
The challenge of the chiral Potts model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys.: Conf. Ser. 42 11

(http://iopscience.iop.org/1742-6596/42/1/003)

Download details:

IP Address: 130.56.107.38

The article was downloaded on 29/03/2013 at 00:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/42/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


The challenge of the chiral Potts model

R J Baxter
Centre for Mathematics and its Applications, The Australian National University, Canberra, ACT 0200,
Australia

Abstract. The chiral Potts model continues to pose particular challenges in statistical mechanics: it is
“exactly solvable” in the sense that it satisfies the Yang-Baxter relation, but actually obtaining the solution
is not easy. Its free energy was calculated in 1988 and the order parameter was conjectured in full generality
a year later. However, a derivation of that conjecture had to wait until 2005. Here we discuss that derivation.

1. Introduction
In 1970 I was in England, where my wife and I stayed for five months with my parents in Essex. It was
largely holiday, as we were on our way back to Australia after two years in Boston, where I had been
introduced to the six-vertex models and the Bethe ansatz by Elliott Lieb.

However, I did visit Cyril Domb’s group at King’s College, London, and it was there that I first
interacted with Tony Guttmann, who was also visiting the department: he was an invaluable aid to
navigating the labyrinthine corridors and staircases that linked the department’s quarters in Surrey Street
with the main part of the College.

Tony’s natural enthusiasm for statistical mechanics must have been infectious, for it was at this time
that I realised that the transfer matrices of the six-vertex model commuted - a vital first step in the
subsequent solution of the eight-vertex model.

This led to the solution of a number of other two-dimensional lattice models. One that has proved
particularly challenging is the chiral Potts model. Here I wish to discuss some of the insights that led to
the recent derivation of its order parameters.

The chiral Potts model is a two-dimensional classical lattice model in statistical mechanics, where
spins live on sites of a lattice and each spin takes N values 0, 1, . . . , N − 1, and adjacent spins interact
with Boltzmann weight functions W,W . We consider only the case when the model is “solvable”, by
which we mean that W,W satisfy the star-triangle (“Yang-Baxter”) relations [1]. The free energy of
the infinite lattice was first obtained in 1988 by using the invariance properties of the free energy and
its derivatives [2]. Then in 1990 the functional transfer matrix relations of Bazhanov and Stroganov [3]
were used to calculate the free energy more explicitly as a double integral [4, 5, 6]. The model has a
critical temperature, below which the system exhibits ferromagnetic order.

The next step was to calculate the order parameters M1, . . . ,MN−1 (defined below). These depend
on a constant k which decreases from one to zero as the temperature increases from zero to criticality. In
1989 Albertini et al [7] made the elegant conjecture, based on the available series expansions, that

Mr = kr(N−r)/N2
, 0 ≤ r ≤ N . (1.1)

It might have been expected that a proof of such a simple formula would not have been long in coming,
but in fact it proved to be a remarkably difficult problem. Order parameters (spontaneous magnetizations)
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are notoriously more difficult to calculate than free energies. For the Ising model (to which the chiral
Potts model reduces when N = 2), the free energy was calculated by Onsager in 1944 [8], but it was five
years later when at a conference in Florence he announced his result for the spontaneous magnetization,
and not till 1952 that the first published proof was given by Yang [9, 10].

Similarly, the free energy of the eight-vertex model was calculated in 1971 [11]. The spontaneous
magnetization and polarization were conjectured in 1973 and 1974, respectively [12, 13], but it was not
till 1982 that a proof of the first of these conjectures were published [14]. A proof of the second had to
wait until 1993 [15]!

By then three separate methods had been used. The Onsager-Yang calculation was based on the
particular free-fermion/spinor/pfaffian/Clifford algebra structure of the Ising model [16]. As far as the
auther is aware, this has never been extended to the other models: it would be very significant if it could
be.

The eight-vertex and subsequent hard-hexagon calculation was made using the corner transfer matrix
method, which had been discovered in 1976 [17]. This worked readily for the magnetization (a single-
site correlation), but not for the polarization (a single-edge correlation). This problem was remedied by
the “broken rapidity line” technique discovered by Jimbo et al [15].

For all the two-dimensional solvable models, the Boltzmann weight functions W,W depend on
parameters p and q. These parameters are known as rapidities and are associated with lines (the dotted
lines of Figure 1) that run through the midpoints of the edges of the lattice. In general these are complex
numbers, or sets of related complex numbers. In all of the models we have mentioned, with the notable
exception of the N > 2 chiral Potts model, these parameters can be chosen so that W,W depend only
on the rapidity difference (spectral parameter) p− q.

This property seems to be an essential element in the corner transfer matrix method: the star-triangle
relation ensures that the corner transfer matrices factor, but the difference property is then needed to show
that the factors commute with one another and are exponentials in the rapidities. The difference property
is not possessed by the N > 3 chiral Potts model and one is unable to proceed. At first the author
thought this would prove to be merely a technical complication and embarked on a low-temperature
numerical calculation [18] in the hope this would reveal the kind of simplifications that happen with the
other models. This hope was not realised.

I then looked at the technique of Jimbo et al and in 1998 applied it to the chiral Potts model. One
could write down functional relations satisfied by the generalized order parameter ratio function Gpq(r),
and for N = 2 these were sufficient (together with an assumed but very plausible analyticity property)
to solve the problem. However, for N > 2 there was still a difficulty. Then p, q are points on an
algebraic curve of genus > 1 and there is no obvious uniformizing substitution. The functional relations
themselves do not defineGpq(r): one needs some additional analyticity information, and that seems hard
to come by.

The calculation of the free energy of the chiral Potts model [5, 6, 19] proceeds in two stages. First one
considers a related “τ2(tq)” model [20]. This is intimately connected with the superintegrable case of
the chiral Potts model [21]. It is much simpler than the chiral Potts model in that its Boltzmann weights
depend on the horizontal rapidity q only via a single parameter tq, and are linear in tq. Its row-to-row
transfer matrix is the product of two chiral Potts transfer matrices, one with horizontal rapidity q, the
other with a related rapidity r = V Rq defined by eqn. (2.7) of section 2.

For a finite lattice, the partition function Z of the τ2(tq) model is therefore a polynomial in tp. The
free energy is the logarithm of Z1/M , where M is the number of sites of the lattice, evaluated in the
thermodynamic limit when the lattice becomes infinitely big. This limiting function of course may have
singularities in the complex tq plane. A priori, one might expect it to have N branch cuts, each running
though one of the N roots of unity. However, one can argue that in fact it only has one such cut. As
a result the free energy (i.e. the maximum eigenvalue of the transfer matrix) can be calculated by a
Wiener-Hopf factorization.

The second stage is to factor this free energy to obtain that of the chiral Potts model.
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It was not until 2004 that I realised that:
(1) If one takes p, q to be related by eqn. (4.1) below, then Gpq(r) can be expressed in terms of

partition functions that involve p, q only via the Boltzmann weights of the τ2(tp′) model, with p′ = R−1p.
(2) It is not necessary to obtain Gpq(r) for arbitrary p and q. To verify the conjecture (1.1) it is

sufficient to obtain it under the restriction (4.1).
I indicate the working in the following sections: a fuller account is given in Ref. [22]. The calculation

of Gpq(r) for general p, q remains an unsolved problem: still interesting, but not necessary for the
derivation of the order parameters Mr.

2. Chiral Potts model
We use the notation of [1, 4, 23]. Let k, k′ be two real variables in the range (0, 1), satisfying

k2 + k′2 = 1 . (2.1)

Consider four parameters xp, yp, μp, tp satisfying the relations

kxN
p = 1 − k′/μN

p , kyN
p = 1 − k′μN

p , tp = xpyp . (2.2)

Let p denote the set {xp, yp, μp, tp}. Similarly, let q denote the set {xq, yq, μq, tq}. We call p and q
“rapidity” variables. Each has one free parameter and is a point on an algebraic curve.

Define Boltzmann weight functions Wpq(n),W pq(n) by

Wpq(n) = (μp/μq)n
n∏

j=1

yq − ωjxp

yp − ωjxq
, (2.3a)

W pq(n) = (μpμq)n
n∏

j=1

ωxp − ωjxq

yq − ωjyp
, (2.3b)

where
ω = e2πi/N .

They satisfy the periodicity conditions

Wpq(n+N) = Wpq(n) , W pq(n+N) = W pq(n) .

Now consider the square lattice L, drawn diagonally as in Figure 1, with a total of M sites. On each
site i place a spin σi, which can take any one of the N values 0, 1, . . . , N − 1.

The solid lines in Figure 1 are the edges of L. Through each such edge there pass two dotted or
broken lines - a vertical line denoted v and a horizontal line denoted h (or p or q). These v, h, p, q are
rapidity variables, as defined above. We refer to each dotted line as a “rapidity line”.

With each SW - NE edge (i, j) (with i below j) associate an edge weight Wvh(σi − σj). Similarly,
with each SW - NE edge (j, k) (j below k), associate an edge weight W vh(σj − σk). (Replace h by p or
q for the broken left and right half-lines.) Then the partition function is

Z =
∑
σ

∏
Wvh(σi − σj)

∏
W vh(σj − σk) , (2.4)

the products being over all edges of each type, and the sum over all NM values of the M spins. We
expect the partition function per site

κ = Z1/M

to tend to a unique limit as the lattice becomes large in both directions.
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Figure 1. The square lattice (solid lines, drawn diagonally), and the associated rapidity lines (broken or dotted).

Let a be a spin on a site near the centre of the lattice, as in the figure, and r be any integer. Then the
thermodynamic average of ωra is

F̃pq(r) = 〈ωra〉 = Z−1
∑
σ

ωra
∏

Wvh(σi − σj)
∏

W vh(σj − σk) . (2.5)

We expect this to also tend to a limit as the lattice becomes large.
We could allow each vertical (horizontal) rapidity line α to have a different rapidity vα (hβ). If an

edge of L lies on lines with rapidities vα, hβ , then the Boltzmann weight function of that edge is to be
taken as Wvh(n) or W vh(n), with v = vα and h = hβ .

The weight functions Wpq(n), W pq(n) satisfy the star- triangle relation [1]. For this reason we
are free to move the rapidity lines around in the plane, in particular to interchange two vertical or two
horizontal rapidity lines [24]. So long as no rapidity line crosses the site with spin a while making such
rearrangements, the average 〈ωra〉 is unchanged by the rearrangement.1

All of the v, h rapidity lines shown in Figure 1 are “full”, in the sense that they extend without break
from one boundary to another. We can move any such line away from the central site to infinity, where
we do not expect it to contribute to 〈ωra〉. Hence in the infinite lattice limit F̃pq(r) = 〈ωra〉 must be
independent of all the full-line v and h rapidities.

The horizontal rapidity line immediately below a has different rapidity variables p, q on the left and
the right of the break below a. This means that we cannot use the star-triangle relation to move it away
from a.

It follows that F̃pq(r) will in general depend on p and q, as well as on the “ universal” constants k
or k′. We are particularly interested in the case when q = p. Then the p, q line is not broken, it can be
removed to infinity, so

Mr = F̃pp(r) = 〈ωra〉 = independent of p . (2.6)

1 Subject to boundary conditions: here we are primarily interested in the infinite lattice, where we expect the boundary
conditions to have no effect on the rearrangements we consider.
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These are the desired order parameters of the chiral Potts model, studied by Albertini et al. By using
this “broken rapidity line” approach, I was finally ably to verify their conjecture (1.1) in 2005 [25, 22].
Here I shall present some of the observations that enabled me to do this.

Automorphisms
There are various automorphisms that change xp, ypμp, tp while leaving the relations (2.2 ) still satisfied.
Four that we shall use are R,S,M, V , defined by:

{xRp, yRp, μRp, tRp} = {yp, ωxp, 1/μp, ωtp} ,

{xSp, ySp, μSp, tSp} = {1/yp, 1/xp, ω
−1/2yp/(xpμp), 1/tp} , (2.7)

{xMp, yMp, μMp, tMp} = {xp, yp, ωμp, tp} ,

{xV p, yV p, μV p, tV p} = {xp, ωyp, μp, ωtp} .

The central sheet D and its neighbours.
We shall find it natural, at least for the special case discussed below, to regard tp as the independent
variable, and xp, yp, μp to be defined it terms of it by (2.2). They are not single-valued functions of tp: to
make them single-valued we must introduce N branch cuts B0, B1, . . . , BN−1 in the complex tp-plane
as indicated in Figure 2. They are about the points 1, ω, . . . , ωN−1, respectively,

�
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B2
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�
�
�
�
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�
�
�
�

�
�
�
�
�

�
�
�
�
�

Figure 2. The cut tp-plane for N = 3.

Since the Boltzmann weights are rational functions of xp, yp, we expect Gpq(r), considered as a
function of tp or tq, to also have these N branch cuts.

Given tp in the cut plane of Figure 2, choose μN
p to be outside the unit circle. Then xp must lie in one

of N disjoint regions centred on the points 1, ω, . . . , ωN−1. Choose it to be in the region centred on 1.
We then say that p lies in the domain D. When this is so (and tp is not close to a branch cut), then in the
limit k′ → 0, μN

p = O(1/k′) and xp → 1.
The domain D has N neighbours D0, . . . ,DN−1 , corresponding to tp crossing the N branch cuts

B0, . . . , BN−1, respectively. The automorphism that takes D to Di, while leaving tp unchanged, is

Ai = V i−1RV N−i . (2.8)

The mappings Ai are involutions: A2
i = 1.
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3. Functional relations
We define the ratio function

Gpq(r) = F̃pq(r)/F̃pq(r − 1) . (3.1)

The functions F̃pq(r), Gpq(r) satisfy two reflection symmetry relations. Also, although we cannot
move the break in the (p, q) rapidity line away from the spin a, we can rotate its parts about a and then
cross them over. As we show in [23] and [22], this leads to functional relations for Gpq(r):

GRp,Rq(r) = 1/Gpq(N − r + 1) ,

Gp,q(r) = 1/GRSq,RSp(N − r + 1) ,

Gpq(r) = GRq,R−1p(r) , (3.2)

Gpq(r) =
xqμq − ωrxpμp

ypμq − ω r−1yqμp
GR−1q,Rp(r)

GMp,q(r) = Gp,M−1q(r) = Gpq(r + 1) ,

N∏
r=1

Gpq(r) = 1 .

Also, from (2.6),
Mr = Gpp(1) · · ·Gpp(r) . (3.3)

For the case whenN = 2 we regain the Ising model. As is shown in [23], there is then a uniformizing
substitution such that xp, yp, μp, tp are all single-valued meromorphic functions of a variable up, and
Wpq(n),W pq(n) and hence Gpq(r) depend on up, uq only via their difference uq − up. In fact
all quantities are Jacobi elliptic functions of up, uq with modulus k. One can argue (based on low-
temperature series expansions) that Gpq(r) is analytic and non-zero in a particular vertical strip in the
complex uq−up plane. The relations (3.2) then defineGpq(r). They can be solved by Fourier transforms
and one readily obtains the famous Onsager result

M1 = (1 − k′2)1/8 . (3.4)

For N > the problem is much more difficult. There then appears to be no uniformizing substitution
and Gpq(r) lives on a many-sheeted Riemann surface obtainable from D by repeated crossings of the
branch cuts. One can argue from the physical cases (when the Boltzmann weights are real and positive)
that Gpq(r) should be analytic and non-zero when p, q both lie in D, but the relations (3.2) only relate
these sheets to a small sub-set of all possible sheets. There seems to be a basic lack of information.

4. Solvable special case: q = V p
The author spent much time mulling over this problem, then towards the end of 2004 he realised that the
case

q = V p (4.1)

may be much simpler to handle, and still be sufficient to obtain the order parameters Mr.
The reason it is simpler is that one can rotate the left-half line p anti-clockwise below a until it lies

immediately below the half-line q, as in Fig. 5 of [22]. One has to reverse the direction of the arrow,
which means the rapidity is not p but p′ = R−1p.

The result is that p enters the sums in (2.4), (2.5) only via the weights of the edges shown in Figure 3.
The left-hand spins are the same - the spin a. The right-hand spins are set to the boundary value of zero.

Further, we can sum over the spins between lines p′ and q. For instance, summing over the spin g
gives a contribution

U(b, c, d, e) =
∑
g

Wvp′(b− g)W vp′(c− g)Wvq(g − d)W vq(g − e) .

16



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

<<<

<<<

∧∧∧ ∧∧∧ ∧∧∧ ∧∧∧ ∧∧∧ ∧∧∧a

a

p′ = R−1p

q

b c

e d

g
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

���
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

��

� �

� � � �

� � � �

v v v v v v

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

Figure 3. The lattice after rotating the half-line p to a position immediately below q.

If a, σ1, . . . , σL are the spins on the lowest row of Figure 3, and a, σ′1, . . . , σ′L are those in the upper, then
the combined weight of the edges shown in Figure 3 is

L∏
i=1

U(σi−1, σi, σ
′
i, σ

′
i−1) . (4.2)

Now q = V Rp′, which from (2.7) means that

xq = yp′ , yq = ω2xp′ , μq = 1/μp′ . (4.3)

This is the equation (3.13) of [4], the q, r therein being our p′, q and k, � having the values 0, 2. From
(3.17) therein, U(b, c, d, e) vanishes if 0 ≤ mod(b − e,N) ≤ 1 and 2 ≤ mod(c − d,N) ≤ N − 1.
It follows that the spins in the upper row are either equal to the corresponding spins in the lower row,
or just one less than them. From (2.29) and (3.39) of [4], it follows that to within “gauge factors” (i.e.
factors that cancel out of eqn. 4.2) U(b, c, d, e) depends on p very simply: it is linear in tp.

In fact, these Boltzmann weights U(b, c, d, e) are those of the τ2(tp′) model [4, 5, 6] mentioned
earlier. Just as this model plays a central role in the calculation of the chiral Potts free energy, so it
naturally enters this calculation of the order parameters.

In the low-temperature limit, when k′ → 0, μp, μq ∼ O(k′−1/N ), xp, xq → 1, we can verify that the
dominant contribution to the sums in (2.4), (2.5) comes from the case when σ1, . . . , σL, σ

′
1, . . . , σ

′
L are

all zero. Also, to within factors that cancel out of(4.2) and (2.5),

U(b, c, c, b) = 1 − ωtp′ = 1 − tp . (4.4)

It follows that the RHS of (2.5), and therefore of (3.1), is a ratio of two polynomials in tp, each of
degree L, and each equal to (1 − tp)L in the limit k′ → 0. By continuity (keeping L finite), for small
values of k′ their L zeros must be close to one. Provided this remains true (which we believe it does)
when we take the limit L→ ∞, we expectGp,V p(r) to be an analytic and non-zero function of tp, except
in some region near tp = 1. As k′ becomes small, this region must shrink down to the point tp = 1.

Similarly, if we rotate the half line p in Figure 1 clockwise above a, we can move it be immediately
above q, with p replaced by Rp, as in Fig. 6 of [22]. The p′, q of Figure3 herein are now replaced by
q,Rp. This corresponds equation (3.13) of [4] with the q, r therein replaced by q,Rp. From (4.1) it
follows that k, � in [4] now have the values −1, N + 1. The combined star weights U are now those
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of the τN (tp) model. They are polynomials in tp of degree N − 1, except for terms which contribute a

factor xε(r)
p to the contribution of (4.2) to Gp,V p(r), where

ε(r) = 1 −Nδr,0 , (4.5)

the δ function being interpreted modulo N , so ε(0) = ε(N) = 1 −N .
When k′ → 0 these polynomials are (1−ωtp)(1−ω2tp) · · · (1−ωN−1tp). In the large-L limit, with

k′ not too large, we therefore expect xε(r)
p Gp,V p(r) to have singularities near tp = ω, . . . , ωN−1, but not

near tp = 1.
If we define

g(p; r) = Gp,V p(r) , (4.6)

then this implies that the function xε(r)
p g(p; r) does not have B0 as a branch cut. This is in agreement

with the fourth and sixth functional relations in (3.2). If we set q = V p therein we obtain

x−ε(r)
p g(p; r) = y−ε(r)

p g(V −1Rp; r) , (4.7)

using V −1R = R−1V . Here we have used the fourth relation for r 
= 0 and the sixth to then determine
the behaviour for r = 0. (For r = 0 the fourth relation merely gives 0 = 0.) From (2.8) the automorphism
V −1R is the automorphism A0 that takes p across the branch cut B0, returning tp to its original value,

while interchanging xp with yp. Thus (4.7) states that x−ε(r)
p g(p; r) is the same on both sides of the cut,

i.e. it does not have the cut B0.
These are the key analyticity properties that we need to calculate g(p; r) and Mr. We do this in

[22, 25], but this meeting is in honour of Tony Guttmann, an expert in series expansion methods, so it
seems appropriate to here describe the series expansion checks I made (for N = 3) when I first began to
suspect these properties.

5. Consequences of this analyticity
The above observations imply that g(p; r), considered as a function of tp, does not have the branch cuts
of Figure 2, except for the branch cut on the positive real axis.

This means that g(p; r) is unchanged by taking allowing tp to cross any of the branch cuts
B1, . . . , BN−1 and then returning it to its original value, i.e. it satisfies the N − 1 symmetry relations:

g(p; r) = g(Ai p; r) for i = 1, . . . , N − 1 , (5.1)

Ai being the automorphism (2.8).
For N = 3, this can be checked using the series expansions obtained in [26]. We use the hyperelliptic

parametrisation introduced in [27, 28, 29]. We define parameters x, zp, wp related to one another and to
tp by

(k′/k)2 = 27x
∞∏

n=1

(
1 − x3n

1 − xn

)12

. (5.2)

w =
∞∏

n=1

(1 − x2n−1z/w)(1 − x2n−1w/z)(1 − x6n−5zw)(1 − x6n−1z−1w−1)
(1 − x2n−2z/w)(1 − x2nw/z)(1 − x6n−2zw)(1 − x6n−4z−1w−1)

(5.3)

(writing zp, wp here simply as z, w), and

tp = ω
f(ωzp)
f(ω2zp)

=
f(−ω/wp)
f(−ω2/wp)

= ω2 f(−ωwp/zp)
f(−ω2wp/zp)

, (5.4)
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where f(z) is the function

f(z) =
∞∏

n=1

(1 − xn−1z)(1 − xn/z) . (5.5)

Note that x, like k′, is a constant (not a rapidity variable) and is small at low temperatures. We
develop expansions in powers of x. For p in D, the parameters zp, wp are of order unity, so to leading
order wp = zp + 1, xp = 1, yp = (ω − ω2zp)/(1 − ω2zp).

The automorphisms R,S, V transform zp, wp to

zRp = xzp , zSp = 1/(xzp) , zV p = −1/wp

wRp = zp/wp , wSp = 1/(xwp) , wV p = zp/wp , (5.6)

so from (2.8), if pi = Aip then

zp0 = −1/(xwp), zp1 = −xwp/zp, zp2 = zp

wp0 = −1/(xzp), wp1 = wp, wp2 = xzp/wp . (5.7)

If we write g(p; r) more explicitly as g(zp, wp; r), then the relations (5.1) become

g(zp, wp; r) = g(−xwp/zp, wp; r) (5.8a)

g(zp, wp; r) = g(zp, xzp/wp; r) . (5.8b)

Using (2.4), (2.5), we can write (3.1) as

Gpq(r) =
2∑

j=0

ωjrFpq(j)

/
2∑

j=0

ωj(r−1)Fpq(j) , (5.9)

where Fpq(j) is the probability that spin a has value j.
We use the series expansions (39) – (52) of [26] for Fpq(1)/Fpq(0) and Fpq(2)/Fpq(0) in terms of

α = zq/zp , β = wq/wp . (5.10)

Since q = V p, zq = −1/wp, wq = zp/wp and we find from (39) of [26] that u = −ω wp/zp. (Choosing
the cube root for u to ensure that Fpq(i)/Fpq(0) is real when yp = yq = 0 which is when zp = ω2,
wp = −ω: we then regain the physically interesting q = p case of eqn. 2.6. ) For p, q in D, the
parameters zp, wp, zq, wq, α, β are all of order unity, we can then use the expansion (48) of [26] to obtain

Fpq(1)/Fpq(0) = ω2ψ1(zp) = ω2ψ2(−wp) ,

Fpq(2)/Fpq(0) = ωψ2(zp) = ωψ1(−wp) , (5.11)

where
ψ1(z) = −(z + 1)x+ (z + 1)3x2/z − (z3 + 6z2 + 16z + 16 + 4z−1 + z−2)x3

+(z4 + 11z3 + 41z2 + 85z + 81 + 25z−1 + 7z−2 + z−3)x4 +O(x5) ,

and
ψ2(z) = zx− (2z + 1 + z−1)x2 − (z2 − 8z − 2 − 3z−1 − z−2)x3

−(2z3 − 5z2 + 31z + 6 + 14z−1 + 5z−2 + z−3)x4 +O(x5) .
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The automorphism (5.8a) interchanges D with D1. To leading order in x, the mid-point is when
zp = ix1/2, wp = 1. This is on the boundary of the domain D, in which the series (48) of [26] was
obtained, so the series is not necessarily convergent at this point. Nevertheless, if we take zp = O(x1/2)
in the above two series, we find the terms originally of order xj become of order not larger than x(j+1)/2.
Extrapolating, this suggests that the series do still converge at the midpoint, so we can use them to check
whether the symmetry is satisfied.

The first check occurs at order x3/2, where both series contain a term

± (xzp − x2wp/zp)

(using the fact that to leading order wp = 1 at the midpoint). This is indeed symmetric under
zp → −xwp/zp. If we subtract this term from the series (using the expansion of wp in terms of zp),
we can then check the behaviour at order x2, and similarly then at order x5/2. All three checks are
satisfied by both series.

The perceptive reader will remark that (5.11) allows us to work with wp instead of zp. Since wp is
unchanged byA1, the symmetry appears obvious. Indeed it is, but only because a quite remarkable event
occurred in deriving these series, namely the z series contains no powers of z + 1 as denominators, and
the w series contains no powers of w − 1. If one expands w in terms of z (or z in terms of w), then
one does find such terms. It is their absence from (5.11) that makes the series obviously convergent near
w = 1 or z = −1. I have presented the argument in terms of zp to make it clear that one does indeed
have three non-trivial checks on the symmetry to the available order of the series expansion.

Similarly, (5.8b) interchanges D with D2, with mid-point zp = −1, wp = ix1/2. If one now works
with wp as the variable, one can verify to the same three orders the symmetry wp → xzp/wp.

So our series provide no less than six checks on the symmetries (5.8a), (5.8b). When I first observed
this, I could see the resemblance to the properties of the free energy of the τ2(tq) model. One such
property is that τ2(tq)τ2(ωtq) · · · τ2(ωN−1tq) is a rational function of xN

q , so I looked at the series for

L(p; r) =
N−1∏
j =0

g(V j p; r)

= g(zp, wp; r) g(−1/wp, zp/wp; r) g(−wp/zp,−1/zp; r) . (5.12)

Choosing an arbitrary value for zp and working to 30 digits of accuracy, I soon found that the series
(known to order x4) fitted with the simple formulae

L(p; 0) = 1/x2
p , L(p; 1) = k1/3xp , L(p; 2) = k−1/3xp . (5.13)

All this strongly suggested that I was on the right track. It did not take long to justify my observations
for general N . For instance, if g(p; r) only has the branch cut B0, and x−ε(r)

p g(p; r) does not have that

cut, then x−ε(r)
p L(p; r) does not have the cut B0. But this function is unchanged by p → V p, which

rotates the tp plane through an angle 2π/N . Hence it cannot have any of the cuts B0, B1, . . . , BN−1.
We do not expect any other singularities (e.g. poles) for p in D, so the function is analytic in the entire
tp plane. It is bounded (the Boltzmann weights W,W remain finite and non-zero as yp → ∞, the ratio
μp/yp remaining finite), so from Liouville’s theorem it is a constant (independent of p but dependent on
r).

We can relate these constants to the desired order parameters Mr in two ways, and then use these
relations to calculate the Mr. When yp = yq = 0 and xp = k1/N , our special case q = V p intersects
with physically interesting case q = p, so from (2.6),

x−ε(r)
p L(p; r) = k−ε(r)/N (Mr/Mr−1)N . (5.14)
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When yp = yq = ∞ (μp/yp remaining finite) and xp = k−1/N we find not q = p but q = M−1p,
which is related to q = p by the fifth of the functional relations (3.2), giving

x−ε(r)
p L(p; r) = kε(r)/N (Mr+1/Mr)N . (5.15)

The left-hand sides of these last two equations, being constants, are the same in both equations. We
can therefore equate the two right-hand sides, for r = 1, . . . , N−1. Using the fact that M0 = MN = 1,
we can solve for M1, . . . ,MN−1 to obtain

Mr = kr(N−r)/N2
for r = 0, . . . , N , (5.16)

which verifies the conjecture (1.1) of Albertini et al [7]. For N = 3 these results do of course agree with
my original conjectures (5.13).

In [22] I also show that one can calculate GP,V p(r) = g(p; r) by a Wiener-Hopf factorization, giving

g(p; r) = k(N+1−2r)/N2 S ε(r)
p (5.17)

for r = 1, . . . , N , where

logSp = − 2
N2

log k +
1

2Nπ

∫ 2π

0

k′eiθ

1 − k′eiθ
log[Δ(θ) − tp] dθ , (5.18)

and
Δ(θ) = [(1 − 2k′ cos θ + k′2)/k2]1/N . (5.19)

(This function Sp should not be confused with the automorphism S defined in (2.7).
As is implied by the above equations, Sp satisfies the product relation

SpSV p · · · SV N−1p = k−1/Nxp . (5.20)

Also, if one sets q = V p in the second of the relations (3.2), uses the identity RS = MVRSV and the
fifth relation, one obtains g(p; r)g(RSV p;N − r) = 1, from which we can deduce the symmetry

Sp SRSV p = k−2/N2
. (5.21)

For N = 3 the automorphism p → RSV p takes zp, wp to −wp,−zp, so this relation can then be
written

S(zp, wp)S(−wp,−zp) = k−2/9 . (5.22)

6. Another interesting case: q = V 2p
We now have the solution for Gpq(r) for q = p and for q = V p. This suggests looking at one more case:
q = V 2p, where yq = ω2yp. Similarly to section 5, we set g2(p; r) = Gpq(r) and

L2(p; r) =
N−1∏
j=0

g2(V jp; r) .

For N = 3 we have used the series expansions of [26] to obtain for this case

Fpq(1) = ωφ(wp) , Fpq(2) = ω2φ(1/wp) , (6.1)

where
φ(w) = (w − 1)x− (2w2 − 2w + 1)x2/w + (2w3 + 6w2 − 6w + 1)x3/w
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− (2w4 + 8w3 + 24w2 − 22w + 5)x4/w +O(x5) . (6.2)

As in the previous case, the coefficients are Laurent polynomials in w. There is no sign of any singularity
nearwp = 1, tp = ω so this suggests thatGpq(r), considered as a function of tp, does not have the branch
cut B1.

Indeed, this is a consequence of the third functional relation (3.2). Setting q = V 2p therein, we obtain

g2(p; r) = g2(A1p; r) ,

which tells us that g2(p; r) is unchanged by taking tp across the branch cut B1 and returning it to its
original value. This means that the cut B1 is unnecessary. However, g2(p; r) does appear to have the
other two cuts B0 and B2.

To the available four terms in the series expansion we found

L2(p; 1) = x2
p ,

and
L2(p; 0) = k−1/3x−1

p h(zp, wp)3 , L2(p; 2) = k1/3x−1
p h(zp, wp)−3 , (6.3)

where
h(z, w) = 1 + (x2 − 6x3 + 35x4)(w/z2 + zw − z/w2 + 3)

+ x4(w2/z4 + z2/w4 + z2w2 − 3) +O(x5) . (6.4)

The result for L2(p; 1) looks encouraging, and indeed to the four available terms in the series
expansion we also find

g2(p; 1) = k2/9 Sp SV p . (6.5)

The results for L2(p; 0) and L2(p; 2) are not so encouraging and I have failed to find any obvious
result for these or for g2(p; 0), g2(p; 2). In [22] I conjecture that for general N the functions Gp,V ip(r)
have a simple form as a product of S functions provided i = 0, . . . , N − 1 and r = 1, . . . , N − i. For
other values of i, r they remain a puzzle. (Except when i = 1 and r = N : this case can be deduced from
the sixth relation of eqn 3.2.)

If (6.5) is correct, then we have some information on the function Lpq(r) of eqn. 56 of [23]. From
this and the first equation of (3.2),

Lpq(r) = Gpq(r)GRq,Rp(r) = Gpq(r)/Gqp(N − r + 1) . (6.6)

Setting q = V p and using (4.6), we obtain

Lpq(r) = g(p; r)/g2(V p;N − r + 1) . (6.7)

Taking r = 0, it follows from (5.17) and (6.5) that

Lpq(0) = k−4/9/(S2
p SV p SV 2p) = k−1/9/(xpSp) . (6.8)

The function Lpq, for arbitrary p, q, was introduced in [23] partly because its square is a rational function
of xp, yp, μp, xq, yq, μq when N = 2, so the hope was that it might be similarly simple for all N . We see
that this cannot be so: Sp is not such a function.

22



7. Summary
I have outlined the recent derivation of the order parameters of the solvable chiral Potts model, a
derivation that verifies a long-standing and elegant conjecture [7]. As with all the calculations on solvable
models satisfying the star-triangle relations, the trick is to generalize the model to a point where one has
a function, here Gpq(r), to calculate, rather than a constant, as one can obtain relations and properties
that define this function. On the other hand, this is an example where it pays not to over-generalize: we
can handle the particular function Gp,V p(r), and this is sufficient for the purpose of obtaining the order
parameters. The general Gpq(r) continues to defy calculation.

Series expansion methods can provide a valuable check on such derivations, which are of their nature
believable but hard to make fully mathematically rigorous. One usually tries to present the argument in
as logical a manner as possible, but this is usually not the manner in which it was originally developed.
Here I have indicated the points in the calculation when I found the available checks both reassuring and
encouraging.
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