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Abstract

Imposing constraints on models has been a way to incorporate prior information to develop
more realistic models and/or compensate for the lack of data. In this thesis, we propose a
way to impose a “non-colliding constraint” on Gaussian process regression when modelling
multiple (unknown) functions at the same time. The non-colliding constraint prevents the
situation where the predictions from different regressions intersect with each other. This
is a desirable property when the physical process that we are trying to model exhibits a
multi-layered structure such as in stratigraphy or when the underlying functions should
not intersect, for example the highest, and lowest temperature of a given time period.
We show that the non-colliding problem can be reformulated to modelling a sequence of
Gaussian process regressions with inequality constraints. We then use a piecewise linear
approximation approach proposed by López-Lopera et al. (2018) to achieve this. Through
an extensive simulation study, we show that our method is able to produce more realistic
models that reflect the prior information of no collisions, as well as smaller errors with less
variability than the standard Gaussian process regression especially when the training set is
small.
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Chapter 1

Introduction

1.1 Motivation

Many statistical and machine learning algorithms follow a purely data-driven methodology,

learning exclusively from the evidence presented in the training data. The more data there is,

the better the performance. Unfortunately, there are cases where training data is limited or

expensive to obtain. In these situations, sometimes incorporating some ancillary knowledge

may be able to compensate for the shortage of data and one such way is to impose certain

constraints in the modelling process.

Over the last years, a number of research papers have appeared that impose constraints

into various models with boundedness, monotonicity, and convexity constraints being the

most common forms. Many models with constraints have been considered such as gradient

boosting trees (Israeli et al., 2019), random forest (González et al., 2015), Bayesian linear

regression (Migliorati et al., 2018) and local polynomial regression (Aıt-Sahalia and Duarte,

2003). Constrained models have been applied to a variety of problems across diverse fields,

for example natural language processing (Chang et al., 2008), image processing (Acton and

Bovik, 1998), option pricing (Aıt-Sahalia and Duarte, 2003) and estimating dose-response

curves (Lee, 1996). Constrained models allow users to incorporate prior information into

the model which help guide the model in the learning process, usually resulting in more
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realistic and better performing models than non-constrained models when data is scarce.

In this thesis, we consider Gaussian processes and Gaussian process regression. Gaussian

processes can be viewed as an infinite-dimensional generalisation of multivariate Gaussian

distribution in that just as a multivariate Gaussian distribution describes random variables

that are vectors, Gaussian process describes random variables that are functions. Gaussian

process regression is a non-parametric Bayesian method which conditions Gaussian process

on data allowing us to simulate and predict where we don’t have data. It is highly flexible

and is able to describe complex structures through covariance functions as well as having the

ability to control various properties of the resulting regression function such as smoothness,

differentiability, and stationarity. The novelty in this thesis is that we consider a model with

k ≥ 2 Gaussian processes and look at imposing a “non-colliding constraint” between them.

Our motivation for such a constraint comes from the fact that when modelling multiple

(unknown) functions at the same time we may want the resulting predictions to not intersect

with each other. This could be due to the physical process that we are trying to model

exhibiting a multi-layered structure such as in stratigraphy or having prior knowledge that

the underlying functions should not intersect, for example predicting the highest, and lowest

temperature of a given time period. The non-colliding constraint serves this purpose as it

restricts the predicted process paths from colliding with each other.

1.2 Outline and Contributions of the Thesis

The main contribution of this thesis is developing a methodology to impose the non-colliding

constraint on Gaussian process regression and to also give an asymptotic result for non-

colliding Ornstein-Uhlenbeck processes.

This thesis is structured as follows. The rest of Chapter 1 gives a literature review on the

some of the related topics. In Chapter 2, we introduce Gaussian process and Gaussian process

regression. Some key aspects in modelling with Gaussian process regression will be discussed,

providing a tutorial on how to build a variety of models with various structures. Then in
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Chapter 3, we present some existing theory on non-colliding Gaussian processes given by

Karlin and McGregor (1959) and Grabiner (1999), also proving a new asymptotic result for

non-colliding Ornstein-Uhlenbeck processes. In Chapter 4, we propose a way to impose the

non-colliding constraint on Gaussian process regression. Algorithms will be given to show

how to implement the non-colliding model. Some related issues are discussed as well such as

parameters estimation, local non-colliding constraint and noisy observations. We will show

in Chapter 4 that simulating the truncated multivariate Gaussian distribution is required in

the implementation of non-colliding Gaussian process regressions so in Chapter 5 we look

at some ways to simulate the distribution and compare their efficiency. In Chapter 6, we

conduct a simulation study on the non-colliding model we proposed. A number of different

examples are provided and the performance of the non-colliding model is compared with the

non-constrained Gaussian process regression model. Additionally, some limitations of the

non-colliding model as well as when it is the appropriate choice over the non-constrained

model will be discussed.

1.3 Literature Review

To the best of our knowledge, the incorporation of a “non-colliding constraint” has never

appeared in the machine learning or statistics literature. We believe that this is mainly

due to the fact that jointly modelling k vector-valued outputs (often called the multi-task

problem in machine learning) has not received much attention. However, once embarking

on this project we found a number of interesting papers in the theoretical literature on

non-colliding Gaussian processes and also some recent work on Gaussian processes with

inequality constraints which are both close to our topic. Therefore it seems appropriate to

briefly review these topics.
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1.3.1 Non-colliding Gaussian Processes

Although the topic is slightly niche, non-colliding Gaussian processes have been explored in

the literature due to their applications in random matrix theory and combinatorics. The first

key result in the area is a paper put forward by Karlin and McGregor giving some first results

about the dynamics of non-colliding stochastic processes. In Karlin and McGregor (1959)

they derive a formula which gives the transition probability of independent strong Markov

processes that have not collided during a given time. However, a more widespread interest

in non-colliding Gaussian processes was not developed until Dyson (1962) proposed a model

to describe the eigenvalues of a Hermitian matrix whose elements execute independent

Brownian motions. The model describes a system of independent Brownian motions condi-

tioned to never collide with each other. Due to the connection with random matrices, Dyson

(1962) sparked an interest in studying non-colliding Gaussian processes in the random

matrix theory community. Further, since the Karlin and McGregor formula can find the

non-colliding transition probability for any group of (identically distributed) strong Markov

processes, it has been used to study the non-colliding version of many other stochastic

processes such as random walks (König et al., 2002), the corner-growth model (Johansson,

2002), Poisson processes (O’Connell, 2002), Yule processes (Doumerc, 2005), and squared

Bessel processes (König et al., 2001). The idea has also been carried over to other state

spaces such as non-colliding Brownian motions on a circle (Hobson and Werner, 1996).

The first asymptotic result about non-colliding Gaussian processes appeared in Grabiner

(1999) where an asymptotic result for non-colliding Brownian motions using the formula

from Karlin and McGregor (1959) was derived. We will prove a similar asymptotic result in

Chapter 3 for Ornstein-Uhlenbeck processes.

1.3.2 Gaussian Process Regressions with Inequality Constraints

In Chapter 4, we propose a methodology for tackling non-colliding Gaussian process re-

gression. Although this is a topic that has never been considered before we show that
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it can be approached by reformulating the problem in terms of a sequence of Gaussian

process regressions with inequality constraints. This is not unexpected as it is common in

mathematics that some problems can be mapped onto others and one can draw an analogy

between how many optimisation problems (e.g., machine learning models) can be mapped

onto solving a convex optimisation problem with inequality constraints.

In the same manner, there are some quite natural ways that Gaussian processes could be

constrained, for example, by ensuring that paths are bounded. Another example could be

that paths are monotonic. Interestingly both these problems can be mapped to a Gaussian

process with inequality constraints.

As a Gaussian process is in infinite-dimensional object (i.e., function-valued object)

it needs to be approximated by something finite-dimensional for it be implemented on a

computer. In the literature about Gaussian process regression with inequality constraints

there are two types of numerical methods that have been considered.

The first approach discretises the input space into a set of virtual observation locations

and simulates a conditional Gaussian process which satisfies the inequality constraints at

these locations (see for example Abrahamsen and Benth 2001, Da Veiga and Marrel 2012,

Golchi et al. 2015, Riihimäki and Vehtari 2010, Wang and Berger 2016, Agrell 2019). Only a

finite number of input locations satisfies the inequality constraints under this first approach.

One attractive property of Gaussian process that is important in modelling monotonicity and

convexity constraints under this approach is the fact that the partial derivative processes

of a Gaussian process are also Gaussian processes, since differentiation is a linear operator

(Cramér and Leadbetter, 2013). These Gaussian processes have covariance functions that

can be derived from the original Gaussian process (see for example Rasmussen and Williams

2006). This allows for the inclusion of derivative observations in a Gaussian process model

and the ability to predict derivatives. For example, Riihimäki and Vehtari (2010) introduced

monotonicity information to a Gaussian process model by including virtual derivatives at

some pre-specified locations. By doing so, the derivative process is required to be positive at

these locations. In later work, ways to find an optimal set of virtual observation locations such
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that the constraints can be satisfied at any input location with sufficiently high probability

has been explored (Golchi et al. 2015, Wang and Berger 2016, Agrell 2019).

The second approach uses a finite-dimensional approximation of Gaussian process which

allows the constraints to hold in the entire domain. This approach was first introduced by

Maatouk and Bay (2017), and later followed up by López-Lopera et al. (2018). Maatouk and

Bay’s piecewise linear approximation of Gaussian process allowed them to incorporate the

advantage of inequality constrained splines, that is the ability to have inequality constraints

satisfied in the entire domain. A lot of research has been done on splines with inequality

constraints as well as applications (see for example Fritsch and Carlson 1980, Wright et al.

1980, Villalobos and Wahba 1987, Micchelli and Utreras 1988, Ramsay 1998, Dole 1999,

Wolberg and Alfy 2002).

Since we want the non-colliding constraint to hold in the entire domain, we will make

use of the approach described in López-Lopera et al. (2018) to develop a methodology for

non-colliding Gaussian process regressions in Chapter 4.
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Chapter 2

Gaussian Processes and GP Regression

In this chapter, we give a brief introduction to Gaussian processes and Gaussian process

regression. In Section 2.1, we define Gaussian processes and give two well-known examples:

the Brownian motion and the Ornstein-Uhlenbeck process. In Section 2.2, we present

Gaussian process regression, an application of Gaussian processes to regression problems.

Through covariance functions, which will be discussed in Section 2.2.2, Gaussian process

regression offers great flexibility and is able to describe a variety of structures, as well

as being able to control various properties of the resulting regression function such as

smoothness, differentiability and stationarity.

2.1 Gaussian Processes

Gaussian processes arise from an infinite-dimensional generalisation of multivariate Gaussian

distribution. A multivariate Gaussian distribution describes random variables that are vectors,

whereas Gaussian process describes random variables that are functions. We now give a

formal definition for Gaussian processes.

Definition 2.1. A stochastic process, {X (t); t ∈ T}, is a Gaussian process if for every finite

subset of indices t1, t2, . . . , tk in the index set T , (X (t1), X (t2), . . . , X (tk)) is a multivariate

Gaussian random variable.

7



Just as a multivariate Gaussian distributions is characterised by a mean vector and

a covariance matrix, a Gaussian process is completely determined by a mean function,

m(t) = E[X (t)], and a covariance function, k(s, t) = Cov(X (s), X (t)). Two well-known

stochastic processes: Brownian motion and Ornstein-Uhlenbeck process, are in fact Gaussian

processes. Both processes have been studied and applied extensively in fields such as physical

sciences, mathematics, and finance. We now show that these two processes are indeed

Gaussian processes that can be defined by a mean and covariance function.

Example 2.1. A Brownian motion (see Definition A.1) is an example of a Gaussian process

with m(t) = 0 and k(s, t) =min{s, t} (see Proposition A.1 for further details).

Example 2.2. Consider the Ornstein-Uhlenbeck process {X (t); t ≥ 0} given by

X (t) = X (0)e−θ t +

∫ t

0

e−θ (t−s)σdW (s).

It is easy to argue that this process is Gaussian as it is given by the addition of a deterministic

part and a Wiener integral (which is Gaussian). Further, we have that

E[X (t)] = X (0)e−θ t ,

and for 0≤ s ≤ t, we have

Cov[X (s), X (t)] =E[(X (s)−E[X (s)])(X (t)−E[X (t)])]

=E
�∫ s

0

e−θ (s−u)σdW (u)

∫ t

0

e−θ (t−v)σdW (v)

�

=E
�∫ s

0

e−θ (s−u)σdW (u)

�∫ s

0

e−θ (t−v)σdW (v) +

∫ t

s

e−θ (t−v)σdW (v)

��

By the independent increments property of Brownian motion,

=E
�∫ s

0

e−θ (s−u)σdW (u)

∫ s

0

e−θ (t−v)σdW (v)

�

+E
�∫ s

0

e−θ (t−u)σdW (u)

�

E
�∫ t

s

e−θ (t−v)σdW (v)

�

=σ2e−θ (s+t)E
�∫ s

0

eθudW (u)

∫ s

0

eθ vdW (v)

�

8



By Itô isometry,

=σ2e−θ (s+t)

�∫ s

0

e2θada

�

=σ2e−θ (s+t)E
�

1
2θ

e2θ s −
1

2θ

�

=
σ2

2θ
(e−θ (t−s) − e−θ (s+t))

If 0≤ t ≤ s, Cov[X (s), X (t)] = σ2

2θ (e
−θ (s−t) − e−θ (s+t)). Therefore, the covariance function

of the Ornstein-Uhlenbeck process is

k(s, t) =
σ2

2θ
(e−θ |t−s| − e−θ (s+t)).

2.2 Gaussian Process Regression

Gaussian process regression is a non-parametric Bayesian method. By conditioning a Gaus-

sian process prior on data, the posterior distribution can be found which is then used to

make predictions. Earlier, when we introduced Gaussian processes, T was used as the index

set. In Gaussian process regression, we use the independent variables as the indices and the

expected value of the Gaussian process at each observation as the regression output. We

will see shortly that not only do we receive an output from our Gaussian process regression

model, we also obtain the probability distribution of the output, thus allowing us to calculate

the confidence interval for our predictions as well.

A regression problem can be formulated as:

yi = f (xi) + εi, εi ∼N (0,σ2
n)

where xi is the ith observation of the independent variables and yi is the corresponding ith

observation of the dependent variable. εi is the Gaussian noise term which is independent

and identically distributed for all i and follows a normal distribution with mean 0 and

constant variance σ2
n.

The goal of the regression problem is to make inference about f so that given any x we

can predict the corresponding y value. Let X =: [x1,x2, . . . ,xn1
]T denotes the n1 × p matrix

9



containing the observed independent variables (the “training set”), where n1 is the number

of observations and p is the number of independent variables, i.e. xi ∈ Rp. Now, let y denote

the vector of the dependent variable used for training and eX be the the n2 × p test set. To

simplify notation, we writeef := f (eX ).

Then, making use of the nice property of a Gaussian process (Definition 2.1), the prior

distribution is given by

ef | eX ∼N (m(eX ), K(eX , eX ))

This is due to eX := [ex1,ex2, . . . ,exn2
]T being countable and finite. eX is used as the in-

dex set for the Gaussian process f . Then by the definition of Gaussian process, ef =

[ f (ex1), f (ex2), . . . , f (exn2
)]T has a multivariate normal distribution with mean defined by

the mean function, m(eX ), and covariance matrix defined by evaluating the covariance

between all pairs of observations using the covariance function k(·, ·), giving

K(eX , eX ) :=











k(ex1,ex1) k(ex1,ex2) . . . k(ex1,exn2
)

...
...

. . .
...

k(exn2
,ex1) k(exn2

,ex2) . . . k(exn2
,exn2
)











.

It follows that the joint distribution ofef and y under the prior is





ef

y





�

�

�

�

eX , X ∼N









m(eX )

m(X )



 ,





K(eX , eX ) K(eX , X )

K(X , eX ) K(X , X ) +σ2
nI









The posterior distribution ef|X ,y, eX can then be found using a fact about the conditional

distributions of a multivariate Gaussian distribution given by Theorem 2.1 (proof is given in

Appendix).

Theorem 2.1 (Conditional multivariate normal distribution). Let y be a N dimensional

random vector which follows a multivariate normal distribution.

y=





y1

y2



∼N



µ=





µ1

µ2



 ,Σ=





Σ11 Σ12

Σ21 Σ22








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If we partition y into y1 (p × 1) and y2 (q × 1), and µ and Σ accordingly (such that y1 ∼

N (µ1,Σ11) and y2 ∼N (µ2,Σ22)), then the conditional distribution of y1 given y2 is y1|y2 ∼

N (µ̃, eΣ) where

µ̃= µ1 +Σ12Σ
−1
22 (y2 −µ2),

eΣ= Σ11 −Σ12Σ
−1
22Σ21.

Theorem 2.1 allows us to obtain the posterior distribution

ef|X ,y, eX ∼N (̄f, Cov(ef))

where

f̄ := E[ef|X ,y, eX ] = m(eX ) + K(eX , X )[K(X , X ) +σ2
nI]−1(y−m(X ))

Cov(ef) = K(eX , eX )− K(eX , X )[K(X , X ) +σ2
nI]−1K(X , eX )

Finally, to make a prediction using the Gaussian process model, simply compute the

posterior mean at the test input locations, and if one is interested in the uncertainty of the

predictions, compute the posterior covariance which can be used to calculate the confidence

interval for each point of prediction. Figure 2.1 illustrates one example of Gaussian process

regression.

2.2.1 Incorporating Explicit Basis Functions

In practice, we often set the mean function to be 0 due to a lack of prior information on it.

However, there are times when one might wish to specify a mean function for reasons such

as interpretability and inclusion of prior information. A fixed mean function can be easily

applied using the equations given earlier. However, specifying a single mean function can

be challenging in practice and one might find it easier to specify a number of basis functions

instead.

Consider the model

g(x) = f (x) + b(x)Tβ

11
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Figure 2.1: Five random functions (i.e., sample paths) drawn from the posterior distribution
(coloured solid lines). The solid black line indicates the posterior mean. The black dots are observa-
tions that are assumed to be noise free i.e. σ2

n = 0. The dotted lines represent 95% confidence interval
which equals to the posterior mean plus and minus 1.96 times the posterior standard deviation.

where f (x)∼ GP(0, k), b(x) is a set of basis functions (e.g. b(x) = (1, x , x2, x3)), and the

vector β gives the weights of the basis functions. This model can be interpreted as that the

data is close to a linear model given by b(x)Tβ and the residuals are modelled by a Gaussian

process. The weights β can be estimated with the parameters of the covariance function,

which will be discussed in 2.2.3.

If we choose the prior on β to be Gaussian, then β ∼N (µ,Σ) and

g(x)∼ GP(b(x)Tµ, k+ b(x)TΣb(x)).

Again, we can apply the mean and covariance functions on the training and test data, and

use Theorem 2.1 to find the posterior distribution as before, giving

ef|X ,y, eX ∼N (̄f, Cov(ef))

where

ḡ= eBT β̄ + K(eX , X )[K(X , X ) +σ2
nI]−1(y− BT β̄)

12



Cov(eg) = Cov(ef) + RT [Σ−1 + B[K(X , X ) +σ2
nI]−1BT ]−1R.

Here, B and eB are the matrices given by evaluating b(x) on the training and test data

respectively, β̄ = [Σ−1 + B[K(X , X ) +σ2
nI]−1BT]−1[B[K(X , X ) +σ2

nI]−1y+Σ−1µ], and R=

eB − B[K(X , X ) +σ2
nI]−1K(X , eX ).

2.2.2 Covariance Functions

Choosing the right covariance function is a crucial component when modelling with Gaussian

process regression. They determine how points close to a test point influence the prediction

at that point. In this section, we give some examples of commonly used covariance functions

and also provide ways to create new covariance functions from existing ones.

Firstly, not all functions can be used as covariance functions. A function k : X ×X → R

where X is the input space can be called a covariance function if it satisfies the following

properties:

• Symmetric, i.e., k(a, b) = k(b, a) for a, b ∈ X ;

• The associated matrix K := (k(x i, x j))ni, j=1 is positive semidefinite1 for any n ∈ N and

for any set of points {x1, x2, . . . , xn} in the input space.

We recall that if a covariance function k(a, b) is a function of a− b then it is called stationary

and it is invariant to translations in the input space. Additionally, if it is a function of |a−b|, it

is called isotropic and is invariant to all rigid motions. A special class of covariance functions

are those that are given by k(a, b) = a · b and we call these dot product covariance functions.

Dot product covariance functions are invariant to rotations of the coordinate system.

2.2.2.1 Examples of Covariance Functions

We now give some examples of commonly used covariance functions.

1A n× n symmetric real matrix K is positive semidefinite if cT Kc ≥ 0 for all c ∈ Rn.

13



−4 −2 0 2 4

−
10

0
10

20
30

Input

O
ut

pu
t

p=1

p=2

p=3

p=1

p=2

p=3

p=1

p=2

p=3

Figure 2.2: Random functions drawn from Gaussian processes with the polynomial covariance
function with σ = 1 and various values of p. The functions were obtained by discretizing the x-axis
into 1000 equally spaced points.

Linear and Polynomial Covariance Functions

The polynomial covariance function is given by

kPo(a, b) = (aT b+σ2)p,

where p is a positive integer and σ is a non-negative parameter. When p = 1, it is a linear

covariance function and is obtainable from linear regression by placing N (0,1) priors on

the coefficients of regressors and a N (0,σ2) prior on the bias term.

Squared Exponential Covariance Function

The squared exponential covariance function has the form

kSE(a, b) = exp
�

−
|a− b|2

2l2

�

with parameter l. A Gaussian process with squared exponential covariance function is

infinitely mean square differentiable, and thus very smooth.
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Figure 2.3: Three random functions drawn from Gaussian processes with the squared exponential
covariance function with l = 1. The functions were obtained by discretizing the x-axis into 1000
equally spaced points.

Matérn Covariance Function

The Matérn covariance function is defined as

kM(a, b) =
21−ν

Γ (ν)

�p
2ν|a− b|

l

�ν

Kν

�p
2ν|a− b|

l

�

where ν and l are positive parameters, Γ (·) is the Gamma function, and Kν is a modified

Bessel function (Abramowitz and Stegun, 1965). A Gaussian process f (x) with Matérn

covariance function is k times mean square differentiable if and only if ν > k. If ν= p+ 1
2 ,

where p is a non-negative integer, then the Matérn covariance function can be simplified to

kM
ν=p+ 1

2
(a, b) = exp

�

−
p

2ν|a− b|
l

�

Γ (p+ 1)
Γ (2p+ 1)

p
∑

i=0

(p+ i)!
i!(p− i)!

�p
8ν|a− b|

l

�p−i

.

As ν→∞, the Matérn covariance function converges to the squared exponential covariance

function. As shown in Figure 2.4, the Matérn covariance function offers great flexibility in

modelling as the user is able to adjust the smoothness of the function being modelled by

changing the parameter ν.
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Figure 2.4: Random functions drawn from Gaussian processes with the Matérn covariance function
with l = 1 and various values of ν. The functions were obtained by discretizing the x-axis into 1000
equally spaced points.

Exponential Covariance Function

The exponential covariance function has the following expression

kE(a, b) = exp
�

−
|a− b|

l

�

The exponential covariance function can be obtained from the Matérn covariance function

by setting ν = 1
2 . A Gaussian process with the exponential covariance function is continuous

but not differentiable. When the dimension of the input space is 1, this is the covariance

function of the Ornstein-Uhlenbeck process.

Periodic Covariance Function

The periodic covariance function (MacKay, 1998) is given by

kP(a, b) = exp

 

−2 sin2(π(a−b)
p )

l2

!

where p is the period of repetition. The periodic covariance function allow the user to model

repeating patterns.
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Figure 2.5: Random functions drawn from Gaussian processes with the periodic covariance function
with l = 1 and various values of p. The functions were obtained by discretizing the x-axis into 1000
equally spaced points.

2.2.2.2 Combining Covariance Functions

Existing covariance functions can be combined to make new covariance functions that can

be used to model data with more complex properties. We will focus our discussion on two

ways of combining covariance functions: summation and multiplication.

Summation of Covariance Functions

The sum of two covariance functions is also a covariance function. Consider two inde-

pendent Gaussian processes, f1 ∼ GP(m1, k1) and f2 ∼ GP(m2, k2). Then the sum of f1 and

f2 is also a Gaussian process, f1+ f2 ∼ GP(m1+m2, k1+ k2). This allow us to build additive

models by summing up independent functions with different properties. Additive models can

help us explore individual effects by looking at component functions, and help us interpret

the models. Figure 2.6 shows some examples of Gaussian processes generated by adding

two covariance functions together. As shown, we can decompose complex structure into
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Figure 2.6: Examples of random functions drawn from Gaussian processes with covariance functions
that are the sums of two existing covariance functions. Left: The sum of a linear covariance function
with σ = 1 and a squared exponential covariance function with l = 1. Middle: The sum of a linear
covariance function with σ = 1 and a periodic covariance function with p = 1 and l = 1. Right: The
sum of a periodic covariance function with p = 1 and l = 1 and a squared exponential covariance
function with l = 1. The functions were obtained by discretizing the x-axis into 500 equally spaced
points.

simpler components and model each component with a function then adding them together.

For example, if we have data with structure like the one in the second plot of Figure 2.6, we

can break the structure into two parts: an increasing linear trend and periodic variations;

and each can be modelled with the covariance functions introduced in 2.2.2.1.

Multiplication of Covariance Functions

The product of two covariance functions is also a covariance function. Since covariance

functions are positive semidefinite, the product of positive semidefinite functions is always

positive semidefinite. Therefore, the resulting function is a valid covariance function. Tak-

ing the product of covariance functions would combine the properties of the covariance

functions, producing a covariance function that is able to adapt to data with more complex

characteristics. Figure 2.7 shows some examples of how taking the product of two covari-

ance functions results in more sophisticated structures that are not achievable by a single

covariance function or adding several covariance functions together. Figure 2.7 only shows

examples of multiplying two covariance functions together, but one can take the product of
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Figure 2.7: Examples of random functions drawn from Gaussian processes with covariance functions
that are the products of two existing covariance functions. Left: The product of a linear covariance
function with σ = 1 and a periodic covariance function with p = 1. Middle: The product of a
periodic covariance function with p = 1 and l = 1, and a squared exponential covariance function
with l = 1. Right: The product of a linear covariance function with σ = 1 and a squared exponential
covariance function with l = 0.2. The functions were obtained by discretizing the x-axis into 500
equally spaced points.

any number of covariance functions to combine multiple properties together.

2.2.3 Model Selection

We have seen earlier that there are a number of specifications needs to be made in the im-

plementation of a Gaussian process regression, such as specifying the covariance function(s)

and the parameters involved e.g. l. While some may be easily determined, others may be

difficult due to a lack of information, e.g. the variance of noise σ2
n and the parameters of

covariance functions. We need a way to help us find the best values for the free parameters

and compare models with different specifications so we can choose the one that best de-

scribes the data. We now present one way of addressing the model selection problem for

Gaussian process regression.

Let θ be the vector of all parameters, e.g., θ = (σ2
n, l, p). Then the log marginal likelihood

is given by

log p(y|X ,θ) = −
1
2

yT [K(X , X ) +σ2
nI]−1y−

1
2

log |K(X , X ) +σ2
nI | −

n
2

log(2π)
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The parameters can be set by maximising the log marginal likelihood, which can be done

using gradient based methods such as the conjugate gradient method. Furthermore, the

log marginal likelihood value can be used to compare between models. For example, two

models with different selections of covariance functions can be compared after optimising

the parameters, and the one with a higher likelihood would be the better model.

2.3 Limitation

In this chapter, we have shown how Gaussian process regression is a powerful method with

great flexibility that is able to model a variety of statistical structures through the use of

existing covariance functions or a combination of them. However, it has one major limitation

which is its computational cost. As shown in Section 2.2, to compute the posterior mean

or covariance matrix one must invert the n1 × n1 matrix K(X , X ) +σ2
nI (where n1 is the

number of training observations). This is an operation with complexity O(n3
1). For large

datasets, this is too computationally expensive in both time and space. Fortunately, a wide

range of methods have been proposed to tackle this problem. For example, incomplete

Cholesky factorization (Fine and Scheinberg, 2001), the Nyström method (Williams and

Seeger, 2001) and Bayesian committee machine (Tresp, 2000).
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Chapter 3

Non-colliding Gaussian Processes

In this chapter, we present some theory on non-colliding Gaussian processes. We will first

explain what we meant by “non-colliding” and introduce a different way of looking at the

non-colliding problem in Section 3.1. Then, a fundamental formula used in the study of

non-colliding stochastic processes will be presented in Section 3.2. Lastly, two kinds of

non-colliding Gaussian processes, namely Brownian motion and Ornstein-Uhlenbeck process,

will be discussed in Section 3.3 and Section 3.4 respectively.

3.1 The Weyl Chamber

We say that n one-dimensional stochastic processes are non-colliding up to time T when

their paths do not cross each other at any point before time T (i.e. X i(t) 6= X j(t) ∀t ∈ [0, T ]

and any i 6= j; i, j = 1, 2, . . . , n). This means the order at which the processes start with has

to be maintained throughout the duration. That is, if X1(0)< X2(0)< . . .< Xn(0), then the

processes X1(t), . . . , Xn(t) are non-colliding up to time T only if X1(t)< X2(t)< . . .< Xn(t)

for all t ∈ [0, T].

Alternatively, we can rephrase the non-colliding condition in terms of staying within

a special domain. Let Wn denote the n-dimensional Weyl chamber, which is the set of all

points x = (x1, x2, . . . , xn) ∈ Rn whose coordinates are ordered, i.e. Wn := {x ∈ Rn : x1 <
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x2 < . . .< xn}. Then the event that a n-dimensional process does not exit Wn coincides with

the event that n one-dimensional processes experience no collision. As the Weyl chamber

perspective is equivalent to our first definition, in the following sections we equivalently

use {X(t) ∈Wn,∀t ∈ [0, T]} where X(t) = (X1(t), . . . , Xn(t)) to mean the event that the n

one-dimensional processes X1(t), . . . , Xn(t) experience no collisions up to some time T .

3.2 Non-colliding Stochastic Processes

Before we start discussing non-colliding Gaussian processes, we must present a fundamental

formula for the analysis of non-colliding stochastic processes, which of course is also used

to derive many results in non-colliding Gaussian processes. The study of non-colliding

stochastic processes started before non-colliding Gaussian processes. It was first sparked

by Karlin and McGregor. The formula they derived in their 1959 paper forms the basis for

the analysis of non-colliding stochastic processes. It provides the transition probability of n

independent stochastic processes having not collided during the time of going from x ∈Wn

to y ∈Wn.

Theorem 3.1 (Karlin and McGregor, 1959). Let X(t) = (X1(t), . . . , Xn(t)) be a n-dimensional

process where X i(t) are independent strong Markov processes that have the same transition

probability (density) p(t1, t2, x , y) for i = 1, . . . , n. Let x = (x1, x2, . . . , xn) ∈ Wn and y =

(y1, y2, . . . , yn) ∈ Wn. Given X(0) = x, the probability that X(T) = y and X(t) ∈ Wn for all

t ∈ [0, T] (i.e. X1(t), . . . , Xn(t) do not collide up to time T) is given by

Px{X(T ) = y; X(t) ∈Wn, ∀t ∈ [0, T]}

= Px{X(T ) = y; no collision up to time T}

=

�

�

�

�

�

�

�

�

�

p(0, T, x1, y1) . . . p(0, T, x1, yn)
...

...

p(0, T, xn, y1) . . . p(0, T, xn, yn)

�

�

�

�

�

�

�

�

�

= det(p(0, T, x i, y j))
n
i, j=1.
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The Karlin-McGregor formula can be applied to any stochastic process with the strong

Markov property (see A.5) to find their non-colliding transition probability. It has been used

to derive many non-colliding results on a variety of stochastic processes, as well as aiding in

the analysis and development of other models. Some examples of the processes and models

that have been studied in the literature include, but not limited to, random walk (König

et al., 2002), corner-growth model (Johansson, 2002), Poisson process (O’Connell, 2002),

Yule process (Doumerc, 2005) and squared Bessel process (König et al., 2001), as well as

specific cases of Gaussian processes such as Brownian motion and the Ornstein-Uhlenbeck

process.

3.3 Non-colliding Brownian Motions

The study of non-colliding Gaussian processes started with Brownian motion. The interest

of non-colliding Brownian motions was sparked by Dyson (1962). Dyson proposed a model

of n Brownian particles system with mutual electrostatic repulsions which are proportional

to the inverse of the distance between particles to describe the eigenvalues of a Hermitian

matrix whose elements execute independent Brownian motions,

dλi = dBi +
∑

j 6=i

1
λi −λ j

d t,

where λi are the eigenvalues and Bi are independent standard one-dimensional Brownian

motion. It turned out the dynamics of the eigenvalues through time are the same as a system

of Brownian motions conditioned to never collide with each other. Dyson’s seminal paper

paved the way for research in non-colliding Brownian motions and advances in random

matrix theory. Many still refer to non-colliding Brownian motions conditioned to never

collide as Dyson’s Brownian motions or a Dyson process. Since the discovery, further research

has occurred on non-colliding Brownian motions, some developments include non-colliding

Brownian motions on a circle (Hobson and Werner, 1996), non-colliding Brownian motions

with an absorbing wall (Katori et al., 2003), and non-colliding system of reflecting Brownian

motions (Katori and Tanemura, 2004).
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Figure 3.1: An illustration of Dyson Brownian motions. The paths are obtained by discretizing the
x-axis into 500 equally spaced points.

Later, Grabiner (1999) derived a classic asymptotic result for non-colliding Brownian

motions.

Theorem 3.2 (Grabiner 1999). Let X1(t), . . . , Xn(t) be n independent Brownian motions, and

let τ = inf{t ≥ 0 : X i(t) = X j(t); i 6= j} be the first time any of the n processes experience

collision. Then for any starting positions x ∈Wn, as T →∞,

Px{τ > T} ∼ T
−n(n−1)

4 (2π)−
n
2

h(x)
∏n−1

j=0 j!

∫

y∈Wn

exp
�

−
|y|2

2

�

h(y)dy

where

h(x) =
∏

1≤i< j≤n

(x j − x i)

is the Vandermonde determinant.

The Weyl Chamber perspective of approaching the non-colliding problem was actually

introduced by Grabiner. Grabiner’s asymptotic result showed that the probability of n

independent Brownian motions experiencing no collisions up to time T is asymptotic to a

constant multiple of T
−n(n−1)

4 as T →∞, and the constant is a polynomial of the starting

positions x. Next, we give a similar asymptotic result for non-colliding Ornstein-Uhlenbeck

processes in Section 3.4.
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3.4 Non-colliding Ornstein-Uhlenbeck Processes

Similar to non-colliding Brownian motions, non-colliding Ornstein-Uhlenbeck processes

have mostly been studied in the random matrix literature due to its connection with the

eigenvalues of a matrix-valued Ornstein-Uhlenbeck process. In this section, we present an

asymptotic result for non-colliding Ornstein-Uhlenbeck processes.

Let us first show that the Ornstein-Uhlenbeck process possesses the strong Markov

property so that the Karlin-McGregor formula can be applied. We use a theorem proven in

Oksendal (2013) which states that

Theorem 3.3 (Oksendal 2013). If a stochastic process {X (t); t ∈ T} is a Itô diffusion, then it

has the strong Markov property.

Therefore, we only need to show that the Ornstein-Uhlenbeck process is a Itô diffusion. We

recall that a (time-homogeneous) Itô diffusion is a stochastic process X (t) : [0,∞)×Ω→ Rn

satisfying a stochastic differential equation of the form

dX (t) = b(X (t))d t + eσ(X (t))dB(t), t ≥ s; X (s) = x (3.1)

where B(t) is m-dimensional Brownian motion and b : Rn→ Rn, eσ : Rn→ Rn×m satisfying

the Lipschitz condition

|b(x)− b(y)|+ |eσ(x)− eσ(y)| ≤ D|x − y| x , y ∈ Rn

for some constant D > 0 where |eσ(x)| := (
∑

|eσi j(x)|2)1/2. This is easily checked, as it is

well known that an Ornstein-Uhlenbeck process satisfies the stochastic differential equation

dX (t) = −θX (t)d t +σdB(t)

where θ > 0 and σ > 0 are parameters. Substituting into (3.1), we obtain b(x) = −θ x and

eσ(x) = σ. Then we can see that

|b(x)− b(y)|+ |eσ(x)− eσ(y)|= θ |y − x |
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which is less than or equal to D|x − y| if we choose D ≥ θ . Thus, the Ornstein-Uhlenbeck

process is a Itô diffusion and possesses the strong Markov property by Theorem 3.3.

We now present an asymptotic non-colliding result similar to Grabiner (1999) but for n

Ornstein-Uhlenbeck processes. To the best of our knowledge, this result has not been shown

in the literature.

Theorem 3.4. Let X1(t), . . . , Xn(t) be n independent Ornstein-Uhlenbeck processes, and let

τ = inf{t ≥ 0 : X i(t) = X j(t); i 6= j} be the first time any of the n processes experience collision.

Then for any starting positions x ∈Wn, as T →∞,

Px{τ > T} ∼ e
−θn(n−1)

2 T 2
n(n−1)

2 π−
n
2

�

θ

σ2

�
n(n−1)

4 h(x)
∏n−1

j=0 j!

∫

z∈Wn

exp(−|z|2)h(z)dz.

We use the same method as Puchała (2005) to prove Theorem 3.4. A lemma given in

Puchała (2005) will also be used in our proof.

Lemma 3.5 (Lemma 2 from Puchała (2005)). Let x = (x1, x2, . . . , xn) ∈ Wn and y =

(y1, y2, . . . , yn) ∈Wn where Wn is the n-dimensional Weyl chamber. Define Ek to be the following

Ek :=
∑

σ∈Sn

sgn(σ)
k!

(x1 yσ(1) + . . .+ xn yσ(n))
k

where Sn denotes the set of permutations of {1, 2, . . . , n}, sgn(σ) is the sign of permutation σ

and k is a non-negative integer. Then for i = 0, 1, . . . , n(n−1)
2 − 1, we have Ei = 0 and

E n(n−1)
2
=

h(x)h(y)
∏n−1

j=0 j!
.

We now present the proof for Theorem 3.4.

Proof. The transition density of an Ornstein-Uhlenbeck process X := {X (t); t ≥ 0} going

from x and reaching y at time t that satisfies

dX (t) = −θX (t)d t +σdB(t), X (0) = x ,

is given by

pOU(0, t, x , y) =

√

√ θ

πσ2(1− e−2θ t)
exp

�

−θ (y − xe−θ t)2

σ2(1− e−2θ t)

�

, y ∈ R.
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Since Ornstein-Uhlenbeck process is a strong Markov process, we can use the Karlin-

McGregor formula to find the non-colliding transition probability. According to the Karlin-

McGregor formula, the transition probability of n independent Ornstein-Uhlenbeck processes,

X(t) := (X1(t), . . . , Xn(t)), starting at x ∈Wn and arriving at y ∈Wn at time T without having

experienced any collisions in the intervening time is given by

Px{X(T ) = y; X(t) ∈Wn, ∀t ∈ [0, T]}

= det(pOU(0, T, x i, yi))
n
i, j=1

=
�

θ

πσ2(1− e−2θT )

�
n
2

exp

�

−θ (|y|2 + |x|2e−2θT )
σ2(1− e−2θT )

�

det

�

exp

�

2θ e−θT x i yi

σ2(1− e−2θT )

��n

i, j=1

=
�

θ

πσ2(1− e−2θT )

�
n
2

exp

�

−θ (|y|2 + |x|2e−2θT )
σ2(1− e−2θT )

� ∞
∑

k=0

�

2θ e−θT

σ2(1− e−2θT )

�k

Ek

where |x|2 =
∑n

i=1 x2
i and

Ek =
∑

δ∈Sn

sgn(δ)
k!

(x1 yδ(1) + . . .+ xn yδ(n))
k

Sn is the set of permutations of {1,2, . . . , n} and sgn(δ) is the sign of permutation δ.

Let τ = inf{t ≥ 0 : X i(t) = X j(t); i 6= j} be the first time any of the n processes experience

collision. Then the probability that X(t) starting from x ∈Wn and experience no collisions

up to at least time T is given by

Px{τ > T}=
∫

y∈Wn

det(pOU(0, T, x i, yi))
n
i, j=1dy

Then as T →∞,

lim
T→∞

Px{τ > T}

e
−θn(n−1)

2 T
= lim

T→∞
e
θn(n−1)

2 T

∫

y∈Wn

det(pOU(0, T, x i, yi))
n
i, j=1dy

= lim
T→∞

e
θn(n−1)

2 T
�

θ

πσ2(1− e−2θT )

�
n
2

exp
�

−θ |x|2

σ2(e2θT − 1)

�

∫

y∈Wn

exp
�

−θ |y|2

σ2(1− e−2θT )

� ∞
∑

k=0

�

2θ e−θT

σ2(1− e−2θT )

�k

Ekdy

= lim
T→∞

e
θn(n−1)

2 T
�

θ

πσ2(1− e−2θT )

�
n
2

exp
�

−θ |x|2

σ2(e2θT − 1)

�
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∫

y∈Wn

exp
�

−θ |y|2

σ2(1− e−2θT )

�

n(n−1)
2
∑

k=0

�

2θ e−θT

σ2(1− e−2θT )

�k

Ekdy

+ e
θn(n−1)

2 T
�

θ

πσ2(1− e−2θT )

�
n
2

exp
�

−θ |x|2

σ2(e2θT − 1)

�

∫

y∈Wn

exp
�

−θ |y|2

σ2(1− e−2θT )

� ∞
∑

k= n(n−1)
2 +1

�

2θ e−θT

σ2(1− e−2θT )

�k

Ekdy

= (1) + (2).

Consider the first part of the sum above,

(1) = lim
T→∞

e
θn(n−1)

2 T
�

θ

πσ2(1− e−2θT )

�
n
2

exp
�

−θ |x|2

σ2(e2θT − 1)

�

∫

y∈Wn

exp
�

−θ |y|2

σ2(1− e−2θT )

�

n(n−1)
2
∑

k=0

�

2θ e−θT

σ2(1− e−2θT )

�k

Ekdy

By Lemma 3.5, this can be simplified to

= lim
T→∞

e
θn(n−1)

2 T
�

θ

πσ2(1− e−2θT )

�
n
2

exp
�

−θ |x|2

σ2(e2θT − 1)

�

∫

y∈Wn

exp
�

−θ |y|2

σ2(1− e−2θT )

�

�

2θ e−θT

σ2(1− e−2θT )

�
n(n−1)

2

E n(n−1)
2

dy

= lim
T→∞

2
n(n−1)

2 π−
n
2

�

θ

σ2(1− e−2θT )

�
n2
2

exp
�

−θ |x|2

σ2(e2θT − 1)

�

h(x)
∏n−1

j=0 j!
∫

y∈Wn

exp
�

−θ |y|2

σ2(1− e−2θT )

�

h(y)dy

Let zi =
Ç

θ
σ2(1−e−2θT ) yi, and since h(ax) = a

n(n−1)
2 h(x), we have

= lim
T→∞

2
n(n−1)

2 π−
n
2

�

θ

σ2(1− e−2θT )

�
n(n−1)

4

exp
�

−θ |x|2

σ2(e2θT − 1)

�

h(x)
∏n−1

j=0 j!
∫

z∈Wn

exp(−|z|2)h(z)dz

= 2
n(n−1)

2 π−
n
2

�

θ

σ2

�
n(n−1)

4 h(x)
∏n−1

j=0 j!

∫

z∈Wn

exp(−|z|2)h(z)dz.

Now let us consider the second part of the sum from earlier,

(2) = lim
T→∞

e
θn(n−1)

2 T
�

θ

πσ2(1− e−2θT )

�
n
2

exp
�

−θ |x|2

σ2(e2θT − 1)

�
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∫

y∈Wn

exp
�

−θ |y|2

σ2(1− e−2θT )

� ∞
∑

k= n(n−1)
2 +1

�

2θ e−θT

σ2(1− e−2θT )

�k

Ekdy

= lim
T→∞

�

θ

πσ2(1− e−2θT )

�
n
2

exp
�

−θ |x|2

σ2(e2θT − 1)

�

∞
∑

k= n(n−1)
2 +1

e−θT[k− n(n−1)
2 ]

�

2θ
σ2(1− e−2θT )

�k
∫

y∈Wn

exp
�

−θ |y|2

σ2(1− e−2θT )

�

Ekdy

= 0.

We have shown that

lim
T→∞

Px{τ > T}

e
−θn(n−1)

2 T
= 2

n(n−1)
2 π−

n
2

�

θ

σ2

�
n(n−1)

4 h(x)
∏n−1

j=0 j!

∫

z∈Wn

exp(−|z|2)h(z)dz

∴ Px{τ > T} ∼ e
−θn(n−1)

2 T 2
n(n−1)

2 π−
n
2

�

θ

σ2

�
n(n−1)

4 h(x)
∏n−1

j=0 j!

∫

z∈Wn

exp(−|z|2)h(z)dz.

The asymptotic result we proved here show that the probability of n independent Ornstein-

Uhlenbeck processes experiencing no collisions up to time T is asymptotic to a constant

multiple of e
−θn(n−1)

2 T as T →∞, and the constant is a polynomial of the starting positions x.

3.5 Conclusion

In this chapter, we presented the fundamental theorem derived by Karlin and McGregor that

is used extensively in the analysis of not just non-colliding Gaussian processes but also other

stochastic processes, as well as a key asymptotic result for non-colliding Brownian motions

by Grabiner. Then, by utilising the strong Markov property of Ornstein-Uhlenbeck process

and the Karlin-McGregor formula, we derived a similar asymptotic result for non-colliding

Ornstein-Uhlenbeck processes. In the next chapter, we propose a methodology of imposing

a non-colliding constraint when modelling with multiple Gaussian process regressions at

the same time.
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Chapter 4

Non-colliding GP Regressions

In this chapter, we present new results on how to perform regression in the situation where

we have a number of Gaussian processes under a non-colliding constraint. We first show

that the non-colliding Gaussian processes problem can be mapped to a sequence of Gaussian

processes with inequality constraints in 4.1. Then, in 4.2, we will review the literature on

Gaussian processes with inequality constraints and present a method that we will use to

tackle the non-colliding problem. Lastly, we will demonstrate how to perform non-colliding

Gaussian process regressions in 4.3.

4.1 Reposing the Non-colliding Problem

Recall from Chapter 3 that the non-colliding condition on n Gaussian processes Y1, Y2, . . .,

Yn with index set T can be written as Y1(t) < Y2(t) < ... < Yn(t) for all t ∈ T . Another

way to look at this is that for any Yi(t), its distance to the value of the adjacent processes

Yi−1(t) and Yi+1(t) has to be greater than 0. This means that the non-colliding condition is

equivalent to the processes satisfying the inequalities

Yn(t)− Yn−1(t)> 0,

...

Y3(t)− Y2(t)> 0,
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Y2(t)− Y1(t)> 0.

The difference of two independent Gaussian processes is also a Gaussian process. This

follows directly from the property that a linear combination of independent Gaussian

random variables is a Gaussian random variable. Suppose A and B are two independent

Gaussian processes defined by

A∼ GP(mA, kA)

B ∼ GP(mB, kB)

Then the difference A− B is given by

A− B ∼ GP(mA−mB, kA+ kB).

Since the difference of two Gaussian processes is also a Gaussian process, the non-colliding

condition of n Gaussian processes can be viewed as n− 1 Gaussian processes satisfying the

positivity constraint

Zn−1(t)> 0,

...

Z2(t)> 0,

Z1(t)> 0,

where Zi(t) := Yi+1(t)− Yi(t) are Gaussian processes. This leads us to consider the problem

of Gaussian process regression with inequality constraints.

4.2 GP Regression with Inequality Constraints

As discussed in Chapter 1, so far, there are mainly two approaches to add inequality con-

straints to Gaussian process regression. One approach discretises the input space into a set

of virtual observation locations and simulates a conditional Gaussian process which satisfies

the inequality constraints at these locations. However, since the inequality constraints are
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only guaranteed to hold at these virtual observation locations, only a finite number of input

locations satisfies the constraints under this approach.

The second approach uses a piecewise linear approximation of Gaussian process which

allows the constraints to hold in the entire domain. This approach is more appropriate for

our purpose as we would like the non-colliding constraint to hold in the entire domain. We

now briefly review the latest paper following this approach by López-Lopera et al. (2018)

Consider the compact input space X := [0, 1]. For a zero-mean Gaussian process Y with

covariance function k, López-Lopera et al. use a finite-dimensional approximation Ym with

knots at t1, ..., tm to handle the inequality constraints. Let

Ym(x) :=
m
∑

j=1

Y (t j)φ j(x)

where φ1, ...,φm are hat basis functions given by

φ j(x) :=











1−
�

�

x−t j

∆m

�

� if | x−t j

∆m
| ≤ 1,

0 otherwise.

This is the case considered in López-Lopera et al. (2018) where the knots are equally spaced,

i.e. t j = ( j − 1)∆m with ∆m = 1/(m− 1). However, this assumption can be relaxed and we

will show in Section 4.3.2 how the hat basis function would be modified when the knots are

not equally spaced.

Let E j := Y (t j) for j = 1, 2, ..., m. Let C be the set of q linear inequalities given by

C := {c ∈ Rm;∀k = 1, ..., q : lk ≤
m
∑

j=1

λk, jc j ≤ uk},

where the λk, j ’s encode the linear operations, and the lk ’s and uk ’s are the lower and upper

bounds. Denote Λ := (λk, j)1≤k≤q, 1≤ j≤m, l := (lk)1≤k≤q, and u := (uk)1≤k≤q. The vector E,

which contains the values at the knots, is a zero-mean Gaussian vector with covariance

matrix Γ = (k(t i, t j))1≤i, j≤m.

Let y = [y1, y2, ..., yn]T be a realisation of the Gaussian process Y at the points x1, x2, ..., xn.

Then we can construct the n × m matrix of hat basis functions Φ, which is given by

Φi, j = φ j(x i). By using the hat functions and our process approximation Ym, the inequality
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constraints on the process Y are now approximated by a finite number of constraints on

E = [E1,E2, ...,Em]T (Maatouk and Bay, 2017). As a result, the interpolation conditions and

inequality conditions on the finite approximation Ym can then be written as

E ∼N (0, Γ ) s.t.











ΦE = y (Interpolation conditions),

E ∈ C ⇔ l≤ ΛE ≤ u (Inequality conditions).

Therefore, we want to find the posterior distribution of E such that both interpolation

and inequality conditions are met. The conditional distribution satisfying the interpolation

conditions is E|{ΦE = y} ∼N (µ,Σ) with

µ= ΓΦT [ΦΓΦT ]−1y, and Σ= Γ − ΓΦT [ΦΓΦT ]−1ΦΓ .

It follows that the posterior distribution satisfying both interpolation conditions and inequal-

ity conditions is

ΛE|{ΦE = y, l≤ ΛE ≤ u} ∼ T N (Λµ,ΛΣΛT , l,u)

where T N (Λµ,ΛΣΛT , l,u) is the truncated multivariate normal distribution with mean Λµ,

covariance matrix ΛΣΛT and lower and upper bounds l,u. Sampling from the posterior

distribution will give us ΛE. Then we can solve the linear system ΛE to obtain E. Finally, let

λ= [λ1,λ2, ...,λm]T be the posterior modes or means of E, then the prediction at a point ex

is given by
∑m

j=1λ jφ j(ex).

4.2.1 Higher Dimensional Input Spaces

López-Lopera et al. also present 2-dimensional input spaces in their paper. The model can

be extended to higher dimensional cases following the same idea. With 2-dimensional input

spaces X = [0,1]2, we have m1 ×m2 knots, and the finite approximation is given by

Ym1,m2
(x , z) =

m1
∑

j=1

m2
∑

k=1

E j,kφ
1
j (x)φ

2
k(z).

Let E = [E1,1,E1,2, ...,E1,m2
,E2,1, ...,Em1,m2

] be a Gaussian vector with zero mean and covariance

matrix Γ as before. Now, let Φ be the n× (m1 ×m2) matrix of hat basis functions where the

33



ith row is given by

[φ1
1(x i)φ

2
1(zi) · · ·φ1

1(x i)φ
2
m2
(zi) · · ·φ1

m1
(x i)φ

2
1(zi) · · ·φ1

m1
(x i)φ

2
m2
(zi)].

Finally, the posterior distribution can be computed as before.

4.3 GP Regressions with Non-colliding Constraint

We now show how to make use of the constrained Gaussian process regression model in

López-Lopera et al. (2018) to impose the non-colliding constraint. For readability, we focus

our discussion on a one-dimensional input space. However, the algorithms given below can

be extended to higher dimensional input spaces by the approach in Section 4.2.1.

Consider the n1×1 vector X = [x1, x2, ..., xn1
]T which contains the independent variable

of the training set and the n2 × 1 test set eX = [ex1, ex2, ..., exn2
]T . We also observe l dependent

variables y1,y2, ...,yl , where yi is a n1 × 1 vector. For now, we only consider the case where

y1,y2, ...,yl correspond to the same training points X . In Section 4.3.3 we will discuss how

to deal with the situation of having different training input locations for each yi.

We first apply min-max normalisation1 on X and eX together, so that the input space X be-

comes [0, 1]. Next, we order y1,y2, ...,yl in ascending order. This can be done by comparing

either their minimums or maximums. Let y′1,y′2, ...,y′l be y1,y2, ...,yl arranged in ascending

order, i.e. y′1 < y′2 < ...< y′l . For each y′i, the user can specify a covariance function to model

it with a Gaussian process. Let f1(·), f2(·), ..., fl(·) be the Gaussian processes with covari-

ance functions k1, k2, ..., kl that are used to model y′1,y′2, ...,y′l and satisfy the non-colliding

constraint. Then the Gaussian process regressions’ predictions at eX , f1(eX ), f2(eX ), ..., fl(eX ),

given the non-colliding constraint can be computed following Algorithm 1.

The idea is to take the differences between the processes that are next to each other and

bound it by 0. After fitting Gaussian process regressions constrained to not cross 0 to the

differences, then we transform it back to obtain non-colliding regressions as desired.

1For each x i in x, the min-max normalisation returns zi =
x i−min(x)

max(x)−min(x)
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Algorithm 1: Non-colliding GP Regressions

Input: X : training data; eX : test data; (y′1,y′2, ...,y′l): observed dependent variables
in ascending order; (k1, k2, ..., kl): covariance functions; (t1, t2, ..., tm):
locations of knots

Output: f1(eX ), f2(eX ), ..., fl(eX )
1 Compute the posterior mean for the first Gaussian process:

f1(eX ) = k1(eX , X )k1(X , X )−1y′1
2 for i = 1,2, ..., l − 1 do
3 zi = y′i+1 − y′i
4 Construct the n1 ×m matrix of hat basis functions: Φ
5 Construct the m×m covariance matrix Γ = (ki(t j, tp) + ki+1(t j, tp))1≤ j,p≤m where

t are the locations of knots.
6 Compute the posterior mean of E: µ= ΓΦT [ΦΓΦT ]−1zi

7 Compute the posterior variance of E: Σ= Γ − ΓΦT [ΦΓΦT ]−1ΦΓ
8 Simulate the distribution T N (µ,Σ,0,∞), and compute the mean or mode λ

9 Calculate the vector of predicted differences: ezi =
∑m

s=1λsφs(eX )
10 Calculate the predictions of the Gaussian process fi+1: fi+1(eX ) = fi(eX ) +ezi

4.3.1 Parameters Estimation

To estimate the parameters of the covariance functions ki for i = 1, . . . , l, we use the same

approach as Section 2.2.3, where we choose the parameters that maximise the log-likelihood

function. For non-colliding Gaussian process regressions, the parameters are estimated

when fitting the differences of the processes. Let zi := y′i+1 − y′i be the difference between

the vector of observed (or training) output values of the (i + 1)th process and the vector of

observed output values of the ith process as defined in Algorithm 1.

Also, let k∗i denote the covariance function of the ith process fi using the optimised

parameters. Then, the parameters of covariance function ki is estimated by fitting zi−1 using

the covariance function k∗i−1 + ki and maximising the log-likelihood. The first process is

fitted without constraints so the parameters of its covariance function can be estimated in

the same way as Section 2.2.3.

The likelihood function of zi with the non-colliding constraint can be found using Bayes’

theorem,

p(zi|X ,θ,E ∈ C) =
p(zi|X ,θ)p(E ∈ C |zi, X ,θ)

p(E ∈ C |X ,θ)
,

35



where C := {c ∈ Rm;c > 0} and θ is the vector containing parameters of ki. Then the

estimated parameters θ̂ is given by

θ̂ = arg max
θ

log p(zi|X ,θ,E ∈ C)

= arg max
θ

�

log p(zi|X ,θ) + log p(E ∈ C |zi, X ,θ)− log p(E ∈ C |X ,θ)
�

.

The first term is the log-likelihood without any constraints. The second and third term are

Gaussian orthant probabilities given by

p(E ∈ C |zi, X ,θ) =

∫

(0,∞)m
(2π)−

m
2 |Σ|−

1
2 exp

�

−
1
2
(E −µ)TΣ−1(E −µ)

�

dE

p(E ∈ C |X ,θ) =

∫

(0,∞)m
(2π)−

m
2 |Γ |−

1
2 exp

�

−
1
2
E TΓ−1E

�

dE

where m is the number of knots, Γ = (ki(t j, tp) + k∗i−1(t j, tp))1≤ j,p≤m and Σ, µ are given in

Algorithm 1. These Gaussian orthant probabilities have to be computed numerically. One

method is the minimax exponential tilting proposed in Botev (2017) that we consider in the

next chapter.

4.3.2 Local Non-colliding Constraint

Sometimes one may wish to impose the non-colliding constraint only on an interval of

the domain instead of the entire domain. Suppose we wish to impose the non-colliding

constraint in the range (a, b) where 0< a < b < 1. Additionally, we have m knots t1, . . . , tm

and t1 < . . . < tm. If t j 6= a, b for j = 1, . . . , m, we add two additional knots at a and b.

Since now the knots are likely to be no longer equally spaced, we need to modify the hat

basis function to

φ j(x) :=



























1−
�

�

x−t j

t j−t j−1

�

� if t j−1 ≤ x ≤ t j,

1−
�

�

x−t j

t j+1−t j

�

� if t j ≤ x ≤ t j+1,

0 otherwise.

This modification achieves the same effect as the hat basis function formula when the knots

are equally spaced given in López-Lopera et al. (2018), where φ j(x) = 1 when x = t j and
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Figure 4.1: Left: Hat basis functions φ j of equally spaced knots at (0, 0.2, 0.4, 0.6, 0.8, 1). Right:
Hat basis functions φ j of unequally spaced knots at (0, 0.2, 0.5, 0.6, 1).

decreases linearly to 0 as x moves towards adjacent knots t j−1 and t j+1. Once x reaches

the adjacent knots, the function becomes 0 and stays 0 as x moves beyond the adjacent

knots. Furthermore, the sum of all hat basis functions equals 1 for all x ∈ [0,1] just as

before. This is illustrated in Figure 4.1, where each colour represents the hat basis function

corresponding to a knot and the dotted lines show the locations of the knots.

Let tα = a and tβ = b. We re-order the knots so we have t1 < . . .< tα < . . .< tβ < . . .<

tm+2. To implement Gaussian process regressions with local non-colliding constraint, we

follow the steps given in Algorithm 1 as before, but now the matrix of hat basis functions is

constructed using the modified hat basis function, and instead of simulating T N (µ,Σ,0,∞),

we now simulate T N (µ,Σ,L,∞) where L := (L j)1≤ j≤m and L j is given by

L j =



























−∞ for j = 1, . . . ,α

0 for j = α+ 1, . . . ,β − 1

−∞ for j = β , . . . , m+ 2

This enforces the non-colliding constraint only on the interval (a, b) and no restrictions

are in place when outside this interval. Local non-colliding constraint can also be applied
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to multiple intervals. It can be easily done in the same way by adding more knots to the

desired locations.

4.3.3 Different Training Input Locations

We have shown how to implement non-colliding Gaussian process regressions when the

observed y1,y2, ...,yl all share the same training inputs X and have the same length. However,

in practice y1,y2, ...,yl may be collected independently instead of all at the same time. This

may result in y1,y2, ...,yl correspond to different input locations and have different lengths.

To tackle this problem, we modify Algorithm 1 a little so that instead of taking the differences

using yi ’s we use the predicted values from previous regressions. However, this process

can be quite expensive computationally as each Gaussian process needs to predict not only

the test set but also the other inputs. Suppose now we have training inputs X1, X2, ..., X l

and they may not have the same values or lengths. Consequently, y1,y2, ...,yl could have

different lengths. The modified algorithm is then given by Algorithm 2.

Algorithm 2: Non-colliding GP Regressions with Different Training Input Locations

Input: (X1, X2, ..., X l), eX , (y′1,y′2, ...,y′l), (k1, k2, ..., kl), (t1, t2, ..., tm)
Output: f1(eX ), f2(eX ), ..., fl(eX )

1 Compute the posterior mean for the first Gaussian process:
f1(eX ) = k1(eX , X1)k1(X1, X1)−1y′1

2 Let X ′ = [X T
2 , X T

3 , ..., X T
l ]

T and calculate f1(X ′)
3 for i = 1,2, ..., l − 1 do
4 zi = y′i+1 − fi(X i)
5 Construct the n1 ×m matrix of hat basis functions: Φ
6 Construct the m×m covariance matrix Γ = (ki(t j, tp) + ki−1(t j, tp))1≤ j,p≤m where

t are the locations of knots.
7 Compute the posterior mean of E: µ= ΓΦT [ΦΓΦT ]−1zi

8 Compute the posterior variance of E: Σ= Γ − ΓΦT [ΦΓΦT ]−1ΦΓ
9 Simulate the distribution T N (µ,Σ,0,∞), and compute the mean or mode λ

10 Calculate the vector of predicted differences: ezi =
∑m

s=1λsφs(eX )
11 Calculate the predictions of the Gaussian process fi+1: fi+1(eX ) = fi(eX ) +ezi

12 Let X ′ = [X T
i+1, X T

i+2, ..., X T
l ]

T , compute fi+1(X ′)
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4.3.4 Noisy Observations

López-Lopera et al. (2018) only considered the interpolation problem which assumes the

observations are noise-free. The resulting Gaussian process regression would pass through all

the observations. However, we don’t always have access to noise-free data so it is important

to also consider the case where our observations are contaminated by noise.

Let K = (k(x i, x j))1≤i, j≤n1
where k is a covariance function and x i ∈ X for i = 1, 2, . . . , n1

are the training inputs. Then instead of having y∼N (0, K) in the noise-free case, we now

have y ∼ N (0, K +σ2
nI), where σ2

n is the variance of the noise term and I is the n1 × n1

identity matrix. Under the approximation method given in López-Lopera et al. (2018), the

Gaussian process is approximated by hat basis functions and a Gaussian random vector

E ∼N (0, Γ ) such that ΦE = y where Φ is the matrix of hat basis functions. In the noise-free

case, y∼N (0, K) is approximated by ΦE ∼N (0,ΦΓΦT ). To add noise, we make the same

adjustment as earlier by adding σ2
nI , so now we have ΦE ∼N (0,ΦΓΦT +σ2

nI).

The covariance between E and ΦE can be found by

Cov(E,ΦE) = E[E(ΦE)T ]

= E[EE T ]ΦT

= ΓΦT .

Then the joint distribution of E and ΦE is given by




E

ΦE



∼N









0

0



 ,





Γ ΓΦT

ΦΓ T ΦΓΦT +σ2
nI









Now we can use Theorem 2.1 to find the conditional distribution of E|{ΦE = y} ∼N (µ∗,Σ∗),

where

µ∗ = ΓΦT [ΦΓΦT +σ2
nI]−1y

Σ∗ = Γ − ΓΦT [ΦΓΦT +σ2
nI]−1ΦΓ T .

When implementing non-colliding Gaussian process regressions in the case of noisy obser-

vations, simply compute µ∗ and Σ∗ in Step 7 and 8 of the algorithms, instead of µ and Σ.
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The user can specify the noise variance or use the parameters estimation method given in

Section 4.3.1 to find the σ2
n that maximises the likelihood.

4.3.5 Modelling the Differences Explicitly

In previous sections, when performing non-colliding Gaussian process regressions, even

though we fit the differences then transforming them back, we still specify what model

to use to fit each of the underlying function by specifying the covariance functions. The

covariance functions used in the modelling of the differences are not specified directly.

They are simply a transformation of the covariance functions used to model the underlying

functions. This is not unusual and is in fact common practice since we want to be able

to control the characteristics of the resulting regressions, and the differences between the

regressions are usually not objects of interest. However, there could be times when the

underlying functions do not exhibit obvious structures or characteristics but their differences

do. We give two examples of such functions. Consider two pairs of functions f1(·) and f2(·),

and f3(·) and f4(·) given by

f1(x) = 0.4 cos(2πx) + 0.4cos(3πx − 1)

f2(x) = 0.4 cos(2πx) + 0.4cos(3πx − 1) + 0.2 sin(7πx) + 0.5

f3(x) = sin(2πx) + sin(3πx)

f4(x) = sin(2πx) + sin(3πx) + 0.5x sin(8πx) + 1

The functions are illustrated in Figures 4.2. As shown in plots, the functions do not

display obvious characteristics such as linearity, trend, and periodicity that we can encode

in covariance functions. However, their differences do and we can use covariance functions

to explicitly express such characteristics. The difference of the pair f1(·) and f2(·) can be

modelled by a periodic covariance function. The difference of the pair f3(·) and f4(·) can be

modelled by the product of a linear covariance function and a periodic covariance function.

If we wish to model the differences directly with certain covariance function, we only need

to make a simple modification to Algorithm 1. Instead of using the sum of the covariance
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Figure 4.2: Examples of functions that don’t exhibit obvious structures but their differences do. The
left column shows two pairs of functions and the right column shows their respective differences. The
first row depicts the functions f1 and f2 given in Section 4.3.5 in red and blue respectively, as well as
their difference in black. The second row depicts the functions f3 and f4 given in Section 4.3.5 in red
and blue respectively, as well as their difference in black. The functions are obtained by discretizing
the x-axis into 100 equally spaced points.

functions of the regressions to construct the matrix Γ in step 6, use the covariance function

that one wishes to model the differences with. One disadvantage of this approach is that

the resulting regressions become difficult to interpret.

4.4 Conclusion

In this chapter we have developed a methodology for performing Gaussian process regression

in the case where we have multiple processes with a non-colliding constraint. We have seen
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that the actual implementation of the methodology requires the simulation of truncated

multivariate Gaussian random variables. In the next chapter, we take a small detour to

consider some recent results on how to achieve this.
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Chapter 5

Simulating Truncated Multivariate

Gaussian Distribution

Developing numerical techniques for sampling from the truncated multivariate Gaussian

distribution is an active area of research as it is needed for fitting many statistical models.

For example, constrained Bayesian linear regression (Rodriguez-Yam et al., 2004), censored

models (Tan et al., 2002), order restricted models (Robertson, 1988), and truncated mul-

tivariate probit models in market research (Liechty et al., 2001). In the previous chapter,

we showed that implementing Gaussian process regression with non-colliding or inequality

constraints also requires sampling from the truncated multivariate Gaussian distribution.

We recall that a n-dimensional truncated multivariate Gaussian distribution T N (µ,Σ, l,u)

is derived from a multivariate normal distribution with mean µ ∈ Rn, covariance matrix

Σ ∈ Rn×n that has been constrained so that samples have lower bound l ∈ Rn and upper

bound u ∈ Rn. Of course, this means that the naïve way to sample from this distribution is

to draw from the appropriate multivariate normal and then to only accept a sample x if it

satisfies l≤ x ≤ u. This is of course terribly inefficient.

In this chapter, we give a brief introduction to three recent and more computationally

efficient methods: rejection sampling from the mode (RSM), Hamiltonian Monte Carlo

(HMC), and minimax exponential tilting (MET). We finish the chapter by comparing the
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computational cost of the three methods on an example problem.

5.1 Rejection Sampling

RSM is an extension of the classic rejection sampling approach. We recall that the general

approach to rejection sampling is as follows. Suppose f and g are two probability density

functions such that f (x) < cg(x) for all x in the support of f , where c ≥ 1. Then the

random sample X resulting from Algorithm 3 follows the distribution described by f .

Algorithm 3: Rejection sampling

1 Generate X with density g.
2 Generate U from a uniform distribution on [0,1].
3 If cg(X )U ≤ f (X ), accept X; otherwise, go back to step 1.

It can be shown that the expected number of draws before acceptance of the sample is

equal to 1
c and this means this approach is slow when sampling from truncated multivariate

Gaussian distribution due to the low acceptance rate (Maatouk and Bay, 2016). In Maatouk

and Bay (2016), they propose the RSM approach that is specifically tailored for sampling

from truncated multivariate Gaussian distribution and demonstrate noticeable performance

gains over rejection sampling. We now describe their approach.

Consider the case where we wish to sample from a Gaussian distribution in a convex

subset C of Rp. Let f be the probability density function of the Gaussian distribution with

mean µ and covariance matrix Σ. Assume that µ /∈ C , and without loss of generality, let

µ= 0. We can determine the mode µ∗ of f restricted to C by solving

µ∗ = argmin
x∈C

1
2

x TΣ−1 x .

Let g be the the probability density function of the Gaussian distribution centred at the mode

µ∗ with the same covariance matrix Σ as f . Define two truncated Gaussian distributions

based on f and g, given by

ef (x) = f (x)1x∈C , eg(x) = g(x)1x∈C .
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Then the RSM algorithm to obtain samples from the truncated multivariate Gaussian distri-

bution ef (x) is given in Algorithm 4.

Algorithm 4: RSM Algorithm

1 Generate X with density eg
2 Generate U from a uniform distribution on [0,1]
3 If U ≤ exp[(µ∗)TΣ−1µ∗ − X TΣ−1µ∗], accept X ; otherwise go back to step 1

In practice, we note that in line 1 of Algorithm 4, rejection sampling is used to generate

X from density eg. As such, RSM can be viewed as a generalisation of rejection sampling and

is equivalent to rejection sampling if µ ∈ C as we have µ = µ∗ so f = g and ef = eg. Through

an extensive simulation study, Maatouk and Bay (2016) have shown noticeable improvement

in performance over rejection sampling and the acceptance rate does not decrease as rapidly

as rejection sampling when C becomes smaller or the dimension becomes larger.

5.2 Hamiltonian Monte Carlo

Duane et al. (1987) introduced a hybrid Monte Carlo method which was initially intended for

computer simulations in lattice field theory. The method utilises the properties of Hamiltonian

dynamics and combines them with Gibbs sampling and an elaborated Metropolis algorithm.

Duane et al.’s method was later extended to statistical applications by Neal (2012) and

was called Hamiltonian Monte Carlo (HMC). The major benefit of HMC is the avoidance

of random walks. HMC introduces a momentum variable allowing it to move with larger

steps. HMC trajectories tend to move in the same direction until they enter a region of

low probability, after which they are “reflected” (Neal, 2012). These properties permit

more efficient exploration of the sample space than random walks and give less correlated

samples. On the other hand, sampling methods that produce random walks, such as Gibbs

and Metropolis, have no tendency to move in the same direction and have smaller step size,

resulting in slower convergence to the target distribution. HMC has also been applied to

sampling from the truncated multivariate Gaussian distribution. The algorithm presented in
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Pakman and Paninski (2014) will be used to compare with other methods.

5.3 Minimax Exponential Tilting

The last method that we consider is the minimax exponential tilting (MET) method proposed

by Botev (2017). Exponential tilting is a technique to transform distributions and is com-

monly used in rare-event simulation. When sampling from a truncated multivariate Gaussian

distribution, the acceptance rate of rejection sampling becomes a rare-event probability as

the dimensions increases. This has been shown in numerous experiments (see for example

Maatouk and Bay 2016) and is the reason why rejection sampling is slow and inefficient.

Exponential tilting is able to mitigate this problem by supplying a family of distributions

that can be used as the proposal distributions in rejection sampling. Botev (2017) provides

a method to find the optimal tilting parameter by solving a minimax optimisation problem.

This approach shows substantial improvement in acceptance rate over rejection sampling.

5.4 Other Methods

We note that there are other methods such as Gibbs sampling (e.g. Damien and Walker

2001) and the separation of variables method (Genz, 1992). We decide not to include Gibbs

sampling because in Pakman and Paninski (2014), the authors demonstrated that HMC has

better effective sample size over time performance than the Gibbs sampler given in (Damien

and Walker, 2001). Similarly, the separation of variables method given in Genz (1992) is

not included because Botev (2017) showed that MET improves on it in terms of accuracy

(especially in the tails of the distribution) and computational cost.

5.5 Computational Comparison

In this section, we will compare the computational performance of the three methods: RSM,

HMC and MET. The methods will be tested on different dimensions p of the multivariate
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Figure 5.1: The function used in the experiment to compare the sampling methods is depicted. The
function is given in Section 5.5. The red dotted lines indicate the lower and upper bound of the
function which is −1

2 and 1
2 respectively.

Gaussian distribution so we can see how increasing the number of knots in our model would

affect the performance. We will run the algorithms to obtain 10,000 samples, and for each

p, every method will run 20 times.

The performance of the methods will be evaluated by training a Gaussian process

regression with inequality constraints using the function

f (x) =
4.5(x − 0.5)

1+ [4.5(x − 0.5)]2
.

As shown in Figure 5.1, the function is bounded by −1
2 ≤ f (x) ≤ 1

2 . We could consider

this as an example function used to generate training data in our model. The number of

knots will be chosen depending on the number of dimensions of the multivariate truncated

Gaussian distribution we want to simulate. The training points and the knots share the same

locations and are equally spaced on [0, 1]. The posterior mean and covariance matrix will

be computed and be used as the parameters of the distribution that we will simulate. We

will use the squared exponential covariance function with length scale parameter 0.2. The

truncation is at the lower and upper bound of the function, which is −1
2 and 1

2 respectively.

We test the methods on the dimensions (number of knots) 25, 50, 75, 100.
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To evaluate the performance of the methods, we will record the time taken in seconds

and compute the effective sample size. Effective sample size gives us an idea on how many

samples are drawn independently and is defined as

ESS=
n

1+ 2
∑n

i=1ρi

,

where n is the number of samples and ρi is the autocorrelation of lag i. If there is no

autocorrelation, implying that the samples are independent, then ρi = 0 for all i and the

ESS equals to n.

ESS is only defined for one dimension. Here, we consider dimensions greater than one

so we will evaluate ESS on each dimension, then take the minimum as well as the median of

the ESS’s, which will be denoted by Min-ESS and Med-ESS respectively. However, ESS does

not take into account the cross-correlations between the components of the multivariate

distribution so we will also consider a multivariate approach to ESS proposed by Vats et al.

(2019), which will be denoted by Multi-ESS. Let {Y1, Y2, . . . , Yn} be a sequence of n draws

from a sampling method. Then Multi-ESS is given by

Multi-ESS= n
�

|Λ|
|Σ|

�
1
p

,

where | · | denotes determinant, Λ is the sample covariance matrix and Σ is the multivariate

batch means variance estimator

Σ=
b

a− 1

a−1
∑

k=0

(Ȳk − θ̂ )(Ȳk − θ̂ )T ,

where a is the number of batches, b is the batch size, Ȳk is the mean vector of batch k and θ̂

is the sample mean

θ̂ =
1
n

n
∑

t=1

Yt .

Choosing the optimal batch size for the estimator Σ is an ongoing open research problem.

Flegal et al. (2010) showed that an asymptotically optimal batch size in terms of MSE is

proportional to n1/3 but the proportionality constant is unknown. In our experiment we will

simply choose the floor of n1/3 to be the batch size.

48



During our experiment, we find that RSM is significantly slower than the other two

methods. When p = 25, RSM takes 1107s to obtain 10,000 samples as opposed to HMC’s

0.25s and MET’s 0.14s. As higher dimensions would reduce the acceptance rate further,

resulting in even longer runtime, we decide not to proceed with RSM in the test of higher

dimensions. Therefore, the results presented do not include RSM. The different measures

of ESS over time as well as the time taken in seconds are presented in Figure 5.2. As

shown, MET has better ESS over time performance than HMC in all dimensions. HMC’s

computation time is close to MET’s initially but as the number of dimensions grows, it

increases exponentially. On the other hand, MET’s computation time grows much slower,

scaling well into higher dimensions. From our experiment, MET is the best method out of

the three for sampling from truncated multivariate Gaussian distributions.

5.6 Conclusion

In this chapter, we compared the performance of three methods of simulating truncated

multivariate Gaussian distribution in terms of effective sample size over time. From our

experiment, we found that MET performed the best out of the three. In the next chapter, we

will perform a simulation study to demonstrate the non-colliding model in various settings.

When there is a need to simulate the truncated multivariate Gaussian distribution, we will

use MET to perform this task.
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Figure 5.2: Red indicates the results from HMC, whereas blue represents MET. The results for
p = 25, 50, 75, 100 averaged over 20 runs as well as one standard deviation from the mean are shown
for various metrics. We have omitted the RSM approach due to its extensive runtime.
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Chapter 6

Simulation

In this chapter, we conduct a number of simulation experiments to demonstrate the non-

colliding Gaussian process regressions as well as its performance relative to the non-

constrained model. We first consider the model with one-dimensional input in Section 6.1.

Noise-free observations, noisy observations, as well as local non-colliding constraint are

explored. Then in Section 6.2, an example of two-dimensional input with noisy observations

is shown. From our simulations, the non-colliding model demonstrates better performance

and is able to model the relationship between the functions better, especially when the

training set is small. Small training set results in greater uncertainty and thus greater

model variability and higher likelihood of modelled regressions colliding. In such cases, the

non-colliding constraint restricts the model limiting its variability and provides additional

information to guide the model to the correct path. Lastly, in Section 6.3, we discuss some

limitations of the non-colliding model as well as when it is the appropriate choice over the

non-constrained model.
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Figure 6.1: The three functions that are used to generate the training data are shown by solid lines in
different colours. Ten noiseless training points generated by each function are indicated by solid dots
in corresponding colours. The functions were obtained by discretizing the x-axis into 100 equally
spaced points. The black line is f1(·), red line is f2(·) and blue line is f3(·). Also shown are the
training points at ten random locations (denoted by points).

6.1 One-dimensional Input

Let us first consider a one-dimensional example, where we have three non-colliding functions

given by

f1(x) = 11(x + 0.1)(x − 0.8)2,

f2(x) =
sin(5πx2)

exp(x)
+ 1.1,

f3(x) = 0.3[cos(2πx) + cos(3πx − 1) + sin(7πx)] + 2.

These functions are plotted in Figure 6.1. Training points at ten random locations are

generated from the three functions giving the 10-dimensional vectors y1 from f1(·), y2 from

f2(·), and y3 from f3(·). We trained the Gaussian process regressions with and without the

non-colliding constraint on these training points. We note that our approximation method

depends on the number of knots m. The larger the m, the closer the approximation gets to
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Figure 6.2: Differences between the observed yi ’s are shown as black dots. The differences modelled
by the non-colliding model are represented by black solid lines. The differences between non-
constrained Gaussian process regressions are represented by blue solid lines. The black dotted
lines are the true differences between the underlying functions. The regressions are obtained by
discretizing the x-axis into 100 equally spaced points.

the true process it approximates. Since we are mainly interested in the difference between

constrained and non-constrained Gaussian processes and not in the approximation error (at

this point in time), we will use the same approximation method for the non-constrained

Gaussian process regressions (instead of the exact Gaussian process regression described in

Chapter 2) with the same number of knots as the constrained ones.

One hundred equally spaced knots between 0 and 1 are used to generate the Gaussian

process regressions with and without the non-colliding constraint. The squared exponential

covariance function is used and its parameters are optimised by maximising the likelihood

function. The non-constrained model is trained on the observations directly. On the other

hand, the non-colliding model is trained on the differences between the observations from

different functions and are conditioned to not cross zero, as shown in Algorithm 1. The

resulting regressions are shown in Figure 6.3. The differences between regressions, as well

as the differences between the underlying functions are shown in Figure 6.2.

As we can see from Figure 6.2 and Figure 6.3, without the non-colliding constraint,

the Gaussian process regressions intersect with each other in four places. If we have prior

knowledge that the functions do not collide, then the Gaussian process regressions without
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Figure 6.3: Gaussian process regressions with and without non-colliding constraint are shown. Solid
lines are the posterior modes of the Gaussian process regressions. Dotted lines are the true functions
used to generate the training observations which are represented by solid dots. The constrained and
non-constrained model are obtained by discretizing the x-axis into 100 equally spaced points.

constraints do not reflect this prior information, resulting in the loss of valuable information

and less realistic models. On the other hand, by imposing the non-colliding constraint,

the resulting Gaussian process regressions are able to reflect the prior information and

model the interplay between the functions more closely to the truth. The non-colliding

condition is more likely to be violated in regions with greater uncertainty due to lack of

observations. With more training points, Gaussian process regressions would be able to get

closer to the underlying functions, and would eventually reflect the non-colliding nature

of the underlying functions since the observations are noise-free. This may not be the case

when the observations are noisy. We will see in Section 6.1.1 that some noisy observations

may not obey the non-colliding nature of the underlying functions. Therefore, without

imposing the non-colliding constraint, it is possible that Gaussian process regression would

never reflect the non-colliding property of the true functions.

The fit of the models depend on the number of training points and their locations. We

conduct an experiment to compare the average performance between the two methods with

different number of training points and locations. We consider the training set size of 5, 10,

15 and 20. Training points are randomly chosen from a uniform distribution on [0, 1] and

50 trials are conducted for each size. Root mean square error (RMSE) and Mean Absolute
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Figure 6.4: Average RMSE and MAE, as well as one standard deviation from the mean are shown
for different numbers of training points. Red represents the errors from Gaussian process regressions
without constraints and blue represents with non-colliding constraint. The experiment uses the
functions from Figure 6.1, and for each training set size, 50 trials are done to obtain the mean and
standard deviation. The models are tested on 100 equally spaced points.

Error (MAE) are used to evaluate and compare the fit of the models. They are given by

RMSE=

√

√

√1
n

n
∑

i=1

( ŷi − yi)2, MAE=
1
n

n
∑

i=1

| ŷi − yi|,

where n is the number of observations in the test set, ŷ is the predicted value and y is the

true value. The test set is consisted of 100 equally spaced points from 0 to 1. We expect to

see the constrained models to perform better when the size of the training set is small, but

the difference would become smaller as the number of training points increases because

more points would reveal the non-colliding nature of the underlying functions. We also

expect the non-colliding models to have smaller variance than the non-constrained models

when the size of the training set is small as the constraint limits the variability of the models.

The results from our experiment are shown in Figure 6.4. The results are as expected.

The constrained model has smaller average errors when the training set is small, but this

difference quickly diminishes as we increase the number of training points. Non-constrained

model has greater variability but the variances also decrease as the size of the training set

increases and are eventually on the same level as the constrained model.
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Figure 6.5: The three functions that are used to generate the training data are shown by solid lines
in different colours. Ten noisy training points generated by each function are indicated by solid dots
in corresponding colours. The functions were obtained by discretizing the x-axis into 100 equally
spaced points.

6.1.1 Noisy Observations

We now consider the case where we have noisy observations instead of noise-free ones. We

use the same functions as before but this time when generating the training data we add

a Gaussian noise term to the yi ’s with mean 0 and variance 0.01. The generated training

data is shown in Figure 6.5. We can see that the data points no longer sit on the underlying

functions due to the noise. One set of observations around 0.2 actually no longer obeys the

non-colliding nature of the underlying functions, as the observation from f2(·) is greater

than the one from f3(·). This would make it harder for the Gaussian process regressions

without the non-colliding constraint to not collide with each other.

The same number of knots is used as before to train the regressions and the resulting

regressions as well as their differences are shown in Figure 6.6 and Figure 6.7. In the

noise-free case, despite intersecting with other regressions at a number of locations, the
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Figure 6.6: Differences between the noisy observations yi ’s are shown as black dots. The differences
modelled by the non-colliding model are represented by black solid lines. The differences between
non-constrained Gaussian process regressions are represented by blue solid lines. The black dotted
lines are the true differences between the underlying functions. The regressions are obtained by
discretizing the x-axis into 100 equally spaced points.

Gaussian process regressions without the non-colliding constraint are still very close to the

underlying functions. However, in the case of noisy observations, without the non-colliding

constraint stopping the Gaussian processes from fitting to the observations with high level

of noise, Gaussian process regressions tend to overfit as shown in our simulation. As we can

see in Figure 6.6 and Figure 6.7, there is a location where y2 is greater than y1 indicating

high level of noise. As the y3 − y2 at that location is below 0, the non-colliding constraint

stops the Gaussian processes from fitting to that point. By doing so, the differences between

the processes are closer to the true differences as shown in the y3− y2 plot in Figure 6.6. The

resulting regressions do not collide and are closer to the true functions than the regressions

without the non-colliding constraints which fit closely to the noisy observations.

The same experiment is conducted to test the average performance of the models. The

results, which are shown in Figure 6.8, are consistent with what we observe in the noise-free

case. The constrained model has lower average error and smaller variance but the difference

in performance between constrained and non-constrained model becomes very small when

the size of the training set gets large. We also observe increased variations for both models

as a result of noisy data.
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Figure 6.7: Gaussian process regressions with and without non-colliding constraint are shown. Solid
lines are the posterior modes of Gaussian process regressions. Dotted lines are the true functions used
to generate the training observations represented by solid dots. The Gaussian process regressions
with and without non-colliding constraint were obtained by discretizing the x-axis into 100 equally
spaced points.
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Figure 6.8: Average RMSE and MAE of noisy observations with noise variance 0.01, as well as
one standard deviation from the mean are shown for different numbers of training points. Red
represents the errors from Gaussian process regressions without constraints and blue represents with
non-colliding constraint. The experiment uses the functions from Figure 6.1, and for each training
set size, 50 trials are done to obtain the mean and standard deviation. The models are tested on 100
equally spaced points.
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Figure 6.9: The two functions that are used to generate the training data for local non-colliding
Gaussian processes are shown by solid lines in different colours. Noise-free training points generated
by each function at ten random locations are indicated by solid dots in corresponding colours. The
red dotted lines indicate the region of local non-collision where the non-colliding constraint is applied.
The functions are obtained by discretizing the x-axis into 100 equally spaced points.

6.1.2 Local Non-colliding Constraint

The local non-colliding constraint is a special case of non-colliding constraint where the

non-colliding constraint is only imposed on a subset of the domain. The two functions used

for this simulation are shown in Figure 6.9 and defined by

f1(x) = 0.5 sin(2πx + 1.5) + 0.3 cos(4πx + 3) + 0.2 sin(6πx),

f2(x) = 0.3cos(2πx − 1) + 0.3cos(3πx − 1) + 0.3 sin(7πx − 1).

The black line in Figure 6.9 is f1(·) and the blue line is f2(·). The red dotted lines indicate

the region where the local non-colliding constraint is imposed. Noise-free training points are

generated from each function at ten random locations. Again, we use 100 equally spaced

knots between 0 and 1 and the squared exponential covariance function for Gaussian process

regressions. The parameters of the covariancce function are set by maximising the likelihood
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Figure 6.10: Differences between the observed yi ’s are shown as black dots. The differences
modelled by the non-colliding model are represented by black solid lines. The differences between
non-constrained Gaussian process regressions are represented by blue solid lines. The black dotted
lines are the true differences between the underlying functions. The vertical red dotted lines indicate
the region of local non-collision where the non-colliding constraint is enforced. The regressions are
obtained by discretizing the x-axis into 100 equally spaced points.

function. The resulting regressions as well as their differences are shown in Figure 6.10 and

Figure 6.11.

The local non-colliding constraint forces the difference between the regressions to not

cross 0 in the specified region. We can see how this is achieved in the constrained case and

how it is violated in the non-constrained case in Figure 6.10. In the non-constrained case,

the regressions intersect within the region of non-collision which also affects the shape of

the regression outside the region. As a result, not only is the regression for f2(·) inaccurately

models the underlying function within the region but predictions outside the region would

also be negatively affected. On the other hand, the regressions with the local non-colliding

constraint are close to the shape of the underlying functions.

We again conduct the same experiment to test the performance of the constrained and

non-constrained models with different sets and numbers of training points. As shown in
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Figure 6.11: Gaussian process regressions with and without local non-colliding constraint are shown.
Solid lines are the posterior modes of Gaussian process regressions. Dotted lines are the true functions
used to generate the training observations represented by solid dots. The vertical red dotted lines
indicate the region of local non-collision where the non-colliding constraint is enforced. The Gaussian
process regressions with and without non-colliding constraint were obtained by discretizing the
x-axis into 100 equally spaced points.

Figure 6.12, the constrained model still shows lower average errors when the training set is

small but this time the variances of the two models are comparable. This could be due to the

fact that the non-colliding constraint is only imposed on a subset of the domain. Therefore,

the variability of the model is not limited as much as the case where the constraint is enforced

on the entire domain.

6.2 Two-dimensional Input

We have seen that non-colliding Gaussian process regressions work quite well in the one-

dimensional input case. As discussed in Section 4.2.1, this method can be extended to higher

dimensional input spaces. However, due to the difficulty in visualising higher dimensions

as well as the computational burden that comes with it, we will only consider the two-

dimensional input space. We consider the two functions:

f1(x1, x2) =
1
2
[sin(3πx1) + sin(3πx2)],

f2(x1, x2) =
1
2

�

cos(2πx1 − 6) +
1
2

sin(6πx1 − 3) + cos(2πx2 − 6) +
1
2

sin(6πx2 − 3)
�

+ 1.
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Figure 6.12: Average RMSE and MAE, as well as one standard deviation from the mean are shown
for different numbers of training points. Red represents the errors from Gaussian process regressions
without constraints and blue represents with local non-colliding constraint. The experiment uses the
functions from Figure 6.9, and for each training set size, 50 trials are done to obtain the mean and
standard deviation. The models are tested on 100 equally spaced points.

The surface plot of the two functions are shown in Figure 6.13 and their heat maps are

shown in the first row of Figure 6.15. The surface plot and heat map of their difference f2− f1

is given in Figure 6.14 and Figure 6.15 respectively. The two functions are non-colliding

in the domain [0,1]2 by design. Noisy training points are generated from each of the two

functions at thirty random locations. The noise variance is set to 0.01. The locations of

the training points are generated by maximin Latin hypercube sampling that we shall now

describe.

Latin hypercube sampling is a popular sampling method which is widely used in simula-

tions and experimental designs. It has desirable properties such as space filling and good

uniformity with respect to each dimension (Viana, 2016). Monte Carlo method requires

large number of samples to approximate the distribution well and can be inefficient when

samples are close together. On the other hand, Latin hypercube sampling has shown better

performance than Monte Carlo method when the sample size is small (McKay et al., 1979).

In our simulation, since we do not use large number of points and wish to cover the domain

as much as possible with the number of points available in order to help the models learn

all areas of the functions, we choose to use Latin hypercube sampling over Monte Carlo
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Figure 6.13: Left: The two functions that are used to generate the training data for two-dimensional
non-colliding Gaussian processes. Thirty training points generated by each function are indicated
by dots in corresponding colours. Middle: The surfaces produced by Gaussian process regressions
without constraints. Right: The surfaces produced by non-colliding Gaussian process regressions.
The surfaces are obtained by discretizing the domain into 50× 50 equally spaced grid.
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Figure 6.14: Left: The surface of the difference f2 − f1. The black dots indicate the difference
between the training points generated by f1 and f2 at those locations. The grey flat surface represents
the 0 bound that the surface should not cross if the functions are non-colliding. Middle: The
difference between the two functions modelled by non-constrained Gaussian process regressions
with squared exponential covariance functions. Right: The surface of the difference modelled by
non-colliding Gaussian process regressions. The surfaces are obtained by discretizing the domain
into 50× 50 equally spaced grid.
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sampling.

A Latin hypercube refers to the hypercube where each point in the hypercube is the only

one in each axis-aligned hyperplane that contains it. In our case of two dimensional input, it

means that there is only one point in each row and column. To achieve this, suppose we wish

to sample n points in p dimensions, X = [x1,x2, . . . ,xn]T , where xi = [x
(1)
1 , x (2)i , . . . , x (p)i ],

we divide the range of each dimension into n equal bins and only sample once from each

bin. Then the components of xi ’s are matched randomly.

In our simulation, we use a variant of the Latin hypercube method called maximin Latin

hypercube (Johnson et al., 1990). The resulting samples also satisfy the structure of a Latin

hypercube but the the distance between the points closest to each other is maximised. The

algorithm begins with building a Latin hypercube by dividing the range of the dimensions

into n equal bins just as before. Then a random starting point is chosen and the next point is

chosen at the available locations in the Latin hypercube that has the maximum distance to

the point closest to it. The algorithm proceeds by adding one point at a time until the n points

are generated. The resulting design is a Latin hypercube with increased multidimensional

uniformity (Deutsch and Deutsch, 2012).

Thirty locations are chosen randomly using maximin Latin hypercube sampling and

training points are generated at these locations using the two functions. We use the squared

exponential covariance function for the Gaussian processes and the parameters of the

covariance function are optimised by maximising the likelihood function. The surface plot

and the heat maps of the resulting constrained and non-constrained model are shown

in Figure 6.13 and Figure 6.15. As before, the non-constrained model is trained on the

observations directly, then we take the difference of the two non-constrained regressions

to compare with the difference modelled by the constrained model in Figure 6.14 and

Figure 6.15. As shown in Figure 6.15, without the non-colliding constraint, the Gaussian

process regressions have three regions of collisions outlined in white in the third plot of the

second row. We do observe some differences between the constrained and non-constrained

model especially near the regions of collisions but the two models are still quite similar. The
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Figure 6.15: First row: The heat maps of f1, f2 and their difference f2 − f1. Second row: The
heat maps of the surfaces produced by non-constrained Gaussian process regressions. The white
outlines in the third plot shows the regions where the surface is below 0 indicating the regions of
collision. Third row: The heat maps of the surfaces produced by non-colliding Gaussian process
regressions.The heat maps are obtained by discretizing the domain into 50× 50 equally spaced grid.

non-colliding model has slightly lower errors with 0.214 RMSE versus 0.219, and 0.149

MAE versus 0.154, tested on 50× 50 equally spaced grid.

We now conduct an experiment to test how well the two models perform with different

training points and sample size. The locations of the training points are again randomly

chosen by maximin Latin hypercube sampling. The sample size we will investigate are 30,

35, 40 and 45. Due to computational constraint, we are only able to do 20 trials for each

sample size. The models are tested on 50× 50 equally spaced grid. The resulting average
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Figure 6.16: Average RMSE and MAE, as well as one standard deviation from the mean are shown
for different numbers of training points. Red represents the errors from Gaussian process regressions
without constraints and blue represents with non-colliding constraint. The experiment uses the
functions from Figure 6.13 to generate the training data, and for each training set size, 20 trials are
done to obtain the mean and standard deviation. The models are tested on a 50× 50 equally spaced
grid.

RMSEs and MAEs as well as one standard deviation away from the mean are shown in

Figure 6.16. This time the performance of the two models are very close in terms of both

average errors and the variability. Unlike the previous experiments, the variances of the two

models do not decrease much when the size of the training set increases. The non-colliding

model still has lower average errors and smaller variance when the training set is small but

the difference between the two models are considerably smaller than before.

6.3 Discussion

In this chapter, we have shown a number of examples of non-colliding Gaussian process re-

gressions in different settings. The constrained model has demonstrated better performance

when the number of training points is not enough for the non-constrained model to not

collide. When there is enough training observations, the two models have shown similar

performance in our experiments. Given enough training observations, the non-constrained

model does not need the constraint to satisfy the non-colliding condition in the noise-free
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case, and depending on the magnitude of the noise, some noisy cases as well. When this hap-

pens, the difference in performance between the two models would be from modelling the

training observations directly versus modelling the difference of the training observations.

The examples we have shown in this chapter are all cases where the functions are close

to each other, making it easier to have occurrences of collision when models do not follow

the underlying functions closely. However, we may have cases where the functions are

far apart and modelling the observations directly would have no chance of collisions. In

such cases, using non-constrained Gaussian process regressions to model the observations

directly may offer better performance than the non-colliding model. This is due to the

non-colliding constraint no longer restricting the regressions in any way, thus rendering it

useless. Furthermore, by modelling the difference then transforming it back would mean that

the resulting regression would inherit errors from previous regressions and the errors from

modelling the difference. Since the difference has greater variability, the errors are likely to

be larger as well. Therefore, if the functions are far apart and the non-colliding constraint

is not binding, then using the non-constrained Gaussian process regressions should offer

better performance.
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Chapter 7

Conclusion

7.1 Summary of Contributions

In this thesis, we proved an asymptotic result for non-colliding Ornstein-Uhlenbeck processes

similar to the one given in Grabiner (1999) for non-colliding Brownian motions. Our result

showed that the probability of n independent Ornstein-Uhlenbeck processes experiencing

no collisions up to time T is asymptotic to a constant multiple of e
−θn(n−1)

2 T as T → ∞,

and the constant is a polynomial of the starting positions x. Furthermore, we developed

a way to impose non-colliding constraint on Gaussian process regressions by building on

the piecewise linear approximation model by López-Lopera et al. (2018), which enables

inequality constraints to hold in the entire domain. Our method involves transforming a

sequence of Gaussian processes into their differences. Then, by utilising the property of

Gaussian process that a linear combination of independent Gaussian processes is also a

Gaussian process, we fit Gaussian process regressions on these differences with the constraint

that they are bounded by zero. These differences are then transformed back to obtain the

desired non-colliding regressions.

We demonstrated the non-colliding model through an extensive simulation study, cov-

ering noise-free data, noisy data, local non-collision, and two-dimensional input. Our

simulation study showed that the constrained model is able to produce more realistic models
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that reflect the prior information of no collisions, as well as smaller errors with less variability

especially when the training set is small. However, as expected, the benefit of introducing

non-colliding constraint to the model diminishes as the training set gets larger. This is due

to more of the non-colliding information is revealed in the data and eventually with enough

data the non-constrained model would also be able to obey the non-colliding condition.

Furthermore, as the implementation of the proposed non-colliding model requires simu-

lating the truncated multivariate Gaussian distribution, we compared three methods, namely

RSM, HMC and MET. Our experiment shows their relative performance in terms of effec-

tive sample size over time as well as how well each method scales to higher dimensions.

We found that MET performed the best out of the three and its computation time scales

considerably better than the second best method HMC.

Lastly, we pointed out that there could be situations where the underlying functions are

well separated, and just by fitting the non-constrained Gaussian process regressions would

have no chance of intersecting. Then the non-colliding model would provide little to no

value in feeding additional information to the model. Therefore, the difference between the

two models would simply be modelling the training observations directly versus modelling

their differences.

7.2 Future Work

In this thesis, we considered the situation where the underlying processes are independent.

However, the non-colliding nature of the processes could sometimes be induced by correla-

tions. In such cases, perhaps introducing cross-correlations between the processes may be

sufficient to prevent them from colliding with each other. This is in fact an approach used

when modelling multiple outputs simultaneously with Gaussian process regressions (see for

example Seeger et al. 2005). It would be interesting to see in the case of dependent non-

colliding processes whether simply using existing multi-output modelling methods would

be sufficient to prevent them from colliding. If not, ways to introduce the non-colliding
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constraint while also inducing cross-correlations could be explored.

As discussed in Chapter 2, one major limitation of Gaussian process regression is its

computational complexity of O(n3). During our exploration of Gaussian process regression,

we came across an interesting approach proposed by Särkkä et al. (2013). They showed

how to convert spatio-temporal Gaussian process regressions to stochastic partial differential

equations, which can then be solved with Kalman filter (Kalman, 1960) and Rauch-Tung-

Striebel smoother (Rauch et al., 1965). This approach reduces the computational complexity

significantly to only scaling linearly with respect to the number of observations. One

could consider ways to impose various constraints under this approach, which would be a

significantly more efficient way to add constraints when modelling spatio-temporal data.
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Appendix A

Appendix

Definition A.1. A Brownian motion is a stochastic process, {W (t); t ≥ 0}, that has the

following properties: (i) W (0) = 0, (ii) W (t) is continuous in t ≥ 0, (iii) for any 0≤ s ≤ t,

W (t)−W (s)∼N (0, t−s), (iv) W (t) has independent increments, i.e. if 0≤ s1 ≤ t1 ≤ s2 ≤ t2,

then W (t1)−W (s1) and W (t2)−W (s2) are independent.

Proposition A.1. A Brownian motion is a Gaussian process with mean 0 and covariance

function k(s, t) =min{s, t}.

Proof. Let W =W (t) : t ≥ 0 be a Brownian motion and t1, t2, . . . , tk be a subset of the index

set such that t1 ≤ t2 ≤ . . .≤ tk. Let a1, a2, . . . , ak ∈ R.

a1W (t1) + a2W (t2) + . . .+ akW (tk)

=akW (tk)− akW (tk−1) + akW (tk−1)

+ ak−1W (tk−1)− (ak + ak−1)W (tk−2) + (ak + ak−1)W (tk−2)

+ ak−2W (tk−2)− (ak + ak−1 + ak−2)W (tk−3) + (ak + ak−1 + ak−2)W (tk−3)

...

+ a2W (t2)− (a2 + a3 + . . .+ ak)W (t1) + (a2 + a3 + . . .+ ak)W (t1)

+ a1W (t1)

=ak[W (tk)−W (tk−1)]
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+ (ak + ak−1)[W (tk−1)−W (tk−2)]

+ (ak + ak−1 + ak2
)[W (tk−2)−W (tk−3)]

...

+ (a2 + a3 + . . .+ ak)[W (t2)−W (t1)]

+ (a1 + a2 + . . .+ ak)W (t1)

Since t1 ≤ t2 ≤ . . . ≤ tk, by the independent increment property of Brownian motion,

W (t1), W (t2)−W (t1), W (t3)−W (t2), . . . , W (tk−1)−W (tk−2), W (tk)−W (tk−1) are inde-

pendent and they are normally distributed. Linear combinations of normally distributed

random variables have a (univariate) normal distribution. Therefore, by Definition A.2,

(W (t1), W (t2), . . . , W (tk)) is a multivariate Gaussian random variable and it follows that

Brownian motion is a Gaussian process according to Definition 2.1.

We proceed to find Brownian motion’s mean and covariance functions.

Let t ≥ 0, then

m(t) = E[W (t)] = E[W (t)−W (0)] = 0

Suppose 0≤ s ≤ t,

Cov(W (s), W (t)) = Cov(W (s), W (t)−W (s) +W (s))

= Cov(W (s), W (t)−W (s)) +Cov(W (s), W (s))

= 0+V(W (s))

= s

Cov(W (s), W (t)−W (s)) = 0 is due to the independent increments property of Brownian

motion. If 0 ≤ t ≤ s, then Cov(W (s), W (t)) = t. Therefore, the covariance function of

Brownian motion is

k(s, t) =min{s, t}
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Definition A.2 (Multivariate Gaussian distribution). A random vector X = (X1, . . . , Xk)T

follows a multivariate Gaussian distribution if for any constant vector a = (a1, . . . , ak)T ∈ Rk,

the random variable Y = aT X= a1X1 + . . .+ akXk has a univariate normal distribution.

Theorem A.1 (Partitioned matrix inversion Press et al. (2007)). Suppose the N × N matrix

P is partitioned into

P =





A B

C D





A is a m×m matrix, D is p× p, B is m× p and C is p×m (m+ p = N). Then the inverse of P

can be partitioned into

P−1 =





Ã B̃

C̃ D̃





where Ã, B̃, C̃ , D̃ have the same sizes as A, B, C, D respectively and can be found by either

Ã= A−1 + A−1B(D− CA−1B)−1CA−1

B̃ = −A−1B(D− CA−1B)−1

C̃ = −(D− CA−1B)−1CA−1

D̃ = (D− CA−1B)−1

or equivalently

Ã= (A− BD−1C)−1

B̃ = −(A− BD−1C)−1BD−1

C̃ = −D−1C(A− BD−1C)−1

D̃ = D−1 + D−1C(A− BD−1C)−1BD−1

Theorem A.2 (Partitioned matrix determinant Press et al. (2007)). Suppose the N×N matrix

P is partitioned into

P =





A B

C D




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Then the determinant of P can be found by

det(P) = det(A)det(D− CA−1B) = det(D)det(A− BD−1C)

Proof of Theorem 2.1. The probability density function of y, which follows a multivariate

normal distribution, is defined as follows

p(y) = p(y1,y2) = (2π)
− N

2 det(Σ)
1
2 exp

�

−
1
2
(y−µ)TΣ−1(y−µ)

�

Let us focus on (y−µ)TΣ−1(y−µ) and let it be E,

E =(y−µ)TΣ−1(y−µ)

=
h

(y1 −µ1)T (y2 −µ2)T
i





Σ11 Σ12

Σ21 Σ22





−1



(y1 −µ1)

(y2 −µ2)





Let eΣ= Σ11 −Σ12Σ
−1
22Σ21, then applying Theorem A.1 to Σ−1, we get

E =
h

(y1 −µ1)T (y2 −µ2)T
i





eΣ
−1

−eΣ
−1
Σ12Σ

−1
22

−Σ−1
22Σ21

eΣ
−1
Σ−1

22 +Σ
−1
22Σ21

eΣ
−1
Σ12Σ

−1
22









(y1 −µ1)

(y2 −µ2)





=(y1 −µ1)
T
eΣ
−1
(y1 −µ1)

− (y2 −µ2)
TΣ−1

22Σ21
eΣ
−1
(y1 −µ1)

− (y1 −µ1)
T
eΣ
−1
Σ12Σ

−1
22 (y2 −µ2)

+ (y2 −µ2)
T (Σ−1

22 +Σ
−1
22Σ21

eΣ
−1
Σ12Σ

−1
22 )(y2 −µ2)

=(y1 −µ1)
T
eΣ
−1
[(y1 −µ1)−Σ12Σ

−1
22 (y2 −µ2)]

− (y2 −µ2)
TΣ−1

22Σ21
eΣ
−1
[(y1 −µ1)−Σ12Σ

−1
22 (y2 −µ2)]

+ (y2 −µ2)
TΣ−1

22 (y2 −µ2)

=[(y1 −µ1)
T − (y2 −µ2)

TΣ−1
22Σ21]eΣ

−1
[(y1 −µ1)−Σ12Σ

−1
22 (y2 −µ2)]

+ (y2 −µ2)
TΣ−1

22 (y2 −µ2)

Since Σ is a symmetric matrix, Σ21 = ΣT
12. In addition, the inverse of a symmetric matrix is

also symmetric, therefore, Σ−1
22 = (Σ

−1
22 )

T . So we have

E =[y1 − (µ1 +Σ12Σ
−1
22 (y2 −µ2))]

T
eΣ
−1
[y1 − (µ1 +Σ12Σ

−1
22 (y2 −µ2))]
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+ (y2 −µ2)
TΣ−1

22 (y2 −µ2)

=(y1 − eµ)T eΣ(y1 − eµ) + (y2 −µ2)
TΣ−1

22 (y2 −µ2)

where eµ= µ1 +Σ12Σ
−1
22 (y2 −µ2).

Substituting E back into the probability density function p(y1,y2) and applying Theorem A.2

to det(Σ), we get

p(y1,y2) =(2π)
− p

2 det(eΣ)
1
2 exp

�

−
1
2
(y1 − eµ)T eΣ(y1 − eµ)

�

(2π)−
q
2 det(Σ22)

1
2 exp

�

−
1
2
(y2 −µ2)

TΣ−1
22 (y2 −µ2)

�

=(2π)−
p
2 det(eΣ)

1
2 exp

�

−
1
2
(y1 − eµ)T eΣ(y1 − eµ)

�

p(y2)

Using the Bayes’ theorem, we find the conditional distribution of y1 given y2

p(y1|y2) =
p(y1,y2)

p(y2)

=
(2π)−

p
2 det(eΣ)

1
2 exp

�

−1
2(y1 − eµ)T eΣ(y1 − eµ)

�

p(y2)

p(y2)

= (2π)−
p
2 det(eΣ)

1
2 exp

�

−
1
2
(y1 − eµ)T eΣ(y1 − eµ)

�

∴ y1|y2 ∼N (eµ, eΣ)

Definition A.3 (Stopping time (Oksendal, 2013)). Let {Nt} be an increasing family of σ-

algebras of subsets of Ω. A function τ : Ω→ [0,∞] is called a stopping time with respect to

{Nt} if

{ω;τ(ω)≤ t} ∈Nt , for all t ≥ 0.

Definition A.4. (Oksendal, 2013) Let τ be a stopping time with respect to {Nt} and let

N∞ be the smallest σ-algebra containing Nt for all t ≥ 0. Then the σ-algebra Nτ consists

of all sets N ∈N∞ such that

N
⋂

{τ≤ t} ∈Nt for all t ≥ 0.
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Definition A.5 (Strong Markov property (Oksendal, 2013)). Let f be a bounded Borel

function on Rn, τ a stopping time with respect to F (m)t , τ <∞ almost surely. Then

Ex[ f (X (τ+ h))|F (m)
τ
] = EX (τ)[ f (X (h))] for all h≥ 0.
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