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A Recursive Decomposition Method for Large
Scale Continuous Optimization

Yuan Sun, Michael Kirley, and Saman K. Halgamuge

Abstract—Cooperative Co-evolution (CC) is an evolutionary
computation framework that can be used to solve high dimen-
sional optimization problems via a ‘divide-and-conquer’ mecha-
nism. However, the main challenge when using this framework
lies in problem decomposition. That is, deciding how to allocate
decision variables to a particular sub-problem, especially inter-
acting decision variables. Existing decomposition methods are
typically computationally expensive. In this paper, we propose a
new decomposition method, which we call Recursive Differential
Grouping (RDG), by considering the interaction between decision
variables based on non-linearity detection. RDG recursively
examines the interaction between a selected decision variable
and the remaining variables, placing all interacting decision
variables into the same sub-problem. We use analytical methods
to show that RDG can be used to efficiently decompose a problem,
without explicitly examining all pairwise variable interactions.
We evaluated the efficacy of the RDG method using large
scale benchmark optimization problems. Numerical simulation
experiments showed that RDG greatly improved the efficiency of
problem decomposition in terms of time complexity. Significantly,
when RDG was embedded in a CC framework, the optimization
results were better than results from seven other decomposition
methods.

Index Terms—Large scale global optimization, cooperative co-
evolution, decomposition method, continuous optimization prob-
lem.

I. INTRODUCTION

LARGE-SCALE (high-dimensional) optimization prob-
lems are ubiquitous in the real-world, occurring in do-

mains spanning the sciences, engineering, and multidisci-
plinary design problems [1]–[3]. Such problems are very
difficult to solve when using evolutionary algorithms (EAs),
and in many cases cannot be solved when using traditional
mathematical approaches. This in part may be attributed to
the fact that (a) the search space of an optimization problem
grows exponentially as the dimensionality increases [4]; (b) the
complexity of an optimization problem usually grows as the
dimensionality increases [5]; and (c) the computational cost of
using some EAs (e.g., estimation of distribution algorithms)
when solving very high-dimensional problems is extremely
high [6].
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There has been significant recent interest within the Evo-
lutionary Computation community focussed specifically on
tackling large scale global optimization (LSGO) problems.
This is best illustrated by the introduction of special sessions
held at the leading conferences and the special issues published
in related journals. The review papers by Mahdavi et al., [7]
and LaTorre et al., [8] highlight recent developments in this
exciting field.

Cooperative Co-evolution (CC) [9] has been used with some
success when ‘scaling up’ EAs to tackle very high dimen-
sional search and optimization problems. For example, CC
has been applied to large scale continuous [10], combinatorial
[11], constrained [12], multi-objective [13] and dynamic [14]
optimization problems. The CC framework divides the LSGO
problem into a number of sub-components, and uses an (sev-
eral) EA(s) to solve each sub-component cooperatively. When
optimizing each sub-component, representatives (typically the
best sub-solutions found) from the other sub-components are
combined with individuals in the optimized sub-component,
to form complete candidate solutions that can be evaluated. A
number of studies have shown that the problem decomposition
can have a significant impact on the performance of a CC
framework (e.g., [10], [15]–[18]).

The existing decomposition methods can be classified into
two very different approaches (see Section II-B for a brief
review): In the Manual Decomposition method, the structure
of the sub-components is manually designed (e.g., Random
Grouping [19]). This method does not take the underlying
structure of variable interactions (see Section II-B1 for formal
definition) into consideration. In the second method, Automatic
Decomposition, the structure of the sub-components is deter-
mined by the identified decision variable interactions (e.g.,
Differential Grouping [10]). However, this approach can be
computationally expensive – decomposing an n-dimensional
problem typically consumes O(n2) function evaluations (FEs).
This high computational complexity results in an inappropriate
allocation of computational resources to the decomposition
stage rather than the optimization stage.

In this paper, we propose a Recursive Differential Group-
ing (RDG) method, which can decompose an n-dimensional
problem using O

(
n log(n)

)
FEs. The RDG method examines

the interaction between a selected decision variable xi and
the remaining decision variables based on non-linearity detec-
tion. If any interaction is identified, the remaining decision
variables will be divided into two equally sized groups, and
the interaction between xi and each group is checked. This
process is carried out recursively until all of the individual
decision variables interacting with xi have been identified and
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have been placed into the same sub-component as xi.
We have evaluated the efficacy of the RDG method us-

ing benchmark LSGO problems (problems from the special
sessions on LSGO at CEC’2010 [20] and CEC’2013 [21]).
Comprehensive numerical simulations showed that the RDG
method can decompose the benchmark problems efficiently in
terms of time complexity. We verified that the sub-component
groupings dictated by RDG were in fact useful for optimiza-
tion. When embedded into a CC framework, the optimization
results generated using the RDG method were statistically
better in terms of solution quality when compared against
seven other decomposition methods across the benchmark
suite.

The remainder of this paper is organized as follows. Section
II describes the state-of-the-art algorithms and decomposition
methods within the context of LSGO. Section III describes
the proposed RDG method in detail. Section IV describes
experiments to evaluate the proposed RDG method. Section
V presents and analyzes the experimental results. Section VI
concludes the paper and shows future directions.

II. RELATED WORK

A. Algorithms for LSGO
In this section, we briefly describe the state-of-the-art tech-

niques that can be used to ‘scale up’ EAs for LSGO problems.
1) Cooperative Co-evolution: The CC [9] framework tack-

les a LSGO problem using a divide-and-conquer strategy. It
divides the problem into a number of low-dimensional sub-
components that are solved cooperatively. A standard CC algo-
rithm consists of two stages: decomposition and optimization.

In the decomposition stage, an optimization problem is
decomposed into several sub-components. For example, a
decomposition of a 6-dimensional optimization problem (f :
R6 → R̄) could possibly be {(x1, x2), (x3, x4), (x5, x6)}, as
shown in Fig. 1. When the structure of the underlying decision
variable interactions are considered, this allocation to sub-
components may in fact be different. Recent studies have
shown that the performance of a CC algorithm relies heavily
on the way the optimization problem is decomposed [7], [10],
[15], [16], [18]. See sections II-B and III for further details.

In the optimization stage, an evolutionary algorithm can
be used to optimize each sub-component based on a context
vector. The context vector is a complete candidate solution,
typically consisting of the best sub-solutions from each sub-
component. When optimizing the ith sub-component, the
context vector (excluding the ith sub-solution) is used to com-
bine with the individuals in the ith sub-component, to form
complete candidate solutions that can be evaluated, as shown
in Fig. 1. It has been found that using only one context vector
may be too greedy [22]. Therefore, the adaptive multi-context
CC [22] framework is proposed, which employs more than one
context vector to co-evolve sub-components. The original CC
framework [9] optimizes each sub-component in a round-robin
fashion. Recently, a contribution based CC framework [23]
has been proposed to efficiently allocate the computational
resources. In each cycle, it selects and optimizes the sub-
component that makes the greatest historical contribution to
the fitness improvement.

Decom-
position

x1 x2 x3 x4 x5 x6x1 x2 x3 x4 x5 x6
�
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 �	
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Fig. 1. The decomposition and optimization of a 6-dimensional problem using
a CC algorithm. The problem has been decomposed into 3 sub-components,
each with 2 decision variables. When optimizing the 2nd sub-component, the
context vector (excluding the 2nd sub-solution) is used to combine with the
individuals in the 2nd sub-component, to form complete candidate solutions
that can be evaluated.

2) Other Techniques: In addition to CC, there are other
techniques that can be used to address the additional chal-
lenges inherent in LSGO problems. Representative techniques
include the model complexity control [6] and random projec-
tion [24] methods for estimation of distribution algorithms;
the multiple strategies [25] and generalized opposition-based
learning [26] methods for differential evolution; the social
learning [27] and pairwise competition [28] methods for
particle swarm optimization; and the multiple trajectory search
[29] as well as multiple offspring sampling [30] methods
for algorithm hybridization. Due to page limits, we cannot
describe these techniques in detail.

B. Decomposition Methods

1) Interacting decision variables: In this sub-section, we
start by presenting a formal definition of ‘variable interac-
tions’, as some of the decomposition methods discussed below
rely on variable interactions.

In an optimization problem, two decision variables interact
if they cannot be optimized independently to find the global
optimum. It is important to note that the interaction between
given decision variables may be complicated. Take the follow-
ing objective function as an example:

f(x) := x21 + (x2 − x3)2 + (x3 − x4)2, x ∈ [−1, 1]4, (1)

where ‘:=’ denotes ‘defined as’. Decision variable x2 interacts
with x3, and x3 interacts with x4. Therefore, x2 and x4 are
linked by x3. If the optimal value of x3 is known, x2 and x4
are independent, as they can be optimized separately. However,
if x3 needs to be optimized, x2 and x4 will influence each
other. Therefore, x2 conditionally interacts with x41. Note that
conditional interaction only exists in overlapping problems
e.g., Rosenbrock’s function [21]. The formal definitions of
interaction and conditional interaction are consistent with
the definitions of direct interaction and indirect interaction
described in [15], [31]:

1In [4], the relationships between {x2, x4} and {x1, x4} are both defined
as additively separable. In this paper, we use conditional interaction to
differentiate these two relationships.
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Definition 1. Let f : Rn → R̄ be a differentiable function.
Decision variables xi and xj interact if a candidate solution
x∗ exists, such that

∂2f(x∗)

∂xi∂xj
6= 0. (2)

denoted by xi ↔ xj . Decision variables xi and xj condition-
ally interact if for any candidate solution x∗,

∂2f(x∗)

∂xi∂xj
= 0, (3)

and a set of decision variables {xk1, . . . , xkt} ⊂ X exists,
such that xi ↔ xk1 ↔ . . . ↔ xkt ↔ xj . Decision variables
xi and xj are independent if for any candidate solution x∗, Eq.
(3) holds and a set of decision variables {xk1, . . . , xkt} ⊂ X
does not exist, such that xi ↔ xk1 ↔ . . .↔ xkt ↔ xj .

2) Manual Decomposition: In these methods, the number
of sub-components and the size of each sub-component are
manually designed. These methods work well when combined
with algorithms to solve fully separable problems. However,
the performance deteriorates quickly when applied on partially
separable problems or fully non-separable problems. The main
reason is that it does not take the underlying structure of
variable interactions into consideration.

Probably the first and simplest decomposition is the uni-
variable grouping [9] method, which decomposes an n-
dimensional problem into n 1-dimensional sub-components.
The uni-variable grouping method improved the performance
of a genetic algorithm (GA) when solving benchmark sepa-
rable problems, however it degraded the GA’s performance
when solving a benchmark non-separable problem – the
Rosenbrock’s function [9]. This performance difference may
be attributed to the fact that the uni-variable grouping method
decomposes an optimization problem without considering the
interaction between decision variables.

The Sk grouping [32] method is more flexible than the uni-
variable grouping method when used to decompose an opti-
mization problem. It decomposes an n-dimensional problem
into k s-dimensional sub-components, s < n. The Sk grouping
method has been shown to be able to improve the performance
of a particle swarm optimization [32] algorithm and a biogeo-
graph based optimization [33] algorithm. However, like the
uni-variable grouping method, the Sk grouping method does
not take variable interactions into consideration.

The random grouping (RG) method is proposed within the
context of a differential evolution cooperative co-evolution
(DECC) framework [19]. It randomly assigns decision vari-
ables to predetermined number of sub-components before each
evolutionary cycle. The RG method has been successfully
applied to improve the performance of a particle swarm
optimization [34] algorithm and an artificial bee colony [35]
algorithm. However, it has been shown that the probability
of assigning more than two interacting decision variables
into one sub-component using the RG method is low [36].
Another limitation of RG is the requirement of setting an
appropriate sub-component size. To address this issue, the
multilevel cooperative co-evolution [37] algorithm takes the

sub-component size as a parameter, and selects an appropriate
sub-component size according to the historical performance.

A more sophisticated method – delta grouping [38] iden-
tifies variable interactions based on the averaged difference
in a certain decision variable across the whole population.
It generally outperforms the RG method when incorporated
with the DECC framework to solve the CEC’2010 benchmark
problems [38]. However on benchmark problems with more
than one non-separable sub-component, the performance of
the delta grouping method is low [10].

The k-means grouping [39] method uses a k-means clus-
tering algorithm to construct decision variable groups. The
decision variables with similar effects on the fitness value are
placed into the same sub-component. The sub-component with
the greatest contribution to the fitness value will be optimized
with more iterations (FEs). The idea is similar to the contri-
bution based cooperative co-evolution [23], [40] framework.
Unlike most decomposition methods which group decision
variables based on variable interactions, the k-means grouping
method groups decision variables based on their contribution
to the fitness improvement. Therefore, it is specifically tailored
for problems with unbalanced sub-components [4], [39].

3) Automatic Decomposition: In these methods, the in-
teracting decision variables are identified and automatically
placed into the same sub-component. It is important to
note that automatic decomposition considers the underlying
variable interaction structure encapsulated within the search
landscape. The decomposition method proposed in Section III
falls into this category.

A representative automatic decomposition method – cooper-
ative co-evolution with variable interaction learning (CCVIL)
[41] – identifies the pairwise interaction between decision vari-
ables by the non-monotonicity detection. If the monotonicity
of the fitness function with respect to xi does not change for
different value of xj , xi and xj are independent. Otherwise,
decision variables xi and xj interact. The rationale behind the
CCVIL method is consistent with the linkage identification by
non-monotonicity detection [42] method. The CCVIL method
is more accurate than most of the manual decomposition
methods when identifying variable interactions. However, it
still can not obtain acceptable results when used to decompose
some benchmark problems [10].

The statistical variable interdependence learning (SL) [43]
method identifies variable interactions based on the non-
monotonicity detection as well. Unlike the CCVIL method, the
SL method detects the monotonicity relationship between xi
and xj multi-times. The probability (pij) of the observation of
non-monotonicity is calculated. If the probability pij is greater
than a given threshold, decision variables xi and xj interact.
The main issue of the SL method is the high computational
complexity. The number of FEs needed to decompose an n-
dimensional optimization problem is 4mn2, where m is the
number of non-monotonicity detection conducted for each pair
of decision variables.

To address the high computational complexity of the SL
method, a fast variable interdependence searching [44] method
is proposed. It identifies interactions between two subsets of
decision variables, instead of two decision variables, by non-
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monotonicity detection. Therefore, it speeds up the decompo-
sition process. The computational cost to decompose an n-
dimensional problem can be reduced to 4mn log(n) in the
worst case.

The differential grouping (DG) [10] method identifies vari-
able interactions by detecting the fitness changes when per-
turbing the decision variables. If the fitness change induced
by perturbing decision variable xi varies for different value
of xj , xi and xj interact. The rationale behind the DG
method is consistent with the linkage identification by non-
linearity check [45] method. The DG method outperformed
the CCVIL method when used to decompose the CEC’2010
benchmark problems [10]. However it has been shown not to
be able to completely identify interacting decision variables in
overlapping problems [15], [46].

Subsequently, the extended differential grouping (XDG)
[15] method was proposed to address this issue, by placing all
the linked (interacting and conditionally interacting) decision
variables into one sub-component. It employs the same tech-
nique as DG to identify interacting decision variables. Then the
overlapping between sub-components are checked to identify
conditional interactions. However, the number of FEs used
by XDG to decompose an n-dimensional problem is usually
around n2. The high complexity of the XDG method results in
an inappropriate allocation of computational budget between
decomposition and optimization, and prevents it from being
applied to solve even higher dimensional problems.

The computational cost in the decomposition stage can be
reduced to (n2 + 3n + 2)/2 by using the global differential
grouping (GDG) [46] method. It employs the same technique
as DG to identify the pairwise interactions between decision
variables. The variable interaction matrix is calculated, which
is regarded as the adjacency matrix of a graph. Then the depth-
first search or breadth-first search can be used to identify
the connected components. Note that both the interacting and
conditionally interacting decision variables will also be placed
into one connected component (sub-component).

Recently, it has been shown that the minimal number of
FEs used to identify the complete variable interaction matrix
based on DG is (n2 + n + 2)/2 [47]. However, it may
not need the entire variable interaction matrix to identify
the connected components (sub-components). For example, if
decision variable x1 interacts with x2 and x3, the interaction
between x2 and x3 needs not to be checked, as they belong
to the same connected component.

The fast interdependency identification (FII) [48] method
can further improve the efficiency of problem decomposition
by avoiding the need to identify the complete variable in-
teraction matrix. FII firstly identifies the separable decision
variables by examining the interaction between one decision
variable and the other variables. Then the interaction be-
tween non-separable decision variables is examined, and all
the linked (connected) decision variables are placed into the
same sub-component. The FII method is efficient when used
to decompose benchmark problems with a large portion of
separable decision variables. However on benchmark problems
with conditional variable interactions, the number of FEs used
by FII may still be in the magnitude of n2

(
Θ(n2)

)
. In the next

section, we will propose an efficient and robust method that
can decompose any n-dimensional problem using less than
6n log2(n) FEs.

III. RECURSIVE DIFFERENTIAL GROUPING

In this section, the proposed decomposition method – Re-
cursive Differential Grouping (RDG) – is described in detail.
Then, the computational complexity of the RDG method is
presented.

Notation. Let X be the set of decision variables {x1, . . . , xn};
UX be the set of unit vectors in the decision space Rn. Let
X1 be a subset of decision variables X1 ⊂ X; and UX1 be
a subset of UX such that any unit vector u = (u1, . . . , un) ∈
UX1

, we have
ui = 0, if xi /∈ X1. (4)

Directional Derivative. Let f : Rn → R̄ be a differentiable
function, and u = (u1, . . . , un) be a vector from UX . The
directional derivative of f in the direction u, denoted Duf(x),
is given by

Duf(x) =

n∑
i=1

∂f(x)

∂xi
ui. (5)

Proposition 1. Let f : Rn → R̄ be a differentiable function;
X1 ⊂ X and X2 ⊂ X be two mutually exclusive subsets of
decision variables: X1∩X2 = ∅. If there exist two unit vectors
u1 ∈ UX1

and u2 ∈ UX2
, and a candidate solution x∗ in the

decision space such that

Du1Du2f(x
∗) 6= 0, (6)

there is some interaction between decision variables in X1

and X2.

Proof. Without loss of generality, we assume that X1 =
{x1,1, . . . , x1,p}, X2 = {x2,1, . . . , x2,q}, where p, q are the
number of decision variables in X1 and X2 respectively;
u1 = (u11, . . . , u

1
n) and u2 = (u21, . . . , u

2
n). According to

Directional Derivative,

Du1Du2f(x) =

n∑
i=1

n∑
j=1

∂2f(x)

∂xi∂xj
u1
iu

2
j . (7)

As u1 and u2 are two unit vectors from UX1
and UX2

respectively, we can obtain that:

u1
i = 0, if xi /∈ X1, (8)

u2j = 0, if xj /∈ X2. (9)

Therefore,

Du1Du2f(x) =

p∑
i=1

q∑
j=1

∂2f(x)

∂x1,i∂x2,j
u1
1,iu

2
2,j , (10)

If (6) holds,
p∑

i=1

q∑
j=1

∂2f(x∗)

∂x1,i∂x2,j
u1
1,iu

2
2,j 6= 0. (11)

Therefore, there exists at least one pair of (i, j), such that

∂2f(x∗)

∂x1,i∂x2,j
6= 0. (12)
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Based on Definition 1, at least one pair of decision variables
x1,i ∈ X1 and x2,j ∈ X2 interact.

Corollary 1. Let f : Rn → R̄ be an objective function; X1 ⊂
X and X2 ⊂ X be two mutually exclusive subsets of decision
variables: X1 ∩X2 = ∅. If there exist two unit vectors u1 ∈
UX1 and u2 ∈ UX2 , two real numbers l1, l2 > 0, and a
candidate solution x∗ in the decision space, such that

f(x∗+ l1u1+ l2u2)−f(x∗+ l2u2) 6= f(x∗+ l1u1)−f(x∗), (13)

there is some interaction between decision variables in X1

and X2.

Proof. With Proposition 1, we only need to prove the follow-
ing statement:

Statement 1. If there exist two unit vectors u1 ∈ UX1
and

u2 ∈ UX2 , two real numbers l1, l2 > 0, and a candidate
solution x∗ in the decision space, such that Eq. (13) holds,
then Eq. (6) is true.

It is equivalent to prove its contraposition:

Statement 2. If for any two unit vectors u1 ∈ UX1
and u2 ∈

UX2 , and for any candidate solution x∗ in the decision space,
the following condition holds:

Du1Du2f(x
∗) = 0, (14)

then

f(x∗+ l1u1+ l2u2)−f(x∗+ l2u2) = f(x∗+ l1u1)−f(x∗), (15)

for any l1, l2 > 0.

In order to prove Statement 2, we first introduce line
integral.

Line Integral. Let L be a curve with end points A and B in
the decision space Rn and the arc length of L be l. Let C be
any point on L and the coordinate of C (x) can be uniquely
determined by the length of the arc AC (s): x = x(s), s ∈
[0, l]. The integral of a function g : Rn → R̄ along the curve
L is given by ∫

L

g(x) ds =

∫ l

0

g
(
x(s)

)
ds. (16)

Let A2 (x∗) be any point in Rn, and B2 be x∗+l2u2, where
u2 is any vector in UX2

and l2 is any positive real number. Let
C2 be any point on the segment A2B2. Therefore, the length
of the segment A2B2 is l2, and the coordinate of C2 (x) can
be uniquely determined by the length of the segment A2C2

(s2): x(s2) = x∗ +s2u2, s2 ∈ [0, l2]. If Eq. (14) holds for any
candidate solution in the decision space, then

Du1Du2f(x) = 0. (17)

As Du1
Du2

f(x) = Du2
Du1

f(x), by integrating both sides of
Eq. (17) along the segment A2B2, we can obtain that∫ l2

0

Du1Du2f(x) ds2 =

∫ l2

0

Du2Du1f(x) ds2 = 0. (18)

As ∫ l2

0

Du2

(
Du1f

(
x(s2)

))
ds2 = Du1f

(
x(s2)

)∣∣∣s2=l2

s2=0
, (19)

thus
Du1f

(
x(s2)

)∣∣∣s2=l2

s2=0
= 0, (20)

and
Du1f(x

∗ + l2u2)−Du1f(x
∗) = 0. (21)

As A2 (x∗) is any point in Rn, therefore

Du1f(x+ l2u2) = Du1f(x). (22)

Let A1 (x∗) be any point in Rn, and B1 be x∗ + l1u1, where
u1 is any vector in UX1

and l1 is any positive real number. Let
C1 be any point on the segment A1B1. Therefore, the length
of the segment A1B1 is l1, and the coordinate of C1 (x) can
be uniquely determined by the length of the segment A1C1

(s1): x(s1) = x∗ + s1u1, s1 ∈ [0, l1]. Similarly, by integrating
both sides of Eq. (22) along the segment A1B1, we can obtain∫ l1

0

Du1f(x(s1) + l2u2) ds1 =

∫ l1

0

Du1f(x(s1)) ds1. (23)

Therefore,

f(x∗+ l1u1+ l2u2)−f(x∗+ l2u2) = f(x∗+ l1u1)−f(x∗). (24)

Thus, Statement 2 is proved, and Statement 1 and Corollary
1 are true.

With Corollary 1, the interaction between two subsets of
decision variables (X1 and X2) can be identified using the
following procedures:

1) Set all the decision variables to the lower bounds (lb) of
the search space (xl,l);

2) Perturb the decision variables X1 of xl,l from the lower
bounds to the upper bounds (ub), denoted by xu,l;

3) Calculate the fitness difference (δ1) between xl,l and xu,l;
4) Perturb the decision variables X2 of xl,l and xu,l from the

lower bounds to the middle between the lower bounds and
upper bounds, denoted by xl,m and xu,m respectively;

5) Calculate the fitness difference (δ2) between xl,m and
xu,m;

6) If the difference between δ1 and δ2 is greater than a
threshold ε, there is some interaction between X1 and
X2.

The two subscripts of x denote the values of X1 and X2

respectively: ‘l’ means lower bounds, ‘u’ means upper bounds,
and ‘m’ means the middle between the lower bounds and
upper bounds. The threshold ε is estimated based on the
magnitude of the objective space [46]:

ε = α ·min
{
|f(x1)|, · · · , |f(xk)|

}
, (25)

where x1, · · · ,xk are k randomly generated candidate solu-
tions, and α is the control coefficient [46].

Based on Corollary 1, we propose the Recursive Differ-
ential Grouping (RDG) (Algorithm 1) method to efficiently
decompose an optimization problem. The decomposition by
the RDG method considers the underlying structure of variable
interactions. Taking the following objective function as an
example:

f(x) := x21+(x2−x3)2+(x3−x4)2+(x5−x6)2, x ∈ [−1, 1]6, (26)
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Fig. 2. The variable interaction structure and the RDG decomposition of
the objective function given in Eq. (26). The notation xi ↔ xj denotes that
decision variable xi interacts with xj .

the decision variables (x2, x3, x4) interact, as well as
(x5, x6). Therefore, the decomposition by the RDG method
is {(x1), (x2, x3, x4), (x5, x6)}, as shown in Fig. 2.

The inputs to the RDG method are the fitness function
(f ), the upper bounds (ub), the lower bounds (lb), and the
threshold (ε) which is estimated using Eq. (25). The outputs
are the separable variable group (seps) and the non-separable
variable groups (nonseps). The seps contains one group of
all separable decision variables. The nonseps contains several
groups of non-separable decision variables. Each group of
decision variables will form a sub-component.

The RDG method begins by identifying the interaction be-
tween the first decision variable x1 and the remaining decision
variables. If no interaction is detected, x1 will be placed in
the separable decision variable group, and the algorithm will
move on to the next decision variable x2. If any interaction
is detected, the remaining decision variables will be divided
into two (nearly) equally-sized groups G1 and G2. Then the
interaction between x1 and G1, x1 and G2 will be identified
respectively. This process is recursively conducted until all the
individual decision variables that interact with x1 are identified
and placed in the decision variable subset X1 with x1.

Then, the RDG method examines the interaction between
X1 and the remaining decision variables (excluding the de-
cision variables in X1) to identify the individual decision
variables that conditionally interact with x1 (linked by other
decision variables). If any interaction is identified, the interact-
ing decision variables will be placed into X1. This process is
repeated until no interaction can be further detected between
X1 and the remaining decision variables (exclusive X1). The
decision variables in X1 will be placed in a non-separable
group.

The RDG method moves on to the next decision variable
that has not been grouped (xi). The interaction between xi and
the remaining decision variables will be examined, and both
the interacting and conditionally interacting (linked) decision
variables will be placed into one group with xi. This process
is repeated until all of the decision variables are grouped. It
returns the separable (seps) and the non-separable (nonseps)
decision variable groups as the outputs.

The computational complexity of the RDG method when
used to decompose an n-dimensional problem is O

(
n log(n)

)
,

which is analyzed as follows:
1) When decomposing an n-dimensional fully separable

problem, the computational complexity of the RDG

Algorithm 1 Recursive Differential Grouping
Require: f , ub, lb, ε

1: Initialize seps and nonseps as empty groups
2: Set all decision variables to the lower bounds: xl,l = lb
3: Calculate the fitness: yl,l = f(xl,l)
4: Assign the first variable x1 to the variable subset X1

5: Assign the rest of variables to the variable subset X2

6: while X2 is not empty do
7: [X∗

1 ] = INTERACT(X1, X2, xl,l, yl,l, ε)
8: if X∗

1 is the same with X1 then
9: if X1 contains one decision variable then

10: Add X1 to seps
11: else
12: Add X1 to nonseps
13: end if
14: Empty X1 and X∗

1

15: Assign the first variable of X2 to X1

16: Delete the first variable in X2

17: else
18: X1 = X∗

1

19: Delete the variables of X1 from X2

20: end if
21: end while
22: return seps and nonseps

1: function INTERACT(X1, X2, xl,l, yl,l, ε)
2: xu,l=xl,l; xu,l(X1) = ub(X1) //Set X1 to the ub
3: Calculate the fitness change: δ1 = yl,l − f(xu,l)
4: xl,m = xl,l; xl,m(X2) =

(
lb(X2) + ub(X2)

)
/2

5: xu,m = xu,l; xu,m(X2) =
(
lb(X2) + ub(X2)

)
/2

6: Calculate the fitness change: δ2 = f(xl,m)− f(xu,m)
7: if |δ1 − δ2| > ε then
8: if X2 contains one variable then
9: X1 = X1 ∪X2

10: else
11: Divide X2 into equally-sized groups G1, G2

12: [X1
1 ]=INTERACT(X1, G1, xl,l, yl,l, ε)

13: [X2
1 ]=INTERACT(X1, G2, xl,l, yl,l, ε)

14: [X1]= X1
1 ∪X2

1

15: end if
16: end if
17: return X1

18: end function

method is Θ(n) in terms of the number of FEs. For
each decision variable, 3 FEs are used to determine its
separability. Therefore, totally about 3n FEs are needed.

2) When decomposing an n-dimensional fully non-separable
problem with one sub-component, the computational
complexity of the RDG method is Θ(n). When group-
ing the n interacting decision variables, the function
‘INTERACT’ is executed about

∑k
i=0(n/2i) times, where

k = log2(n).
k∑

i=0

n

2i
= n

(
2−

(1
2

)k)
< 2n (27)

It consumes 3 FEs each time the function ‘INTERACT’ is
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executed. Therefore totally about 6n FEs are used.
3) When decomposing an n-dimensional partially separable

problem with n/m sub-components, the computational
complexity of the RDG method is Θ

(
n log(n)

)
, where n

is the dimensionality and m is the number of decision
variables in each sub-component. When grouping m
interacting decision variables into one sub-component,
the function ‘INTERACT’ is executed less than 2m ×
log2(n) times, each time consuming 3 FEs. The number
of sub-components is n/m. Therefore, totally less than
3× 2m× log2(n)× n/m = 6n log2(n) FEs are used.

4) When decomposing an n-dimensional partially separa-
ble problem with an m-dimensional non-separable sub-
component, the computational complexity of the RDG
method is O

(
max{n,m log(n)}

)
. The RDG algorithm

consumes about 3(n − m) FEs to identify the n − m
separable decision variables, and consumes less than
6m× log2(n) FEs to identify the m interacting decision
variables. Therefore, totally less than 3(n−m) + 6m×
log2(n) FEs are used.

5) When decomposing an n-dimensional overlapping prob-
lem (e.g., Rosenbrock’s function [21]), the computational
complexity of the RDG method is Θ

(
n log(n)

)
. Starting

from x1, it consumes about 3×2×2 log2(n) = 12 log2(n)
FEs to identify the two decision variables (xp and xq)
that interact with x1. Then it also consumes about
12 log2(n) FEs to identify the two decision variables
that interact with (xp, x1, xq). Therefore, totally about
n/2× 12 log2(n) = 6n log2(n) FEs are used.

IV. EXPERIMENTAL METHODOLOGY

In this section, comprehensive numerical experiments are
designed to evaluate the proposed RDG method. Two research
questions guide the experimental design to evaluate the effi-
cacy of the proposed RDG method:
Q1. Can the proposed RDG method decompose the

CEC’2010 and CEC’2013 benchmark problems more
efficiently when compared against other well-known de-
composition methods?

Q2. Can the proposed RDG method outperform other well-
known decomposition methods when embedded into a
CC framework to solve the CEC’2010 and CEC’2013
benchmark problems?

To answer Q1, the proposed RDG method was used to
decompose the CEC’2010 [20] and CEC’2013 [21] bench-
mark problems2. Two metrics were employed to evaluate the
performance of a decomposition method: (1) the number of
FEs used to decompose the problem; and (2) the percentage
of interacting decision variables that are correctly grouped,
defined as

Decomposition Accuracy. Let G = {g1, . . . , gm} denote the
groups of interacting decision variables in a problem f , and
G̃ = {g̃1, . . . , g̃n} denote the groups of interacting decision
variables that are identified by a decomposition method. Let

2The MATLAB implementation of the RDG method can be accessed from
the following link: https://bitbucket.org/yuans/rdg.

TABLE I
THE PARAMETER SETTINGS FOR ALL THE DECOMPOSITION METHODS

USED IN THE EXPERIMENTS. DG2 IS A PARAMETER-FREE METHOD.

Decomposition Methods Parameter Settings

RDG control coefficient α = 10−12 and k = 10
GDG control coefficient α = 10−12 and k = 10
XDG threshold ε = 10−1

DG threshold ε = 10−3

DG2 parameter free
FII threshold ε = 10−2

D (delta grouping) sub-component size sub dim = 100
RG sub-component size sub dim = 100

Gi = {gi,1, . . . , gi,m} denote the ith permutation of G, where
1 ≤ i ≤ m!, and G̃j = {g̃j,1, . . . , g̃j,n} denote the jth
permutation of G̃, where 1 ≤ j ≤ n!. The decomposition
accuracy (DA) of the decomposition method on f is defined
as

DA =

max
i,j

{min{m,n}∑
k=1

|gi,k ∩ g̃j,k|
}

m∑
i=1

|gi|
, (28)

where |gi| denotes the number of decision variables in gi.

The performance of the RDG method was then compared
to the GDG [46], XDG [15], DG [10], as well as two
recently published methods – DG2 [47], and FII [48]. The
parameter settings for all the decomposition methods used in
the experiments are shown in Table I. The threshold values
(ε) estimated by the RDG (or GDG) method for each problem
were recorded. Note that the RDG and GDG methods use the
same approach

(
Eq. (25)

)
to estimate the threshold values.

To answer Q2, the proposed RDG method was embedded
into the DECC [19] / CMAESCC [46] framework to solve the
CEC’2010 and CEC’2013 benchmark problems. The DECC is
the most widely used CC framework, which employs a variant
of Differential Evolution – SaNSDE [49] – to solve each sub-
component cooperatively. The CMAESCC framework uses
the well-known CMA-ES [50] algorithm to solve each sub-
component. It performs well when used to solve the CEC’2010
and CEC’2013 benchmark problems. The parameter settings
for the DECC and CMAESCC frameworks were consistent
with the original papers. The maximum number of FEs was
set to 3 × 106, divided between the decomposition stage and
optimization stage. For each benchmark problem, the median,
mean and standard deviation of the best solutions found by the
DECC/CMAESCC-RDG algorithm based on 25 independent
runs were recorded. The performance of the RDG method was
compared against the performance of the XDG, GDG, DG,
DG2, FII, as well as two manual decomposition methods – D
(delta grouping [38]) and RG [19] methods, when embedded
in each CC framework.

The performance of DECC/CMAESCC-RDG was also com-
pared to the performance of two state-of-the-art hybrid algo-
rithms – MOS [30] and MA-SW-Chains [51] with default pa-
rameter settings. The MOS algorithm evaluates the constituent
algorithms in each generation, and the better performed con-
stituent algorithm will be used to generate more offspring.
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MOS achieved the best performance in the 2011 special issue
of the Soft Computing journal. The MA-SW-Chains algorithm
assigns to each individual a local search intensity that depends
on its features, by chaining different local search applications.
MA-SW-Chains achieved the best performance in the CEC
2010 special session and competition on LSGO.

The Kruskal-Wallis nonparametric one-way ANOVA test
[52] with 95% confidence interval was used to determine
whether the performance of at least one algorithm was sig-
nificantly different from the others. Then a series of Wilcoxon
rank-sum tests (significance level α=0.05) with Holm p-value
correction [52] was conducted in a pairwise fashion to find
the better performing algorithm.

V. EXPERIMENTAL RESULTS

Comprehensive experimental results are presented and dis-
cussed in this section. Section V-A presents the decomposition
comparison between the RDG method and five other methods,
thus addressing Q1. Section V-B presents the optimization
comparison between the RDG method and seven other meth-
ods when embedded into the DECC/CMAESCC framework to
solve the benchmark problems, thus addressing Q2.

A. Decomposition Comparison

Table II lists the decomposition results of the RDG, GDG,
XDG and DG methods on the CEC’2010 and CEC’2013
benchmark problems. The parameter settings for the four
decomposition methods are consistent with Table I. In Table II,
“DA” represents the decomposition accuracy – the percentage
of interacting decision variables that correctly grouped; “FEs”
represents the number of FEs used in the decomposition
stage; “ε” represents the threshold used to identify interactions
between decision variables. Note that the threshold values used
by RDG are the same as those used by GDG. The entries with
the best decomposition accuracy achieved using the smallest
number of FEs are highlighted in bold. Different categories of
benchmark problems are divided by lines.

The RDG and GDG methods obtain nearly the same de-
composition accuracy across all the benchmark problems. The
reason for this is that RDG uses the same approach

(
Eq. (25)

)
as GDG to estimate the threshold values. However, RDG is
much more efficient than GDG in terms of FEs used. Note
that the number of FEs used by GDG to decompose an n-
dimensional problem is fixed: (n2 + 3n+ 2)/2.

The first three problems (f1-f3) from each benchmark suite
are fully separable. Therefore, decomposition accuracy is not
applicable to these problems. On f1 and f2 (CEC’2010 and
CEC’2013), the RDG method successfully identifies all the
decision variables as separable, using a small number of FEs.
However on f3, the RDG and GDG methods identify all the
separable variables as non-separable, and place them into one
sub-component. The reason for this is that the threshold value
is under-estimated by the RDG and GDG methods on f3.

The CEC’2013 f13 and f14 are benchmark problems with
overlapping (conforming or conflicting) sub-components. It
is not clear yet what is the best approach to decompose
these problems [4], [21]. The RDG, GDG and XDG methods

place all the overlapped sub-components into one group. On
the other benchmark problems where the sub-components
are independent with each other, the ‘ideal’ decomposition
can possibly be achieved (See [4], [10], [20], [21] for more
information). Note that the 100% decomposition accuracy in
Table II corresponds to the ideal decomposition.

On the CEC’2010 partially separable problems (f4-f18),
the RDG method consistently achieves the best results when
compared against GDG, XDG and DG. The RDG, GDG and
XDG methods achieve the ideal decomposition on all of these
benchmark problems. However, the number of FEs used by the
GDG and XDG methods is usually several magnitude larger
than that used by the RDG method. The DG method performs
well on the benchmark problems without conditional variable
interactions. On f19, the DG method uses the smallest number
of FEs to decompose the problem. However on problems with
conditional variable interactions (overlapping problems e.g.,
CEC’2010 f13, f18 and f20), the decomposition accuracy of
the DG method is low. The reason for this is that DG is unable
to completely identify variable interactions in overlapping
problems [15], [46].

On the CEC’2013 partially separable problems (f4-f11), the
RDG method achieves the best results on 4 out of 8 benchmark
problems. We observe that it is generally more difficult to
identify the variable interactions in the CEC’2013 than the
CEC’2010 benchmark problems. None of the four methods can
perfectly decompose the CEC’2013 f8, f10 and f11 problems.
On CEC’2013 f11, the threshold value is underestimated by
the RDG and GDG methods

(
Eq. (25)

)
, resulting in placing all

the decision variables into a single non-separable group. While
on CEC’2013 f8 and f10, the threshold value is overestimated,
resulting in some omissions of variable interactions being
identified.

The threshold values estimated by the GDG and RDG meth-
ods vary significantly across the CEC’2010 and CEC’2013
benchmark problems. Therefore, it is very difficult to find a
single threshold value to accurately identify variable interac-
tions across all the problems. Although the threshold value
ε = 10−1 works well for the XDG method on the CEC’2010
benchmark problems, it fails on some of the CEC’2013
benchmark problems e.g., f5-f8. On f5, the XDG algorithm
(with ε = 10−1) identifies all the interacting decision variables
as separable. The reason for this is that the threshold value
10−1 is too large compared with the computational error,
which is equal to 8.03 × 10−5 estimated by the RDG and
GDG methods. When using the estimated computational error
as the threshold value, the XDG method achieves equal
decomposition accuracy with the RDG method.

To further show the efficacy of the RDG method, we com-
pare the performance of RDG against two recently published
methods – DG2 and FII. The average number of FEs used by
RDG to decompose the CEC’2010 and CEC’2013 benchmark
problems is 1.47×104, which is less than that used by the DG2
and FII methods: 4.95× 105 and 4.94× 104 respectively. The
detailed decomposition results of the DG2 and FII methods
are presented in the supplementary documents.

The DG2 method uses a fixed number of FEs to decompose
an n-dimensional problem: (n2 + n + 2)/2, which has been
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TABLE II
THE EXPERIMENTAL RESULTS OF THE PROPOSED RDG METHOD WHEN USED TO DECOMPOSE THE CEC’2010 AND CEC’2013 BENCHMARK PROBLEMS.
“DA” IS THE DECOMPOSITION ACCURACY; “FES” IS THE FES USED; “ε” IS THE THRESHOLD. NOTE THAT THE THRESHOLD VALUES USED BY RDG ARE
THE SAME AS THOSE USED BY GDG. THE PERFORMANCE OF THE RDG METHOD IS COMPARED WITH THE PERFORMANCES OF THE GDG, XDG AND DG

METHODS. THE ENTRIES WITH THE BEST DA ACHIEVED USING THE LOWEST FES ARE HIGHLIGHTED IN BOLD.

Bench- Func RDG GDG XDG (ε = 10−1) DG (ε = 10−3)

marks Num DA FEs ε DA FEs DA FEs DA FEs

CEC’2010

f1 – 3.00e+03 4.11e-01 – 5.01e+05 – 1.00e+06 – 1.00e+06
f2 – 3.00e+03 2.49e-08 – 5.01e+05 – 1.00e+06 – 1.00e+06
f3 – 6.00e+03 2.15e-11 – 5.01e+05 – 1.00e+06 – 1.00e+06

f4 100% 4.20e+03 1.03e+04 100% 5.01e+05 100% 8.05e+04 100% 1.45e+04
f5 100% 4.15e+03 1.14e-03 100% 5.01e+05 100% 9.98e+05 100% 9.05e+05
f6 100% 5.00e+04 2.13e-05 100% 5.01e+05 100% 9.98e+05 100% 9.06e+05
f7 100% 4.23e+03 5.17e+00 100% 5.01e+05 100% 9.98e+05 68.0% 6.77e+04
f8 100% 5.60e+03 2.62e+05 100% 5.01e+05 100% 1.21e+05 90.0% 2.32e+04

f9 100% 1.40e+04 4.88e-01 100% 5.01e+05 100% 9.77e+05 100% 2.70e+05
f10 100% 1.40e+04 2.52e-08 100% 5.01e+05 100% 9.77e+05 100% 2.72e+05
f11 100% 1.36e+04 2.36e-10 100% 5.01e+05 100% 9.78e+05 99.8% 2.70e+05
f12 100% 1.43e+04 4.26e-05 100% 5.01e+05 100% 9.77e+05 100% 2.71e+05
f13 100% 2.92e+04 3.71e+00 100% 5.01e+05 100% 1.00e+06 31.8% 5.03e+04

f14 100% 2.05e+04 4.15e-01 100% 5.01e+05 100% 9.53e+05 100% 2.10e+04
f15 100% 2.05e+04 2.53e-08 100% 5.01e+05 100% 9.53e+05 100% 2.10e+04
f16 100% 2.09e+04 4.30e-10 100% 5.01e+05 100% 9.56e+05 99.6% 2.11e+04
f17 100% 2.07e+04 1.10e-04 100% 5.01e+05 100% 9.53e+05 100% 2.10e+04
f18 100% 4.98e+04 8.19e+00 100% 5.01e+05 100% 9.99e+05 23.0% 3.96e+04

f19 100% 6.00e+03 6.14e-04 100% 5.01e+05 100% 3.99e+03 100% 2.00e+03
f20 100% 5.08e+04 8.53e+00 100% 5.01e+05 100% 1.00e+06 28.7% 1.55e+05

CEC’2013

f1 – 3.00e+03 4.20e-01 – 5.01e+05 – 1.00e+06 – 1.00e+06
f2 – 3.00e+03 1.31e-07 – 5.01e+05 – 1.00e+06 – 1.00e+06
f3 – 6.00e+03 2.16e-11 – 5.01e+05 – 1.00e+06 – 1.00e+06

f4 100% 9.84e+03 7.22e+01 100% 5.01e+05 33.3% 3.97e+05 95.3% 1.56e+04
f5 100% 1.01e+04 8.03e-05 100% 5.01e+05 0.00% 1.00e+06 0.00% 1.00e+06
f6 100% 1.32e+04 1.07e-06 100% 5.01e+05 50.0% 9.90e+05 82.6% 5.79e+05
f7 100% 9.82e+03 5.82e+05 100% 5.01e+05 33.3% 2.66e+04 39.6% 1.14e+04

f8 80.0% 1.95e+04 1.20e+06 80.0% 5.01e+05 10.0% 6.83e+04 85.6% 2.26e+04
f9 100% 1.92e+04 6.07e-03 100% 5.01e+05 99.9% 9.35e+05 100% 1.76e+04
f10 82.7% 1.91e+04 9.80e-05 90.0% 5.01e+05 79.6% 9.52e+05 79.8% 4.86e+04
f11 10.0% 1.06e+04 1.52e+06 10.0% 5.01e+05 10.0% 2.20e+04 37.7% 9.10e+03

f12 100% 5.08e+04 8.57e+00 100% 5.01e+05 100% 1.00e+06 39.0% 1.49e+05
f13 – 8.39e+03 1.83e+06 – 4.10e+05 – 1.29e+04 – 5.86e+03
f14 – 1.61e+04 5.45e+06 – 4.10e+05 – 3.57e+04 – 1.39e+04
f15 100% 6.16e+03 2.70e+06 100% 5.01e+05 100% 3.99e+03 100% 2.00e+03

f6 f8 f13 f16 f18 f20
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Fig. 3. The benchmark problems from the CEC’2010 test suite on which
the RDG and FII methods generate significant different results (the difference
between the number of FEs used is greater than 104).

shown to be the lower bound of identifying the complete
variable interaction matrix. With the complete variable in-
teraction matrix being identified, it is possible to generate
an effective decomposition for the problems with overlapping
sub-components, e.g., CEC’2013 f13 and f14 [47]. However,
the existing automatic decomposition methods place all the
linked decision variables into one sub-component.

DG2 is a parametric-free method, which automatically
estimates the threshold values in the decomposition process.
The decomposition accuracy of DG2 on the CEC’2010 and
CEC’2013 benchmark problems is high. It achieves 100% de-
composition accuracy for the CEC’2013 f10 and f11 problems.
The variable interactions in these two problems are difficult
for the other decomposition methods to identify. However on
CEC’2013 f7 and f8, the decomposition accuracy of DG2 is
less than that of RDG.

The FII method performs well when used to decompose the
benchmark problems with a large portion of separable decision



1089-778X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2778089, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

1,000 2,000 3,000 4,000 5,000

0

0.5

1

1.5

·105

n

FE
s

RDG
FII

(a) CEC’2010 f12

1,000 2,000 3,000 4,000 5,000

0

1

2

3

4

5

·105

n

FE
s

RDG
FII

(b) CEC’2010 f15

1,000 2,000 3,000 4,000 5,000

0

0.2

0.4

0.6

0.8

1
·107

n

FE
s

RDG
FII

(c) CEC’2010 f18

Fig. 4. The number of FEs used by RDG and FII methods when used to decompose the extended benchmark problems (CEC’2010 f12, f15 and f18) with
dimensionality equal to 1000, 2000, 3000, 4000, and 5000.

TABLE III
THE EXTENDED CEC’2010 f12 , f15 AND f18 PROBLEMS. FOR EACH

PROBLEM, THE NUMBER OF DECISION VARIABLES IN EACH
NON-SEPARABLE SUB-COMPONENT IS FIXED TO 50, WHICH IS

CONSISTENT WITH THE ORIGINAL BENCHMARK SET [20].

Func Dim Sep Variables Non-Sep Groups

f12

1000 500 10
2000 1000 20
3000 1500 30
4000 2000 40
5000 2500 50

f15, f18

1000 0 20
2000 0 40
3000 0 60
4000 0 80
5000 0 100

variables. For example on CEC’2010 f4, where there are 950
separable and 50 non-separable decision variables, the number
of FEs used by FII (3.69× 103) is slightly less than that used
by RDG (4.20×103). However, on some benchmark problems
especially those with conditional variable interactions e.g.,
CEC’2010 f18 and f20, RDG is much more efficient than FII,
as shown in Fig. 3.

In fact, the number of FEs used by the FII method to
decompose the CEC’2010 f18 and f20 problems is in Θ(n2).
It has been shown that FII uses 3n + knn + k FEs when
decomposing an n-dimensional problem with equally sized
non-separable sub-components, where nn is the number of
non-separable decision variables, and k is the number of non-
separable sub-components [48]. As CEC’2010 f18 and f20 are
Rosenbrock’s functions, nn is equal to n and each decision
variable interacts with at most two other decision variables.
Therefore the total number of FEs used by FII is around
3n+ n2/3 + n/3 ∈ Θ(n2).

On CEC’2010 f6, the number of FEs used by RDG (5.00×
104) is greater than that used by FII (3.05× 103). The reason
for this is that the threshold estimated by the RDG method
(ε = 2.13× 10−5) is too small, resulting in identifying some
separable decision variables as non-separable. If RDG employs

TABLE IV
THE AVERAGE RANKING OF EACH DECOMPOSITION METHOD WHEN

EMBEDDED INTO THE DECC OR CMAESCC FRAMEWORK TO SOLVE THE
CEC’2010 AND CEC’2013 BENCHMARK PROBLEMS. THE RDG METHOD

CONSISTENTLY ACHIEVES THE SMALLEST AVERAGE RANKING.

CCs RDG GDG XDG DG DG2 FII D RG

DECC 2.0 4.9 4.0 4.4 3.9 2.5 4.6 4.7
CMAESCC 1.7 3.1 3.3 4.0 2.9 2.2 6.7 5.7

the same threshold with FII (ε = 0.01), the FEs used by RDG
will decrease to 5.06×103. However if FII employs the same
threshold with RDG, the FEs used by FII will increase to
3.12× 105.

To test the scalability of the RDG and FII methods, we
extend some of the CEC’2010 benchmark problems from 1000
dimensions to 5000 dimensions (See Table III for details).
When tested on the extended benchmark problems, we observe
that the FEs used by the FII method increases more quickly
than that used by the RDG method as the dimensionality
increases, as shown in Fig. 4.

B. Optimization Comparison

The performances of the RDG, GDG, XDG, DG, DG2,
FII, D (delta grouping), and RG methods when embedded in
the DECC/CMAESCC framework to solve the CEC’2010 and
CEC’2013 benchmark problems are presented in Fig. 5 and
Fig. 6 respectively. On each benchmark problem, the eight
methods are ranked from 1 to 8 (as labelled on the concentric
circles in the radar charts) based on the results from 25
independent runs. The average ranking of each decomposition
method across all the benchmark problems is presented in
Table IV. The detailed optimization results from DECC-RDG
and CMAESCC-RDG are presented in Table V and Table VI.
The results from the other seven methods are placed in the
supplementary documents due to page limits.

When embedded into the DECC/CMAESCC framework,
the RDG method achieves the best solution quality when
used to solve 16/15 out of 23 partially separable benchmark
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Fig. 5. The radar chart of the performance of RDG, GDG, XDG, DG, DG2, FII, D (delta grouping) and RG when embedded in the DECC framework to solve
the CEC’2010 and CEC’2013 benchmark problems. On each benchmark problem, the eight methods are ranked from 1 to 8 (as labelled on the concentric
circles) based on the results from 25 independent runs (Wilcoxon rank-sum tests (α=0.05) with Holm p-value correction).
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Fig. 6. The radar chart of the performance of RDG, GDG, XDG, DG, DG2, FII, D (delta grouping) and RG when embedded in the CMAESCC framework
to solve the CEC’2010 and CEC’2013 benchmark problems. On each benchmark problem, the eight methods are ranked from 1 to 8 (as labelled on the
concentric circles) based on the results from 25 independent runs (Wilcoxon rank-sum tests (α=0.05) with Holm p-value correction).

problems (CEC’2010 f4-f18 and CEC’2013 f4-f11). It ob-
tains the smallest average ranking across all the benchmark
problems investigated. The RDG method generally uses the
smallest number of FEs in the decomposition stage, assigning
more computational resources to optimize the problems, when
compared against the other automatic decomposition methods.

On the fully separable and some fully non-separable prob-
lems, the RDG method is outperformed by the two manual
decomposition methods – D (delta grouping) and RG, as
RDG does not actually perform any decomposition for these
problems. However, the performance of the D (delta grouping)
and RG methods deteriorates quickly on the partially separable
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Fig. 7. The convergence curves of the RDG, GDG, XDG, DG, DG2, FII, D (delta grouping) and RG methods when embedded into the DECC and CMAESCC
frameworks to solve the CEC’2010 f18 problem. The horizontal axis represents the number of FEs used in the evolutionary process. The vertical axis represents
the median of the best fitness found.

problems.
On some benchmark problems with separable decision vari-

ables, e.g., CEC’2010 f10, the GDG method generates better
solution quality than RDG. The reason for this is that GDG
further divides the separable decision variables into several
sub-components. Interestingly, the GDG method achieves the
first place when embedded into CMAESCC, however the last
place when embedded into DECC, to solve the CEC’2010 f9.

The DG method performs poorly on overlapping benchmark
problems (e.g., CEC’2010 f8, f13, f18, and f20). The reason
for this is that the DG method can not completely iden-
tify interaction between decision variables in an overlapping
problem. Once all the variable interactions are identified and
all the linked decision variables are placed into one sub-
component, the solution quality can be greatly improved by
several magnitudes.

The DG2 method generates the best solution quality when
embedded into the CMAESCC framework to solve the
CEC’2013 f11 problem. The reason for this is that DG2
achieves 100% accuracy when used to decompose this prob-
lem, which is higher than RDG. However on the other bench-
mark problems, the RDG method generally obtains equally
well or statistically better solution quality than DG2.

The FII method performs well across the benchmark prob-
lems investigated. It achieves the second place according to the
average ranking. However, on the benchmark problems where
the decomposition by FII is less efficient e.g., CEC’2010 f8,
the RDG method can generate significantly better solution
quality than FII.

The DECC-D (with delta grouping) algorithm achieves
much better results than the other DECC based algorithms
when used to solve the CEC’2010 f3 and f11 benchmark
problems. An interesting observation is that both f3 and f11
are Ackley’s functions [21]. Moreover, the DECC-D (with
delta grouping) algorithm also performs well when used to
solve the other Ackley’s functions: CEC’2010 f6, f16 and

CEC’2013 f3, f6, f10. So far, we don’t know the reason why
the DECC-D (with delta grouping) algorithm performs well
on the Ackley’s functions.

The convergence curves of the eight decomposition methods
when embedded into the DECC/CMAESCC framework to
solve the CEC’2010 f18 problem are shown in Fig. 7. The
RDG method uses the smallest number of FEs in the decompo-
sition stage, therefore can generate better solution quality when
compared against the other automatic decomposition methods.

In the next phase of the experimental study, we compare
the performance of DECC-RDG and CMAESCC-RDG against
the performance of two state-of-the-art algorithms – MOS and
MA-SW-Chains. The experimental results of each algorithm
when used to solve the CEC’2010 and CEC’2013 benchmark
problems are presented in Table V and Table VI respectively.

The CMAESCC-RDG algorithm achieves the best solution
quality on 22 out of 35 benchmark problems when compared
against DECC-RDG, MOS and MA-SW-Chains. It does not
perform well on the fully separable problems (CEC’2010 f1
to f3 and CEC’2013 f1 to f3). However on partially separable
and fully non-separable problems, it generally achieves com-
parable or statistically better solution quality than the other
algorithms (e.g., on CEC’2010 f4 to f9 and f11 to f19).

The DECC-RDG algorithm achieves the best solution qual-
ity when used to solve the CEC’2010 f16 problem. On the
other 34 benchmark problems, the DECC-RDG is outper-
formed by the CMAESCC-RDG. It may indicate that the sub-
component optimizer used by the CMAESCC framework is
more effective than that used by the DECC framework.

The MOS algorithm achieves the best results when used
to solve the fully separable problems (CEC’2010 f1-f3, and
CEC’2013 f1-f3). However, on partially separable problems
and fully non-separable problems, it is generally outperformed
by the CMAESCC-RDG algorithm.

The MA-SW-Chains algorithm performs well on the
CEC’2013 benchmark problems. It achieves the best results
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TABLE V
THE RESULTS OF THE DECC-RDG, CMAESCC-RDG, MOS AND

MA-SW-CHAINS ALGORITHMS WHEN USED TO SOLVE THE CEC’2010
BENCHMARK PROBLEMS. THE BEST PERFORMANCES ARE HIGHLIGHTED
IN BOLD (WILCOXON RANK-SUM TESTS (α=0.05) WITH HOLM P-VALUE

CORRECTION).

Func Stats DECC-RDG CMAESCC-RDG MOS MA-SW-Chains

f1

Median 1.50e-01 2.86e+05 0.00e+00 2.67e-14
Mean 2.07e+00 2.84e+05 1.50e-28 3.80e-14
Std 6.75e+00 2.28e+04 5.55e-28 4.91e-14

f2

Median 4.35e+03 4.43e+03 0.00e+00 8.47e+02
Mean 4.38e+03 4.42e+03 0.00e+00 8.40e+02
Std 1.72e+02 1.76e+02 0.00e+00 4.88e+01

f3

Median 1.65e+01 1.12e+00 0.00e+00 5.16e-13
Mean 1.65e+01 1.05e+00 0.00e+00 5.76e-13
Std 3.35e-01 3.49e-01 0.00e+00 2.73e-13

f4

Median 5.75e+11 9.97e+05 4.94e+11 3.10e+11
Mean 6.68e+11 1.01e+06 5.16e+11 2.97e+11
Std 3.33e+11 9.37e+04 1.85e+11 6.19e+10

f5

Median 1.31e+08 9.05e+07 5.00e+08 2.30e+08
Mean 1.28e+08 9.52e+07 4.93e+08 2.18e+08
Std 1.92e+07 2.22e+07 6.93e+07 5.75e+07

f6

Median 1.61e+01 1.04e+00 1.97e+07 2.45e+00
Mean 1.61e+01 9.17e-01 1.97e+07 1.42e+05
Std 3.64e-01 4.23e-01 1.15e+05 3.96e+05

f7

Median 2.46e+00 7.41e-19 2.27e+07 7.94e-03
Mean 2.16e+01 7.41e-19 3.54e+07 1.17e+02
Std 7.56e+01 8.35e-20 3.22e+07 2.37e+02

f8

Median 3.66e+00 1.83e-17 2.14e+06 2.76e+06
Mean 1.59e+05 6.37e+05 3.75e+06 6.90e+06
Std 7.97e+05 1.49e+06 4.40e+06 1.90e+07

f9

Median 4.65e+07 4.80e+06 1.18e+07 1.48e+07
Mean 4.69e+07 4.82e+06 1.13e+07 1.49e+07
Std 5.21e+06 3.88e+05 1.61e+06 1.61e+06

f10

Median 4.33e+03 2.78e+03 6.35e+03 2.02e+03
Mean 4.33e+03 2.79e+03 6.28e+03 2.01e+03
Std 1.39e+02 1.17e+02 3.12e+02 1.59e+02

f11

Median 1.03e+01 1.51e-12 2.84e+01 3.77e+01
Mean 1.03e+01 3.58e-02 3.08e+01 3.86e+01
Std 8.50e-01 1.79e-01 6.07e+00 8.06e+00

f12

Median 1.38e+03 4.30e-22 3.46e+03 3.09e-06
Mean 1.53e+03 4.22e-22 4.39e+03 3.24e-06
Std 4.66e+02 8.38e-23 2.92e+03 5.78e-07

f13

Median 6.12e+02 3.98e+00 3.19e+02 8.61e+02
Mean 7.12e+02 4.78e+00 3.32e+02 9.83e+02
Std 2.52e+02 3.98e+00 1.19e+02 5.66e+02

f14

Median 3.47e+08 3.90e-20 2.04e+07 3.23e+07
Mean 3.47e+08 3.91e-20 2.05e+07 3.25e+07
Std 2.31e+07 2.11e-20 3.60e+06 2.46e+06

f15

Median 5.82e+03 1.92e+03 1.29e+04 2.67e+03
Mean 5.84e+03 1.94e+03 1.29e+04 2.68e+03
Std 1.01e+02 1.10e+02 3.48e+02 9.95e+01

f16

Median 2.66e-13 8.41e-13 3.97e+02 9.32e+01
Mean 2.67e-13 8.43e-13 3.96e+02 9.95e+01
Std 9.81e-15 2.10e-14 3.47e+00 1.53e+01

f17

Median 4.08e+04 6.89e-24 7.30e+03 1.28e+00
Mean 4.07e+04 6.90e-24 8.45e+03 1.27e+00
Std 2.55e+03 2.05e-25 5.04e+03 1.24e-01

f18

Median 1.19e+03 1.55e+01 7.78e+02 1.41e+03
Mean 1.20e+03 1.50e+01 8.96e+02 1.57e+03
Std 1.07e+02 7.19e+00 4.03e+02 6.73e+02

f19

Median 1.71e+06 5.63e+03 5.71e+05 3.75e+05
Mean 1.71e+06 5.46e+03 5.49e+05 3.80e+05
Std 8.91e+04 7.07e+02 8.38e+04 2.34e+04

f20

Median 3.70e+03 8.55e+02 7.40e+01 1.04e+03
Mean 6.96e+03 8.26e+02 9.23e+01 1.06e+03
Std 1.27e+04 6.35e+01 8.99e+01 9.38e+01

TABLE VI
THE RESULTS OF THE DECC-RDG, CMAESCC-RDG, MOS AND

MA-SW-CHAINS ALGORITHMS WHEN USED TO SOLVE THE CEC’2013
BENCHMARK PROBLEMS. THE BEST PERFORMANCES ARE HIGHLIGHTED
IN BOLD (WILCOXON RANK-SUM TESTS (α=0.05) WITH HOLM P-VALUE

CORRECTION).

Func Stats DECC-RDG CMAESCC-RDG MOS MA-SW-Chains

f1

Median 5.32e-01 2.84e+05 1.34e-30 7.12e-13
Mean 3.73e+01 2.89e+05 3.10e-29 1.34e-12
Std 1.24e+02 3.27e+04 4.53e-29 2.45e-12

f2

Median 1.29e+04 4.66e+03 1.90e+01 1.24e+03
Mean 1.27e+04 4.68e+03 1.83e+01 1.25e+03
Std 6.40e+02 1.77e+02 4.65e+00 1.05e+02

f3

Median 2.13e+01 2.03e+01 1.49e-13 6.83e-13
Mean 2.13e+01 2.03e+01 1.65e-13 6.85e-13
Std 1.64e-02 4.96e-02 1.02e-13 2.12e-13

f4

Median 4.01e+10 5.83e+06 1.23e+10 2.75e+09
Mean 4.44e+10 5.90e+06 1.40e+10 3.81e+09
Std 1.77e+10 6.56e+05 7.65e+09 2.73e+09

f5

Median 5.09e+06 2.19e+06 1.12e+07 2.03e+06
Mean 5.09e+06 2.20e+06 1.15e+07 2.25e+06
Std 4.81e+05 3.76e+05 1.82e+06 1.30e+06

f6

Median 1.06e+06 9.95e+05 9.78e+05 6.33e+02
Mean 1.06e+06 9.95e+05 9.83e+05 1.86e+04
Std 1.21e+03 2.88e+01 8.22e+03 2.54e+04

f7

Median 5.41e+07 2.94e-20 1.30e+07 4.03e+06
Mean 6.42e+07 8.12e-17 2.33+07 3.85e+06
Std 2.97e+07 2.17e-16 3.62e+07 6.34e+05

f8

Median 4.74e+15 8.71e+06 1.15e+15 4.60e+13
Mean 5.04e+15 9.74e+06 1.65e+15 4.62e+13
Std 1.86e+15 5.83e+06 1.76e+15 9.02e+12

f9

Median 4.85e+08 1.57e+08 9.08e+08 1.42e+08
Mean 4.82e+08 1.65e+08 9.02e+08 1.44e+08
Std 3.06e+07 4.16e+07 1.04e+08 1.55e+07

f10

Median 9.44e+07 9.04e+07 8.82e+07 3.34e+02
Mean 9.44e+07 9.12e+07 6.66e+07 3.72e+04
Std 2.06e+05 1.53e+06 3.01e+07 6.25e+04

f11

Median 5.31e+08 1.64e+07 1.82e+09 2.10e+08
Mean 5.38e+08 1.62e+07 3.87e+10 2.10e+08
Std 1.34e+08 6.11e+05 1.06e+11 2.35e+07

f12

Median 3.77e+03 1.01e+03 6.89e+01 1.25e+03
Mean 4.85e+03 9.81e+02 8.64e+01 1.24e+03
Std 3.06e+03 7.30e+01 7.82e+01 8.33e+01

f13

Median 3.16e+09 2.49e+06 8.45e+08 1.91e+07
Mean 3.06e+09 2.47e+06 1.09e+09 3.58e+07
Std 6.68e+08 3.83e+05 7.69e+08 4.30e+07

f14

Median 2.50e+09 2.74e+07 2.27e+09 1.43e+08
Mean 2.87e+09 2.76e+07 6.65e+09 1.45e+08
Std 1.73e+09 1.49e+06 1.62e+10 1.60e+07

f15

Median 9.67e+06 2.18e+06 1.24e+08 5.80e+06
Mean 9.75e+06 2.19e+06 1.33e+08 5.98e+06
Std 1.91e+06 2.28e+05 6.05e+07 1.42e+06

when used to solve the CEC’2013 f5, f6, f9, and f10 prob-
lems. However, on the other partially separable and fully non-
separable benchmark problems, it is consistently outperformed
by the CMAESCC-RDG algorithm. In some cases, the best
solution found by the CMAESCC-RDG algorithm is much
better than that found by the MA-SW-Chains algorithm.
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VI. CONCLUSION

In this paper, we have investigated the influence of prob-
lem decomposition on the performance of CC algorithms
when used to solve LSGO problems. A robust decomposition
method – RDG – was proposed, which can decompose an
n-dimensional problem using O

(
n log(n)

)
FEs based on a

measure of non-linearity between decision variables. Signifi-
cantly, RDG outperformed seven other decomposition methods
when embedded into the DECC/CMAESCC framework and
tested across a suite of benchmark LSGO problems. When
compared against two other state-of-the-art hybrid algorithms,
the CMAESCC-RDG algorithm achieved statistically signifi-
cantly better results.

In future work, we plan to apply the CMAESCC-RDG algo-
rithm to solve real-world LSGO problems. Another direction
worth pursuing is focused on the modification of the RDG
method to the combinatorial and multi-objective spaces.
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