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Abstract. Accurate player skill modelling is an important but chal-
lenging task in Real-Time Strategy Games. Previous efforts have relied
strongly on micromanagement features, such as Actions Per Minute, pro-
ducing limited results. In this paper, we present an improved player skill
classifier for StarCraft II that predicts, from a replay, a player’s exact
league at 61.7% accuracy, or within one league at 94.5%, outperforming
the previous state of the art of 47.3%. Unlike previous classifiers, our
classifier makes use of a macro-level measure of economic performance,
called Spending Quotient, which we demonstrate to be an important part
of accurately predicting player skill levels.

Keywords: Player Modeling · Real-Time Strategy Games · Machine
Learning.

1 Introduction

Matching challenges in a game to a player’s skill level is an essential factor in the
player’s enjoyment of the game [20]. In online games, a ranking system is used to
attempt to match players with other players of appropriate skill. However, some
players attempt to subvert this system. Players do this either via ‘smurfing’,
whereby high-ranked players create secondary accounts in order to play against
low-ranked players [6]. Or, conversely, by ‘boosting’ which involves low-ranked
players asking high-ranked players to play their accounts to increase their rank
artificially [8].

To address this problem, a good skill detection model is required. One which
can identify these players, as well as any players who might be unintentionally
mismatched to their current league (e.g., a player who is returning to the game
after a long period or someone playing on a friend’s account). Because the person
playing the account can not be verified, player skill modelling is more complex
than simply analysing the account’s win/loss record. There are also important
use cases for skill detection in offline games, where a game may need to adjust
dynamically to the player’s skill level [7]. Adapting challenges to the player’s
increasing skill level is another important aspect of player enjoyment [20].

Research in Real-Time Strategy (RTS) games has been an important area of
interest for AI researchers since Buro’s call for AI research in RTS games in 2004
[4]. Despite the increased interest in RTS games, one research area that has been
relatively undeveloped in RTS games is player skill modelling, especially when
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applied to AI players. RTS games provide some unique challenges, such as partial
information, real-time decision making, and trading immediate versus future
payoffs. For this reason, assessing the skill level of a player can be extremely
challenging.

When constructing a player model, it is critical to identify the features that
most strongly predict the player’s level [22]. We examine how a player’s skill
level can be identified from their replay data in RTS game StarCraft II and
aim to determine which are the most relevant features in predicting player skill.
StarCraft II, developed by Blizzard Entertainment and released in 2010, has be-
come an increasingly important testbed for AI algorithms due to its challenging
environment and well-supported API [21]. In this paper, we report on research
in which we constructed a model to predict a player’s skill level. Our model
extracts useful features from 1-vs-1 replay data and uses them to predict the
league placement of each player.

2 Real-Time Strategy Games

A considerable amount of recent AI work in games has focused on complete
information, limited action-space games, such as Chess [17], Go [18] and many
of the Atari games [11]. However, real-world problems are often only partially
observed and have large, sometimes infinite, action spaces. RTS games can help
to bridge the gap between games and the real world by providing more challeng-
ing environments in which to demonstrate the abilities of AI algorithms. RTS
games require the player to control multiple units and make difficult decisions
about strategic trade-offs under incomplete information. Due to these challenges,
advancements in AI in RTS games has progressed relatively slowly compared to
other types of games. Standard RTS games involve three main components:

– Units - the most important component for a player to achieve the winning
goal in most RTS games. Players are required to recruit and control their
units to defeat their opponent and win the game.

– Collecting Resources and Resource Management - in most RTS games, re-
sources can be used to construct buildings, recruit units, and develop tech-
nology. Players use their workers (i.e., a type of unit) to collect resources.

– Research - players research new technologies to improve the quality of their
units and increase their resource collection rate. Technology often involves
trading a short term cost for a long term reward. Some units may have tech-
nological prerequisites making advancement critically important to building
a powerful army.

2.1 StarCraft II

StarCraft II (SC2) is an RTS game developed by Blizzard Entertainment and
a sequel to StarCraft and its expansion, Brood War. SC2 was released in 2010
and is still one of the more popular RTS games played today, with an active
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player base and professional eSports tournaments. While similar in many ways
to other RTS games, SC2 is fairly unique in its asymmetric races. Players must
choose between three races, Terran (humans), Zerg, and Protoss. Each race has
different units, buildings, and game mechanics. For example, Terran (see Figure
1) can fly their buildings around the map, while Zerg is limited to building only
on ‘creep’ that spreads slowly from their base. The economy in SC2 is based on
two types of resources, Minerals and Vespene. These resources must be collected
by workers and are in limited supply. Often players will need to expand to higher
risk areas on the map to secure these resources. Blizzard Entertainment, along
with DeepMind, provide support for AI research in SC2 via the StarCraft II
Learning Environment (SC2LE) [21].

The built-in AI in the SC2 game has ten hard-coded difficulty levels. Much
of the existing work on SC2 AI uses the built-in AI as a tool to test and develop
their algorithms [9, 16, 19, 13]. This is due to the built-in AI being consistent, fast
to compute, and providing a significant level of challenge. Early reinforcement
learning based AI could only tie against the easiest built-in AI [21]. However,
later work learned to exploit the built-in AI’s weaknesses and can now consis-
tently defeat the hardest level AI.

Fig. 1. A Terran player playing StarCraft II.

2.2 Ranking Players in StarCraft II

In SC2 ranked games, players are divided into seven leagues according to their
ability: Bronze, Silver, Gold, Platinum, Diamond, Master, and GrandMaster.
Initial placement into a league is by unranked placement games, after which a
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player can ascend or descend the leagues based on their performance. There are
300,000 active players in SC2 ranked games, with most players’ leagues being
between Silver and Diamond [2].

A player who is ranked in Gold league is roughly equivalent to that of Level-
10 built-in AI. This means the performance of most reinforcement learning based
AI is below that of the average ranked human players’ performance. The Grand-
Master rank is extremely rare. Blizzard Entertainment limits the number of
GrandMasters per region1, ensuring the total number of GrandMaster players
in the world does not exceed 800. As a result, only 0.27% of players can be
GrandMaster in ranked matches.

SC2 uses a Match Making Ranking (MMR) system to track players’ ability
in ranked matches. Players earn MMR when they win a match and lose MMR
when they lose a match. Once a player’s MMR reaches a threshold, they will be
upgraded to the next league.

3 Related Work

Most of the research in SC2 AI has been about developing AI algorithms to play
the game well. Meanwhile, there has been only a small amount of work done
on predicting players’ skills. Early work on the problem achieved a weighted
average accuracy of 47.3% [3], outperforming the most common class prediction
baseline by using a variant of a Support Vector Machine on a training set of 1,297
replays. Player performance in the original StarCraft has also been investigated,
with Gradient Boosting Regression Trees and Random Forests being used to
create six classifiers for each race pairing [14]. However, this research predicted
the winning player rather than each player’s league. In parallel with the work
on player modeling in RTS games there has also been work on assessing skill
levels in the related Multiplayer Online Battle Arena (MOBA) games. Which
skill factors are strong predictors for match outcome vary across different MOBA
games, reinforcing that features should be game specific [5].

The challenge of dynamically adapting game difficulty to a player’s ability
is closely related to player modelling. Previous research has inferred difficulty
curves from player-vs-level match data using win/loss data [15]. While this work
primarily relates to adjusting player-vs-level difficulty, it could be adapted to
player-vs-player matchmaking. In some situations, it may be preferable to de-
sign experiments to analyse player skills (e.g., by manipulating the game envi-
ronments). The PsyRTS platform, a web-based toolkit for RTS games, allows
for this, and is able to leverage existing crowd-sourced platforms [12]. However,
experiments must be created ahead of time and cannot take advantage of the
large set of exiting replay data.

1 Blizzard Entertainment divides their servers into European, American, Korean,
Oceanic, and Chinese regions.
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4 Method

In order to investigate the strengths of various machine learning algorithms on
this problem we trained models using five different algorithms. Each model was
trained using features (see Section 4.3) extracted from a set of 4,917 replays, with
the algorithm’s hyperparameters tuned according to a 5-fold cross validation
score. The best model from each algorithm was then evaluated on a holdout test
set according to both its average weighted accuracy and F1-score.

4.1 Data Collection

Since there is no established SC2 replay dataset, we constructed one from re-
cent replays. A total of 4,917 replays were collected from three websites2. These
replays were uploaded by global players, who posted their games online. Av-
erage features over time were extracted from 1-vs-1 replays. With each replay
providing information about two players.

Replays that lasted less than 2-minutes or data from unranked players were
excluded, giving 4,114 player data-points distributed as shown in Table 1. The
relatively few instances of Bronze and Silver players is likely due to new players
being less likely to upload replays than more experienced players. Due to the low
number of data-points for these categories, we excluded the Bronze and Silver
league from the model. During prepossessing, all features were normalised to
between 0 and 1. After filtering, the dataset contained 3,981 player data-points.
These replays were then split randomly between a training set of 2,985 replays
and a holdout test set of 996 replays.

Table 1. Distribution of players by league the dataset.

League Number of Players

Bronze 12
Silver 128
Gold 500
Platinum 1,355
Diamond 1,685
Master 357
GrandMaster 244

4.2 Evaluation

We selected and evaluated models based on their F1-score, which we calculated
as

F1 := 2 × P ×R

P + R
2 https://sc2replaystats.com, https://gggreplays.com/matches and

https://lotv.spawningtool.com/replays
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where P is the precision, and R the recall of the model for a given league. An
F1 score of 0 indicates a very poorly performing model, whereas a score of 1
indicates perfect prediction. We performed an average of the F1-scores for each
league, weighted by the number of examples in that league. We also included the
weighted average accuracy for reference,3 in order to compare against previous
work in SC2 player modeling by Avontuur [3]. However, due to the imbalance
in the league distribution, this measure will not be as meaningful a measure of
performance as the F1-score. The final evaluation was performed on the holdout
test set. We report both the weighted F1-score, individual class F1-scores, and
weighted accuracy for comparison to Avontuur’s work.

4.3 Feature Selection

A total of 11 features were extracted from the replay files and used as input to
the model. The features are as follows:

Actions Per Minute In RTS games, players give instructions to units by
clicking the mouse or typing on the keyboard. The computation of (average)
Actions Per Minute (APM) is

APM :=
a

t

where a is the total number of actions performed over t minutes. A higher
APM of a player means that the player has the ability to process more events in
each unit of time in the game. Having a high APM does not necessarily mean
that a player is an advanced player, but high-level players usually have a higher
APM. The average APM for GrandMaster is approximately 300 (5 actions per
second), Bronze league players can only achieve 60 APM (1 action per second).

Spending Quotient While APM is more an indication of micro management
and fine-grained control over units, macro-management, such as economic man-
agement and strategy, is also important. Players collect resources and spend
resources on a number of different things. To maximise the use of resources
and to build a more efficient economy, players minimise unspent resources and
increase their resource collection rate by expanding and training more work-
ers. Spending Quotient (SQ) [1] is a feature to quantitatively measure players’
economic management in a game and is calculated as

SQ(i, u) = 35 × (0.00137i− log u) + 240

where i represents resource collection rate and u represents unspent resources.
Resources can be calculated as a weighted arithmetic mean of Mineral and
Vespene, where the weight of Mineral and Vespene ranges from 1:2 to 1:3. Like

3 League accuracies are averaged together weighted by the number of examples of that
league in the dataset.
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the measurement of APM, players who have higher SQ should be considered as
more advanced players. Figure 2 shows the average SQ of global players in each
league of ranked matches in SC2. Although the difference between average SQ
among leagues is not as large as that of APM, players in higher leagues have
higher SQ.

Fig. 2. Average spending quotient varies by league, with higher leagues having im-
proved spending quotient scores.

Other features

– Game Length The length of the game in seconds.
– Avg Unspent Minerals/Vespene How many resources the player left unspent.

Higher values tends to indicate weaker players, as strong players are more
able to spend resources quickly.

– Avg Mineral/Vespene Collection Rate The rate at which the player collects
resources.

– Avg Workers The average number of workers over the game. Higher level
players tend to have more workers.

– Avg Supply Used/Made This indicates the number and strength of the units
recruited. A higher number might indicate that the player had to replace
many lost units, while a lower number could indicate that the player was
not able to establish a good resource collection rate.

– Supply Blocked Time Units require supply to be built. If no supply is avail-
able, unit production is halted. Longer supply blocked times usually indicates
a weaker player.

– Produced Units The number of units recruited by the player.
– Killed Units The number of units killed by the player.
– Killed Workers The number of opponent worker units killed by the player.

4.4 Model Selection

We considered five models for classifying the replays: K-nearest Nearest Neigh-
bour (k-NN) using Euclidean distance, Linear Support Vector Machine (Linear
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SVM), Non-linear Support Vector Machine (Non-linear SVM), Random Forest,
and a Gradient Boosting Classifier. Each algorithm was tuned via a grid search
over hyperparameters as detailed in Table 2. The best model was selected by
performing 5-fold cross validation on the training set, according to the weighted
average F1-score. Feature importance for the Gradient Boosting Classifier was
assessed using Gini importance [10].

Table 2. Hyperparameters for each algorithm where selected via a grid search using
5-fold cross validation, with the model with the best F1-Score being selected.

Algorithm Hyperparam. Values tested

KNN k [1..30]
SVM-Linear c 2i for i ∈ [−5..8]
SVM-Nonlinear c 2i for i ∈ [−5..8]
SVM-Nonlinear gamma [’auto’, ’scale’]
Random Forest estimators [10, 100, 1000]
Random Forest max features [Auto, 1, 2, 3]
Random Forest max depth [0..9]
Gradient Boosting estimators [10, 100, 1000]
Gradient Boosting max depth [3, 5, 10]
Gradient Boosting learning rate [0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1]

5 Results

In this section we evaluate the performance of the classifiers, as well as the
importance of each feature used as input to the models.

5.1 Classifier Performance

The kNN and Linear-SVM classifiers struggled to classify the player’s league,
with F1-scores of 0.516 and 0.495 respectively. The Non-linear SVM model per-
formed better with an F1-score of 0.560. However, the best performing models
were the Random Forest Classifier and Gradient Boosting Classifier. Both mod-
els had accuracy above 60%, with the Gradient Boosting Classifier performing
slightly better with an F1-score of 0.593 compared to 0.579. The full results
are shown in Table 3. The confusion matrix in Figure 3 shows that Gold play-
ers are often predicted as Platinum, whereas Master players are misclassified
as Diamond. As some players sit on the boundary between leagues, in terms of
their skill, it is not surprising that these leagues are confused and that under
uncertainty the classifier opts for the more populated Diamond league. If we
allow classification predictions to be correct if neighbouring the proper league,
then the classifier’s weighted accuracy rises to 94.5%, as shown in Table 4. This
means that, although the classifier is sometimes wrong about the league, it is
very unusual for it to predict a completely inappropriate league.
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Fig. 3. The confusion matrix for the Gradient Boosting Classifier. Results are nor-
malised. A large portion of the errors are in confusing diamonds ranked players with
the league above or below it.

Table 3. Holdout test scores for each classifier. The Gradient Boosting Classifier model
outperformed all other models, with Random Forrest being slightly behind.

Algorithm Accuracy F1-Score Hyperparameters

k-NN 0.538 0.516 k=10
Linear SVM 0.562 0.495 c=64
Non-linear SVM 0.597 0.560 c=64
Random Forest 0.615 0.579 max depth=auto
Gradient Boosting 0.617 0.593 learning rate=0.1, max depth=5,

n estimators=100

Table 4. Classification accuracy for the Gradient Boosting Classifier for leagues
within given distance. Accuracy improves dramatically when including the neighbour-
ing league. This indicates that when the classifier miss-classifies a player, it does so by
a small margin.

Distance Accuracy

Exact 61.7%
1 league 94.5%
2 leagues 99.6%
3 leagues 99.9%
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5.2 Feature Importance

It is not surprising that the most useful feature for predicting a player’s skill is
their APM. This is commonly recognised as an important distinction between
lower tier and upper tier players. All features selected contribute meaningfully
to the classifier’s prediction. For a breakdown of each feature’s importance, see
Figure 4. The addition of the average SQ feature proved to be more important
than any of the other features, except for APM. This is likely the reason for the
classifier’s improved performance over the previous state-of-the-art, which did
not include the SQ feature [3].

Fig. 4. Importance of each feature in the Gradient Boosting classifier. APM, a measure
of micromanagement, is by far the most important feature. However, SQ, a macroman-
agement measure of economic performance is the strongest of the remaining features.

6 Discussion

Our results show the importance of including macro-level features, such as
Spending Quotient, when accurately predicting player skill level in StarCraft
II. The Gradient Boosting Model shows that while predicting the exact league
of a human player is difficult, predicting to within one league is possible to very
high accuracy (94.5%). This would be useful to game developers as it would
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be possible to identify players that are well out of their correct league place-
ment (e.g., a GrandMaster on a smurfing account). We found that, as expected,
APM is a powerful indicator of a player’s ability, far exceeding all other features.
We also discovered that Spending Quotient, a measure of the player’s economic
management, provides a lot of additional information about the player’s abil-
ity and should be included, along with the other features, when predicting a
player’s league. Identifying Master league players proved to be very difficult for
the model, which is likely due to the small number of master players and rel-
atively little difference in ability between Master and Diamond level players.
GrandMaster players, on the other hand, are identified very accurately by the
model.

7 Conclusion

Our Gradient Boosting model demonstrates that identifying player skill level in
StarCraft II from replay data is possible and that the addition of the Spending
Quotient feature provides important information in predicting the player’s skill.
We were able to predict the players’ correct league to an accuracy of 61.7%, im-
proving greatly on the previous state-of-the-art of 47.3% [3]. When identifying a
player’s skill to within one league, an accuracy of 94.5% is achievable. Identify-
ing player skill allows developers to more easily identify smurfing and boosting
behaviour and improve customisation of the game to the player’s skill level.

7.1 Future Work

Due to the large number of different ways players can play StarCraft II, our
classifier would benefit from training additional high-quality matches. Producing
a model specifically for each of Blizzard’s regional servers would also be beneficial
as there are notable differences in play styles between these regions. It may be, for
example, that a Diamond league player on the Korean server would be ranked
Master on another server. Therefore, dividing the dataset into regions could
improve the performance.
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