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Abstract
Given a smooth 2-dimensional Riemannian or pseudo-Riemannian manifold (M, g) and an
ambient 3-dimensional Riemannian or pseudo-Riemannian manifold (N , h), one can ask
under what circumstances does the exterior differential system I for an isometric embedding
M ↪→ N have particularly nice solvability properties. In this paper we give a classification
of all 2-dimensional metrics g whose isometric embedding system into flat Riemannian
or pseudo-Riemannian 3-manifolds (N , h) is Darboux integrable. As an illustration of the
motivation behind the classification, we examine in detail one of the classified metrics,
g0, showing how to use its Darboux integrability in order to construct all its embeddings
in finite terms of arbitrary functions. Additionally, the geometric Cauchy problem for the
embedding of g0 is shown to be reducible to a system of two first-order ODEs for two
unknown functions—or equivalently, to a single second-order scalar ODE. For a large class
of initial data, this reduction permits explicit solvability of the geometric Cauchy problem for
g0 up to quadrature. The results described for g0 also hold for any classified metric whose
embedding system is hyperbolic.
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1 Introduction

It is interesting to wonder under what circumstances a given non-trivial geometric problem
has particularly “nice” or special solutions. For instance there is now a beautiful theory
of integrable geodesic flows that has developed particularly over the last 30–40 years; see
[15]. In this paper we address this type of question in relation to isometric embedding of
one Riemannian or pseudo-Riemannian manifold into another. Specifically, we study the
integrability of the exterior differential system I for the isometric embedding problem of one
2-dimensional Riemannian or pseudo-Riemannian manifold into either Euclidean space R3

or Minkowski spaceR1,2. The exterior differential system I in question is discussed in detail
in [6] (see Example 3.8 in Chapter 3).

Despite the fact that isometric embedding is a venerable subject in differential geometry,
there remain a great many basic questions and these have been well documented; see for
instance [12]. In relation to the integrability of the exterior differential system for isometric
embedding, there have been comparatively few studies. Notable exceptions include work of
Melko and Sterling [17,18], Ferus and Pedit [10] and Terng [21]. For instance, in [10] the
authors show that the differential system for the isometric embedding of space forms into
space forms is completely integrable in the sense of soliton theory.

Our own approach to the integrability of the isometric embedding problem in this paper
is to use a classical notion of integrability pioneered by Darboux (see [14], Chapter 7) and
studied by Vessiot [25,26]. In this paper we give a classification of all 2-metrics whose local
isometric embedding system into R

3 or R1,2 is Darboux integrable. The motivation behind
the classification is to use the Darboux integrability of the embedding system in order to
construct all the embeddings in explicit finite terms of arbitrary functions. We will give a
detailed example in Sect. 5.

Our approach to Darboux integrability is inspired by the work of Vessiot. His approach
was recently generalized to arbitrary, smooth, decomposable exterior differential systems
in [1] (see Sect. 2 below for definitions). In particular, this approach features a Lie trans-
formation group—the Vessiot group of I—acting as special symmetries of the characteristic
distributions of Iwhich, in addition, preserve the foliation induced by the first integrals of the
characteristics. Among other things, the isomorphism class of the Vessiot group is an invari-
ant of the exterior differential system I up to contact transformations and the general theory
applies to systems whose integral submanifolds have arbitrary dimension greater than 1. Of
both theoretical and practical importance is that the Vessiot group defines a superposition
formula which permits one to compute all the integral manifolds of I from the superposition
of the integral manifolds of its singular systems.

In the case when the exterior differential system I is hyperbolic (a special case of decom-
posable) with 2-dimensional integral submanifolds, the integral submanifolds of the singular
systems are 1-dimensional and can often be represented in terms of quadrature. In many
cases of interest these systems project to a quotient manifold which is locally equivalent to
some (partial) prolongation of the jet space J 1(R,Rq), for some q ≥ 1. This equivalence
can be used to express their solutions in terms of arbitrary functions and a finite number of
their derivatives with all quadrature eliminated. The superposition formula then provides the
explicit solution of I in finite terms of arbitrary functions and their derivatives. See [8] for
a detailed illustration of this program in the context of harmonic maps and [1] for examples
in which the dimension of integral manifolds is greater than two. For a textbook account of
this material we refer to Chapter 10 in [14].
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It is therefore significant when a geometric problem exhibits Darboux integrability. For
instance, it is well known that a minimal surface without umbilic points in Euclidean space
E
3 admits isothermal coordinates ξ, η such that the function v(ξ, η) featured in its induced

metric e2v(dξ2 + dη2) satisfies the elliptic Liouville equation

vξξ + vηη = e−2v (1)

(see, e.g., [4]). Even though this equation is elliptic, it turns out that one can still use the
complex singular systems to view it as a Darboux integrable system. Following the procedure
in [1] one can obtain the well known general solution

v = − ln

(
2| f ′(z)|

1 + | f (z)|2
)

of (1) dependingupon an arbitrary holomorphic function f of the complexvariable z = ξ+iη.
See [4] for an exposition of how this solution v can be used in the construction of minimal
surfaces in R

3.
Another example is provided by surfaces of mean curvature 1 in hyperbolic space. Here

too the differential system for such surfaces is Darboux integrable and there is a Weierstrass
representation ([5], Theorem A) for so-called Bryant surfaces. Interestingly, as pointed out
in [5], there is no such representation for constant mean curvature surfaces (CMC) in positive
curvature space forms. However, CMC surfaces in the 3-sphere can be constructed using loop
groups [9]. Numerous other applications of Darboux integrability in geometric problems can
be listed.

The outline of this paper is as follows. In Sect. 2, we give a brief introduction to the theory
of Darboux integrability, the Vessiot group, and the superposition formula. In Sect. 3, we
introduce the isometric embedding system for Riemannian surface metrics into Euclidean
R
3 and classify those metrics for which this system is Darboux integrable. It turns out that

all such metrics admit a Killing field, and we exploit this symmetry to construct explicit
normal forms. In Sect. 4, we perform a similar analysis for embedding Lorentzian surface
metrics into Minkowski space R

1,2. Finally, in Sect. 5, we study one of the metrics from
our classification in detail and use the tools from [1] to construct all its embeddings in
finite terms of arbitrary functions. We also show that the geometric Cauchy problem for this
metric reduces to a system of two first-order ordinary differential equations for two unknown
functions—or equivalently, to a single second-order scalar ODE—and we identify a large
class of initial data for which the problem reduces to quadrature. We then give a simple
explicit example to illustrate this construction.

2 Darboux integrability

As the name implies, the notion of Darboux integrability originated in the 19th century
with Darboux, and it was most significantly developed by Goursat [11]. Classically, it was a
method for constructing the “general solution” of a second order PDE in 1 dependent and 2
independent variables

F(x, y, u, ux , uy, uxx , uxy, uyy) = 0

that generalised the so-called “method of Monge.” It relies on the notions of characteristics
and first integrals. We refer the reader to [11,14,22,23] for further information on classical
Darboux integrability.
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In this paper, we use a new geometric formulation of Darboux integrable exterior differen-
tial systems [1]. At the heart of this theory are the fundamental notions of a Vessiot group and
the superposition formula, which are our main tools for the study of the isometric embedding
system.

For simplicity of exposition, we shall describe the new geometric formulation in the
context of a commonly studied special case, namely, semilinear systems of partial differential
equations (PDE) in two independent variables

uxy = f (x, y, u, ux , uy), (2)

where u and f are Rn-valued. Each solution possesses a double foliation by curves called
characteristics. Such PDE often model wave-like phenomena, and projection of these curves
into the independent variable space describes the space-time history of the wave propagation.
The characteristics of uxy = f are the integral curves of a pair of rank n + 1 distributions

H1 = {
Dx + Dy f · ∂uyy , ∂uxx

}
, H2 = {

Dy + Dx f · ∂uxx , ∂uyy

}
, (3)

on the PDE submanifold R ⊂ J 2(R2,Rn) defined by uxy = f , where

Dx = ∂x + ux · ∂u + uxx · ∂ux + f · ∂uy , Dy = ∂y + uy · ∂u + f · ∂ux + uyy · ∂uy

are the total differential operators along solutions of the PDE. The notation here means, for
instance,

uxx · ∂ux =
n∑

i=1

uixx∂uix .

Note that ifV is the pullback to R of the contact systemon J 2(R2,Rn) then H1⊕H2 = ann V .
(When V is a sub-bundle of the cotangent bundle T ∗M of manifold M , we will often abuse
notation and refer to V as a Pfaffian system. When a distinction is necessary, we will let
the corresponding letter V denote the exterior differential system generated differentially by
sections of V .)

Definition 1 If D is a distribution on a manifold M , then a function h : M → R is said to
be a first integral of D if Xh = 0 for all X ∈ D. Equivalently, for V = ann D ⊂ T ∗M , we
say h is a first integral of V if dh is a section of V .

For later use, we will briefly review the key results we require from the theory of Darboux
integrable exterior differential systems, [1].

Definition 2 An exterior differential system I onM is said to be decomposable of type [p, q],
for p, q ≥ 2, if about each point x ∈ M , there is a coframe

θ1, . . . , θr , σ̂ 1, . . . , σ̂ p, σ̌ 1, . . . , σ̌ q (4)

such that I is algebraically generated by the 1-forms and 2-forms

I = {θ1, . . . , θr , Ω̂1, . . . , Ω̂s, Ω̌1, . . . , Ω̌ t }, (5)

where s, t ≥ 1, Ω̂b ∈ Ω2(σ̂ 1, . . . , σ̂ p) and Ω̌β ∈ Ω2(σ̌ 1, . . . , σ̌ q).1 The differential
systems, defined in terms of their algebraic generators by

V̂ = {θ i , σ̂ a, Ω̌β}, V̌ = {θ i , σ̌ α, Ω̂b}, (6)

1 Here Ω2(σ 1, . . . , σ p) denotes the set of C∞-linear combinations of wedge products of pairs of the
1-forms σ i .
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are said to be the associated singular differential systems for Iwith respect to the decomposi-
tion (5) The distributions annihilated by {θ i , σ̂ a} and {θ i , σ̌ α} are referred to as the associated
characteristic distributions.

For a sub-bundle V ⊂ T ∗M , let us denote by V∞ the final element of its derived flag (see
[6] or [14]).

Definition 3 Let V̂ , V̌ be a pair of Pfaffian systems on a manifold M , such that

(a) V1 + V∞
2 = T ∗M and V∞

1 + V2 = T ∗M ;
(b) V∞

1 ∩ V∞
2 = {0};

(c) dω ∈ Ω2(V̂ ) + Ω2(V̌ ), ∀ ω ∈ Ω1(V̂ ∩ V̌ ).

Then {V̂ , V̌ } is said to be a Darboux pair.

Definition 4 Let I be a decomposable differential system and suppose that the associated
singular systems V̂, V̌ are Pfaffian. Then I is said to beDarboux integrable if {V̂ , V̌ }determine
a Darboux pair.

Condition (b) of Definition 3 implies that there are no first integrals that are common to
V̂ and V̌ , while condition (a) implies that each of V̂ and V̌ possess sufficiently many first
integrals. For differential systems with two independent variables such as (2) we have

Lemma 1 A semilinear system uxy = f with u, f ∈ R
n is Darboux integrable at order 2

if and only if each of its characteristic distributions Hi has at least n + 1 independent first
integrals.

Proof The semilinear system of the Lemma statement defines a submanifold R of dimension
5n + 2 inside the jet space J 2(R2,Rn) whose dimension is 6n + 2. The pullback to R of the
contact system on J 2(R2,Rn) is the sub-bundle V ⊂ T ∗ J 2(R2,Rn) spanned by 3n 1-forms
θ i0, θ i1, θ i2, 1 ≤ i ≤ n, satisfying structure equations

dθ i0 ≡ 0,

dθ i1 ≡ π i
1 ∧ ω1, mod V ,

dθ i2 ≡ π i
2 ∧ ω2,

where ω1 = dx, ω2 = dy are the independence forms, π i
1 ≡ duixx mod {ω1, ω2} and

π i
2 ≡ duiyy mod {ω1, ω2}. The associated singular differential systems are Pfaffian with

degree 1 components

V̂ = {θ i0, θ i1, θ i2, π i
1, ω

1} and V̌ = {θ i0, θ i1, θ i2, π i
2, ω

2},
each of rank 4n+ 1. Condition (a) of Definition 3 is satisfied if dim R = 5n+ 2 ≤ rank V̂ +
rank V̌∞ = 4n+1+rank V̌∞ and dim R = 5n+2 ≤ rank V̌+rank V̂∞ = 4n+1+rank V̂∞.
This implies that

rank V̂∞ ≥ n + 1 and rank V̌∞ ≥ n + 1.

Thus, the singular systems {V̂ , V̌ } of the decomposable EDS I whose degree 1 component
is V form a Darboux pair (and hence I is Darboux integrable) if and only if each has at least
n + 1 first integrals. ��
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Remark 1 The formulation of Darboux integrability culminating in Definition 4 generalizes
the well known classical definition to encompass any decomposable exterior differential
system (EDS). This includes a vast collection of systems of partial differential equations
with no general constraint on the number of independent or dependent variables or the order
of the system. Since the definition is expressed in terms of EDS it can be applied to differential
equations on manifolds. The purpose of Lemma 1 is to show how it applies to well known
examples that are current in the literature. These ideas will be used in our treatment of the
isometric embedding system in later sections of the paper.

A key theorem, proven in [1], is a result in the inverse problem in the theory of quotients:

Theorem 1 Let (M, I) be a Darboux integrable Pfaffian system. Then there are Pfaffian
systems (M̂1, Ŵ1), (M̂2, Ŵ2) which admit a common Lie group G of symmetries such that:

1. The manifold M can be locally identified as the quotient of M̂1× M̂2 by a diagonal action
of G;

2. We have the identification

I = (
π∗
1 Ŵ1 + π∗

2 Ŵ2
) /

G,

where πi : M̂1 × M̂2 → M̂i , i = 1, 2 are the canonical projection maps;
3. The quotient π : M̂1 × M̂2 → M by the diagonal G-action defines a surjective super-

position formula for (M, I).

In this context, a superposition formula for (M, I) is a map π : M̂1 × M̂2 → M such that if
σi : Ui → M̂i are integral submanifolds of (M̂i , Ŵi ), then π ◦ (σ1, σ2) : U1 × U2 → M is
an integral submanifold of I. A superposition formula is surjective if every solution of I can
be expressed in this form for a fixed superposition formula π as σi range over the integral
manifolds of Ŵi .

Reference [1] is devoted to a proof of this theorem and to the identification and explicit
construction of all the entities mentioned there, including the Lie group of symmetries G,
known as the Vessiot group of the Darboux integrable exterior differential system I. It is
proven that the isomorphism class of the Vessiot group is a diffeomorphism invariant of such
systems. For applications of the above theory of Darboux integrability we refer, for instance
to [2,3,8,19].

In the present paper we study the EDS for the isometric immersion of Riemannian and
pseudo-Riemannian surface metrics into either Euclidean orMinkowski spaces of dimension
3. As we shall see in that case, each EDS will be Darboux integrable if and only if the
characteristic distributions each have at least 2 independent first integrals.

3 Immersions of Riemannian surfaces intoR
3

In this section, we classify all Riemannian surface metrics such that the EDS for isometric
embedding into Euclidean space R3 is Darboux integrable.

3.1 The isometric embedding system

Let FR3 be the orthonormal frame bundle of Euclidean R3, which carries canonical 1-forms
ωi and connection 1-forms ωi

j (with ωi
j = −ω

j
i ), where 1 ≤ i, j ≤ 3. We let ρ denote the
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projection from FR3 to R3, and ei the vector-valued components of the frame, and note that
the canonical and connection forms are defined as components of the exterior derivatives of
these vector-valued functions:

dρ = eiωi (7)

and
dei = e jω

j
i . (8)

Differentiating these equations yields the usual structure equations for FR3 :

dωi = −ωi
j ∧ ω j , dωi

j = −ωi
k ∧ ωk

j , 1 ≤ i, j, k ≤ 3. (9)

Let M be a connected, oriented surface with Riemannian metric g, and let FM be the
oriented orthonormal frame bundle of M , with projection π : FM → M . This bundle carries
canonical 1-forms η1, η2 and connection form η12, satisfying structure equations

dη1 = −η12 ∧ η2, dη2 = −η21 ∧ η1, dη12 = Kη1 ∧ η2, (10)

where η21 = −η12 and K is the Gauss curvature of the metric. While the ηi are 1-forms on

FM , the quadratic differential
(
η1

)2 + (
η2

)2
is well-defined on M and coincides with g. The

canonical forms are sometimes called ‘dual’ 1-forms since, given any (local) section f of
FM , the 1-forms f ∗η1 and f ∗η2 are dual to the component vector fields v1, v2 of the framing.

On FM × FR3 , we define a Pfaffian system I generated by the 1-forms

θ0 := ω3, θ1 := ω1 − η1, θ2 := ω2 − η2, θ3 := ω1
2 − η12.

Here, the canonical and connection 1-forms on FM and FR3 are pulled back to the product
of these spaces, but we suppress the pullback notation; similarly, we extend π and ρ to the
product space by composing with the canonical maps to each factor. We will only consider
integral surfaces S of system I that satisfy the independence condition η1 ∧ η2 �= 0; this is
enough to guarantee that π |S is a local diffeomorphism and hence a covering map from S to
an open subset of M . We have the following basic result:

Proposition 1 Let S be an integral surface of I such thatπ |S is a diffeomorphism onto an open
subset U ⊂ M, and let σ : U → S be its inverse; then ψ = ρ ◦ σ : U → R

3 is an isometric
immersion. Conversely, if ψ : U → R

3 is an isometric immersion and f : U → FM is an
orthonormal framing defined on U, then there is lift σ of f into FM × FR3 whose image is
an integral surface S of I, and ρ|S = ψ ◦ π |S.

U R
3

FM × FR3

FM

ψ

ρπ

σ
f

Proof We begin by establishing the first statement. The vectors ei = ei ◦σ give an orthonor-
mal framing along the image of ψ . Taking the dot product of the differential of our mapping
ψ with a frame vector gives

ei · dψ = (ei ◦ σ) · d(ρ ◦ σ) = (ei · dρ) ◦ σ = σ ∗ωi , (11)
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where the last equality follows from the defining Eq. (7) of the canonical forms. Because
σ ∗ω3 = 0, then e3 · ψ∗(w) = 0 for any vector w tangent to U . Thus, the tangent space to
the image of ψ lies in the span of e1, e2, and we next calculate the differential of ψ in terms
of these vectors.

The 1-forms ηm = σ ∗ηm for m = 1, 2 give an orthonormal coframe field on U . Let
v1, v2 be the dual framing. Because σ ∗ωm = ηm , the computation (11) implies that em ·
ψ∗(w) = ηm(w) for any tangent vector w ∈ TU . Hence ψ∗(vm) = em , and ψ is an
isometric immersion.

To establish the converse, let vm for m = 1, 2 be the members of the orthonormal frame
field f on U , let em = ψ∗vm , and e3 = e1 × e2. For p ∈ U let

σ : p �→ (p, v1, v2;ψ(p), e1, e2, e3) ∈ FM × FR3

and let S = σ(U ). Then (11) implies that σ ∗ω3 = 0 and σ ∗(ωm − ηm) = 0 for m = 1, 2.
Finally, since

0 = σ ∗d(ω1 − η1) = −σ ∗(ω1
2 ∧ η2 + ω1

3 ∧ ω3 − η12 ∧ η2) = −σ ∗(ω1
2 − η12) ∧ η2 (12)

and similarly 0 = σ ∗d(ω2 − η2) = σ ∗(ω1
2 − η12) ∧ η1, it follows from the independence

condition that σ ∗(ω1
2 − η12) = 0. Hence, S is an integral surface of I, and the equation of

maps follows from ρ ◦ σ = ψ . ��
Next we will calculate the algebraic generators and singular systems of I. The calculation

(12) implies that dθ1 ≡ 0 and dθ2 ≡ 0 modulo the 1-forms of I, so that I is generated
algebraically by θ0, θ1, θ2, θ3 together with the 2-forms

Ω0 := ω3
1 ∧ η1 + ω3

2 ∧ η2, Ω1 := ω3
1 ∧ ω3

2 − Kη1 ∧ η2

which satisfy dθ0 ≡ −Ω0 and dθ3 ≡ Ω1 modulo the 1-forms.
If there are two linearly independent linear combinations of these that are decomposable,

then the factors of each 2-form, together with the generator 1-forms of I, span one of the
singular differential systems of I (see Definition 2 above). One computes

(aΩ1 + bΩ0) ∧ (aΩ1 + bΩ0) = 2(a2K + b2) ω3
1 ∧ ω3

2 ∧ η1 ∧ η2.

Thus, decomposable combinations are given by taking b/a = ±√−K . In order that the
singular systems have smoothly defined 1-forms, we will restrict to either the hyperbolic
case K < 0 or the elliptic case K > 0. We will say the EDS I is hyperbolic or elliptic
according to whether the Gauss curvature K is negative or positive, respectively. In either
case, we introduce a smooth positive function k onM such that k2 = |K |. For future purposes,
we introduce the components of the first and second covariant derivatives of k; these are the
functions ki and ki j on FM satisfying

dk = kiη
i , dki = k jη

j
i + ki jη

j , (13)

where we now take 1 ≤ i, j ≤ 2.

Definition 5 If (M, g) is a 2-dimensional Riemannian or pseudo-Riemannian manifold
whose isometric embedding system into R

3 or R1,2 is Darboux integrable, then we will
say that the metric g itself is Darboux integrable with respect to their embedding.

Remark 2 We will see that the requirement that (M, g) be Darboux integrable with respect
to an embedding space is that the singular systems (V̂, V̌) of the corresponding isometric
embedding system each have two independent first integrals.
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3.2 Integrability conditions for the hyperbolic case

The purpose of this section is to prove the following.

Theorem 2 Let g be a Riemannian metric on M, and suppose that the Gauss curvature K
of g is negative, so that I is hyperbolic. Let q = k−3/2 = (−K )−3/4. Then I is Darboux
integrable if and only if the function q on M satisfies the differential equations

q11 = q22 = −3q−1/3, q12 = q21 = 0,

where the functions qi j on FM are defined, similarly to (13), by the covariant equations

dq = qiη
i , (14a)

dqi = q jη
j
i + qi jη

j . (14b)

Proof In this case we compute that

Ω1 ± kΩ0 = (ω3
1 ∓ kη2) ∧ (ω3

2 ± kη1).

Thus, the two singular Pfaffian systems are

V± = {θ0, θ1, θ2, θ3, ω3
1 ∓ kη2, ω3

2 ± kη1},
and V+, V− are a Darboux pair for I.

To determine conditions on the metric g such that I is Darboux integrable, we need to
determine when V+ and V− each have at least 2 independent first integrals. That is, the
hyperbolic EDS I is Darboux integrable if and only if its singular systems each contain a
Frobenius system which has rank at least 2, and which is transverse to the 1-forms of I. The
derived flags of V± must terminate in these Frobenius systems (if they exist), so we will
compute the derived flag of each singular system; we begin with V+. Direct computation
yields the first derived system

V (1)
+ =

{
θ1, θ2, θ3 − kθ0, ω3

1 − kη2 + k1
2k

θ0, ω3
2 + kη1 + k2

2k
θ0

}

and second derived system

V (2)
+ =

{
θ3 − kθ0 + k2

2k
θ1 − k1

2k
θ2,

ω3
1 − kη2 + k1

2k
θ0 + 3k1k2 − 2k12k

8k3
θ1 − 3k21 − 2k11k + 4k4

8k3
θ2,

ω3
2 + kη1 + k2

2k
θ0 + 3k22 − 2k22k + 4k4

8k3
θ1 − 3k1k2 − 2k12k

8k3
θ2

}
.

In order for V∞+ to be of rank at least 2, V (3)
+ must have rank at least 2, and furthermore it

must be integrable. (It has rank 3 if and only if V (2)
+ is Frobenius, which never happens when

K �= 0, so in fact it must have rank exactly 2.) Imposing the constraint that V (3)
+ be rank 2,

together with the corresponding condition for V (3)
− , leads to the following constraints on the

Gauss curvature of g: either

k11 = 2k3 + 5

2

k21
k

, k12 = 5

2

k1k2
k

, k22 = 2k3 + 5

2

k22
k

, (15)
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or

k11 = 2k3 + 3

2

k21
k

− k22
k

, k12 = 5

2

k1k2
k

, k22 = 2k3 + 3

2

k22
k

− k21
k

, (16)

where the ki and ki j are defined as in (13). Either set of equations completely determines the
second derivatives of k, and taking further covariant derivatives and equating mixed partials
generates compatibility conditions that must be satisfied if such functions are to exist. The
compatibility conditions derived from the first set (15) are implied by the Eq. (15) themselves,
but those derived from the second set hold only if k21 + k22 = 8k4. When this condition is
differentiated in turn, the results are inconsistent with (16). On the other hand, when we
assume that (15) holds, it is easy to check that

V (3)
+ =

{
ω3
1 − kη2 + k1

2k2
(ω1

2 − η12), ω3
2 + kη1 + k2

2k2
(ω1

2 − η12)

}

and this is a Frobenius system. Similarly, assuming (15) gives

V (3)
− =

{
ω3
1 + kη2 − k1

2k2
(ω1

2 − η12), ω3
2 − kη1 − k2

2k2
(ω1

2 − η12)

}

which also turns out to be a Frobenius system. Thus, (15) is necessary and sufficient for
Darboux integrability.

The conditions (15) are slightly nicer when expressed in terms of q . Indeed, one finds that
(15) is equivalent to the second covariant derivatives of q satisfying

q11 = q22 = −3q−1/3, q12 = q21 = 0,

as required. ��

3.3 Integrability conditions for the elliptic case

Now assume that we have metric of strictly positive Gauss curvature K on M , and set
k = √

K . We prove a theorem similar to Theorem 2.

Theorem 3 Let g be a Riemannian metric on M, and suppose that the Gauss curvature K
of g is positive, so that I is elliptic. Let q = k−3/2 = K−3/4. Then I is Darboux integrable
if and only if the function q on FM satisfies the differential equations

q11 = q22 = 3q−1/3, q12 = q21 = 0,

where the qi j are defined by the covariant equations (14)

Proof We sketch the proof, which is similar to the one for Theorem 2. In this case, the 2-forms
Ω0 and Ω1 can be linearly combined to create decomposable generators, but only if we use
complex coefficients:

Ω1 ± ikΩ0 = (ω3
1 ∓ ikη2) ∧ (ω3

2 ± ikη1).

Matters being so, we define a singular system

W := {
θ0, θ1, θ2, θ3, ω

3
1 − ikη2, ω3

2 + ikη1
}
,

which spans a sub-bundle of the complexified cotangent bundle; the other singular system is
its complex conjugateW. When q satisfies the above conditions,W andW form a Darboux
pair for I, if we suitably extend the definition to encompass complex-valued 1-forms.
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For Darboux integrability, it is sufficient that W contain a Frobenius system of rank at
least 2. (This would automatically imply thatW also contains a Frobenius system of the same
rank.) By a similar calculation to that described in Sect. 3.2,W(3) has rank at least two only
if k satisfies

k11 = −2k3 + 5

2

k21
k

, k12 = 5

2

k1k2
k

, k22 = −2k3 + 5

2

k22
k

. (17)

Notice that this differs from (15) only by a sign change in the expressions for k11 and k22.

Moreover, when (17) holds, W(3) and W
(3)

are rank 2 and Frobenius; for example,

W(3) =
{
ω3
1 − ikη2 − ik1

2k2
(ω1

2 − η12), ω
3
2 + ikη1 − ik2

2k2
(ω1

2 − η12)

}
.

If we again set q = k−3/2, then (17) is equivalent to q11 = q22 = 3q−1/3 and q12 = q21 = 0,
as required. ��

To treat both the elliptic and hyperbolic cases at the same time, let ε = 1 in the elliptic
case (K > 0) and ε = −1 in the hyperbolic case (K < 0). Then the Darboux integrability
conditions are that the function q = (εK )−3/4 on FM satisfy

q11 = q22 = 3εq−1/3, q12 = q21 = 0. (18)

Remark 3 TheEqs. (18) clearly admit no constant solutions q . Thus, the isometric embedding
systems for the constant curvature surfaces S2 and H

2 are not Darboux integrable.

Remark 4 The Eqs. (18) are invariant under rotations of the orthonormal frame on M . That
is, if they hold at one point in the fiber of FM , then they hold at all points in that fiber. In
the sections that follow, we will often work with a specific choice of orthonormal frame on
M , and pull back the structure equations (10), as well as the defining Eqs. (14) for the qi
and qi j , via the corresponding section f : M → FM . When we pull back the EDS I via
this section, we obtain a Pfaffian system on M × FR3 , where the ηm are replaced by their
pullbacks ηi = f ∗ηi . However, for ease of notation in what follows we will omit the bars on
the ηi and η12.

3.4 Normal forms for Darboux integrable metrics

In this section we will determine the metrics g for which the isometric embedding system
is Darboux integrable. It follows from Remark 3 that such metrics cannot have constant
Gauss curvature, and therefore admit at most one Killing field. In fact, determining this
set of metrics is made easy by the fact that the integrability conditions imply that g has a
Killing field. Once we choose local coordinates on M that are adapted to this Killing field,
the integrability conditions are reduced to a single second-order ODE, as we will now show.

Theorem 4 Suppose that g is a Riemannian metric on M for which the embedding EDS
I is Darboux integrable. Let J be the complex structure on M compatible with g and the
orientation. Then V = J∇q is a Killing field. Moreover, near any point there exist local
coordinates (s, t) on M with respect to which

g = ds2 + q ′(s)2dt2, and V = ∂

∂t
,

where q(s) is a strictly monotone solution of the ODE

q ′′ = 3εq−1/3. (19)
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Proof Let v1, v2 be an arbitrary oriented orthonormal framing on M , and let η1, η2 be the
dual coframe field. Then ∇q = q1v1 + q2v2 and V = J∇q = q1v2 − q2v1. Recall that
the condition that a vector field V is Killing is that LVg = 0, and this is equivalent to the
condition that the 1-form χ = V� has a skew-symmetric covariant derivative. In this case, if
we let χ = x1η1 + x2η2, then x1 = −q2 and x2 = q1. Then if we define the components xi j
of the covariant derivative ∇χ as usual by the equations

dxi = x jη
j
i + xi jη

j

analogous to (13) and (14), it follows from (18) that

x12 = −x21 = −3εq−1/3, x11 = x22 = 0.

Thus, V is a Killing field.
Near any point, we now choose a special orthonormal framing v1, v2 adapted so that V is

a positive multiple of v2, and hence q1 > 0 and q2 = 0. Substituting this and (18) into (14b)
gives

dq1 = 3εq−1/3η1, 0 = dq2 = q1η
1
2 + 3εq−1/3η2. (20)

From the second equation it follows that η12 = −3ε
q−1/3

q1
η2, and therefore

dη1 = −η12 ∧ η2 = 0.

So, we can choose a local coordinate s such that η1 = ds. By appealing to the existence
of flowbox coordinates, we can choose a second coordinate w so that dw(V) = 1. Since
ds(V) = 0, flow by V in the (s, w) coordinate system is just translation in w. Because (14a)
now gives dq = q1ds, q must be a function of s only, q1 = dq/ds, and the first equation in
(20) implies that q(s) satisfies the second-order ODE (19).

The dual vector fields ∂/∂s and ∂/∂w = V are not necessarily orthogonal; in fact, if we
set μ = dw(v1) then

∂/∂s = v1 − μV.

We wish to replace w with another coordinate t such that dt(V) = 1 and dt(v1) = 0, so
that (s, t) are orthogonal coordinates. These conditions imply that dt = dw − μ ds, but the
right-hand side is a closed 1-form only if μ is a function of s. Fortunately, this follows from
the fact that

g(∂/∂s, ∂/∂w) = −μg(V,V) = −μ|∇q|3 = −μq ′(s)2,

and the observation that flow by V preserves the components of the metric in the (s, w)

coordinates, so that g(∂/∂s, ∂/∂w) is a function of s only. We then obtain t by integrating
dw − μ(s) ds.

In our modified coordinate system (s, t) we have dt(V) = 1 and hence η2 = q ′ dt . It
follows that

g = (η1)2 + (η2)2 = ds2 + (q ′)2dt2. (21)

��
Because q(s) satisfies a second-order ODE, the family of metrics (21) depend upon two

arbitrary parameters. However, this family of metrics admits a 2-dimensional group action
generated by translation in s and a scaling symmetry of the form s �→ λs, q �→ λ3/2q .
(These arise from the symmetries of the ODE (19) for q .) So, we might expect that, modulo
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this action, there is just a finite list of distinct metrics. In what follows, we will take advantage
of these symmetries to put these metrics into a small number of possible normal forms.

Theorem 5 Let g be a Riemannian surface metric for which the isometric embedding system
is Darboux integrable. If the system is elliptic, then there are local coordinates in which the
metric takes one of the following forms:

1. g = (cosh4 u) du2 + (sinh2 u) dv2, u > 0; (22)

2. g = (sinh4 u) du2 + (cosh2 u) dv2, u > 0; (23)

3. g = u2
(
du2 + dv2

)
, u > 0. (24)

If the system is hyperbolic, then there are local coordinates in which the metric takes the
following form:

4. g = (cos4 u) du2 + (sin2 u) dv2, 0 < u < π/2. (25)

Proof The starting point is integrating the ODE (19) one time. Multiplying (19) by q ′ and
taking antiderivatives gives ( 1

3q
′)2 = εq2/3 − C (26)

for some constant C . There are several cases, depending on the signs of the constants.

1. Assume ε = 1 and C = a2 > 0. (Here and in subsequent cases we take a > 0.) Then
we have

(
q ′

3a

)2

=
(
q1/3

a

)2

− 1.

This equation is satisfied by q ′ = 3a sinh u and q1/3 = a cosh u for u > 0. Note that the
prime indicates differentiation by s, so that taking the derivative of the second equation
implies ds/du = a2 cosh2 u. Thus, in this case the metric may be written as

g = (a4 cosh4 u) du2 + (9a2 sinh2 u) dt2.

The metrics in this family differ only by scaling, so we may take a = 1; then setting
v = 3t yields the normal form (22). For this metric, K = sech4 u. As a metric on the
half-plane, this degenerates as u → 0. However, if we take the quotient by the discrete
translation v �→ v + 2π (under which the Killing orbits become circles), the resulting
metric closes up smoothly as u → 0.

2. Assume ε = 1 and C = −a2 < 0. Then (26) is satisfied by q ′ = dq/ds = 3a cosh u
and q1/3 = a sinh u for u > 0, so that ds/du = a2 sinh2 u. By means similar to Case
1 we arrive at the normal form (23). For this metric, K = csch4 u, and the metric is
incomplete as u → 0, as K becomes unbounded.

3. Assume ε = 1 and C = 0. We have q ′ = 3q1/3, a separable ODE, with solution
q = (2s)3/2, after a suitable translation in s. Using u = √

2s, rescaling the metric, and
letting v be an appropriate constant times t , we obtain the normal form (24). For this
metric, K = u−4, and again the metric is incomplete (and K becomes unbounded) as
u → 0.

4. Assume ε = −1; then C is necessarily negative. Setting C = −a2 in (26) gives

(
q ′

3a

)2

= 1 −
(
q1/3

a

)2

.
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This is satisfied by setting q ′ = dq/ds = −3a sin u and q1/3 = a cos u, so that ds/du =
a2 cos2 u. By means similar to Cases 1 and 2 we arrive at the normal form (25), for which
K = − sec4 u. Once again, if we take the quotient by v �→ v + 2π , this metric closes up
smoothly as u → 0. However, it is incomplete as u → π/2, as |K | becomes unbounded.

��

Remark 5 (Prolongation of the isometric embedding system) In general, if a differential sys-
tem fails to be Darboux integrable, it may happen that some prolongation of it is Darboux
integrable. One can show that the first prolongation of the isometric embedding system I is, in
fact, the Gauss-Codazzi system for the embedding. (This system is discussed extensively in
Section 6.4 in [14], where it also appears as the prolongation of the system generated by just
θ0, θ1, θ2.) A straightforward, albeit somewhat tedious, computation shows that imposing the
requirement that the Gauss-Codazzi system be Darboux integrable does not enlarge the class
of Darboux integrable surface metrics (see [13] for details).

Before proceeding, we note that one could also consider the more general question of iso-
metrically embedding Riemannian (or Lorentzian) surfaces into 3-dimensional space forms
of nonzero constant curvature, and for which metrics g the corresponding EDS is Darboux
integrable. In unpublished work, we have obtained some results on determining the metrics
for which these systems are Darboux integrable. A typical result is the following:

Proposition 2 Let g be a Riemannian metric on M, and suppose that the Gauss curvature
K of M satisfies K > c for some constant c < 0. The exterior differential system for
the isometric embedding of (M, g) into the 3-dimensional space form N 3(c) of sectional
curvature c is Darboux integrable if and only if the function k = √

K − c satisfies the
differential equations

k11 = μk21 − 2k(k + √−c)2, k12 = μk1k2, k22 = μk22 − 2k(k + √−c)2,

where

μ = 3

2k
+ 1

k + √−c

and ki , ki j are defined by Eq. (13).

A similar analysis to that in the proofs of Theorems 4 and 5 may then be used to prove:

Proposition 3 Let g, M, and c be as in Proposition 2, such that the isometric embedding sys-
tem into the 3-dimensional space form N 3(c) of sectional curvature c is Darboux integrable.
Then there are local coordinates on M in which the metric g takes the form

g = 1

C0 − cy2

(
y4

(1 + y2)2
dy2 + (C0 − cy2)2 dt2

)

for some real number C0. Conversely, for any real number C0 and any c < 0, the EDS for
isometrically embedding this metric into the space form N 3(c) is Darboux integrable.

Unfortunately, the procedure for constructing explicit embeddings (which we illustrate
for flat space forms in Sect. 5 below) is much more computationally complex for space forms
of nonzero curvature, and we will not attempt to address it here.
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Fig. 1 Three embeddings of the Case 1 metric as a surface of revolution, and one embedding of the Case 4
metric as a surface with screw-motion symmetry

3.5 Embeddings with extrinsic symmetry

Since each of the metrics in Theorem 5 has intrinsic symmetry, we are led to ask whether
they can be isometrically immersed with extrinsic symmetry as well. In fact, it is an exercise
in elementary differential geometry to show that each of them can be embedded as a surface
of revolution in a 1-parameter family of ways, modulo rigid motion. (In other words, we
do not count as distinct a pair of embeddings that differ only by a rigid motion.) The single
parameter controlling the shape is α = |V(θ)|, the ‘speed’ of the cylindrical coordinate θ with
respect to the canonical Killing field V = J∇q along the surface. For example, in Case 1 the
metric is complete, but its embedding as a surface of revolution is complete only for α = 3,
in which case one obtains the surface of revolution z = 1

2 (x
2 + y2); for α > 3 the surface

comes to a sharp point where it intersects the axis, while for α < 3 there is a 1-dimensional
boundary circle where u = 0 (see Fig. 1).

Of course, vector fields generating rotations are not the most general Killing fields in R3;
for example, the rightmost surface in Fig. 1 is the image of an embedding of the Case 4
metric, where the Killing field on the surface coincides with an ambient Killing field which
generates a screw motion. A general Killing field at a point p ∈ R

3 is given by

K(p) = W + ρ × Z (27)

whereW and Z are fixed vectors with the latter nonzero, and ρ is the vector-valued function
giving the position vector of p. If one decomposesW = aZ− p0 × Z, then then K generates
a ‘screw motion’ combining translation along Z with rotation around an axis through p0
parallel to Z. We now show how to produce isometric immersions of our metrics such that V
is the restriction of a general Killing field.

Theorem 6 Eachmetric whose isometric embedding system is Darboux integrable has (mod-
ulo rigidmotion) a 2-parameter family of local isometric immersionswith extrinsic symmetry.

Proof We will determine the equations that a vector field tangent to a surface in R
3 must

satisfy in order to be the restriction of a Killing field. We will then show that, when we add to
these equations the isometric embedding system for a surfaceM with ametric g satisfying the
conditions of Theorem 4, and impose the requirement that the embedding maps the Killing
field on M to the Killing field on the surface, we obtain a Frobenius system.

Suppose that S is a surface inR3 carrying an orthonormal frame field (e1, e2, e3) adapted
with e3 normal to the surface. A tangent vector field Y is the restriction of a Killing field if
and only if there is a constant vector field Z such that Y(p) − ρ × Z is constant. (Here, ρ

denotes the position vector as a function on S.) These conditions are equivalent to dZ = 0
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and dY = dρ × Z. To express these conditions in terms of the moving frame, we let

Y = y1e1 + y2e2, Z|S = z1e1 + z2e2 + z3e3,

for some functions yi and za on S. (In what follows, let 1 ≤ i, j ≤ 2 and 1 ≤ a, b ≤ 3.) By
substituting the expansion of Z into the condition dZ = 0, and using (8), we obtain

dza = −zbω
a
b . (28)

(Here, ωa , ωa
b denote the pullbacks of the canonical and connection forms from FR3 via the

frame field.) By substituting the expansions of Y and Z into the condition dY = dρ × Z,
computing derivatives using (7) and (8), and expanding both sides in terms of our frame
field, we obtain the equations

dy1 + y2ω
1
2 = z3ω

2 (29)

dy2 + y1ω
2
1 = −z3ω

1, (30)

y1ω
3
1 + y2ω

3
2 = z2ω

1 − z1ω
2. (31)

Conversely, if S is a surface in R
3 carrying some adapted frame field, and there is a non-

trivial solution to these equations, then S has an extrinsic symmetry, i.e., there is a Killing
field which is tangent to S. More formally, we define the Killing system for surfaces in R3 as
the Pfaffian system

J = {dy1 + y2ω
1
2 − z3ω

2, dy2 + y1ω
2
1 + z3ω

1, y1ω
3
1 + y2ω

3
2 − z2ω

1 + z1ω
2, dza + zbω

a
b , ω

3}
on FR3 ×R

2 ×R
3, where yi and za are coordinates on the last two factors. Then any integral

surface of this EDS (satisfying the usual independence condition) corresponds to a surface
in Euclidean space with a tangential Killing field.

By Theorem 4, the metric on M will have local coordinates s, t such that η1 = ds,
η2 = q ′dt is an orthonormal coframe field with connection form η12 = −q ′′(s)dt , where
q(s) satisfies the ODE (19) and the Killing field is given by V = ∂/∂t . By fixing this choice
of coframing on M , we obtain the isometric embedding system

I0 = {ω3, ω1 − ds, ω2 − q ′dt, ω1
2 + q ′′dt},

defined on M × FR3 . (The generators here are the pullbacks of the generators of I by the
section of FM represented by the chosen coframing.) The condition that the embedding take
the Killing field V on M to the vector field Y is equivalent to requiring that y1 = 0 and
y2 = η2(V) = q ′. When we pull J back to the submanifold where these equations hold, and
combine with the EDS I0, we obtain

K = I0 + J = {ω3, ω1 − ds, ω2 − q ′dt, ω1
2 + q ′′dt, q ′(ω1

2 − z3dt),

(q ′′ + z3)ds, q
′(ω3

2 + z1dt) − z2ds, dza + zbω
a
b}.

Solutions satisfying the independence condition ds ∧ dt �= 0 exist only on the subset where
z3 = −q ′′, so we pull the EDS back to that subset, obtaining

K0 = {ω3, ω1 − ds, ω2 − q ′dt, ω1
2 + q ′′dt, ω3

2 + z1dt − (z2/q
′)ds, dz1 + q ′′(w3

1 − z2dt),

dz2 + (z2q
′′/q ′)ds, dq ′′ + (z1/q

′′)dz1 − ((z2)
2/q ′)ds}.

We regard this rank 8 Pfaffian system as being defined on the product M × FR3 × R
2

(where z1, z2 are coordinates on the last factor). It is easy to check that it satisfies the
Frobenius condition, so there is an 8-parameter family of solutions (i.e., a unique integral
surface through every point in the 10-dimensional product). Because each surface lies in
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a 6-dimensional family related by rigid motion, each metric has a 2-parameter family of
non-congruent isometric immersions with extrinsic symmetry. ��
Remark 6 The two parameters occur as first integrals of the above system. For, along any
solution there are constants α and β such that z2 = β/q ′ and

(z1)
2 + β2/(q ′)2 + (q ′′)2 = |Z|2 = α2.

Since Y · Z = q ′z2 = β, the immersions where the Killing field Y is purely rotational (and
the image is a surface of revolution) are those where β = 0. In general, the parameter α is
the angular speed of the Killing field, while β is proportional to its slope.

Once these two constants are chosen, the embedding is completely determined up to rigid
motions. On the other hand, we know that for each of these metrics there is a family of
embeddings depending on two functions of one variable. So, for a generic embedding V will
not coincide with the restriction of any extrinsic Killing field.

4 Immersions of Lorentzian surfaces intoR
1,2

In this section, we study the Lorentzian analog of the problem of Sect. 3 by considering
the Darboux integrability of embedding Lorentzian surface metrics into (1+ 2)-Minkowski
space. Throughout this section, we use the same sign conventions as in [7].

4.1 The isometric embedding system and integrability conditions

Let R1,2 be Minkowski space with an inner product 〈, 〉 of signature (1, 2). Define a frame
(e1, e2, e3) to be orthonormal if

〈e1, e1〉 = 1, 〈e2, e2〉 = −1, 〈e3, e3〉 = −1, 〈ea, eb〉 = 0, for a �= b.

Let FR1,2 be the orthonormal frame bundle of Minkowski space, which carries canonical
forms ωi and connection forms ωi

j satisfying the usual structure equations (9), and basepoint
and frame vector functions satisfying (7) and (8). However, because the structure group of
FR1,2 is SO(1, 2), the connection forms satisfy ωi

j = 0 when i = j and

ω1
2 = ω2

1, ω1
3 = ω3

1, ω3
2 = −ω2

3. (32)

Let M be a Lorentzian surface. Let FM be the orthonormal frame bundle of M , with the
sign convention

〈v1, v1〉 = 1, 〈v2, v2〉 = −1.

The bundle FM carries canonical dual forms η1, η2 and connection form η12, satisfying the
structure equations

dη1 = −η12 ∧ η2, dη2 = −η21 ∧ η1, dη12 = −Kη1 ∧ η2, (33)

where η12 = η21 and K is the Gauss curvature of M .

As in the Riemannian case, we define a Pfaffian system I on FM × FR1,2 , generated by
the 1-forms

θ0 := ω3, θ1 := ω1 − η1, θ2 := ω2 − η2, θ3 := ω1
2 − η12. (34)
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Similar computations to those in the Riemannian case show that I is generated algebraically
by θ0, θ1, θ2, θ3 together with the 2-forms

Ω0 := ω3
1 ∧ η1 + ω3

2 ∧ η2, Ω1 := ω3
1 ∧ ω3

2 − Kη1 ∧ η2. (35)

Decomposable linear combinations aΩ1 + bΩ0 are given by taking b/a = ±√−K . Thus,
I is hyperbolic when K < 0 and the elliptic when K > 0. (Our introduction of a minus sign
in the definition of K in (33) allows us to label the Lorentzian cases in this way, so that they
are analogous to the Riemannian cases.)

Wehave the following theorem,whose statement is exactly analogous to those ofTheorems
2 and 3, with some differences in signs and signature. As in the Riemannian case, in order
to treat both the elliptic and hyperbolic cases at the same time, we let ε = sgn(K ).

Theorem 7 Let g be a Lorentzian metric on M, with Gauss curvature K that is either strictly
positive (ε = 1) or strictly negative (ε = −1). Let q = |K |−3/4. Then I is Darboux integrable
if and only if the covariant derivatives of q (as defined by (14) satisfy the conditions

q11 = −q22 = 3εq−1/3, q12 = q21 = 0. (36)

4.2 Killing fields

As in the Riemannian case, it is straightforward to show that when the function q on FM

satisfies the differential equations (36), the vector field

V = q1e2 − q2e1

is a Killing field for the metric g. But in the Lorentzian case, we need to consider separately
the possibilities that this vector field is spacelike or timelike (i.e., 〈V,V〉 < 0 or 〈V,V〉 > 0,
respectively).

Remark 7 In principle, we should also consider the possibility that V is lightlike. This is the
case if and only if q2 = ±q1, but if this condition holds on any open subset of FM , then
Eq. (36) are inconsistent. Therefore, V cannot be lightlike on any open subset of M , and we
will restrict to the open subset of M where V is either spacelike or timelike.

If V is spacelike, then we can choose an orthonormal framing e1, e2 on M such that V is a
positive multiple of the spacelike vector e2. On the other hand, if V is timelike, then we can
choose an orthonormal framing such that V is a positive multiple of the timelike vector e1.
Having done so, arguments analogous to those given in the Riemannian case may be used to
prove the following.

Theorem 8 Suppose that g is a Lorentzian metric on M for which the embedding EDS I is
Darboux integrable. Then g admits a Killing field V, and:

– If V is spacelike, then there exist local coordinates (s, t) on M with respect to which the
metric can be written in the form

g = ds2 − q ′(s)2dt2,

where q is a strictly monotone solution of the ODE

q ′′ = 3εq−1/3.
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– If V is timelike, then there exist local coordinates (s, t) on M with respect to which the
metric can be written in the form

g = q ′(s)2dt2 − ds2,

where q is a strictly monotone solution of the ODE

q ′′ = −3εq−1/3.

In either case, in these coordinates the Killing field is given by V = ∂

∂t
.

4.3 Normal forms for Darboux integrable metrics

Normal forms may be obtained by the same integration procedure as that used in Sect. 3.4. In
the Lorentzian case, the result depends both on the type of the system (hyperbolic or elliptic)
and on the type of the Killing field (spacelike or timelike). Carrying out this procedure yields
the following theorems.

Theorem 9 Let g be an ellipticDarboux integrable Lorentzianmetric with a spacelikeKilling
field on M. Then up to local coordinate transformations on M, g is locally equivalent to one
of the following:

1. g = (cosh4 u) du2 − (sinh2 u) dv2, with K = sech4 u;
2. g = (sinh4 u) du2 − (cosh2 u) dv2, with K = csch4 u;
3. g = u2

(
du2 − dv2

)
, with K = u−4.

Theorem 10 Let g be an ellipticDarboux integrable Lorentzianmetric with a timelike Killing
field on M. Then up to local coordinate transformations on M, g is locally equivalent to

g = (sin2 u) dv2 − (cos4 u) du2, with K = sec4 u.

Theorem 11 Let g be a hyperbolic Darboux integrable Lorentzian metric with a spacelike
Killing field on M. Then up to local coordinate transformations on M, g is locally equivalent
to

g = (cos4 u) du2 − (sin2 u) dv2, with K = − sec4 u.

Theorem 12 Let g be a hyperbolic Darboux integrable Lorentzian metric with a timelike
Killing field on M. Then up to local coordinate transformations on M, g is locally equivalent
to one of the following:

1. g = (sinh2 u) dv2 − (cosh4 u) du2, with K = − sech4 u;
2. g = (cosh2 u) dv2 − (sinh4 u) du2, with K = − csch4 u;
3. g = u2

(
dv2 − du2

)
, with K = −u−4.

Remark 8 One can also consider the problem of isometrically embedding a Riemannian
surface with metric g as a spacelike surface in Minkowski space where the inner product has
signature (2, 1). In that case, the relevant exterior differential system is hyperbolic when the
Gauss curvature K of g is strictly positive, and elliptic when K < 0. However, the set of
Riemannian metrics for which this system is Darboux integrable is exactly the same as in
Theorem 5.
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5 An explicit Lorentzian embedding

In Sects. 3 and 4, we classified those Riemannian and Lorentzian surface metrics whose
isometric embedding EDS is Darboux integrable on the relevant product of frame bundles. In
principle, it should be possible to construct explicit embeddings for these metrics by solving
appropriate systems of ODEs; however, in practice, these computations are often impractical
to carry out completely. Moreover, since the method relies crucially on properties of the
characteristics of the system, in the elliptic case one must consider complex characteristics.

With these considerations in mind, in this section we study the simplest of these metrics
from the hyperbolic case in detail, namely

g0 = u2
(
dv2 − du2

)
. (37)

For thismetric,we showhow toderive explicit formulas for its isometric embeddings intoR1,2

by making use of its Darboux integrability. We also examine the corresponding geometric
Cauchy problem, which asks for an isometrically embedded surface containing a prescribed
curve and normal to a prescribed vector field along the curve. We present this as an example
of the role played by Darboux integrability in the isometric embedding problem and which
applies equally to any of the classified metrics whose embedding system is hyperbolic.

5.1 The embedding EDS in local coordinates

In this subsection, we derive a local coordinate expression for the differential system cor-
responding to the isometric embedding of the Lorentz signature metric g0 into R

1,2 with
its standard metric h = dx21 − dx22 − dx23 . By choosing the specific coframing η1 = u dv,
η2 = u du for the metric g0 on M , we can pull back the isometric embedding EDS from
FM × FR1,2 to M × FR1,2 . The coframing (η1, η2) on M satisfies the structure equations
(33), with η12 = u−1 dv and K = −u−4. Meanwhile, the frame bundle FR1,2 has coframing
(ωi , ωi

j ), 1 ≤ i, j ≤ 3, satisfying structure equations (9) with the connection forms ωi
j

satisfying the symmetries (32).
As in Sect. 4, the isometric embedding EDS is generated by the 1-forms (34) and the

2-forms (35), and the singular systems are given by

V± = {
θ0, θ1, θ2, θ3, ω

3
1 ∓ kη2, ω3

2 ± kη1
}
, (38)

where, because g0 has K = −u−4, we have k = u−2.
In order to carry out the method of [1], we must construct local coordinates on the ambient

manifold M × FR1,2 and express the EDS I in terms of these coordinates. Since FR1,2 �
R
1,2 × SO(1, 2) and we have local coordinates (u, v) on M and (x1, x2, x3) on R

1,2, we
simply need to construct local coordinates on the SO(1, 2) factor. A rational parametrization
may be constructed as follows. Define a basis

b1 =
⎡
⎣ 0 −1 0

−1 0 0
0 0 0

⎤
⎦ , b2 =

⎡
⎣ 0 0 −1

0 0 1
−1 −1 0

⎤
⎦ , b3 =

⎡
⎣ 0 0 −1

0 0 −1
−1 1 0

⎤
⎦

for the Lie algebra so(1, 2), and consider the matrix g defined by

g(a1, a2, a3) = exp(a3b3) exp(a2b2) exp(ln(a1)b1)
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=

⎡
⎢⎢⎢⎢⎢⎢⎣

(a2a3 + 1)2 + a22 + a21(a
2
3 + 1)

2a1

(a2a3 + 1)2 + a22 − a21(a
2
3 + 1)

2a1
−a2(a23 + 1) − a3

(a2a3 + 1)2 − a22 + a21(a
2
3 − 1)

2a1

(a2a3 + 1)2 − a22 − a21(a
2
3 − 1)

2a1
−a2(a23 − 1) − a3

−a3(a22 + a21) − a2
a1

−a3(a22 − a21) − a2
a1

2a2a3 + 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(39)

where a1 > 0. If x = (x1, x2, x3)t ∈ R
1,2, then the transformation x �→ g x defined by

matrix multiplication preserves the quadratic form Q(x) = x21 − x22 − x23 . Letting H3 denote
the halfspace {a ∈ R

3 | a1 > 0}, (39) defines amap g : H3 ↪→ SO(1, 2)+, where SO(1, 2)+
denotes the identity component of the Lorentz group SO(1, 2). [This consists of matrices
g ∈ O(1, 2) that are proper (det g = 1) and orthochronous, i.e., they preserve light-cone
orientation.] The image of this mapping is an open dense subset of SO(1, 2)+.

Then we identify the frame bundle FR1,2 with the matrix Lie group consisting of all
matrices G ∈ GL(4,R) of the form

G =

⎡
⎢⎢⎣
1 0 0 0
x1
x2 g
x3

⎤
⎥⎥⎦ (40)

with g as in (39). Themapping (xi , a j ) �→ G then covers an open dense subsetF0 ⊂ FR1,2 on
whichwewill use the xi anda j as coordinates. In terms of these coordinates, the canonical and
connection 1-forms of FR1,2 are given by the components of the left-invariant Maurer-Cartan
form G−1dG:

ω1 = (a2a3 + 1)2 + a22 + a21(a
2
3 + 1)

2a1
dx1 − (a2a3 + 1)2 − a22 + a21(a

2
3 − 1)

2a1
dx2

+a3(a22 + a21) + a2
a1

dx3,

ω2 = − (a2a3 + 1)2 + a22 − a21(a
2
3 + 1)

2a1
dx1 + (a2a3 + 1)2 − a22 − a21(a

2
3 − 1)

2a1
dx2

+−a3(a22 − a21) − a2
a1

dx3,

ω3 = (a2(a
2
3 + 1) + a3) dx1 − (a2(a

2
3 − 1) + a3) dx2 + (2a2a3 + 1) dx3,

ω1
2 = −da1

a1
+ 2a2 da3,

ω3
1 = −da2 + (a21 − a22) da3

a1
,

ω3
2 = −da2 − (a21 + a22) da3

a1
. (41)

5.2 Adapted frames for the Darboux pair

We now focus on using the Darboux integrability of the metric (37) to construct represen-
tations of all local isometric embeddings ι : (M, g0) ↪→ (R1,2, h). We do this by first
constructing the 5-adapted frames and Vessiot group for the Darboux pair whose respective
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annihilators we denote byH±. These objects, described in detail in [1], are constructed below
starting from the EDS I.The integration procedure established in [1] is then used to construct
the integral submanifolds of I.

We have k = u−2 and dk = k1η1 + k2η2, which implies that k1 = 0, k2 = −2u−4.
By design, the singular systems (38) have derived flags which terminate in rank 2 integrable
sub-bundles given by

V∞+ =
{
ω3
1 − kη2 + k1

2k2
(η12 − ω1

2), ω3
2 + kη1 + k2

2k2
(η12 − ω1

2)

}
=

{
ω3
1 − du

u
, ω3

2 + ω1
2

}
,

V∞− =
{
ω3
1 + kη2 − k1

2k2
(η12 − ω1

2), ω3
2 − kη1 − k2

2k2
(η12 − ω1

2)

}
=

{
ω3
1 + du

u
, ω3

2 − ω1
2

}
.

(42)

We denote the space of first integrals of V± by inv V± and find that

inv V+ =
{
a3(a1 + a2) + 1

a1 + a2
,

√
u(a1 + a2)√

a1

}
,

inv V− =
{
a3(a1 − a2) − 1

a1 − a2
,

√
u(a1 − a2)√

a1

}
,

where we have assumed that u > 0. That is, any first integral of V± is a function of the
elements of inv V±. For the sake of convenience we set

p = a3(a1 − a2) − 1

a1 − a2
, p0 =

√
u(a1 − a2)√

a1
,

q = a3(a1 + a2) + 1

a1 + a2
, q0 =

√
u(a1 + a2)√

a1
. (43)

Remark 9 One way to arrive at these integrals is to carefully examine the structure equations
of the singular systems given at the far right in (42). Taking the ‘plus’ system for example,
one finds that

d(ω1
2 + ω3

2) = (ω1
2 + ω3

2) ∧ ω3
1,

indicating that ω1
2 + ω3

2 is an integrable 1-form—i.e., it is locally, up to a nonzero multiple,
the exact derivative of a function. This function arises as follows. From (8) we have

d(e1 − e3) = −(e1 − e3)ω3
1 + e2(ω1

2 + ω3
2).

Recall that the function n = e1−e3 takes value in the coneN ⊂ R
1,2 of nonzero null vectors.

The above equation indicates that the projectivization of e1−e3 is a first integral of the 1-form
ω1
2 + ω3

2. In other words, if π : N → RP1 is the projectivization map, then d(π ◦ n) ≡ 0
modulo ω1

2 + ω3
2. Hence, the pullback of any local coordinate on the projectivized null cone

RP1 is a first integral of V+. Moreover, the above equation implies that

d(e1 − e3) ≡ −(e1 − e3)
du

u
mod V∞+ ,

and it follows that the null vector u(e1 − e3) is a first integral of V∞+ . In fact, subtracting the
first and third columns of the right-hand side of (44) and multiplying by u gives

u(e1 − e3) = ( 1
2q

2
0 (q

2 + 1), 1
2q

2
0 (q

2 − 1),−q20q
)t

.
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[Here we have used the relation u = − 1
2 p0q0(p−q), which is a straightforward consequence

of (43).] Because N is two-dimensional, we obtain two independent first integrals this way.
The first integrals p, p0 of V∞− arise in a similar fashion by computing u(e1 + e3).

In accordance with the procedure set down in [1], we pass to a coordinate system adapted
to inv V±. Let N ⊂ M ×F0 be the open subset where a1 − a2 �= 0 and a1 + a2 �= 0, and let

φ : N → R
8

denote the mapping defined by the coordinate transformation

φ(u, v, a j , xi ) = (p, p0, q, q0, v, xi ).

This is a diffeomorphism onto its image N1 ⊂ R
8.

With respect to this coordinate system, the local parametrization (39) for the SO(1, 2)
component of FR1,2 � R

1,2 × SO(1, 2) may be expressed as

g

(
p, q,

p0
q0

)
=

⎡
⎢⎢⎢⎢⎢⎢⎣

− p20(p
2 + 1) + q20 (q

2 + 1)

2p0q0(p − q)

pq + 1

p − q
− p20(p

2 + 1) − q20 (q
2 + 1)

2p0q0(p − q)

− p20(p
2 − 1) + q20 (q

2 − 1)

2p0q0(p − q)

pq − 1

p − q
− p20(p

2 − 1) − q20 (q
2 − 1)

2p0q0(p − q)
p20 p + q20q

p0q0(p − q)
− p + q

p − q

p20 p − q20q

p0q0(p − q)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(44)
From this expression, we see that the domain N1 of this coordinate systemmust be contained
in the region where p �= q , p0q0 �= 0.

Now consider the characteristic distributions

H+ = ann V+, H− = ann V−, H = ann I = H+ ⊕ H−.

Substituting (34) into (38) to get the θa in terms of the ω
j
i , and then using (41), shows that

the pullbacks of the singular systems V± to N1 via the diffeomorphism φ−1 may be written
as

V 1+ =
{
dq, dq0, dv + 1

2 p
2
0 dp,

dx1 + 1
8 p

2
0(p

2
0(p

2 + 1) + q20 (q
2 − 2pq − 1)) dp − 1

4 p0q
2
0 (p − q)(pq + 1) dp0,

dx2 + 1
8 p

2
0(p

2
0(p

2 − 1) + q20 (q
2 − 2pq + 1)) dp − 1

4 p0q
2
0 (p − q)(pq − 1) dp0,

dx3 − 1
4 pp

2
0(p

2
0 − q20 ) dp + 1

4 p0q
2
0 (p

2 − q2) dp0
}
,

V 1− =
{
dp, dp0, dv − 1

2q
2
0 dq,

dx1 − 1
8q

2
0 (p

2
0(p

2 − 2pq − 1) + q20 (q
2 + 1)) dq − 1

4 p
2
0q0(p − q)(pq + 1) dq0,

dx2 − 1
8q

2
0 (p

2
0(p

2 − 2pq + 1) + q20 (q
2 − 1)) dq − 1

4 p
2
0q0(p − q)(pq − 1) dq0,

dx3 − 1
4qq

2
0 (p

2
0 − q20 ) dq + 1

4 p
2
0q0(p

2 − q2) dq0
}
. (45)

Moreover, the pullback I1 of I to N1 is generated by the Pfaffian system V 1 = V 1+ ∩ V 1−
together with the 2-forms dp ∧ dp0 and dq ∧ dq0.

It follows that the push-forwards of the characteristic distributions H± to N1 via φ are
given by

H1+ = {X1, X2}, H1− = {Y1, Y2},
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where

X1 = ∂p0 + 1
4 p0q

2
0 (p − q)(pq + 1) ∂x1 + 1

4 p0q
2
0 (p − q)(pq − 1) ∂x2 − 1

4 p0q
2
0 (p

2 − q2) ∂x3 ,

X2 = ∂p − 1
2 p

2
0 ∂v − 1

8 p
2
0(p

2
0(p

2 + 1) + q20 (q
2 − 2pq − 1)) ∂x1

− 1
8 p

2
0(p

2
0(p

2 − 1) + q20 (q
2 − 2pq + 1)) ∂x2 + 1

4 pp
2
0(p

2
0 − q20 ) ∂x3 ,

Y1 = ∂q0 + 1
4 p

2
0q0(p − q)(pq + 1) ∂x1 + 1

4 p
2
0q0(p − q)(pq − 1) ∂x2 − 1

4 p
2
0q0(p

2 − q2) ∂x3 ,

Y2 = ∂q + 1
2q

2
0 ∂v + 1

8q
2
0 (p

2
0(p

2 − 2pq − 1) + q20 (q
2 + 1)) ∂x1

+ 1
8q

2
0 (p

2
0(p

2 − 2pq + 1) + q20 (q
2 − 1)) ∂x2 + 1

4qq
2
0 (p

2
0 − q20 ) ∂x3 . (46)

It is well known (and straightforward to check) that [H+,H−] ≡ 0 mod H. Moreover, the
basis vectors above satisfy this congruence exactly; i.e., we have

[Xi , Y j ] = 0, for all i, j ∈ {1, 2}.
This implies, for instance, that the distribution B = {X1, Y1} on N1 is a rank 2 integrable
distribution, and it is straightforward to check that its first integrals are spanned by the
functions2

invB = {p, q, v, y1, y2, y3},
where

y1 = x1 − 1
8 p

2
0q

2
0 (p − q)(1 + pq),

y2 = x2 + 1
8 p

2
0q

2
0 (p − q)(1 − pq),

y3 = x3 + 1
8 p

2
0q

2
0 (p

2 − q2). (47)

Continuing to follow [1], we achieve the final adapted frame by making a local change of
variables ψ : N1 → N2, defined by

ψ(p, p0, q, q0, v, xi ) = (p, p0, q, q0, v, yi ), (48)

where y1, y2, y3 are as in (47). Straightforward calculations show that the pullbacks of the
singular systems V 1± via the diffeomorphism ψ−1 may be written as

V 2+ =
{
dq, dq0, dv + 1

2 p
2
0 dp, dy1 + 1

8 p
4
0(p

2 + 1) dp, dy2

+ 1
8 p

4
0(p

2 − 1) dp, dy3 − 1
4 pp

4
0 dp

}
,

V 2− =
{
dp, dp0, dv − 1

2q
2
0 dq, dy1 − 1

8q
4
0 (q

2 + 1) dq, dy2

− 1
8q

4
0 (q

2 − 1) dq, dy3 + 1
4qq

4
0 dq

}
, (49)

and hence that the pullback I2 of I1 by ψ−1 is generated by the Pfaffian system

V 2+ ∩ V 2− =
{
dv + 1

2 p
2
0 dp − 1

2q
2
0 dq, dy1 + 1

8 p
4
0(p

2 + 1) dp − 1
8q

4
0 (q

2 − 1) dq,

dy2 + 1
8 p

4
0(p

2 − 1) dp − 1
8q

4
0 (q

2 − 1) dq, dy3 − 1
4 pp

4
0 dp + 1

4qq
4
0 dq

}
,

(50)

2 We can equally choose B = {Xi , Y j } for any i, j ∈ {1, 2} since they are all Frobenius integrable and each
choice has the desired property of giving bases forH± in which one of the basis elements is locally expressible
as a coordinate vector field. This provides a means by which to ultimately achieve 5-adapted coframes.
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together with the 2-forms dp ∧ dp0 and dq ∧ dq0.
It follows that the push-forwards of the characteristic distributionsH1± by ψ are given by

H2+ = {
∂p0 , P = ∂p − 1

2 p
2
0 ∂v − 1

8 p
4
0(p

2 + 1) ∂y1 − 1
8 p

4
0(p

2 − 1) ∂y2 + 1
4 pp

4
0 ∂y3

}
H2− = {

∂q0 , Q = ∂q + 1
2q

2
0 ∂v + 1

8q
4
0 (q

2 + 1) ∂y1 + 1
8q

4
0 (q

2 − 1) ∂y2 − 1
4qq

4
0 ∂y3

}
.

(51)

[Note that the vector fields ∂p0 , ∂p, ∂q0 , ∂q in (51) are defined relative to the coordinate system
(p, p0, q, q0, v, yi ) and hence are not the same as those in (46).]

In what follows, we will find integral manifolds of I by constructing integral manifolds
of I2 in N2 and mapping them to M × FR1,2 via ψ−1 ◦ φ−1. For this purpose, we note that
V 2 = annH2, where H2 denotesH2+ ⊕ H2−.

5.3 TheVessiot algebra and superposition

The purpose of the frame adaptations leading to H2 is that they enable us to construct the
superposition formula from knowledge of the Vessiot algebra associated to any Darboux
integrable system, such as the embedding EDS I. The Vessiot algebra vess(V+, V−) of any
Darboux pair (V+, V−) permits one to construct a formula (the superposition formula) which
intertwines the integral manifolds of each singular system V± or, equivalently H± to give
an integral submanifold of I; see Sect. 2.

Indeed, let

g+ = {∂y1 , ∂y2 , ∂y3 , ∂v}.
Then it is easy to verify that

f 5+ = g+ ⊕ {∂p0 , P} ⊕ {∂q0 , Q}
is one of the 5-adapted frames as defined in [1] and that g+ is the “left” Vessiot algebra. Since
in this case theVessiot algebra is abelian, the “right” Vessiot algebra is equal to the left and the
other 5-adapted frame, f 5−, is the same as f 5+. In general, the left and right Vessiot algebras
of a Darboux pair coincide with the left- and right-invariant vector fields on a Lie group—the
Vessiot group of the Darboux pair. The superposition formula corresponds to multiplication
on the Vessiot group. In this case, the Vessiot group being abelian, the superposition formula
is essentially identical with linear superposition. Thus the procedure for constructing integral
submanifolds of H2 is, roughly speaking, to separately construct integral submanifolds of
H2+ and H2− and then add the result. For further explanation and examples, we refer the
reader to [8] and [1].

More specifically, in this case the manifolds M̂1, M̂2 of Theorem 1 are integral manifolds
of the systems

(V 2+)∞ = {dq, dq0}, (V 2−)∞ = {dp, dp0},
respectively. Theymay each be identified withR6, with local coordinates (p, p0, v+, y+

1 , y
+
2 ,

y+
3 ) on M̂1 and (q, q0, v−, y−

1 , y−
2 , y−

3 ) on M̂2. The Pfaffian systems θ̂1, θ̂2 on M̂1, M̂2 are
the pullbacks to these integral manifolds of the singular systems V 2+ and V 2−, respectively. The
superposition formula combines integral curves σ+ : (a, b) → M̂1 and σ− : (a, b) → M̂2

of these systems, θ̂1, θ̂2, to form an integral surface ι2 = (σ+ ∗ σ−) : (a, b) × (a, b) → N2

of I2. Explicitly, if we write

σ+(t) = (p(t), p0(t), v
+(t), y+

1 (t), y+
2 (t), y+

3 (t)),
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σ−(t) = (q(t), q0(t), v
−(t), y−

1 (t), y−
2 (t), y−

3 (t)),

then

ι2(t1, t2) = σ+(t1) ∗ σ−(t2) =
(
p(t1), p0(t1), q(t2), q0(t2), v+(t1) + v−(t2),

y+
1 (t1) + y−

1 (t2), y+
2 (t1) + y−

2 (t2), y+
3 (t1) + y−

3 (t2)
)
.

(52)

5.4 Integral submanifolds ofH2

It can be shown that the systems θ̂1, θ̂2 cannot be integrated in finite terms of arbitrary
functions and their derivatives alone. On the other hand, it is easy to express the solutions
via quadrature. Now we require integral manifolds of I to be such that η1 ∧ η2 = du ∧ dv

is non-zero. It is easy to see that there are one-dimensional integral manifolds of θ̂1 upon
which dp �= 0 and thus p0 = f (p) for some function f . Similarly, there are one-dimensional
integral manifolds of θ̂2 upon which dq �= 0, and thus q0 = g(q) for some function g. One
can find such integral manifolds of θ̂1 by solving the ODE system

(y+
1 )′(p) = − 1

8 (p
2 + 1) f (p)4, (y+

2 )′(p) = − 1
8 (p

2 − 1) f (p)4,
(y+

3 )′(p) = 1
4 p f (p)

4, (v+)′(p) = − 1
2 f (p)2,

(53)

while integral curves of θ̂2 are given by solving the ODE system

(y−
1 )′(q) = 1

8 (q
2 + 1)g(q)4, (y−

2 )′(q) = 1
8 (q

2 − 1)g(q)4,

(y−
3 )′(q) = − 1

4qg(q)4, (v−)′(q) = 1
2 g(q)2.

(54)

If we take

f (p) = (8F ′′′(p))1/4, g(q) = (8G ′′′(p))1/4

for some (arbitrary) smooth functions F,G with F ′′′,G ′′′ > 0, then a straightforward inte-
gration by parts yields characteristic curves σ+ : (a, b) → M̂1 and σ− : (a, b) → M̂2 of the
form

σ+(p) =
(
p, p0 = (8F ′′′(p))1/4, v+ = −

∫ √
2F ′′′(p) dp,

y+
1 = −(p2 + 1)F ′′(p) + 2pF ′(p) − 2F(p),

y+
2 = −(p2 − 1)F ′′(p) + 2pF ′(p) − 2F(p),

y+
3 = 2pF ′′(p) − 2F ′(p)

)
,

σ−(q) =
(
q, q0 = (8G ′′′(q))1/4, v− =

∫ √
2G ′′′(q) dq,

y−
1 = (q2 + 1)G ′′(q) − 2qG ′(q) + 2G(q),

y−
2 = (q2 − 1)G ′′(q) − 2qG ′(q) + 2G(q),

y−
3 = −2qG ′′(q) + 2G ′(q)

)
. (55)

Then from the superposition formula, the general integral manifold of (N2, I
2) may be

expressed as

ι2(p, q) = σ+(p) ∗ σ−(q) =
(
p, p0 = (8F ′′′(p))1/4, q, q0 = (8G ′′′(q))1/4,
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v = −
∫ √

2F ′′′(p) dp +
∫ √

2G ′′′(q) dq,

y1 = −(p2 + 1)F ′′(p) + 2pF ′(p) − 2F(p) + (q2 + 1)G ′′(q) − 2qG ′(q) + 2G(q),

y2 = −(p2 − 1)F ′′(p) + 2pF ′(p) − 2F(p) + (q2 − 1)G ′′(q) − 2qG ′(q) + 2G(q),

y3 = 2pF ′′(p) − 2F ′(p) − 2qG ′′(q) + 2G ′(q)
)
. (56)

Composing the expression (56) with the diffeomorphism φ−1 ◦ ψ−1 : N2 → M × FR1,2

followed by the projection π : M × FR1,2 → R
1,2 gives a formula for the general isometric

immersion of (M, g0) into R
1,2, but parametrized with respect to the variables (p, q) rather

than the original coordinates (u, v) on M . This yields the following parametrization for the
general isometric immersion of (M, g0) into R

1,2:

x1 = (p − q)(pq + 1)
√
F ′′′(p)G ′′′(q) − (p2 + 1)F ′′(p) + 2pF ′(p) − 2F(p)

+(q2 + 1)G ′′(q) − 2qG ′(q) + 2G(q),

x2 = (p − q)(pq − 1)
√
F ′′′(p)G ′′′(q) − (p2 − 1)F ′′(p) + 2pF ′(p) − 2F(p)

+(q2 − 1)G ′′(q) − 2qG ′(q) + 2G(q),

x3 = (q2 − p2)
√
F ′′′(p)G ′′′(q) + 2pF ′′(p) − 2F ′(p) − 2qG ′′(q) + 2G ′(q). (57)

Of particular significance is the fact that the parametrization (57) is expressed in terms of
two arbitrary functions and their derivatives, without any integration required.

We also obtain the following expressions for the coordinates (u, v) in terms of (p, q):

u = −(p − q)
(
F ′′′(p)G ′′′(q)

)1/4
, v = −

∫ √
2F ′′′(p) dp +

∫ √
2G ′′′(q) dq. (58)

For most choices of functions F,G the map (p, q) �→ (u, v) has local inverses and hence
we have achieved our aim of finding local isometric immersions of (M, g0) intoR

1,2 with its
standard metric. In most cases, however (depending on the particular functions F(p),G(q)),
we will not be able to explicitly invert in order to obtain an explicit parametrization for the
immersion in terms of (u, v).

Example 1 For an explicit example, suppose that the functions f (p) and g(q) are constants,
say p0 = ε1, q0 = ε2. This corresponds to choosing F(p) = 1

48ε
4
1 p

3, G(q) = 1
48ε

4
2q

3. In
this case, the map

ι0 = φ−1 ◦ ψ−1 ◦ ι2 : R2 → M × FR1,2

defining the corresponding integral manifold of I is given by

ι0(p, q) =
(
u = 1

2ε1ε2(q − p), v = 1
2 (ε

2
2q − ε21 p),

x1 = 1
8

(− 1
3ε

4
1 p

3 + 1
3ε

4
2q

3 + ε21ε
2
2 pq(p − q) − (ε21 − ε22)(p + q)

)
,

x2 = 1
8

(− 1
3ε

4
1 p

3 + 1
3ε

4
2q

3 + ε21ε
2
2 pq(p − q) + (ε21 − ε22)(p + q)

)
,

x3 = 1
8 (ε

2
1 − ε22)(ε

2
1 p

2 + ε22q
2),

a1 = (ε1 + ε2)
2

2ε1ε2(p − q)
, a2 = − (ε21 − ε22)

2ε1ε2(p − q)
, a3 = (ε1 p + ε2q)

(ε1 + ε2)

)
.

In this case, the Eq. (58) can be solved for p and q explicitly, and this yields the following
parametrization for the immersed surface ι = π ◦ ι0 in terms of the original coordinates
(u, v):
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Fig. 2 Views of immersion ι of ḡ0 into (R1,2, h), ε1 = 1, ε2 = 4

x1 = (ε21 + ε22)(v
3 + 3u2v) − 2ε1ε2(u3 + 3uv2)

3(ε21 − ε22)
2

+ 1

4
(ε21 + ε22)v − 1

2
ε1ε2u,

x2 = (ε21 + ε22)(v
3 + 3u2v) − 2ε1ε2(u3 + 3uv2)

3(ε21 − ε22)
2

− 1

4
(ε21 + ε22)v + 1

2
ε1ε2u,

x3 = (ε21 + ε22)(u
2 + v2) − 4ε1ε2uv

2(ε21 − ε22)
. (59)

As an aide to visualization, introduce a change of variables on (M, g0), by setting ū =
v − u, v̄ = v + u. Then �∗ ḡ0 = g0, where ḡ0 =

(
v̄ − ū

2

)2

dū d v̄. In Fig. 2, we exhibit

graphs of the isometric immersion of ḡ in (R1,2, h) together with some of the coordinates
lines for the particular parameter values ε1 = 1, ε2 = 4.

5.5 The geometric Cauchy problem for (M, g0) ↪→ (R1,2, h)

In this subsection, we briefly explore the role that Darboux integrability plays in resolving
the local geometric Cauchy problem for Darboux integrable metrics like g0. Classically,
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for the local geometric Cauchy problem for g0, one prescribes a smoothly immersed curve
γ : (a, b) → R

1,2 and a (necessarily spacelike) unit vector field ē3 : (a, b) → R
1,2 along γ

orthogonal to the tangent vector field γ ′. This initial data determines a unique local isometric
immersion of g0 into R

1,2 which contains an open subset of the image of γ and whose
normal vector field along this subset is given by ē3; the Cauchy problem seeks to construct
this immersion from the given initial data.

We will show in this subsection how the Darboux integrability of g0 leads to a solution of
this problemviaODEmethods. Specifically, for a given initial curve γ and normal vector field
ē3, the problem reduces to a system of two first-order ordinary differential equations for two
unknown functions—or equivalently, a single second-order scalar ODE. A solution to this
ODE may be thought of as determining a preferred parametrization for the initial data, and
after reparametrization, the explicit solution of the geometric Cauchy problem is reducible to
quadrature. For more details regarding these methods and an intrinsic formulation we refer
to [3].

Let V 2 = V 2+ ∩ V 2− [where V 2± are as in (49)] denote the Pfaffian system on N2 :=
ψ ◦ φ(N ), which corresponds via pullback to the degree one piece of I, and which is dual
to the embedding distribution H2 = H2+ ⊕ H2−, which has been adapted to the Darboux
invariants inv V+ and inv V−. As described in [3] [and due to the superposition formula (52)],
the Cauchy problem for this system may be solved as follows: Given a non-characteristic
integral curve σ : (a, b) → N2 of V 2, there exists a decomposition σ(t) = σ+(t) ∗ σ−(t),
where σ+ : (a, b) → M̂1 and σ− : (a, b) → M̂2 are integral curves of the singular systems
V 2±. Moreover, because the Vessiot group of this system is abelian, this decomposition may
be constructed by quadrature, and it is unique up to the choice of constants of integration.
Then the corresponding 2-dimensional integral manifold ι2 : (a, b) × (a, b) → N2 is given
by

ι2(t1, t2) = σ+(t1) ∗ σ−(t2).

Since the geometric Cauchy problem prescribes initial data for the coordinates (x1, x2,
x3) (rather than (y1, y2, y3)), the first step is to construct a non-characteristic integral curve
σ0 : (a, b) → N1 of V 1 corresponding to this initial data. Then the curve σ = ψ ◦ σ0 :
(a, b) → N2 will be the desired integral curve of V 2, from which we will construct the
superposition formula.

From (45), we see that the Pfaffian system V 1 = V 1+ ∩ V 1− may be written as

V 1 =
{
dv + 1

2 p
2
0 dp − 1

2q
2
0 dq,

dx1 + 1
8 p

2
0(p

2
0(p

2 + 1) + q20 (q
2 − 2pq − 1)) dp − 1

4 p0q
2
0 (p − q)(pq + 1) dp0

− 1
8q

2
0 (p

2
0(p

2 − 2pq − 1) + q20 (q
2 + 1)) dq − 1

4 p
2
0q0(p − q)(pq + 1) dq0,

dx2 + 1
8 p

2
0(p

2
0(p

2 − 1) + q20 (q
2 − 2pq + 1)) dp − 1

4 p0q
2
0 (p − q)(pq − 1) dp0

− 1
8q

2
0 (p

2
0(p

2 − 2pq + 1) + q20 (q
2 − 1)) dq − 1

4 p
2
0q0(p − q)(pq − 1) dq0,

dx3 − 1
4 pp

2
0(p

2
0 − q20 ) dp + 1

4 p0q
2
0 (p

2 − q2) dp0

− 1
4qq

2
0 (p

2
0 − q20 ) dq + 1

4 p
2
0q0(p

2 − q2) dq0
}
. (60)

The general integral curve of this system may be constructed by choosing arbitrary functions
p, p0, q, q0 : (a, b) → R, substituting these functions into the Pfaffian system (60), and
then integrating the resulting expressions to obtain the remaining functions v, x1, x2, x3 :
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(a, b) → R; indeed, this was essentially the approach that we used to construct the general
solution in Sect. 5.4.

For the geometric Cauchy problem, we must approach the construction of integral curves
to the system (60) from a slightly different perspective. Now we are given an initial curve
γ : (a, b) → R

1,2, with parametrization

γ (t) = (x̄1(t), x̄2(t), x̄3(t)), (61)

and a spacelike unit normal vector field ē3 : (a, b) → R
1,2 along γ . In order to lift the initial

data (γ, ē3) to a non-characteristic integral curve σ0 : (a, b) → N1 of V 1, wemust show how
to obtain functions p, p0, q, q0 : (a, b) → R for which the functions x1, x2, x3 : (a, b) → R

and e3 : (a, b) → R
1,2 on the corresponding integral curve of V 1 agree with the given

functions x̄1, x̄2, x̄3 and the vector field ē3.
First, observe from (44) that

e3 =
(

− p20(p
2 + 1) − q20 (q

2 + 1)

2p0q0(p − q)
, − p20(p

2 − 1) − q20 (q
2 − 1)

2p0q0(p − q)
,

p20 p − q20q

p0q0(p − q)

)t

.

(62)
Replacing e3 by the prescribed vector field ē3(t) leads to two algebraic constraints that must
be satisfied by the four functions p, p0, q, q0 : (a, b) → R. Geometrically, these constraints
may be interpreted as follows: One comes from the orthogonality requirement

γ ′(t) · ē3(t) = 0, (63)

and once this is taken into account, specifying ē3 is equivalent to specifying the ratio

λ(t) = p0(t)2(p(t)2 + 1) − q0(t)2(q(t)2 + 1)

p0(t)2(p(t)2 − 1) − q0(t)2(q(t)2 − 1)
(64)

between the first two components of ē3(t). (Without loss of generality—for example, by
applying an appropriate isometry of R1,2 and shrinking the interval (a, b) if necessary—we
may assume that x̄ ′

3(t) �= 0 for all t ∈ (a, b), so that ē3(t) �= (0, 0, 1)t .) Rearranging, we
see that (64) is equivalent to the relation

p0(t)
2 (

(λ(t) − 1)p(t)2 − (λ(t) + 1)
) = q0(t)

2 (
(λ(t) − 1)q(t)2 − (λ(t) + 1)

)
, (65)

and, taking this relation into account, the orthogonality condition (63) becomes

(λ(t) − 1) x̄ ′
3(t) p(t) q(t) + (λ(t) x̄ ′

1(t) − x̄ ′
2(t))(p(t) + q(t)) + (λ(t) + 1) x̄ ′

3(t) = 0. (66)

The construction proceeds as follows: The algebraic solutions (p, p0, q, q0) : (a, b) →
R
4 of the relations (65) and (66)may be parametrized in terms of two arbitrary functions r , s :

(a, b) → R in a fairly straightforward way. These expressions (along with the conditions
xi = x̄i (t)) may then be substituted into the last three 1-forms in (60) to obtain a system
of three first-order ODEs for the two unknown functions r , s. This system is redundant, but
consistent, and hence may be written as a system of two first-order ODEs for r and s, which
in turn may be written as a single second-order ODE for one of the two functions, say r .
Any solution r(t) of this ODE leads to functions p, p0, q, q0 : (a, b) → R

4 which satisfy
the last three 1-forms in (60), and then the first 1-form in (60) may be used to construct the
v-coordinate function by quadrature. Once this has been accomplished, the corresponding
isometric embedding may then be constructed as in Sect. 5.4. Moreover, in a neighborhood
of any point where r ′(t) �= 0, we may reparametrize the initial data with respect to r , after
which the remainder of the process may be carried out via quadrature. If we set r(t) = t , then
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the ODE for r may be interpreted as a single ODE that the initial data must satisfy in order
to be “appropriately parametrized.” If the initial data satisfies this ODE, then the solution to
the corresponding geometric Cauchy problem may be constructed entirely by quadrature.

Unfortunately, in general this construction is not practical to carry out explicitly.
Parametrizing the algebraic solutions to (65) and (66) is straightforward enough, but substi-
tuting the resulting expressions into (60) leads to a system that is computationally impractical
to write down explicitly, even with the help of a computer algebra system such as Maple.
However, for certain special choices of initial data, the algebra becomes tractable and we can
construct explicit solutions. The simplest case comes from choosing λ(t) = 1, in which case
the relations (65) and (66) simplify considerably, to p0(t) = q0(t) and

(x̄ ′
1(t) − x̄ ′

2(t))(p(t) + q(t)) + 2 x̄ ′
3(t) = 0, (67)

respectively. Geometrically, this choice corresponds to requiring the normal vector ē3(t) to
be contained in the lightlike plane in Tγ (t)R

1,2 defined by z1 = z2, where (xi , zi ) are the
canonical local coordinates on TR1,2. This can be seen directly from the fact that when
p0 = q0, the expression (62) reduces to

e3 = (− 1
2 (p + q), − 1

2 (p + q), 1
)t

.

Since we must have γ ′(t) · ē3(t) = 0 and we have already imposed the requirement that
x̄ ′
3(t) �= 0, this choice requires that our initial curve γ satisfy the additional condition
x̄ ′
1(t) �= x̄ ′

2(t). By applying an appropriate isometry of R1,2 and (if necessary) shrinking the
interval (a, b), we can ensure that these conditions hold for any initial curve γ : (a, b) →
R
1,2. Hence we can parametrize the algebraic solution space of (67) as

p(t) = x̄ ′
3(t)

(x̄ ′
2(t) − x̄ ′

1(t))
+ s(t), q(t) = x̄ ′

3(t)

(x̄ ′
2(t) − x̄ ′

1(t))
− s(t) (68)

where s : (a, b) → R is an arbitrary function.
Substituting q0(t) = p0(t) = r(t) and the expressions (68) into the system (60) yields

the ODE system

r ′(t) = x̄ ′
1(t) − x̄ ′

2(t)

2r(t)3s(t)
,

s′(t) = 1

2(x̄ ′
1(t) − x̄ ′

2(t))r(t)
4

(
x̄ ′
2(t)

2 + x̄ ′
3(t)

2 − x̄ ′
1(t)

2

s(t)2
− (x̄ ′

1(t) + x̄ ′
2(t))

2

)
,

v′(t) = − 1

2(x̄ ′
1(t) − x̄ ′

2(t))r(t)
2

(
x̄ ′
2(t)

2 + x̄ ′
3(t)

2 − x̄ ′
1(t)

2

s(t)2
− (x̄ ′

1(t) + x̄ ′
2(t))

2

)
. (69)

From the first equation in (69), we can set

s(t) = x̄ ′
1(t) − x̄ ′

2(t)

2r(t)3r ′(t)
, (70)

and then the second equation in (69) becomes a second-order scalar ODE for the function
r(t):

(x̄ ′
1 − x̄ ′

2)
4rr ′′ − 4((x̄ ′

1)
2 − (x̄ ′

2)
2 − (x̄ ′

3)
2)r6(r ′)4

+2(x̄ ′
1 − x̄ ′

2)
4(r ′)2 − (x̄ ′

1 − x̄ ′
2)

3(x̄ ′′
1 − x̄ ′′

2 )rr ′ = 0. (71)

Since the initial curve γ satisfies the condition x̄ ′
1(t)−x̄ ′

2(t) �= 0, the existence and uniqueness
theorem for ODEs guarantees a local solution r(t) to equation (71). Then taking q0(t) =
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p0(t) = r(t), defining s(t), p(t), q(t) as in (70) and (68), and then integrating the third
equation in (69) to obtain v(t) yields the desired integral curve σ0 : (a, b) → N1 for V 1.
Composing with ψ gives the desired integral curve σ = ψ ◦ σ0 : (a, b) → N2 for V 2.

Finally, the decomposition σ(t) = σ+(t) ∗ σ−(t) is constructed as follows: Substitute the
functions p(t), p0(t) defined by σ into the singular system V 2+ on M̂1. The desired integral
curve σ+ : (a, b) → M̂1 of this system is obtained by integrating the resulting ODE system

(y+
1 )′(t) = − 1

8 (p(t)
2 + 1)p0(t)4 p′(t), (y+

2 )′(t) = − 1
8 (p(t)

2 − 1)p0(t)4 p′(t),
(y+

3 )′(t) = 1
4 p(t)p0(t)

4 p′(t), (v+)′(t) = − 1
2 p0(t)

2 p′(t).
(72)

Similarly, the desired integral curve σ− : (a, b) → M̂2 of V 2− is obtained by integrating the
ODE system

(y−
1 )′(t) = 1

8 (q(t)2 + 1)q0(t)4 q ′(t), (y−
2 )′(t) = 1

8 (q(t)2 − 1)q0(t)4 q ′(t),
(y−

3 )′(t) = − 1
4q(t)q0(t)4 q ′(t), (v−)′(t) = 1

2q0(t)
2 q ′(t). (73)

Initial conditions for both curves at some point t0 ∈ (a, b) should be chosen so that

y+
i (t0) + y−

i (t0) = yi (t0), v+(t0) + v−(t0) = v(t0), (74)

where yi (t0), v(t0) are the values specified by σ(t0).
As mentioned earlier, if the solution to the ODE (71) satisfies r ′(t) �= 0, then locally we

may reparametrize the initial curve γ with respect to the variable r . (Of course, this is rarely
possible in practice, as it requires both solving the ODE explicitly and finding the inverse
function of the solution.) The components of the resulting curve (with r(t) = t) must then
satisfy the relation

− 4
(
(x̄ ′

1)
2 − (x̄ ′

2)
2 − (x̄ ′

3)
2) t6 + 2(x̄ ′

1 − x̄ ′
2)

4 − (x̄ ′
1 − x̄ ′

2)
3(x̄ ′′

1 − x̄ ′′
2 )t = 0. (75)

Conversely, if the components of the given initial curve γ satisfy (75), then we may choose
r(t) = t and proceed as above, with the entire process requiring only quadrature to construct
the solution.

In summary, we have proved the following theorem.

Theorem 13 Letγ = (x̄1, x̄2, x̄3) : (a, b) → R
1,2 be an immersed curvewith x̄ ′

1(t)−x̄ ′
2(t) �=

0 and x̄ ′
3(t) �= 0 for all t ∈ (a, b), and let t0 ∈ (a, b). Then:

1. There exists an interval (ā, b̄) ⊂ (a, b) containing t0 and functions p, p0, q, q0, v :
(ā, b̄) → R, with p0 = q0, such that the curve σ0 : (ā, b̄) → N1 defined by

σ0(t) = (p(t), q(t), p0(t), q0(t), x̄1(t), x̄2(t), x̄3(t), v(t))

is a non-characteristic integral curve of the Pfaffian system V 1 on N1 = φ(M × FR1,2),
and such that for each t ∈ (ā, b̄), the vector e3(t) determined by (62) is contained in the
lightlike plane in Tγ (t)R

1,2 defined by z1 = z2, where (xi , zi ) are the canonical local
coordinates on TR1,2.

2. These functions then determine a decomposition (unique up to constants of integration)
σ(t) = σ+(t) ∗ σ−(t) of the curve σ = ψ ◦ σ0 : (ā, b̄) → N2, where σ+ : (ā, b̄) → M̂1

and σ− : (ā, b̄) → M̂2 are integral curves of the singular systems V 1±, respectively, and
hence a unique 2-dimensional integral manifold ι2 : (ā, b̄) × (ā, b̄) → N2 of V 2 given
by ι2(t1, t2) = σ+(t1) ∗ σ−(t2).

3. The compositionπ◦ψ−1◦ι2 : (ā, b̄)×(ā, b̄) → R
1,2 defines a local isometric embedding

of an open subset of (M, g0) into R
1,2 whose image contains the curve γ ((ā, b̄)).
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4. If the component functions of γ satisfy the relation (75), then all these constructions may
be performed using only quadratures.

A similar theorem could, in principle, be stated for initial data with an arbitrary normal
vector field ē3 : (a, b) → R

1,2, although the appropriate analogs of the nondegeneracy
condition x̄ ′

1(t)− x̄ ′
2(t) �= 0 and the relation (75) are almost certainly impractical to determine

explicitly.
We will conclude by illustrating the construction of the isometric embedding promised

by Theorem 13 for a simple initial curve.

Example 2 Suppose we start with the curve

γ (t) = (x̄1(t), x̄2(t), x̄3(t)) =
(
3t + 4t3

8
,
3t − 4t3

8
,
3t2

4

)

for t in some interval containing the initial point t0 = 1. We have

x̄ ′
1(t) = 3 + 12 t2

8
, x̄ ′

2(t) = 3 − 12 t2

8
, x̄ ′

3(t) = 3t

2
,

x̄ ′′
1 (t) = 3t, x̄ ′′

2 (t) = −3t, x̄ ′′
3 (t) = 3

2
.

This curve satisfies the constraint (75) as well as the conditions x̄ ′
1(t)− x̄ ′

2(t), x̄
′
3(t) �= 0, and

so (taking p0(t) = q0(t) = t) from (68), (69), and (70) we obtain

p(t) = 1

t
, q(t) = −2

t
, v(t) = 3t

2
.

Composing with ψ , we obtain the integral curve σ : (a, b) → N2 given by

σ(t) =
(
p(t) = 1

t
, p0(t) = t, q(t) = −2

t
, q0(t) = t, v(t) = 3t

2
,

y1(t) = 9t + t3

8
, y2(t) = 9t − t3

8
, y3(t) = 3t2

8

)
.

Substituting these expressions for p(t), p0(t) into the ODE system (72) and integrating from
t = 1 to t = t1, using the initial conditions

y+
i (1) = 1

2 yi (1), v+(1) = 1
2v(1),

yields

y+
1 (t1) = 3t1+t31+11

24 , y+
2 (t1) = 3t1−t31+10

24 ,

y+
3 (t1) = 5−2t21

16 , v+(t1) = 2t1+1
4 .

Similarly, substituting these expressions for q(t), q0(t) into the ODE system (73) and inte-
grating from t = 1 to t = t2, using the initial conditions

y−
i (1) = 1

2 yi (1), v−(1) = 1
2v(1),

yields

y−
1 (t2) = 24t2+2t32−11

24 , y−
2 (t2) = 12t2−t32−5

12 ,

y−
3 (t2) = 8t22−5

16 , v−(t2) = 4t2−1
4 .
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Fig. 3 Views of the surface of Example 2

Thus the superposition formula (52) yields

ι2(t1, t2) =
(
p = 1

t1
, p0 = t1, q = − 2

t2
, q0 = t2, v = t1 + 2t2

2
,

y1 = 3t1 + t31 + 24t2 + 2t32
24

, y2 = 3t1 − t31 + 24t2 − 2t32
24

, y3 = 4t22 − t21
8

)
.

Finally, composing withψ−1 gives the following map ι1 = ψ−1 ◦ ι2 : (a, b)×(a, b) → N1:

ι1(t1, t2) =
(
p = 1

t1
, p0 = t1, q = − 2

t2
, q0 = t2, v = t1 + 2t2

2
,

x1 = 18t2 − 9t1 + t31 + 6t21 t2 + 3t1t22 + 2t32
24

,

x2 = 18t2 − 9t1 − t31 − 6t21 t2 − 3t1t22 − 2t32
24

, x3 = 3t21 + 3t22
8

)
.

The functions xi (t1, t2) are the components of the isometric embedding. The relationship
between the variables (u, v) on (M, g0) and (t1, t2) can be deduced from the transformation
φ−1 defined by Eq. (43), to be

u = 1

2
p0(t1) q0(t2) (q(t2) − p(t1)),
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together with function v above. In this case the relationship turns out to be

u = −2t1 + t2
2

, v = t1 + 2t2
2

,

which can be locally inverted to obtain the following expression for the explicit immersion
in terms of (u, v):

x1 = 108u + 135v + 16u3 + 60u2v + 48uv2 + 20v3

108
,

x2 = 108u + 135v − 16u3 − 60u2v − 48uv2 − 20v3

108
,

x3 = 5u2 + 8uv + 5v2

6
.

Some graphs of this surface, along with the initial curve γ , are shown in Fig. 3. Note that the
metric itself degenerates along the coordinate curve u = 0, and this curve is precisely where
the surface fails to be an immersion.
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