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Abstract

Diagnosis of immune thrombocytopenia (ITP) and prediction of response to therapy remain
significant and constant challenges in hematology. In patients who present with ITP, the platelet
count is frequently used as a surrogate marker for disease severity, and so often determines the
need for therapy. Although there is a clear link between thrombocytopenia and hemostasis,
a direct correlation between the extent of thrombocytopenia and bleeding symptoms, especially
at lower platelet counts is lacking. Thus, bleeding in ITP is heterogeneous, unpredictable, and
nearly always based on a multitude of risk factors, beyond the platelet count. The development of
an evidence-based, validated risk stratification model for ITP treatment is a major goal in the ITP
community and this review discusses new laboratory approaches to evaluate the various patho-
biologies of ITP that may inform such a model.
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Introduction

Immune thrombocytopenia (ITP) is an acquired autoimmune
disorder characterized by a moderate to a severe reduction in
platelet count in peripheral blood and where there is no other
cause or disorder associated with thrombocytopenia. In
healthy individuals, the platelet count ranges from 150 to
400 × 109/L, however in ITP, the platelet count falls below
100 × 109/L [1]. In adults, the incidence of ITP is approxi-
mately two to four per 100,000 [2]; however, these numbers
may be inaccurate. In fact, ITP is likely to be under or even
misdiagnosed [3] as clinical diagnosis is by exclusion, both
patient presentation and disease etiology are diverse and non-
uniform, and in the absence of meaningful standardized tests,
the simple platelet count remains the primary tool for diag-
nosis and evaluation of response to therapy. Distinguishing
ITP from other forms of acquired thrombocytopenia such as
drug-induced thrombocytopenia is crucial for diagnosis and
for implementation of the appropriate medical treatment
(Figure 1) [4]. New diagnostic approaches that can assess
platelet quality and functional changes are desperately needed
as novel clinical therapies become available. Further, applica-
tion of these new research-based approaches to evaluate pla-
telet and immune cell levels and function in samples from
people with ITP in a measured and strategic fashion is likely
to simultaneously improve our understanding of the etiology
and pathology of ITP.

Mechanisms of Disease in ITP

ITP is an acquired heterogeneous autoimmune disorder character-
ized by phagocytosis of autoantibody-coated platelets by splenic
macrophages and complement- or T cell-mediated platelet
destruction (Figure 2) [5]. The targets of autoantibodies, primarily
of the immunoglobulin (Ig) G class, are specific glycoprotein
(GP) receptors found on platelets and the parental bone marrow
megakaryocyte. In ITP the major antigenic receptor targets are
GPIb-IX-V (primarily the GPIbα subunit but also GPV) and
αIIbβ3 [6–8], although antibodies against GPVI and α2β1 have
also been reported [9, 10]. Binding of these autoantibodies to
platelets triggers destructive processes often mediated by Fc
receptor (FcR) on macrophages as well as inhibition of platelet
function and platelet production by megakaryocytes. Levels of
thrombopoietin (TPO), mostly a liver-derived hormone that drives
megakaryocyte maturity and platelet production, are generally not
different in ITP patients from levels measured in healthy donors
[11, 12]. Although the measurement of TPO levels is unable to
confirm a diagnosis of ITP, as this entity remains a diagnosis of
exclusion, elevated TPO levels may help suggest an alternative
cause for thrombocytopenia [12]. The observation that TPO levels
are inappropriately modest in ITP suggests that this under-
expression contributes to the pathogenesis of the disease. The
onset of ITP has no clear underlying cause but seems to develop
through loss or perturbation of B- and T-cell immune tolerance
via diverse mechanisms. An abnormal T cell response, driven by
splenic T follicular helper cells, stimulates the proliferation and
differentiation of autoreactive B cells. Altered T helper cell ratios
and changes to attendant cytokines such as interleukin (IL)-17
have also been reported to contribute to ITP pathology [13].
Cytotoxic T cells have been demonstrated targeting platelets in
the periphery, as well as affecting megakaryocyte proplatelet
formation in the bone marrow niche [14, 15].
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Current Means to Diagnose ITP

There is no diagnostic test or reliable panel of biomarkers to direct
treatment, and few comparative studies to help management deci-
sions around ITP, and this syndrome remains diagnosed by the
exclusion of other known causes [2, 16]. Response to ITP-specific
therapy, for example, intravenous immunoglobulin (IVIg) and intra-
venous anti-D, is supportive of the diagnosis, but a platelet response

does not confirm a diagnosis either. As peoplewith ITP often present
with fatigue and unexplained mild bleeding, the platelet count in
association with blood and bone marrow smears remain the major
clinical tools to evaluate an isolated thrombocytopenia. Secondary
causes for ITP need to be excluded with screening for autoimmune
diseases, serology for hepatitis C virus, human immunodeficiency
virus and in some regions Helicobacter pylori testing [16, 17].

Figure 1. Factors that lead to a low platelet count.A low platelet count can result from one or more main elements; reduced production of platelets by
megakaryocytes in the bone marrow, increased consumption of platelets in hemostatic processes and accelerated clearance of platelets. Exposure to
toxic chemicals and chemotherapy, autoimmune disorders and other pathologies can disturb the bone marrow niche and platelet production by
megakaryocytes. Certain drugs have been associated with the development of drug-dependent anti-platelet antibodies. Reduction in platelet count can
also arise from extensive consumption of platelets in hemostatic processes. Furthermore, the production of anti-platelet autoantibodies can result in
inappropriate platelet activation and opsonization leading to clearance via the spleen where antibody-opsonized platelets are removed by splenic
macrophages or via the liver where Kupffer cells remove activated/desialylated platelets. External triggering factors such as infection, pregnancy and
surgery can also trigger thrombocytopenia however the mechanisms have not been elucidated.

Figure 2. Pathophysiology of immune thrombocytopenia.The pathophysiology of ITP stems from dysregulation of the immune system and disturbed bone
marrow and platelet function. Control of an appropriate T cell response is lost, with increased T helper 1 cells and decreased T regulatory cells leading to
increased macrophage-mediated phagocytosis and presentation of platelet antigens to T and B cells. Autoantibodies produced by B cells opsonize platelets
leading to complement-mediated and phagocytic clearance. Loss of platelet numbers and function through autoantibody binding to both platelets and bone
marrow megakaryocytes can result in mild to severe bleeding symptoms. Immune cell dysregulation can also directly affect the bone marrow niche.
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A whole blood smear in combination with immunocytochemical
staining using monoclonal antibodies (mAbs) and qualitative analy-
sis by light microscopy can reveal changes in platelet morphology as
well as reduction of platelet receptor levels and help rule-out dis-
orders of macrothrombocytopenia [18]. Measurement of platelet
diameter may be helpful to distinguish ITP from other inherited
forms of thrombocytopenia [19].

Notwithstanding procedural nuances that can impact on the count-
ing of platelets, including the choice of anticoagulant in which to
collect the blood, and the mode of automated counter (optical or
impedance) used to enumerate platelets, the platelet count remains
just a broad guide of disease status. It does not predict treatment
responses or duration of response or provide a means to stratify
patients for bleeding risk. Some measurements are only available in
reference centers including quantification of reticulated (new) plate-
lets, serum thrombopoietin (TPO) and platelet sequestration studies
which remain of disputed benefit from conflicting data [20–23].

Avenues to Investigate ITP Pathogenesis

As our understanding of the pathogenesis of ITP is strengthening,
research-based approaches that focus on measuring the underlying
causes of this syndrome may have utility to evaluate ITP pathol-
ogy in patients and assist in the diagnosis of ITP (Figure 3). This
will be particularly valuable if new approaches can enable strati-
fication of patients into therapeutic groups, as well as identifica-
tion of patients at risk of relapse and of bleeding.

Characterizing Antiplatelet Autoantibodies

Autoantibodies against platelet antigens are considered a diagnostic
hallmark of ITP; however, reliable detection of pathological antibodies

is challenging due to variable levels of free versus platelet-bound
antibodies, and an absence of detectable anti-platelet autoantibodies
in up to 40% of patients [24]. In some patients, antibodies recognize
antigens derived from a single glycoprotein; whereas in others, anti-
bodies recognizemultiple glycoproteins [25]. Although the prognostic
value of platelet antibodies to date is limited, it might be helpful to
characterize the target of an antiplatelet autoantibody as specific types
of antibodymay predict responses to steroids or IVIg [26, 27] andmay
predict chronic disease and bleeding [28]. More recently, antibody-
mediated desialylation of platelets in ITP has been reported to occur in
patients with anti-platelet antibodies, raising the possibility that these
patients could be treated with a neuraminidase inhibitor such as
oseltamivir [29–31].

Direct and indirect forms of the Monoclonal Antibody-specific
Immobilization of Platelet Antigen (MAIPA) assay using patient or
donor platelets are designed to detect and characterize the autoanti-
body target [32]. Indirect MAIPA positivity at disease onset was
observed to be associated with more severe hemorrhage and pre-
dicted a chronic course in adult ITP patients [28]. In this assay,
platelets from donors or patients are isolated and washed, then
mixed separately with mouse mAbs directed against various
human platelet receptors, primarily GPIb-IX-V, αIIbβ3 or α2β1
which are the major platelet antigens in ITP. Platelets are then
washed and solubilized by detergent-containing buffer and plated
onto 96-well plates coated with anti-mouse IgG. The wells are
washed and incubated with a peroxidase- or phosphatase-
conjugated anti-human IgG antibody followed by substrate.
Detection of a signal signifies the presence of autoantibodies in
complex with the mAb-bound platelet receptor captured by the
anti-mouse IgG. This assay requires specialist laboratory training
and does not report on autoantibody binding affinity or avidity.
Also, a lack of signal indicates only that antiplatelet autoantibodies

Figure 3. Some existing and new laboratory approaches to aid diagnosis of ITP.Some existing and new research-based methods that can be applied to evaluate
ITP both at initial presentation and in a patient receiving treatment focus on evaluating antibody-induced changes to platelet function, detection and
characterization of anti-platelet autoantibodies and enumerating immune cell subsets and specific functions (e.g. cytokine production). A new assay evaluates the
levels of intact and total GPIbα present on circulating platelets, to gauge peripheral destruction of platelets. PF4 and sGPVI are released from antibody-bound
platelets and can be batch analyzed by ELISA. Desialylation of the platelet surface (predominantly GPIbα) can be evaluated by flow cytometry using
fluorescence-labeled lectins. Assessment of T and B cell subsets by flow cytometry and functional assays can also report on the extent of immune dysregulation.
Ongoing and future work will evaluate the utility of each of these assays to inform clinical decisions, predict bleeding and assess responses to therapies.
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that target the receptors specified are not detected, neglecting
alternate epitopic specificity. Further, as mAbs against GPVI are
generally not included in a standard MAIPA, autoantibodies that
bind GPVI will not be detected. A version of the MAIPA using
beads coated with mAbs against GPIbα or αIIb integrin that was
mixed with patient washed platelet lysates followed by
a radiolabeled anti-human IgG antibody has been used with reason-
able specificity but only modest sensitivity [24].

Platelet-associated Immunoglobulins

Approaches that use flow cytometry to evaluate the platelet sur-
face for the presence of antibodies (platelet-associated IgG;
PaIgG) also have been described. Samples of patient whole
blood are mixed with fluorescently tagged anti-human IgG anti-
bodies and evaluated for fluorescence activity. This approach has
the advantage of being able to directly interrogate samples of
anticoagulated whole blood from patients, rather than use surro-
gate donor platelets, as flow cytometry is sufficiently sensitive to
be able to monitor the platelet surface in thrombocytopenic sam-
ples even when the platelet count is extremely low (<5 x 109/L).
The disadvantage of this approach is the lack of specificity [33] as
PaIgG may be elevated in both immune and nonimmune throm-
bocytopenia [34]. Interestingly, the population of PaIgG-positive
platelets detected in peripheral blood is likely to be the ‘surviv-
ing’ platelets that have not been cleared by the reticuloendothelial
system and may themselves be worthy of investigation.

Evaluating Age of Circulating Platelets as a Surrogate for
Platelet Production

In healthy individuals, platelets circulate for 7–10 days unless
consumed as part of a hemostatic response. Newly synthesized
(reticulated) platelets are released from bone marrow megakaryo-
cytes and these platelets are larger in size and contain ribonucleic
acid (RNA) [35] which can be used by platelets for protein
synthesis [36, 37]. RNA levels can be estimated by mixing
whole blood samples with thiazole orange (TO) and measuring
fluorescence activity in a flow cytometer, although a standard TO
labeling protocol needs to be rigorously followed and TObright and
TOdull gates clearly defined. Values for healthy ranges of TO
staining can be challenging to set as platelet autofluorescence
contributes significant background signal in this assay. Modern
blood analyzers also use this approach to calculate the immature
platelet fraction (IPF) and the automated IPF has been shown to
measure thrombopoiesis in real time and track treatment effec-
tiveness in ITP [38, 39], predict bleeding [40] and helps distin-
guish between hypo- and hyper-proliferative thrombocytopenias
[41]. Importantly, concordance between flow cytometric and
automated analyzer approaches was achieved in ITP samples
[42]; however, more work is required in larger patient cohorts to
fully understand the implications of this measurement in predict-
ing the course of the disease and in assisting decisions on therapy.
Reticulated platelets have also recently been shown to carry high
levels of human leukocyte antigen (HLA) I with good reproduci-
bility [43]. This observation requires further detailed analysis to
characterize the HLA-positive population as HLA I levels on
platelets may be regulated by multiple means [44, 45].

Evaluating Receptor Levels on Circulating Platelets

Engagement of the platelet surface by antibodies targeting platelet
proteins can lead to platelet activation. This is most readily seen
in heparin-induced thrombocytopenia (HIT) where autoantibodies
against platelet factor 4/heparin form an immune complex that
can engage the antigen on the platelet surface via Fab regions and

simultaneously interact with FcγRIIa on the platelet via the Fc
portion resulting in platelet activation [46]. The binding and
activation of FcγRIIa require that the pathological antibody
binds to its antigenic target in an appropriate orientation that
permits Fc interaction with platelet FcγRIIa. To what extent ITP-
related antiplatelet autoantibody pathology triggers metallopro-
teolysis and other platelet activation and degranulation events
remain to be determined; however, the Fc portion of PaIgG is
likely to mediate platelet clearance by engaging with Fc receptor
on monocytes and macrophages [5].

Using flow cytometry, levels of platelet receptors on circulat-
ing platelets can be measured in thrombocytopenic samples. In
particular, altered levels of GPIbα, αIIb and β3 integrin subunits,
GPVI and P-selectin may signal the presence of an activating
anti-platelet antibody. Whilst the mechanisms by which these
receptors are regulated in vivo remain unclear, a number of
platelet receptors can be metalloproteolytically shed from plate-
lets, particularly upon engagement of the platelet antigen by an
antiplatelet autoantibody. Being able to assess one or more shed
ectodomain fragments in plasma using enzyme-linked immuno-
sorbent assays (ELISA) offers flexibility in sample acquisition
and storage for batch analysis. Notably, a small number of ITP
patients who presented with bleeding were shown to have an anti-
GPVI autoantibody [9, 10], with evidence of platelet activation
and metalloproteolysis of GPVI, resulting in the release of the
GPVI ectodomain (sGPVI) and loss of collagen-related platelet
function. Whether other platelet autoantibodies, particularly anti-
bodies against GPIbα also trigger shedding of platelet receptors,
and whether monitoring the loss of receptor ectodomains by flow
cytometry of patient platelets in whole blood, or measurement of
one or more shed ectodomain fragments in patient plasma has any
value in assessing the presence of a platelet-activating antibody
are open research questions. For example, a significant increase in
soluble GPVI as quantified by ELISA signaled the presence of an
acquired anti-GPVI autoantibody [47, 48]. These measurements
explained the loss of collagen responsiveness in platelet aggrega-
tion assays as well as the observed bleeding that could not be
explained by the platelet count [9, 10, 49].

In contrast to GPVI, GPIbα is constitutively shed from plate-
lets, and whilst the shed portion of GPIbα (glycocalicin) can be
monitored by ELISA, the value of this measurement in reporting
on anti-platelet autoantibody-induced platelet activation is not
clear. Plasma levels of glycocalicin vary considerably in healthy
donors and loss of GPIbα can be triggered by one or more non-
antibody mediated mechanisms [38,50–52]. A more useful
approach might be to evaluate the extent of intact receptors loss
(for example GPIbα) relative to the age of the platelet population
as determined by TO uptake or other methods [38]. In this way,
changes to the normal lifespan of circulating platelets, and
increases in platelet production (proportion of TO+/GPIbα+ pla-
telets) can be monitored for assessment of acute phases of ITP
and responses to therapy.

Autoantibodies that target GPIbα seem to increase platelet
clearance by triggering receptor clustering, platelet degranulation
to expose P-selectin and phosphatidylserine, and to release neur-
aminidases which remove (desialylate) sialic acid residues that
cap N- and O-linked carbohydrate moieties on the platelet surface
[27,53–55]. Levels of platelet desialylation can be estimated by
assessing the ability of glycan-binding lectins such as Ricinus
Communis agglutinin-1 or wheat germ agglutinin to bind to
exposed galactose or N-acetylglucosamine residues, respectively,
on washed platelets. Along with an improved understanding of
ITP pathology, these findings may also have clinical implications
as in a murine model of ITP [56], mice with anti-GPIbα auto-
antibodies were resistant to intravenous immunoglobulin (IVIg)
a common therapy used to treat ITP in patients refractory to
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steroids. Further, in selected ITP patients with anti-GPIbα auto-
antibodies, recovery of the platelet count was observed after
treatment with oseltamivir, a neuraminidase inhibitor suggesting
that neuraminidase activity was a significant mediator of pathol-
ogy in these individuals [29, 30]. Accurate identification of
GPIbα autoantibodies, estimation of platelet desialylation or ele-
vated platelet-associated or plasma neuraminidase activity in
patients with ITP represent new approaches that may aid clinical
decisions with regards to therapy. Such approaches require sig-
nificant technical expertise, access to freshly drawn blood and
sometimes washed platelets and a clear understanding of physio-
logical and pathophysiological ranges for each parameter.

Evaluating Platelet and Megakaryocyte Dysfunction

Bleeding is observed in primary ITP, and often the extent of bleeding is
out of step with the platelet count, implying that a platelet function
defect has been acquired as part of the ITP etiology in many patients
with bleeding issues [57]. However, all of the currently available
approaches to evaluate platelet function in a clinical setting (light
transmission and multiplate aggregometry, platelet function analy-
zer-100, thromboelastometry) are standardized for platelet counts
greater than 100 x 109/L and require >30 x 109 platelets/L to achieve
a blood clot as the measured endpoint. Thus, it can be difficult to
ascertain the presence of a platelet functional defect and associated
bleeding risk in ITP. However, in the research setting and in some
clinical trials, viscoelastic testing (TEG, ROTEM, ClotPro), which
provides a rapid assessment of clot formation and lysis inwhole blood
under low shear conditions, may provide meaningful data on throm-
bocytopenic samples [40,57–60]. Measurements including clot firm-
ness and alpha angle have demonstrated utility in the context of ITP
[57]. Furthermore, by subtracting clot amplitude parameters, such as
A10, obtained from the fibrin-specific FibTEM parameters (wherein
platelets are neutralized through the addition of cytochalasin-D), from
the extrinsically activated EXTEMA10 value, an indication of platelet
function can be obtained even in patients with a platelet count <20
x 109/L [61]. Of course, to assess the utility of thromboelastometry to
identify a platelet defect in ITP, ranges for these values in thrombocy-
topenic samples with no platelet function defect must first be estab-
lished. ROTEM has, however, been used to predict the onset of
thrombocytopenia and hypofibrinogenemia after cardiac bypass sur-
gery [62, 63] suggesting such an approach is feasible.

Since the target antigens of antiplatelet autoantibodies are present
on both platelets and the precursor megakaryocytes, autoantibodies
may also disrupt megakaryopoiesis and thrombopoiesis in ITP. The
ability of anti-platelet autoantibodies to impact megakaryocyte func-
tion is established as a platelet-independent mechanism of thrombo-
cytopenia [64, 65]. Megakaryocyte numbers are generally normal or
increased in ITP however these bone marrow cells show signs of
apoptosis and enhanced immune cell proximity [66, 67]. The plasma
of ITP patients has been shown to inhibit mature megakaryocyte
function, resulting in decreased platelet production despite normal
megakaryocyte numbers [68]. With the advent of high fidelity mega-
karyocyte cell lines [69], it may be possible to design a simple screen-
ing assay to evaluate the effect of ITP patient plasma on
megakaryocyte rates of maturation and proplatelet production [70].
This would allow discrimination between the contributions to throm-
bocytopenia of inhibited platelet production and peripheral platelet
destruction and may help predict responsiveness to thrombopoietin
mimetics.

Measuring and Identifying Changes in Immune Cell
Subsets

In many ITP patients, autoantibodies drive premature destruction of
antibody-coated platelets. However, a variety of T cell irregularities

have also been described in patients with ITP. These abnormalities,
facilitated by splenic T follicular helper cells, result in the prolifera-
tion and differentiation of autoreactive B cells which produce anti-
platelet autoantibodies [13]. Reductions in both number and function
of T-regulatory cells (Tregs), which suppress self-reactive lympho-
cytes and preserve immunological self-tolerance, have been recorded
in ITP [71]. Along with the decreased function of anti-inflammatory
IL-10-secreting B regulatory cells [72], a shift in the balance of
T-helper cell (Th) types occurs, with decreased Th2 polarization
resulting in an increased ratio of Th1 to Th2, which may enhance
macrophage activation [73]. Numbers of CD8+ cytotoxic T cells are
also elevated in peripheral blood and in the bone marrow of ITP
patients [74]. Modern systems for polychromatic flow cytometry
yield up to 20 distinct channels of data for a given cell and can
rapidly process millions of cells per sample. Nonetheless, developing
standardized methodology to accurately quantify and immunophe-
notype specific low-abundance subsets of immune cells involving
highly multiplexed (minimally 16-color) flow cytometry panels
remains extremely challenging [75]. The advent of mass cytometry
[76, 77] and spectral flow cytometry [78] means that the resolution
of antigen-specific T and B cell subsets is now possible; the applica-
tion of these systems to the analysis of ITP patient blood remains
a future possibility. More feasible is the standardization of assays to
evaluate specific functional changes of ITP patient and control
macrophage, monocyte, B and T cell subsets, such as cytokine
production (e.g. IL-17) [13], phagocytic potential and detection of
platelet-reactive T and B cells [79, 80].

Concluding Remarks and Outlook

ITP is a syndrome resulting from disturbances of one or more
immune pathways that vary from patient to patient. Whilst the
main triggering factor is often never determined, monitoring dis-
crete changes in platelet biology and biochemistry as well as the
innate and adaptive immune system will provide clues as to the
pathogenesis and the course of the disease, and is also likely to
identify subsets of patients who may be predisposed to respond to
specific treatments. Evaluating the ascendancy of peripheral ver-
sus central mechanisms driving thrombocytopenia in patients will
enable improved and tailored therapeutic strategies to treat auto-
antibody versus CD8 + T cell-mediated platelet destruction.
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