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Abstract. We present an infinitely-extended KdV equation that contains an infinite

number of arbitrary real coefficients controlling higher-order terms in the extended

evolution equation. The higher-order terms are chosen in a way that maintains the

integrability of the whole equation. Another significant step in this work is that this

extended equation admits complex-valued solutions. This generalization allows us to

consider both solitons and rogue waves in the form of rational solutions of this equation.

Special choices of the arbitrary coefficients lead to particular cases - the basic KdV

and its higher-order versions. Using the extended KdV, instead of the basic one, may

improve the accuracy of the description of rogue waves in shallow water.
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1. Introduction

The Korteweg - de Vries (KdV) equation became the first known integrable evolution

equation for modelling nonlinear dispersive waves [1]. Originally, it was derived for

modelling shallow water waves [2, 3]. The observation of a soliton by John Scott Russell

demonstrated the existence of such waves in water canals [4]. More recently, it was found

that the KdV equation is applicable to plasma waves [5, 6] and atto-second optical pulses

that contain a few optical cycles, or even a fraction of one cycle [7, 8]. In each case,

soliton solutions are of primary interest as waves that keep undistorted profiles over

large distances of propagation [9]. However, solitons are not the only structures that

exist in the physical systems listed above. Rogue waves represent a different form of

nonlinear structure that has received much attention in recent years. In particular, they

do exist in shallow water [10]. In fact, they are understood much less than deep water

rogue waves. One of the possible ways to model shallow water rogue waves is to use the

KdV equation with complex functions [11, 12], rather than the real ones used in most

previous publications. This has been done in our recent work [13].

Historically, the second nonlinear wave evolution equation found to be integrable

was the Nonlinear Schrödinger Equation (NLSE) [14]. Solitons, breathers and rogue

waves described by this equation are all known in analytical form. These solutions

equally well model waves in optical fibres [15] and water waves in the deep ocean [16]. It

has been extended to include the Hirota equation, the Lakshmanan - Porsezian - Daniel

(LPD) equation and other higher-order equations, keeping integrability intact, and thus

allowing one to find exact solutions for the relevant physical problems [17]. These

equations provide the opportunity to increase the accuracy of modelling of nonlinear

waves with the inclusion of higher-order dispersion or nonlinear terms. These higher-

order equations are important for modelling oceanic waves [18], [19]. They also cover

a wider range of physical phenomena, such as the Heisenberg ferromagnetic spin chain

[20], or effects like modulation instability [21, 22] that do not exist in the case of the

ordinary KdV equation.

In a similar fashion, expanding the KdV equation with the addition of higher-order

terms may improve the accuracy of modeling of known phenomena as well as predicting

new effects. For example, this could describe water waves that are shorter but steeper

[23]. It also can have better accuracy, compared to the KdV, in modeling shallow

water waves facing an obstacle [24] or where the surface tension is not negligible [25].

However, it has been shown that the basic KdV equation describes half-cycle optical

solitons in quadratic nonlinear media [9]. As another example, the 5-th order KdV

equation has been found relevant to soliton collisions for weakly nonlinear long waves

[26]. In these cases, only real solutions have been considered, despite the fact that

allowing the solutions to encompass the complex space can significantly increase the

variety of possible scenarios in wave evolution [27, 28].

Shallow water rogue waves can have considerable impact on the marine ecosystem

and have caused significant coastal erosion [29]. A rogue wave hitting a crowded beach is
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of particular concern. For example, this occurred [30] in 1938 at Bondi beach in Sydney,

Australia, where ‘three tremendous waves rolled onto the beach’, one after the other.

This caused panic and swept many out into the sea. In the end, 5 people were killed

and 250 rescued. It would be very useful to gain understanding of such phenomena,

with an eye to possible early detection and warning. It is plausible that such waves can

be modelled by the KdV equation and its expanded versions. In this work, we extend

complex rogue wave ideas to the KdV expansion.

Higher-order KdV equations have been considered earlier in a number of

publications [31, 33, 34, 35, 36]. They have been called ‘hierarchies’, as each separate

one can be obtained from a lower order one using certain transformations [32]. Our

approach is different in that we take them all together. Firstly, we consider a single

infinitely extended equation that includes, as a particular case, the basic KdV equation.

Secondly, we include complex functions as potential solutions to this single equation.

The infinite extension contains higher-order operators with arbitrary real parameters,

and this significantly increases the range of physical problems where this full equation

can be applied. Below, we consider, separately, the cases of focusing and defocusing

KdV extensions. These differ in signs of nonlinear terms, although a simple change of

the sign of the function u→ −u converts one case to another.

2. Infinitely extended KdV equation

Recently, work was presented showing the plausibility of employing complex functions to

describe rogue waves occurring in shallow water [13]. This involved only the ‘basic’ KdV

equation. To extend this, we start with the well known ‘defocussing’ KdV equation,

ux + α1 [uttt − 6u(t, x)ut] = 0, (1)

where t is the transverse variable and x is the variable along the wave propagation

direction. In optics, x is the propagation distance, while t is a retarded time, as used

in the optical few-cycle KdV example of [9, 37, 39]. In water and other fluid systems,

x is usually time while t is a transverse spatial variable. This is an evolution equation

which means that waves evolve in the x-direction.

It is easy to show that if u(x, t) is a solution of the ‘defocusing’ KdV, then

u(x, t) = −u(x, t) is a solution of ’focusing’ KdV. Thus, the ‘focusing’ KdV solutions

can be found from the ’defocusing’ ones simply by changing the sign of the dependent

variable.

We can write the infinitely extended equation (IEE) in the form similar to the one

used in [17]:

ux(t, x) +
∞∑

m=1

αmKm(u) = 0, (2)

where Km(u) is the operator of order m. It include the function u and its derivatives

up to order m. The lowest order operator here is:

K1 = uttt − 6u(t, x)ut.
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When all coefficients except α1 are zero, Eq.(2) reduces to the basic KdV equation (1).

The next level operator, K2(u), is

K2 = −15

2
utu

2 +
5

2
utttu+ 5ututt −

1

4
u5t

while the operator K3(u) is given by

K3 =
1

16

{
70utttu

2 − 140utu
3 + +14 [20ututt − u5t]u+ 70(ut)

3

− 70uttuttt − 42ut u4t + u7t
}

(3)

Here, each evolution equation, ux(t, x) + αnKn(u) = 0, obtained from eq.(2) when

all coefficients except one are zero can be written as

∂u

∂x
+ αn

∂Fn(u)

∂t
= 0,

where Fn(u) is a polynomial in u. So

∂Fn(u)

∂t
= Kn(u).

Hence, F1 and F2 are:

F1 = utt − 3u2, (4)

F2 = (−1

4
)(u4t − 5u2t − 10uutt + 10u3). (5)

The coefficient α1 in (1) is an arbitrary real parameter that commonly is taken to

be 1. Eq.(1) can be called KdV-3 as it has the third-order derivative in the operator

within the rectangular brackets. The set of operators can be continued indefinitely, thus

making Eq.(2) infinitely extended.

The set of the operators for ‘focusing’ KdV, ux + αnWn = 0, can be found by

setting u(x, t) = −u(x, t), thus obtaining:

W1 = uttt + 6u(t, x)ut, (6)

W2 = −15

2
utu

2 − 5

2
utttu− 5ututt −

1

4
u5t

and

W3 =
1

16

{
70utttu

2 + 140utu
3 + 14 [20ututt + u5t]u+ 70(ut)

3

+ 70uttuttt + 42ut u4t + u7t
}
. (7)

As stated above, the parameters αm are arbitrary real numbers that provide infinite

variability for this equation. When all coefficients are zero except one, we obtain

particular cases. For example, KdV-5 is an equation with 5-th order highest derivative

in t:

ux + α2K2 = 0. (8)
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Similarly,

ux + α3K3 = 0. (9)

can be called KdV-7, as its highest derivative is of seventh order in t. For each individual

example, the equation with Kn can be called KdV-(2n+1), as its highest derivative is

of order 2n+ 1.

The set of operators Km provided above ensures the integrability of Eq.(2). This

means that solutions of Eq.(2) can be written in analytic forms. We demonstrate this

by providing a few solutions to Eq.(2). We start with the most common – the soliton

solution.

3. Soliton solutions

For KdV-3, the well-known soliton solution is:

u1 = −2k2sech2
[
k
(
t− 4α1k

2x
)]
, (10)

where k is an arbitrary real constant that defines the amplitude and the velocity of the

soliton.

We can write down the soliton solution in general form for the whole extended

equation (2):

u(t, x) = −2k2sech2 [k (t+ J(x))] , (11)

where

J(x) = 4x
∞∑
n=1

(−1)nαnk
2n.

This can be written as

u(t, x) = −2 [log(f(t, x))]tt

where f(t, x) = 1 + exp [2k(t+ J(x))]. This solution is valid for any real values of the

coefficients αn which are present in the equation (2), even if there are infinitely many.

Clearly, if some of these coefficients are zero, the solution is simplified, with a reduced

number of the terms in the sum. For the case where only α1 and α2 are non-zero, this

solution has been given in [38].

For example, if all of them are zero except for αn, the solution becomes:

un = −2k2sech2
{
k
[
t+ 4(−1)nαnk

2nx
]}
, (12)

where n = 1, 2, 3, · · ·. This is the soliton solution for KdV-(2n+1). By having a closer

look at this form of the solution, we realize that for each KdV-(2n+1) (and setting

αn = 1 and k = 1), we get the same solution, apart from the sign on the x term. This

does not occur in the forms of the rational solutions, since we will obtain different shapes

and solutions for each order of the KdV.

Furthermore, the soliton solutions given above in this section are real. However,

in this paper we allow for complex solutions. Here we can add a parameter, i c, with
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c being an arbitrary real number, to the argument of the sech function in each of the

above solutions. Hence

un = −2k2sech2
{
k
[
t+ 4(−1)nαnk

2nx
]

+ i c
}

(13)

is a valid solution of the equation of order n. As an illustrative example, Fig. 1 shows

the profiles of the real and imaginary parts, respectively, of the complex n = 2 soliton

defined by Eq. (13).

We now take k = 1 for convenience and expand this. Thus:

un =
4

B
[−1− cos(2c) cosh(A) + i sin(2c) sinh(A)], (14)

where A = 2(t+ 4(−1)nαnx) and B = [cos(2c) + cosh(A)]2.

-2 -1 1 2
t

-4

-2

2

u2
(r) ,u2

(i)

Figure 1. Real part, u
(r)
2 (blue, reaching a minimum of approx.-5), and imaginary

part, u
(i)
2 of n = 2 soliton of eq.13. Here α2 = 1, x = 1, c = 2.5, k = 0.5.

This form can also be seen in the next section.

4. First order rational solutions.

The first order complex rational solution of KdV-3 has been given in [13]:

u1 =
8

(2t− 12kα1x+ ic)2
− k. (15)

where k and c are arbitrary real constants, apart from the restriction that c 6= 0.

Now, this form of solution can be extended for other equations in the set. When only

one αn is non-zero, we obtain solutions of higher-order KdV equations. For example,

for the KdV-5 case, the first order rational solution of Eq. (8), can be written as

u2 =
8

(2t+ 15k2α2x+ ic)2
− k. (16)
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Next, the first order rational solution of KdV-7, i.e. Eq.(9) can be written as:

u3 =
8(

2t− k3α3
35x
2

+ ic
)2 − k. (17)

The first-order rational solution for KdV-9 is:

u4 =
8(

2t+ k4α4
315x
16

+ ic
)2 − k. (18)

We continue in this way, finding the coefficients needed.

Further particular cases up to and including u7, i.e. up to the equation KdV − 15,

reveal the general solution:

un =
8

(2t+ pnx+ ic)2
− k, (19)

where

pn = αn
(−k)n

2n+1
(4n2 − 1) bn,

with bn = {16, 8, 8, 10, 14, 21, 33, · · · } for n = 1, 2, 3, · · · , 7, · · · and k is an arbitrary

real parameter. Taking into account this form of bn, we can write the expression for pn
explicitly:

pn = 8αn

(
−k

2

)n
(2n+ 1)!!

n!
, (20)

where the double factorial is defined as (2n+ 1)!! = (2n+ 1)(2n− 1)(2n− 3) · · · 1.

In fact, we can solve the infinitely extended equation (2) with

u∞ =
8

(2t+ px+ ic)2
− k

where p =
∑∞

n=1 pn, or

p = 8
∞∑
n=1

αn(−k
2

)n
(2n+ 1)!!

n!
.

Each of the above solutions is a rational soliton with a fixed velocity v. It has a

ridge of height 9 while the background is |u| = 1. In order to avoid large numbers in

the solution, we replace the independent variables with X = 12x and T = 2t. Then, we

can write the solution in log-form:

u1(x, t) + k =
8

R2
1

= −2
∂2

∂t2
(log R1) , (21)

where R1 = 2t− 12α1 k x+ ic. Hence, R1 = T − α1 k X + ic. For the arbitrary n,

un(x, t) + k =
8

R2
n

= −2
∂2

∂t2
(log Rn) , (22)

where Rn = 2t+ pnx+ ic. Hence, Rn = T + pnX/12 + ic, with pn given by Eq.(20).

Solutions presented in this section are rational solitons. They have long tails and

would not be classified as ‘rogue waves’ in common parlance. The latter should have

a localized bump that ‘appears from nowhere’ [43]. Below, we present the higher-order

rational solutions that do show the rogue wave features.
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5. Second order rational (rogue wave) solutions

Rational solutions to many integrable evolution equations comprise hierarchies that start

with the lowest order and continue to infinitely high order. The infinitely-extended KdV

equation and its particular cases have the same property. All of them have higher-order

rational solutions. In contrast to solutions of the previous section, they can describe

rogue waves. Higher-order rational solution of the ‘defocusing’ equation (2) with a single

nonzero coefficient αn can be written in general form:

urn(x, t) = −2
∂2

∂t2
(log Gn)− 1, (23)

where

Gn = (T −X)3 + 11X − 3T − 3i(T −X)2 + d, (24)

with X = 12αn x rnvn and T = 2 t vn, as above, and with vn = 1/
√
n. In all of this

section, d = dr + i di is a non-zero complex constant with di < 0. The denominator of

un can be zero at a value of x that depends on
√
di. If di > 0, this occurs at real x

(giving a singular solution), but if di < 0 then no such real value of x exists, and the

solution is finite everywhere.

The definition of the variables X and T thus depends on the particular value of

n chosen. Namely, when n = 1, i.e for KdV-3 equation, we have r1 = 1. Next, when

n = 2, i.e. for KdV-5, we have r2 = −5
4
. Further, for n = 3, i.e. in the case of KdV-7,

we have r3 = 35
24

. When n = 4, i.e. for KdV-9, we have r4 = −105
64

. The highest order

for which we explicitly provide this coefficient is n = 5. Namely, for KdV-11, we have

r5 = 231
128

. In fact, these coefficients can be written for arbitrary n in the form

rn = (−1)n+121−n

3n!
(2n+ 1)!! .

Let us consider a few examples. The complex polynomial Gn in (24) for KdV-3 is:

G1 = 8(t− 6α1x)3 − 12i(t− 6α1x)2 + 132α1x− 6t+ d.

Then, if dr = 0, the maximum of the corresponding solution |u1| is |u1(0, 0)| =

−u1(0, 0) = 1 + 72
d2i
− 48

di
. So, if di = −3, this is 25. The polynomial Gn for KdV-5

is:

G2 =
1

8
[2
√

2(15α2x+ 2t)3 − 12i(15α2x+ 2t)2 − 660
√

2α2x− 24
√

2t+ 8d].

Then, if dr = 0, the maximum of the corresponding solution |u2| is |u2(0, 0)| =

−u2(0, 0) = 1 + 36
d2i
− 24

di
. So, if di = −3, this is 13. Finally, the polynomial Gn for

KdV-7 is:

G3 =
(4t− 35α3x)3

24
√

3
− i

4
(4t− 35α3x)2 +

385α3x

2
√

3
− 2
√

3t+ d. (25)

This leads to the complex solution u3. Then, if dr = 0, the maximum of the

corresponding solution |u3| is |u3(0, 0)| = −u3(0, 0) = 1 + 24
d2i
− 16

di
. So, if di = −3,

this is 9. This latter solution is plotted in Fig.2. So for dr = 0, we have the maximum
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of |un| being |un(0, 0)| = 1 + 24
nd2i

(3 − 2di), for n=1,2,3. As n increases, the maximum

possible value thus decreases.

It has long ‘soliton’-like tails but the most prominent feature of this solution is the

rogue wave bump at the origin. This feature is present in all solutions considered in this

Section. As we can see from the above, the highest amplitude is in the case of ‘standard’

KdV-1. As noted above, its value depends on dr and di.

Figure 2. Rogue wave solution of KdV-7, |ur3(x, t)| derived from Eqs.(23) and (25).

Here d = 2− 3i and α3 = 1.

6. ‘Focussing’ form of the KdV equation

For completeness, let us consider an alternative, ‘focussing’, form of the KdV equation.

In contrast to the previous case, all terms in this equation are positive. Thus, the lowest

order case of this equation which we call KdV-a-3 is:

ux + 6u(t, x)ut + uttt = 0, (26)

with the same notation for variables x and t as before. The sign of the nonlinear term

6u(t, x)ut here is reversed, relative to Eq.(1). Similarly to the ‘defocussing’ case, we can

write the set of these equations using operators Wn(u):

ux(t, x) +
∞∑

m=1

αmWm = 0. (27)

Then, recalling Eq.(6), etc, Eq.(26) can be written in the form ux + α1W1 = 0

with W1 = 6u(t, x)ut + uttt. The next equation in this set, using the same notation, is:

ux + α2W2 = 0 with W2 = −15
2
utu

2 − 5
2
utttu− 5ututt − 1

4
u5t. Explicitly, KdV-a-5 is:

ux − α2(
15

2
utu

2 +
5

2
utttu+ 5ututt +

1

4
u5t) = 0. (28)
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Finally, the adapted form of KdV-7, i.e. KdV-a-7 is: ux + α3W3 = 0, where

W3 =
1

16

{
70utttu

2 + 140utu
3 + 14[20ututt + u5t]u

+ 70(ut)
3 + 70uttuttt + 42ut u4t + u7t

}
. (29)

For Wn, the highest derivative is order 2n + 1. For these, when n is odd, all the

terms in the equation have positive coefficients. Namely, for n = 1, this is KdV-a-3. For

n = 3, we have KdV-a-7 and n = 5, we have KdV-a-11, etc. On the contrary, when n

is even, all coefficients in the operators Wn are negative.

6.1. Soliton solutions

Soliton solutions for these equations are similar to those considered in Section 3. Again,

we can solve the whole infinitely extended equation (27) for an infinite number of

arbitrary real coefficients αm. Thus, the most general soliton solution for Eq. (27)

is:

u(t, x) = 2k2sech2
[
k

(
t+ 4x

∞∑
m=1

(−1)mαmk
2m

)
+ i c

]
, (30)

where k and c are arbitrary real constants This result allows one to find soliton solutions

for an elaborate equation that takes into account higher-order dispersion and nonlinear

terms. This might be important for more involved cases when the depth of the water

layer changes or other complications need to be taken into account.

When only one coefficient, αn, is non-zero, the general solution, Eq.(30), is

simplified. Namely, for KdV-a-3, the soliton solution is:

u1 = 2k2sech2
[
k
(
t− 4α1k

2x
)

+ i c
]

where k and c are still arbitrary real constants. The only difference from the soliton

solution (10) here is its negative amplitude. The soliton solution for higher order

equations KdV-a-(2n+ 1) with n = 1, 2, 3, · · · can be written in general form:

un = 2k2sech2
[
k
(
t+ 4(−1)nαnk

2nx
)

+ i c
]
,

Again, apart from sign of the amplitude, it is the same as in Eq.(13).

6.2. First order rational solutions

The primary rational solution for the KdV-a-n of order n is:

un = −k − 8

(2t+ snx+ ic)2
, (31)

where k, c are arbitrary real numbers and

sn = kn αn
bn

2n+1
(4n2 − 1) ,

with bn = {16, 8, 8, 10, 14, 21, 33, · · · } for n = 1, 2, 3, · · · , 7, · · · . In this section, c is an

arbitrary real number.
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The convenient form of the expression for sn is:

sn = 8αn(
k

2
)n

(2n+ 1)!!

n!
, (32)

where (2n + 1)!! was defined earlier. Eq.(32) differs from pn of Eq.(20) in that it does

not have the (−1)n part in the coefficient. So, these solutions are similar to solutions in

Eq.(19), apart from sign changes.

Finally, we provide the general first order rational solution for the infinitely-

extended KdV equation of eq. (27):

u∞ = −k − 8

(2t+ sx+ ic)2
, (33)

where s =
∑∞

n=1 sn, so

s =
∞∑
n=1

sn = 8
∞∑
n=1

αn (
k

2
)n

(2n+ 1)!!

n!
.

All of the previous solutions in this section are particular cases of this general

expression. The coefficients αn are real and can be chosen arbitrarily in accordance

with particular physical problem at hand.

7. Conclusions

In conclusion, we have presented an infinitely extended KdV equation that contains

an infinite number of arbitrary real coefficients controlling higher-order terms in this

extended evolution equation. The higher-order terms are chosen in such a way as to

maintain the integrability of the whole equation. Another significant step in this work is

that this extended equation admits complex-valued solutions. This generalization allows

us to expand the set of solutions and include both solitons and rogue waves in the family.

The rogue waves take the form of rational solutions of this equation. Special choices of

the arbitrary coefficients in the equation lead to particular cases - the basic KdV and

a multiplicity of its higher-order elaborations. Using the extended KdV instead of the

basic one may well improve the accuracy of the description of rogue waves in shallow

water.
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