformation to map the central death rates from R+ space to

R space for modeling purposes. Assume ax is the age-specific constants, which is

the averages over time of the ln(mx,t). Then ln(mx,t)− ax can be modeled using

the classical factor model, as follows:

ln(mx,t) = ax + b>
x kt + εx,t, (3.2.1)

where kt is a R × 1 vector of common factors; bx is a R × 1 vector of factor

loadings, capturing the impact of each common factor on age x (i.e. the age-

related sensitivity to the mortality improvement); and εx,t is the idiosyncratic

error of ln(mx,t), which represents the components unexplained by the common

factor. Here, kt, bx and εx,t are all unobservable components. Specifically, when

R = 1, the classical factor model is equivalent to the Lee-Carter model. The

single factor kt was defined as the Mortality Index in the Lee-Carter model, and

consequently the factor loading bx represents the impact of the mortality index

on the death rate of age x.

The classical factor model, however, is too restrictive when used to analyze
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the mortality data. It assumes that, for each age, the factor loadings are time-

invariant over time. Statisticians and economists have noticed that the relation-

ship between many economic variables and common factors is not time-invariant.

Our empirical analysis using mortality data in Section 3.5 also suggests time-

varying factor loadings. Therefore, we develop a factor model to allow for factor

loadings changing smoothly overtime.

We introduce the time-varying factor model based on the work of Su and

Wang [2017], where factor loadings are modeled as nonrandom functions of time.

Su and Wang [2017] provided a localized PCA method to consistently estimate

the factors and time-varying factor loadings. Compared with Park et al. [2009],

the time-varying factor model proposed by Su and Wang [2017] can capture more

types of structural changes in factor loadings, including both continuous changes

and abrupt structural breaks. Assume ln(mx,t) − ax follows the time-varying

factor model with R unobservable common factors:

ln(mx,t) = ax + b>
x,tkt + εx,t, (3.2.2)

where notations above are the same as the classical factor model, except for the

factor loadings. Here, each component of the factor loading bx,t is assumed to

be a deterministic function of t/T : bx,t = bx(t/T ), where each component of

bx(·) is an unknown piece-wise smooth function of t/T . The time-varying factor

model can be seen as a generalization of the classical factor model. If bx(·) is

time-invariant over time, which is a special case of the piece-wise smooth func-

tion, the time-varying factor model will degenerate to the classical factor model.

Generally speaking, the assumption that factor loadings are time-invariant is too

restrictive to hold in most settings. However, the time-varying factor model can

relax this assumption by allowing for both continuous structural changes and

abrupt changes in factor loadings, which can also benefit the mortality forecast-

ing.
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3.2.1 Identification problem

Similar to the classical factor model, there exists an identification problem in the

time-varying factor model. Actually, at each time point t, and for any arbitrary

R×R invertible matrix Ht, we have b>
x,tkt =

(
H−1

t bx,t
)> (

H>
t kt

)
. Since an

arbitrary R×R invertible matrix has R2 free elements, R2 restrictions are needed

in parameter estimations so that bx,t and kt can be identified separately. Define

Bt = (b1,t, b2,t, . . . , bN ,t)
> and K = (k1, k2, . . . , kT )

>. Then the two sets of

restrictions to solve the issue of identification are as follows: K>K/T = IR and

B>
t Bt = a diagonal matrix, where IR is an R × R identity matrix. The first

normalization condition imposes R× (R+ 1)/2 restrictions on the parameters,

and the remainingR× (R− 1)/2 restrictions are obtained by requiring the second

constraint. These restrictions could uniquely determine the factors K and the

factor loadings Bt (only up to a sign change, i.e., −K and −Bt also satisfy

the two sets of restrictions). When R = 1, only one restriction is needed to

identify parameters. We choose to use the same normalization condition as Lee

and Carter [1992], that is, we normalize the bx,t to sum to unity for each t. In

this way, we can directly compare the results of our new method with that of the

Lee-Carter model.

3.2.2 Estimation method

The estimation method for the time-varying factor model is proposed by Su and

Wang [2017]. Let r ∈ {1, . . . ,T} be a fixed year. Since we have assumed that

each component of bx,t : [0, 1] → R is a piece-wise smooth function, we have:

bx,t = bx(
t

T
) ≈ bx(

r

T
) = bx,r, when t

T
≈ r

T
.
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Thus, the mortality rate ln(mx,t) can be approximated by:

ln(mx,t) ≈ ax + b>
x,rkt + εx,t, when t

T
≈ r

T
.

In order to estimate the factors and time-varying factor loadings, we consider the

following local weighted least squares problem:

min
{bx,r}N

x=1,{kt}T
t=1

(NT )−1
N∑

x=1

T∑
t=1

(
ln(mx,t) − ax − b>

x,rkt

)2
Kh

(
t− r

T

)
, (3.2.3)

subject to the identification constraints as discussed in Section 3.2.1. In the

objective function in Equation (3.2.3), Kh(x) = h−1K(x/h), where K (·) is a

kernel function and h is a smoothing parameter called “bandwidth”. We will

show that the optimization problem of Equation (3.2.3) can be solved using the

same estimation method for the classical factor model.

We have known that the mortality rates can be approximated by ln(mx,t) −

ax ≈ b>
x,rkt + εx,t when t

T ≈ r
T . Multiplying both sides of the equation by

K1/2
h,tr :=

(
Kh

(
t− r

T

))1/2
=
(1
h
K
(
t− r

Th

))1/2
,

we obtain a transformed model as:

K1/2
h,tr(ln(mx,t) − ax) ≈ K1/2

h,trb>
x,rkt +K1/2

h,trεx,t, when t

T
≈ r

T
.

Then we can define matrices

M (r) =
(

M
(r)
1 , . . . , M

(r)
N

)
,

ε(r) =
(

ε
(r)
1 , . . . , ε

(r)
N

)
,
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and

K(r) =
(
K1/2

h,1rk1, . . . ,K1/2
h,T rkT

)>
,

where M (r)
x =

(
K1/2

h,1r(ln(mx,1) − ax), . . . ,K1/2
h,T r(ln(mx,T ) − ax)

)>
and ε

(r)
x =(

K1/2
h,1rεx,1, . . . ,K1/2

h,T rεx,T
)>

with x = 1, 2, . . . ,N . Therefore, the transformed

model can be written in matrix form as follows:

M (r) ≈ K(r)B>
r + ε(r),

and the optimization problem above can also be written in matrix notation as:

min
K(r),Br

Tr
((

M (r) − K(r)B>
r

) (
M (r) − K(r)B>

r

)>)

s.t K(r)>K(r)/T = IR and B>
r Br = a diagonal matrix.

Concentrating out Br = M (r)>K(r)
(
K(r)>K(r)

)−1
(which is M (r)>K(r)/T

under the normalization K(r)>K(r)/T = IR), the optimization problem is con-

verted to minimizing the objective function:

Tr
(
M (r)>M (r)

)
− T−1 Tr

(
K(r)>M (r)M (r)>K(r)

)
.

Thus, the original local weighted least squares problem is equivalent to maximiz-

ing

Tr
(
K(r)>M (r)M (r)>K(r)

)
,

subject to the restriction K(r)>K(r)/T = IR, which is equivalent to the opti-

mization problem of the classical factor model.

Our objective is to obtain estimators of the factors and factor loadings. A

two-stage estimation procedure is used to estimate those parameters. Let K̂
(r)
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denote the estimated factor matrix of K(r), and B̂r =
(
b̂1,r, b̂2,r, . . . , b̂N ,r

)>

denote the estimator of the time-varying factor loading matrix Br. Then, K̂
(r)

is
√
T times eigenvectors corresponding to the largest R eigenvalues of the T × T

matrix M (r)M (r)>, and B̂r is M (r)>K̂
(r)
(

K̂
(r)>

K̂
(r)
)−1

(it is M (r)>K̂
(r)

/T

under the condition K(r)>K(r)/T = IR). Therefore, in the first step, we can

acquire estimators B̂r of the factor loadings for r = 1, . . . ,T .

Based on the estimator B̂r of the factor loading matrix we get in the first

stage, we consider another least squares problem in the second stage to obtain

the estimator of the factor kt. The objective function we would like to minimize

is as follows:

N∑
x=1

(
ln(mx,t) − ax − b̂

>
x,tkt

)2
for t = 1, . . . ,T .

Since we already have b̂x,t from the first stage, the answer to this minimization

problem is

k̂t =

 N∑
x=1

b̂x,tb̂
>
x,t

−1 N∑
x=1

b̂x,t (ln(mx,t) − ax)

 for t = 1, . . . ,T .

Thus, using the two-stage estimation method, we can obtain consistent estimators

for both the factors and time-varying factor loadings.

Next, we discuss some issues in the kernel estimation.

Remark 3.1. Boundary kernel. Usually, there exists a boundary bias issue

in the kernel estimation. Instead of using the ordinary kernel function, it is

suggested that a boundary kernel should be used to help us obtain some uniform

results. Let bac represent the greatest integer less than or equal to a, then the
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boundary kernel we choose to use is as follows:

K∗
h,tr = h−1K∗

r

(
t− r

Th

)
=



h−1K
(

t−r
T h

)∫ 1
− r

T h
K(u)du

r ∈ [1, bThc]

h−1K
(

t−r
T h

)
r ∈ (bThc,T − bThc]

h−1K
(

t−r
T h

)∫ (1−r/T )/h

−1 K(u)du
r ∈ (T − bThc,T ]

.

Remark 3.2. The choice of bandwidth. For the nonparametric local smooth-

ing method, it is important to determine the bandwidth for the kernel estimation.

There are two ways to choose the bandwidth. One is to use a data-driven method

such as the cross-validation. The other one is to use Silvermans rule of thumb to

set the bandwidth, which is much easier to compute. Su and Wang [2017] have

shown that choices of the kernel function and the bandwidth have little impact

on the performance of the information criteria. Thus, in the following empirical

analysis, we decide to use the Epanechnikov kernel and its corresponding Silver-

mans rule of thumb bandwidth, which is h = (2.35/
√

12)T−1/5N−1/10.

Remark 3.3. Determination of the number of factors. There are mainly

two methods to determine the number of factors R. The first one is to use a

BIC-type information criterion proposed by Su and Wang [2017]. Under certain

assumptions, the new information criterion can correctly choose the true value

of R. However, those assumptions may not hold in real data. Additionally, it is

not easy to implement the out-of-sample forecasting if the chosen value of R is

too large.

The second method is based on the fact that the original local weighted least

squares problem can be transformed into an optimization problem of the classical

factor model. Therefore, the cumulative sum of eigenvalues can help us identify

the number of factors. Let c denote a cut-off value between 0 and 1, and λk repre-

sents the kth largest eigenvalue of the matrix M (r)M (r)>, then we can choose the

value of R as min{R :
(∑R

k=1 λk

)
/
(∑N

k=1 λk

)
≥ c}. In the following analysis,

© Lingyu He – 12 November 2020



72 Time-varying Factor Model for Mortality Forecasting

we will set the cut-off value as c = 0.9 and empirical analysis shows that only

one factor is enough to capture most characteristics of the mortality data, which

is consistent with the Lee and Carter [1992] model.

3.2.3 Forecasting method

We now consider how to make out-of-sample forecasting using the time-varying

factor model. Since the factor loadings change over time, not only should we

make predictions on the common factors, but we should also extrapolate the

factor loadings for each age. We describe in the following the forecasting method

for a single factor model (R = 1), for the simplicity of notations. Assume that

based on the historical data we have acquired the estimated common factor and

factor loadings using the method mentioned in Section 3.2.2.

In order to forecast the common factor, firstly we fit the common factor

with ARIMA model. Since Akaike Information Criterion (AIC) is asymptotically

equivalent to the cross-validation when the maximum likelihood estimation is

used to fit the model (Stone [1977]), we choose AIC as the model selection criteria

to find the most appropriate ARIMA model. After that, we can use the chosen

model to forecast and obtain prediction intervals for the latent factor (see more

details in Chapter 5 & 9 of Brockwell et al. [1991]).

The factor loading bx,t is assumed to be an unknown piece-wise smooth func-

tion of time t. For the purpose of extrapolating the factor loading bx,t into the

future, we will adopt two different methods to achieve the goal:

1. The naive method. We simply assume that in the forecasting horizon,

bx,t(t > T ) is set as bx,T . This is essentially a parametric forecasting

method and similar to that in the classical model but with a different esti-

mated value. The naive method using constant factor loading has a simple

structure and could provide more stable forecasts in the long term.

2. The local regression method. This method is based on a nonparametric
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regression method – the local linear regression, to flexibly estimate the de-

terministic function bx,t (See more details in Fan and Gijbels [1996],Fried-

man et al. [2001]). Similar method has also been applied in Li and O’Hare

[2017]; Li et al. [2015]. The local linear regression can easily extend the

most recent trends, which is more suitable for short-term forecasting.

We briefly describe the local regression method in the rest of this section. The

main idea of the local linear regression is to fit the linear regression using only the

observations in the neighborhood of a target point t0. This so-called localization

is achieved by using a weight function Kλ(t, t0) = K ((t− t0)/λ), where K is a

kernel function and the index λ indicates the width of the neighborhood. One

of the commonly used kernel functions with compact support is Epanechnikov

kernel, which is adopted in this chapter. For the Epanechnikov kernel, the window

width parameter λ is the radius of the support region, which can be estimated

using out-of-sample validation. The weight function assigns a weight to each time

point t based on the corresponding distance from t0 (i.e., |t− t0|). In such a way,

the resulting estimated function is a smooth function.

Specifically for the forecasting of the time-varying factor loading of each age

x, the local linear regression solves a separate weighted least square problem at

each target point T + h (h = 1, 2, . . . ):

min
α(T+h),β(T+h)

T+h−1∑
t=1

Kλ(t,T + h) (bx,t − α(T + h) − β(T + h)t)
2 .

Note that the notations α(T + h) and β(T + h) indicate that these two param-

eters under study vary with the point T + h in local linear method.

Let bx = (bx,1, bx,2, . . . , bx,T+h−1)
>, X =

1 1 . . . 1

1 2 . . . T + h− 1


>

, and

W (T + h) denote the (T + h− 1) × (T + h− 1) diagonal matrix with the tth

diagonal element Kλ(t,T + h). Then by using the weighted least squares esti-
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mation, we can obtain the estimators for α(T + h) and β(T + h) as follows:

(
α̂(T + h), β̂(T + h)

)>
=
(
X>W (T + h)X

)−1
X>W (T + h)bx.

To ensure that X>W (T + h)X is nonsingular, the bandwidth parameter λ in

the kernel function should be selected properly in practice (More details can be

find in Fan and Gijbels [1996]). Therefore the forecast factor loading at point

T + h is

b̂x,T+h =
(

1 T + h

)α̂(T + h)

β̂(T + h)

 .

Note that for h > 1, the forecasts b̂x,T+1, . . . , b̂x,T+h−1 are evolved in bx when

estimating the factor loading at the time T + h. Following this method, we can

estimate the factor loadings for each age as a smooth function of time t and then

extrapolate the factor loadings into the future. Combining with the predicted

common factors, we can make out-of-sample predictions of the central death

rates using the time-varying factor model.

3.3 Optimal ‘boundary’ estimation

Under the framework of time-varying factor model, we assume the factor loading

bx,t is a function of time t. In Section 3.2.3, we introduced two different methods

to extrapolate factor loading. One is a naive method, which is more suitable for

long-term forecasting; and the other is based on local linear regression, which is

more suitable for short-term forecasting. Then can we estimate the ‘boundary’

between short-term and long-term forecasting that divides the forecasting horizon

according to the predictive power of the local regression method and the naive

method?

To solve this problem, we first propose a new forecasting method, which is a
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hybrid of two previously introduced methods. Assume T0 is the number of years

used in fitting the model and k (k = 0, 1, 2, · · · ) is the optimal boundary between

short-term and long-term forecasting, favoured by the time-varying models based

on local regression and the naive method, respectively. We have the point forecast

estimation of mortality rate ln(mx,t) for any given x, t and k (k ≥ 1) using the

hybrid method as

ln(m̂x,t) =


âx + b̂x,t · k̂t T0 + 1 ≤ t ≤ T0 + k

âx + b̂x,T0+k · k̂t t ≥ T0 + k+ 1

If T0 + 1 ≤ t ≤ T0 + k, the forecast of ln(mx,t) at time t is âx + b̂x,t · k̂t, where b̂x,t

is the extrapolated factor loading at time t based on the local regression method.

When t ≥ T0 + k + 1, the forecast at time t is âx + b̂x,T0+k · k̂t, where b̂x,T0+k is

time-invariant and obtained using the extrapolated factor loading at time T0 + k

using the local regression method. For k = 0, the forecast at time t (t > T0)

is just âx + b̂x,T0 · k̂t using the estimated factor loading at time T0. In this case,

the hybrid method degenerates to the naive method. In view of this, T0 + k is

the time boundary between short-term and long-term forecasting, and between

choosing the local regression and the naive method. Given the value of k, the

hybrid method applies the local linear regression for the first k periods in the

forecasting horizon and keeps the factor loadings (b̂x,T0+k) unchanged thereafter,

which combines the local regression and naive methods. Additionally, the hybrid

method guarantees a consistent and smooth transition from short-term to long-

term forecasting.

As discussed in Section 3.1, different forecasting horizons may favour different

models. Generally, long-term forecasting benefits more from the historical long-

term trend and short-term forecasting relies on the recent trend [Booth et al.,

2002]. Since the local linear regression can easily extend the most recent trends,

it is more suitable for short-term forecasting. However, as time goes by, the
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recent trends become less and less reliable, which is not suitable for long-term

forecasting. On the other hand, the naive method using constant factor loading

is more suitable for the long-term forecasting, as it has a simple structure and

would provide more stable forecasts in the long term. Compared with the classical

factor model, the naive method provides more accurate estimations not only for

the factor loadings but also for the common factors, which helps generate more

accurate long-term forecasts.

Based on the hybrid forecasting method, we propose an estimation method

of the optimal ‘boundary’ inspired by Bai [2010]. Assume the entire dataset has

T years and we consider the first T0 years of data as the training set, and the

remaining data with size T − T0 as the validation set. Given the value of k, we

first fit the time-varying factor model using the training set, and then apply the

hybrid forecasting method to the validation set. We consider all possible lengths

of short-term (long-term) forecasting horizons (i.e., k) and find out an optimal

one using least squares estimation. We describe the estimation procedure as

follows.

For given x and k such that 1 ≤ k ≤ T − T0 − 1, define ŷx,t(k) = âx + b̂x,t · k̂t

as the predicted value of ln(mx,t) from the hybrid forecasting method based on

the time-varying factor model. When T0 + 1 ≤ t ≤ T0 + k, b̂x,t is forecasted

by the local regression method; And when T0 + k + 1 ≤ t ≤ T , b̂x,t = b̂x,T0+k,

where b̂x,T0+k is the predicted factor loading at time T0 + k obtained via the local

regression method. Then we define the sum of squared residuals for age x as

Sx,T (k) =
T∑

t=T0+1
(ln(mx,t) − ŷx,t(k))

2

=
T0+k∑

t=T0+1

(
ln(mx,t) − âx − b̂x,t · k̂t

)2

+
T∑

t=T0+k+1

(
ln(mx,t) − âx − b̂x,T0+k · k̂t

)2
,
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where k = 1, 2, . . . ,T − T0 − 1. Here k represents the length of the short-term

forecasting horizon or the ‘boundary’ between short-term (based on the local

regression method) and long-term (based on the naive method) forecasting. The

local linear regression is used to make forecasts from T0 + 1 to T0 + k; while the

naive method (i.e. assuming b̂x,t doesn’t change over the remaining period) is

used to make forecasts from T0 + k+ 1 to T . We define

Sx,T (0) =
T∑

t=T0+1

(
ln(mx,t) − âx − b̂x,T0 · k̂t

)2
for k = 0

and

Sx,T (T − T0) =
T∑

t=T0+1

(
ln(mx,t) − âx − b̂x,t · k̂t

)2
for k = T − T0.

In this way, Sx,T (k) is defined for each k = 0, 1, . . . ,T − T0. Thus, the total sum

of squared residuals (SSR) across all ages is defined as

SSR(k) =
N∑

x=1
Sx,T (k).

Hence the least squares estimator of the optimal ‘boundary’ is

k̂ = argmin
0≤k≤T −T0

SSR(k).

The estimated optimal ‘boundary’ between the short-term (based on local linear

regression) and the long-term (based on naive method) forecasting is the time k̂

that leads to the smallest SSR.

3.4 Data

The mortality data used in this chapter are extracted from the Human Mortality

Database (HMD) (91). Six countries are selected for the empirical analysis in
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Section 3.4 and Section 3.5. For each country, age-sex-specific death rates are

available annually for the entire population. The selected countries are shown

in Table 3.1 along with the corresponding available time horizons, which will be

used for empirical analysis.

Table 3.1: Time horizon for different countries
Country start year end year length

AUSTRALIA 1921 2018 98
CANADA 1921 2016 96
FRANCE 1816 2017 202

ITALY 1872 2017 146
JAPAN 1947 2018 72

USA 1933 2017 85

The mortality data are generally available from age 0 to age 110+ for each

year. Since measures of mortality at very old ages are unreliable [Lee and Carter,

1992], we decide not to use mortality data of age 91 and over in the following

analysis and end up with N = 91 ages.

In order to investigate whether the factor loadings are time-varying or time-

invariant in the empirical data. We conduct an exploratory data analysis by

applying the Lee-Carter Model on the US mortality data with rolling-window

time frames. We first divide the entire dataset into 44 subsets (each with 40

yearly observations) with the first subset from year 1933 to year 1972, the second

subset from year 1934 to year 1973, and so on. We then fit the Lee-Carter model

on each of the subset and extract the factor loading bx for each time frame. We

plot the factor loadings of some selected ages in Figure 3.1. We can see that the

factor loadings possess different dynamic patterns for different ages and they are

not time-invariant.
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Figure 3.1: Factor loadings for ages 20, 40, 60, 80 over 44 rolling-window time frames

3.5 Empirical results and analysis

In the first two subsections, we present the application results of the time-varying

factor model using age-specific mortality data of the US. We compare the time-

varying factor models based on both naive and local regression forecasting meth-

ods with the classical factor model (i.e. Lee-Carter model) via out-of-sample

forecasting performance. Empirical results by gender are provided in Appendix

B.1. Section 3.5.3 further compares the forecasting performance across multiple

countries and models based on different forecasting horizons. And in the Section

3.5.4, we estimate the optimal ‘boundary’ between short-term and long-term

forecasting for different countries.

3.5.1 Model fitting

We fit the US mortality data using the estimation method of the time-varying

factor model introduced in Section 3.2. The number of factors estimated is 1

(R̂ = 1), which is consistent with the Lee-Carter model.
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Using the model selection criteria AIC, we find that the common factor kt,

obtained from the time-varying factor model, follows an ARIMA (1, 1, 0) with

drift term. This model can capture most of the characteristics of the common

factor. Our fitted model of the common factor kt is as follows:

5kt = −1.4116
(0.2791)

+ 0.3271
(0.1046)

5 kt−1 + et

where 5 refers to the first order differencing and et represents the error term.

The numbers in the parentheses are the standard errors of the corresponding

parameters. With the ARIMA model built above, we can then forecast the

common factor into the future.

As a comparison, we also list the fitted ARIMA model of the common factor

(The number of factors estimated is 1.) using the classical factor model1 below:

5kt = −1.4046
(0.2837)

+ 0.3114
(0.1051)

5 kt−1 + et

We can see that the ARIMA models of the common factors estimated from the

time-varying factor model and the classical factor model are close. The estimated

common factors, plotted in Figure 3.2, tend to decrease linearly and show similar

dynamic patterns. The common factor is regarded as the index of the level of

mortality, which capture major influence on death rates of all ages.

Figure 3.3 displays the comparison of the factor loadings between the time-

varying factor model and the classical factor model for selected ages. Compared

with time-invariant factor loadings (dashed lines), the time-varying factor load-

ings (the solid curves) change smoothly overtime, see Figure 3.3. It is interesting

to notice that, no matter which age it is, the corresponding factor loadings always

reach their own minimum or maximum values during 1960s or 1970s. For older

people (over age 40), the factor loadings usually arrive at their maximum values
1In this case, the classical factor model has the same model structure as the Lee-Carter

model.
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Figure 3.2: Plots of the estimated common factors for the time-varying factor model
& the classical factor model

during 1960s or 1970s, which means the death rates of older people are more

sensitive to the latent common factor during that period. For the younger ages

(below age 40), however, the corresponding factor loadings reach their minimum

values during the same period, which means the death rates of younger people

are less sensitive to the latent factor during that time. The only exception is the

factor loadings of the infant group, whose dynamic pattern is more similar to

that of the older group.

Figure 3.4 shows the fitted death rates of both the time-varying factor model

and the classical factor model with empirical observations for selected ages. Ob-

viously, no matter which age it is, the time-varying factor model fits better than

the classical factor model. We use the mean squared error (MSE)2 to evaluate the

goodness of fit. As a result, the overall MSE of the time-varying factor model is

0.001990, which is much smaller than that of the classical factor model, 0.006690

(three times bigger than the former one). Therefore, the time-varying factor
2The MSE for the time-varying model is computed as follows:

MSE =
1

NT

∑
x

∑
t

(
ln(mx,t) − ax − b̂

>
x,tk̂t

)2

Computation of the MSE for the classical model is the same as above except that b̂x,t is replaced
by b̂x.
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Figure 3.3: Plots of the estimated
time-invariant factor loadings (dashed
lines) & the time-varying factor load-
ings (solid lines) for age 0, 10, . . . , 90.
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Figure 3.4: The actual data (black
solid line) versus the fitted values from
the time-varying model (red dashed
line) and the classical model (green
dotted line); the data have been log-
transformed & demeaned.

model performs much better than the classical one with respect to the in-sample

fitting.

Although the time-varying factor model works better in the fitting procedure,

the problem of overfitting may exist due to the increased complexity of the model.

Through the Monte Carlo simulation studies in Section 3.6, we will see that over-
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Figure 3.5: Out-of-sample forecast of the common factor, with the model fitted on
1933 to 1992 and the forecast horizon over 1993 to 2017; predicted value (red solid
line), 80% PI (red dashed line)

fitting is harmful to forecasting. Usually, an overfitting model performs too well

in the fitting sample to have good generalization ability in forecasting. Generally

speaking, we can always improve a models in-sample fitting performance by in-

creasing the complexity of the model, which, however, cannot guarantee a better

forecasting performance in the future. Thus we will use the out-of-sample val-

idation method to investigate whether the time-varying model can enhance the

out-of-sample forecasting performance in the next subsection.

3.5.2 Out-of-sample forecasting

In this subsection, we use the original US mortality data over the first 60 years

as the training set (from 1933 to 1992) to fit the models, and then forecast the

mortality rates in the testing set (from 1993 to 2017) using the fitted models.

The predicted values are compared with the actual data in the testing set to

see which model is better at the out-of-sample forecasting. We apply the mean

squared prediction error (MSPE) as the measure to evaluate the out-of-sample

forecasting performance.

Figure 3.5 plots the historical and predicted values of the common factor of
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the time varying factor model along with the associated 80% prediction intervals,

which is based on the ARIMA model fitted in Section 3.5.1. The red solid down-

ward line shows that the latent factor will keep declining in the future, and there

is an 80% chance that a future observation will be covered by the corresponding

prediction interval (represented by area between the red dashed lines).

Since the time-varying factor model and the classical factor model have sim-

ilar common factors and the corresponding fitted ARIMA models, the forecasts

of the common factors are close to each other too. Hence the major difference

of prediction accuracy between the time-varying factor model and the classical

factor model lies in the factor loadings. We extrapolate the factor loadings ob-

tained from the time-varying factor model using both the naive method and local

linear regression introduced in Section 3.2.3, respectively. We then forecast the

mortality rates into the future using both the time-varying and classical factor

models.

Figure 3.6 plots the estimated and extrapolated factor loadings of the time

varying factor models. Figure 3.7 plots the actual data and predicted values us-

ing the three above-mentioned methods. From Figure 3.6, we see that the local

regression method follows the recent historical trend of factor loadings, while the

naive method stays at a constant level. Theoretically, if future factor loadings do

not deviate significantly from the recent historical trend, the local linear regres-

sion may perform better than the naive method in forecasting. However, it may

only be reasonable to assume that factor loadings will follow the local trends in

the short-term. For long-term forecasting, this assumption is less reliable and

the non-parametric forecasting method would lead to inferior results. In Section

3.5.3, we observe similar results in other countries’ mortality forecasting. Hence,

the naive method, with time-invariant forecasted factor loadings, is more suitable

for long-term forecasting. And it may also be suitable for short-term forecasting

if the long-term trend is consistent with the short-term trend. Since the benefit of

using the local regression method decreases as the forecasting horizon increases,
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Figure 3.6: Plots of the estimated and
extrapolated factor loadings based on
naive method (red dashed lines) & local
regression method (black dashed lines)
for age 0, 10, . . . , 90.
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Figure 3.7: The actual data (red solid
line) versus the predicted values from
the time-varying model (naive method:
blue dotted line; local linear regres-
sion: green dashed line) and the clas-
sical model (black solid line); the data
have been log-transformed.

it is worthwhile to ask whether an optimal forecasting horizon exists for using

the local regression method. This question will be answered in Section 3.5.4.

The empirical analysis suggests that, the time-varying factor model (based

on the naive method) performs better than the classical factor model over the
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entire forecasting horizon (1993-2017). Using the mean squared prediction error

(MSPE) to evaluate the out-of-sample forecasting performance, we see that the

overall MSPE for the classical factor model is 0.03085, while the overall MSPE

for the time-varying factor model (based on the naive method) is only 0.01804.

However, if we choose to use local linear regression to extrapolate factor loadings,

the time-varying factor model performs worse than classical factor model, with

MSPE of 0.04768.

Figure 3.8 shows the year-specific MSPE for the time-varying factor models

and the classical factor model over the forecasting horizon 1993 to 2017. The

year-specific MSPE is computed by averaging MSPE over all ages for each fore-

casting year. From Figure 3.8, we can see that for the majority years, the MSPE

of the time-varying model with the naive forecasting method is always the small-

est one. From Section 3.5.4, we can see the reason is that the optimal ‘boundary’

between short-term and long-term forecasting in this case is estimated to be 0.

So the the time-varying model with the naive forecasting method is the best for

both short-term and long-term forecasting. And, the MSPE for all the three

methods are generally increasing over the years, as it is harder to forecast the

farther future. We also notice that the time-varying factor model based on lo-

cal regression method works better than the classical factor model over 1993 to

1995. However, it has the worst performance for longer-term forecasting. The

time-varying model based on local regression method assumes the factor loadings

change over time in the future, but it can only extend the recent trend, which

may not be suitable for long-term forecasting. On the other hand, the classical

factor model and the time-vary model based on naive method extrapolate factor

loadings into future as constants, which is usually more suitable for long-term

forecasting.

Next, we investigate the forecasting performance of the time-varying factor

model at different ages. Figure 3.9 shows the age-specific MSPE for the time-

varying factor models and the classical factor model. The yellow and pink plots
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Figure 3.8: US: Year-specific MSPE for the time-varying model and the classical model
over 1993 to 2017; for time-varying model, both the naive method and the local regres-
sion method are used
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Figure 3.9: US: Age-specific MSPE for both the time-varying model and the classical
model; for time-varying model, both naive method and local regression method are
used

represent the MSPE of the time-varying factor model with naive method and

local regression method for each age, respectively, and the purple plot represents

the MSPE of the classical factor model. We find that the naive forecasting

method based on the time-varying factor model is almost always better than

local regression method for any age in this data. And roughly speaking, no matter
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which extrapolation method we choose to use, the time-varying models provide

more accurate forecasts than the classical factor model for age groups 20 ∼ 40

and 60 ∼ 80. However, for the age group 40 ∼ 60, the forecasting performance of

the time-varying factor models is worse than that of the classical model. Thus,

even though, by using naive extrapolation method, the time-varying factor model

improves the overall performance (over 40% in terms of the MSPE) significantly, it

cannot outperform the classical factor model for some ages. The main advantage

of the time-varying model is to forecast mortality rates for the young adulthood

(20 ∼ 40) and the older adulthood (60 ∼ 80).

3.5.3 Model comparisons for multiple countries

We apply and compare different models using mortality data of multiple coun-

tries. In particular, the functional data model proposed by Hyndman and Ullah

[2007] is also considered for comparison purposes. It is a multi-factor extension

of the Lee-Carter model, allowing for multiple age-time interaction terms to cap-

ture the complex structure of the data. Similar to the Lee-Carter model (i.e.

the classical factor model), it is also commonly considered as a benchmark for

mortality forecasting.

In Table 3.2, we present the results of the overall MSPE for different coun-

tries, forecast horizons and methods. We use the longest available dataset for

training purposes, with different forecasting horizons listed in Table 3.2. Please

refer to Section 3.4 for a brief description for mortality data of those countries.

To investigate the performance of the short-term and long-term forecasting, we

consider multiple forecasting horizons with different lengths, including 5, 10, 15,

20 and 25 years.
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Table 3.2: Overall MSPE by country, forecast horizon and

method (functional: functional data model, classical: clas-

sical factor model, TV-Local Regression: time-varying

factor model based on local linear regression, TV-Naive:

time-varying factor model based on naive method)

Country Forecast Horizon Functional Classical TV-Local

Regression

TV-Naive

Australia 2014 ∼ 2018 0.012 0.037 0.013 0.014

2009 ∼ 2018 0.022 0.049 0.016 0.019

2004 ∼ 2018 0.036 0.064 0.026 0.028

1999 ∼ 2018 0.082 0.094 0.045 0.042

1994 ∼ 2018 0.053 0.112 0.089 0.043

Canada 2012 ∼ 2016 0.012 0.044 0.015 0.016

2007 ∼ 2016 0.018 0.045 0.016 0.018

2002 ∼ 2016 0.021 0.049 0.019 0.020

1997 ∼ 2016 0.021 0.051 0.025 0.020

1992 ∼ 2016 0.032 0.061 0.038 0.024

France 2013 ∼ 2017 0.009 0.047 0.0146 0.0154

2008 ∼ 2017 0.016 0.054 0.021 0.022

2003 ∼ 2017 0.042 0.081 0.049 0.047

1998 ∼ 2017 0.059 0.101 0.068 0.061

1993 ∼ 2017 0.079 0.128 0.096 0.085

Italy 2013 ∼ 2017 0.012 0.044 0.014 0.015

2008 ∼ 2017 0.018 0.057 0.028 0.029

2003 ∼ 2017 0.047 0.084 0.064 0.052

1998 ∼ 2017 0.090 0.098 0.077 0.058

1993 ∼ 2017 0.099 0.108 0.073 0.067

Japan 2014 ∼ 2018 0.012 0.031 0.009 0.009

Continued on next page
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Table 3.2 – continued from previous page

Country Forecast Horizon Functional Classical TV-Local

Regression

TV-Naive

2009 ∼ 2018 0.010 0.034 0.017 0.011

2004 ∼ 2018 0.039 0.072 0.023 0.016

1999 ∼ 2018 0.024 0.055 0.018 0.017

1994 ∼ 2018 0.030 0.072 0.037 0.034

USA 2013 ∼ 2017 0.011 0.028 0.013 0.014

2008 ∼ 2017 0.010 0.024 0.015 0.014

2003 ∼ 2017 0.017 0.025 0.024 0.016

1998 ∼ 2017 0.111 0.029 0.031 0.021

1993 ∼ 2017 0.026 0.031 0.048 0.018

From Table 3.2, we see that the time-varying models can significantly im-

prove the out-of-sample forecasting performance compared with the classical fac-

tor model. The time-varying factor models and functional data model performs

the best in most cases. The functional data model is especially suitable for mor-

tality forecasting of the France data, as shown in Hyndman and Ullah [2007]. In

addition, for the time-varying factor models, the local regression method tends

to perform better for short-term forecasting, while the naive method is better

for long-term forecasting. Compared with all the other models, the time-varying

model based on the naive method show superior results for long-term forecasting,

while the classical factor model always has the worst forecasting performance.

In Figure 3.10, by fixing the length of forecast horizon to be 25 years, we plot

the year-specific MSPE for all the countries using different forecasting methods.

Roughly speaking, the time-varying model based on the naive method always

has the most accurate forecasts, while the classical factor model always performs

the worst. Additionally, the time-varying model based on the local regression

method usually performs well (similar to or better than the naive method) at

the first few years, while it deteriorates as time goes by. For mortality data of
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Figure 3.10: Year-specific MSPE by country and method (functional: functional data
model, classical: classical factor model, local regression: time-varying factor model
based on local linear regression, naive: time-varying factor model based on naive
method); length of forecast horizon is 25 years

Australia and the US, it has worse forecasting performances than the classical

factor model in the long term.

3.5.4 Estimate the optimal ‘boundary’

From the empirical results above, we see that under the framework of time-

varying model, the local regression method (by assuming factor loading will

change in the future) is better at short-term forecasting while the naive method
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(by assuming factor loading is in-variant in the future) is better at long-term fore-

casting. Therefore, we are interested in the boundary between short-term and

long-term forecasting that divides the forecast horizon according to the predictive

power of local regression method and the naive method.

By applying the estimation method introduced in Section 3.3, we estimate

the optimal ‘boundary’ between the short-term and long-term forecasting, which

is favored by the local regression method (time-varying forecast of the factor

loading) and the naive method (time-invariant forecast of the factor loading)

respectively. Recall that the optimal ‘boundary’ can be regarded as the optimal

value of k defined in the hybrid forecasting method in Section 3.3. Applying the

same datasets introduced in Section 3.4, we use the last 25 years of the historical

data as the validation set, and the remaining data as the training set. In addition,

to check the sensitivity of the least squares estimator to the division of validation

set and testing set, we consider the last p years (p = 15, 20, 25, 30, respectively)

of data as the validation set and the remaining data as the training set. Please

refer to Appendix B.2 for more details

As defined in Section 3.3, for each set of data we compute the least squares

estimator for the optimal ‘boundary’ in the forecasting horizon as

k̂ = argmin
0≤k≤T −T0

SSR(k),

where k = 0, 1, 2, . . . ,T − T0. Here k represents the length of the short-term

forecasting horizon, or the ‘boundary’ between short-term (based on the local

regression method) and long-term (based on the naive method) forecasting. The

local linear regression is used to make forecasts from T0 + 1 to T0 + k; while the

naive method (i.e. keep the factor loading the same as that in time T0 + k) is

used to make forecasts from T0 + k+ 1 to T .

We plot the total SSR versus k in Figure 3.11. As shown in the plots, for

each country, there is a minimum point of k corresponding to the smallest values
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Figure 3.11: Plots of the total sum of squared residuals (SSR) versus the length (k) of
the short-term forecast horizon (based on the hybrid forecasting method of time-varying
factor model); length of forecast horizon: 25

of SSR, which indicates the optimal length of the short-term forecasting horizon

for the time-varying factor model. For example, the plot of Italy shows that,

when the value of k equals 7, SSR achieves the smallest value. Thus, based on

the historical Italy mortality data, we suggest that it is better to use the local

regression method for the short-term forecasting (less than 7 leads), as it puts

more weights on the recent observations. As for forecasting more than 7 years

ahead, the naive method generates more accurate predictions. However, as for

US data, the optimal length of the short-term forecasting horizon is 0, which

means there is no need to extrapolate factor loadings using local linear regression
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and we should use the naive method alone. In Figure 3.11, we can observe jumps

at k = 1 for some countries (such as Canada and France). When k = 0, the

hybrid method is just the naive method and the extrapolation of factor loading

is based on the historical estimation; while when k > 1, the hybrid method is

based on the local regression method before the time T0 + k. Therefore, a sudden

change of SSR when k increases from 0 to 1 indicates that the pattern of factor

loadings has a relatively large change after the time T0.

Now we have observed the existence of positive optimal ‘boundary’ for some

countries (such as Australia, Italy and Japan). Then based on the estimation of

optimal ‘boundary’ k, we can compare the out-of-sample forecasting performances

of the hybrid method with other methods. Here, we consider the Australian

mortality data as an example since the estimation of the optimal boundary for

Australian data is relatively stable (see details in Remark 3.4 and Appendix B.2).

Similar to previous analysis, we choose the last 25 years of the historical data

as the testing set. And the remaining data is the training set. To estimate k,

we use the last 25 years of the training data as the validation set to estimate the

optimal ‘boundary’. We then apply the estimation procedure in Section 3.3 to the

training data and the forecasting method in the testing data using the estimated

optimal ‘boundary’ to get the out-of-sample performance. The empirical results

are shown in Figure 3.12 and Table 3.3.

In Table 3.3, we compute the overall MSPE over 1994 to 2018 for each fore-

casting method. We find that the time-varying model based on the hybrid fore-

casting method has the best out-of-sample performance among all four methods.

And the naive method is a little bit worse than the hybrid method. Additionally,

in Figure 3.12, we plot the year-specific MSPE for all different methods. For

short-term forecasting, the hybrid method shows similar performance with the

local regression method; while for the long-term forecasting, the hybrid method

shows similar performance with the naive method. Therefore, the hybrid method

is superior for both short-term and long-term forecasting, as it benefits from the
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advantages of both methods. In practice, both naive method and hybrid method

are recommended. The hybrid method could produce more accurate predictions

while the naive method is much easier to implement.

Table 3.3: Australia: Overall MSPE over 1994 to 2018 (Classical: classical factor
model, TV-Local Regression: time-varying factor model based on local regres-
sion method), TV-Naive: time-varying factor model based on naive method), TV-
Hybrid: time-varying factor model based on hybrid method)

Country Classical TV-Local
Regression

TV-Naive TV-Hybrid

Australia 0.11162 0.08932 0.04342 0.04288
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Figure 3.12: Australia: Year-specific MSPE over 1994 to 2018 (classical: classical
factor model, local regression: time-varying factor model based on local regression
method), naive: time-varying factor model based on naive method), hybrid: time-
varying factor model based on hybrid method)

Remark 3.4. In Appendix B.2, we further investigate the sensitivity of the opti-

mal ‘boundary’ estimation by showing plots of the total sum of squared residuals

(SSR) versus k using different lengths of training and testing datasets. For some

countries, like Japan and USA, the least estimators are relatively stable. How-

ever, for countries like Canada and Italy, estimation of optimal ‘boundary’ is
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somewhat sensitive to the length of the dataset. This is reasonable as the time-

varying model highly depends on the data and its intrinsic patterns. Therefore,

when using different training data and forecasting horizons to estimate optimal

‘boundary’, we may obtain different values of k.

3.6 Monte carlo simulations

In this section, we further investigate the prediction performance of the time-

varying factor model and the classical factor model through Monte Carlo simula-

tions. We use examples with different structures of the factor loadings to illustrate

that the time-varying factor model can improve the forecasting accuracy when

the ‘true’ factor loadings change over time. In addition, we explain under which

conditions the naive method performs better than the local regression method

even in the short-term.

Similar to the previous empirical analysis, we denote the classical factor model

as ‘Classical’ and the two forecasting methods based on the time-varying factor

model as ‘TV-Local Regression’ method and ‘TV-Naive’ method, respectively.

We show that when the ‘true’ factor loadings change over time, both forecast-

ing methods based on the time-varying factor model outperform the ‘Classical’

method in forecasting. Moreover, the ‘TV-Naive’ method performs similarly to

the ‘TV-Local Regression’ method for short-term forecasting; while it performs

better than the ‘TV-Local Regression’ for long-term forecasting.

3.6.1 Data generating processes (DGP’s)

We generate the centered data xi,t with one common factor:

xi,t = bi,t · kt + εi,t, i = 1, 2, . . . ,N ,
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where kt = kt−1 + wt. wt follows independent identically distributed normal

distributions, N(0, 0.82). Thus the common factor kt follows a random walk. We

consider the following settings for different factor loadings bi,t and error terms

εi,t. In each setting below, we apply the normalization condition mentioned in

Section 3.2, so that bi,t is normalized to sum to unity for each t.

• DGP 1 (time-invariant factor loading):

bi,t = bi ∼ i.i.d uniform(0, 1), εi,t ∼ i.i.d N(0, 0.12).

• DGP 2 (single-point structural change):

For i = 1, 2, · · · ,N/2,

bi,t =

 bi for t = 1, 2, ...,T/2

bi + 1 for t = T/2 + 1, ...,T
;

and for i = N/2 + 1, · · · ,N ,

bi,t =

 bi for t = 1, 2, ...,T/2

bi − 1 for t = T/2 + 1, ...,T
;

bi ∼ i.i.d uniform(1.1, 1.9), εi,t ∼ i.i.d N(0, 0.032).

• DGP 3 (continuous structural change):

bi,t =
1

1 + e(
6i
N +2− 12t

T )
, εi,t ∼ i.i.d N(0, 0.12).

DGP 1 follows the classical factor model with time-invariant factor loadings,

and DGP 2 and DGP 3 exhibit different structures of the time-varying factor

loadings. DGP 2 describes a single-point structural change in the factor loadings;

while DGP 3 considers a continuous structural change in the factor loadings.
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For each i, the factor loadings generated in DGP 3 are monotonic functions

and would converge to some constant as time goes by. The factor loadings in

DGP 3 may go up and down and would never diverge to extreme values, which

is similar to the estimated time-varying factor loadings in Figure 3.3 using the

US mortality data.

3.6.2 Comparison of the forecasting performance

To compare the forecasting performance of the time-varying factor model and the

classical time-invariant factor model, we use the out-of-sample testing approach

in the following analysis. For each DGP, we simulate 100 data sets with the

dimension and sample sizes N = T = 100. For each data set, we consider the

first k years of the data as the training set, and the remaining T − k years of

the data as the testing set (k = 70, 75, 80, 85, 90, 95, respectively). The model is

firstly fitted using the training set, and then forecasted in the testing set. We

employ the mean squared prediction error (MSPE) as the measure to evaluate

performance of different models.

Table 3.4 reports the comparison results based on various lengths of the train-

ing and testing sets. An example of the estimated and forecasted factor loadings

is showen in Figure 3.13 to better explain the results. As shown in Table 3.4,

the two time-varying methods perform worse than the classical factor model for

DGP 1, which assumes the time-invariant factor loadings. The less accurate

prediction results can be attributed to the inaccurate estimation from the time-

varying model, which is supported by the left plot of Figure 3.13. When the ‘true’

factor loadings are time-invariant, the estimation from the time-varying model

goes up and down randomly due to the over-fitting problem of the non-parametric

estimating method. Therefore, the forecasting based on these estimation is not

satisfied. However, the classical method provides a close estimation and better

forecasting in this case.
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Table 3.4: Comparison of forecasting performance of the time-varying factor model
and the classical factor model (based on the different lengths of training sets)

DGPs methods 70 75 80 85 90 95

TV-Local Regression 0.2300 0.1873 0.1249 0.0852 0.0590 0.0344
DGP 1 TV-Naive 0.2239 0.1849 0.1228 0.0837 0.0582 0.0342

Classical 0.2209 0.1839 0.1222 0.0829 0.0575 0.0336

TV-Local Regression 0.2597 0.2046 0.1230 0.0818 0.0528 0.0265
DGP 2 TV-Naive 0.2291 0.1874 0.1227 0.0817 0.0527 0.0265

Classical 0.2542 0.2121 0.1482 0.0946 0.0643 0.0372

TV-Local Regression 0.1757 0.1384 0.0987 0.0737 0.0506 0.0365
DGP 3 TV-Naive 0.1704 0.1319 0.0940 0.0724 0.0499 0.0362

Classical 0.2078 0.1759 0.1456 0.1162 0.0917 0.0748

n: 30

Time

fa
ct

or
 lo

ad
in

g

0 20 40 60 80 100

0.
00

20
0.

00
25

0.
00

30
0.

00
35

0.
00

40
0.

00
45

0.
00

50

n: 30

Time

fa
ct

or
 lo

ad
in

g

0 20 40 60 80 100

0.
00

8
0.

01
0

0.
01

2
0.

01
4

0.
01

6
0.

01
8

n: 30

Time

fa
ct

or
 lo

ad
in

g

0 20 40 60 80 100

0.
01

0
0.

01
2

0.
01

4
0.

01
6

Figure 3.13: Comparison of the factor loadings: estimation and forecast. From left to
right: DGP 1, DGP 2, DGP 3. k = 70. Black dashed line: true factor loadings.
Black solid line: estimation from the classical factor model (‘Classical’). Red solid
line: estimation from the time-varying factor model. Red dashed line: ‘TV-Local
Regression’. Blue dashed line: ‘TV-Naive’.

DGP 2 and DGP 3 follow the structures of time-varying factor models with

abrupt and continuous changes in the factor loadings, respectively. From Table

3.4, we see that both the two time-varying methods perform better than the clas-

sical method when the ‘true’ factor loadings are time-varying. In particular, the

naive method performs the best in these two cases, especially for long-term fore-

casting. The superior forecasts of the two time-varying methods result from the

more accurate estimation of the time-varying factor loadings, which can be seen
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from the middle and right plots in Figure 3.13. We find that the classical model

cannot capture the changed factor loadings as it assumes the factor loadings are

time-invariant, while the time-varying model can estimate those changing factor

loadings accurately and provides a solid foundation for the forecasting step.

Further analysis of Table 3.4 suggests that the local regression method and

the naive method preform similarly for the relatively short-term forecasting (k =

85, 90, 95), while for long-term forecasting (k = 30, 25), the naive method per-

forms better. This phenomenon can be explained by the plot of DGP 3 in Figure

3.13. From the plot, we see that the forecast of the local regression method follows

the trend of the estimated factor loadings. Therefore, when the trend remains

the same in a short period of time, the forecast of the local regression method is

satisfying. However, as the trend of the ‘true’ factor loadings changes, the fore-

cast of the local regression method diverges away from the true values in the long

term. This is the drawback of the non-parametric forecasting method. On the

other hand, the constant factor loadings used in the forecasting procedure of the

naive method guarantee that the factor loadings will not diverge dramatically and

result in a better performance for long-term forecasting. In addition, although

the ‘true’ factor loadings in the training set changes, if it is time-invariant in

the forecasting horizon, the naive method is also better than the local regression

method even in the short term (which is supported by the plot of DGP 2 in

Figure 3.13). The aforementioned analysis could be used to explain why the es-

timated optimal ‘boundary’ of the US data is 0 in Section 3.5.4. From Figure 3.3

we see that in the first years of the forecasting horizon, the trends of the factor

loadings are either different from that in the training set or remain flat. However,

the local regression method cannot capture the unknown changing trends, so the

naive method can outperform it even in the short term. In this case, the naive

method not only captures the time-varying factor loadings in the estimation step,

but also uses the constant factor loadings in the forecasting step, so it is overall

preferable when the factor loadings are changing over time.
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3.7 Conclusion

There is a vast literature using factor models for mortality modelling and fore-

casting, such as the Lee-Carter model and its variants. Factor loadings, which

capture the relationship between different variables and the latent common fac-

tors, are usually assumed to be time-invariant over time, which is too restrictive

in reality. In this chapter, we develop a time-varying factor model for mortality

modelling and two corresponding forecasting methods, which can improve the

forecasting performance compared with using the classical factor model. To un-

derstand the optimal forecasting horizon of the two forecasting methods based

on the time-varying factor model, we propose a method to estimate the optimal

‘boundary’ between short-term and long-term forecasting, which is favoured by

the local regression method (time-varying forecast of the factor loading) and the

naive method (time-invariant forecast of the factor loading), respectively.

In addition, we introduce the estimation and forecasting methods of the time-

varying factor model. To make out-of-sample forecasting, we consider modelling

and extrapolating the common factors and factor loadings separately. The com-

mon factor is modelled and forecasted using the ARIMA model; while the factor

loadings are estimated and extrapolated using the local linear regression method

or the naive method. By estimating the optimal boundary between short-term

and long-term forecasting, we propose the hybrid forecasting method. Based on

these methods, we can forecast mortality rates into the future with the time-

varying factor model. Multiple countries’ mortality data are used for empirical

analysis. We find that the time-varying factor model provide superior out-of-

sample forecasting performance. Using simulation studies, we show the perfor-

mance of the time-varying factor model and classical factor model under different

scenarios and explain why the naive method performs better than the local re-

gression method.
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Chapter 4

Robust Principal Component

Analysis for High Dimensional

Data Based on Characteristic

Transformation

4.1 Introduction

High-dimensional data are ubiquitously encountered with the fast development

of modern technologies (Donoho [2000], Johnstone and Titterington [2009], Lee

et al. [2014], Morales-Jimenez et al. [2018], etc.). Examples include genomic

data, financial data, and medical image data. The data often have millions of

features with comparable or relatively small sample sizes. With the explosion of

the dimension, the heterogeneity, which is defined as the diversity of statistical

properties of the data, becomes more and more common. Not only the quantity

of the heterogeneity is larger, but also the styles of it are more various. For

example, features with heavy-tailed distribution are more likely to present along

with the normal distributed features in high dimensional data. Other types of

heterogeneity includes heteroscedastic noise, unknown nonlinearity, and outliers.

As traditional statistical assumptions are always violated due to these hetero-

geneities, it is of great urgency to develop new approaches and theories for the

103
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high-dimensional regime.

For the high-dimensional data, the principal component analysis (PCA) is a

widely used technique for data exploration and dimension reduction (Anderson

[2003], Jolliffe [2002]). The idea is to search for low-dimensional projections that

can represent the high-dimensional data. Intuitively PCA intends to pursue a

small number of common features possessed by all variables under study. Math-

ematically the classical PCA is based on the covariance matrix, and the leading

eigenvectors of the sample covariance matrix serve as the directions of the pro-

jections. Unfortunately, the sample covariance matrix is very sensitive to the

heterogeneities in the data (Li and Chen [1985]), so the standard PCA is not ro-

bust, especially under the current high-dimensional regime. The non-robustness

issue of PCA has been studied in robust statistical analysis. A natural and simple

idea is to replace the sample covariance matrix with a robust estimator. Croux

and Haesbroeck [2000] studied the influence functions and efficiencies of some ro-

bust covariance matrix estimators. Another approach, using a projection-pursuit

index instead of the variance to measure the dispersion of the projections, is

proposed by Li and Chen [1985]. More recently, studying PCA in the view of

a low-rank matrix approximation problem and minimizing the robust loss func-

tion has attracted attention in computer science (Candès et al. [2011]). See,

for example, Vidal et al. [2016], Cui et al. [2003] and She et al. [2016] for more

reviews.

As mentioned before, the styles of heterogeneity are diverse under the high

dimensional regime. Hence, we are not only interested in dealing with the sam-

ples contaminated by typical outliers but also the data drawing from heavy-

tailed distributions. Imagine that the population distributions of the data have

infinite second moments or even infinite first moments, then any method de-

pends on those moments, such as the standard PCA and the robust-covariance-

based PCA, are invalid. Motivated by this difficulty, we propose a novel ro-

bust PCA, in which the pivotal step is transforming the original data based on
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the form of the characteristic function. Our proposed method is robust to dif-

ferent styles of heterogeneity, even to data with infinite population moments.

The robustness mainly comes from the appealing properties of the transforma-

tion. Recall that for a real-valued random variable y, its characteristic func-

tion is φ(t) = E(exp{ity}) (t ∈ R, i2 = −1), which completely defines the

probability distribution of y and |exp{ity}| = 1 for any t. Hence the trans-

formation zi = exp{iyi} (i = 1, . . . , p) retains the distribution information of

yi (i = 1, . . . , p), and more noteworthily is a bounded random variable no mat-

ter yi (i = 1, . . . , p) is bounded or not. As a result, the standard PCA is valid

on the transformed variable zi (i = 1, . . . , p) as the transformation shrinks the

effect of extreme outliers and also guarantees a finite second moment. Moreover,

due to the nonlinear nature of the exponential function, the transformation helps

explore the nonlinear relationship in yi(i = 1, . . . , p) and it can be regarded as a

special case of Kernel PCA (Chapter 4.1 in Vidal et al. [2016]), the algorithm of

which can benefit the computation when the dimension is extremely large.

Apart from the heterogeneity, the high dimensionality itself is a crucial prob-

lem in classical statistics. Donoho [2000] discussed the curse and blessing of the

high dimensionality in a wide range of statistical problems. Johnstone [2001];

Lam et al. [2011]; Lee et al. [2014]; Wang and Fan [2017]; Cai et al. [2017] and

others have made effort to understand the behavior of the empirical eigenvalues

under the high dimensional setting when the sample size n and the dimension

p both go to infinity. It is well known from these literature that, the stronger

spikeness of the population and the larger sample size allow larger dimension in

consistently recovering the population eigenvalues from the empirical eigenval-

ues. Fortunately, as our proposed method provides bounded variables after the

transformation, many of the theorems from those literature can be applied to our

proposed method to generate interesting results. Specifically, we assume a spiked

covariance model, according to Wang and Fan [2017] and Cai et al. [2017], on the

transformed data, to study the properties of our proposed method under the high
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dimensional setting. Two aspects of statistical properties are studied in Section

4.3. Firstly, a general upper bound for the excess error (the difference between

the optimal (population) reconstruction error and the empirical reconstruction

error) of the PCA methods is given in Section 4.3.1, which shows the robust

PCA can always achieve small excess errors while the standard PCA may not.

Secondly, the behavior of the largest k eigenvalues is investigated. Specifically,

we analyse the spiked structure for both of original data and transformed data,

as well as the estimation biases of their empirical eigenvalues due to curse of di-

mensionality. Through the analysis, we find that the transformation retains the

spiked structure but shrinks the leading eigenvalues, which makes the eigenvalues

that are mixed with non-spiked ones more biased. However, for the heavy-tail-

distributed data, the empirical spiked eigenvalues of the transformed data are

generally closer to the population ones than those of the original data.

In addition, our proposed method can be used to reconstruct the original data.

We illustrate the advantage of our proposed method against the classic PCA in

the sense of mean squared reconstruction error (MSE) with several examples.

Those examples include data with heterogeneity in variances, data with outliers,

and data from three different heave-tailed distributions. In total, we find that

our proposed method can recover those data more accurately than the classic

PCA.

At last, we demonstrate an example of applying the method in real data

analysis by analyzing the protein expression measurements of mice from Higuera

et al. [2015]. Most of the proteins have heavy tails or extreme outliers in their

expression levels, so it is essential to use robust methods on the data. The

proposed method is used to classify mice with different genotypes based on their

protein expression data. Comparing to the classical PCA, our proposed method

can identify the mice with abnormal genotype more accurately.

The rest of this chapter is organized as follows. Section 4.2 describes our

proposed method in details. Section 4.3 studies the statistical properties. Sim-
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ulations to illustrate the reconstruction performance under different cases are

presented in Section 4.4. Section 4.5 gives an example of a real data application.

4.2 Methodology

Let us recall the settings of the classical Principal Component Analysis (PCA).

Suppose we have n data points y1, . . . , yn, generated by a random vector y =

(y1, y2, . . . , yp)
> ∈ Rp. The classical PCA aims to find a subspace S ⊂ Rp

of dimension k (k < p) that best fits those data points. Mathematically, the

problem can be written as the following optimization problem:

min
u,U ,{xi}

n∑
i=1

‖yi − u − Uxi‖2 s.t. U>U = Ik and
n∑

i=1
xi = 0,

where u is a point which represents the central of the subspace, U is a p× k

matrix whose columns are the basis of the subspace and xi ∈ Rk is the vector of

the new coordinates of yi in the subspace. The optimal solution to the standard

PCA (Chapter 2.1.2 in Vidal et al. [2016]) can be obtained as

û =
1
n

n∑
i=1

yi and x̂i = Û
>
(yi − û) ,

where Û is a p× k matrix whose columns are the eigenvectors corresponding to

the the largest k eigenvalues of the sample covariance matrix

Σ̂n =
1
n

n∑
i=1

(yi − û) (yi − û)> .

Then Û x̂i is the low-rank approximation of yi if we assume E(y) = 0 and

û = 0 without lose of generality. However, it is well know that if the data contains

extreme values or have a heavy-tailed distribution, the above optimization is not

reliable and the solution Û x̂i is not a good low-rank approximation. For example,
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consider the data points coming from a heavy-tailed distribution without a finite

second moment, then the covariance matrix Σ̂n will be extremely unreliable and

invalid to make inferences on the population covariance matrix.

To address this issue, we propose a new PCA method to obtain a good ap-

proximation of y, which is robust to outliers and heavy-tailed distributions in this

chapter. The idea is to find a transformation which is robust to the heavy-tailed

distribution or extreme values of the original data and then conduct the classical

PCA on the transformed data instead. The details of the method is described as

follows.

Let z = (z1, z2, . . . , zp)
> be the transformed data of y, where the transfor-

mation is zj = eiyj (j = 1, 2, . . . , p) and i is the imaginary unit. The reasons to

make this transformation come from the special properties of z. Firstly, z has

finite second moments and contains most of the information in y as it has the

form of the characteristic function of y, which solves the problem that y comes

from heavy-tailed distributions, especially for those without the second moments.

Secondly, the mode of zj equals 1 for any j = 1, . . . , p, which means the variance

of it is bounded. This property shrinks the effect of the possible outliers or ex-

tremely various variances on the result of the dimension reduction. Thirdly, due

to the non-linear property of the transformation, it is capable of revealing the

non-linear relationship between components in y unlike the classical PCA, which

can only detect the linear relationships.

While there are desired properties with z, it contains complex elements which

make the situation complicated. On the other hand, according to Euler’s formula,

zj can be written as:

zj = eiyj = cos yj + i sin yj (j = 1, . . . , p).

Then if we define r =
(

cos y1, . . . , cos yp, sin y1, . . . , sin yp

)>
, we have z as a
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linear transform of r:

z =



1 0 · · · 0 i 0 · · · 0

0 1 · · · 0 0 i · · · 0
... ... . . . ... ... ... . . . ...

0 0 · · · 1 0 0 · · · i





cos y1
...

cos yp

sin y1
...

sin yp


:=

(
Ip iIp

)
r.

Assume there also exists a low rank subspace which best fits data points z1, . . . , zn

generated from z. Then, to find a good low-rank approximation of zi(i =

1, . . . ,n), we only need conduct the classical PCA on ri(i = 1, . . . ,n), which

is real valued.

Suppose Σr is the covariance matrix of r, and β1, β2, . . . , βk are the orthonor-

mal eigenvectors corresponding to the k largest eigenvalues λ1 > λ2 > · · · > λk

of Σr. By the classical PCA method, r is approximated by

r̃ = E(r) +
k∑

j=1
βjβ

>
j (r − E(r))

= E(r) +

 k∑
j=1

(r − E(r))
>

βjβ
(cos)>
j ,

k∑
j=1

(r − E(r))
>

βjβ
(sin)>
j

>

,

where β
(cos)
j = (β1,j , β2,j , . . . , βp,j)> and β

(sin)
j = (βp+1,j , βp+2,j , . . . , β2p,j)>,

which are the first half and the second half of βj , respectively.

Therefore, the low-dimensional approximation of z is

z̃ =
(

Ip iIp

)
r̃

=
(

Ip iIp

)
E(r)+

(
Ip iIp

) k∑
j=1

(r − E(r))
>

βjβ
(cos)>
j ,

k∑
j=1

(r − E(r))
>

βjβ
(sin)>
j

>
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= E(z) +
k∑

j=1
β
(cos)
j β>

j (r − E(r)) + i
k∑

j=1
β
(sin)
j β>

j (r − E(r)) .

With data points r1, . . . , rn, it is straightforward to estimate E(r), E(z) and Σr

by

r =
1
n

n∑
i=1

ri, z =
(

Ip iIp

)
r, and Σ̂r,n =

1
n

n∑
i=1

(ri − r) (ri − r)> ,

respectively. In addition, estimate βj (j = 1, . . . k) by the eigenvectors β̂j (j =

1, . . . k) of Σ̂r,n. The method to estimate k can be various and we use the accu-

mulative variance as the criterion in the empirical analysis for simplicity. Other

reasonable criterion can be applied under different purposes.

Finally, to recover the original data, we only need to transform back from

z̃i(i = 1, . . . ,n). The approximation of yi(i = 1, . . . ,n) is:

ỹi =
1
i log(z̃i) + 2hiπ1

=
1
i log

z +
k∑

j=1
β̂
(cos)
j β̂

>
j (ri − r) + i

k∑
j=1

β̂
(sin)
j β̂

>
j (ri − r)

+ 2hiπ1,

(4.2.1)

where log(a) = (log(a1), log(a2), . . . , log(an))
> for any n-dimensional vector a,

and hi(i = 1, . . . ,n) is an integer which needs to be estimated in practice.

Remark 4.1. The computational algorithm is summarized in Algorithm 3. Note

that z̃i(i = 1, . . . ,n) consists of complex numbers. The complex logarithm can

have infinite many values, due to the periodicity of the complex exponential func-

tion. According to Euler’s formula, those values are different by multiples of 2hπ.

Therefore, in equation (4.2.1), we need to find the hi to ensure that ỹi is a good

approximation to yi. Hence, in practice, we estimate hi for each data point yi

by

arg min
hi∈Z

(
yi −

(1
i log(z̃i) + 2hiπ1

))
(i = 1, . . . ,n).
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Algorithm 3: Robust PCA for High Dimensional Data
Input: Data Y = [y1, . . . , yn] ∈ Rp×n; Desired rank ≤ p.
Output: Low-dimensional representation of Y .
Transformation Step:

1 Compute R = [r1, . . . , rn] ∈ R(2p)×n, where
ri = (cos y1,i, . . . , cos yp,i, sin y1,i, . . . , sin yp,i)>;

PCA Step:
2 Compute the sample mean r = n−1∑n

i=1 ri;
3 Compute the sample variance-covariance matrix

Σ̂r,n = 1
n

∑n
i=1(ri − r)(ri − r)>;

4 Conduct eigendecomposition on Σ̂r,n and get β̂1, . . . , β̂
k̂
, the

eigenvectors corresponding to the largest k̂ eigenvalues of Σ̂r,n;
Inverse Transformation Step:

5 Compute β̂
(cos)
j = (β1,j , . . . , βp,j)> and β̂

(sin)
j = (βp+1,j , . . . , β2p,j)>;

6 Compute z =
(
Ip iIp

)
r;

7 Compute z̃i = z +
∑k̂

j=1 β̂
(cos)
j β̂

>
j (ri − r) + i∑k̂

j=1 β̂
(sin)
j β̂

>
j (ri − r);

8 Compute ĥi = arg minhi∈Z

(
yi −

(
1
i log(z̃i) + 2hiπ1

))
(i = 1, . . . ,n);

9 Compute ỹi = log(z̃i)/i + 2ĥiπ1, i = 1, . . . ,n.

Remark 4.2. Our proposed method can be viewed as a special kind of nonlinear

and Kernel PCA (Chapter 4.1 Vidal et al. [2016]). The nonlinear transformation

is φ(·) : Rp → R2p, where φ(y) = (cos y1, . . . , cos yp, sin y1, . . . , sin yp)> and the

kernel function is

κ(yi, yj) = φ(yi)
>φ(yj) =

p∑
m=1

cos ymi cos ymj +
p∑

m=1
sin ymi sin ymj .

This shows that our method is capable to explore the non-liner relationship among

the original data. In addition, we can compute the principal components with

the kernel function described above according to the Kernel PCA algorithm (see

Algorithm 4.1 in Vidal et al. [2016] for example), which is particularly useful when

the dimension p is too large to compute the covariance matrix of the transformed

data.
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4.3 Statistical properties

We study the statistical properties of the robust PCA in this section. Firstly,

we give a general upper bound for the excess errors (the difference between the

optimal (population) reconstruction error and the empirical reconstruction error)

of the PCA methods. It shows that due to the finite variance of the transformed

data, the robust PCA can always achieve small excess errors. The standard PCA,

however, will have extreme large excess error when the original data is heavy-

tailed or contains outliers. We also discuss under which conditions the excess

error is asymptotically zero. Secondly, the behavior of the largest k eigenvalues

is studied based on a spiked covariance model. We find that the transformation

in our proposed method shrinks the spiked structure while gives relatively better

estimation of the spiked eigenvalues when the data is heavy-tailed (Table 4.1,

4.2, and 4.3).

4.3.1 The upper bound of the excess error

In this section, we give the upper bound for the aforementioned excess error in

Theorem 4.1. The Theorem 4.1 is generally hold for both the standard PCA and

the newly proposed robust PCA. Through this theorem we show that, under some

conditions, the proposed method can achieve small excess error. The standard

PCA, however, may fail to do that under the same conditions.

Let us first introduce some notations and definitions in order to illustrate

the results. Suppose a random vector y = (y1, y2, . . . , yp)
> ∈ Rp has mean

0 and variance matrix Σ. y1, . . . , yn are n independent samples of y and the

corresponding sample covariance matrix is Σ̂. Let β1, . . . , βp be the orthonor-

mal eigenvectors corresponding to the eigenvalues of Σ in descending order, and

β̂1, . . . , β̂p be those of Σ̂. Denote Bk = (β1, . . . , βk) and B̂k = (β̂1, . . . , β̂k)

(k < p is fixed). With Bk, the basis of the optimal low-dimensional subspace,
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we have

y =
k∑

i=1
βiβ

>
i y +

p∑
i=k+1

βiβ
>
i y = BkB>

k y + u(Bk);

yj =
k∑

i=1
βiβ

>
i yj +

p∑
i=k+1

βiβ
>
i yj = BkB>

k yj + uj(Bk) (j = 1, . . . ,n).

Similarly with B̂k, the empirical counterpart of Bk, we have

y =
k∑

i=1
β̂iβ̂

>
i y +

p∑
i=k+1

β̂iβ̂
>
i y = B̂kB̂

>
k y + u(B̂k);

yj =
k∑

i=1
β̂iβ̂

>
i yj +

p∑
i=k+1

β̂iβ̂
>
i yj = B̂kB̂

>
k yj + uj(B̂k) (j = 1, . . . ,n).

Therefore, the (true) reconstruction error with Bk and B̂k can be written as

R(Bk) = E

(y −
k∑

i=1
βiβ

>
i y)>(y −

k∑
i=1

βiβ
>
i y)

 = E
(
u(Bk)

>u(Bk)
)

;

R(B̂k) = E

(y −
k∑

i=1
β̂iβ̂

>
i y)>(y −

k∑
i=1

β̂iβ̂
>
i y)

 = E
(
u(B̂k)

>u(B̂k)
)

.

The difference R(B̂k)−R(Bk) is the so-called (true) excess error. Furthermore,

the corresponding empirical reconstruction errors are

Rn(Bk) =
1
n

n∑
j=1

(yj −
k∑

i=1
βiβ

>
i yj)

>(yj −
k∑

i=1
βiβ

>
i yj)


=

1
n

n∑
j=1

(
uj(Bk)

>uj(Bk)
)

;

Rn(B̂k) =
1
n

n∑
j=1

(yj −
k∑

i=1
β̂iβ̂

>
i yj)

>(yj −
k∑

i=1
β̂iβ̂

>
i yj)


=

1
n

n∑
j=1

(
uj(B̂k)

>uj(B̂k)
)

.
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Define

dk :=
E
(
uj(Bk)

>uj(Bk)
)

E
(
y>

j yj

) , k = 1, 2, . . . , min (n, p) .

We have the following results for the true and empirical reconstruction errors:

Theorem 4.1. For any k = 1, 2, . . . , min (n, p),

P

∣∣∣(R(B̂k) −Rn(B̂k)
)∣∣∣ ≤ dk

( p∑
i=1

E
(
y2

ij

))√ cξ

2n

 ≥ 1 − 2e−ξ,

and

P

0 ≤
(
R(B̂k) −R(Bk)

)
≤ 2dk

( p∑
i=1

E
(
y2

ij

))√ cξ

2n

 ≥ 1 − 4e−ξ,

where c is a constant number.

In particular, as ξ → ∞, if dk

(∑p
i=1 E

(
y2

ij

))√
cξ
2n −→ 0, then we have

∣∣∣(R(B̂k) −Rn(B̂k)
)∣∣∣ = Op

dk

( p∑
i=1

E
(
y2

ij

))√ cξ

2n

 = op(1). (4.3.1)

In order to make the empirical reconstruction error close to the true recon-

struction error with probability 1, we have two requirements:

• (1) ξ is large enough, which ensures e−ξ → 0 and the probability close to

1;

• (2) dk

(∑p
i=1 E

(
y2

ij

))√
cξ
2n → 0 with k being fixed and p,n → ∞.

For instance, ξ = 10 is large enough for the first requirement. We discuss more

about the second requirement here. If E(y2
ij) is finite, then

(∑p
i=1 E

(
y2

ij

))√
cξ/2n

= O(p/
√
n). Therefore, to meet the second requirement, we need dk = o(

√
n/p).

For example, if we assume p/
√
n = O(1), which is common in high-dimensional

statistics, then we just require dk = o(1). It is worth mention that, dk should sat-
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isfy this condition well with a fixed k if we assume a spiked covariance structure

for the data.

We have mentioned that the transformed data always have finite variances,

which indicates the proposed robust PCA method can achieve small excess error

when the data has a spiked covariance structure. While under the same condi-

tions, the standard PCA will fail to do so as the original data may have infinite

variances, considering the exist of the outliers or heavy-tailed variables. In sum-

mary, the proposed method has robust statistical property, in the view of the

excess error.

The rest of this section is the proof of Theorem 4.1. We discuss more about

the spiked covariance structure in the next section (Section 4.3.2).

Proof 4.1. We make use of the following lemma of the concentration inequality

to complete our proof.

Lemma 4.1. (McDiarmid(1989)) Let X1, . . . ,Xn be n independent random vari-

ables taking values in X and let Z = f(X1, . . . ,Xn) where f is such that

sup
x1,...,xn,x′

i∈X
|f(x1, . . . ,xn) − f(x1, . . . ,x

′
i, . . . ,xn)| ≤ ci, ∀ 1 ≤ i ≤ n,

then

P [Z − E(Z) ≥ ξ] ≤ e−2ξ2/(c2
1+...+c2

n) and P [E(Z) −Z ≥ ξ] ≤ e−2ξ2/(c2
1+...+c2

n).

Let X be the set of all independent samples of y and

Z = f(y1, . . . , yn) = R(B̂k) −Rn(B̂k)

= E
(
u(B̂k)

>u(B̂k)
)

− 1
n

n∑
j=1

(
uj(B̂k)

>uj(B̂k)
)

.
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Then we have ∀1 ≤ i ≤ n,

sup
y1,...,yn,y′

i∈X

∣∣∣f(y1, . . . , yn) − f(y1, . . . , y
′
i, . . . , yn)

∣∣∣
= sup

y1,...,yn,y′
i∈X

∣∣∣∣ 1n
(
ui(B̂k)

>ui(B̂k) − u
′
i(B̂k)

>u
′
i(B̂k)

)∣∣∣∣ .
Thus in order to apply Lemma 4.1, we only need to find the upper bound of the

above quantity.

The following evaluation

E
(
uj(Bk)

>uj(Bk)
)
=

p∑
i=1

E
(
u2

ij

)
= O

(
dk

p∑
i=1

E
(
y2

ij

))
,

which indicates

uj (Bk)
>

uj (Bk) = Op

(
dk

p∑
i=1

E
(
y2

ij

))
. (4.3.2)

Then from (4.3.2), we have for any i and j,

∣∣∣∣ 1n
(
ui(Bk)

>ui(Bk) − uj(Bk)
>uj(Bk)

)∣∣∣∣ = Op

(
dk

n

p∑
i=1

E
(
y2

ij

))
.

Let cj = cdk
n

∑p
i=1 E

(
y2

ij

)
(j = 1, . . . ,n) with c being a constant which may be

different from line to line. According to Lemma 4.1, we have

P (|Z − E(Z)| ≤ t) ≥ 1 − 2e
−2t2/

(∑n
j=1

(
cdk
n

∑p
i=1 E

(
y2

ij

))2
)

= 1 − 2e
−2t2/

(
cd2

k
n

[∑p
i=1 E

(
y2

ij

)]2)
.

Let ξ = 2t2/
(

cd2
k

n

[∑p
i=1 E

(
y2

ij

)]2)
, which leads to t = dk

(∑p
i=1 E

(
y2

ij

))√
cξ
2n .

© Lingyu He – 12 November 2020



§4.3 Statistical properties 117

Then we can rewrite the above inequality as

P

∣∣∣(R(B̂k) −Rn(B̂k)
)∣∣∣ ≤ dk

( p∑
i=1

E
(
y2

ij

))√ cξ

2n

 ≥ 1 − 2e−ξ, (4.3.3)

which is the first part of Theorem 4.1.

For the second part of Theorem 4.1, we first have

R(B̂k) −R(Bk) ≥ 0 and Rn(B̂k) −Rn(Bk) ≤ 0 (4.3.4)

due to that Bk minimized the true reconstruction error and B̂k minimized the

empirical reconstruction error according to PCA. Hence we have

0 ≤ R(B̂k) −R(Bk) (according to the first inequality in (4.3.4))

=
(
R(B̂k) −Rn(B̂k)

)
− (R(Bk) −Rn(Bk)) +

(
Rn(B̂k) −Rn(Bk)

)
≤
(
R(B̂k) −Rn(B̂k)

)
− (R(Bk) −Rn(Bk))

(according to the second inequality in (4.3.4))

≤
∣∣∣(R(B̂k) −Rn(B̂k)

)∣∣∣+ |(R(Bk) −Rn(Bk))| .

The first term is controlled by inequality (4.3.3). Following the same procedure,

we also have

P

|R(Bk) −Rn(Bk)| ≤ dk

( p∑
i=1

E
(
y2

ij

))√ cξ

2n

 ≥ 1 − 2e−ξ.

Therefore, with probability 1 − 4e−ξ

P

0 ≤ R(B̂k) −R(Bk) ≤ 2dk

( p∑
i=1

E
(
y2

ij

))√ cξ

2n

 ≥ 1 − 4e−ξ. (4.3.5)

Inequality (4.3.3) and (4.3.5) are the final results in Theorem 4.1.
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4.3.2 Behavior of the leading eigenvalues under spiked co-

variance structure

Data reconstruction from PCA is equivalent to estimation of the spiked structure

for a covariance matrix. A variety of literature have made effort to understand

the behaviour of the empirical eigenvalues under the high dimensional setting

when the sample size n and the dimension p both go to infinity, see for example,

Johnstone [2001]; Lam et al. [2011]; Lee et al. [2014]; Cai et al. [2017]. Particu-

larly, we are interested in the spiked covariance model, of which the distribution

of the empirical eigenvalues has been studied in Wang and Fan [2017], Cai et al.

[2017], and others. In the aspect of the empirical eigenvalues, how does the PCA

benefit from our proposed method? Besides, how does the transformation in our

method affect the spike covariance structure? We make use of some simulations

and the conclusions from the literature to answer the above questions.

Remark 4.3. The spiked covariance model typically assumes that there are sev-

eral eigenvalues larger than the rest. The larger eigenvalues are called the spiked

eigenvalues, and the remaining ones are called the non-spiked eigenvalues. Specif-

ically, Wang and Fan [2017] and Cai et al. [2017] assume that the population co-

variance matrix has k (k/p → 0, p is the number of dimension) well separated

spiked eigenvalues and the non-spiked eigenvalues are all bounded but otherwise

arbitrary.

In Wang and Fan [2017], the asymptotic normality of the spiked empirical

eigenvalues was proved under a spiked covariance model (see Assumption 2.1 to

2.3 and Theorem 3.1 in Wang and Fan [2017]). Assume the population covariance

model has k spiked eigenvalues {λj}k
j=1, and the corresponding empirical eigen-

values are {λ̂j}k
j=1. The theorem shows that λ̂j/λj(j = 1, 2, . . . , k) are asymp-

totic normal and the bias of λ̂j/λj is controlled by a term of rate cj = p/(nλj),

where n is the sample size and p is the dimension. To make λ̂j asymptoticly

unbiased, it requires cj → 0 for j ≤ k. In our proposed method, we do a data
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transformation first, and then conduct the classical PCA on the transformed data.

Therefore, given the same spiked covariance model on the transformed data, the

asymptotic normality proved in Wang and Fan [2017] generally holds for our

method. When the original data does not have a finite population covariance or

it can not satisfy the assumptions in Wang and Fan [2017], the standard PCA is

not valid on the data. On the other hand, the transformed data in our method al-

ways has finite population covariance and those assumptions are satisfied, which

solves the problem of the standard PCA.

Note that, the unbiased estimation depends on cj = p/(nλj). That is, with

the same p and n, a larger λj can result in smaller bias. Then an interesting

problem is, if the original data has a spiked covariance structure, how does the

transformation change the spiked population eigenvalues and hence change the

behaviour of the empirical spiked eigenvalues? We use some simulations to illus-

trate the effect. We have two examples, with Example 1 for normal distributed

data and Example 2 for heavy-tail distributed data. The data generating process

is as follows.

We simulate P × 1 vector yn (n = 1, 2, . . . ,N) by

yn =
3∑

i=1
αibiki,n + εn, (4.3.6)

where bi (i = 1, 2, 3) are P × 1 vectors generated by a QR decomposition,

ki,n (i = 1, 2, 3, n = 1, 2, . . . ,N) are independently generated from standard

normal N(0, 1) for Example 1 and from t-distribution with degree of freedom 2

for Example 2, and εn (n = 1, 2, . . . ,N) are the P × 1 error vectors with elements

independently generated from N(0, 1). Besides, (α1,α2,α3) = (7, 5, 3). For all

the cases, P = 100. We intend to compare the spiked population eigenvalues

(the first three eigenvalue according to the data generating process) of the orig-

inal data and the transformed data, as well as the empirical spiked eigenvalues

with different sample sizes.
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Figure 4.1: Approximated population
eigenvalues for Example 1: normal distri-
bution (N(0, 1))
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Figure 4.2: Approximated population
eigenvalues for Example 2: heavy-tail dis-
tribution (t(2))

In order to approximate the population eigenvalues, we let N = 100000, and

compute the eigenvalues of the sample covariance matrix of the original data and

the transformed data, respectively. The approximated population eigenvalues for

both examples are shown in Figure 4.1 and 4.2. We see for both examples, the

original data has three spiked eigenvalues, while the transformed data has two

larger eigenvalues and the third one is mixed with the non-spiked part. This

is not a surprise as a transformation on the original data may cause the loss

of some information. Nevertheless, the transformed data still has well separated

spiked eigenvalues, and the standard PCA is still valid on the data. Furthermore,

comparing Example 1 and Example 2, we can notice that the heavy-tailed data

produces much larger original spiked eigenvalues, while the transformed spiked

eigenvalues look similar.

Further, we simulate data with different sample sizes (N = (50, 100, 500, 1000,

5000), each with 1000 replicates) to have a look at the effect of the transformation

on the behaviour of the empirical spiked eigenvalues. Note that N = 50 and

N = 100 provide the high dimensional cases and the rests give large sample

cases. The biases and standard deviation of the largest three spiked eigenvalues

(eg. the average and standard deviation of λ̂i/λi − 1, i = 1, 2, 3 which are the

largest 3 eigenvalues) for both Examples are shown in Table 4.1, 4.2, and 4.3.

Firstly, comparing the three tables we find rpca performs the worst in esti-

© Lingyu He – 12 November 2020



§4.3 Statistical properties 121

Table 4.1: Bias and SD of λ̂1/λ1 − 1
50 100 500 1000 5000

Bias SD Bias SD Bias SD Bias SD Bias SD

normal cpca 0.051 0.195 0.030 0.137 0.005 0.062 0.004 0.044 −0.0010.020
rpca 0.114 0.120 0.033 0.092 −0.034 0.066 −0.046 0.060 −0.052 0.054

t(2) cpca 0.518 7.281 1.366 38.055 3.973 86.691 0.713 8.141 1.089 11.464
rpca 0.180 0.124 0.063 0.099 −0.0160.073 −0.0280.068 −0.0360.065

mating λ3 (Table 4.3), especially compared with cpca in the example of normal

distribution. It is not surprising as the population λ3 is mixed with the non-spiked

part and no longer a spiked eigenvalue (see Figure 4.1 and 4.2). In addition, ac-

cording to the rate cj = P/(Nλj), it needs a very large N to make the estimation

of the third one unbiased if λj is small.

Table 4.2: Bias and SD of λ̂2/λ2 − 1
50 100 500 1000 5000

Bias SD Bias SD Bias SD Bias SD Bias SD

normal cpca 0.034 0.184 0.018 0.142 0.004 0.063 0.005 0.043 0.002 0.020
rpca 0.341 0.159 0.138 0.124 −0.023 0.074 −0.042 0.066 −0.062 0.056

t(2) cpca −0.584 0.475 −0.523 0.276 −0.342 0.450 −0.285 0.551 −0.162 0.399
rpca 0.098 0.131 0.001 0.109 −0.0860.081 −0.0920.075 −0.1010.070

Secondly, apart from the information lose of the third spiked eigenvalue, from

Table 4.1 and 4.2, we see rpca has advantage in estimating the two spiked eigen-

values, especially in the heavy-tailed example. For Example 1 (the normal case),

although rpca has relatively larger bias but it has smaller variance. In total rpca

is not worse than cpca when the data is normal-distributed. More importantly,

we see rpca provides much less biased and more stable estimations for Example

2 (the heavy-tail case) comparing to cpca. Hence the asymptotic normal results

are still valid on the transformed heavy-tailed data but not suitable for the orig-

inal data. It provides a strong evidence that the classical PCA is not valid under

heavy-tailed data while our proposed robust PCA works well in such situations.
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Table 4.3: Bias and SD of λ̂3/λ3 − 1
50 100 500 1000 5000

Bias SD Bias SD Bias SD Bias SD Bias SD

normal cpca 0.140 0.189 0.062 0.134 0.013 0.064 0.001 0.044 −0.0030.020
rpca 2.137 0.117 1.248 0.073 0.331 0.058 0.193 0.063 0.077 0.065

t(2) cpca −0.6290.240 −0.562 0.274 −0.424 0.358 −0.360 0.329 −0.226 0.402
rpca 0.960 0.160 0.510 0.129 0.111 0.087 0.062 0.077 0.019 0.064

4.4 Reconsturction performance under different sit-

uations

In this section, we illustrate the advantage of our proposed method (rpca) against

the classic PCA (cpca) in recovery of orginal data under several scenarios. Through-

out the simulations, we use mean squared error (MSE) of the approximation to

measure the performance:

MSE =
N∑

n=1
‖ŷn − yn‖2

2/(NP ),

where the ŷn is the approximation from rpca or cpca (both recovering at least

80% of the total variance) and yn is the original data. N is the sample size and

P is the dimension of yn.

Example 1 shows the powerful ability of rpca to handle data with heterogene-

ity in variances. Example 2 demonstrates that rpca performs better than cpca

when approximating data with outliers. Further, in Example 3, we simulate data

from three different heave-tailed distributions, as well as the normal distribution

as a benchmark, and we find that the rpca can recover those data more accurately

than the cpca. Now let us discuss the simulations in details.
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4.4.1 Example 1 : heterogeneity in variances

The heterogeneity in variances is ubiquitous in real-life data, and the variables

with extreme significant variances tend to dominate the results of classic PCA

(Jolliffe [2002]). Hence, the information contained in other variables is masked,

which makes the classic PCA less informative. In this example, we show that

rpca can deal with this problem and recover the original data more precisely.

We simulate yn : P × 1 by (y
(1)>
n , y

(2)>
n )>(n = 1, 2, . . . ,N), where y

(1)
n and

y
(2)
n are (P/2) × 1 vectors generated by

y(1)
n =

3∑
i=1

αib
(1)
i k

(1)
i,n + ε(1)n , y(2)

n =
3∑

i=1
αib

(2)
i k

(2)
i,n + ε(2)n

where b
(1)
i and b

(2)
i (i = 1, 2, 3) are (P/2) × 1 vectors independently generated

by two QR decompositions. k(1)i,n (i = 1, 2, 3, n = 1, 2, . . . ,N), are independently

generated from N(0, 1) while k(2)i,n (i = 1, 2, 3, n = 1, 2, . . . ,N) are those from

N(0, 0.1). ε
(1)
n and ε

(2)
n are both the (P/2) × 1 error vectors with elements

independently generated from N(0, 1). Besides, (α1,α2,α3) = (7, 5, 3).

Thus, yn consists of two parts with widely different variances. We can visual-

ize the data and variance of a 100 × 100 sample matrix of yn in Figure 4.3 and 4.4.

In both figures, the colour represents the size of the value: the darker the colour,

the larger the value. Figure 4.3 shows the original data matrix, and we can see

clearly that some of the left parts have much more variations than the rest. The

top part of Figure 4.4, which shows the sample variances of the original data,

displays the widely differing variances more clearly. However, from the bottom

part of Figure 4.4, which shows the sample variances of eiyin(i = 1, 2, . . . ,P ),

we see the differences in the variances are decreased after transforming the data.

The transformation helps reduce the effect of the heterogeneity in variances on

the results of PCA.

Next we compare the performance of cpca and rpca on approximating the
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Figure 4.4: example 1, variance

data. We simulate this example for different sets of (P ,N) : (50, 40), (50, 100),

(100, 100), (100, 200), (200, 190), which includes the situations of P < N ,P = N

as well as P > N . Besides, although the value of P and N are not extremely

large, we can consider (50, 40), (100, 100) and (200, 190) as high dimensional set-

tings because the ratios P/N ≥ 1. The average MSEs for 1000 simulations are

shown in Table 4.4. It is clear that rpca performs better than cpca on recovering

data with widely differing variances. For such data, classic PCA focus on those

variables with large variances but ignores others which may be also very im-

portant. However, our proposed method automatically shrinks those differences,

which is shown in Figure 4.4, therefore results in a more accurate approximation.

Table 4.4: average MSE, 1000 simulations, Example 1
(P, N) (50, 40) (50, 100) (100, 100) (100, 200) (200, 190)

rpca 0.203 0.211 0.201 0.204 0.193
cpca 0.498 0.513 0.357 0.360 0.279
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4.4.2 Example 2: outliers

As the volume of data increasing, it is common to have outliers in the data. This

example simulates data with outliers and shows that our proposed method is

robust to such kind of data since the transformation can decrease the extreme of

outliers.

We first simulate P × 1 vector yn by

yn =
3∑

i=1
αibiki,n + εn

which is exactly the same as how we generated y
(1)
n in Example 1 except with

dimension P instead of P/2. After simulating N samples, we have a matrix

Y : P ×N , whose columns consist of y1, . . . , yN . Then we randomly replace

14.4% of the elements in this matrix with values independently generated from

N(0, 36). Thus about 14.4% of the elements in Y are outliers.

The same as Example 1, we show values and variances of a 100 × 100 sample

for Example 2 in Figure 4.5 and 4.6. We can see clearly some squares with

extremely darker or lighter colour than the others in Figure 4.5, and those are

outliers. From Figure 4.6, we see there are some huge variances (top part of the

figure) in the original data caused by the outliers, which is not a good sign for

standard PCA, while our method can shrink those differences (bottom part of the

figure) by the proposed transformation. We try different sets of (P ,N) (which

are the same as Example 1) and report the average MSEs of 1000 simulations in

Table 4.5. It is not surprising that rpca performs better than cpca, as rpca cuts

back the differences between the average values and the outliers.

Table 4.5: average MSE, 1000 simulations, Example 2
(P, N) (50, 40) (50, 100) (100, 100) (100, 200) (200, 190)

rpca 0.225 0.234 0.215 0.218 0.201
cpca 0.586 0.603 0.451 0.455 0.377
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4.4.3 Example 3: heavy-tailed data

Now we consider if rpca works well for data from different kinds of heavy-tailed

distributions. There are a large amount of real-world data which have been

proved to be heavy-tailed, therefore it is highly possible that a dataset with large

dimensions contains heavy-tailed variables. We simulate data from t distribution,

Pareto distribution and Cauchy distribution, which are all very common heavy-

tailed distributions in real-world data. As a benchmark, we also simulate data

from the normal distribution.

We simulate P × 1 vector yn by

yn =
3∑

i=1
αibiki,n + εn

which is the same as the first step in Example 2, except ki,n (i = 1, 2, 3, n =

1, 2, . . . ,N), are independently generated from N(0, 1) for the normal distribu-

tion, t(2) for the t distribution, pareto (scale = 0.5, shape = 1.5) for the Pareto

distribution (by function ‘rpareto’ in R package ‘VGAM’), and cauchy (location =

0, scale = 1) for the Cauchy distribution. For this example, we try (P ,N) =

(100, 100), (200, 190) and the average MSEs of 1000 simulations are shown in
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Table 4.6.

Firstly, we see that on the normal-distributed data, the performance of rpca

is better than that of cpca while the differences are not extremely large, which

means on the normal-distributed data our proposed method is at least not worse

than the standard PCA. Secondly, for the data from the three heavy-tailed distri-

butions, rpca performs much better than cpca. One of the reasons for the worse

performance of cpca is the uncertainty of the second moments of the heavy-tailed

data. For example, the Cauchy distribution has no finite second moments, which

makes the sample covariances estimated in cpca invalid and leads to the extremely

bad performance shown in Table 4.6. However, the transformation of rpca guar-

antees that the transformed data has finite second moments, which ensures the

feasibility of PCA on transformed data.

Table 4.6: average MSE, 1000 simulations, Example 3
(P, N) (100, 100) (200, 190)

Normal t Pareto Cauchy Normal t Pareto Cauchy

rpca 0.212 0.235 0.200 0.258 0.198 0.221 0.194 0.245
cpca 0.335 1.174 1.318 127.242 0.278 0.840 1.058 388.595

4.5 Empirical application

In this section, we performed the robust PCA on a real dataset to demonstrate

an example of applying the method in real data analysis. The data, which has 77

variables and 1080 samples, comes from Higuera et al. [2015], in which the details

of the experiment and the measurements can be found. The data consists of the

protein expression measurements of 77 proteins obtained from normal genotype

control mice and Down syndrome (DS) mice, both with and without shock and

drug treatments. There were 72 mice in the experiment, and 15 measurements of

each protein per mouse were recorded. Thus there are 1080 (=72x15) expression

measurements for each protein. We did a preprocessing step to deal with missing
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Figure 4.7: The histogram of the expression measurements for the first 12 proteins

values.

Figure 4.7 shows the histograms of the expression measurements for the first

12 proteins in the data. We can see that although some proteins have nearly

normal distributed expression levels, most of the proteins, such as DTRK1A,

ITSN1, pCAMKII, and pERK, have heavy tails or extreme outliers in their ex-

pression levels. Thus, it is reasonable to statistically analyse this data with robust

methods.

We first compare the approximations from robust PCA (rpca) and classic

PCA (cpca) for the whole dataset under four criteria: the mean squared error

(MSE) of the low rank representation, the number of principals we extracted

based on threshold 0.8 of the total variance, the estimated smallest spiked eigen-

value, as well as the spiked ratio P/(Nλ̂r̂) (which we discussed in Section 4.3.2),

which are shown in Table 4.7. Both of the spiked ratios are small, with the

rpca one larger than that of cpca. It could indicate that rpca reduces the spiked

eigenvalues and the smallest spiked one is more biased than that of cpca. On

the other hand, with seven numbers of eigenvalues selected under threshold 0.8,
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rpca reaches a better approximation performance than cpca. It is worth men-

tioned that, although rpca is more flexible due to larger r̂ than cpca, the better

out-of-sample performance provided later illustrates its appropriate flexibility.

Table 4.7: The comparison of rpca and cpca on the whole data
MSE r̂ ratio ( P

Nλ̂
r̂

) λ̂r̂

rpca 0.009 7 0.558 0.126
cpca 0.014 3 0.137 0.512

One potential analysis for this dataset is using the protein expression levels to

classify the mice. There were 38 control mice and 34 DS mice. The experiment

in Higuera et al. [2015] involved shock and drug treatment for the treatment and

control groups. The shock treatment consisted of two types, one was context-

shock (CS), which allowed the mice to explore a novel cage for several minutes

and then gave a brief electric shock, and the other one was shock-context (SC),

which did the inverse. Including the with and without the drug memantine, the

mice are separated into eight groups. Hence, each group has 7 to 9 mice. Table

4.8 shows the number of mice in each class. “c” represents the control group

and “t” is the test group, which consists of DS mice. “m” represents the drug

memantine and “s” is saline, which performs as a placebo.

Table 4.8: Number of mice in each class, from Higuera et al. [2015]
Classes No. of mice

Control mice c-SC-s 9
c-SC-m 10
c-CS-s 9
c-CS-m 10

Down syndrome(DS) mice t-SC-s 9
t-SC-s 9
t-SC-s 7
t-SC-s 9

We conduct a classification with a subset of the data for groups "c-CS-s" and

"t-CS-s" by using the principal logistic regression. For these two groups, the
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shock and drug treatment were the same, but the genotype is different. One

group consists of the normal mice while the other group consists of the DS mice.

By Higuera et al. [2015], the comparison of these two groups is biologically mean-

ingful as it is related to the initial trisomy vs. control differences. We aim to use

the protein expression levels through principal logistic regression to identify DS

mice from the normal ones.

The subset has 240 measurements and 77 proteins. We first split the data

into training (75%) and test sets (25%) by random, in order to measure the pre-

diction performance of the rpca and cpca by the cross-validation. Then we apply

the rpca and cpca on the training data, extract the eigenvectors and construct

the principal components as the design matrix for the logistic regression. For

rpca, the principal design matrix is constructed by B̂
>
[Y >, Y >]>, where B̂ is

the (2P )× r̂1 eigenvector matrix of the transformed training data, r̂1 is the esti-

mated number of eigenvalues of rpca, and Y is the original training data with P

variables. For cpca, the corresponding principal design matrix is D̂
>

Y , where D̂

is the P × r̂2 eigenvector matrix of the original data, r̂2 is the estimated number

of eigenvalues of cpca, and Y is the original data. Then, we use the principal

design matrices as well as the class labels to fit logistic models and compute the

prediction values for the test set. If the prediction value is larger than 0.5, we

set it to be “t-CS-s”, otherwise “c-CS-s”. At last, we record the prediction accu-

racies for both of the methods. We repeat the process for 1000 times to ensure

we have different training and test sets. Figure 4.8 shows the histogram of the

prediction accuracies and the mean accuracy for both methods. We can see that

when using the principal design matrix constructed from robust PCA to fit the

logistic model, almost all the prediction accuracy are larger than 0.5 and most of

them are around 0.78. However, cpca performs much worse than rpca, with most

of the prediction accuracy near 0.68. This is because heavy-tailed measurements

and outliers affect the validity of the cpca, while the rpca method reduces those

effects and results in a better performance. Our proposed method can help iden-
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Figure 4.8: Comparing the classification on mice data

tify DS mice from the normal ones by the protein expression levels effectively.

This example shows that the robust PCA can definitely perform an essential role

in classification models and also other statistic analysis.

4.6 Conclusion

In this chapter, we addressed the challenge of applying the PCA on the high-

dimensional data in the presence of various kinds of heterogeneities. Specifically,

we proposed a robust PCA, based on a characteristic-function-type of transfor-

mation, to deal with the potential heterogeneities, which is particularly useful

when the data is heavy-tailed (for example, with infinite variance). We show

that the method is more robust than the classical PCA in the view of the excess

error, assuming a spiked covariance structure for the data. We also studied the

impact of the transformation on the spikeness of the spiked covariance structure.

We illustrate with simulations that the transformation shrinks the spikeness while

still keeps a well separable spiked covariance matrix. Particularly, the proposed

method should work well when the original data has infinite variance, while the
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classical method is invalid. Simulations and empirical analysis show that the

proposed robust PCA method is better than the classical PCA method, with the

exist of heterogeneities in the data. As a by product, the proposed method is

able to detect the non-linear relationships between the variables.
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Chapter 5

Conclusion and Future Work

This thesis considered topics of modelling and forecasting high-dimensional data

with methods related to the Principal Component Analysis (PCA). In Chapter 2

and 3, we studied data-adaptive methods to improve the fitting and forecasting

performance of mortality data, which is a representative high-dimensional time

series data. In Chapter 4, we proposed a novel robust version of PCA to deal

with heterogeneities in high-dimensional data.

We contributed to seeking linear features to attain optimal forecasting of the

US mortality data in Chapter 2 and proposed a two-style factor model with two

types of features. Both the two kinds of features were proved to enjoy equally fast

rates of convergence. The method did improve the forecasting performance in our

empirical and simulating analysis. In Chapter 3, we applied a time-varying factor

model to fit the mortality data, in order to allow time-varying factor loadings (the

relationship between age variables and the Mortality Index) in mortality mod-

elling. Accordingly, we proposed two forecasting methods for the time-varying

factor loadings and studied the optimal “boundary” between the short-term and

long-term forecasting, which was favored by the two forecasting methods, respec-

tively. Simulations and empirical studies showed the proposed method was able

to recover the underlying time-varying factor loadings, which also resulted in

good forecasting performance. The work were motivated by the mortality data,

but they are widely applicable to high-dimensional time series data in other areas,

which have similar structure to the mortality data.

133
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Finally, in Chapter 4, a robust version of PCA was proposed. We constructed

a transformation, motivated by the characteristic function, to improve the ro-

bustness of the standard, or classical, PCA. We showed the method was more

robust than the classical PCA, in the sense of its ability to achieve accurate es-

timation of the reconstruction error even with extremely heavy-tailed data. The

application on the mice data showed that making use of the proposed robust

PCA was able to improve the classification accuracy of different types of mice.

The work presented in this thesis leaves several interesting topics for further

research. For instance, we can extend the two-style factor model in Chapter

2 to jointly forecast mortality data in multiple countries by combining it with

grouped forecasting method (such as the optimal-combination method proposed

in Hyndman et al. [2011]). In literature, Li and Lee [2005]; Enchev et al. [2017];

Shang and Haberman [2020] and many others modeled the mortality data in

similar countries as groups, and showed that jointly modelling improved the

forecasting for individual country significantly. But most of the multi-population

models were only based on the Lee-Carter model. As we have shown the more

accurate forecasting of our method comparing to the Lee-Carter model in the

single-population modelling, it is expected that the two-style model can also

have better performance in the framework of jointly forecasting. Therefore, it is

interesting to extend our two-style factor model from forecasting a single country

individually to forecasting multiple countries jointly. Moreover, the statistical

properties of the new multi-population two-style factor model is worthwhile to

be studied.

Another potential work is related to the robust PCA in Chapter 4. The

proposed robust PCA can be seen as a kernel PCA method. While we did not

study from this aspect in details, we can do further research for the robust PCA

under the framework of kernel PCA and explore its potential extensions. For

example, we may study the theoretical behavior of the eigen-space produced by

our method following the techniques in Reiß and Wahl [2020]. In Reiß and Wahl
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[2020], the authors provided non-asymptotic upper bounds for the excess risk

of the reconstruction error and discussed how these results could be transferred

to the subspace distance (the distance between the subspace spanned by the

empirical eigenvectors and the one spanned by the population version). More

importantly, they allowed for general Hilbert spaces to include the kernel PCA.

Therefore, it is worthwhile to establish the subspace distance results of the robust

PCA in Chapter 4 under the framework of kernel PCA.
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Appendix of Chapter 2

A.1 Additional simulations

In this appendix, we provide more simulation studies as a supplementary to

Section 2.5 in Chapter 2. Specially, Example 5 and 6 are special cases to the

examples in Section 2.5, in which the two different types of features are completely

separated.

Firstly, in Example 4 and 5, we show that the first step of our method ex-

tracts features with strong time-serial dependence, which indicates a powerful

forecasting ability. In addition, the low-dimensional representation has relative

small reconstruction errors, which is necessary for recovering the data.

Secondly, with Example 5 and 6, we show that our method performs better

on forecasting compared to static PCA and dynamic PCA.

For descriptive convenience, we use “SWPCA” to represent our method,

“CPCA” to represent the static PCA which was described in Section 2.3, and

“DPCA” to represent the dynamic PCA described in Section 2.3 with `0 = 1.

We also consider comparing with the method given in Lam et al. [2011], and we

use “DPCA(`)” to represent it, with ` = 1, 5, 10. “DPCA(1)” is the same with

the first step of our method, while “DPCA(5)” and “DPCA(10)” aggregate more

auto-covariances but discarding the variance.

137
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Data generating

• Example 4

{yt}t=1,2,...,T : P × 1 is generated by

yt = a + bkt + εt,

where a is a P × 1 mean vector with elements generated from standard

normal, b is a P × 1 vector obtained by the first column of a QR decompo-

sition of a random generated matrix, {kt}t=1,2,...,T is generated from AR(1)

model with coefficient 0.7 and mean 0, and εt is a P × 1 error term with

elements generated from standard normal.

• Example 5

Construct yt = (y
(1)>
t , y

(2)>
t )>. {y

(1)
t }t=1,2,...,T : (dP ) × 1 is generated by

y
(1)
t = bkt + ε

(1)
t ,

where b is a (dP )×1 vector with elements generated from U(0, 1), {kt}t=1,2,...,T

is generated from AR(1) model with coefficient 0.8, and ε
(1)
t is a (dP ) × 1

error term with elements independently generated from N(0, 0.2).

{y
(2)
t }t=1,2,...,T : ((1 − d)P ) × 1 is generated by

y
(2)
t = awt + ε

(2)
t ,

where a is a ((1 − d)P ) × 1 vector with elements generated from U(0, 1),

{wt}t=1,2,...,T is generated from N(0, 1.5), and ε
(2)
t is a ((1 − d)P )× 1 error

term with elements independently generated from N(0, 0.2).

We call {y
(1)
t }t=1,2,...,T the dependent part as it has autocorrelations within

observations (time dimension), and {y
(2)
t }t=1,2,...,T the independent part

as it has independent generated observations, while the variance of it is
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larger than that of {y
(1)
t }t=1,2,...,T . The parameter d is the proportion of

the dependent part among the whole dataset, with possible values among

(0, 1). As a result of this design, the whole data consists of two part. The

dependent part has strong serial dependence with relatively small variance

and the independent part has very weak dependence with relatively large

variance. This is a special case for the two-style factor model in example

1 to 3 in which we can set 0s in the coefficient vector a and b to get the

example 5.

• Example 6

The data structure is the same with Example 5 with d = 0.4, except that

{kt}t=1,2,...,T is generated from AR(1) model with coefficient 0.7, ε
(1)
t and

ε
(2)
t are (dP ) × 1 error terms with elements independently generated from

N(0, 0.5), and {wt}t=1,2,...,T is generated from N(0, 3). The main difference

is we enlarge the variations in Example 3, comparing with Example 6. The

purpose is to show that keeping sufficient information of the variation is

necessary.

Because in Example 5 and 6, yt consists of the dependent part and indepen-

dent part, we also report the FRMSE for the two parts separately, in addition to

the overall FRMSE defined in Section 2.5. Rewrite ŷT −i as (ŷ
(1)>
T −i , ŷ

(2)>
T −i )

> and

yT −i as (y
(1)>
T −i , y

(2)>
T −i )

>, then:

Dependent FRMSE(h) =
∑h−1

i=0 ‖ŷ
(1)
T −i − y

(1)
T −i‖2

2
hPd

1/2

,

Independent FRMSE(h) =
∑h−1

i=0 ‖ŷ
(2)
T −i − y

(2)
T −i‖2

2
hP (1 − d)

1/2

,

where d is the proportion of y
(1)
t among yt.
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Results

We try different sets of (P ,T ): (50, 50), (50, 100), (100, 100), (100, 200), (200, 200),

as we would like to evaluate the performance under situations P and T are com-

parable. The results are shown in Table A.1 to Table A.6.

Table A.1: Variance and Dependence of k̂t

Time variance (k̂t) Time dependence (k̂t) Mix (k̂t)

(P , T ) CPCA DPCA SW-
PCA

CPCA DPCA SW-
PCA

CPCA DPCA SW-
PCA

Example 4

(50, 50) 7.882 7.723 6.073 1.201 1.607 1.833 9.083 9.331 7.905
(50, 100) 6.001 5.917 4.595 1.061 1.328 1.455 7.062 7.245 6.050
(100, 100) 7.968 7.811 6.094 0.957 1.392 1.671 8.925 9.204 7.765
(100, 200) 5.996 5.911 4.567 0.944 1.241 1.409 6.940 7.151 5.976
(200, 200) 7.974 7.814 6.088 0.757 1.130 1.399 8.731 8.943 7.487

Example 5 (d = 0.5)

(50, 50) 24.189 23.935 21.005 11.916 13.405 15.291 36.105 37.340 36.296
(50, 100) 23.858 23.494 21.389 12.132 14.311 16.480 35.990 37.805 37.869
(100, 100) 47.927 47.217 43.802 25.852 30.221 33.975 73.780 77.439 77.777
(100, 200) 47.730 46.898 45.228 27.808 33.306 35.603 75.539 80.204 80.831
(200, 200) 94.918 93.398 89.976 55.774 66.264 70.893 150.692 159.662 160.869

From Table A.1, we can see that the CPCA provides feature k̂t with the

largest variance, while the first step of our method (SWPCA) captures k̂t with the

largest lag 1 auto-covariance. In addition, in Example 5, our method has slightly

larger Mix(k̂t) than DPCA, which shows that under certain data structure the

dimension reduction of our first step is enough to represent sufficient information.

From Table A.2 and A.3, we can see that our method always provides the

error terms with the smallest time and cross-sectional variance and dependence.

Table A.4 and A.5, show the the 1 step and 5 steps ahead root mean square

errors for Example 5 with d = 0.5, 0.4, 0.3, respectively. Overall, SWPCA per-

forms better than the other two, as it has the smallest overall FRMSE for all the

cases. Checking the Dependent FRMSE and Independent FRMSE separately,

we can find that SWPCA performs even better for the dependent part. As d
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Table A.2: Variance across Time and Ages of error terms
Time Variance (ε̂·t) Cross-sectional Variance (ε̂p·)

(P , T ) CPCA DPCA SWPCA CPCA DPCA SWPCA

Example 4

(50, 50) 0.778 0.680 0.337 0.794 0.694 0.343
(50, 100) 0.775 0.706 0.373 0.782 0.713 0.377
(100, 100) 0.796 0.694 0.351 0.804 0.701 0.355
(100, 200) 0.778 0.708 0.381 0.782 0.712 0.383
(200, 200) 0.803 0.701 0.357 0.807 0.704 0.359

Example 5 (d = 0.5)

(50, 50) 0.071 0.091 0.037 0.094 0.123 0.037
(50, 100) 0.056 0.080 0.038 0.067 0.104 0.038
(100, 100) 0.055 0.077 0.039 0.064 0.100 0.039
(100, 200) 0.046 0.074 0.039 0.050 0.094 0.039
(200, 200) 0.046 0.072 0.039 0.051 0.091 0.039

Table A.3: Covariance across Time and Ages of error terms
Time dependence (ε̂·t) Cross-sectional dependence (ε̂p·)

(P , T ) CPCA DPCA SWPCA CPCA DPCA SWPCA

Example 4

(50, 50) 0.107 0.097 0.059 0.108 0.099 0.060
(50, 100) 0.106 0.099 0.064 0.086 0.082 0.058
(100, 100) 0.077 0.070 0.043 0.077 0.070 0.043
(100, 200) 0.075 0.070 0.046 0.061 0.058 0.041
(200, 200) 0.054 0.050 0.031 0.055 0.050 0.031

Example 5 (d = 0.5)

(50, 50) 0.025 0.037 0.004 0.032 0.045 0.004
(50, 100) 0.016 0.030 0.004 0.015 0.032 0.003
(100, 100) 0.013 0.027 0.003 0.014 0.030 0.003
(100, 200) 0.007 0.025 0.003 0.007 0.025 0.002
(200, 200) 0.007 0.023 0.002 0.007 0.024 0.002
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decreasing, the Dependent FRMSE of SWPCA increases the least, although all

the Dependent FRMSEs increase. And for the independent part, SWPCA is bet-

ter when d = 0.5, 0.4, but performs almost the same with others when d = 0.3.

This result shows that SWPCA extracts features with more forecasting power

from the dependent part and uses it to help improve the forecasting of the in-

dependent part. However, when the proportion of the dependent part is small,

such as d = 0.3, forecasting the independent part cannot be blessed that much

from the dependent part. Therefore, there will be very little difference among the

three methods when comparing the performance for the independent part when

d = 0.3. But SWPCA will always provide better forecasting for the dependent

part, which leads to better overall forecasting for all cases.

Table A.4: 1 Step Ahead Forecasting RMSE
Dependent FRMSE(1) Independent FRMSE(1) Overall FRMSE(1)

(P , T ) CPCA DPCA SW-
PCA

CPCA DPCA SW-
PCA

CPCA DPCA SW-
PCA

Example 5 (d = 0.5)

(50, 50) 0.623 0.608 0.568 0.771 0.768 0.749 0.757 0.748 0.716
(50, 100) 0.573 0.567 0.550 0.746 0.747 0.743 0.715 0.711 0.700
(100, 100) 0.568 0.558 0.536 0.760 0.746 0.734 0.719 0.705 0.688
(100, 200) 0.572 0.568 0.553 0.782 0.772 0.764 0.732 0.725 0.711
(200, 200) 0.537 0.531 0.521 0.759 0.752 0.746 0.705 0.696 0.686

Example 5 (d = 0.4)

(50, 50) 0.654 0.642 0.584 0.738 0.743 0.741 0.759 0.756 0.731
(50, 100) 0.603 0.595 0.553 0.727 0.731 0.712 0.732 0.731 0.699
(100, 100) 0.631 0.607 0.562 0.767 0.768 0.754 0.766 0.755 0.727
(100, 200) 0.575 0.580 0.542 0.778 0.774 0.767 0.752 0.752 0.729
(200, 200) 0.570 0.568 0.537 0.739 0.742 0.733 0.719 0.720 0.701

Example 5 (d = 0.3)

(50, 50) 0.708 0.686 0.598 0.761 0.764 0.760 0.798 0.793 0.760
(50, 100) 0.687 0.653 0.572 0.749 0.752 0.749 0.782 0.772 0.742
(100, 100) 0.695 0.640 0.556 0.773 0.774 0.775 0.805 0.788 0.757
(100, 200) 0.682 0.606 0.533 0.742 0.747 0.743 0.772 0.749 0.719
(200, 200) 0.680 0.620 0.549 0.719 0.720 0.720 0.759 0.737 0.711

Table A.6 shows the the 1 step and 5 steps ahead root mean square errors

of SWPCA compared to DPCA(`), ` = 1, 5, 10, for Example 6. The reason for
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comparing DPCA(`) separately is that it contains different information. The

DPCA we compared with in Example 5 involves the same information (variance

and lag 1 auto-covariance of yt) with SWPCA, while DPCA(`) aggregates more

dependent information (lag 1 to lag ` auto-covariances) but discards var (yt). In

addition, DPCA(1) is equivalent to only conduct the first step of SWPCA. In

Table A.6, we can see that SWPCA and DPCA(1) perform better than DPCA(5)

and DPCA(10) for most (P ,T ) cases. This shows that involving more lagged

auto-covariances does not always provide more useful information for forecast-

ing under certain situations. The performance of DPCA(1) is worse than SW-

PCA with (P ,T ) = (50, 50), (50, 100), (100, 100) for 1 step ahead forecasting

and (P ,T ) = (100, 100) for 5 steps ahead forecasting, and similar for other

cases. These results show that when variation is large, it is necessary to conduct

the second step in the SWPCA in order to achieve more accurate forecasting.

Table A.5: 5 Steps Ahead Forecasting RMSE
Dependent FRMSE(5) Independent FRMSE(5) Overall FRMSE(5)

(P , T ) CPCA DPCA SW-
PCA

CPCA DPCA SW-
PCA

CPCA DPCA SW-
PCA

Example 5 (d = 0.5)

(50, 50) 0.846 0.839 0.839 0.891 0.893 0.879 0.899 0.896 0.888
(50, 100) 0.833 0.834 0.827 0.876 0.870 0.864 0.883 0.881 0.874
(100, 100) 0.823 0.817 0.811 0.885 0.878 0.867 0.883 0.876 0.866
(100, 200) 0.802 0.798 0.794 0.872 0.866 0.862 0.866 0.861 0.857
(200, 200) 0.790 0.795 0.788 0.862 0.857 0.854 0.852 0.852 0.847

Example 5 (d = 0.4)

(50, 50) 0.864 0.854 0.838 0.876 0.877 0.867 0.901 0.899 0.886
(50, 100) 0.826 0.815 0.803 0.875 0.877 0.868 0.885 0.882 0.872
(100, 100) 0.815 0.817 0.807 0.870 0.872 0.860 0.874 0.876 0.865
(100, 200) 0.787 0.781 0.772 0.866 0.865 0.857 0.859 0.856 0.849
(200, 200) 0.792 0.797 0.786 0.865 0.868 0.852 0.861 0.864 0.851

Example 5 (d = 0.3)

(50, 50) 0.877 0.863 0.835 0.885 0.889 0.885 0.910 0.909 0.896
(50, 100) 0.860 0.841 0.821 0.855 0.856 0.855 0.883 0.878 0.870
(100, 100) 0.890 0.865 0.833 0.847 0.848 0.847 0.887 0.880 0.868
(100, 200) 0.831 0.804 0.771 0.854 0.856 0.852 0.871 0.864 0.851
(200, 200) 0.851 0.818 0.801 0.867 0.868 0.866 0.888 0.877 0.869

© Lingyu He – 12 November 2020



144 Appendix of Chapter 2

Table A.6: 1 step and 5 steps ahead RMSE, Example 6
Overall FRMSE(1) Overall FRMSE(5)

(P , T ) DPCA(1)DPCA(5)DPCA(10) SW-
PCA

DPCA(1)DPCA(5)DPCA(10) SW-
PCA

(50, 50) 1.371 1.379 1.376 1.367 1.518 1.518 1.518 1.527
(50, 100) 1.312 1.332 1.332 1.309 1.495 1.496 1.495 1.497
(100, 100) 1.389 1.403 1.402 1.384 1.490 1.490 1.490 1.488
(100, 200) 1.349 1.371 1.370 1.349 1.456 1.462 1.462 1.456
(200, 200) 1.329 1.355 1.355 1.329 1.481 1.489 1.489 1.481

A.2 Proof of Theorem 2.1

This section contains proof of Theorem 2.1 in Chapter 2, as well as some lemmas

that are used in these proofs. Before introducing the proofs, we provide some

notations. For a k × k matrix F , λi(F ) indicates the i-th largest eigenvalue

of the matrix F . For a non-symmetric matrix S, we use σj (S) to denote the

singular value of the matrix S, which corresponds to the j-th largest eigenvalue

of the matrix SS>. Let ||F || be the square root of the maximum eigenvalue of

F F > and ||F ||min be the square root of the smallest nonzero eigenvalue of the

matrix F F >. The notation a � b means that a = O(b) and b = O(a).

Useful Lemmas

We will introduce four lemmas that will be used in the proofs of Theorem 2.1.

Lemma A.1, Lemma A.2 and Lemma A.3 are available results on eigenvalues

of matrices under various decomposition. Lemma A.4 provides the orders of

eigenvalues of the matrix L1 and L2, and the proof follows up the statement of

Lemma A.4.

Lemma A.1 (Weyl’s Theorem). Let {λi (S) : i = 1, . . . ,P} be eigenvalues of

the matrix S in descending order and {λi (J) : i = 1, . . . ,P} be eigenvalues of

the matrix J in descending order. Then

|λi (S) − λi (J)| ≤ ||S − J || . (A.2.1)
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Lemma A.2 (Lemma S.1 of Lam and Yao [2012]). Let F be a k× k symmetric

matrix such that

F =

 G H

H> D

 (A.2.2)

with G : k1 × k1, D : k2 × k2 and λk1 (G) > λ1 (D). Note that k1 + k2 = k.

Then for 1 ≤ j ≤ k2 ,

0 ≤ λj (D) − λk1+j (F ) ≤
λ1
(
HH>

)
λk1 (G) − λj (D)

. (A.2.3)

Lemma A.3 (Lemma 3 of Lam et al. [2011]). Suppose F and F +E are P ×P

symmetric matrices and that Q = (Q1, Q2), where Q1 has size P × k and Q2

has size P × (P − k), is an orthogonal matrix such that span(Q1) is an invariant

subspace for the matrix F , that is, F × span (Q1) ⊂ span (F ). Partition the

matrices Q>F Q and QT EQ as follows.

Q>F Q =

D1 0

0 D2

 , Q>EQ =

E11 E>
21

E21 E22

 . (A.2.4)

If sep (D1, D2) := minλ∈Λ(D1),µ∈Λ(D2) |λ− µ| > 0, where Λ (D1) denotes the

set of eigenvalues of the matrix D1 and ||E|| ≤ sep (D1, D2) /5, then there

exists a matrix P : (P − k) × k with

||P || ≤ 4 ||E21||
sep (D1, D2)

(A.2.5)

such that the columns of the matrix Q̂1 = (Q1 + Q2P )
(
I + P >P

)−1/2
define

an orthogonal basis for a subspace that is invariant for the matrix F + E.
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Lemma A.4. Under Assumptions 2.1-2.8, we have

λj (L1) � P 2−2δ1 , j = 1, . . . , r1. (A.2.6)

λr1+j (L1) � P 2−2δ2 , j = 1, . . . , r2; (A.2.7)

λr1+r2+i (L1) = op

(
P 1−δ1

)
, i = 1, . . . ,P − (r1 + r2). (A.2.8)

λi (L2) � P 2, i = 1, . . . , r2. (A.2.9)

proof of Lemma A.4. Recall the two-style factor model

yt = Bk
(1)
t + Ak

(2)
t + εt. (A.2.10)

From the expression (A.2.10), the population covariance matrix of yt has the

following decomposition

Σy(1) = BM1 + AM2 + Σε(1), (A.2.11)

where

M1 = Σ
(1)
k (1)B> + Σ

(12)
k (1)A>, M2 = Σ

(2)
k (1)A> + Σ

(21)
k (1)B>.

Based on Lemma A.1, we can evaluate the j-th eigenvalue of L1 below, j =

1, . . . , r1,

λj (L1) = σ2
j (Σy(1)) ≥ [σj (BM1) − σ1 (AM2 + Σε(1))]2

≥ [σj (BM1) − σ1 (AM2) − σ1 (Σε(1))]2

= [σj (M1) − σ1 (M2) − σ1 (Σε(1))]2

� σ2 (M1) ≥
[
σj

(
Σ
(1)
k (1)B>

)
− σ1

(
Σ
(12)
k (1)A>

)]2

� σ2
j

(
Σ
(1)
k (1)B>

)
= σ2

j

(
Σ
(1)
k (1)

)
≥
∣∣∣∣∣∣∣∣Σ(1)

k (1)
∣∣∣∣∣∣∣∣2

min
= P 2−2δ1 ,
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where the first and second inequalities use Lemma A.1; the second equality uses

the matrices B and A being orthonormal assumed in Assumption 2.1; and the

last inequality and equality both utilize Assumption 2.2.

Hence, the first r1 largest eigenvalues of the matrix L1 have the order of

P 2−2δ1 .

Now we consider the order of the left p− r1 eigenvalues of the matrix L1. In

terms of Weyl’s inequality in Lemma A.1, we use the eigenvalues of the matrix

L̃1 = Σ̃y(1)Σ̃y(1) to approximate the eigenvalues of L1, where Σ̃y(1) = BM1 +

AM2. In fact,

∣∣∣λr1+j (L1) − λr1+j

(
L̃1
)∣∣∣ ≤

∣∣∣∣∣∣L1 − L̃1
∣∣∣∣∣∣

≤ ||BM1 + AM2 + Σε(1)|| · ||Σε(1)|| + ||BM1 + AM2|| · ||Σε(1)||

= o
(
P 1−δ1

)
, (A.2.12)

where the last equality uses Assumption 2.2.

Now we evaluate the order of λr1+j

(
L̃1
)
. Note that the rank of L̃1 is no

larger than r1 + r2. So, when j > r1 + r2, λr1+j

(
L̃1
)
= 0. Hence, next we

investigate the case of j = 1, . . . , r2.

Decompose L̃1 in the following way.

L̃1 =
(

B A

)M1

M2

(M>
1 M>

2

)B>

A>



=
(

B A

)M1M>
1 M1M>

2

M2M>
1 M2M>

2


B>

A>

 . (A.2.13)

Because
B>

C>

(B C

)
= I, (A.2.14)
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we have λj (L1) = λj (M ), where

M =

M1M>
1 M1M>

2

M2M>
1 M2M>

2

 . (A.2.15)

It follows from Lemma A.3 and Assumption 2.2 that

λr1+j (M ) ≤ λj

(
M2M>

2
)

� P 2−2δ2 , (A.2.16)

and

λr1+j (M ) ≥ σ2
j (M2) −

σ2
1
(
M1M>

2
)

σ2
r1 (M1) − σ2

j (M2)
� P 2−2δ2 , (A.2.17)

where the last � above uses the fact that σ2
r1 (M1) � P 2−2δ1 , σ2

j (M2) � P 2−2δ2

and σ2
1
(
M1M>

2
)
= O

(
P 4−2(δ1+δ2)

)
.

Combining (A.2.16) and (A.2.17), we can get

λr1+j (M ) � P 2−2δ2 , j = 1, . . . , r2. (A.2.18)

Then it follows from (A.2.12), (A.2.18) and Assumption 2.2 that

λr1+j (L1) � P 2−2δ2 , j = 1, . . . , r2; (A.2.19)

λr1+r2+i (L1) = op

(
P 1−δ1

)
, i = 1, . . . ,P − (r1 + r2). (A.2.20)

Finally, the order of λi (L2) can be derived from Proposition 2.1 of Fan et al.

[2013] directly.

Proof of Theorem 2.1

Proof of Theorem 2.1. Let E
(1)
L = L̂1 − L1 with L̂1 = Σ̂y(1)Σ̂y(1)> and L1 =

Σy(1)Σy(1)>. First we evaluate the order of
∣∣∣∣∣∣∣∣E(1)

L

∣∣∣∣∣∣∣∣. In terms of simple calcula-
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tions, we have

∣∣∣∣∣∣∣∣E(1)
L

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣Σ̂y(1) − Σy(1)

∣∣∣∣∣∣2 + 2
∣∣∣∣∣∣Σ̂y(1)

∣∣∣∣∣∣ · ∣∣∣∣∣∣Σ̂y(1) − Σy(1)
∣∣∣∣∣∣ . (A.2.21)

In terms of (A.2.6) in Lemma A.4, we have ||Σy(1)|| � P 1−δ1 . From (A.2.11),

we can get

∣∣∣∣∣∣Σ̂y(1) − Σy(1)
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣M̂1 − M1
∣∣∣∣∣∣+ ∣∣∣∣∣∣M̂2 − M2

∣∣∣∣∣∣
+
∣∣∣∣∣∣Σ̂ε(1) − Σε(1)

∣∣∣∣∣∣ , (A.2.22)

where

M̂1 = Σ̂
(1)
k (1)B> + Σ̂

(12)
k (1)A>, M̂2 = Σ̂

(2)
k (1)A> + Σ̂

(21)
k (1)B>,

with Σ̂
(1)
k (1), Σ̂

(12)
k (1), Σ̂

(2)
k (1) and Σ̂

(21)
k (1) are the sample covariances corre-

sponding to the population covariances Σ
(1)
k (1), Σ

(12)
k (1), Σ

(2)
k (1) and Σ

(21)
k (1),

respectively.

Hence, we evaluate (A.2.22) further

∣∣∣∣∣∣Σ̂y(1) − Σy(1)
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣∣Σ̂(1)
k (1) − Σ

(1)
k (1)

∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣Σ̂(12)
k (1) − Σ

(12)
k (1)

∣∣∣∣∣∣∣∣
+
∣∣∣∣∣∣∣∣Σ̂(2)

k (1) − Σ
(2)
k (1)

∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣Σ̂(21)
k (1) − Σ

(21)
k (1)

∣∣∣∣∣∣∣∣
+
∣∣∣∣∣∣Σ̂ε(1) − Σε(1)

∣∣∣∣∣∣
= Op

(
P 1−δ1

T 1/2

)
+Op

(
P 1−δ2

T 1/2

)
+Op

(
P

T

)

= Op

(
max

(
P

T
, P

1−δ1

T 1/2

))
, (A.2.23)

where the last second equality uses (A8) of Lam et al. [2011] which demonstrates∣∣∣∣∣∣Σ̂ε(1) − Σε(1)
∣∣∣∣∣∣ = Op

(
P
T

)
.
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Then it follows from (A.2.21) and (A.2.23) that

∣∣∣∣∣∣∣∣E(1)
L

∣∣∣∣∣∣∣∣ = Op

(
max

(
P 2

T 2 , P
2−2δ1

T
, P

2−δ1

T
, P

2−2δ1

T 1/2

))
(A.2.24)

= Op

(
P 2−2δ1

T 1/2

)
, (A.2.25)

where the last equality uses the assumption that P δ1 = o
(
T 1/2

)
.

Now we use Lemma A.3 to get the order of estimated factor loadings. In

Lemma A.3, let F and E be L1 and L̂1 − L1, respectively. Let k in Lemma 3

equal to r1. Then we have, from (A.2.6),

sep(D1, D2) � P 2−2δ1 , (A.2.26)

where the defition of sep(·, ·) is provided in Lemma A.3. Then E
(1)
L and

sep(D1, D2) satisfies

∣∣∣∣∣∣∣∣E(1)
L

∣∣∣∣∣∣∣∣ = op (sep(D1, D2)) ≤ sep(D1, D2)

5 . (A.2.27)

Hence Lemma A.3 tells us that, there exists a matrix P : (P − r1)× r1 such that

||P || ≤ 4
sep (D1, D2)

·
∣∣∣∣∣∣∣∣(E

(1)
L

)
21

∣∣∣∣∣∣∣∣ ≤
4
∣∣∣∣∣∣∣∣E(1)

L

∣∣∣∣∣∣∣∣
sep(D1, D2)

(A.2.28)

and then B̂ = (B + BcP )
(
I + P >P

)−1/2
is an estimator of B with Bc being

Q2 in Lemma A.3. In view of this, the rate of convergence for B̂ can be calculated
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as

∣∣∣∣∣∣B̂ − B
∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣(B + BcP )

(
I + P T P

)−1/2
− B

∣∣∣∣∣∣∣∣
=
∣∣∣∣∣∣∣∣[(B + BP ) − B

(
I + P >P

)1/2] (
I + P >P

)−1/2∣∣∣∣∣∣∣∣
=
∣∣∣∣∣∣∣∣(B

[
I −

(
I + P >P

)1/2]
+ BcP

) (
I + P >P

)−1/2∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣I −

(
I + P >P

)1/2∣∣∣∣∣∣∣∣+ ||P || ≤ 2 ||P || , (A.2.29)

where the last second equality uses the fact that B and Bc are orthonormal; and

the last equality uses the fact that

∣∣∣∣∣∣∣∣I −
(
I + P >P

)1/2∣∣∣∣∣∣∣∣ = 1 −
(
1 + λmin

(
P >P

))1/2
(A.2.30)

≤ λ1/2
max

(
P >P

)
. (A.2.31)

Therefore, by (A.2.29) and (A.2.28), we obtain

∣∣∣∣∣∣B̂ − B
∣∣∣∣∣∣ = OP


∣∣∣∣∣∣∣∣E(1)

L

∣∣∣∣∣∣∣∣
sep(D1, D2)

 = Op

( 1
T 1/2

)
. (A.2.32)

For the second factor model part, the estimation is to conduct principal com-

ponent analysis on the residual of the first step, i.e. estimating the factor model

ût = Ak
(2)
t + ηt, t = 1, 2, . . . ,T , (A.2.33)

where ût = yt − B̂k̂
(1)
t , ηt is the new error component in the estimation at the

second step.

In order to derive the rate of convergence for Â, we also utilize Lemma A.3.

Now let F and E in Lemma A.3 are L2 and E
(2)
L := L̂2 − L2, respectively. Let

k in Lemma A.3 equal to r2.
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First, we evaluate
∣∣∣∣∣∣∣∣E(2)

L

∣∣∣∣∣∣∣∣. Based on (A.2.33), we have

∣∣∣∣∣∣∣∣E(2)
L

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣Σ̂û(0) − Σu(0)

∣∣∣∣∣∣2 + 2 ||Σu(0)|| ·
∣∣∣∣∣∣Σ̂û(0) − Σu(0)

∣∣∣∣∣∣ , (A.2.34)

where Σu(0) is the population covariance matrix of ut and Σ̂û(0) is the sample

covariance matrix of ût. Based on Assumption 2.3 and Proposition 2.1 of Fan

et al. [2013], we know that ||Σu(0)|| � p. For the term
∣∣∣∣∣∣Σ̂û(0) − Σu(0)

∣∣∣∣∣∣, we

evaluate its order as follows.

∣∣∣∣∣∣Σ̂û(0) − Σu(0)
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣Σ̂û(0) − Σ̂u(0)
∣∣∣∣∣∣+ ∣∣∣∣∣∣Σ̂u(0) − Σu(0)

∣∣∣∣∣∣
≤ 1
T

∣∣∣∣∣∣∣∣B̂K̂
(1)

− BK(1)
∣∣∣∣∣∣∣∣2 + 2

T

∣∣∣∣∣∣BK(1)
∣∣∣∣∣∣ · ∣∣∣∣∣∣∣∣B̂K̂

(1)
− BK(1)

∣∣∣∣∣∣∣∣
+
∣∣∣∣∣∣Σ̂u(0) − Σu(0)

∣∣∣∣∣∣ , (A.2.35)

where K̂
(1)

=
(

k̂
(1)
1 , k̂

(1)
2 , . . . , k̂

(1)
T

)
and K(1) =

(
k
(1)
1 , k

(1)
2 , . . . , k

(1)
T

)
.

From Assumption 2.2 and (A.2.32), it can be derived that

1√
T

∣∣∣∣∣∣∣∣B̂K̂
(1)

− BK(1)
∣∣∣∣∣∣∣∣ = Op

(
P 1/2−δ1/2

√
T

)
,

1√
T

∣∣∣∣∣∣BK(1)
∣∣∣∣∣∣ = Op

(
P 1/2−δ1/2

)
. (A.2.36)

Similar to (A.2.23), we can also get

∣∣∣∣∣∣Σ̂u(0) − Σu(0)
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣∣Σ̂(2)
k (0) − Σ

(2)
k (0)

∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣Σ̂ε(0) − Σε(0)
∣∣∣∣∣∣

= Op

(
P

T 1/2

)
+Op

(
P

T

)
. (A.2.37)
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In view of (A.2.36), (A.2.37) and (A.2.35), we can get

∣∣∣∣∣∣Σ̂û(0) − Σu(0)
∣∣∣∣∣∣ = Op

(
p1−δ1
√
T

)
+Op

(
P√
T

)
+Op

(
P

T

)

= Op

(
P√
T

)
. (A.2.38)

The order of
∣∣∣∣∣∣∣∣E(2)

L

∣∣∣∣∣∣∣∣ is obtained from (A.2.34) and (A.2.38), i.e.

∣∣∣∣∣∣∣∣E(2)
L

∣∣∣∣∣∣∣∣ = Op

(
P 2
√
T

)
. (A.2.39)

Moreover, it follows from Proposition 2.1 of Fan et al. [2013] that

sep(D1, D2) � P 2. (A.2.40)

Here D1 in Lemma A.3 is the diagonal matrix corresponding to the orthogonal

matrix A. Then we can get from Lemma A.3 that

∣∣∣∣∣∣Â − A
∣∣∣∣∣∣ = Op


∣∣∣∣∣∣∣∣E(2)

L

∣∣∣∣∣∣∣∣
sep (D2, D1)

 = Op

(
1√
T

)
. (A.2.41)
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Appendix B

Appendix of Chapter 3

B.1 Forecasting results for the gender-age-specific

mortality rates of the US

Our analysis of the mortality forecasting in the main text focuses on age-specific

US mortality data of the total population. This appendix provides additional

gender-specific results of the estimation and out-of-sample forecasting for both

males and females.

Male

The results for the male subpopulation are shown in Figure B.1 and Figure B.2.

In terms of the goodness of fit, the overall MSE for the classical factor model

is 0.008479112, while the MSE for the time-varying model is 0.002679128. From

the perspective of the out-of-sample forecasting precision, the overall MSPE for

the classical factor model is 0.0412585, while if we choose to use naive method,

MSPE for the time-varying model is only 0.02247346, which is approximately

45% less than the previous one. Based on local linear regression, the MSPE

of time-varying model is 0.06222522, which is larger than that for the classical

model. Thus, for the male subpopulation, compared with the classical model,

the prediction accuracy improves a lot by using the time-varying factor model

based on naive method. For the short-term forecasting, the naive method and

local regression method have similar performances. However, for the long-term
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forecasting, the prediction accuracy of local regression method deteriorates as

time goes by. For the age-specific forecasts, the time-varying model based on

naive method almost always obtains the best predictions. And roughly speaking,

no matter which method we choose to use, the time-varying factor model is better

at predicting the mortality rates of the older adulthood (50 ∼ 90).

0.00

0.05

0.10

1995 2000 2005 2010 2015
year

M
S

P
E

name
classical
local_linear
naive

Male:Year−specific MSPE

Figure B.1: Year-specific MSPE for both the time-varying model and the classical
model; for time-varying model, both naive method and local regression method are
used; Male subpopulation.

Female

The results for the female subpopulation are shown in Figure B.3 and Figure B.4.

In terms of the goodness of fit, the overall MSE for the classical factor model

is 0.007337257, while the MSE for the time-varying model is 0.002061072. From

the perspective of the out-of-sample forecasting precision, the overall MSPE for

the classical factor model is 0.03709366, while if we choose to use naive method,

MSPE for the time-varying model is 0.02962542, which is 20% less than the

previous one. Based on local linear regression, the MSPE of time-varying model

is 0.03887248, which is similar to (or slightly larger than) that for the classical

model. Thus, for the female subpopulation, compared with the classical model,

© Lingyu He – 12 November 2020



§B.1 Forecasting respectively for Male and Female 157
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Figure B.2: Age-specific MSPE for both the time-varying model and the classical
model; for time-varying model, both naive method and local regression method are
used; Male subpopulation.

the prediction accuracy improves a lot by using the time-varying factor model

based on naive method. For the short-term forecasting, the naive method and

local regression method have similar performances. However, for the long-term

forecasting, the prediction accuracy of local regression method deteriorates as

time goes by. For the age-specific forecasts, the time-varying model based on

naive method almost always obtains the best predictions, except for the age

group 40 ∼ 55. And roughly speaking, no matter which method we use, the

time-varying factor model is better at predicting the mortality rates of the young

children (0 ∼ 10), young adulthood (20 ∼ 40) and the older adulthood (55 ∼ 80).

In summary, the factor models (both the time-varying and the classical factor

models) can capture the characteristics of the male mortality rates of the US

better than the male mortality rates. Besides, compared with other methods, by

using naive method for extrapolating factor loading, the prediction accuracy can

be improved significantly based on the time-varying factor model, both for the

male and female subpopulations.
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Figure B.3: Year-specific MSPE for both the time-varying model and the classical
model; for time-varying model, both naive method and local regression method are
used; Female subpopulation.

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
age

M
S

P
E

name
classical
local_linear
naive

Female:Age−specific MSPE

Figure B.4: Age-specific MSPE for both the time-varying model and the classical
model; for time-varying model, both naive method and local regression method are
used; Female subpopulation.
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B.2 The estimated optimal “boundary” for multi-

ple countries and fitting models
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Figure B.5: Plots of the total sum of squared residuals (SSR) versus the length (k) of
the short-term forecast horizon (based on the hybrid forecasting method of time-varying
factor model); length of forecast horizon: 15, 20, 25 and 30
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