
 

Prediction of conversion from 

Mild Cognitive Impairment to 

 Alzheimer’s disease 

 
Hossein Tabatabaei Jafari (MD) 

 December 2019  
A thesis submitted for the degree of Doctor of Philosophy  

of  

The Australian National University 

 

@ Copyright by Hossein Tabatabaei Jafari, 2019 

All Rights Reserved  



 

 i 

Statement of originality and candidate contribution 

 

I hereby declare that this submission is my original work using the Alzheimer’s 

Disease Neuroimaging Initiative database. I analysed all data independently and 

drafted all chapters of this thesis. It contains no materials previously written by 

another person except it is cited by their name. Any contribution made to the studies 

of this project is acknowledged in the acknowledgement section.  

 

 

 

 



 

 ii 

Acknowledgements 

This thesis becomes a reality with the kind support and help of many people. I 

would like to express my gratitude and appreciation to all of them. Foremost, I would 

like to thank my supervisors, Professor Nicolas Cherbuin, Dr. Marnie Shaw and Dr. 

Erin Walsh for their support, guidance and contributions in all my studies. Especially, 

I owe a deep sense of thanks to Professor Nicolas Cherbuin for his constant supports 

and his outstanding and inspiring mentorship. His timely advice, meticulous scrutiny, 

and scientific approach have made the process as smooth as possible and helped me to 

a very great extent to accomplish this task.  

I need to thank all the participants and researchers of the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) project for establishing such an invaluable 

longitudinal data. Additionally, I would like to thank all staffs and colleagues at the 

Centre for Research on Ageing, Health and Wellbeing and the Research School of 

Population Health for providing friendly environment that helped me to be focused on 

my studies. 

It is also my privilege to thank my children, Parsa and Kiana for their love and 

support.  

 

 

 

 



 

 iii 

Abstract 

Predicting the conversion from mild cognitive impairment (MCI) to 

Alzheimer’s disease (AD) and of the time to conversion, remain some of the most 

important clinical challenges despite having been investigated for many years. To this 

day the available evidence has not identified any reliable methods that can be applied 

in clinical settings mostly because of the complexity of the most effective methods. 

Taking feasibility into account, this thesis aimed to use simple MRI markers such as 

brain volumes to predict the risk and the time of conversion from MCI to AD. This 

thesis is built upon five step-by-step studies, which demonstrate that hippocampal 

volume is a practical, reliable measure for MCI prognosis.  

The first three studies aimed to develop a novel brain MRI volumetric measure 

to identify individuals with MCI who progress to AD within five years. The last two 

studies aimed to explore the contribution of MRI measures in predicting time to 

conversion and to investigate their interaction with cognitive performance. Data used 

in this project were obtained from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database. 

It was hypothesized that the volumetric ratio of the brain region with the 

greatest atrophy rate in MCI to that of a region with no or a substantially lower 

atrophy rate in MCI could be a reliable and sensitive index in the prediction of AD 

conversion. The first study, a systematic review, revealed that the hippocampus and 

entorhinal cortex were the brain regions with the greatest atrophy rates in MCI, with 

atrophy rates about two-fold greater in MCI than cognitively normal (CN) people. 

The second study revealed that the cerebellum does not shrink faster in MCI than in 

CN individuals. Based on these findings, the hippocampal volume to cerebellar 
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volume ratio was investigated as a predictor of conversion from MCI to AD within 

five years. The results revealed that the measure was predictive of conversion, and 

when combined with a Mini Mental Examination Score (MMSE), could effectively 

identify individuals at risk of AD from those individuals with MCI who remained 

stable for at least five years or reverted to CN.  

Further comprehensive investigation in the last two studies revealed that brain 

volumes - the whole brain, ventricles, hippocampal and entorhinal cortex volumes - 

were predictive of time to conversion from MCI to AD. Additionally, although 

individual cognitive/functional performance was predictive of time to conversion, its 

predictive values was dependent on hippocampal volume. The same conclusions were 

drawn from analyses investigating atrophy rates of these regions. That is, the rates of 

atrophy in whole brain, ventricles, hippocampus, and entorhinal cortex were 

predictive of time to AD conversion but dependent on their baseline volumes. 

Moreover, individuals with MCI, who had hippocampal or entorhinal cortex volumes 

smaller than 5500 mm3 and 2800 mm3 (respectively), progressed to AD more quickly 

regardless of the ensuing atrophy rate. 

Taking all these findings into consideration, this thesis suggests that 

hippocampal volume is a reliable biological marker for the identification of 

individuals with MCI at demonstrable risk of conversion to AD. Additionally, it is a 

reliable biomarker of time to conversion from MCI to AD. Indeed, at volumes less 

than a defined threshold it is highly prognostic of early conversion. Importantly, the 

prediction accuracy of a simple volumetric measure of the hippocampus is 

comparable to that of highly complex and sophisticated methods, such as machine 

learning, but with the advantage of being practical and easier to use in clinical or 
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research settings. In clinical practice, early identification of those at risk can assist 

with early intervention and lifestyle modification, which subsequently can decrease 

the burden of the disease on the patients, their caregivers, and the health systems.  
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INTRODUCTION 
 

“By the time you are eighty years old you have learned everything. You only 

have to remember it”.                                            George Burns (1896 – 1996) 

 George Burns was an active actor until he was ninety-eight years old and was 

mentally sharp until his death two months after his one-hundredth birthday. His satire is a 

gentle expression of the fear that most people may experience in old age. Indeed, it can be a 

real concern for anyone who wishes longevity particularly because it is not yet clear whether 

one can ever be safe from future mental decline. Identifying those at risk of this decline is 

the aim of this thesis. 

Research context 

Acquired mental decline is known as dementia and it is characterized by cognitive 

decline, severe enough to interfere with activities of daily living and is not better explained 

by other neurological or psychiatric disorders. Although a number of different causes may 

lead to dementia (Alzheimer’s Association, 2018), Alzheimer’ disease (AD) is its leading 

cause (about 70%) especially among people over 65 years of age (Fiest et al., 2016). 

Clinical symptoms of AD typically begin with difficulty in recent memory, apathy, 

depression and progresses to impaired communication, disorientation, confusion, poor 

judgment, behavior changes and, ultimately, difficulty in speaking and motor function 

including walking and swallowing (Forstl & Kurz, 1999). The emergence of clinical 
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symptoms is underpinned by progressive neural damage and degeneration (Falahati, 

Westman, & Simmons, 2014). Pathologically, AD is characterized by the accumulation of 

extracellular amyloid β protein and the aggregation of intracellular abnormal phosphorylated 

tau protein (Braak & Braak, 1991; Dickson, 1997). The severity of accumulation of these 

extra/intracellular proteins increases and gradually spreads to new brain regions during the 

course of the disease. This accumulation is neurotoxic and leads to a decreased number of 

synapses, neural connections, and eventually neural death (Falahati et al., 2014). 

Neurodegeneration begins typically in the medial temporal lobes and spreads to the parietal 

and frontal lobes, and eventually to the posterior parts of the brain (Braak & Braak, 1991; 

Thal, Rub, Orantes, & Braak, 2002). The aetiology of AD is not yet understood but several 

risk factors have been identified. Some of the well established risk factors for AD are APOE 

e4 genotype, family history of AD, female sex, lower education, sedentary lifestyle, 

psychiatric comorbidity, unhealthy diet, smoking, illicit drug use and medical diseases such 

as diabetes and obesity, however, age is the strongest AD risk (Livingston et al., 2017).  

The prevalence of AD rises dramatically with age, markedly after 65. There is a 15-fold 

increase in the prevalence of AD between the ages of 60 and 85 years (Mayeux & Stern, 

2012).  In the United State of America (USA), about 3% of people aged 65-74, 17% of 

people aged 75-84, and 32% of people aged 85 and older suffer from AD (Hebert, Weuve, 

Paul A. Scherr, & Evans, 2013). AD’s annual incidence rate is about 0.5% (500 cases per 

100,000 person-year) between 65-70, which steadily increases with age, to about 6% to 8% 

for individuals over the age 85 (Mayeux & Stern, 2012). In 2013, 44.4 million people were 

estimated to be suffering from AD worldwide. This number is expected to reach 75.7 million 

in 2030 (Alzheimer's Disease International, 2013). These findings clearly demonstrate why 

this disease is one of the biggest public health challenges that society faces. 
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Although the prevalence of AD only become substantial after the age of 65 years, the 

brain changes attributable to AD pathology precede the onset of clinical symptoms by several 

decades (Alzheimer’s Association, 2018). The deposition of amyloid plaque and the 

development of tau neuro-fibrillary tangles may start as early as young adulthood in limited 

brain regions and gradually increases in number and spreads to most parts of the brain (Braak 

& Braak, 1997; Vlassenko, Benzinger, & Morris, 2012), resulting in neural damage/loss. 

Initially, people may cope with the impact of the neural damage/loss and maintain their 

cognitive performance at normal levels while remaining asymptomatic. However, gradually 

the capacity of the brain to cope with the damage is overwhelmed by the increasing 

pathology and cognitive symptoms (particularly memory deficits) emerge (Steffener, Reuben, 

Rakitin, & Stern, 2011; Stern, 2009). Further neural pathology progressively interferes with 

the activities of daily living that are dependent on cognitive integrity. The emergence of these 

symptoms represents the onset of clinical dementia due to AD. Over time, the neural 

degeneration extends to most parts of the brain and impairs behavioral function and 

personality, and eventually basic bodily functions such as walking and swallowing (Forstl & 

Kurz, 1999).  

Since AD is currently an irreversible and incurable condition, primary prevention of the 

disease by controlling its modifiable risk factors has been a particular focus of risk reduction 

studies. However, because AD is a slowly progressing condition, the hope for secondary 

prevention (intervention at the early stages of the disease) has been rising in recent years. 

This raises two important questions: “who is at the early stage of the disease and at risk of 

progression to AD dementia?” and  “how can we predict the time to conversion to AD 

dementia in those at risk?” These questions are currently among the most important 

challenges that researchers and clinicians in this field have been attempting to resolve, and 

thus the focus of this thesis.  
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In the following sections findings from previous studies on this topic are first reviewed. 

Gaps in the literature are then outlined. Finally, the aims of this thesis are presented as well as 

a brief review of the conducted studies.  

Mild cognitive impairment precursor of Alzheimer’s disease 

Since AD pathology is irreversible, management is mainly palliative by the time the 

neural damage is severe enough to fulfill the dementia criteria, (Alzheimer’s Association, 

2018; Canu, Sarasso, Filippi, & Agosta, 2018). Therefore, early intervention aimed at 

modifying the course, before it reaches advanced clinical stages, may lead to better outcomes. 

However, early intervention requires identifying those in the early stages of the disease. 

Identifying individuals at the early symptomatic stage has been a focus of interest for 

researchers investigated the course of the disease in the last few decades. The concept of an 

early symptomatic stage of the disease has gradually developed into a clinical entity that is 

currently known as Mild Cognitive Impairment (MCI). MCI has been widely accepted as the 

earliest clinical presentation of AD pathology that is prodromal to the dementia stage (Crook, 

Bahar, & Sudilovsky, 1987; Hugo & Ganguli, 2014; Jack et al., 2018; Levy, 1994; O'Brien, 

1999). Cognitive decline in MCI is more than that expected in normal ageing but it is not 

severe enough to interfere with activities of daily living, which is characteristic of the 

dementia stage of AD (R. C. Petersen, 2004b). 

MCI is a clinical stage that occurs between normal cognition and AD, and it is currently 

recognised as of the AD clinical continuum. This continuum consists of three stages: (1) the 

asymptomatic preclinical stage of AD, in which tau neurofibrillary tangles and amyloid β 

protein deposition is abnormally high but not yet clinically symptomatic, (2) the MCI stage, 

in which at the presence of protein deposition and neurodegeneration cognitive impairment is 

clinically noticeable but not severe enough to interfere with activities of daily living, and (3) 
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the dementia stage, in which at the presence of protein deposition and neurodegeneration 

cognitive impairment is severe enough to interfere with activities of daily living (Albert et al., 

2011; Jack et al., 2018). However, despite the importance of verification of the pathology a 

definite in vivo verification is not yet established and MCI and AD are still clinically 

diagnosed based on clinical symptoms and neuropsychological assessments. Therefore, MCI 

is a clinical syndrome with different underpinning pathology and as a result its progression to 

AD is not inevitable. Moreover, different MCI subtypes have been identified based on the 

type of cognitive abnormalities observed e.g. impairment in memory, language, executive 

function, or visuospatial skills (R. C. Petersen, 2004a). Although those with MCI, who 

predominantly suffer from memory deficits, are most at risk of progression to AD (Albert et 

al., 2011; R. C. Petersen, 2004a; Ronald C. Petersen et al., 1999; Winblad et al., 2004), 

progression is not inevitable.  

MCI, the precursor to but not always predictive of Alzheimer’s 

disease 

Reviews of the literature show that only half of those clinically diagnosed with MCI 

have been observed to progress to AD within five years (Falahati et al., 2014; Mitchell & 

Shiri-Feshki, 2009; Pandya, Clem, Silva, & Woon, 2016) with the rest remaining stable or 

reversing to Cognitively Normal (CN) status (Falahati et al., 2014; Mitchell & Shiri-Feshki, 

2009; Pandya et al., 2016). Surprisingly, the rate of conversion remains largely stable even 

after 10 years of follow-up (Mitchell & Shiri-Feshki, 2009). This variability in progression 

from MCI to AD is not completely consistent with the concept of an AD clinical continuum. 

It may be due to different factors including variability in pathology (i.e. presence of other 

pathologies such as vascular dementia), the rate of progression of AD pathology (i.e. different 

pace of progression across different people), or uncertainty in diagnosis due to variability in 
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clinical expertise (i.e. false positive diagnosis). These potential explanations are discussed in 

turn in the following sections.  

Variability in pathology: It is possible that in the absence of pathology load 

measurement those who remain stable do not carry significant levels of AD pathology and 

their clinical presentation is a variation of normal ageing. Additionally, some MCI may suffer 

from a different type of pathology and thus they are not in the AD continuum and they have 

been misclassified because of their clinical presentation. Moreover, previous studies reveal 

that about half of individuals with AD have pathological evidence of a second cause of (most 

commonly vascular) dementia (Schneider, Arvanitakis, Bang, & Bennett, 2007; Schneider, 

Arvanitakis, Leurgans, & Bennett, 2009). Therefore, the contribution of secondary pathology 

may determine the MCI outcome.  

Variability of the rate of progression of AD pathology: It is also plausible that AD 

pathology is the underlying pathology but that it follows a very slow progression. Indeed, 

because people are not homogeneous in regard to the number of risk factors and vulnerability 

to the pathology, it is likely that some individuals with MCI due to AD pathology may have 

slower progression rate compared with others. Thus, in this context individuals may remain 

clinically stable for a while despite the slow, gradual progression in the pathology. However 

it is important to note that even at the presence of similar pathological progression, 

progression in clinical presentation may differ due to brain/cognitive differences (Stern, 

2009).  

Variability in expertise: Another possible reason for variability in MCI outcomes may 

be attributable to the uncertainty in diagnosis due to variability in clinicians/researchers’ 

expertise and the context of assessment.  This may be particularly the case for those who are 

diagnosed with MCI but who revert to normal cognition after a while (Park, Han, & 
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Initiative, 2015). This explanation is supported by the fact that there is a higher rate of 

reversion from MCI to CN in community-based studies, which tend to have somewhat less 

stringent clinical assessments, compared to clinical studies (Mitchell & Shiri-Feshki, 2009). 

In clinical studies, clinicians have access to patients’ medical history and they can personalize 

further investigations to better detect and characterise cognitive decline. In contrast, 

researchers are restricted to screening batteries and predefined assessments, and a limited 

number of tools for cognitive assessment in community-based studies, which may decrease 

the accuracy of diagnosis. This may lead to less robust diagnoses in community-based studies 

which in turn leads to a greater rate of diagnosis reversal despite the use of the same 

diagnostic criteria (Mitchell & Shiri-Feshki, 2009). 

Whether variability in MCI outcome is due to variability in pathology or accuracy of 

diagnosis, the use of biomarkers, which can confirm the presence of AD pathology, may help 

better explain variability in disease progression. For this reason, the National Institute of 

Aging and Alzheimer’s Association (NIA-AA) suggested incorporating biological marker of 

AD in the diagnostic guideline of MCI and AD, and also suggested using AD biomarkers for 

prognostic purpose (Dubois et al., 2014; Jack et al., 2018). The NIA-AA guideline system 

groups the AD biomarkers into those of amyloid β deposition, pathologic tau, and 

neurodegeneration. The guideline recommends – at this stage for research frameworks only-- 

the markers of amyloid β, pathologic tau and neurodegeneration for diagnostic purpose and 

neurodegeneration markers and clinical assessment for prognostic purpose. Numerous studies 

have investigated different biological markers for prognostic purposes and to predict 

conversion from MCI to AD. In the following section, these studies are briefly reviewed and 

discussed in relation to their practical implementation in research and clinical practice. 
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Prediction of conversion and time to conversion 

Newly developed technologies have provided an opportunity to investigate in vivo 

biological markers reflecting pathological changes underpinning disease progression and to 

predict conversion from MCI to AD (Falahati et al., 2014; Rathore, Habes, Iftikhar, 

Shacklett, & Davatzikos, 2017). Positron-Emission Tomography (PET) imaging has been 

used for the evaluation of amyloid β deposition and pathologic tau aggregation using specific 

ligands such as Pittsburgh Compound-B PET (PIB-PET) for amyloid β and flortaucipir-PET 

for phosphorylated tau (Klunk et al., 2004; Pontecorvo et al., 2017). Additionally, the level of 

amyloid β and tau proteins’ fragments in cerebrospinal fluid (CSF) (Lista et al., 2017; Ritchie 

et al., 2017) and recently blood plasma (Deters et al., 2017; Fan et al., 2018; Nakamura et al., 

2018) have been assayed to investigate abnormal cortical levels of these proteins. Other 

studies have also explored markers of neural injury and degeneration related to the protein 

deposition by tracking brain structural and functional changes using neuroimaging methods 

such as Magnetic Resonance Imaging (MRI), Diffusion Tensor Imaging (DTI), functional 

MRI and Fluorodeoxyglucose-PET (FDG-PET) (Caso, Agosta, & Filippi, 2016; Dennis & 

Thompson, 2014; Dona, Thompson, & Druchok, 2016; Mosconi, 2005). Some of these 

methods have been used to predict conversion from MCI to AD and to a lesser extent time to 

conversion. They are reviewed in the following two sections.  

Predicting MCI to AD conversion  

Studies investigating conversion from MCI to AD can be categorized into those that 

used biomarkers of amyloid β and tau deposition, biomarkers of neurodegeneration, or a 

combination of these.  
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Amyloid β and tau biomarkers  

Systematic review of PIB-PET studies shows that cerebral amyloid β deposition 

predicts conversion to AD with an average sensitivity of 94.7% (ranged from 83.3% to 

100%) and 57.2% specificity (ranged from 41.1% to 100%) (Ma et al., 2014). Similarly, 

systematic reviews revealed that CSF amyloid β and tau biomarkers are predictive of AD 

conversion with 75% sensitivity (ranged from 51% to 91%) and 72% specificity (ranged from 

48% to 88%) (Diniz, Pinto Junior, & Forlenza, 2008; Ritchie et al., 2017). These findings 

suggest that confirming the presence of abnormal amyloid β deposition and pathologic tau in 

those who are clinically diagnosed with MCI should indicate that conversion to AD is highly 

likely although far from perfect.  

An important issue relating to the use of amyloid β and tau biomarkers is that these 

methods (i.e. PET scan and CSF) are invasive and have limited availability in practice. This 

is particularly the case for PET, which is a highly invasive procedure that involves the 

injection of a radiotracer. CSF measures are also highly invasive they require a lumbar 

puncture for which complications are common. Indeed, CSF leakage and post-dural puncture 

headache have been reported in up to one-third of those receiving lumbar puncture (Wang et 

al., 2015). Moreover, it requires inpatient facilities for its administration and post-

intervention monitoring. Therefore, PET and CSF are invasive and expensive procedures and 

relatively impractical in clinical practice.  

Biomarkers of neurodegeneration 

While different biomarkers of neurodegeneration have been identified, only brain 

metabolic activity using FDG-PET and brain volumetry using structural MRI have been 

investigated for prediction of conversion from MCI to AD.  
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A meta-analytic study suggests that metabolic hypoactivity detected by FDG–PET 

imaging is predictive of conversion from MCI to AD with pooled sensitivity of 88.8% and 

specificity of 84.9% (Yuan, Gu, & Wei, 2009). It is likely that this metabolic hypoactivity is 

subsequent to neural injury and death in the brain regions involved in AD pathology, and thus 

representative of the severity of neurodegeneration and predictive of clinical progression.   

Besides measures of brain metabolic activity, MRI imaging investigating brain 

structure has been used to evaluate the severity of neurodegeneration. Indeed, structural MRI 

is the most common approach for investigating neurodegeneration to date (Falahati et al., 

2014; Rathore et al., 2017). One of the best predictive values for prediction of conversion 

from MCI to AD has been demonstrated for certain patterns of cortical atrophy with an 

84.8% sensitivity and 97.22% specificity (Guo, Lai, Wu, Cen, & Alzheimer's Disease 

Neuroimaging, 2017). The volume of the hippocampus has also been investigated and has 

shown to be a moderate predictor of AD conversion with a sensitivity of 67%, and specificity 

of 72% (Chupin et al., 2009). Comparing the results of topological studies and prediction 

using hippocampal volume suggests that the predictive values of topological features are 

better than a regional brain measure.  

In contrast to PET imaging and spinal taps, structural MRI is minimally invasive, 

affordable and a more widely available technique for investigating AD neurodegeneration. 

However, machine-learning approaches have been used to detect the pattern of 

neurodegeneration in structural MRI, while their implementation in clinical practice or some 

research settings such as clinical trials is not practical. Machine learning is a method, which 

involves two steps. In a first training step a proportion of the data is used to identify the 

topological pattern characteristic of individuals who convert to AD. In a second step, the rest 

of the data is used to test the accuracy of the learned topological pattern (Deo, 2015).  This is 
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a sophisticated but complex method that requires large data sets for training and validation, 

which may not always be available. Moreover, in clinical practice or in clinical trials having 

data for the training step is not practical because the outcomes of the participants’ diagnoses 

are yet to be determined. It is possible to use different large databases for the training step 

and it may be possible to establish a normalized topological pattern applicable in clinical 

settings and clinical trials but based on current evidence such an approach has not yet been 

validated. In addition, because of the “black box” nature of the training (i.e. the ability to 

automatically learn and improve from experience without being explicitly programmed), the 

approach is vulnerable to “adversarial attacks” (intentional inputs that have been crafted to 

force the model to misclassify) especially in real world medical practice (Finlayson, Chung, 

Kohane, & Beam, 2018). Therefore, we are still in the initial stages of utilising this method, 

with significant obstacles that need to be addressed (additional to the effectiveness of the 

approach in a research framework) before machine learning is utilised in clinical practice.  

Multi-modal biomarkers 

Using multi-domain measures such as a combination of neuroimaging and CSF 

biomarkers or a combination of different neuroimaging modalities has been shown to have 

higher predictive accuracy than individual measures (Falahati et al., 2014; Rathore et al., 

2017). However, this improvement comes at the expense of increasing complexity and using 

invasive methods. For example, the combination of MRI, PET, and CSF shows more than 

91% accuracy in prediction of conversion from MCI to AD (Zhang et al., 2011), but this is 

hardly practical since as discussed above CSF and PET are invasive methods with limited 

availability in daily practice. 

Additionally, a combination of cognitive assessments and biological markers such as 

MRI, CSF, and PET imaging has shown improvement in predicting the conversion from MCI 
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to AD (Barnes, Cenzer, Yaffe, Ritchie, & Lee, 2014; Devanand et al., 2007; Ewers et al., 

2012; Falahati et al., 2014; Moradi et al., 2015; Zhang, Shen, & Alzheimer's Disease 

Neuroimaging, 2012) when compared to cognitive assessments alone (Rabin et al., 2012; 

Silva et al., 2012; Silva et al., 2013).  Despite this improvement the combinations have the 

same practical limitations discussed.   

In general, despite being informative, biological markers that have been investigated to 

date are mostly too complex or are not widely available to be implemented in clinical 

settings/trials to predict conversion from MCI to AD. Therefore, identifying an approach 

practical enough to be widely used in clinical and research settings would be highly desirable. 

In addition to predicting conversion from MCI to AD, prediction of time to AD conversion is 

also important and this question will be discussed in the next section.  

Predicting time to conversion  

In contrast to studies predicting conversion from MCI to AD, those that have aimed to 

predict the timeframe within which conversion occurs are limited in number. Moreover, 

available studies have mainly investigated the predictive value of biomarkers of 

neurodegeneration. These studies have generally suggested an association between 

longitudinal brain volume loss and the time to AD conversion (Falahati et al., 2017; Jack et 

al., 2005; Liu, Chen, Yao, & Guo, 2017; Teipel, Kurth, Krause, Grothe, & Alzheimer's 

Disease Neuroimaging, 2015). While few of these studies showed that regional brain volume 

loss is predictive of time to AD conversion (Falahati et al., 2017; Jack et al., 2005), the 

majority of them demonstrated that the pattern of longitudinal volume loss (using machine 

learning approaches) is predictive of time to AD conversion (Gavidia-Bovadilla, Kanaan-

Izquierdo, Mataro-Serrat, Perera-Lluna, & Alzheimer's Disease Neuroimaging, 2017; Li et 

al., 2012; Risacher et al., 2010; Teipel et al., 2015; Thung et al., 2018). Additionally, few 
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studies have used a combination of neuroimaging and clinical performance to predict time to 

AD conversion, such as the combination of hippocampal and entorhinal volume and Mini 

Mental State Examination (MMSE) and Selective Reminding Test (SRT) delayed recall 

(episodic memory) and Wechsler Adult Intelligence Scale–Revised (WAIS-R) Digit Symbol 

(attention/psychomotor/executive function) (Devanand et al., 2007), the average gray matter 

volume of several brain networks and MMSE scores, Alzheimer’s Disease Assessment 

Scale-Cognitive Subscale (ADAS-cog) scores and Clinical Dementia Rating (CDR) scores 

(Liu et al., 2017), and the gray matter volume (from 93 region of interest) and MMSE, 

ADAS-cog, and CDR revealed prediction of time to conversion (Thung et al., 2018).    

The aforementioned studies mostly used machine-learning approaches, which as noted 

above are not yet practical for individual assessment such as in clinical settings and clinical 

trials. In the few studies that used brain volumes or longitudinal volume loss the results have 

not been consistent due to different methodology. Additionally, these studies mostly had 

short follow-up periods of three years or less. Hence, they are only informative in relation to 

early conversion. The predictive values of these MRI measures in a longer follow-up are not 

yet clear.  

Gaps in the literature 

Despite the large number of studies, which have been conducted to investigate AD 

progression in the past few decades, some key gaps in the literature remain to be 

investigated/addressed. They are summarised below.  

1. Practicality of the predictive methods at individual level  

To date, biomarkers that are most predictive of conversion from MCI to AD are 

relatively impractical in clinical settings or in clinical trials. This is because the focus of 
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previous studies has been mostly on using complex approaches, while the predictive values 

of some simple measures such as regional volume have not been thoroughly investigated.  

2. The earliest practical prediction of conversion from MCI to AD 

The conceptualisation of the progressive nature of AD pathology suggests that all 

individuals with MCI should eventually progress to AD. However, the average time to 

conversion is not yet determined. In order to provide sufficient time for intervention we must 

be able to predict conversion earlier in the disease process.  To date, most studies have tried 

to identify individuals with MCI who converted to AD within one to two years or, at most, up 

to three years (Falahati et al., 2014; Rathore et al., 2017). A longer prediction interval, which 

can provide longer time for potential interventions or lifestyle modification, is currently 

lacking.  

3. Interaction between biomarkers and cognitive performance in timing of conversion 

While the association between severity of AD neurodegeneration and cognitive 

impairment has been well documented, this association is not straightforward 

(Neuropathology Group of the Medical Research Council Cognitive Function and Aging 

Study, 2001). Some people can cope with same level of degeneration better than other people 

(Medaglia, Pasqualetti, Hamilton, Thompson-Schill, & Bassett, 2017; Steffener & Stern, 

2012; Stern, 2009). Investigating the interaction between neurodegenerative markers and 

cognitive function in predicting the time to conversion may not only help disentangle the 

predictive value of each of these measures, but will also help to better understand how they 

relate to one-another.   

4. Brain volume, atrophy and time to conversion  
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Spread of neurodegeneration in the brain is characteristic of AD pathology progression 

and the pattern of this expansion is predictive of time to conversion from MCI to AD (Liu et 

al., 2017; Teipel et al., 2015). However, it is not clear if regional brain volumes and atrophy 

rates (besides the pattern of neurodegeneration) are also predictive of conversion, and if so, 

whether there is any interaction between them. This issue is particularly relevant because 

atrophy rate is the main outcome measure of clinical trials of disease-modifying treatments.  

Thesis scope  

The main aim of this thesis is to establish a practical approach to identify those with 

MCI at the highest risk of conversion to AD dementia and to predict the timing of this 

conversion.  

Taking practicality into consideration, simple structural MRI markers of 

neurodegeneration are the target of this thesis to track AD progression. Structural MRI is 

accurate, cost-effective, relatively simple to interpret, and the safest in vivo investigation of 

the nervous system that is widely available in the clinic. The purpose is to avoid complex 

image processing techniques such as machine learning and keep the approach simple enough 

for implementation in clinical practice. Thus, simple volumetric measures of the brain are 

examined, separately or in combination with cognitive performance, to predict the risk and 

the timing of conversion from MCI to AD.  

While neurodegeneration is not limited to AD, some characteristic patterns of 

neurodegeneration are. Thus, the intention is to identify a volumetric measure that can serve 

as a proxy of the pattern of AD neurodegeneration in addition to being simple and practical. 

To fulfil this goal, the plan is to normalize the volume of the brain region with the earliest 

and greatest involvement in AD pathology by the brain region with the least and latest 

involvement. Therefore, before conducting any study to predict conversion it is necessary to 
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determine which brain regions are affected the most by neurodegeneration in a longitudinal 

follow-up, and which regions are least affected.  

In addition to having a practical measure for predicting AD conversion, it is import to 

predict the conversion early enough to provide sufficient time for either intervene to change 

the course of the disease or at least implement lifestyle modification to better cope with the 

situation. Although the ideal scenario is to identify those at high risk of AD conversion as 

early as it is possible, the goal of this thesis is to identify those at risk of conversion within 

five years. Five-year is an arbitrary timeframe but it is consistent with what is usually 

reported in medicine in regard to prognosis of chronic progressive diseases.  

In addition to prediction of AD conversion, the scope of this thesis is also to shed light 

on the prediction of the timing of AD conversion. The intention is to explore if simple brain 

volume measure and cognitive performance can predict time to AD conversion, and if so, 

characterise the nature of their interaction? Furthermore, it is also important to determine if 

brain atrophy rate can predict time to conversion, and if so, better understand the interaction 

between brain volume and brain atrophy in predicting time to AD conversion. This is 

especially important for interpreting the results of clinical trials aiming to delay AD 

progression.  

The scope of the thesis is developed into five aims that are outlined below.  

Thesis aims 

The overarching focus of this thesis is to demonstrate whether simple structural MRI 

markers can predict conversion and the time to conversion from MCI to AD. To explore this 

question, five specific aims were investigated through five separate studies  
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1. To combine, contrast, and integrate the findings from different studies to produce 

normative information on regional atrophy rates, and to identify the most sensitive 

anatomic biomarkers characteristic for MCI. 

2. To evaluate cross- sectional and longitudinal structural differences in a brain 

region (that is less likely to be involved in AD pathology) across cognitively 

different populations i.e. CN, MCI, and AD.  

3. To determine if a simple MRI measure, separately and in combination with a 

standard cognitive test, can predict conversion from MCI to AD within five years. 

4. To investigate the value of brain MRI measures and cognitive performance in 

predicting time to conversion. 

5. To investigate the value of atrophy rates in predicting time to AD conversion from 

MCI.  

Thesis outline and summary 

Five studies have been conducted to fulfil the five aims of the thesis. The first study is a 

systematic review of differences in structural brain changes in MCI. The review revealed that 

the whole brain, ventricles, hippocampus and entorhinal cortex volumetric measures were the 

most studied measures. A meta-analysis was conducted to produce normative information on 

global/regional atrophy rates.  

The second study aimed to evaluate cerebellar atrophy across different cognitive status 

i.e. CN, MCI, and AD. The cerebellum was hypothesized to be the area that shrinks least in 

the disease process since cross-sectional studies have shown that this region experiences the 

least amount of amyloid β deposition, tau aggregation or histological changes. The result 

revealed that the rate of atrophy in the cerebellum in MCI is essentially the same as in normal 

ageing. This suggests that the cerebellum can be considered as a reference area for 
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normalizing more strongly implicated brain regions in the disease process such as the 

hippocampus.  

The third study was a conceptual development of the first two studies. It was 

hypothesized that normalising the hippocampus with the cerebellum may reliably predict 

conversion from MCI to AD. Therefore, the aim of the study was to evaluate the predictive 

value of this ratio, either alone or in combination with a sensitive measure of cognitive 

decline e.g. the Mini Mental State Examination (MMSE) to identify those MCI at highest risk 

of progression to AD within five years. Findings of this study revealed that the combination 

of hippocampal to cerebellar volume and MMSE was a sensitive and reliable predictor of 

conversion.  

The purpose of the fourth study was to explore the value of a combination of 

hippocampal volume and some widely used cognitive and functional tests in predicting time 

to conversion from MCI to AD. Findings showed that the combination of hippocampal 

volume and cognitive/functional measures was better at predicting time to conversion than 

each of these measure in isolation. However, effectiveness of cognitive measures in 

predicting conversion from MCI to AD was dependent on hippocampal volume. 

The fifth study aimed to investigate the value of brain volume at first consultation and 

its ensuing atrophy rate in predicting the time to conversion from MCI to AD. Based on 

findings from the first study the whole brain, ventricles, hippocampus and entorhinal cortex 

were selected as region of interest (ROI). The results were consistent with the findings of 

those of the fourth study and suggested that the atrophy rate was predictive of the time of 

conversion from MCI to AD but its predictive value was dependent on the initial brain 

volume.  
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The conducted studies are presented in the following chapters and the findings and their 

implications are discussed in the final chapters. Printed copies of the papers in their published 

format are provided in the appendices.  
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Abstract 

Introduction: Although mild cognitive impairment (MCI) diagnosis is mainly based on 

cognitive assessment, reliable estimates of structural changes in specific brain regions - that 

could be contrasted against normal brain ageing and inform diagnosis - are lacking. This 

study aimed to systematically review the literature reporting on MCI-related brain changes.  

Methods: The MEDLINE database was searched for studies investigating longitudinal 

structural changes in MCI. Studies with compatible data were included in the meta-analyses. 

A qualitative review was conducted for studies excluded from meta-analyses.  

Results: The analyses revealed a 2.2-fold higher volume loss in the hippocampus, 1.8-fold in 

the whole brain and 1.5-fold in the entorhinal cortex in MCI participants.  

Discussion: Although the medial temporal lobe is likely to be more vulnerable to MCI 

pathology, atrophy in this brain region represents a relatively small proportion of whole brain 

loss, suggesting that future investigations are needed to identify the source of unaccounted 

volume loss in MCI.   
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Introduction 

Although Alzheimer’s disease (AD) was first characterized more than 100 years ago, 

little concrete progress has been made towards an effective cure of this progressive disorder. 

Identification of mild cognitive impairment (MCI) as a prodromal phase of AD has raised 

hopes of the possibility of preventing or modifying progressive neurodegeneration in AD. 

Indeed, initial attempts at early therapeutic interventions have reported some successes in the 

early phase of MCI (Douaud et al., 2013; Smith et al., 2010).  

Clinically, MCI is defined based on the detection of cognitive decline greater than that 

expected at any given age and less than those observed in dementia in the context of 

preserved activities of daily living and the absence of other neurological disorders. However, 

clinical evaluation is complicated by heterogeneity in cognitive reserve and diversity in daily 

function. Considering that each cognitive measure is designed to target a particular brain 

function, selecting which cognitive measures are appropriate to assess functional decline in 

the MCI trajectory is a matter of concern not only for diagnostic purposes but also in the 

evaluation of clinical trials (Snyder et al., 2014). Besides higher uncertainty in characterizing 

MCI based on functional impairment (Park, Han, & Initiative, 2015), cognitive evaluation is 

not currently  informative enough for demonstrating patterns of deterioration that will 

accurately discriminate those who will remain stable from those who will convert to AD or 

other dementias. Therefore, without a better understanding of the neurological basis of the 

disorder, as well as the identification of structural biomarkers, reliable detection of MCI and 

estimation of future risk of dementia remains elusive.  

Assuming that impairment in cognitive function is the result of neurodegeneration, 

monitoring structural brain changes may be beneficial in understanding the pathophysiology 

of MCI. Recent development in neuroimaging technologies has provided an opportunity to 
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investigate structural biomarkers in living subjects. In the past two decades, the use of 

magnetic resonance imaging to assess cerebral structure has become widespread. Most early 

studies have used a cross-sectional design and have suggested that, although the presence of 

structural differences in any particular brain region is not specific to MCI or AD (i.e. it can 

also be observed in ‘’normal’’ ageing), the pattern of regional atrophy rates and the 

topological progression of atrophy are quite characteristic, particularly in AD (Braak & 

Braak, 1991). Moreover, these studies also revealed that regional atrophy rates are different 

in MCI and AD (Sluimer et al., 2009). Consequently, identification of regionally specific 

atrophy rates in MCI may be beneficial for detecting the early stage of AD development, as 

well as evaluating the magnitude of expected structural changes in clinical trials. 

Available longitudinal studies have identified a subset of brain regions that may be 

involved in MCI pathology. An important next step is to combine, contrast and integrate the 

findings from different studies to produce normative information on regional atrophy rates, 

and to identify the most sensitive anatomical biomarkers characteristic for MCI. As far as we 

are aware, no study has systematically summarised these findings to date. Therefore, the aim 

of this study was to systematically review the literature concerning MCI-related structural 

brain changes.   

Methodology 

This systematic review was conducted based on an established methodology (Fraser, 

Shaw, & Cherbuin, 2015) using pre-specified search terms and inclusion and exclusion 

criteria, and was performed according to the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses guidelines (Moher, Liberati, Tetzlaff, Altman, & Group, 2009). 

To retrieve all references relating to longitudinal brain structural changes in MCI 

published in the MEDLINE database, a literature search was conducted through the PubMed 
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portal in two stages, (1) at the beginning of the study, (2) at the end of February 2015 to 

update pooled data with the most recent published studies. The following search string was 

used for both searches; (Brain or Cerebral or Cortical) And (Mild Cognitive Impairment Or 

MCI Or Cognitive disorder Or Neurocognitive disorder Or Cognitive decline Or Cognition) 

And (Structur* Or Volum* Or Thickness Or MRI Or Neuroimaging) And (Atrophy Or 

Change Or Longitudinal Or shrinkage). Both literal and Medical Subject Heading searches 

were performed. Searches were limited to studies published in English and focusing on 

human subjects.   

Selection criteria and selection process 

To be selected, studies were required to use a longitudinal methodology with two or 

more structural MRI scans conducted over a follow-up of 12 months or more. As MCI status 

defined the group being compared with Cognitively Normal (CN), cognitive status of CN 

and MCI was required to be stable between all time points. Studies were required to use 

Peterson or Winblad criteria for MCI diagnosis. Cross-sectional, experimental and review 

articles were excluded. Studies were also excluded if they had a combined total of less than 

30 CN and MCI participants. All retrieved articles were first screened by title and abstract 

and irrelevant studies were excluded.  The full text of all remaining articles was double 

screened by two reviewers (H.T-J and M.E.S) against selection criteria.  

Data extraction and structural measures  

Two reviewers (H.T-J and M.E.S) extracted data from all included articles and any 

disagreement was resolved by consensus. Data extracted consisted of: (1) study design 

including sample source, number of participants in each group, type of structural 

measurement, and follow up period, (2) participants’ demographics including age, sex ratio, 

APOEe4 ratio, years of education, dropout rate, MCI subtype for MCI groups, subjective 
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memory complaint for CN and handedness, (3) measurement details including number of 

scans, scan intervals, follow up period, MRI parameters, segmentation method, and method 

of analysis, (4) study results including areas of interest (left and right) and effect sizes (left, 

right and total). 

All structural measures were evaluated and studies were categorized according to the 

following structural measurements; voxel-based morphometry (VBM), volumetry, tensor-

based morphometry (TBM), cortical thickness, sulcal morphometry, diffusion tensor imaging 

(DTI), white matter hyperintensities (WMH), susceptibility weighted imaging (SWI), and 

other structural measures.   

Studies meeting the selection criteria were assessed for quality using the Newcastle-

Ottawa scale (Wells et al., 2011). The Newcastle-Ottawa scale is an instrument for assessing 

the quality of studies included in a systematic review. Each study was evaluated on eight 

items classified into three categories including the selection of the study groups, the 

comparability of the groups, and the ascertainment of outcome of interest. Each quality item 

was awarded by a star (except two for comparability) and for each study up to nine stars in 

total. 

Multiple reports 

In the case of multiple reports for the same cohort, or any overlap of participants, an 

annual change rate estimate from only one publication was used in any single analysis. The 

most appropriate reports were selected based on recency, availability of effect size and 

moderators, sample size and methodology. Studies that reported effect sizes (or provided 

them after contact) were the first priority and from those the most recent study with the 

largest sample size was selected. If there was more than one study similar in sample size and 

recency, the one with the highest quality rating was selected. When different studies on the 
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same cohort reported on different brain regions, estimates from the same cohort but from 

different studies might be used in different analyses.  

Statistical analysis 

The R statistical software (Version 3.1.1) was used for the statistical analysis and the 

Metafor package (version 1.9-4) was used for meta-analysis. The annual percentage mean 

atrophy rate was considered as the effect size and calculation of required standard error (SE) 

for meta-analysis was based on the standard deviation and number of participants in each 

group for each individual study. Availability of mean annual atrophy rate (%/year), either 

reported or computed based on other reported results, was the essential requirement for the 

meta-analysis. Where insufficient data were available for inclusion in the meta-analysis, 

authors were contacted directly to seek additional information.  

Meta-Analysis 

It was assumed that the heterogeneity in the atrophy rates across reviewed studies was 

the impact of the between-study and within-study heterogeneities, and the random-effects for 

between and within-studies were normally distributed. A random-effects model using the 

restricted maximum likelihood estimator was applied for all analyses. Random-effects model 

was chosen based on the assumption that cerebral atrophy rates (effect size) are not similar in 

population with different characteristics and there is no single effect size representative of all 

population but an array of effect sizes. Therefore, each included study was assumed to 

represent a random sample of a particular effect size and a random-effects model estimates a 

mean of the distribution of these effect sizes (Borenstein, Hedges, Higgins, & Rothstein, 

2011). Separate meta-analyses were performed for healthy and MCI atrophy rate and also for 

the mean difference in atrophy rate between MCI and CN (MCI-CN) across each cerebral 

region.  
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Heterogeneity across studies was assessed with the Q and I2 statistics. P-value < 0.01 

considered as significant heterogeneity in the Q test and in the I2 statistic values of 25%, 

50% and 75% were suggestive of low, moderate and high heterogeneity respectively. 

Heterogeneity in the atrophy rates was also assumed to be in part the result of disparities in 

age, sex ratio, ApoeE4 ratio, and education levels in the studies’ participants as well as scan 

intervals and different segmentation approaches. Therefore, these variables were investigated 

as possible moderators for subgroup and meta-regression analyses. Subgroup analyses were 

conducted to investigate the impact of manual versus automated segmentations. Meta-

regression analyses using a mixed-effect model were conducted to determine the influence of 

moderators.  

To identify studies contributing excessively to heterogeneity, sensitivity analyses were 

conducted using the-leave-one-out method. Visual evaluation of asymmetry of the funnel 

plots was used to assess the bias in the meta-analyses results towards publication of studies 

with significant outcomes. The trim and fill method was used to estimate the number of 

missing studies (representative of unreported effect sizes) in the meta-analysis to estimate 

adjusted effect sizes (Duval & Tweedie, 2000).  

Results 

Literature Search and Studies Included in the Review  

The search strategy identified 5220 unique citations. After exclusion of irrelevant 

studies based on title and abstracts, 219 publications remained for full text assessment. A 

further 151 studies did not meet the inclusion criteria and were excluded leaving 68 studies 

for further analysis (Figure 1). 
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Of the studies included, 45 assessed brain structure with volumetry, nine with cortical 

thickness and 18 with a wide variety of structural measurements including sulcal 

morphometry, VBM, TBM, DTI, WMH, SWI, and quantitative scaling methods such as the 

medial temporal atrophy scale (MTAS) (Song, Mitnitski, Zhang, Chen, & Rockwood, 2013) 

and the brain atrophy and legion index (BALI) (Zhang, Song, & Zhang, 2012) (Table 1). 

Figure 1: Screening and selection process for studies included in the systematic review 

and the meta-analyses. 
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Table	1:	Studies	included	in	the	review	

# Study Measurement Cohort 

Newcastle-Ottawa Quality 
Assessment Scale(1) 

Compatible for Meta-analysis 

Selection Comparability Outcome 

Q 

1 

Q 

2 

Q 

3 

Q 

4 

Q 

5 

Q 

6 

Q 

7 

Q 

8 

Yes/ 
No 

Meta-
analysis 

Details 

1 (Madsen et al., 
2015) Volumetry ADNI * * * * ** * * * Yes No 

Ventricle meta-analysis 
due to overlap of 
participants 

2 
 (Lorenzi, 
Pennec, Frisoni, 
& Ayache, 2015) 

SVF ADNI * * * * ** * * * No No No quantitative 
structural measure 

3  (Toledo et al., 
2014) ??? ADNI * * * * ** - * * No No Incomplete report of 

structural data 

4  (Teipel et al., 
2014) Volumetry ADNI * * * * ** * * * Yes No 

Hip meta-analysis due 
to overlap of 
participants 

5  (Mulder et al., 
2014) Volumetry ADNI * * * * * * * * Yes No 

Hip meta-analysis due 
to overlap of 
participants 

6  (Marshall et al., 
2014) 

Cortical 
thickness ADNI * * * * ** * * * No No Incompatible brain 

region with other studies 

7 (Manning et al., 
2014) Volumetry ADNI * * * * ** * * * Yes No 

Hip meta-analysis due 
to overlap of 
participants 

8 

(Lillemark, 
Sorensen, Pai, 
Dam, & Nielsen, 
2014) 

Volumetry ADNI * * * * ** * * * Yes No 
WB and Hip meta-
analyses due to overlap 
of participants 

9 
(Kljajevic, 
Grothe, Ewers, & 
Teipel, 2014) 

Volumetry, 
Cortical 

Thickness 
ADNI * * * * ** * * * No No Incompatible brain 

region with other studies 

10  (Insel et al., 
2014) Volumetry ADNI * * * * ** * * * Yes No 

Hip and ERC meta-
analyses due to overlap 
of participants 

11  (H. Guo et al., 
2014) BALI ADNI * * * * ** * * * No No Incompatible with 

independent study 

12  (Aguilar et al., 
2014) 

Volumetry, 
Cortical 

Thickness 
AddNeuroMed   * * * * ** * * * Yes N0 Missing and mismatch 

data 

13  (Franko & Joly, 
2013) Volumetry ADNI * * * * ** * * * Yes No 

Hip meta-analysis due 
to overlap of 
participants 

14  (Nowrangi et al., 
2013) DTI 

Community-
dwelling 

Volunteers 
* * * * * * * * No No Incompatible brain 

region with other studies 



 

 

	
Study	1	

	

	 	

35 

15 

 (L. H. Guo, 
Alexopoulos, 
Wagenpfeil, 
Kurz, & 
Perneczky, 2013) 

Volumetry ADNI * * * * ** * * * Yes No 
WB meta-analysis due 
to overlap of 
participants 

16 

(Adaszewski, 
Dukart, Kherif, 
Frackowiak, & 
Draganski, 2013) 

VBM, SVM ADNI * * * * * * * * No No No quantitative 
structural measures  

17  (Villemagne et 
al., 2013) Volumetry AIBL * * * * ** * * * Yes Yes Hip meta-analysis 

18  (Song et al., 
2013) 

MTAS, 
BALI ADNI * * * * ** * * * No No Incompatible with 

independent study 

19  (Selnes et al., 
2013) DTI Memory 

Clinics * * * * ** * * * No No Incompatible brain 
region with other studies 

20  (Liu et al., 2013) 

Sulcal 
Morphology, 

Cortical 
Thickness 

MAS * * * * * * * * No No Incompatible brain 
region with other studies 

21  (Gutman et al., 
2013) Volumetry ADNI * * * * * * * * Yes No 

Ventricles meta-analysis 
due to overlap of 
participants 

22  (Zhang et al., 
2012) 

MTAS, 
BALI ADNI * * * * ** * * * No No Incompatible with 

independent study 

23 
 (Yao, Hu, Liang, 
Zhao, & Jackson, 
2012) 

Cortical 
Thickness ADNI * * * * ** * * * No No Incompatible brain 

region with other studies 

24  (Schuff et al., 
2012) Volumetry ADNI * * * * * * * * Yes Yes ERC meta-analysis 

25  (McDonald et 
al., 2012) Volumetry ADNI * * * * ** * * * No No Due to mismatch of 

brain regions 

26  (Li et al., 2012) Cortical 
Thickness ADNI * * * * ** * * * No No Incompatible brain 

region with other studies 

27 

 (Leung, 
Ridgway, 
Ourselin, & Fox, 
2012) 

Volumetry ADNI * * * * * * * * No No Mismatch data 

28 (Andrawis et al., 
2012) Volumetry ADNI * * * * ** * * * Yes No 

Hip meta-analysis due 
to overlap of 
participants 

29  (Zhang et al., 
2011) BALI ADNI * * * * ** * * * No No Incompatible with 

independent study 

30 

 (Tosun, Schuff, 
Shaw, 
Trojanowski, & 
Weiner, 2011) 

Cortical 
Thickness ADNI * * * * ** * * * No No Incompatible brain 

region with other studies 

31  (Skup et al., 
2011) Volumetry ADNI * * * * ** * * * Yes No 

Hip and ERC meta-
analyses due to overlap 
of participants 
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32  (Mouiha & 
Duchesne, 2011) Volumetry ADNI * * * * * * * * Yes No 

Hip meta-analysis due 
to overlap of 
participants 

33  (Lo et al., 2011) Volumetry ADNI * * * * ** * * * Yes No 
Hip meta-analysis due 
to overlap of 
participants 

34  (Desikan et al., 
2011) Volumetry ADNI * * * * ** * * * Yes No 

ERC meta-analysis due 
to overlap of 
participants 

35  (Chiang et al., 
2011) Volumetry ADNI * * * * ** * * * Yes No 

Hip meta-analysis due 
to overlap of 
participants 

36  (Villain et al., 
2010) VBM Memory 

Clinic * * * * ** * * * No N0 No quantitative 
structural measure 

37  (Vemuri et al., 
2010) Volumetry ADNI * * * * ** * * * Yes No 

WB meta-analysis due 
to overlap of 
participants 

38  (Tosun et al., 
2010) 

Volumetry, 
cortical 

Thickness 
ADNI * * * * ** * * * Yes No 

Ventricle, Hip and ERC  
meta-analyses due to 
overlap of participants 

39 

 (Stoub, 
Rogalski, 
Leurgans, 
Bennett, & 
deToledo-
Morrell, 2010) 

Volumetry RADC & ROS 
and MAP * * * * ** * * * Yes No 

Hip and ERC meta-
analyses due to overlap 
of participants 

40  (Schott et al., 
2010) Volumetry ADNI * * * * ** * * * Yes Yes WB and Hip meta-

analyses 

41  (Prestia et al., 
2010) VBM TOMC * * * * ** * * * No No No quantitative 

structural measure 

42  (Leung et al., 
2010) Volumetry ADNI * * * * * * * * Yes No 

Hip meta-analysis due 
to overlap of 
participants 

43  (Hua et al., 
2010) TBM ADNI * * * * ** * * * No No Incompatible brain 

region with other studies 

44  (Ho et al., 2010) TBM ADNI * * * * * * * * No No Incompatible brain 
region with other studies 

45  (Evans et al., 
2010) Volumetry ADNI * * * * ** * * * Yes No 

WB and Ventricle meta-
analyses due to overlap 
of participants 

46  (Desikan et al., 
2010) 

Volumetry, 
Cortical 

Thickness 
ADNI * * * * ** * * * Yes No 

Hip meta-analysis due 
to overlap of 
participants 

47  (Carmichael et 
al., 2010) WMH ADNI * * * * ** * * * No No Incompatible with 

independent study 

48  (Beckett et al., 
2010) Volumetry ADNI * * * * ** * * * Yes No 

Hip and Ventricle meta-
analyses due to overlap 
of participants 
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49 
 (Ayaz, Boikov, 
Haacke, Kido, & 
Kirsch, 2010) 

SWI ??? - - * * * * * * No No Incompatible with 
independent study 

50  (Archer et al., 
2010) Volumetry 

Hospital & 
Memory 

Clinic 
* * * * ** * * * Yes Yes WB and Hip meta-

analyses 

51  (Apostolova et 
al., 2010) Volumetry ADNI * * * * ** * * * No No 

Hip meta-analysis due 
to overlap of 
participants 

52 
 (Wang, Liu, 
Lirng, Lin, & 
Wu, 2009) 

Volumetry Neurological 
clinic * * * * ** * * * Yes Yes Hip meta-analysis 

53  (Sluimer et al., 
2009) Volumetry Memory 

Clinic * * * * ** * * * No No Incompatible brain 
region with other studies 

54  (Schuff et al., 
2009) Volumetry ADNI * * * * ** * * * Yes No 

Hip meta-analysis due 
to overlap of 
participants 

55  (Morra et al., 
2009) Volumetry ADNI * * * * ** * * * Yes No 

Hip meta-analysis due 
to overlap of 
participants 

56  (Leow et al., 
2009) TBM ADNI * * * * ** * * * No No Incompatible brain 

region with other studies 

57  (Jack et al., 
2009) Volumetry Mayo, ADNI * * * * ** * * * Yes No 

Ventricle meta-analysis 
due to overlap of 
participants 

58  (Hua et al., 
2009) TBM ADNI * * * * * * * * No No Incompatible brain 

region with other studies 

59 

 (Holland, 
Brewer, Hagler, 
Fennema-
Notestine, & 
Dale, 2009) 

Volumetry ADNI * * * * ** * * * Yes No 

WB, Ventricle, Hip and 
ERC meta-analyses due 
to overlap of 
participants 

60 
 (Henneman, 
Vrenken, et al., 
2009) 

Volumetry Memory 
Clinic * * * * ** * * * Yes Yes Hip meta-analysis 

61 
 (Henneman, 
Sluimer, et al., 
2009) 

Volumetry Memory 
Clinic * * * * ** * * * Yes Yes WB meta-analysis 

62  (Brys et al., 
2009) 

VBM,  

MTL-rBS 

AD research 
centre * * * * ** * * * No No Incompatible with 

independent study 

63  (Jack et al., 
2008) Volumetry Mayo * * * * ** * * * Yes No 

WB and Ventricle meta-
analyses due to overlap 
of participants 

64  (Eckerstrom et 
al., 2008) Volumetry Goteborg MCI 

study - * * * ** * * * Yes Yes Hip meta-analysis 
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65  (Desikan et al., 
2008) Volumetry 

Community-
dwelling 

Volunteers 
* * * * ** * * * Yes Yes Hip and ERC meta-

analyses 

66  (Jack et al., 
2005) Volumetry Mayo * * * * ** * * * Yes Yes WB, Hip and ERC 

meta-analyses 

67  (Jack et al., 
2004) Volumetry Mayo * * * * ** * * * Yes No 

WB, 
Ventricle, Hip 
and ERC 
meta-analyses 
due to overlap 
of participants 

68  (Jack et al., 
2000) Volumetry Mayo * * * * ** * * * Yes No 

Hip meta-analysis due 
to overlap of 
participants 

Keys: ADNI; Alzheimer’s disease Neuroimaging Initiative, AIBL; Australian Imaging, Biomarker and Lifestyle, RADC; Rush 
Alzheimer’s Disease Centre, ROS and MAP; Religious Order Study and Rush Memory and Aging Project, TOMC; The 
Transitional Outpatient Memory Clinic, MAS; Sydney memory Aging Study,  AddNeuroMed; six European sites compatible with 
the US ADNI study, DTI; Diffusion Tensor Imaging, VBM; Voxel-Based Morphometry, TBM; Tensor-Based Morphometry, MTL-
rBS; Medial Temporal Lobe atrophy using regional Boundary Shift,  SVF; Stationary Velocity Field, BALI; Brain Atrophy and 
Lesion Index, SVM; Support Vector Machine, MTAS; The Medial Temporal Atrophy Scale, WMH; White Matter Hyperintensities, 
SWI; Susceptibility Weighted Imaging, AD;  Alzheimer’s Disease, Hip; Hippocampus, ERC; Entorhinal Cortex, WB; Whole Brain. 

(1): Q-1; Representativeness of the exposed cohort, Q-2; Selection of the non-exposed cohort, Q-3; Ascertainment of exposure, Q-
4; Demonstration of interest was not present at start of study, Q-5; Comparability of cohorts on the basis of the design or analysis, 
Q-6; Assessment of outcome, Q-7; Was follow-up long enough for outcomes to occur, Q-8; Adequacy of follow up of cohorts 

 

Study Quality 

All studies except one, which was rated 6 (Ayaz et al., 2010), were rated as high 

quality (8 or 9 stars) based on the Newcastle-Ottawa scale (Table 1). Fifty-four of 68 studies 

fulfilled the maximum of nine stars, two studies were rated as not representative of the 

population due to a higher rate of medical diseases in the participants, and one study did not 

describe the derivation of the CN. Twelve studies only controlled for age to establish 

comparability between controls and MCI participants. 

Multiple Reports 

A number of multiple reports were identified. Forty-six studies reported on participants 

taking part in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (to date up to 229 

CN and 395 MCI), four studies used Mayo AD research centre and AD patient registry data 
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(up to 91 CN and 72 MCI), and one study used a mixture of ADNI and Mayo data. There 

was also an overlap of participants in 2 studies reported by Henneman et al. (Henneman, 

Sluimer, et al., 2009; Henneman, Vrenken, et al., 2009). A total of 15 publications reported 

on separate independent cohorts including in total 629 CN and 571 MCI participants from 10 

countries across four continents (eight in Europe, five in North America, one in Asia, and 

one in Australia).  

Compatible Studies for Meta-analysis 

A sufficient number of compatible studies were only available for meta-analysis of 

volumetric measurements. Quantitative report of structural measures in VBM and TBM 

studies were not comparable. Brain regions investigated by cortical thickness or DTI studies 

were not anatomically compatible. There was only one study in each given category of sulcal 

morphometry, WMH and SWI.  Finally, studies using MTAS and BALI scales were all 

based on the same cohort except for one study (Table 1). Therefore, of the 68 studies that 

met the selection criteria, 24 studies could not be included in the meta-analyses, leaving 44 

volumetric studies for inclusion. Because too few sporadic reports of laterality were 

available this factor could not be investigated. There was also no report of handedness.  

Volumetric studies evaluated a wide variety of brain regions including the whole brain, 

hippocampus, entorhinal cortex, ventricles, parahippocampal gyrus, amygdala, fusiform 

gyrus, superior temporal, medial lateral and inferior temporal lobes, medial and lateral 

orbitofrontal cortex, superior frontal cortex, cingulate cortex, parietal and occipital lobes. 

Beside the first four measures, other brain regions were investigated sporadically. Three of 

44 studies evaluated brain regions incompatible with other studies and were not considered 

for meta-analysis. Forty-one studies were identified as potentially compatible and were 

included in meta-analyses. These studies evaluated annual atrophy rate of the whole brain 
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(n=10), the hippocampus (n=33) and the entorhinal cortex (n=10), as well as annual 

expansion rate of the ventricles (n=14). 

Of 41 studies, 29 were excluded due to overlap in participants and 1 due to missing 

data which could not be obtained from authors (Table 1). Although three studies were 

available for ventricle expansion analysis, reported expansion rates did not use the same 

units (ml/year vs. %/year) and requests for more information from authors was not 

successful. Therefore, meta-analysis could not be conducted for this region. Final numbers of 

studies included in the meta-analyses were four for whole brain, eight for hippocampal and 

three for entorhinal cortex atrophy (Table 2). 

Whole Brain Atrophy 

Four studies (Archer et al., 2010; Henneman, Sluimer, et al., 2009; Jack et al., 2005; 

Schott et al., 2010), which were included for whole brain analysis (Figure 2), surveyed 351 

control and 466 MCI participants over an average follow-up of 1.30 years (range 1.00-1.80). 

Estimated mean atrophy rates were 1.02%/year (SE=0.13) for MCI and 0.57%/year 

(SE=0.03) for controls. Thus, the additional annual total brain atrophy attributable to MCI 

above the effect of “normal” ageing was 0.46%/year (SE=0.10). There was no significant 

heterogeneity (based on the Q test) for whole brain atrophy rates in CN and MCI after 

removing the effect attributable to normal ageing (MCI-CN). The proportion of real 

observed variance (not related to random error) between studies (I2) was moderate in MCI-

CN and high in MCI (Table 3). 
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Table	2:	Studies	included	in	Meta-analyses	

 

 

First	author,	
year	

Measurement	 Recruit	 Participants	 Age		 Female	%	 APOEe4	%	 Change	rate		

WB	 Hip	 ERC	 Vent	 CN	 MCI	 CN	 MCI	 CN	 MCI	 CN	 MCI	 CN	 MCI	

Villemagne,	
2013	 	 ✔	 	 	 AIBL	 112	 32	

71.2	

(7.2)	

74.2	
(6.6)	

48.21	 43.75	 46	 65	 -0.911	(1.15)	%/y	 -2.15	(1.33)	%/y	

Schuff,	2012	 	 	 ✔	 	 ADNI	 147	 164	 76	(5)	 75	(7)	 49.66	 37.8	 22	 45	 -1.6	(0.4)	%/y	 -2.4	(0.4)	

Schott,	2010	 ✔	 	 	 	

ADNI	 199	 334	
76	

(5.1)	

74.9	
(7.2)	 46.73	 36.53	 28.64	 53.3	

-0.592	(0.581)	%/y	 -1.08	(0.84)	%/y	

 ✔	 	 	 -1.01	(1.72)	%/y	 -2.63	(2.35)	%/y	

  	 ✔	 -1.43	(1.63)	ml/y	 -2.85	(2.75)	ml/y	

Archer,	2010	 ✔	 	 	 	

Clinic	 27	 16	
62.3	

(8.3)	

67.1	
(6.9)	 51.85	 31.25	 18.5	 75	

-0.47	(0.67)	%/y	 -1	(0.81)	%/y	

 ✔	 	 	 -0.78	(0.91)	%/y	 -2.8	(1.68)	%/y	

  	 ✔	 -1.14	(1.73)	ml/y	 -3.62	(2.33)	ml/y	

Wang,	2009	
	 ✔	 	 	 Clinic	 20	 39	

75.1	

(3.7)	

75.6	
(3.6)	

45	 20.51	 20	 26.5	 -1	(0.7)	%/y	 -2.1	(1.5)	%/y	

Hennema,	
2009a	 	 ✔ 	 	 Clinic	 19	 25	

66	

(9)	
71	(6)	 42.11	 56	 47	 71	 -2	(1.5)	%/y	 -3.7	(1.2)	%/y	

Hennema,	
2009b	

✔	  	 	 Clinic	 34	 44	 67	(9)	 71	(6)	 47.06	 47.72	 _	 _	 -0.6(0.6)	%/y	 -1.3(0.9)	%/y	

Eckerstrom2,	
2008	

 ✔ 	 	 GMS	 19	 15	 ?	 ?	 ?	 ?	 ?	 ?	 -0.168	(0.464)	
ml/y	

+0.082	(0.329)	
ml/y	

Desikan,	2008	 	 ✔	 	 	
Media	 19	 22	 69.7	

(3.7)	
70.1	
(4.4)	

63.16	 59.1	 31.6	 31.8	
-0.71	(0.88)	%/y	 -1.13	(1.01)	%/y	

	  ✔	 	 -0.68	(1.4)	%/y	 -1.92	(2.12)	%/y	

Jack	Jr,	2005	 ✔	 	 	 	

MAYO	 91	 72	 80.5	(?)	
78.7	
(?)	 60.44	 43.06	 _	 _	

-0.5	(0.7)	%/y	 -0.7	(1)	%/y	

 ✔	 	 	 -1.7	(1.4)	%/y	 -3.3	(2.7)	%/y	

 	 ✔	 	 -5	(3.6)	%/y	 -7	(4.3)	%/y	

 	  ✔	 -2.4(2)	%/y	 -3.3(2.3)	%/y	

Measures	provided	as	mean	(standard	deviation).	1:	Studies	in	ventricular	meta-analysis	were	not	matched	in	atrophy	rate	unit.	2.	
This	study	was	an	outlier	and	excluded	from	final	hippocampal	meta-analysis.			

Keys:	WB;	Whole	Brain,	Hip;	Hippocampus,	ERC;	Entorhinal	cortex,	Vent;	Ventricles,	CN;	Cognitively	Normal,	MCI;	Mild	cognitive	
impairment,	AIBL;	Australian	Imaging,	Biomarker	and	Lifestyle,	ADNI;	Alzheimer’s	Disease	Neuroimaging	Initiative,	GMS;	Goteborg	
MCI	study,	MAYO;	Mayo	AD	research	centre	and	AD	patient	registry	
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Figure	2:	Forest	plots	of	atrophy	rates	for	(A)	whole	brain,	(B)	hippocampus,	and	(C)	

entorhinal	cortex	in	CN,	MCI	and	the	difference	in	atrophy	rate	between	MCI	and	CN	(MCI-

CN).	Studies	are	ordered	by	year	of	publication.	

Hippocampal Atrophy  

Of eight studies (Archer et al., 2010; Desikan et al., 2008; Eckerstrom et al., 2008; 

Henneman, Vrenken, et al., 2009; Jack et al., 2005; Schott et al., 2010; Villemagne et al., 

2013; Wang et al., 2009) which were included for hippocampal meta-analysis, one study 

(Eckerstrom et al., 2008) reported an increase in hippocampal volume in MCI and a decrease 

MCI-CN		
Annual	atrophy	[95%	CI]	

MCI-CN		
Annual	atrophy	[95%	CI]	

MCI-CN		
Annual	atrophy	[95%	CI]	

MCI	subjects	
Annual	atrophy	[95%	CI]	

CN	
Annual	atrophy	[95%	CI]	

MCI	subjects	
Annual	atrophy	[95%	CI]	

MCI	subjects	
Annual	atrophy	[95%	CI]	

CN	
Annual	atrophy	[95%	CI]	

CN	
Annual	atrophy	[95%	CI]	
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in volume in CN as well as standard deviations larger than twice the mean atrophy rates. 

These characteristics were interpreted as being potentially methodologically problematic and 

after further investigation, the study was excluded from the meta-analysis because it was 

remarkably different in quality and design compared to other studies in the group, including 

sex proportion misbalance and high level of medical illness in the participants.  

The remaining seven studies estimated hippocampal atrophy rates for 487 CN and 540 

MCI participants with an average follow up of 1.97 years (range 1-3.8) (Figure 2). The 

estimated mean atrophy rates were 2.53 %/year (SE=0.33) for MCI, 1.12%/year (SE=0.16) 

for controls and 1.35%/year (SE=0.19) for MCI after removing the effect attributable to 

normal aging. Significant heterogeneity was found for hippocampal atrophy rates in MCI 

and MCI-CN but not in CN. The proportion of real observed variance (not related to random 

error) between studies (I2) was moderate to high in all groups (Table 3).   

Entorhinal Cortex Annual Atrophy 

Three studies [(Desikan et al., 2008; Jack et al., 2005; Schuff et al., 2012)], which were 

included for entorhinal cortex meta-analysis (Figure 2), surveyed 257 controls and 258 MCI 

participants, followed up for 2.28 (range 1.25-3.00) years. Estimated mean atrophy rates 

were 3.75%/year (SE=1.60) for MCI, 2.41%/year (SE=1.30) for CN.  After removing the 

effect attributable to normal aging, the mean atrophy rate exclusively associated with MCI 

was 1.13 %/year (SE=0.33). Significant heterogeneity was identified in entorhinal cortex 

atrophy rates in MCI and CN, but not MCI-CN. The proportion of real observed variance 

(not related to random error) between studies (I2) was moderate to high in all groups (Table 

3). 
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Table	3:	Random	effect	models	of	whole	brain,	hippocampus	and	entorhinal	cortex	and	

mixed	effect	models	of	hippocampal	atrophy	rate	in	CN	and	MCI	and	in	MCI	after	removing	

the	effect	attributable	to	normal	ageing.	

Random Effects Model 

Brain Regions k age estimate (se) *  95% Cl z-value p-value T2 T I2 % H2 Heterogeneity** 

Whole Brain             

CN 351 71.45 -0.5665 (0.0328) -0.6308, -0.5023 -17.2757 <0.0001 0 0 0 1.0 1.8707(3) 0.5997 

MCI 466 72.92 -1.0203 (0.1263) -1.2679, -0.7727 -8.0772 <0.0001 0.0477 0.2185 79.98 4.99 12.6691(3) 0.0053 

MCI-CN - - -0.4634 (0.0987) -0.6569, -0.2699 -4.6944 <0.0001 0.0194 0.1393 51.86 2.08 5.7540(3) 0.1242 

Entorhinal Cortex             

CN 257 75.40 -2.4146 (1.3036) -4.9696, 0.1505 -1.8522 0.0640 5.0168 2.2398 98.81 83.72 89.1356(2) <0.0001 

MCI 258 74.60 -3.754 (1.6065) -6.9028, -0.6052 -2.3367 0.0195 7.5905 2.7551 98.51 67.29 83.2905(2) <0.0001 

MCI-CN - - -1.1301 (0.3373) -1.7911, -0.4691 -3.3509 0.0008 0.1936 0.4400 52.49 2.10 4.1965(2) 0.1227 

Hippocampus            

CN 487 71.54 -1.1197 (0.1622) -1.4376, -0.8019 -6.9048 <0.0001 0.1513 0.3890 86.22 7.26 34.2283(6) <0.0001 

MCI 540 73.09 -2.5303 (0.3261) -3.1694, -1.8912 -7.7598 <0.0001 0.6741 0.8211 92.87 14.02 78.1854(6) <0.0001 

MCI-CN - - -1.3450 (0.1906) -1.7186, -0.9715 -7.0571 <0.0001 0.1556 0.3945 64.69 2.83 16.5628(6) 0.0110 

Subgroup and meta-regression analyses (Hippocampus; MCI-CN) 

 K age Coef (se) 95%Cl z-value p-value T2 T I2 % H2 R2 Hetrogeneity** 

Model 1             

Automatic 
Segmentation 4 71.57 -1.2900 (0.2682) -1.8156, -0.7644 -4.8106 <0.0001 0.2019 0.4494 69.90 3.32 - 16.5244(5) 0.0055 

Manual Segmentation 3 75.1 -1.4383 (0.3289) -2.0829, -0.7936 -4.3730 <0.0001       

Model 2             

aMCI 2 77.15 -1.3337 (0.3939) -2.1057, -0.5618 -3.3863 0.0007 0.2091 0.4572 70.73 3.42 - 16.4832(5) 0.0056 

MCI 5 71.46 -1.3562 (0.2488) -1.8438, -0.8686 -5.4510 <0.0001       

Model 3             

Intercept - - -0.9973 (5.0703) -10.9349, 8.9403 -0.1967 0.8441 0.0384 0.1960 36.24 1.57 79.71 2 (2.9841) 0.2249 

Age - - 0.0006 (0.0640) -0.1249, 0.1261 0.0093 0.9926       

Female rate - - 0.0209 (0.0132) -0.0050, 0.0467 1.5821 0.1136       

APOEe4 rate - - -0.0233 (0.0088) -0.0406, -0.0061 -2.6477 0.0081       

CN=Cognitively Normal; MCI= Mild Cognitive Impairment; aMCI= amnestic MCI; Coef= Coefficient; se=Standard Error; T = Standard 
deviation of true effects; r2 =proportion of observed dispersion accounted for by the model; H2= total variability / sampling variability; R2= 
heterogeneity accounted for the moderator(s); df= degrees of freedom, * %/Y, ** Q (df) P-value 
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Sensitivity Analyses 

The influence of single studies was investigated with leave-one-out analyses. Globally, 

the analysis revealed no particularly influential study and showed consistency in reported 

estimates.  

Publication Bias 

Some evidence of publication bias was detected based on the funnel plot asymmetry 

diagnostic and the trim-and-fill test. The funnel plots revealed some degree of asymmetry for 

all three groups of analyses (the whole brain, hippocampus and entorhinal) and the trim-and-

fill method identified one or two missing studies in each analysis group. One missing study 

was identified in the whole brain and hippocampal analyses and two studies in entorhinal 

analysis, representing 20%, 12.5% and 40% of included studies respectively. Although 

asymmetry and presence of missing studies suggest some publication bias towards studies 

reporting higher atrophy rates, the differences between actual and reported atrophy rates 

were generally small, particularly for the hippocampus (Figure 3). 
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Figure	3:	Funnel	plots	of	(A)	Whole	brain,	(B)	Hippocampus,	and	(C)	entorhinal	cortex	using	

random	effects	model	(left	column)	and	trim	and	fill	method	(right	column).	Filled	circles	

represent	included	studies	in	the	meta-analyses	and	open	circles	represent	possible	missing	

studies.		
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Subgroup and meta-regression Analyses 

The influence of segmentation methods (automatic vs. manual), MCI subtype 

(amnestic MCI vs. MCI), female proportion, APOEe4 genotype and sample mean age on 

pooled estimates was investigated by subgroup meta-analyses and meta-regression on 

hippocampal volumetry only, as too few studies were available for other regions of interest 

(Table 3).  Subgroup analyses showed that the estimated mean hippocampal atrophy rates in 

studies (Henneman, Vrenken, et al., 2009; Jack et al., 2005; Wang et al., 2009) using manual 

segmentation were significantly higher than studies (Archer et al., 2010; Desikan et al., 

2008; Schott et al., 2010; Villemagne et al., 2013) using automatic segmentation (Figure 2 

and table 3) by 68% in CN, 40% in MCI, and 7% in MCI-CN. Additionally, subgroup 

analysis of MCI subtypes (amnestic MCI vs. MCI) showed significantly higher hippocampal 

atrophy rate in amnestic MCI (Jack et al., 2005; Wang et al., 2009) compared to MCI (all 

subtypes) (Archer et al., 2010; Desikan et al., 2008; Henneman, Vrenken, et al., 2009; Schott 

et al., 2010; Villemagne et al., 2013) (2.68 %/year (SE=0.66) vs 2.47 %/year (SE=0.42)) in 

MCI participants. After removing the effect attributable to normal ageing, the hippocampal 

atrophy rate was significantly higher in analyses including all generic/unspecified MCI (1.35 

%/year, SE=0.25) compared to those including amnestic MCI only (1.33 %/year, SE=0.39). 

However, the atrophy rate difference was relatively small especially in MCI-CN analyses, 

and also numbers of studies in each subgroup were limited. In addition, (as it is notified in 

the discussion) studies, which were not specific in detecting MCI subtype, generally utilized 

cognitive measures that commonly used for detecting amnestic MCI in other studies.  

The influence of age, female sex and APOEe4 rate on hippocampal atrophy was 

separately investigated in CN, MCI and MCI-CN. Except for APOEe4, which significantly 

predicted the unexplained variance (55.38%) in annual atrophy rate, age and female sex did 

not contribute substantially to the heterogeneity detected between studies. A mixed effects 
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model using age, female sex and APOEe4 rate as moderators accounted for 79.7% of 

heterogeneity in hippocampal atrophy rate in MCI-CN, however, only APOEe4 rate was a 

significant moderator of atrophy rate (Table 3).  

Incompatible Studies 

Ventricular Expansion 

Although it was not possible to produce a pooled estimate of ventricular expansion rate 

due to insufficient reports of separate cohorts, the remaining studies reported very similar 

estimates (Archer et al., 2010; Jack et al., 2009; Schott et al., 2010) of, on average, two-fold 

(3.30%/year vs 2.40%/year in one report and 2.85ml/year vs 1.43ml/year and 3.62ml/year vs 

1.14 ml/year in two other reports) increase in expansion rate in MCI compared to CN. When 

considering that whole brain volume is about 1200-1500 ml, reported ventricular expansion 

rate are approximately 0.1%/year of the whole brain volume in CN and 0.2%/year of the 

whole brain volume in MCI.  

Grey mater atrophy 

Besides the hippocampus and entorhinal cortex, which were the focus of most 

volumetric studies, there were also sporadic reports of volume loss for other parts of the 

brain including; the parahippocampus, amygdala and fusiform gyrus (Desikan et al., 2008), 

lateral temporal lobe (McDonald et al., 2012), cingulate (Desikan et al., 2008; McDonald et 

al., 2012), insula (Sluimer et al., 2009), parietal lobe (Desikan et al., 2008; McDonald et al., 

2012; Sluimer et al., 2009), frontal and occipital lobes(McDonald et al., 2012; Sluimer et al., 

2009). Atrophy rates in these regions were less than the average hippocampal atrophy rate 

and also differed based on the clinical outcome. Volume loss in the temporal and parietal 

lobes was higher for MCI subjects who had converted to AD within 4-5 years compared to 
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stable MCI (lowest Cohen d for the inferior parietal lobe =0.53 and largest for the 

hippocampus =1.39) (Desikan et al., 2008). However, in clinically diagnosed AD, the 

atrophy rate in the medial temporal lobe was less than in MCI, whereas volume loss in 

frontal, parietal and occipital regions was greater in MCI than AD (Sluimer et al., 2009).   

Cortical Thickness and Sulcal Morphometry  

Cortical thickness was the second most commonly reported structural measure. Reports 

covered almost all parts of the brain but without quantitative estimates amenable to meta-

analysis. Overall, studies revealed that, controls and MCI participants demonstrated a similar 

spatial distribution of cortical loss, specifically in the parahippocampal cortex, 

middle/inferior temporal gyrus, supramarginal gyrus, angular gyrus and superior frontal 

gyrus (Li et al., 2012). However, these studies suggested that atrophy rates were higher (no 

report of effect size) in MCI than controls, mainly in the temporal, superolateral parietal, and 

frontal lobes (Marshall et al., 2014; Yao et al., 2012). The only available longitudinal sulcal 

morphometry study showed an almost two-fold higher rate of superior frontal and superior 

temporal sulcal widening in MCI compared to controls (Liu et al., 2013). 

White Matter 

A minority of studies evaluated longitudinal changes in white matter. Recent DTI 

studies demonstrated a loss of integrity (increase in mean diffusivity) in the white matter 

fibre tracts (Selnes et al., 2013) particularly in the fornix (fitted mean changes in mean 

diffusivity over 12 months of 0.003 in controls vs. 0.051 in MCI), inferior and anterior 

cingulum (fitted mean changes in mean diffusivity over 6 months of -0.003 in controls vs. 

0.013 in MCI), (Nowrangi et al., 2013) in MCI compared to controls. DTI studies were 

limited in number and restricted to regions of interest evaluation.   
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Discussion  

This study aimed to systematically review the literature on longitudinal structural brain 

changes specific to stable MCI. The main findings of this review were that: (1) atrophy rates 

were 1.5 to 2.2 times larger in MCI participants than CN, (2) atrophy rate estimates were 

greater when assessed with manual than automatic segmentation, (3) Age, sex, and APOEe4 

were the most important moderators and together explained almost 80% of the between-

study heterogeneity.  

Global and local atrophy 

Whole brain annual atrophy rate in MCI was twice that observed in controls. After 

removing the effect of normal ageing, MCI related shrinkage was estimated at 0.46%/year or 

almost 5 ml per year. This finding was consistent with studies reporting approximately 

0.1%/year ventricular expansion in MCI in addition to that observed in normal ageing 

(Archer et al., 2010; Jack et al., 2009; Schott et al., 2010), when considering that 20% to 

25% of the whole brain shrinkage is accounted for ventricular expansion (Standring, 2008). 

Shrinkage in the whole brain is not necessarily the result of homogenous atrophy in all 

parts of the brain. Studies using measurement of cortical thickness and grey/white matter 

density in different parts of the brain demonstrated that atrophy rates in different brain 

regions were different and that some areas were more susceptible to neurodegeneration in 

normal ageing as well as MCI related degeneration (Liu et al., 2013; Sluimer et al., 2009; 

Wang et al., 2009; Yao et al., 2012). Studies suggested that in MCI, noticeable atrophy was 

restricted to the medial temporal lobe, while frontal lobe and sensory motor cortices 

remained less atrophic until late in AD (Hua et al., 2009; Leow et al., 2009). Additionally, 

previous evidence suggested that medial temporal lobe atrophy was higher in MCI 
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participants who converted to Alzheimer’s disease compared to those with stable MCI 

(Evans et al., 2010; Leow et al., 2009).  

It is important to consider that most reviewed studies used general diagnostic criteria to 

recruit MCI participants and did not investigate MCI subtypes. However, study design and 

cognitive tests, which were used in these studies, suggested that there was probably a higher 

prevalence of amnestic MCI in MCI participants. Therefore, reported findings are likely to 

be more representative of amnestic MCI than other MCI subtypes.  

The hippocampus and entorhinal cortex were two of the most commonly investigated 

subregions of the medial temporal lobe, and direct evaluation of the medial temporal lobe 

volume change was not an issue in volumetric studies. Therefore, there is no estimation of 

the whole medial temporal lobe atrophy rate in the literature. However, overall atrophy rates 

in these medial temporal lobe subregions were similar to the whole brain atrophy rate, i.e. 

approximately twice in MCI compared to CN. Although, to our knowledge there is no other 

systematic review of brain regions atrophy rates in MCI, a systematic review estimating 

annual hippocampal atrophy rate in healthy ageing across the lifespan revealed hippocampal 

annual atrophy rate of 1.12%/year in healthy ageing over the age of 70 years (Fraser et al., 

2015), which is consistent with the present findings. The roles of the hippocampus and 

entorhinal cortex in memory function have been known for a long time and the association 

between atrophy rates in these regions and cognitive decline have been well documented in 

MCI.  However, the mean estimates of annual atrophy rates in these regions do not explain a 

5 ml annual reduction in the whole brain volume. The cerebral atrophy observed in MCI 

above that detected in normal ageing was 1.35%/year in the hippocampus and 0.94%/year in 

entorhinal cortex. This indicates a total annual volume loss of about 0.068 ml in these areas 

(Standring, 2008), which covers less than 1.5% (of 5 ml) of the whole brain annual volume 
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loss. This suggests that volume loss in areas well known for memory and cognition may only 

be the tip of the iceberg.  In summary, although most available evidence has suggested that 

high rates of atrophy are mostly restricted to the medial temporal lobe in stable MCI, this 

conclusion might be due to under-investigation of other cerebral regions.  

Grey matter and White matter 

Apart from medial temporal lobe atrophy, decrease in grey matter volume was reported 

in the lateral temporal, parietal and frontal lobes (Villain et al., 2010). These findings are 

consistent with reports demonstrating cortical thinning in the superolateral parietal lobe and 

some regions of the frontal cortex (Yao et al., 2012) as well as sulcal widening in the 

superior temporal and superior frontal sulci (Liu et al., 2013). There are also sporadic reports 

suggesting decrease in the volume of the parahippocampal gyrus, amygdala, fusiform gyrus, 

superior temporal lobe (Desikan et al., 2008), lateral temporal lobe (McDonald et al., 2012), 

inferior temporal lobe (Desikan et al., 2008), frontal lobe (McDonald et al., 2012; Sluimer et 

al., 2009), cingulate (McDonald et al., 2012) and parietal and occipital lobes (McDonald et 

al., 2012; Sluimer et al., 2009), and insula (Sluimer et al., 2009). Therefore, although higher 

atrophy rates have been prominently reported in the medial temporal lobe and the atrophy 

rate in this region was positively associated with cognitive decline, brain atrophy is also 

widely distributed to other parts of the temporal, parietal and frontal lobes. Nonetheless, in 

spite of the widespread grey matter atrophy, estimated atrophy rates in these areas alone 

cannot explain the whole brain atrophy rate. Indeed, the grey matter forms less than half of 

the brain tissue and atrophy rates as high as the atrophy rate in the hippocampus are needed 

in all parts of the grey matter to explain the total brain volume loss. 
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Therefore, atrophy of white matter is likely to significantly contribute to whole brain 

atrophy, especially because axonal integrity depends on cell body viability in the grey matter 

and theoretically cell loss in grey matter atrophy should have an impact on white matter 

integrity. Loss of integrity in the white matter fibre tracts, particularly in the fornix and 

anterior and inferior cingulum, has been detected by DTI studies (Nowrangi et al., 2013; 

Selnes et al., 2013). These studies are limited in number and restricted in the selection of 

regions of interest. A relationship between hippocampal grey matter atrophy and subsequent 

disruption in the uncinate fasciculus and the cingulum bundle has also been reported (Villain 

et al., 2010).  

Although too few studies investigating white matter atrophy were available for review 

and for reliable assessment of their magnitude, they suggest that white matter is not spared 

from MCI pathology.  However, the rate of atrophy in white matter and its association with 

grey matter and whole brain volume loss are some important unanswered questions. White 

matter forms the dominant proportion of brain structure, which reflects the importance of 

connection and networks in neural structure and consequently brain function. Therefore, it is 

essential that more investigations focus on these questions.  

Furthermore, while neuroimaging studies largely interpret their results in relation to 

neural tissue, the brain also consists of connective tissue forming the brain’s structural frame, 

supporting neural content and providing nutrients to neural tissue. This structural frame has 

an important role in preserving neural integrity and brain function. Therefore, any change in 

brain connective tissue may affect the structure and function of neural system. The effect of 

ageing on connective tissues in other parts of the body, including the skin, have been well 

documented but the involvement of brain connective tissue in ageing and age related 

disorders needs to be evaluated in more detail. In summary, further longitudinal investigation 
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of non-grey matter (e.g. white matter and connective tissue) atrophy might be informative 

and may help explain gaps in our understanding of pathological processes associated with 

MCI and dementia.  

Segmentation method 

We investigated the impact of segmentation methodologies (manual vs automated) 

through meta-regression analyses and found that manual segmentation of the hippocampus 

resulted in larger atrophy rate estimates compared to automatic segmentation using 

FreeSurfer. While previous studies suggested that automatic segmentation with FreeSurfer 

resulted in a larger estimation of hippocampal volume in comparison with manual 

segmentation of the same images (Cherbuin, Anstey, ́glade-Meslin, & Sachdev, 2009; 

Wenger et al., 2014), atrophy rates have been reported to be lower in investigations using 

automatic segmentation (Mulder et al., 2014). As detailed in figure 2, differences between 

manual and automatic estimations of hippocampal atrophy are bigger in CN than MCI 

participants (68% compared to 40%), and in MCI (after removing the effect of normal 

ageing) the difference is remarkably less than CN (7% compared to 68%).  

As suggested by Wenger (Wenger et al., 2014), automatic segmentation may classify 

some non-hippocampal tissue -- with lower atrophy rate -- as hippocampal tissue. This would 

explain how the automatic approach could result in higher volume estimates but lower 

atrophy rate. A systematic review by Fraser (Fraser et al., 2015), estimating annual 

hippocampal atrophy rate in healthy ageing across the lifespan, also detected a similar 

difference between manual tracing and automatic FreeSurfer segmentation and suggested 

that most studies using manual tracing excluded the tail of hippocampus and estimate the 

atrophy rate based on the atrophy of the head of the hippocampus. They concluded that 

hippocampal atrophy in CN was mostly restricted to the head of the hippocampus, rather 



 

 

	
Study	1	

	

	 	

55 

than the tail, therefore manual approaches, which excluded the tail were likely to estimate a 

lower atrophy rate compared with automatic FreeSurfer approaches, which included the tail. 

In summary, although manual tracing is traditionally considered as the gold standard method 

of hippocampal volume estimation, the difference between manual tracing and automatic 

approaches appear to be largely related to the subregions included in each method, rather 

than accuracy of estimation.    

Moderators  

An important question is whether study-specific factors such as age, female sex and 

APOEe4 influenced the reported estimates of brain atrophy in MCI. To investigate this 

question we performed a mixed-effects model analysis for hippocampal atrophy rates (the 

largest analysis group). The results showed that these moderators accounted for almost 80% 

of the observed heterogeneity between studies, with APOEe4 showing the largest moderating 

effect.  

Moderating effects of age on brain atrophy have been well documented, although the 

pattern of association needs more investigation. It seems that this association is nonlinear and 

that the atrophy rate in stable MCI is larger at younger than older ages (Hua et al., 2010) 

although this was not confirmed in our meta-regression, possibly be due to a narrow age 

range as well as small number of studies in the meta-regression.  Indeed, research consistent 

with this finding suggests that a higher whole brain atrophy rate is present in female 

compared to male individuals with MCI as well as in CN (Hua et al., 2010). However, 

although this appears to be the case across the brain, it may not apply at regional levels.  This 

is the likely reason we did not find a sex effect in our hippocampal meta-regression. Previous 

evidence revealed that in different brain regions are different in male and female not only in 

MCI but also in CN. For example, atrophy rates for the thalamus, caudate nucleus and right 
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middle temporal gyrus are higher in male MCI, compared to female, and atrophy rates in the 

left middle temporal gyrus and precuneus are higher in female MCI than male (Skup et al., 

2011).  Our finding that APOEe4 genotype is a significant moderator and is associated with a 

higher rate of hippocampal atrophy in MCI is consistent with reviewed longitudinal studies 

that were not included in the meta-analysis. Moreover the effect appears to become more 

salient across the disease process with MCI and AD showing that APOEe4 genotype is 

associated with faster atrophy rates, (Aguilar et al., 2014; Vemuri et al., 2010) particularly in 

the hippocampus (Andrawis et al., 2012; Manning et al., 2014).  Association between 

APOEe4 genotype and greater atrophy rate has been reported previously in CN (Morra et al., 

2009). Thus, all parts of the brain do not seem to have a similar vulnerability to the effect of 

APOEe4 genotype and brain regions primarily involved in AD pathology, i.e. medial 

temporal lobe and particularly the hippocampus, are more affected, although the pattern of 

vulnerability is disease-stage specific (Tosun et al., 2011; Tosun et al., 2010). APOEe4 

genotype is also associated with lower level of beta-amyloid (Schuff et al., 2009) and higher 

level of total and phosphorylated tau proteins (Tosun et al., 2010) in cerebrospinal fluid. All 

these biomarkers are shown to be associated with faster regional brain atrophy (particularly 

the hippocampus) together and separately (Chiang et al., 2011; Schuff et al., 2009; Toledo et 

al., 2014; Tosun et al., 2011; Tosun et al., 2010).  

Strength and Limitations of the study 

A broad search of the literature (e.g. using a wide range of search terms) and inclusion 

of all available studies (using all sorts of structural measurements) were major strengths of 

this review. Special care was taken to combine studies with compatible measurements -- to 

investigate pooled estimates of atrophy rates – and an attempt was made to comprehensively 

integrate incompatible findings and to summarise available knowledge about structural 

changes in MCI pathology. However, the review was limited by a relatively small number of 
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available studies that could be included in meta-analyses, particularly where whole brain and 

entorhinal cortex analyses are concerned. Additionally, many brain regions (such as the 

cerebellum) could not be analysed due to lack of evidence and should be the focus of future 

studies. Also due to the small number of studies in the meta-analysis, in relation to the 

number of moderators, it was recognized that estimates of moderator effects might be 

imprecise.  The review was limited to comparing stable CN and prevalent MCI and data 

related to healthy participants converting to MCI and MCI participants converting to AD 

were insufficient to consider them in the present investigation.  

Conclusion 

To our knowledge this is the first systematic review of longitudinal studies 

investigating MCI related brain structural changes. The analyses revealed that the whole 

brain shrinks approximately two times faster in MCI participants compared to matched 

healthy people of the same age. Additionally, the medial temporal lobe regions -- particularly 

the entorhinal cortex and hippocampus -- are remarkably affected in AD pathology and 

associated with risk factors including APOEe4 genotype and female sex.  These regions 

demonstrate an atrophy rate of 1.5 to 2.2%/year times for MCI compared to CN. Although 

the medial temporal lobe was reported as the region highly involved in AD related 

neurodegeneration, estimated atrophy rates in this region do not convincingly explain the 

amount of annual whole brain volume loss observed in MCI. Further investigation of other 

components of neural tissue, including white matter and non-neural brain tissue (e.g. 

connective tissue) are needed.  
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Abstract 

Background: While acceleration in age-related cerebral atrophy has been well documented in 

Alzheimer’s disease, the cerebellar contributions to this effect have not been thoroughly 

investigated.  

Objective: This study investigated cerebellar volume and atrophy rate using magnetic 

resonance imaging in individuals with normal cognition (CN), mild cognitive impairment 

(MCI) and Alzheimer’s disease (AD).  

Method: Two hundred and twenty nine CN, 398 MCI and 191 AD participants of stage one 

ADNI database with screening scans were evaluated for cerebellar volume. Of those, 758 

individuals with two or more follow up scans were categorized into stable, converted and 

reverted CN, MCI and AD and evaluated for cerebellar atrophy rate.  

Results: Cerebellar volume was 2.5% larger in CN than in those with AD but there were no 

differences between CN and MCI and MCI and AD in cross-sectional analysis. Similarly, the 

atrophy rate was 49% larger in AD and 64% larger in MCI who converted to AD but no 

difference was detected between CN and MCI. There were no associations between education 

and APOEe4 and cerebellar volume or cerebellar atrophy across the diagnostic groups.  

Conclusion: Cerebellar atrophy contributes to Alzheimer’s clinical progression but mostly at 

the late stage of the disease. However, even in the late stage shrinkage rate is less than the 

average of the shrinkage in the cerebrum and is not associated with AD moderators. This 

suggests that cerebellar involvement is secondary to cerebral involvement and can be due to 

network connection spread regardless of the primary pathology.  
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Introduction 

The human cerebellum is a brain structure well known for its role in motor function 

and recently has drawn attention for its implication in cognitive functions (Schmahmann & 

Sherman, 1998; Stoodley, 2012; Weier et al., 2014; Wolf, Rapoport, & Schweizer, 2009).  It 

is connected to almost all parts of the nervous system, comprises more than 50% of the total 

brain neurons, but surprisingly contributes to only 10% of the whole brain volume (B. B. 

Andersen, Korbo, & Pakkenberg, 1992). This mismatch is a reflection of the difference in 

neural architecture. Gray matter makes up 80% of the cerebellar volume (compared with less 

than half for the cerebrum) (Hoogendam et al., 2012) and consists of densely packed small 

granular neurons tightly folded which are less diverse compared to those of the cerebral 

cortex. In contrast to the variety of cytoarchitectonic organisation observed in different 

regions of the cerebral cortex, all regions of the cerebellar cortex appear similar in 

histological sections (Standring, 2008). Specific histological architecture in addition to rich 

connections to the other parts of the brain makes the cerebellum an important region to 

investigate in the context of neurodegenerative disorders. 

Pathologically, Alzheimer’s disease (AD) is characterized by abnormal intra and extra 

cellular protein aggregations, i.e. intracellular tau phosphorylation and extracellular β-

amyloid deposition. Studies using positron emission tomography (PET) revealed significant 

correlations between post-mortem and in vivo presence and density of amyloid plaques and 

phosphorylated tau: 11C-labeled Pittsburgh compound B (11C-PiB) (Driscoll et al., 2012) 

and Florbetapir-PET imaging (Clark et al., 2011) for β-amyloid deposition and labelled 

THK5117-PET (Lemoine et al., 2015) for aggregated hyper phosphorylated tau.  PET studies 

suggested no difference in the cerebellar uptake in AD and cognitively normal (CN) 

participants (Jack, Lowe, et al., 2008; Jonasson et al., 2016; Rowe et al., 2007) and therefore 
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it has been adopted as a normalizing area for standardized uptake values (SUVs) (Jonasson et 

al., 2016; Lopresti et al., 2005).  

 Although AD related shrinkage and neuronal death are thought to be associated with 

and possibly due to β-amyloid deposition and tau aggregation (Wang, D’Andrea, & Nagele, 

2002), their topological patterns and progression are different (Braak & Braak, 1991; Thal, 

Rub, Orantes, & Braak, 2002). Moreover, the pattern of regional brain atrophy in AD does 

not follow precisely either β-amyloid or tau topological patterns (Sluimer et al., 2009). 

Therefore, normal level of β-amyloid deposition and tau aggregation may not rule out the 

presence of neuronal loss or shrinkage in the cerebellum. A recent post-mortem stereological 

study suggested no significant differences in the cerebellar total Purkinje and granular cell 

number nor in the volume of the granular layer between people with severe AD and normal 

individuals (K. Andersen, Andersen, & Pakkenberg, 2012). However, this finding is 

inconsistent with a previous study that showed a significant reduction in the granular layer in 

AD (Wegiel et al., 1999) although both studies reported significant reduction in whole 

cerebellar volume. These somewhat inconsistent findings may be due to the fact that these 

studies were post-mortem (cross-sectional) with low sample sizes (20 and 16 subjects 

respectively) in qualitatively different cohorts and thus afforded low statistical power. 

To bypass the inevitable limitations of post mortem studies (single measurement 

occasion and small sample size), structural neuroimaging techniques including magnetic 

imaging are the best available option for longitudinal examination of brain volume change 

over time. Our recent published systematic review (Tabatabaei-Jafari, Shaw, & Cherbuin, 

2015) revealed that there is no morphological longitudinal study aimed at comparing 

cerebellar structural change in normal ageing and cognitively impaired populations including 

mild cognitive impairment (MCI) and Alzheimer’s disease. Therefore, the main aim of this 
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study is to evaluate cross-sectional and longitudinal structural differences in the cerebellum 

across cognitively different populations including CN, MCI and AD.  

Methodology 

Study Participants 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging 

(MRI), positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and 

early AD.  

All individuals participating in ADNI1 study who underwent MRI screening and 

diagnostic evaluations were included in the cross-sectional analysis and categorized into 3 

diagnostic groups: CN, MCI and AD. Participants with additional scans in follow-up 

assessments were included in the longitudinal analysis and categorised into more specific 

diagnostic groups according to the diagnosis at the first and last scanning time points. Details 

of the diagnostic criteria can be found on the ADNI web site (http://www.adni-

info.org/Scientists/AboutADNI.aspx). Briefly, participants were categorized as CN if they 

had a Mini Mental State Examination (MMSE) score higher than 24, a Clinical Dementia 

Rating (CDR) of 0 and were not diagnosed with MCI, dementia or depression. Participants 

were categorized as MCI if they had a MMSE score higher than 24, a subjective report of 

memory concern, a measured objective memory loss, a CDR of 0.5, absence of dementia and 

preserved daily living activities. Participants were categorized as AD if they had a MMSE 
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score lower than 26, a CDR of 0.5 or 1.0, and fulfilled criteria for clinically probable AD 

according to the Institute of Neurological and Communicative Diseases and Stroke/ 

Alzheimer’s Disease and Related Disorders Association. Participants with follow-up 

evaluation were categorized into stable, converted or reverted CN, MCI and AD according to 

the first and last time points diagnoses: stable if the first and last evaluation were similar, 

converted if the last evaluation progressed to declined cognitive diagnosis and reverted if the 

last evaluation was improved.  

Image Acquisition 

Participants underwent a high-resolution MRI scans of the brain on 1.5 T scanners 

from General Electric, Siemens, or Philips (Milwaukee, WI, USA; Germany; the 

Netherlands respectively) across multiple scanners using a standardized MRI protocol for 3D 

MP-RAGE sequences (Jack, Bernstein, et al., 2008) and following parameters: TR= 2400 

ms, minimum full TE, TI=1000 ms, flip angle= 8°, 24 cm field of view, acquisition matrix of 

192 ×192 ×166 and yielding 1.25 ×1.25 ×1.2 mm3.  

Segmentation and Image analysis 

Volumetric segmentation were conducted by the ADNI team at the University of 

California, San Francisco using FreeSurfer version 5.1 for longitudinal analyses (Reutera, 

Schmansky, Rosasa, & Fischl, 2012). The cerebellum was automatically segmented into gray 

matter and white matter.  Sum values of the gray and white matter were considered as 

hemisphere volume and total of left and right were considered as cerebellar volumes.  

Statistical analysis 

The R statistical software (version 3.1.1) was used for the cross-sectional and 

longitudinal analyses. The intra-class correlation coefficient (ICC) for the repeated 
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longitudinal cerebellar volumes measurements was 0.98 (95%CI 0.9803 - .9843), which 

indicates that most of the variance (~96%) occurs between participants while only 4% occurs 

within participants.  

Non-parametric locally weighted scatterplot smoothing (LOWESS) was used to 

visually inspect the data to determine whether linear models were appropriate. The LOWESS 

approach uses weighted least squares (giving more weight to points near the point whose 

response is being estimated) to estimate the mean response value at each time point and 

provide a smooth line representing the relationship between dependent and explanatory 

variables, when there are no assumptions about the relationship.  The LOWESS plots for 

cerebellar volume versus age suggested that linear modelling of the relationship between 

cerebellar volume and age was appropriate for cross-sectional and longitudinal analyses 

since little departure from linearity was observed across groups except for CNc, which 

assumed to be due to low sample size i.e. 19 participants (Fig 1).  

The lme4 package (version 1.1-7) was used to conduct linear regressions analyses. In 

cross-sectional analyses, multiple linear regressions were conducted to investigate the cross-

sectional relationship between cerebellar volume and clinical diagnosis status. Cerebellar 

volume was applied as dependent variable and age (centred on 55, the youngest participants 

at baseline), sex, education, APOE e4, diagnosis and intracranial volume (ICV) were 

considered as explanatory variables. In longitudinal analyses, mixed effects models were 

applied with the same explanatory variables for linear regressions in addition to a random 

effect by scanner and two random effects by subjects: a random intercept and a random slope 

for age at each time point.  The random slope of time (centred age at each time point) was 

tested in a minimally controlled model and if statistically significant was included in the 

model as random effect (Bernal-Rusiel et al., 2013). A time by clinical diagnosis group 
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interaction effect was tested to determine whether the rate of change in cerebellar volume 

differed between groups. Fixed effect of age on cerebellar volume for each diagnostic group 

was considered as cerebellar atrophy rate. 

The final models were visually checked for any obvious deviations from 

homoscedasticity, normality of residuals and linearity. Likelihood ratio test of the model 

with the effect in question against the model without was used to determine statistical 

significance.  

Results 

Demography 

Cross-sectional: Eight hundred and eighteen participants were categorized into CN, 

MCI and AD. There were no significant differences in age across the groups, but significant 

differences in sex and APOE e4 distributions among the diagnostic groups. The male ratio 

was higher in MCI and, as expected, APOEe4 frequencies were significantly higher in MCI 

and AD. AD participants were significantly less educated than CN (Table 1).  

Longitudinal: Of 818 participants with screening scans 758, who had one or more 

follow-up scans and cognitive tests, were included in the longitudinal part. They were 

categorized into different diagnostic groups according to the first and last time points 

diagnoses: stable CN (CNs), CN converted to MCI (CNc), stable MCI (MCIs), MCI 

converted to AD (MCIc), stable AD (ADs), CN converted to AD, MCI reverted to CN 

(MCIr) and AD reverted to MCI (ADr). There were no significant differences in age and 

education across the diagnostic groups except for education between CNs and ADs.  Pearson 

chi-squared test revealed no significant difference in sex distribution but a significant 

difference in APOE e4 distributions between diagnostic groups. APOEe4 distributions were 
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higher in MCIs than CNs and in ADs than CNs. The mean follow up period across the 

groups was 2.54 (1.20) years, which was shorter in MCIs and ADs compared with CNs.  

 

Figure	1:	Locally	weighted	smoothed	mean	measurement	trajectory	(LOWESS	plot)	

cerebellar	volumes	vs.	age.	(A)	Three	clinical	groups	including	cognitively	normal	(CN),	mild	

cognitive	impairment	(MCI),	and	Alzheimer’s	disease	(AD)	in	cross-sectional	level.	(B)	Five	

clinical	groups	including	stable	cognitively	normal	(CNs),	cognitively	normal	converted	to	

mild	cognitive	impairment	(CNc),	stable	mild	cognitive	impairment	(MCIs),	mild	cognitive	

impairment	converted	to	AD	(MCIc),	and	stable	Alzheimer’s	disease	(ADs)	in	serial	scans.	
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Cross-sectional results 

A significant association between cognitive diagnosis and cerebellar volume (F 

(2,811)=3.95, P<0.01) was detected.   

Pairwise comparisons demonstrated (3400mm3; ~ 2.5%) larger cerebellar volume in 

CN compared to AD (F (1,413)= 9.82, P<0.001), but no differences between CN and MCI (F 

(1, 620)=3.40 P>0.1), and MCI and AD (F (1, 582)=1.62, P>0.1). Table 2 presents the mean 

ICV-adjusted cerebellar volumes and the fixed effect of age for the three diagnostic groups. 

Although, the average cerebellar volume was significantly smaller in AD compared to CN 

and MCI, the slope of decrease in cerebellar volume for each year increase in age was only 

0.41% (CN; 0.34%, MCI; 0.42%, AD; 0.38%) and was not significantly different across 

groups (F (2, 809)= 0.28, p> 0.5) and in pair-wise comparisons (F < 0.5, p> 0.1). When all 

explanatory variables were included, the linear regression model explained 44.7% of the 

variance in cerebellar volume (F (8, 809)= 83.61, P< 0.0001) mostly explained by ICV 

(37.9%) with 7.7% explained by age alone, and 0.7% by clinical group. 

The scatters plot presenting the association between age and cerebellar volume for 

each group also revealed an initial overlap of CN and MCI regression lines followed by 

deviation of MCI regression line to AD line suggesting that cerebellar volumes are highly 

similar in CN and MCI at younger ages but lower in MCI in older individuals (Figure 2A). In 

contrast the AD regression line while following a similar slope had a clearly different 

intercept suggesting a constant smaller cerebellar volume in AD across the age span 

investigated. Similar patterns were demonstrated for the left and right cerebellar volumes 

(Table 2).  
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Longitudinal results 

The linear mixed model achieved a good fit and fixed factors in the model explained 

43% (marginal R2) while fixed and random factors together explained 99% (conditional R2) 

of variance in cerebellar atrophy. A significant negative fixed effect of age was detected (χ 2  

(1, 9)= 586.99, P< 0.0001); each year beyond age 55 was associated with a 0.47% lower 

cerebellar volume compared to baseline. Additionally, a significant random effect of age on 

cerebellar volume (χ 2  (2, 18)= 227.92, P< 0.0001) and interaction between age and 

diagnosis (χ 2  (7, 25)= 22.72, P< 0.01) were detected. The model revealed no differences in 

cerebellar volume across the diagnostic groups (χ 2  (7,18)= 11.31, p>0.1) i.e. the average of 

cerebellar volumes in CNs, CNc, MCIs, MCIc and ADs were not significantly different. 

However, a significant effect of cognitive diagnosis on cerebellar atrophy rates was detected 

(χ 2  (7, 25)= 22.71, P< 0.001). There was also a significant effect of sex on cerebellar 

volume (1, 18)= 14.12, P< 0.001) with less shrinkage in male.  

An annual shrinkage of 0.36% (SE= 0.04) was detected in CNs individuals. A pairwise 

comparison revealed that it was not significantly different in MCIs (0.36%/year, SE=0.05) 

and CNc (0.42%/year, SE=0.08) however it was about 49% larger in ADs (0.53%/year, 

SE=0.06). Similarly, the atrophy rate was about 64% larger in MCIc (0.62%/year, SE=0.06) 

compared to CNs (Table 2, Table 3). The annual atrophy was also about 53% larger in ADs 

than MCIs (χ 2 (2, 13)= 8.67 p<0.01) and 68% larger in MCIc than MCIs (χ 2 (2, 13)= 12.57, 

P<0.001; Table 2). CN who converted to AD, MCI who reverted to CN and AD who 

reverted to MCI were excluded from pairwise comparison due to small samples sizes. 

Atrophy trajectories across groups are presented in Figure 2B. 

Similar patterns of findings were observed for the left and right cerebellar volumes 

(Table 2), as well as left and right cerebellar gray matter and white matter volumes.  
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Figure	2;	Linear	Prediction	of	the	cerebellar	volumes	for	age	at	time	points.	(A)	Prediction	of	

the	cerebellar	volumes	in	three	clinical	groups	including	cognitively	normal	(CN),	mild	

cognitive	impairment	(MCI)	and	Alzheimer’s	disease	(AD)	in	cross-sectional	level.	(B)	

Prediction	in	subject	and	group	(population)	levels	in	five	diagnostic	groups	including	stable	

cognitively	normal	(CNs),	cognitively	normal	converted	to	mild	cognitive	impairment	(CNc),	

stable	mild	cognitive	impairment	(MCIs),	and	mild	cognitive	impairment	converted	to	AD	

(MCIc)	illustrating	different	slopes	for	the	diagnostic	groups.	
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Table	3:	Pair-wise	comparison	of	group	diagnosis	

 CNs vs CNc CNs vs MCIs CNs vs MCIc CNs vs ADs 

 Model 1 Model 2 Model 1 Model 2 Model 1  Model 2 Model 1 Model 2 

Intercept 142212.26    
(4460.56) 

146127.2     
(6078.7) 

139769.58    
(3247.02) 

139091.58    
(3445.00) 

137510.50    
(3521.38) 

139282.56    
(3755.78) 

138821.74    
(3172.06) 

141244.50    
(3523.62) 

Volume slope in CNs, 
mm3/ year (SE) - -4286.9     

(4450.6) - 1745.53    
(2164.33) - -3236.69    

(2257.59) - -1504.24    
(2371.78) 

Pr(>|t|) - 0.3366 - 0.421 - 0.1525 - 0.5263 

Shrinkage slope in CNs, 
mm3/ year (SE) - 100.9      

(163.6) - -19.72      
(84.54) - 312.57      

(91.80) - 214.37      
(94.66) 

Pr(>|t|) - 0.5382 - 0.816 - 0.0007 *** - 0.0240 * 

Loglik -9793 -9793 -17438 -17438 -16960 -16951 -14515 -14509 

Chisq 1.0195 1.3075 17.126   10.884 

Chi Df 2 2 2 2 

Pr(> Chisq) 0.6006 0.5201 0.0001911 *** 0.004332 ** 

Significant codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘-’ 1;  

Key: CN; cognitively normal, CNs; stable cognitively normal, CNc; cognitively normal converted to mild cognitive impairment; MCIs, 
stable mild cognitive impairment; MCIc, mild cognitive impairment converted to Alzheimer’s disease; ADs, stable Alzheimer’s disease 

 

Discussion  

This study aimed to investigate cerebellar shrinkage in normal ageing and prodromal 

(MCI) and clinical phases of AD. It revealed that cerebellar shrinkage occurs mostly in the 

late stages of the disease. The main findings were that (1) in cross-sectional analyses 

cerebellar volume was larger in CN compared to AD but not compared to MCI, (2) in 

longitudinal analyses cerebellar atrophy was higher in ADs and MCIc compared to CNs but 

not in CNc and MCIs, and (3) APOEe4 was not a significant predictor of baseline cerebellar 

volume nor of cerebellar atrophy across clinical groups.  

Cross-sectional  

The smaller cerebellar volume observed in AD compared to CN and no difference 

between MCI and CN are in agreement with available cross-sectional studies reporting 
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smaller cerebellar volume in AD (Kusbeci et al., 2009; Moller et al., 2013) but normal 

volume in MCI (Thomann et al., 2008; Yoon et al., 2013). This discrepancy is consistent 

with the documented progression of AD pathology. However, the cerebellum can be parsed 

functionally and morphologically into different subdivisions and it is likely that AD 

pathology targets each subdivision differently. Previous voxel-based morphometric studies 

showed bilateral lower gray matter density in lobule VI (Colloby, O'Brien, & Taylor, 2014) 

and Crus I/II (Guo et al., 2016) in AD compared with CN, suggesting that network-selective 

vulnerability underlies the cerebellar neurodegeneration(Guo et al., 2016).  Regardless of 

selective or non-selective volume loss in the cerebellum and its subregions, cross-sectional 

approach needs to be affirmed by tracking atrophy in a longitudinal approach.  

Longitudinal  

The negative association between age and cerebellar volume is consistent with that 

demonstrated in the cross-sectional analysis (0.41%/ year in cross-sectional and 0.47% in 

longitudinal). Pairwise analyses demonstrated significantly larger cerebellar atrophy rates in 

ADs and MCIc but not in CNc and MCIs compared to CNs. This pattern of results is 

suggestive of an increasing rate of cerebellar atrophy with progression of AD pathology. It is 

also consistent with the chronological development of AD pathology with progressive 

spreading of tau fibrillary tangles (Braak stages), amyloid deposition, and subsequently 

gradual decline in cognitive function (Murray et al., 2015). As Thal et al. demonstrated, 

clinically diagnosed AD occurs in the amyloid phase 3-5 while the cerebellar involvement 

mostly occurs in the 5th phase (Thal et al., 2002). Thus, the available evidence suggests that 

the cerebellum is relatively spared of neurodegeneration in the preclinical stages of the 

disease and gradually becomes affected as the clinical presentation fully develops. However, 

it remains unclear whether association of the cerebellum with AD clinical progression is due 
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to spreading of fibrillary tangle and/or amyloid deposition, or secondary to cerebral 

neurodegeneration.  

Although the findings suggest shrinkage in the cerebellum with ageing and larger 

cerebellar atrophy in ADs compared with CNs and MCIs, it is worthy to consider that 

cerebellar atrophy in the diagnostic groups were less than that reported for whole brain 

atrophy (CNs: 0.36%/year vs 0.57%/year; MCIs: 0.36%/year vs 1.02%/year; ADs: 

0.53%/year vs 1.90%/year) (Henneman et al., 2009; Tabatabaei-Jafari et al., 2015). This is in 

contrast to brain regions characteristics for AD pathology, including hippocampus and 

entorhinal cortex, for which atrophy rates are roughly 200% higher for MCI and 300% 

higher for AD compared to normal ageing (Desikan et al., 2008; Tabatabaei-Jafari et al., 

2015), further emphasising the relative resistance of the cerebellum to AD related 

degeneration. However, despite the small effect size and partial resistance, the cerebellum is 

not intact in AD pathology and future investigation is needed to elucidate the impact of 

cerebellar atrophy on uptake measurement when using the cerebellum to standardise FDG 

uptake in PET studies. 

Covariates and correlates  

Age is a common predictor for CN and AD-related brain atrophy and all cognitive 

groups in the current study were matched for age. However, they were differences in sex 

distribution, education and APOEe4 alleles-- the most well known risk factors of AD 

pathology-- as were expected. An effect of sex on cerebellar volume was detected such that 

males showed less cerebellar atrophy than females. However, no significant association 

between education or APOEe4 alleles and cerebellar volume were detected. APOEe4 is a 

known moderator of hippocampal atrophy in AD pathology (Tabatabaei-Jafari et al., 2015), 

therefore it might have been expected that carrying the APOEe4 allele would be associated 
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with increased cerebellar atrophy. However, this was not the case in our findings. It may 

indicate that while neurodegeneration in the cerebrum is directly related to the development 

of neurofibrillary tangles and β-amyloid deposition which occurs at higher rates in APOEe4 

carriers, cerebellar atrophy is the product of secondary processes associated with cerebral 

neuronal loss, Wallerian degeneration, and widespread disconnection. To clarify this 

question future investigations need to further elucidate the impact of risk factors in different 

AD clinical stages.  

Strengths and limitation:  

This study is unique in using in vivo evaluation of the cerebellum with a reasonable 

follow up period in a relatively large sample while computing both cross-sectional and 

longitudinal estimates and using advanced and well-controlled mixed-effects models. Most 

AD related cerebellar studies conducted to date have been post-mortem or if in vivo, cross-

sectional in design, thus raising questions as to the precision and generalizability of their 

estimates. Consequently, the present study fills an important gap. However, it should be 

noted that this investigation was restricted to the gray and white matter volumes in the left 

and right cerebellum and therefore do not provide information on the cerebellar subregions.  

Conclusion 

The cerebellum is often thought to be spared from neurodegenerative processes but the 

present findings indicate that this is not the case. The present findings demonstrate that 

although the cerebellum is not significantly affected in the preclinical phase of AD (i.e. 

MCI), it is affected in the clinical phase. However, acceleration in atrophy rate is less than 

the average of the atrophy in the cerebrum and it is not associated with AD moderators 

(education and APOEe4 status). These findings in addition to previous evidence of network-

selective vulnerability of the cerebellum suggest that AD related cerebellar atrophy might be 
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secondary to the development of AD pathology in the cerebrum rather than the cerebellum 

itself. Therefore, modifying interventions targeting the non-specific network progression is a 

potential therapeutic option additional to interventions targeting the specific pathological 

process.     
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Abstract 

The current challenge in clinical practice is to identify those with mild cognitive 

impairment (MCI) who are at greater risk of Alzheimer’s disease (AD) conversion in the near 

future. The aim of this study was to assess a clinically practical new hippocampal index –

hippocampal volume normalized by cerebellar volume (Hippocampus to Cerebellum volume 

Ratio; HCCR) used alone or in combination with scores on the mini mental state examination 

(MMSE), as a predictor of conversion from MCI to AD. The predictive value of the HCCR 

was also contrasted to that of the hippocampal volume to intracranial volume (ICV) ratio. 

The findings revealed that the performance of the combination of measures was significantly 

better than that of each measure used individually. The combination of MMSE and 

hippocampal volume, normalized by the cerebellum or by intracranial volume, accurately 

discriminated individuals with MCI who progress to AD within five years from other MCI 

types (stable, reverters) and those with intact cognition (area under receiver operating curve 

0.88 and 0.89 respectively). Normalization by cerebellar volume was as accurate as 

normalization by ICV with the advantage of being more practical, particularly for serial 

assessments.  
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Introduction 

Mild cognitive impairment (MCI) refers to modest cognitive decline along with 

preserved daily activities (Association, 2013). While many people with MCI live largely 

normal lives, they are at higher risk of developing Alzheimer’s disease (AD) than those 

without MCI (Forlenza, Diniz, Stella, Teixeira, & Gattaz, 2013). The available evidence 

suggests that less than half of patients diagnosed with MCI may progress to AD in a five-

year period while the rest remain stable or reverse to cognitively normal (CN) status 

(Falahati, Westman, & Simmons, 2014; Pandya, Clem, Silva, & Woon, 2016). Generally, 

there is an expectation of eventual conversion from MCI to AD due to the progressive nature 

of the neurodegenerative processes involved, and MCI stability can depend on the duration 

of follow-up (Ganguli, 2013). Reversion to CN is still an unresolved question but may relate 

to the relatively unspecific nature of diagnostic criteria, interaction with co-morbid 

conditions and/or variability in the pathological process (Park, Han, & Initiative, 2015). 

Thus, the current clinical challenge is to discriminate individuals with MCI who are more 

likely to convert to AD.  

In their revised position, the National Institute on Aging and the Alzheimer’s 

Association (NIA-AA) consider MCI and AD as different stages of the AD continuum rather 

than two distinct clinical entities (Albert et al., 2011; Jack et al., 2018). In 2011, NIA-AA 

reviewed diagnostic guidelines and suggested that, owing to greater diagnostic uncertainty 

earlier in the AD continuum, MCI diagnosis should be supported by biological markers 

reflecting AD pathology (Albert et al., 2011). In 2018, the NIA-AA work group further 

qualified this position and recommended that biological markers should reflect 

neuropathological processes that define the disease instead of simply supporting the 

diagnosis (Jack et al., 2018). Based on this expert consensus, the work group recommended 
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that AD biomarkers should be incorporated in MCI/AD diagnostic criteria. The NIA-AA 

work group identified three types of AD biomarkers directly related to the underlying 

pathological processes. The biomarkers include: (1) amyloid β deposition including cortical 

amyloid PET ligand bonding (F18-flutemetamol PET) and low CSF Aβ42, (2) aggregated tau 

including cortical tau PET ligand bonding (flortaucipir-PET) and elevated CSF 

phosphorylated tau (P-tau), and (3) neurodegeneration or neural injury including PET 

detected hypometabolism (Fluorodeoxyglucose-PET), CSF total tau (T-tau), and 

cortical/volume atrophy on MRI scan (Jack et al., 2018).  

Much research has been conducted to evaluate amyloid β deposition, tau aggregation 

and hypometabolism using PET scans and CSF biomarkers --separately or in combination-- 

to classify MCI at risk of AD conversion, with some promising performance (Mitchell, 2009; 

Ritchie et al., 2017; Vandenberghe et al., 2013; Yuan, Gu, & Wei, 2009). However, these 

methods are invasive and, especially for PET imaging, have limited availability in clinical 

practice. Ideally, a practical biomarker should be widely available, accurate, cost effective, 

relatively simple to interpret, easy to use, and be acceptable to patients while not imposing 

an excessive burden. It is important that -- prior to assessing a new biomarker -- clear criteria 

for selection be established, and the likelihood of meeting them be considered. As a 

minimum, the proposed new biomarker should perform at least as well as simple, non-

invasive and currently available biomarkers.  

A type of non-invasive and more widely available biomarker is provided by structural 

brain measurement obtained using MRI. Cerebral cortical thickness and hippocampal 

measures are the most predictive and practical MRI methods to date (Falahati et al., 2014; 

Rathore, Habes, Iftikhar, Shacklett, & Davatzikos, 2017). Although cerebral cortical 

thickness has been shown to be more predictive compared to volumetric measures based on 
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single brain regions, it requires agreement on a standard pattern of cerebral cortical thickness 

in AD to be adoptable in clinical practice. Hippocampal volume, which has been shown to be 

a moderate predictor of AD conversion with a sensitivity of 67% and specificity of 72%, has 

the advantage of being less invasive compared to a CSF biomarker, less costly than a PET 

scan, and more widely available and clinically easier to use compared to cortical atrophy 

measures (Chupin et al., 2009). However, using hippocampal volume in the clinical setting is 

less straightforward compared to the use of this measure in a research setting.  

Hippocampal volume needs to be normalized by or adjusted for intracranial volume 

(ICV) (Whitwell, Crum, Watt, & Fox, 2001) to control for inter-subject (Barnes et al., 2010) 

and sex (Pintzka, Hansen, Evensmoen, & Haberg, 2015) variations in head size, as well as 

variation in head size estimations in serial scans (Whitwell et al., 2001). The most widely 

used method in neuroimaging research is adjustment for ICV using its inclusion as a 

covariate in regression analyses. A less commonly used normalization approach is to divide 

the hippocampal volume by another volume that can be accurately measured and which is 

not significantly impacted by neurodegenerative processes, typically ICV. In this study, we 

investigate normalization by cerebellar volume (hippocampus to cerebellar volume ratio) as 

an alternative approach, to correct for head size/pre-morbid brain volume as the cerebellum 

has been shown to be little affected by age-related atrophy in the absence of clinical 

dementia. Neurodegeneration in AD gradually progresses from the medial temporal lobe to 

the parietal and frontal lobes and then to the posterior parts of the brain. The cerebellum is 

among the last brain regions affected by AD pathology (Thal, Rub, Orantes, & Braak, 2002). 

We have recently shown that cerebellar atrophy is not different in MCI compared to normal 

ageing (Tabatabaei-Jafari, Walsh, Shaw, Cherbuin, & Alzheimer's Disease Neuroimaging, 

2017). Furthermore, while cerebellar atrophy increases in AD it remains lower than in other 

regions and particularly in the medial temporal lobe (Tabatabaei-Jafari et al., 2017). Thus, 
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using the cerebellum as a reference area should be both methodologically robust and 

practical in a clinical context. Importantly, regional brain volume is more accurately 

measured than ICV using semi-automated methods such as FreeSurfer (Heinen et al., 2016), 

and unlike ICV also less affected by field strength (Heinen et al., 2016; Nordenskjold et al., 

2013) and segmentation method (Hansen, Brezova, Eikenes, Haberg, & Vangberg, 2015; 

Keihaninejad et al., 2010; Malone et al., 2015).  

Although hippocampal volume is not sufficiently accurate to be clinically useful as a 

single predictor of MCI who progress to AD, it is a useful benchmark. If other measures 

sufficiently improve on the predictive value of hippocampal volume, they may be worth 

further consideration. The mini mental state examination (MMSE) may be a good candidate. 

A recent Cochrane review indicated that the weighted sensitivity and specificity of the 

MMSE for conversion from MCI to AD are 54% and 80% in a limited number of available 

studies (Arevalo-Rodriguez et al., 2015). Moreover, evidence suggests that a combination of 

cognitive measures with hippocampal volume can improve the predictive value of 

hippocampal volume for predicting AD conversion in MCI (Devanand et al., 2008). 

Therefore, such a combination is also likely to improve on the classification performance of 

hippocampal volume for identifying MCI who convert to AD in short term from all those 

who do not convert.  

In the present study, we investigated the classification performance of MMSE and 

hippocampal volume normalized by cerebellar volume or ICV both individually and in 

combination, to identify individuals with MCI who will convert to AD within five years. We 

expected that these combinations of measures would have classification accuracies high 

enough to be useful in clinical practice. 
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 Methodology 

Study Participants 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging 

(MRI), positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and 

early AD.  

Total numbers of 1289 participants with MCI (n=872) or CN (n=417) at baseline were 

considered for inclusion. All MCI participants who were stable for at least 6 months after 

baseline and converted to AD or reverted to CN within five years (confirmed with two 

consecutive stable diagnosis) or were stable for at least five years were included. Participants 

who were CN at baseline and were stable throughout the study were also included.  

Based on diagnosis and diagnostic change, participants were categorized into four 

groups; (1) MCIc (N=187); MCI who converted to AD in less than five years, (2) MCIs 

(N=112); MCI who were stable for five years or more, (3) MCIr (N=39); MCI who reverted 

to CN in less than five years, and (4) CN (N=322); who remained cognitively healthy for the 

whole follow-up period.  

Details of the diagnostic criteria can be found at the ADNI web site (http://www.adni-

info.org/Scientists/AboutADNI.aspx). Briefly, participants were classified as CN if they had 

an MMSE greater than 24, a Clinical Dementia Rating (CDR) of 0 and did not meet 

diagnostic criteria for MCI, dementia or depression. Participants were classified as MCI if 
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they had an MMSE greater than 24, a CDR of 0.5, a subjective report of memory concern, an 

objective memory loss, preserved daily living activity and did not meet diagnostic criteria for 

dementia. AD participants have MMSE scores less than 26, CDR 0.5 or 1.0 and fulfill 

criteria for clinically probable AD according to the Institute of Neurological and 

Communicative Diseases and Stroke/ Alzheimer’s Disease and Related Disorders 

Association. 

Neuroimaging acquisition and processing 

Participants underwent high-resolution MRI brain scans on 1.5 (N=335) or 3 T 

(N=325) scanners from General Electric, Siemens, or Philips (Milwaukee, WI, USA; 

Germany; the Netherlands respectively) using a standardized ADNI acquisition protocol for 

3D MP-RAGE sequence(Jack et al., 2008). Baseline images which had undergone specific 

ADNI preprocessing correction steps to standardize images from different sites and 

platforms, were obtained for this study: (1) Grad wrap; a specific correction of image 

geometry distortion due to non-linearity, (2) B1 non-uniformity; B1 calibration to correct the 

image intensity non-uniformity that results when RF transmission is performed with a more 

uniform body coil while reception is performed with a less uniform head coil, (3) N3 

correction; a histogram peak sharpening algorithm applied after grad wrap and B1 

correction. We conducted automatic volumetric segmentation using FreeSurfer (version 5.3, 

http://surfer.nmr.mgh.harvard.edu/) and the output images were visually checked for the 

hippocampal and cerebellar segmentations. The criterion was a clear segmentation error as 

assessed by an experienced neuroscientist. Scans with segmentation errors were re-processed 

and would only be excluded if the error could not be corrected. In this sample no image was 

excluded.   
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Measurements 

ICV was computed by the sum of the whole brain gray and white matter and CSF 

volume. Total cerebellar volume was computed by summing the left and right cerebellar 

gray and white matter. Total hippocampal volume was the sum of the volumes of the left and 

right hippocampus. Hippocampus to intracranial volume ratio (HCICV) was the ratio of total 

hippocampal volume to intracranial volume adjusted for age and field strength. 

Hippocampus to cerebellar volume ratio (HCCR) was the ratio of total hippocampal volume 

to total cerebellar volume adjusted for age and field strength. No significant correlation was 

detected between HCICV (correlation= -0.09) or HCCR (correlation= -0.09) and ICV. There 

was a moderate correlation between hippocampal volume and MMSE (r=0.35, Figure 1). 

The residual method was used for all adjustments implemented by running a regression line 

between raw ratios and the variables using the whole data (Pintzka et al., 2015).  

 

Figure	1:	Total	hippocampal	volume	(mm3)	at	different	mini	mental	state	examination	

scores	in	four	diagnostic	groups	
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Statistical analysis 

Statistical analyses were performed using the R statistical software (version 3.3.2). Data 

were checked for missing values and univariate and multivariate outliers using Mahalanobis 

distance. Discriminant analysis was used to estimate the predictive value of HCICV, HCCR, 

MMSE and their combination for clinical status. The DiscriMiner package (version; 0.01-29, 

https://CRAN.R-project.org/package=DiscriMiner) was used for descriptive discrimination 

and the MASS (version; 7.3-45, http://www.stats.ox.ac.uk/pub/MASS4) and Caret package 

(version; 6.3-73, https://CRAN.R-project.org/package=caret) for predictive discrimination 

(classification). Data were evaluated for normality of all measures (Q-Q plot), linearity, and 

multicollinearity and singularity (variation inflation factor) assumptions of discriminant 

analysis, which were all satisfied. Statistically significant heterogeneity of variance-

covariance matrices was observed (Box’s M-test; χ2 > 51.19, p<0.001) and therefore a 

quadratic classification procedure was used, because linear discriminant analysis is known to 

perform poorly in the presence of heterogeneous covariance matrices(Tabachnick & Fidell, 

2013).   

For binary classification analyses using quadratic classification procedure, MCIc was 

contrasted with (1) CN, MCIs and MCIr pooled together, (2) CN alone, and (3) MCIs and 

MCIr pooled together and CN was contrasted with MCIs and MCIr pooled together. The 

stability of the classification procedure was checked by a 10-fold cross-validation. The 

sample randomly partitioned into 10 equal size subsamples. Nine subsamples (combined) 

were used as training data and the remaining single subsample was retained as the validation 

data to evaluate predictive model. The process was repeated 10 times, with each of the 10 

subsamples was used only once as the validation data. The average of the results was 

provided with confidence interval. We measured reliability using the Kappa coefficient, a 
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chance-corrected measure of agreement between the reference classification (categorized by 

long-term clinical follow-up) and predictive classification (classifications based on study 

measures) (Fritz & Wainner, 2001). The receiver operating characteristic (ROC) curve 

(package pROC version 1.9.1, http://www.biomedcentral.com/1471-2105/12/77/) and the 

area under the curve (AUC) was used to estimate the discriminant capacity of each model and 

DeLong’s test was used to compare different models (Tabachnick & Fidell, 2013).  

Results 

Demography and brain measures  

The average age of all participants together was aged 73.76 (SD=6.80). Participants 

within the four diagnostic groups were similar in age, except for MCIr who were three to 

five years younger. APOEe4 genotype was significantly higher and MMSE scores lower in 

the MCI sub-groups compared to CN. The average time for MCIc to convert to AD and 

MCIr to revert to CN was similar at about two years. Baseline imaging measures showed that 

there was a trend of ascending hippocampal volume (adjusted for age, field strength and 

ICV), HCICV and HCCR values in MCIc, MCIs, MCIr and CN. No such trend was detected 

for cerebellar volume (Table 1).  

Discriminant analyses; Descriptive statistics 

Discriminant analyses were conducted to evaluate discriminative performance of the 

HCICV-MMSE and HCCR-MMSE models. Two discriminant functions were calculated for 

each model separately. The first function significantly distinguished among the diagnostic 

groups (HCICV-MMSE: F [6, 1310]=74.556, HCCR-MMSE: F [6, 1310]= 70.096) and 

accounted for 99.6% of prediction of MCIc from CN, MCIs and MCIr (first function’s 

eigenvalue/ sum of all eigenvalues *100) in both models, whereas the second function was 
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not effective in distinguishing between CN, MCIs and MCIr. Predictive values of the 

combination of HCICV and MMSE or HCCR and MMSE were almost equal (equal 

standardised coefficient correlation of predictors and discriminant functions) in the first 

discriminant functions for distinguishing among the groups (Table 2). 

The binary classification analyses revealed that HCICV, HCCR and MMSE were 

equally predictive of MCIc with loadings of more than 0.5 on the discriminant functions 

(standardised coefficient correlation) with large effect sizes (canonical R2 and eigenvalue) in 

all contrasts. In comparison, the standardized coefficients in CN contrasted with MCIs and 

MCIr groups were more than 0.5, but because the effect sizes were very low the discriminant 

functions were not effective in separating the groups (Table 2). 

Discriminant Analysis; Classification 

Individual predictor classification  

HCICV, HCCR and MMSE performed similarly in identifying diagnostic groups when 

tested individually, and classified participants of the four diagnostic groups into two groups, 

CN and MCIc. A high proportion of CN and MCIc were correctly classified, whereas the 

majority of MCIs and MCIr were classified as CN and the remainder as MCIc (Table 3). 
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Table	1:	Characteristics:	Demographic	information,	MMSE	and	brain	measures.	Trends	of	

decrease	in	the	average	of	MMSE	and	hippocampal	measures	are	noticeable	across	the	

groups.	

	 CN	 MCIr	 MCIs	 MCIc	 Test	of	significance	(p	<	
0.05)	

Sample	size	 322	 39	 112	 187	 Across	
groups	

Significant	
pairs	

Age;	year,	Mean	(SD)	 74.55	(5.80)	 69.33	
(8.32)	 72.08	(7.65)	 74.31	

(7.02)	
F	(3)=10.09	

*	

CN	vs.	MCIr		
CN	vs.	MCIs	
MCIc	vs.	MCIr	

Age	range,	year	 59	-	90	 55	-	87	 57	-	88	 55	-	89	 	 	

Male	sex;	N	(%)		 158	(49)	 17	(44)	 72	(64)	 113	(60)	 χ2	(3)	12.68		 All	pairs	are	
different	

Education;	year,	Mean	
(SD)	 16.38	(2.74)	 16.87	

(2.38)	 15.75	(3.03)	 16.09	
(2.73)	 F	(3)	2.285	 No	difference	

in	pairs	

APOE	e4;	N	(%)	 82	(25)	 19	(49)	 40	(36)	 127	(68)	 χ2	(3)	
90.63*	

All	pairs	are	
different	

One	allele		 75	(23)	 18	(46)	 32	(29)	 96	(51)	 	 	
Two	alleles	 7	(2)	 1	(3)	 8		(7)	 31	(17)	 	 	

Age	at	DX	change;	year,	
Mean	(SD)	 -	 71.38	

(8.31)	 -	 76.74	
(7.15)	 -	 MCIc	vs	MCIr	

Time	to	DX	change;	
year,	Mean	(SD)	 -	 2.06	

(1.14)	 -	 2.43	
(0.91)	 -	 -	

Measures	 	 	 	 	 	 	

MMSE;	Mean	(SD)	 29.08	(1.14)	 28.85	
(1.23)	 28.11	(1.48)	 26.95	

(1.72)	 F	(3)	95.22*	

MCIc	vs.	CN		
MCIs	vs	CN	
MCIr	vs.	MCIc	
	MCIs	vs	MCIc	

Hippocampus,	mm3,	
mean	(SD)	†	

7510.06	
	(807.29)	

7210.85	
(756.46)	

7052.82	
	(909.03)	

6240.78	
	(888.32)	 F	(3)	89.32*	

MCIc	vs.	CN,		
MCIc	vs.	MCIr		
MCIc	vs.	MCIs	
MCIs	vs.	CN	

Cerebellum,	mm3,	
mean	(SD)	†	

121937.60	
(9539.73)	

120522.4
0	

(9840.47)	

121318.00	
(10337.83)	

122673.50	
(10510.29)	 F	(3)	0.458	 No	difference	

in	pairs	

HCICV,	mean	(SD)		 0.50	(0.06)	 0.47	
(0.05)	 0.46	(0.07)	 0.41	

(0.06)	 F	(3)	87.86*	

MCIc	vs.	CN,	
MCIc	vs.	
MCIr,	

MCIc	vs.MCIs	
MCIs	vs.	CN	

HCCR,	mean	(SD)		 6.21(0.73)	 5.99	
(0.68)	 5.85	(0.94)	 5.09	

(0.79)	 F	(3)	79.83*	

MCIc	vs.	CN,		
MCIc	vs.	
MCIr,	

MCIc	vs.	MCIs		
MCIs	vs.	CN	

CN;	cognitively	normal,	MCIr;	mild	cognitive	impairment	reverted	to	normal,	MCIc;	mild	cognitive	impairment	
converted	to	Alzheimer’s	disease	in	five	years,	MCIs;	mild	cognitive	impairment	stable	for	five	years	or	more,	
APOE	e4;	Apolipoprotein	E	allele	4,	MMSE;	mini	mental	status	examination,	DX;	diagnosis,	HCICV;	Hippocampus	
to	intracranial	volume	ratio	×100	adjusted	by	age	and	field	strength,	HCCR;	Hippocampus	to	cerebellum	
volume	ratio	×100	adjusted	by	age	and	field	strength.	
*	Indicates	significance	at	p<0.0001	
†	Adjusted	by	age,	field	strength	and	intracranial	volume	
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Table 2: Descriptive discriminants analysis of predictors: Predictors are generally 
significant with loadings more than 0.5 on the discriminant functions (standardised 
coefficient correlation) with large effect sizes (canonical R2 and eigenvalue) across all 
groups as well as in all contrasts except for CN contrasting pooled of MCIs and MCIr, which 
the effect sizes are small and not effective in separating the groups.   

	 Correlation	of	
predictors	with	

discriminant	functions	
(std.	coef.)	

Pooled	within-
group	correlation	
among	predictors	

Univariate	
significance	

1	 2	 MMSE	 F	[DF]	
All	groups		 	 	 	 	
HCICV	+	MMSE	 	 	 	 	 	
	 HCICV	 -0.675	 -0.740	 0.024	 87.86[3,	656]	
	 MMSE	 -0.705	 -0.711	 	 95.22[3,	656]	
	 Canonical	R2	 0.443	 0.002	 	 	
	 Eigenvalue	 0.793	 0.002	 	 	
HCCR	+	MMSE	 	 	 	 	 	
	 HCCR	 -0.644	 0.768	 0.035	 79.83	[3,	656]	
	 MMSE	 -0.715	 -0.703	 	 95.22	[3,	656]	
	 Canonical	R2	 0.425	 0.003	 	 	
	 Eigenvalue	 0.738	 0.003	 	 	
	 	 	 	 	 	
MCIc	vs.	[CN,	MCIs	and	MCIr]	 	 	 	 	
HCICV	+	MMSE	 	 	 	 	
	 HCICV	 0.666	 	 0.108	 221.73	[1,658]	
	 MMSE,	std.	coef	 0.683	 	 	 231.08	[1,658]	
	 Canonical	R2	 0.385	 	 	 	
	 Eigenvalue	 0.627	 	 	 	
HCCR	+	MMSE	 	 	 	 	
	 HCCR	 -0.655	 	 0.119	 215.79	[1,658]	
	 MMSE	 -0.683	 	 	 231.08	[1,658]	
	 Canonical	R2	 0.379	 	 	 	
	 Eigenvalue	 0.609	 	 	 	
	 	 	 	 	 	
MCIc	vs.	CN	 	 	 	 	
HCICV	+	MMSE	 	 	 	 	
	 HCICV	 -0.700	 	 0.013	 275.73	[1,507]	
	 MMSE	 -0.707	 	 	 281.25	[1,507]	
	 Canonical	R2	 0.521	 	 	 	
	 Eigenvalue	 1.088	 	 	 	
HCCR	+	MMSE	 	 	 	 	
	 HCCR	 -0.676	 	 0.032	 256.09	[1,507]	
	 MMSE	 -0.710	 	 	 281.25	[1,507]	
	 Canonical	R2	 0.505	 	 	 	
	 Eigenvalue	 1.019	 	 	 	
	 	 	 	 	 	
MCIc	vs	[MCIs	and	MCIr]	 	 	 	 	
HCICV	+	MMSE	 	 	 	 	
	 HCICV	 -0.717	 	 0.082	 69.94[1,	336]	
	 MMSE	 -0.647	 	 	 58.46	[1,	336]	
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	 Canonical	R2	 0.263	 	 	 	
	 Eigenvalue	 0.356	 	 	 	
HCCR	+	MMSE	 	 	 	 	
	 HCCR	 -0.717	 	 0.142	 75.00	[1,	336]	
	 MMSE	 -0.610	 	 	 58.46	[1,	336]	
	 Canonical	R2	 0.260	 	 	 	
	 Eigenvalue	 0.352	 	 	 	
	 	 	 	 	 	
CN	vs.	[MCIs	and	MCIr]	 	 	 	 	
HCICV	+	MMSE	 	 	 	 	
	 HCICV	 -0.617	 	 0.080	 30.45	[1,	471]	
	 MMSE	 -0.734	 	 	 40.72	[1,	471]	
	 Canonical	R2	 0.122	 	 	 	
	 Eigenvalue	 0.139	 	 	 	
HCCR	+	MMSE	 	 	 	 	
	 HCCR	 -0.498	 	 0.069	 17.47	[1,	471]	
	 MMSE	 -0.826	 	 	 40.72[1,	471]	
	 Canonical	R2	 0.103	 	 	 	
	 Eigenvalue	 0.115	 	 	 	
CN;	cognitively	normal,	MCIr;	mild	cognitive	impairment	reverted	to	normal,	MCIc;	mild	cognitive	impairment	
converted	to	Alzheimer’s	disease	in	five	years,	MCIs;	mild	cognitive	impairment	stable	for	five	years	or	more,	
APOE	e4;	Apolipoprotein	E	allele	4,	MMSE;	mini	mental	status	examination,	HCICV;	Hippocampus	to	intracranial	
volume	ratio	×	100	adjusted	for	age	and	field	strength,	HCCR;	Hippocampus	to	Cerebellum	volume	ratio	×100	
adjusted	for	age	and	field	strength,	std.coef;	standardized	coefficient		

 

In binary classifications (Table 4), classification performance of MMSE, HCICV and 

HCCR was generally comparable and more specific than sensitive for detecting MCIc from 

the other three groups: classification accuracy from 77.6% to 78.9%, specificity from 90.9% 

to 92%, and sensitivity from 41.2% to 47.1%. Similar trends were demonstrated in all other 

contrasts. ROC analyses demonstrated no statistically significant difference between AUC 

for MMSE, HCICV and HCCR based on Delong’s test in all contrasts (Table 5 and Figure 

2).  

Importantly, using ICV ratio to normalize the hippocampus or using regression to 

adjust for ICV was separately assessed, which was found to have little impact on the 

classification results (Figure 3).  
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Table	3:	Group	classification	performance:	Predictors	separate	MCIc	from	CN	but	cannot	

separate	MCIs	and	MCIr	from	others	and	majority	of	them	were	classified	as	CN	and	

minority	as	MCIc.	

 MMSE HCICV HCCR HCICV + MMSE HCCR + MMSE 

References CN MCIc MCIs MCIr CN MCIc MCIs MCIr CN MCIc MCIs MCIr CN MCIc MCIs MCIr CN MCIc MCIs MCIr 

Pr
ed

ic
tio

n 

CN 293 71 76 33 272 70 78 29 283 69 83 34 290 42 75 34 293 43 73 34 

MCIc 29 116 36 6 50 117 34 10 39 118 29 5 27 144 37 5 25 142 36 5 

MCIs 0 0 0 0 0 0 0 0 0 0 0 0 5 1 0 0 4 2 3 0 

MCIr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sensitivity % 91.0 62.0 - - 84.5 62.57 - - 87.9 63.1 - - 90.1 77.0 - - 91.0 75.9 - - 

Specificity % 46.8 85.0 - - 47.6 80.13 - - 45.0 84.6 - - 55.3 85.4 - - 55.6 86.1 - - 

Pos Pred 
Value % 

62.0 62.0 - - 60.6 55.45 - - 60.3 61.8 - - 65.8 67.6 - - 66.1 68.3 - - 

Neg Pred 
Value % 

84.5 85.0 - - 76.3 84.41 - - 79.6 85.3 - - 85.4 90.4 - - 86.6 90.1 - - 

Prevalence % 48.8 28.3 17.0 5.9 48.8 28.33 17.0 5.9 48.8 28.3 17.0 5.9 48.8 28.3 17.0 5.9 48.8 28.3 17.0 5.9 

Accuracy 
(95%CI) 

62.0 (58.1 – 65.7) 58.94 (55.1– 62.7) 60.8 (56.9 – 64.5) 65.8 (62.0 – 69.4) 66.4 (62.6 – 67.0) 

Kappa % 33.3 28.90 31.3 41.1 42.1 

CN; cognitively normal, MCIr; mild cognitive impairment reverted to normal, MCIc; mild cognitive impairment 
converted to Alzheimer’s disease in five years, MCIs; mild cognitive impairment stable for five years or more, MMSE; 
mini mental status examination, HCICV; Hippocampus to intracranial volume ratio adjusted for age and field strength, 
HCCR; Hippocampus to Cerebellum volume ratio adjusted for age and field strength, Pos Pred Value; positive predictive 
value, Neg Pred value; negative predictive value, 95%CI; 95% confident interval. 

 

Combined predictors classification  

The combination of predictors (hippocampal and MMSE) improved almost all aspects 

of classification performance, but as for individual predictor models, classification was 

optimal in classifying participants into two groups, CN and MCIc. A high proportion of CN 

and MCIc were correctly classified, whereas a majority of MCIs and MCIr were 

misclassified as CN and a minority as MCIc (Table 3).  
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Almost all aspects of classification performance in all binary classifications that 

identified MCIc from other groups (i.e. MCIc vs. pooled of others, MCIc vs. CN, and MCIc 

vs. pooled of MCIs and MCIr) were improved with the combination of HCICV or HCCR 

and MMSE, when compared with the individual predictor. In contrast, combination models 

did not show improvement in discriminating CN from pooled MCIs and MCIr groups. 

Combination models showed significant improvements over those of individual predictors 

(Table 4).   

Table	4:	Contrast	classification	performance:	MCIc	contrasted	separately	with	all	three	

groups	together,	other	two	MCI	groups	and	CN	alone.	CN	also	contrasted	with	MCIs	and	

MCIr	together.	In	MCIc	contrasts	(with	all	groups	or	CN	alone),	predictors	were	mostly	

specific	than	sensitive	when	they	were	not	in	combinations	while	combinations	improved	all	

classification	performances.			

 

Classification 
Accuracy % 

(95% CI) 

Kappa 
% 

 

McNemar 
Test 

P-value 

Sensitivity 
% 

Specificity
 % 

Positive 
predictive 
value % 

Negative 
predictive 
value % 

L
R+ 

L
R- 

AUROC 

(95% CI) 

MCIc vs. [CN + 
MCIs + MCIr]           

MMSE 77.6 (74.2 – 80.7) 37.5 <0.0001 41.2 92.0 67.0 69.8 5
.2 

0
.6 

0.80 
(0.76 – 0.84) 

HCICV 78.9(75.6 - 82.0) 44.0 <0.0001 50.3 90.3 67.1 82.1 5
.2 

0
.6 

0.82 
(0.79 – 0.86) 

HCCR 78.5 (75.2 – 81.6) 41.8 <0.0001 47.1 90.9 67.2 81.3 5
.2 

0
.6 

0.82 
(0.78 – 0.85) 

HCICV + 
MMSE 83.2  (80.1 – 86.0) 56.6 0.008 62.6 91.3 74.1 86.1 7

.2 
0

.4 
0.89 

(0.86 – 0.91) 

HCCR + 
MMSE 83.5  (80.4 – 86.2) 57.9 0.0554 65.2 90.7 73.5 86.8 7

.0 
0

.4 
0.88 

(0.85 – 0.91) 

MCIc vs. CN           

MMSE 80.4 (76.6 - 83.7) 55.7 <0.0001 62.1 91.0 80.0 80.5 6
.9 

0
.4 

0.84 
(0.81- 0.88) 

HCICV 76.4 (72.5 – 80.1) 48.12 0.0828 62.6 84.5 70.1 79.5 4
.0 

0
.4 

0.86 
(0.82 – 0.89) 

HCCR 78.8 (75.0 – 82.3) 52.8 0.0053 63.1 87.9 75.2 80.4 5
.2 

0
.4 

0.85 
(0.81 – 0.88) 
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HCICV + 
MMSE 85.5 (82.1 – 88.4) 68.3 0.2010 77.0 90.4 82.3 87.1 8

.0 
0

.3 
0.93 

(0.90 – 0.95) 

HCCR + 
MMSE 86.1 (82.7 – 88.9) 69.4 0.0576 76.5 91.6 84.1 87.0 9

.1 
0

.3 
0.92 

(0.89 – 0.94) 

MCIc vs. [MCIs + 
MCIr]           

MMSE 66.6 (61.3 – 71.6) 33.6 0.0084 62.0 72.2 73.4 60.6 2
.2 

0
.5 

0.72 
(0.67 – 0.77) 

HCICV 69.2 (64.0 – 74.1) 36.8 0.0241 78.6 57.6 69.7 68.5 1
.9 

0
.4 

0.75 
(0.69 – 0.80) 

HCCR 69.8 (64.6  - 74.7) 38.1 0.0376 78.6 58.9 70.3 69.0 1
.9 

0
.4 

0.75 
(0.70 – 0.81) 

HCICV + 
MMSE 74.6 (69.6 – 79.1) 48.3 0.5898 78.6 69.5 76.2 72.4 2

.6 
0

.3 
0.81 

(0.76  - 0.85) 

HCCR + 
MMSE 72.8 (67.7 – 77.5) 44.9 0.9170 75.9 68.9 75.1 69.8 2

.4 
0

.4 
0.80    

(0.75 – 0.85) 

CN vs. [MCIs + 
MCIr]           

MMSE 70.8 (66.5 – 74.9) 22.2 <0.0001 73.0 58.9 90.7 28.5 1
.8 

0
.5 

0.66          
(0.61 – 0.72) 

HCICV 69.1 (64.8 – 73.3) 12.7 <0.0001 93.8 16.6 70.6 55.6 1
.1 

0
.4 

0.65   
(0.60 – 0.70) 

HCCR 69.3 (65.0 – 73.5) 11.2 <0.0001 95.7 13.3 70.2 58.8 1
.1 

0
.3 

0.61          
(0.55 – 0.66) 

HCICV + 
MMSE 70.4 (66.01– 74.5) 20.4 <0.0001 91.0 26.5 72.5 62.0 1

.2 
0

.3 
0.70          

(0.65 – 0.75) 

HCCR + 
MMSE 71.7 (67.4 – 75.7) 23.8 <0.0001 91.9 28.5 73.3 62.3 1

.3 
0

.3 
0.68          

(0.63 – 0.73) 

CN; cognitively normal, MCIr; mild cognitive impairment reverted to normal, MCIc; mild cognitive impairment converted to 
Alzheimer’s disease in five years, MCIs; mild cognitive impairment stable for five years or more, MMSE; mini mental status 
examination, HCICV; Hippocampus to intracranial volume ratio adjusted for age and field strength, HCCR; Hippocampus to 
Cerebellum volume ratio adjusted for age and field strength, LR+; positive likelihood ratio, LR-; negative likelihood ratio, 
AUROC; area under operating characteristic curve, 95%CI; 95% confident interval. 
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Figure	2:	Receiver	Operating	Characteristic	(ROC)	curve	for	group	membership:		Area	under	

the	curve	(AUC)	revealed	that	in	mild	cognitive	impairment	converted	to	Alzheimer	(MCIc)	

contrasted	with	pooled	of	other	groups	(upper	left)	or	cognitively	normal	(CN)	alone	(upper	

right)	combination	of	MMSE	and	hippocampus	to	intracranial	volume	ratio	(HCICV)	or	

hippocampus	to	cerebellum	volume	ratio	(HCCR)	were	better	than	each	predictor	

separately.	This	was	partially	true	for	MCIc	contrasted	pooled	of	other	MCI	groups	(lower	

left),	while	not	true	for	CN	contrasted	other	MCI	groups	(lower	right).	

 

The discrimination ability (AUC of ROC analyses) of combinations of HCICV or 

HCCR and MMSE were significantly better than each predictor individually (Delong’s test; 
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z<-4, p<0.001), while there was no significant difference between the HCICV-MMSE and 

HCCR-MMSE models. Additionally, analyses suggested that there was no difference in 

discrimination ability between the combination models and MMSE alone in separating CN 

from MCIs and MCIr groups. In contrast, the combination of hippocampal ratios (to ICV or 

cerebellar volume) and MMSE was significantly better in discriminating MCIc from pooled 

MCIs and MCIr (Table 4 and figure 2). Additional analyses investigating the ability to 

discriminate MCI who convert within specified time periods (1-5 years) revealed that 

performance was better in the first three years of follow-up compared to the final two years 

(Table 5).  

Table	5:	Area	under	receiver	operating	characteristic	curve	of	mild	cognitive	impairment	

convert	to	Alzheimer’s	disease	in	one	up	to	five	years	vs.	pooled	of	mild	cognitive	

impairment	remain	stable	for	five	years	or	more	and	those	who	revert	to	cognitively	normal	

MCIc	vs.	[MCIs	&	
MCIr]	

	

AUROC	(95%	CI)	

HCICV-MMSE	 HCCR-MMSE	

MCI	convert	in	year	
1	 0.89	(0.74	–	0.99)	 0.93	(0.85	–	0.99)	

MCI	convert	in	year	
2	 0.75	(0.67	–	0.82)	 0.75	(0.67		-	0.82)	

MCI	convert	in	year	
3	 0.78	(0.72	–	0.85)	 0.79	(0.72	–	0.85)	

MCI	convert	in	year	
4	 0.72	(0.63	–	0.80)	 0.75	(0.67	–	0.83)	

MCI	convert	in	year	
5	 0.66	(0.54	–	0.79)	 0.68	(0.56	–	0.81)	

MCIc;	mild	cognitive	impairment	convert	to	Alzheimer’s	disease,	MCIs;	mild	cognitive	
impairment	remain	stable	for	five	years	or	more,	MCIr;	mild	cognitive	impairment	
revert	to	cognitively	normal,	AUROC;	area	under	receiver	operating	characteristic	
curve,	HCICV;	hippocampus	to	intracranial	volume	ratio	adjusted	for	age	and	field	
strength,	HCCR;	hippocampus	to	cerebellar	volume	ratio	adjusted	for	age	and	field	
strength,	MMSE;	mini	mental	state	examination.	
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Classification performance of the predictors in combination (HCCR-MMSE and 

HCICV-MMSE), for discriminating between MCIc from other groups in all contrasts was 

generally substantial: classification accuracy for MCIc vs. all other groups was more than 

83% with sensitivity between 65.2% - 62.6%, with a specificity of 90.7% - 91.3% and an 

AUC of 0.88 – 0.89. The performance was even better when discriminating MCIc from CN 

(Table 4).  

 

Figure	3:	Receiver	Operating	Characteristic	(ROC)	curve	for	the	three	predictors:	Area	under	

curve	reveals	similar	discrimination	for	the	predictors	in	all	group	contrasts.	
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Figure	4:	Partition	plots:	Thresholds	of	different	hippocampus	to	intracranial	volume	(HCICV,	

right)	or	hippocampus	to	cerebellum	ratios	(HCCR,	left)	based	on	different	MMSE	scores,	

which	separate	mild	cognitive	impairment	converted	to	Alzheimer	(MCIc)	from	the	pooled	

of	cognitively	normal	(CN)	and	other	MCI	groups	(upper)	and	from	CN	alone	(lower).		

	

Based on the partition plots in Figure 4, individuals with MMSE scores of less than 25 

were mostly classified as MCIc regardless of the HCICV and HCCR values. For individuals 

with higher MMSE values, lower hippocampal volumes were observed in those who were 

classified as MCIc. For example, for a MMSE equal to 25, HCICV needed to be less than 

0.6% or HCCR less than 7.5%, to be classified as MCIc. The thresholds for HCICV or 

HCCR were 0.5% and 6.3% for a MMSE of 26, 0.42%  and 5.3% for 27, 0.38% and 4.8% for 
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MMSE for 28. HCICV or HCCR needed to be less than 0.35% and 4.3% respectively for 

MCIc diagnosis, when MMSE scores were 29-30. These thresholds were slightly smaller for 

discriminating MCIc from CN. 

Discussion  

This study aimed to investigate the performance of hippocampal volume normalized to 

cerebellar volume as a new measure for the clinical discrimination of MCI individuals at risk 

of AD conversion within five years. A combination of HCCR and MMSE was most effective 

in identifying MCI at risk of conversion. The main findings were that (1) the combination of 

HCCR or HCICV and MMSE and MMSE performed better in classifying MCI at risk of AD 

conversion than each measure individually, (2) the classification performance of HCCR and 

MMSE was similar to that of HCICV and MMSE, and (3) CN and MCI who did not convert 

to AD within five years did not differ statistically in their normalised hippocampal measures 

at a particular MMSE score.  

Among the brain regions implicated in AD neuropathology, hippocampal shrinkage is 

most predictive of AD related cognitive dysfunction (Jack et al., 2000) and MMSE is the 

most widely used screening instrument for AD/dementia. We found that HCCR, a new 

normalized hippocampal measure, performed as well as HCICV in classification 

performance. Although, none of HCICV, HCCR or MMSE reliably identified MCI 

individuals who progressed to AD alone, we confirmed that HCICV or HCCR in 

combination with MMSE were effective in differentiating MCI who progressed to AD from 

CN and MCI who did not progress.  

Both combinations were similar in performance and revealed a high level of 

classification accuracy, particularly for discriminating between MCIc and CN. However, 

classification accuracy only reflects the proportion of true results (positive or negative) in the 
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sample. In order to be practical and useful, a test needs to be sensitive and specific. Our 

results revealed that of those with MCIc, 65.2% - 62.6% were correctly identified 

(satisfactory sensitivity) by the combination models (HCCR + MMSE or HCICV + MMSE), 

while 91.3% - 90.7% of non-converters (CN, MCIs and MCIr) were correctly identified 

(high specificity). Furthermore, in those who were positively identified as MCIc, the 

likelihood of being truly MCIc was about nine-fold that of those who were falsely identified 

as MCIc (high positive likelihood ratio). For those who were positively identified as not 

being MCIc, the likelihood of being MCIc was close to a third that of those who were 

correctly identified as not being MCIc (low negative likelihood ratio). Therefore, not only 

was the overall accuracy of the combinations high, but the probabilities of false 

positive/negative results were also acceptable. Altogether, the combinations of hippocampal 

measures and MMSE are likely to be better than any single measure in identifying 

individuals with MCI at risk of AD conversion, but also effective in ruling out those 

individuals unlikely to convert within 5 years.  

Interestingly, using either a combination of HCICV and MMSE, or HCCR and MMSE 

resulted in similar performance. This is important because it indicates that normalisation of 

hippocampal volume by ICV or cerebellar volume is equally effective and thus validates our 

approach. ICV estimation is more sensitive to scanning parameters and segmentation 

methods than cerebellar volume. This is probably because ICV segmentation relies on the 

correct identification of the boundary between the subarachnoid space and CSF fluid whose 

contrast is more variable to that between cerebellar gray matter and CSF. Thus, cross-

sectional comparison between patients (or longitudinal within patients) assessed with 

different scanning parameters may be more difficult when using the ICV ratio. 

Consequently, in these contexts normalization by cerebellar volume may be more reliable 

and preferable.  
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The classification performance of HCICV and MMSE were in agreement with 

previous studies (in spite of different study parameters) that revealed a sensitivity of 67% 

and specificity of 72% for ICV adjusted hippocampal volume and a sensitivity of 54% and 

specificity of 80% for MMSE in identifying MCIc from CN (Arevalo-Rodriguez et al., 2015; 

Chupin et al., 2009). Better performance for the combination models was consistent and 

comparable with a previous study that showed better prediction of a combination of 

hippocampal volume, entorhinal cortex volume, MMSE, informant report of functioning 

questionnaire, the University of Pennsylvania Smell Identification Test, and Selective 

Reminding Test immediate recall score with a sensitivity of 70% and a specificity of 90% 

(Devanand et al., 2008). Additionally the models’ performances were comparable with other 

studies with combination of multiple modalities (including MRI and cognitive measures), 

which mostly had many predictors in each modality (Costafreda et al., 2011; Ferrarini et al., 

2009; Moradi et al., 2015; Zhang et al., 2011). This suggests that adding more predictors into 

a model may not necessarily improve classification performance when the predictors are 

from a single domain. Therefore, as well as the comparability of the current findings with 

previous studies which used complex combinations of predictors, the combination of HCCR 

and MMSE have the advantage of being easily implementable and interpretable, and thus 

may facilitate clinical adoption.  

It is interesting to note that MCIs and MCIr did not differ from CN based on the 

combination of HCICV or HCCR and MMSE while they differed from MCIc. This suggests 

that those who are not at actual risk of short term AD conversion are not substantially 

different from CN. A measure of concurrent decline in function and structure is likely to be a 

better predictor of AD conversion in short term.  
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Most classification studies conducted to date were predominantly based on multi-

domain/ multivariate predictors, and thus too complex to be easily adoptable in clinical 

practice. This study stands out in its use of a combination of simple structural (HCCR) and 

functional (MMSE) measures with a potential diagnostic value for identifying MCI subjects 

at risk of converting to AD in 5 years easily applicable in clinical practice.  

Conclusion 

The need to evaluate AD-related biological markers for identifying those at risk of AD 

conversion and to include them in MCI diagnosis has been well documented. However, there 

is no agreement on a biomarker that can be effectively applied in clinical practice. In the 

present study, we show that a combination of one brain biomarker, either HCCR or HCICV, 

and MMSE can accurately identify individuals at risk of AD conversion within five years. 

Moreover, normalization by cerebellar volume is as precise as normalization by intracranial 

volume with the advantage of being more practical in a clinical setting.  
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Abstract 

Objective: This study aimed to investigate the predictive value of cognitive/functional 

measures in combination with hippocampal volume on the probability of conversion from 

mild cognitive impairment (MCI) to Alzheimer’s disease (AD).  

Method: The Rey Auditory Verbal Learning Test for immediate memory, Mini Mental State 

Examination, a functional assessment for independent daily activities and Alzheimer’s 

Disease Assessment Scale were used as cognitive/functional measures and hippocampal 

volume as neuroimaging measure. Logistic regression and Cox proportional hazard analyses 

were used to explore the measures’ predictive values for AD conversion and time to 

conversion.  

Results: The probability of conversion from MCI to AD was associated with cognitive 

function, but this was moderated by hippocampal volume: higher at lower hippocampal 

volume and lower at higher hippocampal volume. General cognitive/functional measures 

were less predictive than immediate memory in predicting time to conversion to AD at small 

hippocampal volumes.  

Conclusion: Effectiveness of cognitive measures and subtle functional abnormality in 

predicting conversion from MCI to AD is dependent on hippocampal volume, thus combined 

evaluation should be considered. A combination of hippocampal volume and immediate 

memory appear to perform best in predicting time to conversion. 
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Introduction 

Alzheimer’s disease (AD) is a progressive degenerative disorder that involves 

cognitive decline severe enough to substantially impair daily activities. Cognitive decline 

accompanied by preserved daily activities has been specified as mild cognitive impairment 

(MCI), and is commonly known to be the prodromal phase of AD (Petersen et al., 1999). 

Approximately half of those with MCI progress to AD within five years (Pandya, Clem, 

Silva, & Woon, 2016). Identifying those who will progress to AD and predicting time to 

conversion remains an important clinical challenge.  

Cognitive and functional performance is the central component of AD/MCI diagnostic. 

Thus, it is to be expected that cognitive performance is a sensitive predictor of conversion 

from MCI to AD (Belleville et al., 2017). A combination of measures from a range of 

domains typically provides a better predictor of disease progression (Belleville et al., 2017). 

Additionally, although intact daily function is the main clinical differentiator of MCI and AD 

diagnosis, subtle decline in daily function, while it remains in the normal range, is still 

predictive of conversion from MCI to AD (Gomar et al., 2011; Li et al., 2017).  Furthermore, 

a combination of cognitive/functional measures with neuroimaging measures has been 

reported to produce significantly higher predictive accuracy (Devanand et al., 2008; Falahati, 

Westman, & Simmons, 2014; Moradi et al., 2015). Our recent study showed that the 

combination of a new hippocampal index – hippocampus to cerebellum volume ratio, HCCR 

- and Mini Mental State Examination (MMSE) could reliably identify those who progress 

from MCI to AD within five years with an area under receiver operating characteristic curve 

of 0.9 (Tabatabaei-Jafari, Walsh, Shaw, & Cherbuin, 2018). 

Cognitive/functional impairment is positively associated with neurodegeneration, but 

this association is not straightforward and there is a mismatch between the extent of neural 
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pathology and the severity of cognitive/functional impairment (Steffener & Stern, 2012). 

Although a combination of cognitive performance and neuroimaging measures has been 

previously shown to have a higher predictive value compared to either measure alone, the 

relative contribution of these measures to each other across their range is not well 

understood. To answer these important questions, this study aimed to investigate the 

predictive value of cognitive/functional measures across the range of hippocampal volumes, 

in those who have a diagnosis of MCI and convert to AD within five years. Hippocampal 

volumes and cognitive/functional measures were selected on the basis of established 

associations with MCI and AD (Jack et al., 2005; Li et al., 2017; Tabatabaei-Jafari, Shaw, & 

Cherbuin, 2015; Tabatabaei-Jafari et al., 2018). We hypothesized that hippocampal volume 

would moderate the predictive value of cognitive/functional performance. Additionally, we 

aimed to investigate how well a combination of these measures would predict time to 

conversion from MCI to AD.  

 Methodology 

Study Participants 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging 

(MRI), positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and 

early AD.  
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All participants of ADNI 1/GO/2 who were diagnosed with MCI at baseline were 

considered for inclusion. Those who were stable for at least 6 months after baseline 

diagnosis were included if they converted to AD within five years (MCIc; n=183) or 

remained stable for more than five years (MCIs; n=112).  

Details of the diagnostic criteria can be found at the ADNI web site (http://www.adni-

info.org/Scientists/AboutADNI.aspx). Briefly, Participants were classified as MCI if they 

had an MMSE greater than 24, a CDR of 0.5, a subjective report of memory concern, an 

objective memory loss, preserved daily living activity and did not meet diagnostic criteria for 

dementia. Participants were classified as having AD if they had MMSE scores less than 26, 

CDR 0.5 or 1.0 and fulfill criteria for clinically probable AD according to the Institute of 

Neurological and Communicative Diseases and Stroke/ Alzheimer’s Disease and Related 

Disorders Association. 

Neuroimaging acquisition and processing 

Participants underwent high-resolution MRI brain scans on 1.5 (N=165) or 3 T 

(N=130) scanners from General Electric, Siemens, or Philips (Milwaukee, WI, USA; 

Germany; the Netherlands respectively) using a standardized ADNI acquisition protocol for 

3D MP-RAGE sequence (Jack et al., 2008). Images which had undergone specific ADNI 

preprocessing correction steps to standardize images from different sites and platforms, were 

obtained for this study: (1) Grad wrap; a specific correction of image geometry distortion 

due to non-linearity, (2) B1 non-uniformity; B1 calibration to correct the image intensity 

non-uniformity that results when RF transmission is performed with a more uniform body 

coil while reception is performed with a less uniform head coil, (3) N3 correction; a 

histogram peak sharpening algorithm applied after grad wrap and B1 correction.  
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FreeSurfer version 5.3 (http://surfer.nmr.mgh.harvard.edu/) was used for automatic 

volumetric segmentation. The output images were visually checked for accurate 

segmentation. 

Measures 

One neuroimaging, three cognitive and one functional measure that have been 

extensively used for diagnostic purposes and cognitive and functional evaluation in clinical 

trials (Estevez-Gonzalez, Kulisevsky, Boltes, Otermin, & Garcia-Sanchez, 2003; Ito, 

Hutmacher, & Corrigan, 2012; Petersen et al., 2005) and with established associations with 

AD and predictive of MCI conversion (Ito et al., 2012; Li et al., 2017) were considered.   

Hippocampal volume (HCV): The hippocampus is one of the first brain regions to be 

impacted by AD pathology, and one of the areas with greatest shrinkage over the course of 

the disease (Tabatabaei-Jafari et al., 2015). It is also the most sensitive structural predictor of 

AD conversion in MCI individuals (Eckerstrom et al., 2008). Therefore, hippocampal 

volume (HCV), the total volume of the left and right hippocampi adjusted for age, field 

strength, and ICV using the residual regression method described elsewhere (Pintzka, 

Hansen, Evensmoen, & Haberg, 2015) was investigated as neuroimaging predictor. 

Mini Mental State Examination (MMSE): The MMSE (Folstein, Folstein, & 

McHugh, 1975) is the most widely used screening instrument for AD/ dementia (Arevalo-

Rodriguez et al., 2015).  It consists of 11 items with total scores ranging between 0 and 30, 

which lower scores reflecting more severe cognitive impairment. The items evaluate 

orientation in time and space (10 points), immediate recall (3 points), attention and 

calculation (5 points), delayed recall (3 points), language naming (2 points), following 

command (3 points), repetition (1 point), reading (1 point), writing (1 point), and 

visuospatial (1 point). 
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The Alzheimer’s Disease Assessment Scale (ADAS): The modified 13-items ADAS-

cog version (Petersen et al., 2005) was used here to assess general cognitive function. The 

modified ADAS consists of word recall (10 items), commands (5 items), construction (5 

items), naming (5 items), ideational praxis (5 items), orientation (8 items), word recognition 

(12 items), recall instruction (5 items), spoken language (5 items), word finding (5 items), 

comprehension (5 items), delayed word recall (10 items), and number cancellation (5 items) 

in total 85 scores, which the higher score the severest the cognitive impairment.  

Rey Auditory Verbal Learning Test (RAVLT): The RAVLT was used to evaluate 

episodic memory (Rey, 1941, 1964). It involves free recall of a list of 15 words in any order 

over five sequential trials. It is followed by recall of a second list of 15 words. Finally, the 

participant is asked to remember as many words as possible from the first list immediately 

following the second list recall and after 30 minutes. The scoring system of the RAVLT 

based on the correct number of words in each trial (5 in total) and evaluates a wide diversity 

of learning and memory functions including immediate memory, learning, and forgetting. 

The immediate recall score, RAVLT immediate, was considered for this study based on our 

introductory analyses that showed better predictive value for immediate memory compared 

with RAVLT learning and percentage of forgetting. The RAVLT immediate was computed 

as the total scores of trials one to five.  

The Functional Assessment Questionnaire (FAQ): The FAQ assesses abilities of 

daily living with total scores ranging from 0 to 30. A score of 0 indicates "no impairment" 

and 30 "severely impaired" (Ito et al., 2012; Pfeffer, Kurosaki, Harrah, Chance, & Filos, 

1982). The total FAQ score is the sum of 10 daily activities, with each activity being rated 

from 0 to 3 (0 = normal, 1 = has difficulty but does by self, 2 = requires assistance, 3 = 

dependent). Evaluated activities are (1) writing checks, paying bills, or balancing a 
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checkbook, (2) assembling tax records, business affairs, or other papers, (3) shopping alone 

for clothes, household necessities, or groceries, (4) playing a game of skill such as bridge or 

chess or working on a hobby, (5) heating water, making a cup of coffee, turning off the 

stove, (6) preparing a balanced meal, (7) keeping track of current events, (8) paying attention 

to and understanding a TV program, book, or magazine, (9) remembering appointments, 

family occasions, holidays, medications, and (10) traveling out of the neighborhood, driving, 

or arranging to take public transportation.  

Statistical analysis 

Statistical analyses were performed using the R statistical software (version 3.3.2). No 

missing values were present in the measures of interest. Mahalanobis distance was used for 

detection of univariate and multivariate outliers. No influential outlier was detected. Group 

differences in demographic variables were assessed by t-test for continuous variables and chi 

square tests for categorical variables. Univariate and bivariate models were used to 

investigate prediction of conversion from MCI to AD within five years as well as prediction 

of the time to conversion. Each bivariate model consisted of standardized values of 

hippocampal volume and one of four cognitive/functional measures as well as their 

interaction. The alpha level was set at < 0.05. 

Prediction of AD conversion: Logistic regression analysis (package Stats; version 3.3.2 

and package Caret; version 6.3-73) was used to quantify the magnitude of predictive values 

of the measures for predicting MCI conversion to AD. Univariate and bivariate models were 

applied. The odds ratios were used to quantify the magnitude of the main and interaction 

effects of the predictors. To graphically illustrate the effect of HCV, the probability of 

conversion for the cognitive/functional measures at different categories of HCV was 

investigated. Participants were categorized into three groups; small HCV for those with HCV 
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less than 5500 mm3 (smaller than one SD), medium HCV for the volume between 5500 to 

7500 mm3 (within one SD), and large HCV for those with larger than 7500 mm3 (larger than 

one SD).  

Prediction of time to AD conversion: Cox proportional hazard analysis (package 

survival; version 2.40-1) was used to predict the time to AD conversion using the univariate 

and bivariate models. The Hazard ratio for a one SD change in the measures was used to 

quantify the magnitude of the main and interactive effects of the measures. In the case of the 

presence of interactive effect, to better interpret the effect the analyses were repeated with 

HCV as a categorical variable (small, medium and large) in the model. To graphically 

illustrate the contribution of cognitive/functional measures and HCV on probability of 

remaining MCI over time, separate Kaplan-Meier curves were plotted for different 

combinations of categorical levels of HCV (small, medium and large as defined above) and 

cognitive/functional measures (low and high).  Cognitive/functional measures were 

categorized into low and high based on the median: 27 for MMSE, 13 for ADAS, 2 for FAQ, 

and 31 for RAVLT. Participants were categorized into six combinations for each 

cognitive/functional measure (Figure 1). For example, for ADAS, they were categorized into 

small HCV/low ADAS, small HCV/high ADAS, medium HCV/low ADAS, medium 

HCV/high ADAS, large HCV/low ADAS, and large HCV/high ADAS. 
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Figure	1:	Number	of	participants	at	different	hippocampal	and	cognitive/functional	

categories:	In	general	the	proportion	of	those	who	converted	to	AD	are	higher	at	small	

hippocampal	volume	regardless	of	the	value	of	cognitive/functional	measure.	MCIc;	mild	

cognitive	impairment	converted	to	Alzheimer’s	disease	within	five	years,	MCIs;	mild	

cognitive	impairment	stable	for	five	or	more	years,	HCV;	hippocampal	volume	adjusted	by	

age,	field	strength	and	intracranial	volume,	MMSE;	mini	mental	state	examination,	ADAS;	

Alzheimer	disease	assessment	scale	(cognitive	subscale),	RAVLT;	Rey	auditory	verbal	

learning	test	(immediate	memory	subscale),	FAQ;	functional	assessment	questionnaire	

Results 

Participants’ characteristics 

 Two hundred and ninety five MCI participants were categorized as MCI who 

subsequently converted to AD within five years (MCIc; n=183), and MCI who were stable 

for more than five years (MCIs; n=112). MCIs participants were about two years younger 

than MCIc but there were no significant differences in sex ratio or education between the 
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two groups. The proportion of APOE e4 carriers was significantly higher in MCIc than 

MCIs. All the measures of interest (HCV and cognitive/functional measures) were 

significantly different between the groups (Table 1).  

Prediction of AD conversion 

HCV, MMSE, ADAS, RAVLT, and FAQ were evaluated separately (univariate 

model) and all were significant predictors of AD conversion. Each cognitive/functional 

predictor remained a significant predictor of conversion from MCI to AD when HCV was 

added to the model, and HCV also remained a significant predictor. Additionally, HCV had 

additive effects with ADAS, RAVLT, and FAQ, whereas HCV and MMSE had interactive 

effects (Table 2). A graphical illustration (Figure 2) of the probability of conversion for the 

measures at three different categories of HCV (small, medium and large) suggests that 

having a medium to large HCV had a protective effect against conversion in MMSE from 24 

to 30. However that protective effect was smaller at lower MMSE scores. The same pattern 

was demonstrated in the normal range of FAQ, i.e. having a medium to large HCV had a 

protective effect against conversion but the protection was lower when FAQ scores were 

closer to upper limit of the normal range. The pattern was relatively different for ADAS and 

RAVLT, where larger HCV was protective in medium ADAS or RAVLT. 
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Table	1:	Participants	characteristics	and	measurements	

 MCIs MCIc Group 
difference 

Sample size 112 183 

Age; year, Mean (SD) 71.95 (7.65) 74.31 (6.90) YES 

Age range, year 57 - 88 55 - 89 - 

Male sex; N (%)  72 (64.29) 112 (61.20) NO 

Education; year, Mean (SD) 15.75 (3.03) 16.03 (2.73) NO 

APOE e4; N (%) 40 (35.71) 124 (67.76) YES 

One allele  32 (28.57) 93 (49.21) YES 

Two alleles 8 (7.14) 31 (17.32) YES 

Age at Diagnosis change; year, Mean 
(SD) 

- 
76.83 (7.05) - 

Time to Diagnosis change; year, Mean 
(SD) 

- 
2.40 (0.89) - 

MMSE, Mean (SD) 28.11 (1.49) 26.93(1.73) YES 

ADAS, Mean (SD) 13.45 (5.45) 20.19 (5.49) YES 

RAVLT immediate, Mean (SD) 38.40 (10.34) 28.85 (7.11) YES 

FAQ, Mean (SD) 1.75 (3.00) 4.96 (4.62) YES 

HCV1, mm3 ,Mean (SD) 7052.82 (909.03) 6223.92 (875.56) YES 

MCIc; mild cognitive impairment converted to Alzheimer’s disease within five years, MCIs; mild 
cognitive impairment stable for five or more years, APOE e4; Apolipoprotein E allele 4, MMSE; 
mini mental state examination, ADAS; Alzheimer disease assessment scale (cognitive subscale), 
RAVLT; Rey auditory verbal learning test, FAQ; functional assessment questionnaire. 
1 Adjusted by age, field strength and intracranial volume 
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Table	2:	Logistic	Regression	and	Cox	proportional	hazard	results:	bivariate	models	

 Prediction of conversion Prediction of time to conversion 

 Coef. SE OR (95% CI) Z, P-value Coef. SE HR (95% CI) Z, P-value 

HCV & MMSE         

HCV -0.92 0.16 0.40 (0.29 -0.54) -5.67, 
p<0.0001 

-0.53 0.08 0.59 (0.51 – 0.68) -6.89, p<00001 

MMSE  -0.63 0.15 0.53 (0.39 – 0.71) -4.17, 
p<0.0001 

-0.40 0.08 0.66 (0.57 – 0.78) -5.01, p<0.0001 

HCV: MMSE 
-0.35 0.17 

0.71 (0.50 – 0.98) -2.05,  

p<0.05 

-0.25 0.08 0.78 (0.66 – 0.91) 
-3.18, p=0.002 

HCV & ADAS         

HCV -0.66 0.17 0.52 (0.37 – 0.72) -3.86, 
p=0.0001 

-0.41 0.08 0.67 (0.57 – 0.78) -5.05, p<0.0001 

ADAS  1.18 0.19 3.26 (2.27 – 4.83) 6.16, p<0.0001 0.64 0.08 1.91 (1.62 – 2.25) 7.79, p<0.0001 

HCV: ADAS 
0.34 0.22 

1.41 (0.92 – 2.14)  1.59,  

p=0.11 

0.23 0.09 1.26 (1.07 – 1.49) 
2.70, p<01 

HCV & FAQ         

HCV -0.95 0.17 0.39 (0.27 – 0.54) -5.56, 
p<0.0001 

-0.50 0.07 0.61 (0.53 – 0.70) -6.99, p<0.0001 

FAQ 1.05 0.22 2.84 (1.90 – 4.55) 4.72, p<0.0001 0.38 0.06 1.46 (1.30 – 1.65) 6.28, p<0.0001 

HCV: FAQ 
0.15 0.23 

1.16 (0.73 – 1.77) 0.65,  

p=0.52 

0.06  0.06 1.06 (0.95 – 1.19) 
1.09, p=0.28 

HCV & RAVLT 
  

     
 

HCV -0.92 0.17 
0.40 (0.28 – 0.55) -5.44, 

p<0.0001 
-0.49 0.08 0.61 (0.53 – 0.71) 

-6.46, p<0.0001 

RAVLT  
-0.18 0.20 

0.31 (0.21 – 0.44) -6.04, 
p<0.0001 

-0.75 0.10 0.47 (0.39 – 0.58) 
-7.45, p<0.0001 

HCV: RAVLT 
-0.09 0.22 

0.91 (0.59 – 1.40) -0.41,  

p=0.68 

-0.17 0.84 0.84 (0.70 – 1.01) 
-1.84, p=0.07 

MMSE; mini mental state examination (standardized), ADAS; Alzheimer disease assessment scale 
(standardized), RAVLT; Rey auditory verbal learning test (immediate; standardized), FAQ; functional 
assessment questionnaire (standardized), HCV; hippocampal volume adjusted by age, field strength and 
intracranial volume (standardized). 



 

 

	 	
Study	4	

	

	 	

130 

Figure	2:	Predicted	Probabilities	

of	conversion	to	Alzheimer’s:	

Predicted	probabilities	of	

cognitive	measures	at	different	

hippocampal	volumes.	HCV	has	

a	reciprocal	impact	on	predicted	

probability	of	the	cognitive	

measures	for	conversion	to	

Alzheimer’s.		

HCV;	hippocampal	volume	

adjusted	by	age,	field	strength	

and	intracranial	volume,	MMSE;	

mini	mental	state	examination,	

ADAS;	Alzheimer	disease	

assessment	scale	(cognitive	

subscale),	RAVLT;	Rey	auditory	

verbal	learning	test	(immediate	

memory	subscale),	FAQ;	

functional	assessment	

questionnaire.	
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Table	3:	Risk	of	conversion	from	MCI	to	AD	over	time	(Cox	Proportional	Hazard)	by	

hippocampal	volume	categories.	

 

	 Coef.	 SE	 HR (95%CI)	 Z, P-value	

MMSE & HCV     

Medium HCV category -0.59 0.18 0.55 (0.39-0.79) -3.29, p=0.001 

Large HCV category -1.68 0.31 0.19 (0.10-0.35) -5.35, p<0.0001 

MMSE -0.07 0.14 0.93 (0.70-1.23) -0.5, p=0.61 

Medium HCV category: MMSE -0.38 0.17 0.68 (0.49-0.96) -2.21, p=0.03 

Large HCV category: MMSE -0.60 0.31 0.55 (0.30-1.00) -1.95, 0.05 

ADAS & HCV     

Medium HCV category -2.28 0.69 0.10 (0.03-0.39) -3.33, p=0.0008 

Large HCV category -3.11 1.05 0.04 (0.01-0.35) -2.96, p=0.003 

ADAS 0.03 0.03 1.03 (0.97-1.08) 0.94, p=0.35 

Medium HCV category: ADAS 0.10 0.03 1.10 (1.04-1.17) 3.14, p=0.003 

Large HCV category: ADAS 0.10 0.06 1.10 (0.99-1.23) 1.71, p=0.09 

FAQ & HCV     

Medium HCV category -0.63 0.25 0.53 (0.33-0.87) -2.53, p=0.01 

Large HCV category -2.08 0.44 0.13 (0.05-0.30) -4.74, p<0.0001 

FAQ 0.06 0.03 1.06(1.00-1.13) 1.89, p=0.06 

Medium HCV category: FAQ 0.03 0.04 1.03 (0.96-1.10) 0.81, p=0.42 

Large HCV category: FAQ 0.08 0.06 1.09 (0.97-1.21) 1.47, p=0.14 

RAVLT & HCV     

Medium HCV category 0.82 0.66 2.27 (0.62-8.28) 1.25, p=0.21 

Large HCV category 1.11 1.42 3.02 (0.19-49.31) 0.78, p=0.44 

RAVLT -0.04 0.02 0.96 (0.93-0.99) -2.05, p=0.04 

Medium HCV category: RAVLT -0.04 0.02 0.96 (0.92-0.99) -2.01, p=0.045 

Large HCV category: RAVLT -0.09 0.05 0.92 (0.83-1.01) -1.86, p=0.06 

MMSE; mini mental state examination (standardized), ADAS; Alzheimer disease assessment scale (standardized), 
RAVLT; Rey auditory verbal learning test (immediate; standardized), FAQ; functional assessment questionnaire 
(standardized), HCV; hippocampal volume adjusted by age, field strength and intracranial volume (standardized). 
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Prediction of time to conversion 

All the measures significantly predicted time to AD conversion in separate univariate 

analyses (likelihood ratio test between 33 to 90, df =1, p<0.0001). Each cognitive/functional 

predictor remained a significant predictor when HCV was added to the model, and HCV also 

remained a significant predictor. Additionally, HCV had additive effects with RAVLT, and 

FAQ, whereas HCV and MMSE, and HCV and ADAS had interactive effects (Table 2).  

The analyses were repeated using categories of HCV (small, medium and large) in the 

models instead of HCV as a continuous variable (Table 3). The results revealed that MMSE 

was not a predictor of conversion in small HCV, and that having a medium to large HCV 

respectively associated with 45% and 81% lower risk of conversion from MCI to AD over 

time compared with small HCV. An additional 32% decrease in the risk of conversion was 

demonstrated for every one SD higher MMSE score in medium HCV but not in large HCV 

in comparison with small HCV. Similarly, ADAS was not predictive in small HCV and 

having a medium to large HCV was associated with 90% and 99.5% lower risk of conversion 

over time compared with small HCV. An additional 10% increase in the risk of conversion 

was demonstrated for every one SD higher ADAS score in medium HCV but not in large 

HCV in comparison with small HCV. In contrast, RAVLT was predictive in all HCV 

categories including small HCV, although an additional 4% decrease in the risk of 

conversion was detected for every one SD higher RAVLT in medium HCV.   

Kaplan-Meier curves (Figure 3) revealed that the contribution of cognitive/functional 

measures in predicting the probability of remaining MCI over time was not constant at all 

HCV categories. For example, MMSE was not a determinant factor at small HCV, while it 

was at medium to large HCV.  
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Figure	3:	Kaplan-Meier	plots	

for	remaining	stable	over	time:	

Illustrating	the	contribution	of	

cognitive/functional	measure	

and	hippocampal	volume	on	

probability	of	remaining	stable	

over	time	in	MCI.	Participants	

were	categorized	into	six	

combinations	based	on	three	

levels	of	HCV	(small,	medium	

and	large)	and	two	levels	of	

cognitive/functional	measures	

(low	and	high).	
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Discussion  

This study aimed to investigate the predictive value of cognitive/functional measures in 

combination with hippocampal volume in order to predict conversion from MCI to AD 

within five years, as well as their capacity to predict time to conversion. The results 

demonstrated that the predictive value of cognitive/functional measures is dependent on 

HCV. The findings revealed that; (1) in predicting the conversion from MCI to AD, the 

predictive value of cognitive/functional measures was higher at lower HCV, while it was 

lower at higher HCV, and (2) in predicting the time to AD conversion, the 

cognitive/functional measures were somewhat more predictive when HCV was in the 

medium range (5500 mm3 to 7500 mm3) than at smaller or larger volumes, except for the 

immediate memory test that remained predictive across all HCV. The effect of HCV in 

predicting time to conversion was interactive with general cognitive measures (MMSE and 

ADAS) but additive with the functional assessment (FAQ) and immediate memory test 

(RAVLT).  

These findings are important because they demonstrate that severity of cognitive 

impairment or subtle functional impairment and severity of neural pathology are both 

important in predicting probability of AD conversion. Although cognitive/functional 

performance is closely linked with neuropathology, the association is not straightforward. 

There is an imperfect overlap between cognitive deficit and pathology severity 

(Neuropathology Group of the Medical Research Council Cognitive Function and Aging 

Study, 2001). Individual variability in brain/cognitive reserve is the most likely explanation 

for this effect (Medaglia, Pasqualetti, Hamilton, Thompson-Schill, & Bassett, 2017; 

Steffener & Stern, 2012; Stern, 2009). Taking the severity of the pathology into account 
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when evaluating cognitive/functional performance is a practical way to take into account the 

moderating effect of brain/cognitive reserve.  

There is accumulating evidence showing that individuals with larger brain/cognitive 

reserve may cope better with neural damage i.e. at a given level of observed pathology, 

cognitive impairment is lower in those with larger brain/cognitive reserve (Stern, 2009). 

Diversity in efficacy and capacity of neural networks as well as compensatory neural 

mechanisms such as using alternative neural networks may underlie this coping mechanism 

such that cognitive function may be maintained for some time in the context of increasing 

neurodegeneration. When brain/cognitive reserve is exhausted, further neurodegeneration 

cannot be compensated for and failure in cognitive processes clinically manifest as 

conversion from CN to MCI or MCI to AD (Steffener & Stern, 2012). Therefore, since 

individuals vary in their levels of brain/cognitive reserve, cognitive and functional 

performance alone is not a perfect predictor of decline. Cognitive reserve has been indirectly 

estimated in the literature by proxy variables including education, IQ, literacy, occupational 

complexity, participation in leisure activities and even personality variables (Steffener & 

Stern, 2012). However, the accurate measurement of brain/cognitive reserve is still the 

subject of ongoing research and much controversy (Steffener, Brickman, Rakitin, Gazes, & 

Stern, 2009; Steffener, Reuben, Rakitin, & Stern, 2011; Stern et al., 2008; Zarahn, Rakitin, 

Abela, Flynn, & Stern, 2007). Altogether, a practical way to deal with the concealing effect 

of cognitive reserve is to take into account the severity of neuropathology when evaluating 

cognitive/functional performance.   

In addition to predicting the likelihood of converting from MCI to AD, the prediction 

of time to conversion is also of clinical significance but has proven difficult to achieve. Our 

results suggest that combining HCV and cognitive/functional measures is more effective in 
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predicting time to conversion. However, the effect of HCV differs for different 

cognitive/functional measures. It has an interactive effect with MMSE and ADAS but an 

additive effect with FAQ or RAVLT immediate. That is, the increase in the risk of AD 

conversion for each one-point decrease in the MMSE (or increase in ADAS) is not constant 

at different HCV values and is smaller at larger HCV. In contrast, the increase in the risk is 

constant for every one-point decrease on the RAVLT immediate (or higher FAQ) at any 

HCV values. This may be because HCV is more reflective of AD related pathology than 

MMSE and ADAS. As a consequence, at HCV less than 5500 mm3, one unit difference in 

MMSE (or ADAS) is less influential than at larger HCV. This may explain the fact that 

MMSE and ADAS are not predictive of time to conversion at HCV less than 5500 mm3 and 

at more than 7500 mm3, but predictive in the mid-range of HCV (5500-7500 mm3). 

In contrast, the combined evaluation of performance in a specific domain (such as 

immediate memory) and the brain structure underpinning that performance (HCV) may 

provide a more precise evaluation of the degree of neurodegeneration and the level of 

brain/cognitive reserve exhaustion. This may explain our findings that RAVLT immediate 

and HCV are more sensitive predictors of time to conversion. It may also explain the lack of 

interactive effect between these two measures.  

It is important to note that because MMSE, ADAS and FAQ evaluate performance 

across a larger number of neural networks, they may reflect the development of AD 

pathology across any of those networks and thus also predict the risk of AD conversion. 

However, because only part of their variability is related to hippocampal function, they do 

not appear to be as predictive of time to conversion than RAVLT immediate.  

Many studies conducted to date have focused on combining MRI and 

cognitive/functional measures for improved diagnosis or prediction of AD conversion. Our 
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study, in contrast, investigated the nature of the interaction between MRI and 

cognitive/functional measures in predicting AD conversion and time to conversion. 

Understanding the relationship between structural and cognitive/functional measures not 

only emphasizes the benefit of combining these measures for diagnostic/ prognostic purpose, 

it may also help better conceptualize the impact of brain/cognitive reserve on clinical/MRI 

measures.  

In conclusion, Alzheimer’s disease is pathologically characterised by degenerative 

processes, the severity of which can be measured with neuroimaging techniques.  The 

functional consequence of the degeneration can be concurrently assessed with 

cognitive/functional tools. A combination of both neuroimaging and cognitive/functional 

indexes are superior in predicting disease progression than either alone. However, the present 

findings indicate that the relative contribution of neuroimaging and cognitive/functional 

measures is not constant in predicting progression from MCI to AD. Cognitive/functional 

measures are predictors of conversion but their predictive values are not constant at all levels 

of hippocampal volumes. Additionally, the most effective combination of measures to 

predict time to conversion is likely to involve those that assess hippocampal volume in 

conjunction with one of its main functions, immediate memory.  
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Abstract 

A key question for the design of clinical trials for Alzheimer's disease (AD) is whether 

the timing of conversion from mild cognitive impairment (MCI) to AD can be predicted. This 

is also an important question for the clinical management of MCI. This study aims to address 

this question by exploring the contribution of baseline brain volume and annual volume 

change, using Cox regression, in predicting the time to conversion. Individuals with MCI, 

who converted to AD (n=198), reverted to normal (n=38), or remained stable (n=96) for at 

least five years were included in this study. The results revealed that the volumes of all the 

brain regions considered were predictive of the time to conversion from MCI to AD. Annual 

change in volume was also predictive of the time to conversion but only when initial volumes 

were above a certain threshold. This is important because it suggests that reduction in atrophy 

rate, which is the outcome of some clinical trials, is not inevitably associated with delay in 

conversion from MCI to AD. 
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  Introduction 

Progressive neurodegeneration is a hallmark of Alzheimer’s disease (AD). However, it 

is also prevalent in normal ageing (Fjell et al., 2014). One major difference is that the rate of 

degeneration in the pathological progression leading to AD is substantially higher than in 

normal ageing. A meta-analysis of longitudinal studies conducted in the last two decades 

revealed that the shrinkage rate in the prodromal stage of AD --mild cognitive impairment 

(MCI)-- is at least twice that observed in normal ageing (Hossein Tabatabaei-Jafari, Shaw, & 

Cherbuin, 2015). This is seen in the whole brain and even more so in brain regions typically 

more affected in the first stage of the disease, such as the hippocampus and entorhinal cortex. 

Moreover, degeneration begins decades before the disorder emerges clinically, sometimes 

even in early adulthood (Braak & Braak, 1997). These findings underpin the hope that early 

intervention aimed at decreasing brain shrinkage may stop, or at least slow down, further 

progression to clinical AD.   

Several intervention trials, using nutrient supplements or medication, have been 

effective in reducing the atrophy rate in total or regional brain volumes in those with MCI 

(Douaud et al., 2013; Dubois et al., 2015; Kile et al., 2017; Kobe et al., 2016; Prins et al., 

2014; Zhang, Miao, Li, Wu, & Ma, 2017). However, whether these changes can modify the 

course of AD progression and delay the time to conversion remains an unresolved question. 

To address such questions, it is necessary to better understand the contribution brain atrophy 

makes to the course of the disease, and particularly to the progression from MCI to AD.  

In contrast to studies predicting conversion from MCI to AD, studies that have 

investigated the time to conversion are limited in number. They generally suggest an 

association between the pace of neurodegeneration and the time to AD conversion (Falahati 

et al., 2017; Jack et al., 2005; Liu, Chen, Yao, & Guo, 2017; Teipel, Kurth, Krause, Grothe, 
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& Alzheimer's Disease Neuroimaging, 2015). Most attempts have used spatial patterns of 

longitudinal volume loss (using machine learning) to successfully predict the time to 

conversion (Gavidia-Bovadilla, Kanaan-Izquierdo, Mataro-Serrat, Perera-Lluna, & 

Alzheimer's Disease Neuroimaging, 2017; Li et al., 2012; Risacher et al., 2010; Teipel et al., 

2015; Thung et al., 2018). Falahati el al. developed a “severity index”, based on degeneration 

in 34 measures of regional cortical thickness and 21 regional subcortical volumes and 

showed that it was predictive of the time to AD conversion for up to 3 years follow-up. The 

index showed 95% correct prediction of conversion within the first year and 80% over 3 

years (Falahati et al., 2017). Global volume change such as whole brain atrophy and 

ventricular enlargement, but not regional brain atrophy rates (hippocampal and entorhinal 

cortex), has also been shown to be predictive of AD conversion but only for a short follow-

up and in the context of a relatively small study (Jack et al., 2005). Although these limited 

numbers of studies are conceptually supportive of the idea that faster degeneration will lead 

to earlier conversion, the findings are based on a short-term follow-up and the approaches 

are complex and methodologically difficult to implement at individual level that is a 

requirement for clinical trials and clinical practice. Simple measures such as regional brain 

volume and regional atrophy rate investigated in a longer follow up may be more practical 

for individual evaluation, especially in a clinical setting or for clinical trials.  

Therefore, strong evidence supporting the use of atrophy rate in the prediction of time 

to conversion from MCI to AD is still lacking. In addition, it is necessary to clarify the extent 

to which the predictive value of atrophy rate depends on baseline volume. This is needed 

because the clinical impact of any future degeneration is likely to be highly dependent on 

prior atrophy and/or brain reserve indexed by the current volume of a region of interest. To 

address these questions, the present study aimed to investigate the value of global as well as 
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regional baseline volume and atrophy rate and their interaction over long-term follow-ups in 

predicting conversion from MCI to AD.  

Methodology 

Study Participants 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI was launched in 2003 

as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The 

primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and 

early AD.  

All participants of ADNI 1/GO/2, who were diagnosed with MCI at baseline, remained 

stable for at least six months, and underwent MRI scanning more than twice, were 

considered for inclusion. Individuals with MCI who converted to AD (MCIc, n=198), 

reverted to cognitively normal (CN; MCIr, n=38), or remained stable for more than five 

years (MCIs, n=96) were included in this study.  

Details of the diagnostic criteria can be found at the ADNI web site (http://www.adni-

info.org/Scientists/AboutADNI.aspx). Briefly, participants were classified as MCI if they 

had an Mini-Mental State Examination (MMSE) score greater than 24, a CDR of 0.5, a 

report of subjective memory concern, an objective memory loss, preserved daily living 

activity and did not meet diagnostic criteria for dementia. Participants were classified as AD 

if they had a MMSE score less than 26, CDR 0.5 or above, and fulfilled criteria for clinically 

probable AD according to the Institute of Neurological and Communicative Diseases and 
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Stroke/ Alzheimer’s Disease and Related Disorders Association. It is also important to note 

that a Geriatric Depression Scale score of less than 6 was a requirement for participation in 

the ADNI study (Petersen et al., 2010), so all participants had a GDS score of normal range.  

Neuroimaging acquisition and processing 

Participants underwent high-resolution MRI brain scans on 1.5 (N=889) or 3 T 

(N=872) scanners from General Electric, Siemens, or Philips (Milwaukee, WI, USA; 

Germany; the Netherlands respectively) using a standardized ADNI acquisition protocol for 

3D MP-RAGE sequence (Jack et al., 2008). Images which had undergone specific ADNI 

preprocessing correction steps to standardize images from different sites and platforms, were 

obtained for this study: (1) Grad wrap; a specific correction of image geometry distortion 

due to non-linearity, (2) B1 non-uniformity; B1 calibration to correct the image intensity 

non-uniformity that results when RF transmission is performed with a more uniform body 

coil while reception is performed with a less uniform head coil, (3) N3 correction; a 

histogram peak sharpening algorithm applied after grad wrap and B1 correction. For MCI 

participants, only images acquired before conversion to AD or reversion to CN were 

included. The MRI scans of individual participants were acquired on the same scanner with 

the same parameters throughout the follow-up.  

All scans were segmented with FreeSurfer version 5.3 

(http://surfer.nmr.mgh.harvard.edu/), processed with the longitudinal pipeline. For each 

participant, all scans were initially processed by the default workflow. Then an unbiased 

template (an average template) was created from all time points. The unbiased template was 

used as a base for registering all the time point scans to reduce the random within-subject 

variation in the processing procedure of the longitudinal analysis. Finally, all time points 

were longitudinally processed.  
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The output-segmented images were visually checked. The criterion was a clear 

segmentation error as assessed by an experienced neuroscientist. Scans with segmentation 

errors were re-processed and would only be excluded if the error could not be corrected. Six 

scans with error were not correctable and excluded from the study.  

Measurements 

Four brain volumes were considered as regions of interest (ROI) in this study: (1) total 

whole brain volume (sum of the total gray and white matter), (2) total ventricular volume 

(sum of the lateral, third and fourth ventricular volumes), (3) total hippocampal volume (sum 

of the left and right hippocampus), and (4) total entorhinal cortex volume (sum of the left 

and right entorhinal cortex). Baseline volume and annual change rate (atrophy rate for the 

whole brain, hippocampus and entorhinal cortex and enlargement rate for the ventricles) of 

each ROI were investigated as the measures of interest for predicting time to conversion 

from MCI to AD.   

The annual change rate for each ROI was computed by the least square linear 

regression method for each individual separately: brain volume (at each time point) was used 

as the dependent variable, with age at each time point (centred at 55, the minimum age at 

baseline) as the independent variable. The regression coefficient for age was considered as 

the volume change for each year increase in age in mm3. The regression coefficient was used 

to compute the annual change rate in percent using the formula 

100 × (the regression coefficient for age / baseline volume) 

Because the results from our previous study revealed that baseline scores on the 

MMSE, the Alzheimer’s Disease Assessment Scale (ADAS cognitive version), the 

Functional Assessment Questionnaire (FAQ), and the Rey Auditory Learning Test (RAVLT; 
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immediate memory subtype) were predictive of time to conversion from MCI to AD when 

also taking into account hippocampal volume (H. Tabatabaei-Jafari, Shaw, Walsh, Cherbuin, 

& Alzheimer's Disease Neuroimaging, 2019), the annual change rates of these measures 

were also evaluated to better characterise the participants.  

While CSF level of amyloid β 1-42 and total and phosphorylated tau were only 

available for a sub-sample of participants (236 for amyloid β, 232 for total tau, and 236 for 

phosphorylated tau out of the 332 participants) they could not be included in analyses but are 

reported to better characterise the sample investigated.  

Statistical analysis 

Statistical analyses were performed using the R statistical software (version 3.3.2). Data 

were checked for missing values and for univariate and multivariate outliers using 

Mahalanobis distance. There were no missing values or outliers.  Group differences in 

demographic variables were assessed by t-test for continuous variables and chi square tests 

for categorical variables. The alpha level was set at < 0.05. 

Cox regression analysis (package survival; version 2.40-1) using time-to-event as time 

metric was used to investigate the predictive value of brain ROIs for time to conversion from 

MCI to AD. The event in the model was specified as happened if the individual converted to 

AD, thus MCIc were coded as 1 and MCIs and MCIr were coded as 0 in the model. For MCIs 

the time-to-event was the time from baseline to last scan while in MCIc and MCIr it was the 

time from baseline to diagnosis change (Change to AD for MCIc and change to CN for 

MCIr). One-sided Wald tests were used to test associations because only increase in the risk 

of conversion to AD was predicted. Baseline volume and annual change rate were considered 

as predictors of time to conversion and were standardised to reduce the variance inflation 

factor in the model. Baseline volumes were adjusted for age, sex, field strength and 
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intracranial volume using the residual method before adopted in the models (Pintzka, Hansen, 

Evensmoen, & Haberg, 2015).  

Univariate models were used to investigate the association between brain measures and 

time to conversion. Four separate bivariate models, each consisting of standardized baseline 

volume, standardized annual change rate, and their interaction, were conducted for the whole 

brain, ventricles, hippocampus, and entorhinal cortex. Hazard ratios with 95% confidence 

intervals for a 1-SD difference in baseline volume and 1-SD change in annual change rate 

were used to quantify the magnitude of the effect. In the case of significant interaction 

between baseline volume and annual change rate (as continuous variables), to better 

conceptualise the interaction, participants were categorized into three groups based on their 

baseline volume (for each brain region separately) and the bivariate analyses were repeated 

with categorical baseline volume in the model. Categorization was based on the standard 

deviation (SD, round values): (1) small category: smaller than one SD below the mean, (2) 

medium category: one SD below and above the mean, and (3) large category: larger than one-

SD above the mean. In addition, to better visualize the contribution of baseline volume and 

annual change rate in predicting conversion from MCI to AD, the density of those converted 

to AD over time was plotted across different stratified annual change rate for each baseline 

volume category separately.  

Results 

Participants’ characteristics 

 Three hundred and thirty two participants (59% male), who were followed up for up to 

ten years (5.35 ±2.31 year), were categorized into MCIr, MCIs, and MCIc (Table 1). 

Individuals with MCIc were about three years older than other MCI. There was no 
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significant difference in education across the groups, but the proportion of males was 

somewhat lower in MCIr (47.37%) than in MCIs (60.42%) and MCIc (60.42 %). The 

proportion of individuals carrying the APOE e4 allele was significantly larger in MCIc than 

others, and more so for those with two e4 alleles (Table 1 & 2).  

Baseline brain volumes and annual changes 

For all ROIs baseline volumes and annual change rates were different between MCIc 

and other MCI types. Differences were most pronounced in the hippocampus, entorhinal 

cortex, and ventricles and followed the direction MCIr > MCIs > MCIc for volumes, and 

MCIr < MCIs < MCIc for change rates (Table 1 & 2). 

Despite significant group differences, the distribution of the brain measures revealed a 

large overlap across the groups (Figure 1).  When considered across the whole sample there 

was no significant correlation between baseline volume and annual change rate for the whole 

brain, and the ventricles. A moderate correlation was detected for the hippocampus (r=0.27), 

and a smaller correlation for the entorhinal cortex (r=0.12). However, when computed 

separately in each group, associations between baseline volume and annual change rate were 

only significant in MCIs for the hippocampus and entorhinal cortex as well as for the 

ventricles in MCIc (r=-0.19) (Table 3).   

Table	1:	Participants	characteristic	and	measurements	

	 MCIr	 MCIs	 MCIc	
Significant	pair	

difference	

Sample	size 38 96 198 - 

Age;	year,	Mean	(SD) 69.30	(8.23) 71.65	(7.48) 74.25	(7.16) MCIc	vs.	MCIr	&	MCIs 

Age	range,	year 55	-	87 57	-	88 55	–	89 - 

Male	sex;	N	(%) 18	(47.37) 58	(60.42) 121	(61.42) No	difference 

Education;	year,	Mean	(SD) 16.68	(2.52) 15.88	(3.04) 16.01	(2.78) No	difference 
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APOE	e4;	N	(%) 	 	 	 	

One	allele 17	(45) 22	(23) 102	(51.51) MCIc	vs.	MCIr	&	MCIs 

MCIr	vs.	MCIs Two	alleles 1	(3) 6	(6) 32	(16.33) 

Number	of	scan	points 11.4	(2.7) 7.7	(2.5) 5.9	(1.8) 
MCIc	vs.	MCIr	&	MCIs 

MCIr	vs.	MCIs 

Follow-up,	Range;	day 1082	-	3662 1850	-	3927 343	-	3690 - 

Follow-up,	Mean	(SD) 1704	(676) 2381	(686) 1790	(869) - 

Time	to	Diagnosis	change,	Range;	

day 
184	-	1583 - 357	-	3714 

- 

Time	to	DX	change,	Mean	(SD) 762	(411) - 1041	(603) - 

Brain	Measures 	 	 	 	

Whole	Brain 	 	 	 	

Baseline,	mm3 
1081597	

(35162) 

1095415	

(38165) 

1070628 

(42231) 

MCIc	vs.	MCIs 

MCIr	vs.	MCIs 

Annual	change	rate,	%/y -0.15	(1.20) -0.55	(0.37) -0.73	(1.26) 
MCIc	vs.	MCIr 

MCIr	vs.	MCIs 

Ventricles 	 	 	 	

Baseline,	mm3 
37782	

(14261) 

38808	

(15115) 

44744 

(17982) 
MCIc	vs.	MCIr	&	MCIs 

Annual	change	rate,	%/y 2.42	(3.94) 3.93	(2.66) 7.62	(5.74) 
MCIc	vs.	MCIr	&	MCIs 

MCIr	vs.	MCIs 

Hippocampus 	 	 	 	

Baseline,	mm3 7229	(794) 7035	(953) 6127	(912) MCIc	vs.	MCIr	&	MCIs 

Annual	change	rate,	%/y 0.13	(3.34) -1.29	(1.10) -3.12	(2.86) 
MCIc	vs.	MCIr	&	MCIs 

MCIr	vs.	MCIs 

Entorhinal	cortex 	 	 	 	

Baseline,	mm3 3787	(693) 3645	(644) 3224	(698) MCIc	vs.	MCIr	&	MCIs 

Annual	change	rate,	%/y -0.11	(5.05) -1.75	(1.56) -3.62	(5.95) MCIc	vs.	MCIr	&	MCIs 

Cognitive/functional	measures 	 	 	 	

MMSE 	 	 	 	
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Baseline 28.53	(1.50) 28.22	(1.42) 27.09	(1.78) MCIc	vs.	MCIr	&	MCIs 

Annual	change,	u/y 0.64	(1.94) -0.15	(0.29) -0.93	(1.94) 
MCIc	vs.	MCIr	&	MCIs 

MCIr	vs.	MCIs 

ADAS	cog 	 	 	 	

Baseline 10.66	(4.24) 12.08	(4.63) 19.94	(5.81) MCIc	vs.	MCIr	&	MCIs 

Annual	change,	u/y -1.97	(4.31) 0.24	(0.57) 1.50	(3.98) 
MCIc	vs.	MCIr	&	MCIs 

MCIr	vs.	MCIs 

RAVLT	immediate 	 	 	 	

Baseline 
43.55	

(10.21) 

39.70	

(10.96) 
29.64	(7.98) MCIc	vs.	MCIr	&	MCIs 

Annual	change,	u/y -1.44	(7.88) -0.46	(1.44) -2.06	(6.14) MCIc	vs.	MCIs 

FAQ 	 	 	 	

Baseline 0.87	(1.73) 1.60	(3.07) 4.61	(4.54) MCIc	vs.	MCIr	&	MCIs 

Annual	change,	u/y -0.16	(2.35) 0.22	(0.69) 1.61	(3.55) MCIc	vs.	MCIr	&	MCIs 

CSF	measures	(baseline) 	 	 	 	

Amyloid	β	level,	pg/ml 
211.54	

(50.51) 

198.23	

(48.10) 

143.19	

(42.85) 
MCIc	vs.	MCIr	&	MCIs 

TAU 
60.24	

(29.31) 

75.21	

(49.97) 

115.45	

(55.86) 
MCIc	vs.	MCIr	&	MCIs 

P-TAU 
27.69	

(14.45) 

32.21	

(49.97) 

49.61 

(26.13) 
MCIc	vs.	MCIr	&	MCIs 

MCIc=	mild	cognitive	impairment	converted	to	Alzheimer’s	disease;	MCIs=	mild	cognitive	impairment	

remained	stable	for	more	than	five	years;	MCIr=	mild	cognitive	impairment	reverted	to	cognitively.		

APOE	e4;	Apolipoprotein	E	allele	4;MMSE	=	mini-mental	state	examination;	ADAS	cog=	Alzheimer	

Disease	Assessment	Scale	(cognitive	subscale);	RAVLT	=	Rey	Auditory	Verbal	Learning	Test;	FAQ	=	

functional	assessment	questionnaire. CSF= cerebrospinal fluid; Aβ=	amyloid-beta	1–42;	TAU=total	tau	

protein,	P-TAU=phosphorylated	tau	protein.	Baseline	measures	adjusted	for	age,	sex,	field	strength	

and	intracranial	volume 
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Table 2: Statistics of participants’ characteristics (pair comparison) 

 MCIc vs. MCIs MCIc vs. MCIr MCIs vs. MCIr 

Age t(df=180.93)= 2.83, 
p<0.01 

t(df=48.34)=3.46, 
p<0.01 

t(df=62.56)=-
1.53, p=0.13 

Sex X2(df=1)=0, p=1 X2(df=1)=1.95, 
p=0.16 

X2(df=1)=1.39, 
p=0.24 

APOEe4  X2(df=2)=39.05, 
p<0.0001 

X2(df=2)=8.29, 
p<0.05 

X2(df=2)=6.51, 
p<0.05 

Education t(df=173.95)=0.35, 
p=0.72 

t(df=55.83)=-
1.50, p=0.14 

t(df=81.55)=1.58, 
p=0.12 

Number of scan point t(df=146.82)=-6.16, 
p<0.0001 

t(df=43.65)=-
11.94, p<0.0001 

t(df=62.75)=7.35, 
p<0.0001 

Brain Measures    

Whole Brain    

Baseline, mm3 t(df=206.23)=-5.04, 
p<0.0001 

t(df=59.47)=-
1.70, p=0.09 

t(df=73.34)=-
2.00, p<0.05 

Annual change 
rate, %/y 

t(df=255.60)=-1.83, 
p=0.07 

t(df=54.07)=-
2.71, p<0.01 

t(df=39.79)=-
2.03, p<0.05 

Ventricles    

Baseline, mm3 t(df=220.14)=2.96, 
p<0.01 

t(df=61.95)=2.63, 
p<0.05 

t(df=71.70)=-
0.37, p=0.71 

Annual change 
rate, %/y 

t(df=291.55)=7.54, 
p<0.0001 

t(df=71.11)=6.87, 
p<0.0001 

t(df=50.93)=-
2.18, p<0.05 

Hippocampus    

Baseline, mm3 t(df=180.89)=-7.77, 
p<0.0001 

t(df=57.39)=-
7.64, p<0.0001 

t(df=80.93)=1.20, 
p=0.23 

Annual change 
rate, %/y 

t(df=280.98)=-7.89, 
p<0.0001 

t(df=47.99)=-
5.62, p<0.0001 

t(df=40.20)=2.56, 
p<0.05 

Entorhinal cortex    

Baseline, mm3 t(df=202.35)=-5.12, 
p<0.0001 

t(df=52.45)=-
4.58, p<0.0001 

t(df=63.75)=1.09, 
p=0.28 

Annual change 
rate, %/y 

t(df=246.61)=-4.15, 
p<0.0001 

t(df=54.98)=-
3.56, p<0.001 

t(df=39.38)=1.81, 
p=0.08 
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Cognitive/functional 
measures    

MMSE    

Baseline t(df=230.58)=-5.91, 
p<0.0001 

t(df=58.73)=-
5.25, p<0.0001 

t(df=64.49)=1.09, 
p=0.28 

Annual change, u/y t(df=211.03)=-5.40, 
p<0.0001 

t(df=40.91)=-
4.19, p<0.001 

t(df=31.40)=2.35, 
p<0.05 

ADAS cog    

Baseline t(df=230.87)=12.50
, p<0.0001 

t(df=64.46)=11.44
, p<0.0001 

t(df=70.99)=-
1.69, p=0.10 

Annual change, u/y t(df=223.32)=3.35, 
p<0.001 

t(df=35.97)=3.75, 
p<0.001 

t(df=30.48)=-
2.84, p<0.01 

RAVLT immediate    

Baseline t(df=145.52)=-8.03, 
p<0.0001 

t(df=46.06)=-
7.95, p<0.0001 

t(df=72.53)=1.93, 
p=0.06 

Annual change, u/y t(df=218.50)=-3.28, 
p<0.01 

t(df=40.94)=-
0.84, p=0.41 

t(df=31.59)=-
0.41, p=0.68 

FAQ    

Baseline t(df=261.49)=6.67, 
p<0.0001 

t(df=150.96)=8.73
, p<0.0001 

t(df=116.37)=-
1.75, p=0.08 

Annual change, u/y t(df=223.71)=5.28, 
p<0.0001 

t(df=57.02)=3.65, 
p<0.001 

t(df=32.80)=-
0.92, p=0.37 

CSF measures (baseline)    

Amyloid β level, pg/ml t(df=129.55)=-8.08, 
p<0.0001 

t(df=42.37)=-
7.07, p<0.0001 

t(df=57.29)=1.26, 
p=0.21 

TAU t(df=158.41)=5.22, 
p<0.0001 

t(df=93.64)=7.73, 
p<0.0001 

t(df=94)=-1.09, 
p=0.06 

P-TAU t(df=184.35)=5.47, 
p<0.0001 

t(df=86.41)=6.42, 
p<0.0001 

t(df=76.81)=-
1.33, p=0.19 

MCIc= mild cognitive impairment converted to Alzheimer’s disease; MCIs= mild cognitive 
impairment remained stable for more than five years; MCIr= mild cognitive impairment reverted to 
cognitively.  APOE e4; Apolipoprotein E allele 4;MMSE = mini-mental state examination; ADAS 
cog= Alzheimer Disease Assessment Scale (cognitive subscale); RAVLT = Rey Auditory Verbal 
Learning Test; FAQ = functional assessment questionnaire. CSF= cerebrospinal fluid; Aβ= amyloid-
beta 1–42; TAU=total tau protein, P-TAU=phosphorylated tau protein. Baseline measures adjusted for 
age, sex, field strength and intracranial volume 
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Table 3: Correlation between baseline brain volume and annual change rate in the whole 

sample and across the groups 

 All groups MCIr MCIs MCIc 

Whole brain r=-0.03, p=0.54 r=0.23, p=0.17 r=-0.04, p=0.69 r=-0.11, p=0.13 

Ventricles r=-0.06, p=0.31 r=0.08, p=0.62 r=-0.01, p=0.99 r=-0.19, p<0.01 

Hippocampus r=0.27, p<0.0001 r=-0.09, p0.57 r=0.24, p<0.05 r=0.12, p=0.09 

Entorhinal 

cortex 
r=0.12, p<0.05 r=-0.11, p=0.50 r=0.32, p<0.01 r=0.05, p=0.53 

 

Cognitive/functional Measures 

Similar to brain measures, cognitive/functional measures were significantly different 

between MCIc and other MCI types. Differences were most pronounced in baseline volumes 

following the order MCIr <MCIs <MCIc. While, annual changes were significantly different 

between MCIc and other MCI types, differences between MCIr and MCIs did not followed a 

constant pattern (Table 1 & 2).  

CSF measures 

The pattern in CSF differences was consistent (in the sub-sample that data were 

available) across the groups. Amyloid β was significantly lower in MCIc than MCIs and 

MCIr, and total tau and phosphorylated tau were significantly greater in MCIc than MCIs 

and MCIr. These measures were not different between MCIr and MCIs (Table 1 & 2).  

Prediction of time to AD conversion  

Baseline volume and annual change rate for each brain region significantly predicted 

time to AD conversion (Z > 5, p<0.01) when they were evaluated separately (univariate 
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model). When baseline volume and annual change rate were tested in the same model 

(bivariate model) both measures remained significantly predictive in all ROIs. In addition, an 

interaction between annual change rate and baseline volume was detected. It means, in 

addition to a constant increase in the risk for each 1-SD decrease in ROIs’ baseline volume 

(1-SD increase in ventricular volume) and 1-SD increase in annual volume loss there was an 

additional risk for each measure, which was dependent on the other measure (Table 4). To 

better conceptualise this interactive effect between the two measures, analyses were repeated 

with a categorical baseline volume (small, medium and large) and annual change rate in 

percent in the model (Table 5). Following are brief reports for each ROI separately. 

Whole brain 

Atrophy rate did not predict time to conversion in whole brain baseline volumes less 

than 1,040,000 mm3, whereas it had significant predictive value at higher volumes. Medium 

to large whole brain volumes were associated with 61% and 72% lower risk of conversion 

from MCI to AD compared to small volumes. An additional 35% and 43% decrease in the 

risk of conversion were demonstrated for every one percent lower atrophy rate in medium 

and large volumes. 

Ventricles 

Enlargement rate did not predict time to conversion in ventricular baseline volumes 

larger than 55,000 mm3, whereas it had significant predictive value at small volumes (lower 

than 28,000 mm3). Medium to small volumes were respectively associated with 48% and 

83% lower risk of conversion from MCI to AD compared to large volumes. An additional 

14% increase in the risk of conversion was demonstrated for one percent greater enlargement 

rate in small volumes. 
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Hippocampus  

Atrophy rate did not predict time to conversion in hippocampal baseline volumes less 

than 5500 mm3, whereas it had significant predictive value at higher volumes. Medium to 

large volumes were associated with 69% and 95% lower risk of conversion from MCI to AD 

compared to small volumes. An additional 15% and 50% decrease in the risk of conversion 

were demonstrated for every one percent lower atrophy rate in medium and large volumes. 

Entorhinal cortex 

Atrophy rate did not predict time to conversion in entorhinal cortex baseline volumes 

less than 2800 mm3, whereas it had significant predictive value at large volumes (larger than 

4000 mm3). Medium to large entorhinal cortex volumes were respectively associated with 

47% and 86% lower risk of conversion from MCI to AD compared to small volumes. An 

additional 24% decrease in the risk of conversion was demonstrated for one percent lower 

atrophy rate in large entorhinal cortex baseline volumes. 

 

Because APOEe4 carrier prevalence was significantly higher in MCIc than other MCI 

types, post hoc analyses were done to investigate the effect of APOEe4 on the predictive 

values of baseline volumes and annual change rates and their interactions. The result showed 

that APOEe4 genotype had no effect on the predictive values of these measures as well as 

their interactions. 

Figure 2 demonstrates the distribution of individuals converted from MCI to AD 

within ten years using Cox analysis to estimate probability in each separate baseline category 

across stratified annual atrophy rates (enlargement rate for the ventricles). It reveals that at 

hippocampal baseline volumes less than 5500 mm3, conversion within 3 years occurs 
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regardless of the atrophy rate. A similar but somewhat weaker pattern was observed for an 

entorhinal cortex volume smaller than 2800 mm3, a whole brain volume smaller than 

1,040,000 mm3, and a ventricular volume larger than 55,000 mm3. In contrast, atrophy rate 

(enlargement rate for the ventricles) is determinant of probability of conversion over time at 

medium to large baseline brain volumes (medium to small for the ventricles). It is especially 

noticeable for the hippocampus with atrophy rate more than the average.   

Table 4: Cox proportional hazard 

 
Coef. SE 

HR  

(95% CI) 
Z 

Whole Brain     

Baseline volume 0.43 0.08 1.53 (1.31 – 1.79) 5.344, p<0.0001 

Annual atrophy rate 0.32 0.09 1.38 (1.15 – 1.65) 4.024, p<0.0001 

Interaction 0.21 0.07 1.24 (1.08 – 1.41) 3.110, p<0.01 

Ventricles     

Baseline volume  0.25 0.07 1.29 (1.14 – 1.46) 3.919, p<0.0001 

Annual enlargement rate 0.46 0.06 1.58 (1.41 – 1.77) 7.988, p<0.0001 

Interaction -0.16 0.08 0.85 (0.73– 0.99) -2.133, p<0.05 

Hippocampus     

Baseline volume 0.63 0.08 1.87 (1.60 – 2.19) 7.840, p<0.0001 

Annual atrophy rate 0.66 0.10 1.94 (1.61 – 2.33) 7.001, p<0.0001 

Interaction 0.45 0.09 1.56 (1.30 – 1.88) 4.755, p<0.0001 

Entorhinal cortex     

Baseline volume 0.44 0.08 1.55 (1.33 – 1.80)  5.671, p<0.0001 

Annual atrophy rate 0.56 0.10 1.75 (1.45 – 2.12) 5.768, p<0.0001 

Interaction 0.30 0.10 1.35 (1.11 – 1.64) 3.061, p<0.01 

HR; hazard ratio for 1-SD decrease in whole brain, hippocampal volume and entorhinal cortex 

volume and their annual rates as well as 1-SD increase in ventricular volume and its annual 

ventricular volume enlargement. 

All measures have been adjusted for age, field strength and intracranial volume. 
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Figure	1:	Frequency	of	baseline	volumes	and	atrophy	rates	across	the	groups.	Left	column	

shows	the	overlap	of	baseline	volumes	and	right	column	shows	the	overlap	of	atrophy	rates	

(enlargement	rate	for	the	ventricles)	across	MCI	groups.	

	MCIc=	mild	cognitive	impairment	who	convert	to	Alzheimer’s	disease,		

MCIs=	mild	cognitive	impairment	who	remain	stable	for	at	least	five	years,	and	MCIr=	mild	

cognitive	impairment	who	revert	to	cognitively	normal.			
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Table 5: Risk of conversion from MCI to AD over time (Cox Proportional Hazard ratios) in 

medium and large brain volume categories (small and medium categories in the ventricles) 

compared with the small brain volume category (large category in the ventricles). 

 Coef. SE HR (95%CI) Z, P-value 

Whole Brain     

Medium whole brain -0.96 0.21 0.39 (0.25 – 0.58) -4.488, p<0.0001 

Large whole brain -1.28 0.32 0.28 (0.15 – 0.53) -3.949, p<0.0001 

Atrophy rate 0.08 0.18 1.08 (0.76 – 1.54) 0.438, p=0.66 

Medium whole brain: atrophy rate -0.44 0.21 0.65 (0.43 – 0.98) -2.072, p<0.05 

Large whole brain: atrophy rate -0.56 0.34 0.57 (0.34 – 0.96) -2.132, p<0.05 

Ventricles     

Medium ventricles -0.65 0.32 0.52 (0.28 – 0.97) -2.068, p<0.05 

Small ventricles -1.76 0.48 0.17 (0.07 – 0.42) -3.664, p<0.001 

Enlargement rate 0.05 0.05 1.05 (0.96 – 1.15) 1.000, p=0.32 

Medium ventricles: atrophy rate 0.04 0.05 1.04 (0.94 – 1.14) 0.757, p=0.45 

Small ventricles: atrophy rate 0.13 0.06 1.14 (1.01 – 1.29) 2.065, p<0.05 

Hippocampus     

Medium hippocampus -1.16 0.28 0.31 (0.18 – 0.54) -4.122, p<0.0001 

Large hippocampus -3.09 0.50 0.05 (0.02 – 0.12) -6.252, p<0.0001 

Atrophy rate -0.04 0.05 0.96 (0.86 – 1.06) -0.818, p=0.41 

Medium hippocampus: atrophy rate -0.16 0.06 0.85 (0.75 – 0.97) -2.472, p<0.05 

Large hippocampus: atrophy rate -0.69 0.14 0.50 (0.38 – 0.66) -5.022, p<0.0001 

Entorhinal cortex     

Medium entorhinal -0.64 0.22 0.53 (0.34 – 0.81) -2.954, p<0.01 

Large entorhinal -1.97 0.35 0.14 (0.07 – 0.28) -5.600, p<0.0001 

Atrophy rate -0.05 0.03 0.96 (0.91 – 1.01) -1.623, p=0.11 

Medium entorhinal: atrophy rate -0.03 0.04 0.98 (0.90 – 1.04) -0.900, p=0.37 

Large entorhinal: atrophy rate -0.27 0.07 0.76 (0.67 – 0.87) -3.941, p<0.0001 

Coef= coefficient, SE= standard error, HR= hazard ratio.  

All measures have been adjusted for age, sex, field strength and intracranial volume. 
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Figure	2:	Distribution	of	probability	of	conversion	over	time:	Separate	illustration	of	

probability	density	measured	by	Cox	proportional	models	in	four	brain	regions	at	three	

baseline	categories	across	stratified	respected	annual	atrophy	rate	(enlargement	rate	for	

the	ventricles)	within	ten	years.	The	figure	shows	that	at	hippocampal	baseline	volumes	less	

than	5500	mm3	conversions	mostly	happen	within	three	years	regardless	of	atrophy	rate.	

Similar	patterns	but	relatively	less	determinant	are	noticeable	at	entorhinal	cortex	volumes	

lower	than	2800	mm3,	at	whole	brain	baseline	volumes	lower	than	1,040,000	mm3,	and	at	

ventricle	baseline	volumes	larger	than	55,000	mm3.	In	contrast,	atrophy	rate	(enlargement	

rate	for	the	ventricles)	has	an	impact	on	probability	of	conversion	over	time	at	medium	to	

large	baseline	brain	volumes	(medium	to	small	for	the	ventricles),	especially	noticeable	for	

the	hippocampus	with	atrophy	rate	more	than	the	average.			
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Discussion  

This study aimed to investigate of the volume or change in volume over time of 

different brain regions could predict the time to conversion from MCI to AD. The main 

finding was that the baseline volumes of the whole brain, ventricles, hippocampus, and 

entorhinal cortex and their respective atrophy rates (enlargement rate for ventricles) were all 

significant predictors of earlier conversion. However, the predictive value of these ROIs’ 

atrophy rates was highly dependent on their baseline volume.  

Although volume and change in volume over time are predictive across all ROIs, the 

effect of baseline volume on the predictive value of volume change over time is more 

distinctive in the hippocampus than other ROIs (figure 1). Individuals with hippocampal 

volumes smaller than 5500 mm3 mostly convert to AD within three years regardless of 

atrophy rate. This has an important implication for clinical trials aiming to delay AD 

conversion by reducing atrophy rate. In these trials, any treatment effects on brain atrophy 

rate should be interpreted in light of baseline volumes because at small hippocampal 

volumes, any reduction in atrophy rate is less likely to be associated with delay in disease 

progression. Indeed, it may be better for clinical trials to exclude individuals with small 

hippocampal volumes to identify interventions that can really delay the conversion by 

reducing volume loss. In addition, hippocampal volume can be used as a simple heuristics to 

identify those at risk of early conversion in clinical practice. However, it is important to note 

that the baseline brain volumes in this study were normalised for age, sex, field strength and 
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ICV, and therefore hippocampal threshold for small volume (i.e. 5500 mm3) for any 

individual must be corrected with the provided formula1. 

Although we cannot shed light on specific reasons for this hippocampal threshold we 

speculate that volumes below this value are indicative of an accumulation of pathology, 

which makes conversion to AD all but inevitable. Regional accumulation of pathology is 

associated with concomitant spread of pathology to the adjacent brain regions. At early 

stages of the disease, neuropathology and brain atrophy is mainly limited to the medial and 

inferior temporal lobes (including hippocampus and entorhinal cortex) particularly in relation 

to tauopathy. As the disease progresses, degeneration spreads into more posterior regions of 

the temporal lobe and starts to spread to the parietal lobe. By the time of conversion to AD, 

atrophy has become more severe in the areas first affected and has spread further into the 

frontal lobes (Braak & Braak, 1991; Thal, Rub, Orantes, & Braak, 2002; J. L. Whitwell et 

al., 2007). Therefore, hippocampal volume below a certain threshold is not only indicative of 

pathology accumulation in this structure but also of spreading neurodegeneration in adjacent 

regions, which together indicate poorer prognosis.  

By contrast, in those with larger ROI volumes, atrophy rate is a predictor of the time to 

conversion but is dependent on baseline volume. The pattern in larger volumes is also 

somewhat more distinctive in the hippocampus than other ROIs. Atrophy rate in those with 

medium to large hippocampal baseline volume (5500 mm3 to 7500 mm3) is determinant of 

the risk of AD conversion, whereas at volume larger than 7500 mm3 atrophy rate more than 

                                                

1Hippocampal threshold = Male => 3141+ 74.5*Age- 477.5* field strength - 0.0014* ICV 

                                           Female=>3438+ 74.5*Age-477.5*field strength - 0.0014* ICV                                            Female=>3438+ 74.5*Age-477.5*field strength - 0.0014* ICV 
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the average i.e. more than 3%/y is determinant. This can also be explained by the 

contribution of previous (reflected in baseline volume) and ensuing (reflecting in atrophy 

rate) neurodegeneration in prediction of progression. It is likely that at medium baseline 

volumes there is a balance between previous and ensuing neurodegeneration, thus both 

measures are determinant of the time to conversion. While at volume larger than 7500 mm3, 

because of low level of previous degeneration only a large atrophy rate (more than the 

average of 3%/y) can be determinant of time to AD conversion.    

The present results are particularly significant because they provide a guide on how 

structural imaging measures can assist in predicting conversion to AD as recommended by 

the National Institute on Aging and the Alzheimer’s Association although to date they have 

been unable to advise on how this should or could be done (Jack et al., 2018). This approach 

also aligns with our understanding of AD’s pathological progression, which recognizes MCI 

as a clinical stage of the disease continuum, rather than a distinct clinical entity with a higher 

risk of AD conversion (Albert et al., 2011; Dubois et al., 2016).  

It is noteworthy that the selection of the brain ROIs in this study was based on the 

typical spread of the neurofibrillary tangles and neurodegeneration in the course of the 

disease. Typically, AD’s neurofibrillary tangles aggregation and subsequent 

neurodegeneration originate in the transentorhinal cortex and spread through the 

hippocampus to subcortical structures and the lateral temporal, parietal and frontal 

association and primary cortices (Braak & Braak, 1991). However, there is some evidence 

demonstrating the presence of at least two atypical subtypes of AD that do not follow the 

typical pattern i.e. limbic-predominant AD and hippocampus sparing AD (Byun et al., 2015; 

Ferreira et al., 2017; Jennifer L. Whitwell et al., 2012). In the limbic-predominant AD 

fibrillary tangles and degeneration remain restrictively in medial temporal lobe and cortical 
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areas remain relatively preserved. The hippocampus and entorhinal cortex are severely 

involved and progression to the final stages of the disease is faster than the other subtypes 

(Ferreira et al., 2017; Murray et al., 2011). Thus, hippocampal atrophy would be expected to 

remain predictive of time to conversion, and to be consistent with the present findings. By 

contrast, in the hippocampus-sparing subtype the pathology originates in the lateral cortical 

areas and the medial temporal lobe including the hippocampus remains preserved and 

hippocampal atrophy is in line with that found in normal ageing (Ferreira et al., 2017). Thus 

hippocampal atrophy is not expected to be predictive of time to AD conversion. Of relevance 

to the present findings the possible presence of this subtype in the sample investigated – it 

affects approximately 10% of all AD cases in the population – may have negatively impacted 

the predictive value of the measures investigated, although probably only to a small extent.  

To our knowledge, the present study is the first investigation of interaction between 

brain volume and annual change rate in predicting the time to conversion from MCI to AD. 

In addition, unlike previous studies, which investigated the prediction of conversion from 

MCI to AD within follow-ups of one to three years (Jack et al., 2005; Liu et al., 2017; 

McEvoy et al., 2011; Risacher et al., 2009), the follow-up time of the present study was up to 

ten years. However, these findings need replications in other population before their 

usefulness in clinical practice can ascertained.   

Conclusion 

These findings are among the first to demonstrate that simple structural imaging 

measures can make a useful contribution in predicting disease progression from MCI to AD. 

Importantly, they provide specific guidance on volumetric thresholds in specific brain 

structures, which can be used to inform clinical assessment. However, while this is an 

important first step, further investigation in different, more diverse and larger populations is 
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needed before recommendation for their routine use in clinical trials and clinical practice can 

be confidently made.  
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DISCUSSION  
 

“Excessive reservations and paralyzing despondency have not helped 

the sciences to advance nor are they helping them to advance, but a healthy 

optimism that cheerfully searches for new ways to understand, as it is 

convinced that it will be possible to find them.”   

 Alois Alzheimer (1864-1915) 

 

 

While the progressive nature of AD pathology is well documented, prediction of its 

clinical progression is still a key question. This thesis aimed to investigate the value of simple 

structural brain MRI markers whose use to predict AD progression is feasible in daily 

practice. The present findings suggest promising prognostic roles for the hippocampus in 

predicting the risk of conversion to AD and in predicting the time within which conversion 

occurs. The combination of hippocampal volume (normalised by cerebellar volume) and 

MMSE can help identify those at risk of conversion to AD within five years. Additionally, 

the combination of hippocampal volume and measures of short-term memory is predictive of 

time to AD conversion from MCI. Individuals with hippocampal volumes smaller than a 

certain threshold have poor prognosis and they are at high risk of conversion to AD in less 

than three years. Among a large number of studies that have investigated the predictive 

values of AD biomarkers, the present collection of studies are unique in providing simple 

guidelines, which can easily be used in clinical practice and clinical trials.  
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Review of the main findings 

The aims of this thesis have been explored through a series of five studies, briefly 

reviewed as follows.  

STUDY 1: This study was a systematic review with meta-analysis. It revealed that the 

hippocampus, entorhinal cortex, whole brain and ventricles are the brain regions most 

frequently investigated in longitudinal studies focused on MCI. Among these four brain 

regions the hippocampus was investigated the most (33 of 44 studies). Atrophy rates in these 

brain regions were found to be significantly higher in individuals with MCI than in normal 

ageing, particularly in the hippocampus where it was more than double. This suggests that 

volumetric measures of these brain regions, specifically hippocampal volume, may be useful 

biomarkers of disease progression.  

Hippocampal volume comprises less than 1% of the whole brain volume (Standring, 

2008), and meta-analysis revealed that hippocampal volume loss in MCI accounts for less 

than 2% of whole brain volume loss. However, despite its limited contribution to AD-related 

whole brain atrophy, the development of AD pathology in the hippocampus is associated with 

memory dysfunction, which is the core symptom in typical AD (Dubois et al., 2014; 

Livingston et al., 2017). Therefore, because the hippocampus is among the brain regions most 

affected by AD pathology from early stages (Braak & Braak, 1991, 1997), it is likely that 

change in this brain region closely reflects the progression in the course of the disease. 

STUDY 2: The second study explored the extent to which the cerebellum is affected by 

AD-related pathology because previous histological studies have produced inconsistent 

evidence on the impact of AD pathology in this structure (Andersen, Korbo, & Pakkenberg, 

1992; Wegiel et al., 1999). Longitudinal evaluation of cerebellar volume across CN, MCI, 
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and AD revealed that its atrophy rate in MCI was not different to that found in CN, while it 

was mildly higher in AD (0.56% in AD vs. 0.36% in CN).  

The finding was consistent with previous PET studies that typically reported no 

difference in the cerebellar amyloid β and tau ligand uptake throughout the AD course (Jack 

et al., 2008; Jonasson et al., 2016; Rowe et al., 2007) which led to its adoption as a 

normalizing area for standardising uptake in other parts of the brain (Jonasson et al., 2016; 

Lopresti et al., 2005). Similarly, since cerebellar shrinkage in MCI is similar to CN, the 

cerebellum can be thought of as an area of reference with which the volume of other brain 

regions (i.e. those that are more strongly implicated in the disease) can be normalised. 

STUDY 3: Based on two previous studies hippocampal volume normalized by 

cerebellar volume (HCCR) was considered as a biomarker of neurodegeneration in the third 

study. The study tested the predictive value of HCCR and MMSE in identifying individuals 

with MCI who were at high risk of conversion to AD within five years. It showed that there 

was a specific HCCR threshold at each MMSE score level which indicated a higher risk of 

progression to AD within five years. The HCCR threshold for an MMSE score of 25 was 

7.5%, for 26 was 6.3%, for 27 was 5.3%, for 28 was 4.8%, and for MMSE scores of 29 and 

30 was 4.3%.  

The presence of different HCCR thresholds at different MMSE score levels indicate 

that the severity of neurodegeneration is not a reliable predictor of clinical progression by 

itself. In a similar way, the severity of cognitive dysfunction is not a reliable predictor of 

pathological progression. This is because there is an imperfect overlap between cognitive 

deficit and pathology severity in the course of AD (Neuropathology Group of the Medical 

Research Council Cognitive Function and Aging Study, 2001). This has been explained in 

terms individual variability in brain/cognitive reserve (Medaglia, Pasqualetti, Hamilton, 
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Thompson-Schill, & Bassett, 2017; Steffener & Stern, 2012; Stern, 2009). It postulates that 

individuals with larger brain/cognitive reserve may cope better with neural damage at a given 

level of observed pathology (Stern, 2009). The combination of neural measure (HCCR) and 

cognitive measure (MMSE) is a way to take into account the moderating effect of 

brain/cognitive reserve, and thus achieve a better prediction of clinical progression.  

STUDY 4: Identifying MCI at risk of conversion to AD prompted questions about the 

feasibility of predicting the timing of conversion. Thus, the fourth study aimed to investigate 

the predictive values of hippocampal volume and cognitive measures i.e. MMSE, ADAS, 

FAQ, and RAVLT-immediate in the prediction of time to AD conversion. Result 

demonstrated that all these measures were predictive of time to conversion, however the 

predictive value of cognitive measures was dependent on hippocampal volume. At 

normalised hippocampal volumes lower than 5500 mm3, MMSE, ADAS and FAQ were not 

predictive of time to conversion, while at higher volumes they made significant contributions. 

In contrast, RAVLT improved prediction at all hippocampal volumes including those below 

5,500 mm3. 

The findings indicate that the relative contribution of hippocampal volume and 

cognitive measures is not constant in predicting time to AD conversion. As discussed above, 

individual variability in brain/cognitive reserve is the most likely explanation for this effect. 

However, when brain/cognitive reserve is exhausted, seemingly below a normalised 

hippocampal volume of 5500 mm3, further neurodegeneration cannot be compensated for 

(Steffener & Stern, 2012) and most cognitive measures no longer contribute to predicting AD 

conversion. The practical implication of these findings is that at small-normalised 

hippocampal volumes (< 5,500 mm3) conversion to AD in the near future appears to be 

inevitable. This pattern is particularly observed in the relationship between hippocampal 
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volume and MMSE, ADAS and FAQ, perhaps because these measures evaluate functions 

underpinned by a larger number of neural networks.  

STUDY 5: Building on the findings from the fourth study, this study explored whether 

brain atrophy in MCI makes an additional contribution in predicting the timing of conversion 

to AD. It examined the four most investigated brain regions (based on the first study) which 

are known to be affected by AD pathology in the prodromal stages of the disease i.e. the 

hippocampus, entorhinal cortex, whole brain and ventricles. The atrophy rate (enlargement 

rate in the ventricles) in these ROIs was found to be predictive of time to AD conversion, but 

its contribution was dependent on ROIs baseline volumes. While the influence of baseline 

volumes on the predictive value of atrophy rate has been previously reported (Jack et al., 

2005), the present finding is novel in showing the interactive effects between baseline 

volumes and atrophy rates. At volumes smaller than (in ventricles larger than) a certain 

threshold, the rate of further atrophy was no longer predictive of time to AD conversion. The 

threshold for the hippocampus was 5,500 mm3, for the entorhinal cortex 2,800 mm3, for the 

whole brain 1,040,000 mm3, and for the ventricle 55,000 mm3. Moreover, the interaction 

between volume and atrophy was more predictive in the hippocampus.  

These findings suggest that the severity of neurodegeneration (i.e. the degeneration that 

has already occurred and is already reflected in baseline volumes) and the pace of further 

degeneration (ensuing atrophy rate) are both determinants of how fast individuals will 

progress from MCI to AD. However, when the present level of degeneration is severe enough 

as indexed by a brain volume that is less than a threshold specific to each region of interest, 

AD conversion is highly likely to occur in the near future and atrophy rate is no longer a 

useful determinant of timing of conversion. This is most likely because at small volumes 

brain/cognitive reserve may be exhausted and any further degeneration cannot be 



 

 

	 	
Discussion	

	

	 	

177 

compensated for and thus leads to severe loss of function, which impacts one’s ability to 

conduct activities of daily living. This is consistent with the emergence of impairment in 

activities of daily living in the transition from MCI to AD.  

Together, these studies suggest that the hippocampus, which has a major role in the 

core symptom of AD (memory dysfunction), is a useful and reliable biological marker of 

progression in the AD continuum. To reach to this final suggestion, the most appropriate 

statistical analysis has been used in each study with carefully considering their strengths and 

limitations in interpretation of the results. For example, a linear mixed effect model was used 

in study 2 to investigate cerebellar volume change across different cognitive status over time, 

linear discriminate analysis was used in study 3 to discriminate progressive MCI from CN 

and MCI with different prognosis, and Cox regression was used in study 4 & 5 to investigate 

the probability of conversion from MCI to AD over time.   

Synthesis of the findings to address the aims of the thesis 

The major aims and findings of this thesis address two important challenges in the field 

of ageing/AD i.e. identifying those at high risk of progression to AD and timing of 

progression. The contributions of the present results in clarifying these challenges are 

discussed in the following sections. 

Prediction of conversion from MCI to AD 

The use of a combination of cognitive and MRI measures, which was investigated in 

the third study, was not only found to be predictive of conversion from MCI to AD but was 

also found to have good psychometric properties. Indeed the combination of MMSE and 

HCCR predicted conversion to AD within five years with 83.5% accuracy (95%CI; 80.4% – 

86.2%) with 65.2% sensitivity and 90.7% specificity. Moreover, 73.5% of those who were 
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identified as MCI converter and 86.8% of those who were identified as non-converter were 

correctly identified. The small number of false positive and false negative in these results is 

similar to findings reported in other studies in the literature (see study three) despite the fact 

they used much more elaborate and sophisticated approaches. Additionally, previous studies 

investigated follow-ups between 1.5 years to the maximum of 3 years (Chupin et al., 2009; 

Minhas, Khanum, Riaz, Alvi, & Khan, 2017; Suppa et al., 2016; Wei, Li, Fogelson, & Li, 

2016), while the combination of HCCR and MMSE can predict conversion within 5 years. 

Nevertheless, this simple combination appears very effective in ruling out those who are not 

at high risk of progression to AD and ruling in those who will eventually progress to AD 

within 5 years. Given that the clinical diagnosis of MCI is associated with an overestimation 

of the risk of AD conversion, the combination of HCCR and MMSE is a practical approach 

to address this problem and provide some reassurance to the majority of those who are at 

lower risk of conversion to AD within 5 years. Although everybody may be at some risk of 

AD in old age, having some reassurance that it may not occur in the relatively near future is a 

significant achievement. However, it is important to note that there were a small number of 

MCI at risk of AD conversion who were not identified with the present combination. 

Therefore, prognosis should not entirely be based on the result of this combination and, as 

with other paraclinical assessments, the result of the combination of HCCR and MMSE 

should be interpreted in the context of the whole clinical picture of the patient. 

Therefore, the present approach may have some important clinical indications. 

However, in order to confirm that a test is clinically useful it needs to meet some minimum 

criteria. This is somewhat dependent on tools already available and the intended use. 

Typically it is considered that to be clinically useful a test should have a specificity and 

sensitivity of approximately 80%. Power et al. suggest that to be useful a test specificity and 

sensitivity should add to more than 150% (Power et al., 2013). For some indications a higher 
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sensitivity and a somewhat lower specificity may be more useful or appropriate, while in 

others the reverse may be the case (Power, Fell, & Wright, 2013; Trevethan, 2017). In 

multiple sclerosis the accepted and widely used diagnostic test (i.e. conventional structural 

MRI test) has a sensitivity of 85% (35% to 100%) and a specificity of 80% (36% to 92%) 

(Schaffler et al., 2011; Whiting et al., 2006). In the present research a sensitivity of about 

65% and a specificity of about 91% was achieved which is in line with MRI test for multiple 

sclerosis and meets Power et al. criterion (i.e. adds up to more than 150%). Given the 

proposed approach could be used in the clinic to supplement other diagnostic measure to 

provide additional guidance to patients as to the likelihood of progression to AD within 5 

years, and given that no other specific and practical tests which perform better than the 

present approach are available, it is reasonable to conclude that it has good potential for use 

in the clinic provided external validation confirms these findings. 

Although AD and MCI diagnoses were mainly established based on clinical 

assessment, current diagnostic guidelines, such as the National Institute on Aging and 

Alzheimer’s Association’s guideline (Albert et al., 2011; Jack et al., 2018) and the last 

version of the Diagnostic and Statistical Manual of Mental disorders (The American 

Psychiatric Association, 2013), highly recommend biological confirmation of MCI/AD 

diagnoses. Additionally, markers of neurodegeneration (mostly neuroimaging markers) were 

suggested for tracking MCI/AD progression (Jack et al., 2018). However, there is currently 

no evidence-based guidance outlining specific evidence-based approaches that can be 

feasibly implemented in daily practice. The practicality of using HCCR and MMSE to 

identify those at high risk of progression to AD within a clinically useful period makes this 

combination a valuable guide on how biological markers can assist in predicting AD 

progression.  
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Previous studies that used biological markers to predict conversion either used invasive 

approaches such as PET or CSF (Diniz, Pinto Junior, & Forlenza, 2008; Ma et al., 2014; 

Ritchie et al., 2017) or used complex image processing methods such as machine learning 

(Falahati, Westman, & Simmons, 2014; Moradi et al., 2015; Rathore, Habes, Iftikhar, 

Shacklett, & Davatzikos, 2017). In contrast, HCCR is a highly practical biological marker 

because MRI is more widely available and cheaper than PET imaging or spinal taps 

necessary to assay CSF markers which require the availability of inpatient care after the 

procedure to monitor possible complications. Volumetric processing of the MRI images is 

also widely available to clinicians or support staff with limited technical expertise as it can be 

easily set up on a desktop computer equipped with automatic segmentation software such as 

the FreeSurfer or even better, integrated in the scanner software. Additionally, the procedure 

is likely to be easily accepted by patients, especially if it can contribute to largely ruling out 

conversion to AD in the next 5 years, given that MRI is a non-invasive outpatient procedure 

and MMSE administration only takes 5 to 10 minutes (Arevalo-Rodriguez et al., 2015).  

It is important to note that the approach, as it has been detailed above, is suggested as a 

complementary diagnostic test in a clinical context. Consequently, the composition of the 

ADNI study, which over-samples MCI participants, is appropriate as it is representative of 

patients consulting in a memory clinic. However, it may not be useful as a screening test for 

identifying those with MCI in the general population as over-sampling of MCI participants in 

the ADNI study may lead to higher positive and negative predictive value (Steinberg, Fine, & 

Chappell, 2009), as it is not reflective of the broader population. 

Prediction of time to conversion from MCI to AD 

The second main aim of the thesis was to shed light on the timing of AD progression in 

people at risk. The results of study 4 and 5 suggested that brain volume, brain atrophy, and 
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cognitive function can all individually predict with moderate accuracy how fast individuals 

with MCI may progress to AD. This is in line with the findings of previous studies 

investigating the predictive value of MRI brain measures (Evans et al., 2010; Ewers et al., 

2012; Falahati et al., 2017; Jack et al., 2005; McEvoy et al., 2011), cognitive measures (Rabin 

et al., 2012; Silva et al., 2012; Silva et al., 2013), and their combination (Barnes, Cenzer, 

Yaffe, Ritchie, & Lee, 2014; Devanand et al., 2007; Ewers et al., 2012; Falahati et al., 2014; 

Moradi et al., 2015; D. Zhang, Shen, & Alzheimer's Disease Neuroimaging, 2012). However, 

the present findings provide a more detailed modelling of how these measures interact with 

each other and suggest simple guidelines on how to use them in combination, which can be 

used in day-to-day practice. 

An implication of these results is that the combination of measures of brain structure 

and function can better index the disease progression than each individual measure. However, 

despite the overall better prediction, combining of brain volume and cognitive measure is 

particularly effective when hippocampal volume is close to or above the average for a certain 

age. In contrast, simple measures of broad cognitive function do not add substantially to the 

predictive value of hippocampal volume when the latter is significantly lower than the 

average. Although there is an association between hippocampal volume and severity of AD 

degeneration (Leung et al., 2010), this correlation is not perfect because of normal variation 

in hippocampal volume i.e. any given volume can only partially reflect the severity of 

hippocampal neurodegeneration. Therefore, taking cognitive function (that also has normal 

variation) into account can somewhat add to the prediction of progression. This is particularly 

true at a large hippocampal volume when individual differences are more likely to be due to 

normal variation, whereas a small hippocampal volume (standardized volume smaller than 

5,500 mm3) may be more likely the result of severe neurodegeneration than normal variation. 

Hence, cognitive function may not add to the prediction at small volumes.  
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It is important to note that neurodegeneration and decrease in brain volume (and 

hippocampal volume) is not exclusively linked to AD pathology. Therefore, the present 

findings are more likely to apply when AD pathology underlies differences in hippocampal 

volume. This thesis has the advantage of using data from Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) study, whose focus is exclusively on AD (Mueller et al., 2005). ADNI is a 

longitudinal project, to date over more than 15 years, with a large number of participants 

(more than 1000) who have been evaluated every 6 to 12 months (Weiner et al., 2015; 

Weiner et al., 2017). Therefore, the present findings are the product of analyses on a well-

characterized large neuroimaging dataset, which can more reliably be generalized to 

individuals with MCI due to AD pathology than data from other sources which are more 

likely to include a wider range of underlying pathologies. The findings have some important 

implications for clinical practice and research, which are outlined in the following section.  

Relevance for clinical practice and research 

Identifying those with MCI at the highest risk of conversion to AD and estimating the 

time of conversion is likely to have important implications for clinical practice as well as 

clinical trials that aim to slow down disease progression. This is because a large proportion of 

individuals clinically diagnosed with MCI never convert to AD (Gao et al., 2014; Mitchell & 

Shiri-Feshki, 2009; Pandya, Clem, Silva, & Woon, 2016). A meta-analysis of 41 studies 

demonstrated that only 33.6% of those diagnosed with MCI at first assessment eventually 

progressed to AD with an annual progression rate of 5% to 10% (Mitchell & Shiri-Feshki, 

2009), the remainder may revert to CN or remain stable. Some studies have reported that 

reversion from MCI to CN ranged from 30% to 50% within two to five years and up to 55% 

over 10 years (Ganguli, Dodge, Shen, & DeKosky, 2004; Han et al., 2012; Ravaglia et al., 

2008; Roberts et al., 2014). Moreover, population studies have demonstrated that 37% to 
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67% of individuals with MCI remain stable over the course of 1.5 to 5 years (Manly et al., 

2008; Pandya et al., 2016; Ravaglia et al., 2008). Despite the inconsistency about the 

proportion of each MCI outcome, these findings suggest that overall the proportion of MCI 

who remain stable or revert to CN is substantially higher than that of those progressing to 

AD. This indicates the importance of identifying (with a practical approach in day-to-day 

practice) those MCI who will convert to AD from those who will remain stable or revert to 

CN.  

The findings of this thesis suggest practical approaches for identifying those at highest 

risk of AD conversion and timing of conversion. In ADNI, the MCI conversion rate is about 

50% over 10 years with less than 10% of MCI reverting to CN and about 40% remaining 

stable even after 10 years (Girard et al., 2018). While the proportion of those MCI who revert 

to CN is lower in ADNI than what has been reported previously, the proportion of those who 

convert to AD is relatively consistent with previous reports in different populations (Gao et 

al., 2014; Mitchell & Shiri-Feshki, 2009; Pandya et al., 2016).  Higher rate of reversion from 

MCI to CN in some datasets has been suggested to be due to false-positive (Park, Han, & 

Initiative, 2015), because the diagnosis is mainly based on clinical judgment and thus 

vulnerable to mis-classification (Park et al., 2015). Therefore, the lower rate of reversion in 

ADNI is likely to be due to lower rate of false positive in MCI diagnosis. This is likely 

because ADNI is a clinic-based study, whose focus is exclusively on AD pathology, and in 

which the diagnosis process implemented has been optimized through highly formalised 

clinical, cognitive and paraclinical evaluation (Weiner et al., 2015; Weiner et al., 2017). 

Implementation in clinical practice  

Since AD is a progressive disease for which no known cure is currently available, the 

focus of disease management should be individualized and based on the stage of the disease 
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the patient is in to achieve the greatest benefits possible. At the advanced stages of the 

disease i.e. mild-to-severe symptomatic AD, management is mostly symptomatic relief 

(Aaseth et al., 2016; Folch et al., 2016; Livingston et al., 2017; Yiannopoulou & 

Papageorgiou, 2013). In contrast, at the earlier stages of the disease the intention is to modify 

the progression and help the patient maintain maximum independence for longer and 

preferably at home (Livingston et al., 2017). Whereas, disease-modifying interventions are 

still under extensive research (Long & Holtzman, 2019), early diagnosis of those with MCI 

(who are relatively high functioning) provides an opportunity for the patients to prepare for 

what may come next, put their affairs in order, communicate their wishes to loved ones, 

organise support services, and thus enable them to stay longer in their home (Livingston et 

al., 2017). However, as discussed above, not all people diagnosed with MCI will progress to 

AD. Therefore, identifying those who are likely from those who are unlikely to be 

progressive can help clinicians adjust their management.  

The combination of HCCR and MMSE may help clinicians to identify MCI who are 

likely to be progressive and hippocampal volume and RAVLT will assist them in predicting 

when conversion to AD may happen. These may contribute to better management and 

planning in the early stages of the disease. This is important because to date, there is no 

approved pharmacological or specific non-pharmacological treatment for MCI (Langa & 

Levine, 2014). Instead, the general recommendation is to minimize further neurological 

damage in the early stages of the disease by optimizing patients' general medical status 

combined with approaches that may maximize general function such as regular physical 

activity, cognitive/social stimulation, and cognitive training (Langa & Levine, 2014; 

Livingston et al., 2017).  
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In addition, identifying those who are unlikely to be progressive is also clinically 

valuable.  These people may be particularly psychologically vulnerable because of fear of 

progression to one of the most devastating neurodegenerative disorders. This is even more 

likely if they also have to cope with the uncertainty of the speed of progression of their 

disease (Joosten-Weyn Banningh, Vernooij-Dassen, Rikkert, & Teunisse, 2008; Werner, 

2012). Based on the present findings they can be reassured about the lower risk of AD 

conversion in the near future, and they can also be further motivated to eliminate or control 

any modifiable AD risk factors they may have to further reduce the risk of developing the 

disease (Livingston et al., 2017).  

Implementation in clinical trials 

The ability to identify those at higher risk of conversion to AD as demonstrated in this 

thesis has also major implication for the implementation of clinical trials because it can 1) 

help select the most suitable participants, 2) contribute to ensuring the greatest treatment 

effects can be detected, and 3) assist in decreasing the costs of drug development. 

Despite more than 20 large phase 3 double-blind randomized clinical trials, no effective 

disease-modifying therapy for AD has been developed and the available approved 

medications (donepezil, rivastigmine, galantamine and memantine) are only for symptom 

relief (Long & Holtzman, 2019). As a consequence, the focus of clinical trials has moved to 

the earlier stages of the disease process i.e. the preclinical and early clinical stages (Long & 

Holtzman, 2019) including the MCI stage (Bateman et al., 2017; Reiman et al., 2011; Smith 

et al., 2010). However, the effectiveness of therapeutic interventions conducted on all those 

diagnosed with MCI may reduce because of the high proportions of individuals with MCI 

who normally and without any intervention remain stable or revert to CN (Kobe et al., 2016; 

Prins et al., 2014; Smith et al., 2010; Y. P. Zhang, Miao, Li, Wu, & Ma, 2017). Using the 
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combination of HCCR and MMSE allows targeting those who are progressive and most 

likely to benefit from interventions within the study period. 

While progressive participants with MCI may be suitable for disease-modifying 

interventions, the treatment effect is likely to be different depending on how far along the 

disease they are (i.e. AD) before the intervention. Participants who are at high risk of 

conversion to AD in the near future may not gain a significant benefit from the intervention 

because of advanced pathology. Therefore, to achieve the greatest treatment effects it is better 

to include only those MCI who are less likely to convert to AD in the near future. It indicates 

that those with small hippocampal volumes may not be the optimal targets for such 

interventions because they are at high risk of early conversion regardless of the pace of 

further degeneration. Therefore, the present findings suggest that the combination of HCCR 

and MMSE can be used to identify individuals with progressive MCI (for example at a 

MMSE score of 26, only individuals with a HCCR less than 6% should be considered for 

intervention (see figure 2, study 3)). Furthermore, from these individuals only those who have 

hippocampal volumes larger than a standardized threshold (5,500 mm3) might be investigated 

for the efficacy of intervention. Additionally, it may be better that the efficacy of intervention 

be evaluated with a combination of hippocampal volume and RAVLT immediate and not just 

by hippocampal volume or any other brain regional volume since the combination of 

structure and function will provide better estimation of the disease progression than any of 

them separately.   

Narrowing the target population of disease-modifying trials to progressive MCI who 

will not convert to AD in the near future may assist to decrease the cost of drug development. 

This is because those who are not progressive are less likely to respond to treatment and thus 

having them in the sample will impact the outcome measure of the trial. In contrast excluding 
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them will lead to requiring a smaller sample size to achieve the same statistical power 

(Noordzij et al., 2010). Given that only half of those with MCI diagnosis are progressive, the 

sample size can be decreased to less than half for testing the actual therapeutic effect. This 

may not only decrease the cost of clinical trials, but also it can eliminate the risk of exposure 

to unknown harm of new interventions in those who are not the actual target of disease-

modifying interventions.  

Strengths and Limitations  

The findings of this thesis are the results of the robust and systematic investigation of 

practical brain/cognitive measures using complex statistics that were conducted on a large, 

well-characterised longitudinal neuroimaging sample, i.e. ADNI dataset, and led to some 

clear-cut advice and biomarkers’ thresholds that can easily be used by clinicians in clinical 

settings and by researchers in clinical trials. Despite using only one dataset, the special 

characteristics of ADNI study such as the accuracy of AD related diagnoses, neuroimaging 

protocols and comparability across all collecting centres, and a relatively long follow up 

period may justify generalization of the findings. However it is important to note that there is 

a limitation in the extent that the result can be generalized to a non-clinical population and 

also to those with atypical AD pathology.  

Since ADNI is primarily a clinical study with an amnestic clinical population that uses 

stringent clinical assessment to establish the diagnosis (Weiner et al., 2017), the accuracy of 

MCI/AD diagnoses is higher compared with epidemiological studies (Mitchell & Shiri-

Feshki, 2009). This is well reflected in the small ratio of MCI reversion to CN. Given that the 

findings of the present studies are founded on participants’ diagnosis, the high level of 

accuracy of diagnosis in ADNI can allow drawing strong inferences from the findings.  
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Another characteristic of the ADNI dataset that can increase the reliability of the 

findings is careful neuroimaging protocols that ensure comparability across all centres that 

collecting data all over the United States and Canada (Weiner et al., 2015; Weiner et al., 

2017).   A standard structural MRI protocol with a high-resolution geometric MRI phantom 

for calibration has been used across the neuroimaging centres and longitudinal scans. The 

phantom consisted of polycarbonate spheres filled with water and copper sulphate in a 

precise geometrical pattern. It was scanned after each participant to detect linear and 

nonlinear spatial distortion, signal-to-noise ratio, and image contrast to identify any artefacts 

and problems for subsequent correction. This standard protocol allows comparability of 

images across different centres and over longitudinal scans. This increases the accuracy of 

predictions using the structural brain measures.  

Additionally, ADNI data is unique in regard to its long follow up period. The project 

has now been running for 15 years. This leads to a high level of certainty in describing the 

participants in regard to their prognoses i.e. stable, reversible or progressive MCI. In the 

present studies a minimum of 5 years was specified to define MCI stability. Therefore, the 

results are highly reliable in differentiating progressive from non-progressive MCI compared 

with studies with up to 2 to 3 years follow up, which they could not role out the possibility of 

further progression in those who were stable for up to 2 to 3 years.   

Despite the fact that ADNI project is a clinical-based study developed to investigate 

clinical-related challenges such as the main aims of this thesis, the extent to which the present 

results can be generalized to a non-clinical population is one of the limitations needs to be 

determined. For example the proportion of APOE e4 in the stable MCI (see the fifth study) 

was almost similar to APOEe4 proportion in the CN in ADNI (Petersen et al., 2010) i.e. 23% 

in stable MCI vs. 26.6% in CN. This may raise this speculation that those with stable MCI are 
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indeed CN who have a constant cognitive impairment that mistakenly diagnosed as MCI. 

However, the APOE e4 proportion in the ADNI’s normal participants is more than the 

average in the USA normal population (6% to 12%) and also other part of the world 

(Heffernan, Chidgey, Peng, Masters, & Roberts, 2016; Singh, Singh, & Mastana, 2006). This 

indicates that normal participants in ADNI do not represent an epidemiologically selected 

real life population of the US. Therefore, in summary some of the present findings with 

epidemiological interpretation should not be generalized to the entire population and 

population-based studies should determine the preciseness of the information derived from 

ADNI.  

Another important limitation, which is again related to the dataset used, is that ADNI 

participants represent a primarily amnestic clinical population with limited comorbidities, as 

those with cortical strokes, heart failure, substance abuse, cancer, and other pre-existing 

conditions are excluded from ADNI study. Therefore, the findings can only be generalized to 

those with typical AD and no serious comorbidities and should not be or at least should 

cautiously be generalized to all AD. This is because AD pathology typically originates in the 

medial temporal lobe and clinically emerges with memory dysfunction, whereas in an 

atypical subtype of AD (approximately 10% of all AD), called the hippocampus sparing 

subtype, the pathology originates in the lateral cortical areas and the medial temporal lobe 

including the hippocampus and thus memory function remains preserved (Ferreira et al., 

2017). Therefore, since ADNI represents an amnestic clinical population, atypical AD, who 

do not present with memory dysfunction, may not be included in the ADNI participants. 

Indeed everybody with pre-existing conditions has been excluded from ADNI study. 

However, since comorbidities are common at old age, those who are diagnosed with AD may 

also have a secondary pathology, which may affect the course of the disease (Schneider, 

Arvanitakis, Bang, & Bennett, 2007; Schneider, Arvanitakis, Leurgans, & Bennett, 2009). 
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Since postmortem pathological evaluations is only available for a limited number of 

participants who passed away (64 people up to 2019), the nature of the prevalent pathology in 

ADNI participants is not yet completely clear. The early investigation on the limited number 

of autopsies revealed that all those who were diagnosed with AD or MCI at their last visits 

had AD pathology. However, coincident pathological evidence of dementia with Lewy 

bodies and medial temporal pathology (including hippocampal sclerosis) was another 

common finding (Toledo et al., 2013). 

Taking all the strengths and limitations together and considering all the potential 

clinical benefits of the findings, it is important to acknowledge that they are based on a single 

dataset. Therefore, these findings will need to be validated in other datasets in future research 

in order for the clinical utility of the present approaches to be confirmed. 

Future research directions 

Concluding this thesis has also led to some important self-reflections, while I am 

relieved and proud to have reached the end of this particular journey, I also recognize that 

had I known when I started what I know now, I may have pursued a similar yet slightly 

different path. For example, I may have prioritized sourcing a different dataset to validate the 

present results in a different population as this would have strengthened results and provided 

needed evidence for implementation in clinical practice, I may have investigated more 

closely MCI reverters as this is a poorly understood population that merits more attention, or 

I may have attempted to contrast MRI/cognitive markers with other biological markers e.g. 

cerebrospinal fluid markers. 

The present findings raise a number of key questions regarding the nature of the 

pathology affecting those with MCI who revert to CN, the contribution of second pathology 
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in AD progression and the predictive value of spread of pathology instead of regional 

severity, which should be addressed by future research. 

It is not yet clear whether the pathology of those who remain stable or revert to CN is 

different from those who convert to AD. The progressive nature of AD pathology suggests 

that individuals with MCI should eventually progress to AD (Jack et al., 2018; Livingston et 

al., 2017). However, there is no specified time frame for the conversion even in the presence 

of confirmatory evidence of AD pathology. In this research, conversion within five years was 

considered for practical reasons (e.g. possibility of earlier intervention compared with 

previous studies) it does not mean that all those who remained stable MCI after five years did 

not have substantial AD pathology. Therefore, future studies should aim to compare 

pathological difference between MCI who remain stable or revert to normal with MCI who 

convert to AD within five years as well as to cognitively normal people.   

Secondly, while the pace of progression from MCI to AD is assumed to be due to the 

pace of progression in AD pathology, the possibility that clinical progression is driven by the 

worsening of an additional pathology cannot be ruled out. Indeed, previous studies have 

revealed that about a large number of individuals diagnosed with AD present with substantial 

non-AD pathology, most commonly vascular (Schneider et al., 2007; Schneider et al., 2009). 

Therefore, the contribution of a secondary pathology to progression and timing of 

progression from MCI to AD adds further uncertainty that needs to be clarified. This is 

important because management of those MCI with an additional pathology may be different 

from management of those with pure AD pathology (Biessels, 2016; O'Brien & Thomas, 

2015; Staszewski et al., 2017; Sun, 2018).  

Another area requiring further investigation is whether the local accumulation of 

pathology (as indexed by hippocampal atrophy) or the spread of pathology to new brain 
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regions is most predictive of progression to clinical AD. It is important to address this 

question because previous studies using machine-learning approaches suggest that the pattern 

of progression in neurodegeneration is a significant determinant of clinical progression 

(Falahati et al., 2014; Moradi et al., 2015). Since change in the pattern of neurodegeneration 

is indeed the result of change in the local accumulation of pathology and the spread of 

pathology to new brain regions, measures of regional pathology and spread of pathology may 

be each separately predictive of AD progression. The present research has explored the 

predictive value of local degeneration in brain regions mostly affected in AD pathology 

including the hippocampus. Therefore, further study needs to investigate the predictive value 

of the spread of pathology and its relationship with regional progression.   

Conclusion 

This thesis has demonstrated that it is possible to identify those in the early stages of 

the Alzheimer continuum, who can still live independently but who are at higher risk of 

further substantial decline in neurocognitive functioning in the near future. Importantly, it 

showed that combinations of simple measures are precise enough for evaluating the risk as 

well as the pace of progression in this people. The main advantage of using this combination 

of biomarkers is its feasibility and practical implementation in day-to-day practice and 

clinical trials.  

These findings have important implications for clinical practice as clinicians can easily 

use these measures to target those with a poor prognosis and avoid an unnecessary more 

intensive treatment for those likely to be following a relatively benign course of the disease. 

This evidence is also likely to help policy makers and managers of health systems direct the 

available resources to those who need them the most. The benefits of these measures are not 

limited to their use in clinical practice, as they can also be used in clinical trials, for example, 
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to target only those individuals who are most likely to benefit from interventions i.e. those 

with substantial risk of progression to dementia. 

The fact that the majority of individuals with cognitive impairment may be at lower risk 

of progression to Alzheimer’s than originally thought based on their cognitive assessment 

emphasizes the necessity of concomitant neurobiological evaluation to confirm that 

impairment is due to AD-related neurodegeneration. MRI constitutes a non-invasive tool 

providing robust and valid evaluation of neurobiological changes in Alzheimer’s pathology. 

Thus, the present findings provide useful guidance on how to use the interplay between 

function and structure to identify those at higher risk and to predict their progression over 

time.  
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Cerebral atrophy in mild cognitive impairment: A systematic review with
meta-analysis
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Abstract Introduction: Although mild cognitive impairment (MCI) diagnosis is mainly based on cognitive
assessment, reliable estimates of structural changes in specific brain regions, that could be contrasted
against normal brain aging and inform diagnosis, are lacking. This study aimed to systematically re-
view the literature reporting on MCI-related brain changes.
Methods: The MEDLINE database was searched for studies investigating longitudinal structural
changes in MCI. Studies with compatible data were included in the meta-analyses. A qualitative re-
view was conducted for studies excluded from meta-analyses.
Results: The analyses revealed a 2.2-fold higher volume loss in the hippocampus, 1.8-fold in the
whole brain, and 1.5-fold in the entorhinal cortex in MCI participants.
Discussion: Although the medial temporal lobe is likely to be more vulnerable to MCI pathology,
atrophy in this brain area represents a relatively small proportion of whole brain loss, suggesting
that future investigations are needed to identify the source of unaccounted volume loss in MCI.
! 2015 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

Keywords: Mild cognitive impairment; Brain atrophy; Hippocampus; Entorhinal cortex; MRI

1. Introduction

AlthoughAlzheimer’s disease (AD)wasfirst characterized
more than 100 years ago, little concrete progress has been
made toward an effective cure of this progressive disorder.
Identification of mild cognitive impairment (MCI) as a pro-
dromal phase of AD has raised hopes of the possibility of pre-
venting or modifying progressive neurodegeneration in AD.
Indeed, initial attempts at early therapeutic interventions
have reported some successes in the early phase ofMCI [1,2].

Clinically,MCI is defined based on the detection of cogni-
tive decline greater than that expected at any given age and
less than that observed in dementia in the context of preserved
activities of daily living and the absence of other neurological

disorders. However, clinical evaluation is complicated by
heterogeneity in cognitive reserve and diversity in daily func-
tion. Considering that each cognitive measure is designed to
target a particular brain function, selecting which cognitive
measures are appropriate to assess functional decline in the
MCI trajectory is a matter of concern not only for diagnostic
purposes but also in the evaluation of clinical trials [3].
Besides higher uncertainty in characterizing MCI based on
functional impairment [4], cognitive evaluation is not
currently informative enough for demonstrating patterns of
deterioration that will accurately discriminate those who
will remain stable from thosewhowill convert to AD or other
dementias. Therefore, without a better understanding of the
neurologic basis of the disorder, as well as the identification
of structural biomarkers, reliable detection of MCI and esti-
mation of future risk of dementia remain elusive.

Assuming that impairment in cognitive function is the
result of neurodegeneration, monitoring structural brain
changes may be beneficial in understanding the pathophysi-
ology of MCI. Recent development in neuroimaging
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technologies has provided an opportunity to investigate
structural biomarkers in living subjects. In the past two de-
cades, the use of magnetic resonance imaging (MRI) to
assess cerebral structure has becomewidespread. Most early
studies have used a cross-sectional design and have sug-
gested that, although the presence of structural differences
in any particular brain area is not specific to MCI or AD
(i.e. it can also be observed in “normal” aging), the pattern
of regional atrophy rates and the topological progression
of atrophy are quite characteristic, particularly in AD [5].
Moreover, these studies also revealed that regional atrophy
rates are different in MCI and AD [6]. Consequently, identi-
fication of regionally specific atrophy rates in MCI may be
beneficial for detecting the early stage of AD development,
as well as evaluating the magnitude of expected structural
changes in clinical trials.

Available longitudinal studies have identified a subset of
brain areas that may be involved in MCI pathology. An
important next step is to combine, contrast, and integrate
the findings from different studies to produce normative in-
formation on regional atrophy rates, and to identify the most
sensitive anatomic biomarkers characteristic for MCI. As far
as we are aware, no study has systematically summarized
these findings to date. Therefore, the aim of this study was
to systematically review the literature concerning MCI-
related structural brain changes.

2. Methodology

This systematic review was conducted based on an estab-
lished methodology [7], using prespecified search terms and
inclusion and exclusion criteria, and was performed accord-
ing to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses guidelines [8].

To retrieve all references relating to longitudinal brain
structural changes in MCI published in the MEDLINE data-
base, a literature search was conducted through the PubMed
portal in two stages, (1) at the beginning of the study (2) and
at the end of February 2015 to update pooled data with the
most recent published studies. The following search string
was used for both searches; (Brain or Cerebral or Cortical)
And (Mild Cognitive Impairment Or MCI Or Cognitive dis-
order Or Neurocognitive disorder Or Cognitive decline Or
Cognition) And (Structur* Or Volum* Or Thickness Or
MRI Or Neuroimaging) And (Atrophy Or Change Or Longi-
tudinal Or shrinkage). Both literal and Medical Subject
Heading searches were performed. Searches were limited
to studies published in English and focusing on human sub-
jects.

2.1. Selection criteria and selection process

To be selected, studies were required to use a longitudinal
methodology with two or more structural MRI scans con-
ducted over a follow-up of 12 months or more. As MCI sta-
tus defined the group being compared with healthy controls

(HC), cognitive status of HC and MCI was required to be
stable between all time points. Studies were required to
use Peterson or Winblad criteria for MCI diagnosis. Cross-
sectional, experimental, and review articles were excluded.
Studies were also excluded if they had a combined total of
less than 30 HC and MCI participants. All retrieved articles
were first screened by title and abstract and irrelevant studies
were excluded. The full text of all remaining articles was
double screened by two reviewers (H.T.-J. and M.E.S.)
against selection criteria.

2.2. Data extraction and structural measures

Two reviewers (H.T.-J. and M.E.S.) extracted data from
all included articles and any disagreement was resolved by
consensus. Data extracted consisted of (1) study design
including sample source, number of participants in each
group, type of structural measurement, and follow-up
period; (2) participants’ demographics including age, gender
ratio, APOE ε4 ratio, years of education, dropout rate, MCI
subtype for MCI groups, subjective memory complaint for
HC, and handedness; (3) measurement details including
number of scans, scan intervals, follow-up period, MRI pa-
rameters, segmentation method, and method of analysis;
and (4) study results including areas of interest (left and
right) and effect sizes (left, right, and total).

All structural measures were evaluated, and studies were
categorized according to the following structural measure-
ments; voxel-based morphometry (VBM), volumetry,
tensor-based morphometry (TBM), cortical thickness, sulcal
morphometry, diffusion tensor imaging (DTI), white matter
hyperintensities (WMH), susceptibility weighted imaging
(SWI), and other structural measures.

Studies meeting the selection criteria were assessed for
quality using the Newcastle-Ottawa scale [9]. The
Newcastle-Ottawa scale is an instrument for assessing the
quality of studies included in a systematic review. Each
study was evaluated on eight items classified into three cat-
egories including the selection of the study groups, the
comparability of the groups, and the ascertainment of
outcome of interest. Each quality item was awarded by a
star (except two for comparability) and for each study up
to nine stars in total.

2.3. Multiple reports

In the case of multiple reports for the same cohort, or any
overlap of participants, an annual change rate estimate from
only one publication was used in any single analysis. The
most appropriate reports were selected based on recency,
availability of effect size and moderators, sample size, and
methodology. Studies that reported effect sizes (or provided
them after contact) were the first priority and from those the
most recent study with the largest sample size was selected.
If there was more than one study similar in sample size and
recency, the one with the highest quality rating was selected.

H. Tabatabaei-Jafari et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 1 (2015) 487-504488



When different studies on the same cohort reported on
different brain areas, estimates from the same cohort but
from different studies might be used in different analyses.

2.4. Statistical analysis

The R statistical software (version 3.1.1) was used for the
statistical analysis, and the metafor package (version 1.9-4)
was used for meta-analysis. The annual percentage mean at-
rophy rate was considered as the effect size, and calculation
of required standard error (SE) for meta-analysis was based
on the standard deviation and number of participants in each
group for each individual study. Availability of mean annual
atrophy rate (%/year), either reported or computed based on
other reported results, was the essential requirement for the
meta-analysis. Where insufficient data were available for in-
clusion in the meta-analysis, authors were contacted directly
to seek additional information.

2.4.1. Meta-analysis
It was assumed that the heterogeneity in the atrophy rates

across reviewed studies was the impact of the between-study
and within-study heterogeneities, and the random effects
for between- and within-studies were normally distributed.
A random-effects model using the restricted maximum
likelihood estimator was applied for all analyses. Random-
effects model was chosen based on the assumption that cere-
bral atrophy rates (effect size) are not similar in population
with different characteristics and there is no single effect
size representative of all population but an array of effect
sizes. Therefore, each included study was assumed to repre-
sent a random sample of a particular effect size and a
random-effects model estimates a mean of the distribution
of these effect sizes [10]. Separate meta-analyses were per-
formed for healthy and MCI atrophy rates and also for the
mean difference in atrophy rate between MCI and healthy
controls (MCI-HC) across each cerebral region.

Heterogeneity across studies was assessed with the Q and
I2 statistics. P value,.01 considered as significant heteroge-
neity in the Q test and in the I2 statistic values of 25%, 50%,
and 75% were suggestive of low, moderate, and high hetero-
geneity, respectively. Heterogeneity in the atrophy rates was
also assumed to be in part the result of disparities in age, sex
ratio, APOE ε4 ratio, and education levels in the studies’ par-
ticipants as well as scan intervals and different segmentation
approaches. Therefore, these variables were investigated as
possible moderators for subgroup and meta-regression ana-
lyses. Subgroup analyses were conducted to investigate the
impact of manual versus automated segmentations. Meta-
regression analyses using a mixed-effect model were con-
ducted to determine the influence of moderators.

To identify studies contributing excessively to heteroge-
neity, sensitivity analyses were conducted using the
leave-one-out method. Visual evaluation of asymmetry of
the funnel plots was used to assess the bias in the
meta-analyses results toward publication of studies with

significant outcomes. The trim-and-fill method was used to
estimate the number of missing studies (representative of un-
reported effect sizes) in the meta-analysis to estimate
adjusted effect sizes [11].

3. Results

3.1. Literature search and studies included in the review

The search strategy identified 5220 unique citations. Af-
ter exclusion of irrelevant studies based on title and ab-
stracts, 219 publications remained for full-text assessment.
A further 151 studies did not meet the inclusion criteria
and were excluded leaving 68 studies for further analysis
(Fig. 1).

Of the studies included, 45 assessed brain structure with
volumetry, nine with cortical thickness, and 18 with a wide
variety of structural measurements including sulcal
morphometry, VBM, TBM, DTI, WMH, SWI, and quantita-
tive scaling methods such as the medial temporal atrophy
scale (MTAS) [12] and the brain atrophy and legion index
(BALI) [13] (Table 1).

3.2. Study quality

All studies except one, which was rated 6 [14], were rated
as high quality (eight or nine stars) based on the Newcastle-
Ottawa scale (Table 1). Fifty-four of 68 studies fulfilled the
maximum of nine stars, two studies were rated as not repre-
sentative of the population due to a higher rate of medical
diseases in the participants, and one study did not describe
the derivation of the HC. Twelve studies only controlled
for age to establish comparability between controls and
MCI participants.

3.3. Multiple reports

A number of multiple reports were identified. Forty-six
studies reported on participants taking part in the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI; to date
up to 229 HC and 395 MCI), four studies used Mayo AD
research center and AD patient registry data (up to 91 HC
and 72 MCI), and one study used a mixture of ADNI and
Mayo data. There was also an overlap of participants in
two studies reported by Henneman et al. [15,16]. A total
of 15 publications reported on separate independent
cohorts including in total 629 HC and 571 MCI
participants from 10 countries across four continents (eight
in Europe, five in North America, one in Asia, and one in
Australia).

3.4. Compatible studies for meta-analysis

A sufficient number of compatible studies was only avail-
able for meta-analysis of volumetric measurements. Quanti-
tative report of structural measures in VBM and TBM
studies were not comparable. Brain areas investigated by
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cortical thickness or DTI studies were not anatomically
compatible. There was only one study in each given category
of sulcal morphometry, WMH, and SWI. Finally, studies us-
ing MTAS and BALI scales were all based on the same
cohort except for one study (Table 1). Therefore, of the 68
studies that met the selection criteria, 24 studies could not
be included in the meta-analyses, leaving 44 volumetric
studies for inclusion. Because too few sporadic reports of lat-
erality were available, this factor could not be investigated.
There was also no report of handedness.

Volumetric studies evaluated a wide variety of brain re-
gions including the whole brain, hippocampus, entorhinal
cortex, ventricles, parahippocampal gyrus, amygdala, fusi-
form gyrus, superior temporal, medial lateral and inferior

temporal lobes, medial and lateral orbitofrontal cortex, supe-
rior frontal cortex, cingulate cortex, and parietal and occip-
ital lobes. Besides the first four measures, other brain areas
were investigated sporadically. Three of 44 studies evaluated
brain areas incompatible with other studies and were not
considered for meta-analysis. Forty-one studies were identi-
fied as potentially compatible and were included in meta-
analyses. These studies evaluated annual atrophy rate of
the whole brain (n 5 10), the hippocampus (n 5 33), and
the entorhinal cortex (n 5 10), as well as annual expansion
rate of the ventricles (n 5 14).

Of 41 studies, 29 were excluded because of overlap in
participants and one because of missing data which could
not be obtained from authors (Table 1). Although three

Fig. 1. Screening and selection process for studies included in the systematic review and the meta-analyses.
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studies were available for ventricle expansion analysis, re-
ported expansion rates did not use the same units (mL/year
vs. %/year) and requests for more information from authors
was not successful. Therefore, meta-analysis could not be
conducted for this region. Final numbers of studies included
in the meta-analyses were four for whole brain, eight for hip-
pocampal, and three for entorhinal cortex atrophy (Table 2).

3.4.1. Whole brain atrophy
Four studies [16–19], which were included for whole

brain analysis (Fig. 2), surveyed 351 control and 466 MCI
participants over an average follow-up of 1.30 years (range
1.00–1.80). Estimated mean atrophy rates were 1.02%/year
(SE 5 0.13) for MCI and 0.57%/year (SE 5 0.03) for
controls. Thus, the additional annual total brain atrophy
attributable to MCI above the effect of “normal” aging was
0.46%/year (SE5 0.10). There was no significant heteroge-
neity (based on the Q test) for whole brain atrophy rates in
HC and MCI after removing the effect attributable to normal
aging (MCI-HC). The proportion of real observed variance
(not related to random error) between studies (I2) was mod-
erate in MCI-HC and high in MCI (Table 3).

3.4.2. Hippocampal atrophy
Of eight studies [15,17–23], which were included for

hippocampal meta-analysis, one study [22] reported an in-
crease in hippocampal volume in MCI and a decrease in vol-
ume in HC as well as standard deviations larger than twice
the mean atrophy rates. These characteristics were inter-
preted as being potentially methodologically problematic
and after further investigation, the study was excluded
from the meta-analysis because it was remarkably different
in quality and design compared with other studies in the
group, including gender proportion misbalance and high
level of medical illness in the participants.

The remaining seven studies estimated hippocampal atro-
phy rates for 487 HC and 540 MCI participants with an
average follow up of 1.97 years (range 1–3.8) (Fig. 2). The
estimated mean atrophy rates were 2.53%/year
(SE 5 0.33) for MCI, 1.12%/year (SE 5 0.16) for controls,
and 1.35%/year (SE5 0.19) for MCI after removing the ef-
fect attributable to normal aging. Significant heterogeneity
was found for hippocampal atrophy rates in MCI and
MCI-HC but not in HC. The proportion of real observed
variance (not related to random error) between studies (I2)
was moderate to high in all groups (Table 3).

3.4.3. Entorhinal cortex annual atrophy
Three studies [19,23,24], which were included for

entorhinal cortex meta-analysis (Fig. 2), surveyed 257 con-
trols and 258 MCI participants, followed up for 2.28 years
(range 1.25–3.00). Estimated mean atrophy rates were
3.75%/year (SE 5 1.60) for MCI and 2.41%/year
(SE 5 1.30) for HC. After removing the effect attributable
to normal aging, the mean atrophy rate exclusively associ-
ated with MCI was 1.13%/year (SE 5 0.33). SignificantT
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heterogeneity was identified in entorhinal cortex atrophy
rates in MCI and HC but not MCI-HC. The proportion of
real observed variance (not related to random error) between
studies (I2) was moderate to high in all groups (Table 3).

3.4.4. Sensitivity analyses
The influence of single studies was investigated with

leave-one-out analyses. Globally, the analysis revealed no
particularly influential study and showed consistency in re-
ported estimates.

3.4.5. Publication bias
Some evidence of publication bias was detected based on

the funnel plot asymmetry diagnostic and the trim-and-fill
test. The funnel plots revealed some degree of asymmetry
for all three groups of analyses (the whole brain, hippocam-
pus, and entorhinal), and the trim-and-fill method identified
one or two missing studies in each analysis group. One
missing study was identified in the whole brain and hippo-
campal analyses and two studies in entorhinal analysis, rep-
resenting 20%, 12.5%, and 40% of included studies,
respectively. Although asymmetry and presence of missing

studies suggest some publication bias toward studies report-
ing higher atrophy rates, the differences between actual and
reported atrophy rates were generally small, particularly for
the hippocampus (Fig. 3).

3.4.6. Subgroup and meta-regression analyses
The influence of segmentation methods (automatic vs.

manual), MCI subtype (amnestic MCI vs. MCI), female pro-
portion, APOE ε4 genotype, and sample mean age on pooled
estimates was investigated by subgroup meta-analyses and
meta-regression on hippocampal volumetry only, as too
few studies were available for other regions of interest
(Table 3). Subgroup analyses showed that the estimated
mean hippocampal atrophy rates in studies [15,19,21]
using manual segmentation were significantly higher than
studies [17,18,20,23] using automatic segmentation (Fig. 2
and Table 3) by 68% in HC, 40% in MCI, and 7% in MCI-
HC. Additionally, subgroup analysis of MCI subtypes
(amnestic MCI vs. MCI) showed significantly higher hippo-
campal atrophy rate in amnestic MCI [19,21] compared with
MCI (all subtypes) [15,17,18,20,23] (2.68%/year
[SE 5 0.66] vs. 2.47%/year [SE 5 0.42]) in MCI

Fig. 2. Forest plots of atrophy rates for (A) whole brain, (B) hippocampus, and (C) entorhinal cortex in healthy controls, MCI, and the difference in atrophy rate
between MCI and healthy controls (MCI-HC). Studies are ordered by year of publication. Abbreviations: MCI, mild cognitive impairment; CI, confidence in-
terval.
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participants. After removing the effect attributable to normal
aging, the hippocampal atrophy rate was significantly higher
in analyses including all generic/unspecified MCI (1.35%/
year, SE 5 0.25) compared with those including amnestic
MCI only (1.33%/year, SE 5 0.39). However, the atrophy
rate difference was relatively small especially in MCI-HC
analyses, and also numbers of studies in each subgroup
were limited. In addition, (as it is notified in the discussion)
studies, which were not specific in detecting MCI subtype,
generally used cognitive measures that commonly used for
detecting amnestic MCI in other studies.

The influence of age, female gender, and APOE ε4 rate on
hippocampal atrophy was separately investigated in HC,
MCI, and MCI-HC. Except for APOE ε4, which signifi-
cantly predicted the unexplained variance (55.38%) in
annual atrophy rate, age and female gender did not
contribute substantially to the heterogeneity detected be-
tween studies. A mixed-effects model using age, female
gender, and APOE ε4 rate as moderators accounted for

79.7% of heterogeneity in hippocampal atrophy rate in
MCI-HC; however, only APOE ε4 rate was a significant
moderator of atrophy rate (Table 3).

3.5. Incompatible studies

3.5.1. Ventricular expansion
Although it was not possible to produce a pooled estimate

of ventricular expansion rate because of insufficient reports
of separate cohorts, the remaining studies reported very
similar estimates [17,18,25] of, on average, twofold
(3.30%/year vs. 2.40%/year in one report and 2.85 mL/
year vs. 1.43 mL/year and 3.62 mL/year vs. 1.14 mL/year
in two other reports) increase in expansion rate in MCI
compared with HC. When considering that whole brain
volume is about 1200–1500 mL, reported ventricular
expansion rate is approximately 0.1%/year of the whole

Table 3
Random-effect models of whole brain, hippocampus, and entorhinal cortex atrophy rates in healthy controls, MCI, and in MCI after removing the effect
attributed to normal aging and subgroup and meta-regression analyses of hippocampal atrophy rate in MCI after removing the effect attributed to normal aging

Random-effects model

Brain areas K Age
Estimate
%/year SE 95% CI Z-value P value T2 T I2 % H2

Test for heterogeneity

df Q P value

Whole brain (K 5 4)
HC 351 71.45 20.5665 0.0328 20.6308 20.5023 217.2757 ,.0001 0 0 0 1.0 3 1.8707 .5997
MCI 466 72.92 21.0203 0.1263 21.2679 20.7727 28.0772 ,.0001 0.0477 0.2185 79.98 4.99 3 12.6691 .0053
MCI-HC — — 20.4634 0.0987 20.6569 20.2699 24.6944 ,.0001 0.0194 0.1393 51.86 2.08 3 5.7540 .1242

Entorhinal cortex (K 5 3)
HC 257 75.40 22.4146 1.3036 24.9696 0.1505 21.8522 .0640 5.0168 2.2398 98.81 83.72 2 89.1356 ,.0001
MCI 258 74.60 23.754 1.6065 26.9028 20.6052 22.3367 .0195 7.5905 2.7551 98.51 67.29 2 83.2905 ,.0001
MCI-HC — — 21.1301 0.3373 21.7911 20.4691 23.3509 .0008 0.1936 0.4400 52.49 2.10 2 4.1965 .1227

Hippocampus (K 5 7)
HC 487 71.54 21.1197 0.1622 21.4376 20.8019 26.9048 ,.0001 0.1513 0.3890 86.22 7.26 6 34.2283 ,.0001
MCI 540 73.09 22.5303 0.3261 23.1694 21.8912 27.7598 ,.0001 0.6741 0.8211 92.87 14.02 6 78.1854 ,.0001
MCI-HC — — 21.3450 0.1906 21.7186 20.9715 27.0571 ,.0001 0.1556 0.3945 64.69 2.83 6 16.5628 .0110

Subgroup and meta-regression analyses

Hippocampus;
MCI-HC K Age Coef SE 95% CI Z-value P value T2 T I2 % H2 R2

Residual hetrogeneity

df QE P value

Model 1
Automatic

segmentation
4 71.57 21.2900 0.2682 21.8156 20.7644 24.8106 ,.0001 0.2019 0.4494 69.90 3.32 — 5 16.5244 .0055

Manual
segmentation

3 75.1 21.4383 0.3289 22.0829 20.7936 24.3730 ,.0001

Model 2
aMCI 2 77.15 21.3337 0.3939 22.1057 20.5618 23.3863 .0007 0.2091 0.4572 70.73 3.42 — 5 16.4832 .0056
MCI 5 71.46 21.3562 0.2488 21.8438 20.8686 25.4510 ,.0001

Model 3
Intercept — — 20.9973 5.0703 210.9349 8.9403 20.1967 .8441 0.0384 0.1960 36.24 1.57 79.71 2 2.9841 .2249
Age — — 0.0006 0.0640 20.1249 0.1261 0.0093 .9926
Female rate — — 0.0209 0.0132 20.0050 0.0467 1.5821 .1136
APOE ε4 rate — — 20.0233 0.0088 20.0406 20.0061 22.6477 .0081

Abbreviations: SE, standard error; CI, confidence interval; T, standard deviation of true effects; df, degrees of freedom; HC, healthy control; MCI, mild cogni-
tive impairment; Coef, coefficient; aMCI 5 amnestic MCI; r2, proportion of observed dispersion accounted for by the model; H2, total variability/sampling
variability; R2, heterogeneity accounted for the moderator(s); Q, heterogeneity; QE, residual heterogeneity.
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brain volume in HC and 0.2%/year of the whole brain
volume in MCI.

3.5.2. Gray matter atrophy
Besides the hippocampus and entorhinal cortex, which

were the focus of most volumetric studies, there were also
sporadic reports of volume loss for other parts of the brain
including the parahippocampus, amygdala, and fusiform gy-
rus [23], lateral temporal lobe [26], cingulate [23,26], insula
[6], parietal lobe [6,23,26], frontal and occipital lobes
[6,26]. Atrophy rates in these regions were less than the
average hippocampal atrophy rate and also differed based
on the clinical outcome. Volume loss in the temporal and
parietal lobes was higher for MCI subjects who had
converted to AD within 4–5 years compared with stable
MCI (lowest Cohen d for the inferior parietal lobe 5 0.53
and largest for the hippocampus 5 1.39) [23]. However,
in clinically diagnosed AD, the atrophy rate in the medial
temporal lobe was less than in MCI, whereas volume loss
in frontal, parietal, and occipital regions was greater in
MCI than AD [6].

3.5.3. Cortical thickness and sulcal morphometry
Cortical thickness was the second most commonly re-

ported structural measure. Reports covered almost all parts
of the brain but without quantitative estimates amenable to
meta-analysis. Overall, studies revealed that controls and
MCI participants demonstrated a similar spatial distribution
of cortical loss, specifically in the parahippocampal cortex,
middle/inferior temporal gyrus, supramarginal gyrus,
angular gyrus, and superior frontal gyrus [27]. However,
these studies suggested that atrophy rates were higher (no
report of effect size) inMCI than controls, mainly in the tem-
poral, superolateral parietal, and frontal lobes [28,29]. The
only available longitudinal sulcal morphometry study
showed an almost twofold higher rate of superior frontal
and superior temporal sulcal widening in MCI compared
with controls [30].

3.5.4. White matter
A minority of studies evaluated longitudinal changes in

white matter. Recent DTI studies demonstrated a loss of
integrity (increase in mean diffusivity) in the white matter

Fig. 3. Funnel plots of (A) whole brain, (B) hippocampus, and (C) entorhinal cortex using random-effects model (left column) and trim-and-fill method
(right column). Filled circles represent included studies in the meta-analyses, and open circles represent possible missing studies.
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fiber tracts [31] particularly in the fornix (fitted mean
changes in mean diffusivity over 12 months of 0.003 in con-
trols vs. 0.051 inMCI), inferior and anterior cingulum (fitted
mean changes in mean diffusivity over 6 months of 20.003
in controls vs. 0.013 in MCI) [32], in MCI compared with
controls. DTI studies were limited in number and restricted
to regions of interest evaluation.

4. Discussion

This study aimed to systematically review the literature
on longitudinal structural brain changes specific to stable
MCI. The main findings of this review were that (1) atrophy
rates were 1.5–2.2 times larger in MCI participants than HC;
(2) atrophy rate estimates were greater when assessed with
manual than automatic segmentation; and (3) age, sex, and
APOE ε4 were the most important moderators and together
explained almost 80% of the between-study heterogeneity.

4.1. Global and local atrophy

Whole brain annual atrophy rate in MCI was twice that
observed in controls. After removing the effect of normal ag-
ing, MCI-related shrinkage was estimated at 0.46%/year or
almost 5 mL per year. This finding was consistent with
studies reporting approximately 0.1%/year ventricular
expansion in MCI in addition to that observed in normal ag-
ing [17,18,25], when considering that 20%–25% of the
whole brain shrinkage is accounted for ventricular
expansion [33].

Shrinkage in the whole brain is not necessarily the result
of homogenous atrophy in all parts of the brain. Studies us-
ing measurement of cortical thickness and gray/white matter
density in different parts of the brain demonstrated that atro-
phy rates in different brain regions were different and that
some areas were more susceptible to neurodegeneration in
normal aging as well as MCI-related degeneration
[6,21,29,30]. Studies suggested that in MCI, noticeable
atrophy was restricted to the medial temporal lobe,
whereas frontal lobe and sensory motor cortices remained
less atrophic until late in AD [34,35]. Additionally,
previous evidence suggested that medial temporal lobe
atrophy was higher in MCI participants who converted to
AD compared with those with stable MCI [34,36].

It is important to consider that most reviewed studies used
general diagnostic criteria to recruit MCI participants and
did not investigate MCI subtypes. However, study design
and cognitive tests, which were used in these studies, sug-
gested that there was probably a higher prevalence of amnes-
ticMCI inMCI participants. Therefore, reported findings are
likely to be more representative of amnestic MCI than other
MCI subtypes.

The hippocampus and entorhinal cortex were two of the
most commonly investigated subregions of the medial tem-
poral lobe, and direct evaluation of the medial temporal lobe
volume change was not an issue in volumetric studies.

Therefore, there is no estimation of the whole medial tempo-
ral lobe atrophy rate in the literature. However, overall atro-
phy rates in these medial temporal lobe subregions were
similar to the whole brain atrophy rate, i.e., approximately
twice in MCI compared with HC. Although, to our knowl-
edge, there is no other systematic review of brain areas atro-
phy rates in MCI, a systematic review estimating annual
hippocampal atrophy rate in healthy aging across the life
span revealed hippocampal annual atrophy rate of 1.12%/
year in healthy aging over the age of 70 years [7], which is
consistent with the present findings. The roles of the hippo-
campus and entorhinal cortex in memory function have been
known for a long time and the association between atrophy
rates in these regions and cognitive decline has been well
documented in MCI. However, the mean estimates of annual
atrophy rates in these regions do not explain a 5-mL annual
reduction in the whole brain volume. The cerebral atrophy
observed in MCI above that detected in normal aging was
1.35%/year in the hippocampus and 1.35%/year in the ento-
rhinal cortex. This indicates a total annual volume loss of
about 0.07 mL in these areas [33], which covers less than
1.5% (of 5 mL) of the whole brain annual volume loss.
This suggests that volume loss in areas well known for mem-
ory and cognition may only be the tip of the iceberg. In sum-
mary, although most available evidence has suggested that
high rates of atrophy are mostly restricted to the medial tem-
poral lobe in stable MCI, this conclusion might be due to
underinvestigation of other cerebral regions.

4.2. Gray matter and white matter

Apart from medial temporal lobe atrophy, decrease in
gray matter volume was reported in the lateral temporal, pa-
rietal, and frontal lobes [37]. These findings are consistent
with reports demonstrating cortical thinning in the superolat-
eral parietal lobe and some regions of the frontal cortex [29]
as well as sulcal widening in the superior temporal and supe-
rior frontal sulci [30]. There are also sporadic reports sug-
gesting decrease in the volume of the parahippocampal
gyrus, amygdala, fusiform gyrus, superior temporal lobe
[23], lateral temporal lobe [26], inferior temporal lobe
[23], frontal lobe [6,26], cingulate [26], parietal and occipi-
tal lobes [6,26], and insula [6]. Therefore, although higher
atrophy rates have been prominently reported in the medial
temporal lobe and the atrophy rate in this region was posi-
tively associated with cognitive decline, brain atrophy is
also widely distributed to other parts of the temporal, parie-
tal, and frontal lobes. Nonetheless, in spite of the widespread
gray matter atrophy, estimated atrophy rates in these areas
alone cannot explain the whole brain atrophy rate. Indeed,
the gray matter forms less than half of the brain tissue and
atrophy rates as high as the atrophy rate in the hippocampus
are needed in all parts of the gray matter to explain the total
brain volume loss.

Therefore, atrophy of white matter is likely to signifi-
cantly contribute to whole brain atrophy, especially
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because axonal integrity depends on cell body viability in
the gray matter and theoretically cell loss in gray matter
atrophy should have an impact on white matter integrity.
Loss of integrity in the white matter fiber tracts, particu-
larly in the fornix and anterior and inferior cingulum,
has been detected by DTI studies [31,32]. These studies
are limited in number and restricted in the selection of
regions of interest. A relationship between hippocampal
gray matter atrophy and subsequent disruption in the
uncinated fasciculus and the cingulum bundle has also
been reported [37].

Although too few studies investigating white matter atro-
phy were available for review and for reliable assessment of
their magnitude, they suggest that white matter is not spared
from MCI pathology. However, the rate of atrophy in white
matter and its association with gray matter and whole brain
volume loss are some important unanswered questions.
White matter forms the dominant proportion of brain struc-
ture, which reflects the importance of connection and net-
works in neural structure and consequently brain function.
Therefore, it is essential that more investigations focus on
these questions.

Furthermore, although neuroimaging studies largely
interpret their results in relation to neural tissue, the brain
also consists of connective tissue forming the brain’s struc-
tural frame, supporting neural content and providing nutri-
ents to neural tissue. This structural frame has an
important role in preserving neural integrity and brain func-
tion. Therefore, any change in brain connective tissue may
affect the structure and function of the neural system. The ef-
fect of aging on connective tissues in other parts of the body,
including the skin, has been well documented, but the
involvement of brain connective tissue in aging and age-
related disorders needs to be evaluated in more detail. In
summary, further longitudinal investigation of non–gray
matter (e.g., white matter and connective tissue) atrophy
might be informative and may help explain gaps in our un-
derstanding of pathologic processes associated with MCI
and dementia.

4.3. Segmentation method

We investigated the impact of segmentation methodolo-
gies (manual vs. automated) through meta-regression
analyses and found that manual segmentation of the hippo-
campus resulted in larger atrophy rate estimates compared
with automatic segmentation using FreeSurfer. Although
previous studies suggested that automatic segmentation
with FreeSurfer resulted in a larger estimation of hippo-
campal volume in comparison with manual segmentation
of the same images [38,39], atrophy rates have been
reported to be lower in investigations using automatic
segmentation [40]. As detailed in Fig. 2, differences be-
tween manual and automatic estimations of hippocampal
atrophy are bigger in HC than MCI participants (68%
compared with 40%), and in MCI (after removing the

effect of normal aging), the difference is remarkably less
than HC (7% compared with 68%).

As suggested by Wenger et al. [39], automatic segmen-
tation may classify some nonhippocampal tissue—with
lower atrophy rate—as hippocampal tissue. This would
explain how the automatic approach could result in higher
volume estimates but lower atrophy rate. A systematic re-
view by Fraser et al. [7], estimating annual hippocampal at-
rophy rate in healthy aging across the life span, also
detected a similar difference between manual tracing and
automatic FreeSurfer segmentation and suggested that
most studies using manual tracing excluded the tail of hip-
pocampus and estimate the atrophy rate based on the atro-
phy of the head of the hippocampus. They concluded that
hippocampal atrophy in HC was mostly restricted to the
head of the hippocampus, rather than the tail; therefore,
manual approaches, which excluded the tail, were likely
to estimate a lower atrophy rate compared with automatic
FreeSurfer approaches, which included the tail. In sum-
mary, although manual tracing is traditionally considered
as the gold standard method of hippocampal volume esti-
mation, the difference between manual tracing and auto-
matic approaches appears to be largely related to the
subregions included in each method, rather than the accu-
racy of estimation.

4.4. Moderators

An important question is whether study-specific factors
such as age, female gender, and APOE ε4 influenced the
reported estimates of brain atrophy in MCI. To investigate
this question, we performed a mixed-effects model anal-
ysis for hippocampal atrophy rates (the largest analysis
group). The results showed that these moderators ac-
counted for almost 80% of the observed heterogeneity be-
tween studies, with APOE ε4 showing the largest
moderating effect.

Moderating effects of age on brain atrophy have been
well documented, although the pattern of association
needs more investigation. It seems that this association
is nonlinear and that the atrophy rate in stable MCI is
larger at younger than older ages [41] although this was
not confirmed in our meta-regression, possibly be due to
a narrow age range as well as small number of studies
in the meta-regression. Indeed, research consistent with
this finding suggests that a higher whole brain atrophy
rate is present in female compared with male individuals
with MCI as well as in HC [41]. However, although this
appears to be the case across the brain, it may not apply
at regional levels. This is the likely reason we did not
find a gender effect in our hippocampal meta-regression.
Previous evidence revealed that in different brain regions
are different in male and female not only in MCI but also
in HC. For example, atrophy rates for the thalamus,
caudate nucleus, and right middle temporal gyrus are
higher in male MCI, compared with female, and atrophy
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rates in the left middle temporal gyrus and precuneus are
higher in female MCI than male [42]. Our finding that
APOE ε4 genotype is a significant moderator and is asso-
ciated with a higher rate of hippocampal atrophy in MCI
is consistent with reviewed longitudinal studies that were
not included in the meta-analysis. Moreover, the effect ap-
pears to become more salient across the disease process
with MCI and AD showing that the APOE ε4 genotype
is associated with faster atrophy rates [43,44],
particularly in the hippocampus [45,46]. Association
between APOE ε4 genotype and greater atrophy rate has
been reported previously in HC [47]. Thus, all parts of
the brain do not seem to have a similar vulnerability to
the effect of APOE ε4 genotype and brain areas primarily
involved in AD pathology, i.e., medial temporal lobe and
particularly the hippocampus, are more affected, although
the pattern of vulnerability is disease-stage specific
[48,49]. APOE ε4 genotype is also associated with
lower level of b-amyloid [50] and higher level of total
and phosphorylated tau proteins [49] in cerebrospinal
fluid. All these biomarkers are shown to be associated
with faster regional brain atrophy (particularly the hippo-
campus) together and separately [48–52].

4.5. Strength and limitations of the study

A broad search of the literature (e.g., using a wide range
of search terms) and inclusion of all available studies (using
all sorts of structural measurements) were major strengths of
this review. Special care was taken to combine studies with
compatible measurements—to investigate pooled estimates
of atrophy rates—and an attempt was made to comprehen-
sively integrate incompatible findings and to summarize
available knowledge about structural changes in MCI pa-
thology. However, the review was limited by a relatively
small number of available studies that could be included
in the meta-analyses, particularly where whole brain and en-
torhinal cortex analyses are concerned. Additionally, many
brain regions (such as the cerebellum) could not be analyzed
because of lack of evidence and should be the focus of future
studies. In addition, owing to the small number of studies in
the meta-analysis, in relation to the number of moderators, it
was recognized that estimates of moderator effects might
be imprecise. The review was limited to comparing stable
HC and prevalent MCI and data related to healthy partici-
pants converting to MCI and MCI participants converting
to AD were insufficient to consider them in the present
investigation.

5. Conclusion

To our knowledge, this is the first systematic review of
longitudinal studies investigating MCI-related brain struc-
tural changes. The analyses revealed that the whole brain
shrinks approximately two times faster in MCI participants
compared with matched healthy people of the same age.

Additionally, the medial temporal lobe regions—particu-
larly the entorhinal cortex and hippocampus—are remark-
ably affected in AD pathology and associated with risk
factors including APOE ε4 genotype and female gender.
These regions demonstrate an atrophy rate of 1.5–2.2%/
year times for MCI compared with HC. Although the medial
temporal lobe was reported as the region highly involved in
AD-related neurodegeneration, estimated atrophy rates in
this region do not convincingly explain the amount of annual
whole brain volume loss observed inMCI. Further investiga-
tion of other components of neural tissue, including white
matter and non-neural brain tissue (e.g., connective tissue),
is needed.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed literature
investigating longitudinal structural brain changes
in mild cognitive impairment (MCI). Studies largely
investigated the preclinical phase of Alzheimer’s dis-
ease andmostly focused on the medial temporal lobe.

2. Interpretation: In MCI, our analyses revealed a mean
shrinkage of 5 mL/year in the whole brain above
normal aging. Hippocampus and entorhinal cortex
contributed less than 1.5% to the whole brain volume
loss. Gray matter atrophy reported for other parts of
the brain cannot explain a 5-mL annual whole brain
volume loss. Atrophy in posterior parts of the brain
(including the cerebellum) have been largely un-
studied and may be important for explaining total
annual volume loss in MCI.

3. Future directions: This review proposes a framework
for generation of new studies regarding (1) atrophy
rates specific to the cerebellum and white matter in
MCI (2) and the role of non-neuronal brain tissue
(i.e. connective tissue) changes in MCI pathology.
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The Cerebellum Shrinks Faster Than Normal
Ageing in Alzheimer’s Disease but not in Mild
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Abstract: Background: While acceleration in age-related cerebral atrophy has been well documented in
Alzheimer’s disease, the cerebellar contributions to this effect have not been thoroughly investigated.
Objective: This study investigated cerebellar volume and atrophy rate using magnetic resonance imaging
in individuals with normal cognition (CN), mild cognitive impairment (MCI), and Alzheimer’s disease
(AD). Methods: Two hundred twenty-nine CN, 398 MCI and 191 AD participants of stage I ADNI data-
base with screening scans were evaluated for cerebellar volume. Of those, 758 individuals with two or
more follow-up scans were categorized into stable, converted, and reverted CN, MCI and AD and evaluat-
ed for cerebellar atrophy rate. Results: Cerebellar volume was 2.5% larger in CN than in those with AD
but there were no differences between CN and MCI and MCI and AD in cross-sectional analysis. Similar-
ly, the atrophy rate was 49% larger in AD and 64% larger in MCI who converted to AD but no difference
was detected between CN and MCI. There were no association between education and APOEe4 and cere-
bellar volume or cerebellar atrophy across the diagnostic groups. Conclusion: Cerebellar atrophy contrib-
utes to Alzheimer’s clinical progression but mostly at the late stage of the disease. However, even in the
late stage shrinkage rate is less than the average of the shrinkage in the cerebrum and is not associated
with AD moderators. This suggests that cerebellar involvement is secondary to cerebral involvement
and can be due to network connection spread regardless of the primary pathology. Hum Brain Mapp
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Key words: Alzheimer’s disease; mild cognitive impairment; cerebellar atrophy; cerebellum; magnetic
resonance imaging

r r

Contract grant sponsor: Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) (National Institutes of Health Grant); Contract grant
number: U01 AG024904; Contract grant sponsor: Department of
Defense (DOD ADNI); Contract grant number: W81XWH-12-2-
0012; Contract grant sponsor: National Institute on Aging, the
National Institute of Biomedical Imaging and Bioengineering;
Contract grant sponsor: Australian Research Council (to N.C.);
Contract grant number: 120101705; Contract grant sponsor: Cana-
dian Institutes of Health Research.

*Correspondence to: Hossein Tabatabaei-Jafari, Centre for Research
on Ageing, Health and Wellbeing, Australian National University,
Florey Building 54, Mills Road, Acton, ACT 2601, Australia.
E-mail: hossein.tabatabaei@anu.edu.au

Received for publication 19 November 2016; Revised 27 February
2017; Accepted 11 March 2017.

DOI: 10.1002/hbm.23580
Published online 21 March 2017 in Wiley Online Library
(wileyonlinelibrary.com).

r Human Brain Mapping 38:3141–3150 (2017) r

VC 2017 Wiley Periodicals, Inc.



INTRODUCTION

The human cerebellum is a brain structure well known
for its role in motor function and recently has drawn
attention for its implication in cognitive functions
[Schmahmann and Sherman, 1998; Stoodley, 2012; Weier
et al., 2014; Wolf et al., 2009]. It is connected to almost all
parts of the nervous system, comprises more than 50% of
the total brain neurons, but surprisingly contributes to
only 10% of the whole brain volume [Andersen et al.,
1992]. This mismatch is a reflection of the difference in
neural architecture. Gray matter makes up 80% of the cere-
bellar volume (compared with less than half for the cere-
brum) [Hoogendam et al., 2012] and consists of densely
packed small granular neurons tightly folded which are
less diverse compared to those of the cerebral cortex. In
contrast to the variety of cytoarchitectonic organisation
observed in different regions of the cerebral cortex, all
regions of the cerebellar cortex appear similar in histologi-
cal sections [Standring, 2008]. Specific histological architec-
ture in addition to rich connections to the other parts of
the brain makes the cerebellum an important region to
investigate in the context of neurodegenerative disorders.

Pathologically, Alzheimer’s disease (AD) is characterized
by abnormal intra and extra cellular protein aggregations,
i.e., intracellular tau phosphorylation and extracellular
b-amyloid deposition. Studies using positron emission
tomography (PET) revealed significant correlations between
postmortem and in vivo presence and density of amyloid
plaques and phosphorylated tau: 11C-labeled Pittsburgh
compound B (11C-PiB) [Driscoll et al., 2012] and Florbetapir-
PET imaging [Clark et al., 2011] for b-amyloid deposition
and labelled THK5117-PET [Lemoine et al., 2015] for aggre-
gated hyperphosphorylated tau. PET studies suggested no
difference in the cerebellar uptake in AD and cognitively
normal (CN) participants [Jack et al., 2008b; Jonasson et al.,
2016; Rowe et al., 2007] and therefore it has been adopted as
a normalizing area for standardized uptake values (SUVs)
[Jonasson et al., 2016; Lopresti et al., 2005].

Although AD related shrinkage and neuronal death are
thought to be associated with and possibly due to b-amyloid
deposition and tau aggregation [Wang et al., 2002], their
topological patterns and progression are different [Braak
and Braak, 1991; Thal et al., 2002]. Moreover, the pattern of
regional brain atrophy in AD does not follow precisely
either b-amyloid or tau topological patterns [Sluimer et al.,
2009]. Therefore, normal level of b-amyloid deposition and
tau aggregation may not rule out the presence of neuronal
loss or shrinkage in the cerebellum. A recent postmortem
stereological study suggested no significant differences in
the cerebellar total Purkinje and granular cell number nor in
the volume of the granular layer between severely demented
Alzheimer’s disease (AD) and normal individuals
[Andersen et al., 2012]. However, this finding is inconsistent
with a previous study that showed a significant reduction in
the granular layer in AD [Wegiel et al., 1999] although both
studies reported significant reduction in whole cerebellar

volume. These somewhat inconsistent findings may be due
to the fact that these studies were postmortem (cross-sec-
tional) with low sample sizes (20 and 16 subjects, respective-
ly) in qualitatively different cohorts and thus afforded low
statistical power.

To bypass the inevitable limitations of post mortem
studies (single measurement occasion and small sample
size), structural neuroimaging techniques including mag-
netic imaging are the best available option for longitudinal
examination of brain volume change over time. Our recent
published systematic review [Tabatabaei-Jafari et al., 2015]
revealed that there is no morphological longitudinal study
aimed at comparing cerebellar structural change in normal
ageing and cognitively impaired populations including
mild cognitive impairment (MCI) and Alzheimer’s disease.
Therefore, the main aim of this study is to evaluate cross-
sectional and longitudinal structural differences in the cer-
ebellum across cognitively different populations including
CN, MCI, and AD.

METHODOLOGY

Study Participants

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public–private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been
to test whether serial magnetic resonance imaging (MRI), posi-
tron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be com-
bined to measure the progression of MCI and early AD.

All individuals participating in ADNI1 study who under-
went MRI screening and diagnostic evaluations were includ-
ed in the cross-sectional analysis and categorized into three
diagnostic groups: CN, MCI, and AD. Participants with
additional scans in follow-up assessments were included in
the longitudinal analysis and categorised into more specific
diagnostic groups according to the diagnosis at the first and
last scanning time points. Details of the diagnostic criteria
can be found on the ADNI web site (http://www.adni-info.
org/Scientists/AboutADNI.aspx). Briefly, participants were
categorized as CN if they had a Mini Mental State Examina-
tion (MMSE) score higher than 24, a Clinical Dementia Rat-
ing (CDR) of 0 and were not diagnosed with MCI, dementia
or depression. Participants were categorized as MCI if they
had a MMSE score higher than 24, a subjective report of
memory concern, a measured objective memory loss, a CDR
of 0.5, absence of dementia and preserved daily living activi-
ties. Participants were categorized as AD if they had a
MMSE score lower than 26, a CDR of 0.5 or 1.0, and fulfilled
criteria for clinically probable AD according to the Institute
of Neurological and Communicative Diseases and Stroke/
Alzheimer’s Disease and Related Disorders Association.
Participants with follow-up evaluation were categorized
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into stable, converted or reverted CN, MCI, and AD accord-
ing to the first and last time points diagnoses: stable if the
first and last evaluation were similar, converted if the last
evaluation progressed to declined cognitive diagnosis and
reverted if the last evaluation was improved.

Image Acquisition

Participants underwent a high-resolution MRI scans of
the brain on 1.5 T scanners from General Electric, Siemens,
or Philips (Milwaukee, WI; Germany; The Netherlands,
respectively) across multiple scanners using a standard-
ized MRI protocol for 3D MP-RAGE sequences [Jack et al.,
2008a] and following parameters: TR 5 2,400 ms, minimum
full TE, TI 5 1,000 ms, flip angle 5 88, 24 cm field of view,
acquisition matrix of 192 3 192 3 166 and yielding 1.25 3
1.25 3 1.2 mm3.

Segmentation and Image Analysis

Volumetric segmentation were conducted by the ADNI
team at the University of California, San Francisco using
FreeSurfer version 5.1 for longitudinal analyses [Reutera
et al., 2012]. The cerebellum was automatically segmented
into gray matter and white matter. Sum values of the gray
and white matter were considered as hemisphere volume
and total of left and right were considered as cerebellar
volumes.

Statistical Analysis

The R statistical software (version 3.1.1) was used for the
cross-sectional and longitudinal analyses. The intra-class
correlation coefficient (ICC) for the repeated longitudinal
cerebellar volumes measurements was 0.98 (95%CI
0.9803–0.9843), which indicates that most of the variance
(!96%) occurs between participants while only 4% occurs
within participants.

Nonparametric locally weighted scatterplot smoothing
(LOWESS) was used to visually inspect the data to deter-
mine whether linear models were appropriate. The LOW-
ESS approach uses weighted least squares (giving more
weight to points near the point whose response is being
estimated) to estimate the mean response value at each time
point and provide a smooth line representing the relation-
ship between dependent and explanatory variables, when
there are no assumptions about the relationship. The LOW-
ESS plots for cerebellar volume versus age suggested that
linear modeling of the relationship between cerebellar vol-
ume and age was appropriate for cross-sectional and longi-
tudinal analyses since little departure from linearity was
observed across groups except for CNc, which assumed to
be due to low sample size i.e. 19 participants (Fig. 1).

The lme4 package (version 1.1-7) was used to conduct
linear regressions analyses. In cross-sectional analyses,
multiple linear regressions were conducted to investigate

the cross-sectional relationship between cerebellar volume
and clinical diagnosis status. Cerebellar volume was
applied as dependent variable and age (centred on 55, the
youngest participants at baseline), gender, education,
APOE e4, diagnosis and intracranial volume (ICV) were
considered as explanatory variables. In longitudinal analy-
ses, mixed effects models were applied with the same
explanatory variables for linear regressions in addition to
a random effect by scanner and two random effects by
subjects: a random intercept and a random slope for age at
each time point. The random slope of time (centred age at
each time point) was tested in a minimally controlled
model and if statistically significant was included in the
model as random effect [Bernal-Rusiel et al., 2013]. A time
by clinical diagnosis group interaction effect was tested to
determine whether the rate of change in cerebellar volume
differed between groups. Fixed effect of age on cerebellar
volume for each diagnostic group was considered as cere-
bellar atrophy rate.

Figure 1.
Locally weighted smoothed mean measurement trajectory (LOW-
ESS plot) of cerebellar volumes vs. age. (A) Three clinical groups
including cognitively normal (CN), mild cognitive impairment
(MCI), and Alzheimer’s disease (AD) in cross-sectional level.
(B) Five clinical groups including stable cognitively normal (CNs),
cognitively normal converted to mild cognitive impairment (CNc),
stable mild cognitive impairment (MCIs), mild cognitive impair-
ment converted to AD (MCIc), and stable Alzheimer’s disease
(ADs) in serial scans. [Color figure can be viewed at wileyonlineli-
brary.com]
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The final models were visually checked for any obvious
deviations from homoscedasticity, normality of residuals,
and linearity. Likelihood ratio test of the model with the
effect in question against the model without was used to
determine statistical significance.

RESULTS

Demography

Cross-sectional

Eight hundred eighteen participants were categorized
into CN, MCI, and AD. There were no significant differ-
ences in age across the groups, but significant differences
in gender and APOE e4 distributions among the diagnostic
groups. The male ratio was higher in MCI and, as
expected, APOEe4 frequencies were significantly higher in
MCI and AD. AD participants were significantly less
educated than CN (Table I).

Longitudinal

Of 818 participants with screening scans 758, who had one
or more follow-up scans and cognitive tests, were included
in the longitudinal part. They were categorized into different
diagnostic groups according to the first and last time points
diagnoses: stable CN (CNs), CN converted to MCI (CNc),
stable MCI (MCIs), MCI converted to AD (MCIc), stable AD
(ADs), CN converted to AD, MCI reverted to CN (MCIr),
and AD reverted to MCI (ADr). There were no significant
differences in age and education across the diagnostic groups
except for education between CNs and ADs. Pearson v2 test
revealed no significant difference in gender distribution but
a significant difference in APOEe4 distributions between
diagnostic groups. APOEe4 distributions were higher in
MCIs than CNs and in ADs than CNs. The mean follow-up
period across the groups was 2.54 (1.20) years, which was
shorter in MCIs and ADs compared with CNs.

Cross-Sectional Results

A significant association between cognitive diagnosis and
cerebellar volume (F(2,811) 5 3.95, P < 0.01) was detected.

Pairwise comparisons demonstrated (3,400 mm3; !2.5%)
larger cerebellar volume in CN compared to AD (F(1,413) 5 9.82,
P < 0.001), but no differences between CN and MCI
(F(1,620) 5 3.40 P > 0.1), and MCI and AD (F(1,582) 5 1.62, P >
0.1). Table II presents the mean ICV-adjusted cerebellar vol-
umes and the fixed effect of age for the three diagnostic
groups. Although, the average cerebellar volume was signifi-
cantly smaller in AD compared to CN and MCI, the slope of
decrease in cerebellar volume for each year increase in age was
only 0.41% (CN; 0.34%, MCI; 0.42%, AD; 0.38%) and was not
significantly different across groups (F(2,809) 5 0.28, P > 0.5)
and in pair-wise comparisons (F< 0.5, P > 0.1). When all
explanatory variables were included, the linear regression
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model explained 44.7% of the variance in cerebellar volume
(F(8,809) 5 83.61, P < 0.0001) mostly explained by ICV (37.9%)
with 7.7% explained by age alone, and 0.7% by clinical group.

The scatters plot presenting the association between age
and cerebellar volume for each group also revealed an initial

overlap of CN and MCI regression lines followed by devia-
tion of MCI regression line to AD line suggesting that cere-
bellar volumes are highly similar in CN and MCI at younger
ages but lower in MCI in older individuals (Fig. 2A). In
contrast the AD regression line while following a similar

Figure 2.

Linear prediction of the cerebellar volumes for age at time
points. (A) Prediction of the cerebellar volumes in three clinical
groups including cognitively normal (CN), mild cognitive impair-
ment (MCI) and Alzheimer’s disease (AD) in cross-sectional lev-
el. (B) Prediction in subject and group (population) levels in five
diagnostic groups including stable cognitively normal (CNs),

cognitively normal converted to mild cognitive impairment
(CNc), stable mild cognitive impairment (MCIs), and mild cogni-
tive impairment converted to AD (MCIc) illustrating different
slops for the diagnostic groups. [Color figure can be viewed at
wileyonlinelibrary.com]
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slope had a clearly different intercept suggesting a constant
smaller cerebellar volume in AD across the age span investi-
gated. Similar patterns were demonstrated for the left and
right cerebellar volumes (Table II).

Longitudinal Results

The linear mixed model achieved a good fit and fixed
factors in the model explained 43% (marginal R2) while
fixed and random factors together explained 99% (condi-
tional R2) of variance in cerebellar atrophy. A significant
negative fixed effect of age was detected (v2

(1,9) 5 586.99, P
< 0.0001); each year beyond age 55 was associated with a
0.47% lower cerebellar volume compared to baseline. Addi-
tionally, a significant random effect of age on cerebellar vol-
ume (v2

(2,18) 5 227.92, P < 0.0001) and interaction between
age and diagnosis (v2

(7,25) 5 22.72, P < 0.01) were detected.
The model revealed no differences in cerebellar volume
across the diagnostic groups (v2

(7,18) 5 11.31, P > 0.1), i.e.,
the average of cerebellar volumes in CNs, CNc, MCIs,
MCIc, and ADs were not significantly different. However, a
significant effect of cognitive diagnosis on cerebellar atro-
phy rates was detected (v2

(7,25) 5 22.71, P < 0.001). There
was also a significant effect of gender on cerebellar volume
(1,18) 5 14.12, P < 0.001) with less shrinkage in male.

An annual shrinkage of 0.36% (SE 5 0.04) was detected
in CNs individuals. A pairwise comparison revealed that
it was not significantly different in MCIs (0.36%/year,
SE 5 0.05) and CNc (0.42%/year, SE 5 0.08); however, it
was about 49% larger in ADs (0.53%/year, SE 5 0.06). Sim-
ilarly, the atrophy rate was about 64% larger in MCIc
(0.62%/year, SE 5 0.06) compared to CNs (Tables II and
III). The annual atrophy was also about 53% larger in ADs
than MCIs (v2

(2,13) 5 8.67 P < 0.01) and 68% larger in MCIc
than MCIs (v2

(2,13) 5 12.57, P < 0.001; Table II). CN who
converted to AD, MCI who reverted to CN and AD who
reverted to MCI were excluded from pairwise comparison
due to small samples sizes. Atrophy trajectories across
groups are presented in Figure 2B.

Similar patterns of findings were observed for the left
and right cerebellar volumes (Table II), as well as left and
right cerebellar gray matter and white matter volumes.

DISCUSSION

This study aimed to investigate cerebellar shrinkage in
normal ageing and preclinical (MCI) and clinical phases of
AD. It revealed that cerebellar shrinkage occurs mostly in
the late stages of the disease. The main findings were that
(1) in cross-sectional analyses cerebellar volume was larger
in CN compared to AD but not compared to MCI, (2) in
longitudinal analyses cerebellar atrophy was higher in
ADs and MCIc compared to CNs but not in CNc and
MCIs, and (3) APOEe4 was not a significant predictor of
baseline cerebellar volume nor of cerebellar atrophy across
clinical groups.
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Cross-Sectional

The smaller cerebellar volume observed in AD compared
to CN and no difference between MCI and CN are in agree-
ment with available cross-sectional studies reporting smaller
cerebellar volume in AD [Kusbeci et al., 2009; Moller et al.,
2013] but normal volume in MCI [Thomann et al., 2008;
Yoon et al., 2013]. This discrepancy is consistent with the
documented progression of AD pathology. However, the
cerebellum can be parsed functionally and morphologically
into different subdivisions and it is likely that AD pathology
targets each subdivision differently. Previous voxel-based
morphometric studies showed bilateral lower gray matter
density in lobule VI [Colloby et al., 2014] and Crus I/II [Guo
et al., 2016] in AD compared with CN, suggesting that
network-selective vulnerability underlies the cerebellar
neurodegeneration [Guo et al., 2016]. Regardless of selective
or nonselective volume loss in the cerebellum and its subre-
gions, cross-sectional approach needs to be affirmed by
tracking atrophy in a longitudinal approach.

Longitudinal

The negative association between age and cerebellar vol-
ume is consistent with that demonstrated in the cross-
sectional analysis (0.41%/year in cross-sectional and 0.47%
in longitudinal). Pairwise analyses demonstrated signifi-
cantly larger cerebellar atrophy rates in ADs and MCIc
but not in CNc and MCIs compared to CNs. This pattern
of results is suggestive of an increasing rate of cerebellar
atrophy with progression of AD pathology. It is also con-
sistent with the chronological development of AD patholo-
gy with progressive spreading of tau fibrillatory tangles
(Braak stages), amyloid deposition, and subsequently
gradual decline in cognitive function [Murray et al., 2015].
As Thal et al. demonstrated, clinically diagnosed AD
occurs in the amyloid phase 3 to 5 while the cerebellar
involvement mostly occurs in the fifth phase [Thal et al.,
2002]. Thus, the available evidence suggests that the
cerebellum is relatively spared of neurodegeneration in the
preclinical stages of the disease and gradually becomes
affected as the clinical presentation fully develops. Howev-
er, it remains unclear whether association of the cerebel-
lum with AD clinical progression is due to spreading of
fibrillary tangle and/or amyloid deposition, or secondary
to cerebral neurodegeneration.

Although the findings suggest shrinkage in the cerebel-
lum with ageing and larger cerebellar atrophy in ADs
compared with CNs and MCIs, it is worthy to consider
that cerebellar atrophy in the diagnostic groups were less
than that reported for whole brain atrophy (CNs: 0.36%/
year versus 0.57%/year; MCIs: 0.36%/year versus 1.02%/
year; ADs: 0.53%/year versus 1.90%/year) [Henneman
et al., 2009; Tabatabaei-Jafari et al., 2015]. This is in con-
trast to brain areas characteristics for AD pathology,
including hippocampus and entorhinal cortex, for which
atrophy rates are roughly 200% higher for MCI and 300%

higher for AD compared to normal ageing [Desikan et al.,
2008; Tabatabaei-Jafari et al., 2015], further emphasising the
relative resistance of the cerebellum to AD related degenera-
tion. However, despite the small effect size and partial resis-
tance, the cerebellum is not intact in AD pathology and
future investigation is needed to elucidate the impact of
cerebellar atrophy on uptake measurement when using the
cerebellum to standardise FDG uptake in PET studies.

Covariates and Correlates

Age is a common predictor for CN and AD-related brain
atrophy and all cognitive groups in the current study were
matched for age. However, they were differences in gender
distribution, education and APOEe4 alleles—the most well-
known risk factors of AD pathology—as were expected. An
effect of sex on cerebellar volume was detected such that
males showed less cerebellar atrophy than females. Howev-
er, no significant association between education or APOEe4
alleles and cerebellar volume were detected. APOEe4 is a
known moderator of hippocampal atrophy in AD pathology
[Tabatabaei-Jafari et al., 2015], therefore it might have been
expected that carrying the APOEe4 allele would be associat-
ed with increased cerebellar atrophy. However, this was not
the case in our findings. It may indicate that while neurode-
generation in the cerebrum is directly related to the develop-
ment of neurofibrillary tangles and b-amyloid deposition
which occurs at higher rates in APOEe4 carriers, cerebellar
atrophy is the product of secondary processes associated
with cerebral neuronal loss, Wallerian degeneration, and
widespread disconnection. To clarify this question future
investigations need to further elucidate the impact of risk
factors in different AD clinical stages.

Strengths and Limitation

This study is unique in using in vivo evaluation of the
cerebellum with a reasonable follow up period in a rela-
tively large sample while computing both cross-sectional
and longitudinal estimates and using advanced and well-
controlled mixed-effects models. Most AD related cerebel-
lar studies conducted to date have been postmortem or if
in vivo, cross-sectional in design, thus raising questions as
to the precision and generalizability of their estimates.
Consequently, the present study fills an important gap.
However, it should be noted that this investigation was
restricted to the gray and white matter volumes in the left
and right cerebellum and therefore do not provide infor-
mation on the cerebellar subregions.

CONCLUSION

The cerebellum is often thought to be spared from neu-
rodegenerative processes but the present findings indicate
that this is not the case. The present findings demonstrate
that although the cerebellum is not significantly affected in
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the preclinical phase of AD (i.e. MCI), it is affected in the
clinical phase. However, acceleration in atrophy rate is
less than the average of the atrophy in the cerebrum and it
is not associated with AD moderators (education and
APOEe4 status). These findings in addition to previous
evidence of network-selective vulnerability of the cerebel-
lum suggest that AD-related cerebellar atrophy might be
secondary to the development of AD pathology in the
cerebrum rather than the cerebellum itself. Therefore,
modifying interventions targeting the non-specific network
progression is a potential therapeutic option additional to
interventions targeting the specific pathological process.
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a b s t r a c t

The current challenge in clinical practice is to identify those with mild cognitive impairment (MCI), who
are at greater risk of Alzheimer’s disease (AD) conversion in the near future. The aim of this study was to
assess a clinically practical new hippocampal indexdhippocampal volume normalized by cerebellar
volume (hippocampus to cerebellum volume ratio) used alone or in combination with scores on the Mini
eMental State Examination, as a predictor of conversion from MCI to AD. The predictive value of the
HCCR was also contrasted to that of the hippocampal volume to intracranial volume ratio. The findings
revealed that the performance of the combination of measures was significantly better than that of each
measure used individually. The combination of MinieMental State Examination and hippocampal vol-
ume, normalized by the cerebellum or by intracranial volume, accurately discriminated individuals with
MCI who progress to AD within 5 years from other MCI types (stable, reverters) and those with intact
cognition (area under receiver operating curve of 0.88 and 0.89, respectively). Normalization by cere-
bellar volume was as accurate as normalization by intracranial volume with the advantage of being more
practical, particularly for serial assessments.

! 2018 Elsevier Inc. All rights reserved.

1. Introduction

Mild cognitive impairment (MCI) refers to modest cognitive
decline along with preserved daily activities (Association, 2013).
Although many people with MCI live largely normal lives, they are
at higher risk of developing Alzheimer’s disease (AD) than those
without MCI (Forlenza et al., 2013). The available evidence suggests
that less than half of patients diagnosed with MCI may progress to
AD in a 5-year period while the rest remain stable or reverse to
cognitively normal (CN) status (Falahati et al., 2014; Pandya et al.,
2016). Generally, there is an expectation of eventual conversion
from MCI to AD due to the progressive nature of the neurodegen-
erative processes involved, and MCI stability can depend on the

duration of follow-up (Ganguli, 2013). Reversion to CN status is still
an unresolved question but may relate to the relatively unspecific
nature of diagnostic criteria, interaction with comorbid conditions,
and/or variability in the pathological process (Park et al., 2015).
Thus, the current clinical challenge is to discriminate individuals
with MCI who are more likely to convert to AD.

In their revised position, the National Institute on Aging and the
Alzheimer’s Association (NIA-AA) considered MCI and AD as
different stages of the AD continuum rather than 2 distinct clinical
entities (Albert et al., 2011; Jack et al., 2018). In 2011, NIA-AA
reviewed diagnostic guidelines and suggested that, owing to
greater diagnostic uncertainty earlier in the AD continuum, MCI
diagnosis should be supported by biological markers reflecting AD
pathology (Albert et al., 2011). In 2018, the NIA-AA work group
further qualified this position and recommended that biological
markers should reflect neuropathological processes that define the
disease instead of simply supporting the diagnosis (Jack et al.,
2018). Based on this expert consensus, the work group recom-
mended that AD biomarkers should be incorporated into MCI/AD
diagnostic criteria. The NIA-AAwork group identified 3 types of AD
biomarkers directly related to the underlying pathological pro-
cesses. The biomarkers include (1) amyloid-b deposition including
cortical amyloid positron emission tomography (PET) ligand
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bonding (F18!flutemetamol PET) and low cerebrospinal fluid (CSF)
Ab42; (2) aggregated tau including cortical tau PET ligand bonding
(flortaucipir-PET) and elevated CSF phosphorylated tau (P-tau); and
(3) neurodegeneration or neural injury including PET-detected
hypometabolism (fluorodeoxyglucose-PET), CSF total tau (T-tau),
and cortical/volume atrophy on magnetic resonance imaging (MRI)
scan (Jack et al., 2018).

Much research has been conducted to evaluate amyloid-b
deposition, tau aggregation, and hypometabolism using PET scans
and CSF biomarkersdseparately or in combinationdto classify MCI
at risk of AD conversion, with some promising performance
(Mitchell, 2009; Ritchie et al., 2017; Vandenberghe et al., 2013;
Yuan et al., 2009). However, these methods are invasive and,
especially for PET imaging, have limited availability in clinical
practice. Ideally, a practical biomarker should be widely available,
accurate, cost-effective, relatively simple to interpret, easy to use,
and be acceptable to patients while not imposing an excessive
burden. It is important thatdbefore assessing a new bio-
markerdclear criteria for selection be established, and the likeli-
hood of meeting them be considered. As a minimum, the proposed
new biomarker should perform at least similar to simple, nonin-
vasive, and currently available biomarkers.

A type of noninvasive and more widely available biomarker is
provided by structural brain measurement obtained using MRI.
Cerebral cortical thickness and hippocampal measures are the most
predictive and practical MRI methods to date (Falahati et al., 2014;
Rathore et al., 2017). Although cerebral cortical thickness has been
shown to be more predictive compared to volumetric measures
based on single brain regions, it requires agreement on a standard
pattern of cerebral cortical thickness in AD to be adoptable in
clinical practice. Hippocampal volume, which has been shown to be
a moderate predictor of AD conversionwith a sensitivity of 67% and
specificity of 72%, has the advantage of being less invasive
compared to a CSF biomarker, less costly than a PET scan, and more
widely available and clinically easier to use compared to cortical
atrophy measures (Chupin et al., 2009). However, using hippo-
campal volume in the clinical setting is less straightforward
compared to the use of this measure in a research setting.

Hippocampal volume needs to be normalized by or adjusted for
intracranial volume (ICV) (Whitwell et al., 2001) to control for
intersubject (Barnes et al., 2010) and gender (Pintzka et al., 2015)
variations in head size, as well as variation in head size estimations
in serial scans (Whitwell et al., 2001). The most widely used
method in neuroimaging research is adjustment for ICV using its
inclusion as a covariate in regression analyses. A less commonly
used normalization approach is dividing the hippocampal volume
by another volume that can be accurately measured and is not
significantly impacted by neurodegenerative processes, typically
ICV. In this study, we investigate normalization by cerebellar vol-
ume (hippocampus to cerebellar volume ratio) as an alternative
approach, to correct for head size/premorbid brain volume as the
cerebellum has been shown to be little affected by age-related at-
rophy in the absence of clinical dementia. Neurodegeneration in AD
gradually progresses from the medial temporal lobe to the parietal
and frontal lobes and then to the posterior parts of the brain. The
cerebellum is among the last brain regions affected by AD pathol-
ogy (Thal et al., 2002). We have recently shown that cerebellar at-
rophy is not different in MCI compared to normal aging
(Tabatabaei-Jafari et al., 2017). Furthermore, while cerebellar atro-
phy increases in AD, it remains lower in other regions and partic-
ularly in the medial temporal lobe (Tabatabaei-Jafari et al., 2017).
Thus, using the cerebellum as a reference area should be both
methodologically robust and practical in a clinical context. Impor-
tantly, regional brain volume is more accurately measured than ICV
using semi-automated methods, such as FreeSurfer (Heinen et al.,

2016), and unlike ICV also less affected by field strength (Heinen
et al., 2016; Nordenskjold et al., 2013) and segmentation method
(Hansen et al., 2015; Keihaninejad et al., 2010; Malone et al., 2015).

Although hippocampal volume is not sufficiently accurate to be
clinically useful as a single predictor of MCI who progress to AD, it is
a useful benchmark. If other measures sufficiently improve the
predictive value of hippocampal volume, they may be worth for
further consideration. The MinieMental State Examination (MMSE)
may be a good candidate. A recent Cochrane review indicated that
the weighted sensitivity and specificity of the MMSE for conversion
from MCI to AD are 54% and 80% in a limited number of available
studies (Arevalo-Rodriguez et al., 2015). Moreover, evidence sug-
gests that a combination of cognitive measures and hippocampal
volume can improve the predictive value of hippocampal volume
for predicting AD conversion in MCI (Devanand et al., 2008).
Therefore, such a combination is also likely to improve on the
classification performance of hippocampal volume for identifying
MCI who convert to AD in short term from all those who do not
convert.

In the present study, we investigated the classification perfor-
mance of MMSE and hippocampal volume normalized by cerebellar
volume or ICV both individually and in combination, to identify
individuals with MCI who will convert to AD within 5 years. We
expected that these combinations of measures would have classi-
fication accuracies high enough to be useful in clinical practice.

2. Methodology

2.1. Study participants

Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-
private partnership, led by a principal investigator, Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical and neuro-
psychological assessment can be combined to measure the pro-
gression of MCI and early AD.

A total of 1289 participants withMCI (n¼ 872) or CN (n¼ 417) at
baseline were considered for inclusion. All MCI participants who
were stable for at least 6 months after baseline and converted to AD
or reverted to CN within 5 years (confirmed with 2 consecutive
stable diagnoses) or were stable for at least 5 years were included.
Participants who were CN at baseline and were stable throughout
the study were also included.

Based on diagnosis and diagnostic change, participants were
categorized into 4 groups: (1) MCIc (N ¼ 187), MCI patients who
converted to AD in less than 5 years; (2) MCIs (N ¼ 112), MCI pa-
tients who were stable for 5 years or more; (3) MCIr (N ¼ 39),
MCI patients who reverted to CN in less than 5 years; and (4) CN
(N¼ 322), patients who remained cognitively healthy for thewhole
follow-up period.

Details of the diagnostic criteria can be found at the ADNI web
site (http://www.adni-info.org/Scientists/AboutADNI.aspx). Briefly,
participants were classified as CN if they had an MMSE greater than
24, had a clinical dementia rating (CDR) of 0, and did not meet
diagnostic criteria for MCI, dementia, or depression. Participants
were classified as MCI if they had an MMSE greater than 24, had a
CDR of 0.5, had a subjective report of memory concern, had an
objective memory loss, had preserved daily living activity, and did
not meet diagnostic criteria for dementia. AD participants have
MMSE scores less than 26, have a CDR of 0.5 or 1.0, and fulfill criteria
for clinically probable AD according to the Institute of Neurological
and Communicative Diseases and Stroke/Alzheimer’s Disease and
Related Disorders Association.
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2.2. Neuroimaging acquisition and processing

Participants underwent high-resolution MRI brain scans on 1.5
(N ¼ 335) or 3T (N ¼ 325) scanners from General Electric, Siemens,
or Philips (Milwaukee,WI; Germany; the Netherlands, respectively)
using a standardized ADNI acquisition protocol for 3D MP-RAGE
sequence (Jack et al., 2008). Baseline images that had undergone
specific ADNI preprocessing correction steps to standardize images
from different sites and platforms were obtained for this study: (1)
grad wrap, a specific correction of image geometry distortion due to
nonlinearity; (2) B1 nonuniformity, B1 calibration to correct the
image intensity nonuniformity that results when RF transmission is
performed with a more uniform body coil while reception is per-
formed with a less uniform head coil; and (3) N3 correction, a
histogram peakesharpening algorithm applied after grad wrap and
B1 correction. We conducted automatic volumetric segmentation
using FreeSurfer (version 5.3, http://surfer.nmr.mgh.harvard.edu/),
and the output images were visually checked for the hippocampal
and cerebellar segmentations. The criterion was a clear segmenta-
tion error assessed by an experienced neuroscientist. Scans with
segmentation errors were reprocessed and would only be excluded
if the error could not be corrected. In this sample, no image was
excluded.

2.3. Measurements

ICV was computed by the sum of thewhole brain gray and white
matter and CSF volumes. Total cerebellar volume was computed by
summing the left and right cerebellar gray and white matter. Total
hippocampal volume was the sum of the volumes of the left hip-
pocampus and right hippocampus. Hippocampus to intracranial
volume ratio (HCICV) was the ratio of total hippocampal volume to
intracranial volume adjusted for age and field strength. Hippo-
campus to cerebellar volume ratio (HCCR) was the ratio of total
hippocampal volume to total cerebellar volume adjusted for age
and field strength. No significant correlation was detected between
HCICV (correlation¼"0.09) or HCCR (correlation¼"0.09) and ICV.
There was a moderate correlation between hippocampal volume
and MMSE (r ¼ 0.35, Supplementary Fig. 1). The residual method
was used for all adjustments implemented by running a regression
line between raw ratios and the variables using the whole data
(Pintzka et al., 2015).

2.4. Statistical analysis

Statistical analyses were performed using the R statistical soft-
ware (version 3.3.2). Data were checked for missing values and
univariate and multivariate outliers using Mahalanobis distance.
Discriminant analysis was used to estimate the predictive value of
HCICV, HCCR, MMSE, and their combination for clinical status. The
DiscriMiner package (version 0.01-29, https://CRAN.R-project.org/
package¼DiscriMiner) was used for descriptive discrimination
and the MASS (version 7.3-45, http://www.stats.ox.ac.uk/pub/
MASS4) and Caret package (version 6.3-73, https://CRAN.R-
project.org/package¼caret) for predictive discrimination (classifi-
cation). Data were evaluated for normality of all measures (Q-Q
plot), linearity, and multicollinearity and singularity (variation
inflation factor) assumptions of discriminant analysis, which were
all satisfied. Statistically significant heterogeneity of variance-
covariance matrices was observed (Box’s M-test; c2 > 51.19, p <
0.001), and therefore, a quadratic classification procedure was used
because linear discriminant analysis is known to perform poorly in
the presence of heterogeneous covariance matrices (Tabachnick
and Fidell, 2013).

For binary classification analyses using quadratic classification
procedure, MCIc was contrasted with (1) CN, MCIs, andMCIr pooled
together; (2) CN alone; and (3) MCIs and MCIr pooled together and
CN was contrasted with MCIs and MCIr pooled together. The sta-
bility of the classification procedurewas checked by a 10-fold cross-
validation. The sample randomly partitioned into 10 equal-size
subsamples. Nine subsamples (combined) were used as training
data, and the remaining single subsample was retained as the
validation data to evaluate predictive model. The process was
repeated 10 times, with each of the 10 subsamples used only once
as the validation data. The average of the results was provided with
confidence interval. We measured reliability using the Kappa co-
efficient, a chance-corrected measure of agreement between the
reference classification (categorized by long-term clinical follow-
up) and predictive classification (classifications based on study
measures) (Fritz and Wainner, 2001). The receiver operating char-
acteristic (ROC) curve (package pROC version 1.9.1, http://www.
biomedcentral.com/1471-2105/12/77/) and the area under the
curve (AUC) were used to estimate the discriminant capacity of
each model and DeLong’s test was used to compare different
models (Tabachnick and Fidell, 2013).

3. Results

3.1. Demography and brain measures

The average age of all participants together was 73.76 (SD ¼
6.80). Participants within the 4 diagnostic groups were similar in
age, except for MCIr who were 3 to 5 years younger. APOE e4 ge-
notypewas significantly higher, andMMSE scores were lower in the
MCI subgroups than those in the CN group. The average time for
MCIc to convert to AD and MCIr to revert to CN was similar at about
2 years. Baseline imaging measures showed that there was a trend
of ascending hippocampal volume (adjusted for age, field strength,
and ICV), HCICV, and HCCR values in MCIc, MCIs, MCIr, and CN. No
such trend was detected for cerebellar volume (Table 1).

3.2. Discriminant analyses; descriptive statistics

Discriminant analyses were conducted to evaluate discrimina-
tive performance of the HCICV-MMSE and HCCR-MMSE models.
Two discriminant functions were calculated for each model sepa-
rately. The first function significantly distinguished among the
diagnostic groups (HCICV-MMSE: F[6, 1310] ¼ 74.556, HCCR-
MMSE: F[6, 1310] ¼ 70.096) and accounted for 99.6% of prediction
of MCIc from CN, MCIs, and MCIr (first function’s eigenvalue/sum of
all eigenvalues# 100) in both models, whereas the second function
was not effective in distinguishing CN, MCIs, and MCIr. Predictive
values of the combination of HCICV and MMSE or HCCR and MMSE
were almost equal (equal standardized coefficient correlation of
predictors and discriminant functions) in the first discriminant
functions for distinguishing among the groups (Supplementary
Table 1).

The binary classification analyses revealed that HCICV, HCCR,
and MMSE were equally predictive of MCIc with loadings of more
than 0.5 on the discriminant functions (standardized coefficient
correlation) with large effect sizes (canonical R2 and eigenvalue) in
all contrasts. In comparison, the standardized coefficients in CN
group contrasted with MCIs and MCIr groups were more than 0.5,
but because the effect sizes were very low, the discriminant func-
tions were not effective in separating the groups (Supplementary
Table 1).
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3.3. Discriminant analysis; classification

3.3.1. Individual predictor classification
HCICV, HCCR, and MMSE performed similarly in identifying

diagnostic groups when tested individually and classified partici-
pants of the 4 diagnostic groups into 2 groups: CN and MCIc. A high
proportion of CN and MCIc were correctly classified, whereas the
majority of MCIs and MCIr were classified as CN and the remainder
as MCIc (Table 2).

In binary classifications (Table 3), classification performance of
MMSE, HCICV, and HCCR was generally comparable and more
specific than sensitive for detecting MCIc from the other 3 groups:
classification accuracy from 77.6% to 78.9%, specificity from 90.9% to
92%, and sensitivity from 41.2% to 47.1%. Similar trends were
demonstrated in all other contrasts. ROC analyses demonstrated
no statistically significant difference between AUC for MMSE,
HCICV, and HCCR based on Delong’s test in all contrasts (Table 3 and
Fig. 1).

Table 1
Characteristics: demographic information, MMSE, and brainmeasures. Trends of decrease in the average of MMSE and hippocampal measures are noticeable across the groups.

Diagnostic group CN MCIr MCIs MCIc Test of significance (p < 0.05)

Sample size 322 39 112 187 Across groups Significant pairs

Age; y, mean (SD) 74.55 (5.80) 69.33 (8.32) 72.08 (7.65) 74.31 (7.02) F (3) ¼ 10.09a CN vs. MCIr
CN vs. MCIs
MCIc vs. MCIr

Age range, y 59e90 55e87 57e88 55e89
Male sex; N (%) 158 (49) 17 (44) 72 (64) 113 (60) c2 (3) ¼ 12.68 All pairs are different
Education, y; mean (SD) 16.38 (2.74) 16.87 (2.38) 15.75 (3.03) 16.09 (2.73) F (3) ¼ 2.285 No difference in pairs
APOE e4; N (%) 82 (25) 19 (49) 40 (36) 127 (68) c2 (3) ¼ 90.63a All pairs are different
One allele 75 (23) 18 (46) 32 (29) 96 (51)
Two alleles 7 (2) 1 (3) 8 (7) 31 (17)

Age at DX change, y; mean (SD) - 71.38 (8.31) - 76.74 (7.15) - MCIc vs. MCIr
Time to DX change, y; mean (SD) - 2.06 (1.14) - 2.43 (0.91) - -
Measures
MMSE; mean (SD) 29.08 (1.14) 28.85 (1.23) 28.11 (1.48) 26.95 (1.72) F (3) ¼ 95.22a MCIc vs. CN

MCIs vs. CN
MCIr vs. MCIc
MCIs vs. MCIc

Hippocampus, mm3, mean (SD)b 7510.06 (807.29) 7210.85 (756.46) 7052.82 (909.03) 6240.78 (888.32) F (3) ¼ 89.32a MCIc vs. CN
MCIc vs. MCIr
MCIc vs. MCIs
MCIs vs. CN

Cerebellum, mm3; mean (SD)b 121937.60 (9539.73) 120522.40 (9840.47) 121318.00 (10,337.83) 122673.50 (10,510.29) F (3) ¼ 0.458 No difference in pairs
HCICV; mean (SD) 0.50 (0.06) 0.47 (0.05) 0.46 (0.07) 0.41 (0.06) F (3) ¼ 87.86a MCIc vs. CN

MCIc vs. MCIr
MCIc vs. MCIs
MCIs vs. CN

HCCR; mean (SD) 6.21(0.73) 5.99 (0.68) 5.85 (0.94) 5.09 (0.79) F (3) ¼ 79.83a MCIc vs. CN
MCIc vs. MCIr
MCIc vs. MCIs
MCIs vs. CN

Key: APOE e4, apolipoprotein E allele 4; CN, cognitively normal; DX, diagnosis; HCCR, hippocampus to cerebellum volume ratio " 100 adjusted by age and field strength;
HCICV, hippocampus to intracranial volume ratio" 100 adjusted by age and field strength; MCIc, mild cognitive impairment converted to Alzheimer’s disease in 5 years; MCIr,
mild cognitive impairment reverted to normal; MCIs, mild cognitive impairment stable for 5 years or more; MMSE, MinieMental State Examination.

a Indicates significance at p < 0.0001.
b Adjusted by age, field strength, and intracranial volume.

Table 2
Group classification performance: predictors separate MCIc from CN but cannot separate MCIs andMCIr from others andmajority of themwere classified as CN andminority as
MCIc

References MMSE HCICV HCCR HCICV þ MMSE HCCR þ MMSE

CN MCIc MCIs MCIr CN MCIc MCIs MCIr CN MCIc MCIs MCIr CN MCIc MCIs MCIr CN MCIc MCIs MCIr

Prediction
CN 293 71 76 33 272 70 78 29 283 69 83 34 290 42 75 34 293 43 73 34
MCIc 29 116 36 6 50 117 34 10 39 118 29 5 27 144 37 5 25 142 36 5
MCIs 0 0 0 0 0 0 0 0 0 0 0 0 5 1 0 0 4 2 3 0
MCIr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sensitivity, % 91.0 62.0 - - 84.5 62.57 - - 87.9 63.1 - - 90.1 77.0 - - 91.0 75.9 - -
Specificity, % 46.8 85.0 - - 47.6 80.13 - - 45.0 84.6 - - 55.3 85.4 - - 55.6 86.1 - -
Pos Pred Value % 62.0 62.0 - - 60.6 55.45 - - 60.3 61.8 - - 65.8 67.6 - - 66.1 68.3 - -
Neg Pred Value % 84.5 85.0 - - 76.3 84.41 - - 79.6 85.3 - - 85.4 90.4 - - 86.6 90.1 - -
Prevalence, % 48.8 28.3 17.0 5.9 48.8 28.33 17.0 5.9 48.8 28.3 17.0 5.9 48.8 28.3 17.0 5.9 48.8 28.3 17.0 5.9
Accuracy (95% CI) 62.0 (58.1e65.7) 58.94 (55.1e62.7) 60.8 (56.9e64.5) 65.8 (62.0e69.4) 66.4 (62.6e67.0)
Kappa, % 33.3 28.90 31.3 41.1 42.1

Key: 95% CI, 95% confidence interval; CN, cognitively normal; HCCR, hippocampus to cerebellum volume ratio adjusted for age and field strength; HCICV, hippocampus to
intracranial volume ratio adjusted for age and field strength; MCIc, mild cognitive impairment converted to Alzheimer’s disease in 5 years; MCIr, mild cognitive impairment
reverted to normal; MCIs, mild cognitive impairment stable for 5 years or more; MMSE, MinieMental State Examination; Neg Pred value, negative predictive value; Pos Pred
Value, positive predictive value.
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Importantly, using ICV ratio to normalize the hippocampus or
using regression to adjust for ICV was separately assessed, which
was found to have little impact on the classification results
(Supplementary Fig. 2).

3.3.2. Combined predictors classification
The combination of predictors (hippocampal and MMSE)

improved almost all aspects of classification performance, but as for
individual predictor models, classification was optimal in classi-
fying participants into 2 groups: CN and MCIc. A high proportion of
CN and MCIc were correctly classified, whereas a majority of MCIs
and MCIr were misclassified as CN and a minority as MCIc (Table 2).

Almost all aspects of classification performance in all binary
classifications that identified MCIc from other groups (i.e., MCIc vs.
pooled of others, MCIc vs. CN, and MCIc vs. pooled of MCIs and
MCIr) were improved with the combination of HCICV or HCCR and
MMSE, when compared with the individual predictor. By contrast,
combination models did not show improvement in discriminating
CN group from pooled MCIs and MCIr groups (Table 3).

The discrimination ability (AUC of ROC analyses) of combina-
tions of HCICV or HCCR and MMSE was significantly better than
each predictor individually (Delong’s test; z < !4, p < 0.001), while
there was no significant difference between the HCICV-MMSE and
HCCR-MMSEmodels. In addition, analyses suggested that therewas
no difference in discrimination ability between the combination
models and MMSE alone in separating CN group from MCIs and
MCIr groups. By contrast, the combination of hippocampal ratios
(HCICV or HCCR) and MMSE was significantly better in discrimi-
nating MCIc from pooled MCIs and MCIr (Table 3 and Fig. 1).
Additional analyses investigating the ability to discriminate MCI
who convert within specified time periods (1e5 years) revealed
that performance was better in the first 3 years of follow-up
compared to the final 2 years (Supplementary Table 2).

Classification performance of the predictors in combination
(HCCR-MMSE and HCICV-MMSE), for discriminating MCIc from
other groups in all contrasts was generally substantial: classi-
fication accuracy for MCIc versus all other groups was more
than 83% with sensitivity between 65.2% and 62.6%, with a
specificity of 90.7%e91.3% and an AUC of 0.88e0.89. The per-
formance was even better when discriminating MCIc from CN
(Table 3).

Based on the partition plots in Fig. 2, individuals with MMSE
scores of less than 25 were mostly classified as MCIc regardless of
the HCICV and HCCR values. For individuals with higher MMSE
values, lower hippocampal ratios were observed in those who
were classified as MCIc. For example, for an MMSE score equal to
25, HCICV needed to be less than 0.6% or HCCR less than 7.5%, to be
classified as MCIc. The thresholds for HCICV or HCCR were 0.5%
and 6.3% for an MMSE of 26, 0.42% and 5.3% for 27, 0.38% and 4.8%
for MMSE for 28. HCICV or HCCR needed to be less than 0.35% and
4.3%, respectively, for MCIc diagnosis, when MMSE scores were
29e30. These thresholds were slightly smaller for discriminating
MCIc from CN.

4. Discussion

This study aimed to investigate the performance of hippo-
campal volume normalized to cerebellar volume as a new
measure for the clinical discrimination of MCI individuals at
risk of AD conversion within 5 years. A combination of HCCR
and MMSE was most effective in identifying MCI at risk of
conversion. The main findings were that (1) the combination of
HCCR or HCICV and MMSE and MMSE performed better in
classifying MCI at risk of AD conversion than each measure
individually; (2) the classification performance of HCCR and
MMSE was similar to that of HCICV and MMSE; and (3) CN and

Table 3
Contrast classification performance: MCIc contrasted separately with all 3 groups together, other 2 MCI groups, and CN alone. CN also contrasted with MCIs and MCIr together.
In MCIc contrasts (with all groups or CN alone), predictors were mostly specific than being sensitive when they were not in combinations while combinations improved all
classification performances.

Measurements Classification
accuracy % (95% CI)

Kappa, % McNemar test,
p-value

Sensitivity, % Specificity, % Positive
predictive
value, %

Negative
predictive
value, %

LRþ LR
!

AUROC (95% CI)

MCIc vs. [CN þ MCIs þ MCIr]
MMSE 77.6 (74.2e80.7) 37.5 <0.0001 41.2 92.0 67.0 69.8 5.2 0.6 0.80 (0.76e0.84)
HCICV 78.9(75.6e82.0) 44.0 <0.0001 50.3 90.3 67.1 82.1 5.2 0.6 0.82 (0.79e0.86)
HCCR 78.5 (75.2e81.6) 41.8 <0.0001 47.1 90.9 67.2 81.3 5.2 0.6 0.82 (0.78e0.85)
HCICV þ MMSE 83.2 (80.1e86.0) 56.6 0.008 62.6 91.3 74.1 86.1 7.2 0.4 0.89 (0.86e0.91)
HCCR þ MMSE 83.5 (80.4e86.2) 57.9 0.0554 65.2 90.7 73.5 86.8 7.0 0.4 0.88 (0.85e0.91)

MCIc vs. CN
MMSE 80.4 (76.6e83.7) 55.7 <0.0001 62.1 91.0 80.0 80.5 6.9 0.4 0.84 (0.81e0.88)
HCICV 76.4 (72.5e80.1) 48.12 0.0828 62.6 84.5 70.1 79.5 4.0 0.4 0.86 (0.82e0.89)
HCCR 78.8 (75.0e82.3) 52.8 0.0053 63.1 87.9 75.2 80.4 5.2 0.4 0.85 (0.81e0.88)
HCICV þ MMSE 85.5 (82.1e88.4) 68.3 0.2010 77.0 90.4 82.3 87.1 8.0 0.3 0.93 (0.90e0.95)
HCCR þ MMSE 86.1 (82.7e88.9) 69.4 0.0576 76.5 91.6 84.1 87.0 9.1 0.3 0.92 (0.89e0.94)

MCIc vs. [MCIs þ MCIr]
MMSE 66.6 (61.3e71.6) 33.6 0.0084 62.0 72.2 73.4 60.6 2.2 0.5 0.72 (0.67e0.77)
HCICV 69.2 (64.0e74.1) 36.8 0.0241 78.6 57.6 69.7 68.5 1.9 0.4 0.75 (0.69e0.80)
HCCR 69.8 (64.6e74.7) 38.1 0.0376 78.6 58.9 70.3 69.0 1.9 0.4 0.75 (0.70e0.81)
HCICV þ MMSE 74.6 (69.6e79.1) 48.3 0.5898 78.6 69.5 76.2 72.4 2.6 0.3 0.81 (0.76e0.85)
HCCR þ MMSE 72.8 (67.7e77.5) 44.9 0.9170 75.9 68.9 75.1 69.8 2.4 0.4 0.80 (0.75e0.85)

CN vs. [MCIs þ MCIr]
MMSE 70.8 (66.5e74.9) 22.2 <0.0001 73.0 58.9 90.7 28.5 1.8 0.5 0.66 (0.61e0.72)
HCICV 69.1 (64.8e73.3) 12.7 <0.0001 93.8 16.6 70.6 55.6 1.1 0.4 0.65 (0.60e0.70)
HCCR 69.3 (65.0e73.5) 11.2 <0.0001 95.7 13.3 70.2 58.8 1.1 0.3 0.61 (0.55e0.66)
HCICV þ MMSE 70.4 (66.01e74.5) 20.4 <0.0001 91.0 26.5 72.5 62.0 1.2 0.3 0.70 (0.65e0.75)
HCCR þ MMSE 71.7 (67.4e75.7) 23.8 <0.0001 91.9 28.5 73.3 62.3 1.3 0.3 0.68 (0.63e0.73)

Key: 95% CI, 95% confidence interval; AUROC, area under receiver operating characteristic curve; CN, cognitively normal; HCCR, hippocampus to cerebellum volume ratio
adjusted for age and field strength; HCICV, hippocampus to intracranial volume ratio adjusted for age and field strength; LRþ, positive likelihood ratio; LR!, negative likelihood
ratio; MCIc, mild cognitive impairment converted to Alzheimer’s disease in 5 years; MCIr, mild cognitive impairment reverted to normal; MCIs, mild cognitive impairment
stable for 5 years or more; MMSE, MinieMental State Examination.
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MCI who did not convert to AD within 5 years did not differ
statistically in their normalized hippocampal measures at a
particular MMSE score.

Among the brain areas implicated in AD neuropathology, hip-
pocampal shrinkage is most predictive of AD-related cognitive
dysfunction (Jack et al., 2000), and MMSE is the most widely used

Fig. 1. Receiver operating characteristic (ROC) curve for group membership: Area under the curve (AUC) revealed that in mild cognitive impairment converted to Alzheimer (MCIc)
contrasted with pooled of other groups (upper left) or cognitively normal (CN) alone (upper right), combination of MinieMental State Examination (MMSE) and hippocampus to
intracranial volume ratio (HCICV) or hippocampus to cerebellum volume ratio (HCCR) was better than each predictor separately. This was partially true for MCIc contrasted with
pooled of other mild cognitive impairment (MCI) groups (lower left), while not true for CN contrasted with other MCI groups (lower right).
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screening instrument for AD/dementia. We found that HCCR, a
new normalized hippocampal measure, performed similar to
HCICV in classification performance. Although none of HCICV,
HCCR, or MMSE reliably identified MCI individuals who pro-
gressed to AD alone, we confirmed that HCICV or HCCR in com-
bination with MMSE were effective in differentiating MCI patients
who progressed to AD from CN and MCI patients who did not
progress.

Both combinations were similar in performance and revealed a
high level of classification accuracy, particularly for discriminating
between MCIc and CN. However, classification accuracy only re-
flects the proportion of true results (positive or negative) in the
sample. To be practical and useful, a test needs to be sensitive and
specific. Our results revealed that of those with MCIc, 65.2%e62.6%
were correctly identified (satisfactory sensitivity) by the combina-
tion models (HCCRþMMSE or HCICVþMMSE), while 91.3%e90.7%

Fig. 2. Partition plots: Thresholds of different hippocampus to intracranial volume (HCICV, right) or hippocampus to cerebellum ratios (HCCR, left) based on different MinieMental
State Examination (MMSE) scores, which separate mild cognitive impairment converted to Alzheimer (MCIc) from the pooled of cognitively normal (CN) and other mild cognitive
impairment (MCI) groups (upper) and from CN alone (lower).
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of nonconverters (CN, MCIs, and MCIr) were correctly identified
(high specificity). Furthermore, in those who were positively
identified as MCIc, the likelihood of being truly MCIc was about
nine-fold that of those who were falsely identified as MCIc (high
positive likelihood ratio). For those who were positively identified
as MCIc, the likelihood of being MCIc was close to a third that of
those who were falsely identified as not having MCIc (low negative
likelihood ratio). Therefore, not only was the overall accuracy of the
combinations high, but the probabilities of false positive/negative
results were also acceptable. Altogether, the combinations of hip-
pocampal measures and MMSE are likely to be better than any
single measure in identifying individuals with MCI at risk of AD
conversion but also effective in ruling out those individuals unlikely
to convert within 5 years.

Interestingly, using either a combination of HCICV and MMSE or
HCCR and MMSE resulted in similar performance. This is important
because it indicates that normalization of hippocampal volume by
ICV or cerebellar volume is equally effective and thus validates our
approach. ICV estimation is more sensitive to scanning parameters
and segmentation methods than cerebellar volume. This is prob-
ably because ICV segmentation relies on the correct identification of
the boundary between the subarachnoid space and CSF fluid whose
contrast ismore variable to that between cerebellar graymatter and
CSF. Thus, cross-sectional comparison between patients (or longi-
tudinal within patients) assessed with different scanning parame-
ters may be more difficult when using the ICV ratio. Consequently,
in these contexts, normalization by cerebellar volume may be more
reliable and preferable.

The classification performance of HCICV and MMSE was in
agreement with previous studies (in spite of different study pa-
rameters) that revealed a sensitivity of 67% and specificity of 72% for
ICV-adjusted hippocampal volume and a sensitivity of 54% and
specificity of 80% for MMSE in identifying MCIc from CN (Arevalo-
Rodriguez et al., 2015; Chupin et al., 2009). Better performance
for the combination models was consistent and comparable with a
previous study that showed better prediction of a combination of
hippocampal volume, entorhinal cortex volume, MMSE, informant
report of functioning questionnaire, the University of Pennsylvania
Smell Identification Test, and Selective Reminding Test immediate
recall score with a sensitivity of 70% and a specificity of 90%
(Devanand et al., 2008). In addition, themodels’ performances were
comparable with other studies with combination of multiple mo-
dalities (including MRI and cognitive measures), which mostly had
many predictors in each modality (Costafreda et al., 2011; Ferrarini
et al., 2009; Moradi et al., 2015; Zhang et al., 2011). This suggests
that adding more predictors into a model may not necessarily
improve classification performance when the predictors are from a
single domain. Therefore, similar to the comparability of the current
findings with previous studies that used complex combinations of
predictors, the combination of HCCR and MMSE has the advantage
of being easily implementable and interpretable and thus may
facilitate clinical adoption.

It is interesting to note thatMCIs andMCIr did not differ from CN
based on the combination of HCICV or HCCR and MMSE while they
differed from MCIc. This suggests that those who are not at actual
risk of short-term AD conversion are not substantially different
from CN. A measure of concurrent decline in function and structure
is likely to be a better predictor of AD conversion in short term.

Most classification studies conducted to date were predomi-
nantly based on multidomain/multivariate predictors and thus too
complex to be easily adoptable in clinical practice. This study stands
out in its use of a combination of simple structural (HCCR) and
functional (MMSE) measures with a potential diagnostic value for
identifying MCI subjects at risk of converting to AD in 5 years easily
applicable in clinical practice.

5. Conclusion

The need to evaluate AD-related biological markers for identi-
fying those at risk of AD conversion and to include them in MCI
diagnosis has been well documented. However, there is no agree-
ment on a biomarker that can be effectively applied in clinical
practice. In the present study, we show that a combination of one
brain biomarker, either HCCR or HCICV, and MMSE can accurately
identify individuals at risk of AD conversion within 5 years. More-
over, normalization by cerebellar volume is as precise as normali-
zation by intracranial volume with the advantage of being more
practical in a clinical setting.
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Supplementary	table	1:	Descriptive	discriminants	analysis	of	predictors:	
Predictors	are	generally	significant	with	loadings	more	than	0.5	on	the	
discriminant	functions	(standardised	coefficient	correlation)	with	large	effect	
sizes	(canonical	R2	and	eigenvalue)	across	all	groups	as	well	as	in	all	contrasts	
except	for	CN	contrasting	pooled	of	MCIs	and	MCIr,	which	the	effect	sizes	are	
small	and	not	effective	in	separating	the	groups.			
	

	 Correlation	of	
predictors	with	

discriminant	functions	
(std.	coef.)	

Pooled	within-
group	correlation	
among	predictors	

Univariate	
significance	

1	 2	 MMSE	 F	[DF]	
All	groups		 	 	 	 	
HCICV	+	MMSE	 	 	 	 	 	
	 HCICV	 -0.675	 -0.740	 0.024	 87.86[3,	656]	
	 MMSE	 -0.705	 -0.711	 	 95.22[3,	656]	
	 Canonical	R2	 0.443	 0.002	 	 	
	 Eigenvalue	 0.793	 0.002	 	 	
HCCR	+	MMSE	 	 	 	 	 	
	 HCCR	 -0.644	 0.768	 0.035	 79.83	[3,	656]	
	 MMSE	 -0.715	 -0.703	 	 95.22	[3,	656]	
	 Canonical	R2	 0.425	 0.003	 	 	
	 Eigenvalue	 0.738	 0.003	 	 	
	 	 	 	 	 	
MCIc	vs.	[CN,	MCIs	and	MCIr]	 	 	 	 	
HCICV	+	MMSE	 	 	 	 	
	 HCICV	 0.666	 	 0.108	 221.73	[1,658]	
	 MMSE,	std.	coef	 0.683	 	 	 231.08	[1,658]	
	 Canonical	R2	 0.385	 	 	 	
	 Eigenvalue	 0.627	 	 	 	
HCCR	+	MMSE	 	 	 	 	
	 HCCR	 -0.655	 	 0.119	 215.79	[1,658]	
	 MMSE	 -0.683	 	 	 231.08	[1,658]	
	 Canonical	R2	 0.379	 	 	 	
	 Eigenvalue	 0.609	 	 	 	
	 	 	 	 	 	
MCIc	vs.	CN	 	 	 	 	
HCICV	+	MMSE	 	 	 	 	
	 HCICV	 -0.700	 	 0.013	 275.73	[1,507]	
	 MMSE	 -0.707	 	 	 281.25	[1,507]	
	 Canonical	R2	 0.521	 	 	 	
	 Eigenvalue	 1.088	 	 	 	
HCCR	+	MMSE	 	 	 	 	
	 HCCR	 -0.676	 	 0.032	 256.09	[1,507]	
	 MMSE	 -0.710	 	 	 281.25	[1,507]	
	 Canonical	R2	 0.505	 	 	 	
	 Eigenvalue	 1.019	 	 	 	
	 	 	 	 	 	
MCIc	vs	[MCIs	and	MCIr]	 	 	 	 	
HCICV	+	MMSE	 	 	 	 	



	 HCICV	 -0.717	 	 0.082	 69.94[1,	336]	
	 MMSE	 -0.647	 	 	 58.46	[1,	336]	
	 Canonical	R2	 0.263	 	 	 	
	 Eigenvalue	 0.356	 	 	 	
HCCR	+	MMSE	 	 	 	 	
	 HCCR	 -0.717	 	 0.142	 75.00	[1,	336]	
	 MMSE	 -0.610	 	 	 58.46	[1,	336]	
	 Canonical	R2	 0.260	 	 	 	
	 Eigenvalue	 0.352	 	 	 	
	 	 	 	 	 	
CN	vs.	[MCIs	and	MCIr]	 	 	 	 	
HCICV	+	MMSE	 	 	 	 	
	 HCICV	 -0.617	 	 0.080	 30.45	[1,	471]	
	 MMSE	 -0.734	 	 	 40.72	[1,	471]	
	 Canonical	R2	 0.122	 	 	 	
	 Eigenvalue	 0.139	 	 	 	
HCCR	+	MMSE	 	 	 	 	
	 HCCR	 -0.498	 	 0.069	 17.47	[1,	471]	
	 MMSE	 -0.826	 	 	 40.72[1,	471]	
	 Canonical	R2	 0.103	 	 	 	
	 Eigenvalue	 0.115	 	 	 	
CN;	cognitively	normal,	MCIr;	mild	cognitive	impairment	reverted	to	normal,	MCIc;	mild	cognitive	impairment	
converted	to	Alzheimer’s	disease	in	five	years,	MCIs;	mild	cognitive	impairment	stable	for	five	years	or	more,	
APOE	e4;	Apolipoprotein	E	allele	4,	MMSE;	mini	mental	status	examination,	HCICV;	Hippocampus	to	intracranial	
volume	ratio	×	100	adjusted	for	age	and	field	strength,	HCCR;	Hippocampus	to	Cerebellum	volume	ratio	×100	
adjusted	for	age	and	field	strength,	std.coef;	standardized	coefficient		

	
	
	
Supplementary	Table-2.	Area	under	receiver	operating	characteristic	curve	of	
mild	cognitive	impairment	convert	to	Alzheimer’s	disease	in	one	up	to	five	years	
vs.	pooled	of	mild	cognitive	impairment	remain	stable	for	five	years	or	more	and	
those	who	revert	to	cognitively	normal	
	
MCIc	vs.	[MCIs	&	MCIr]	
	

AUROC	(95%	CI)	
HCICV-MMSE	 HCCR-MMSE	

MCI	convert	in	year	1		 0.89	(0.74	–	0.99)	 0.93	(0.85	–	0.99)	
MCI	convert	in	year	2	 0.75	(0.67	–	0.82)	 0.75	(0.67		-	0.82)	
MCI	convert	in	year	3	 0.78	(0.72	–	0.85)	 0.79	(0.72	–	0.85)	
MCI	convert	in	year	4	 0.72	(0.63	–	0.80)	 0.75	(0.67	–	0.83)	
MCI	convert	in	year	5	 0.66	(0.54	–	0.79)	 0.68	(0.56	–	0.81)	
MCIc;	mild	cognitive	impairment	convert	to	Alzheimer’s	disease,	MCIs;	mild	
cognitive	impairment	remain	stable	for	five	years	or	more,	MCIr;	mild	cognitive	
impairment	revert	to	cognitively	normal,	AUROC;	area	under	receiver	operating	
characteristic	curve,	HCICV;	hippocampus	to	intracranial	volume	ratio	adjusted	
for	age	and	field	strength,	HCCR;	hippocampus	to	cerebellar	volume	ratio	
adjusted	for	age	and	field	strength,	MMSE;	mini	mental	state	examination.	
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Abstract
Objectives: This study aimed to investigate the predictive value of cognitive/functional measures in combination with 
hippocampal volume (HCV) on the probability of conversion from mild cognitive impairment (MCI) to Alzheimer’s disease 
(AD).
Methods: The Rey Auditory Verbal Learning Test for immediate memory, Mini-Mental State Examination, a functional 
assessment for independent daily activities and Alzheimer’s Disease Assessment Scale were used as cognitive/functional 
measures and HCV as neuroimaging measure. Logistic regression and Cox proportional hazard analyses were used to 
explore the measures’ predictive values for AD conversion and time to conversion.
Results: The probability of conversion from MCI to AD was associated with cognitive function, but this was moderated 
by HCV: higher at lower HCV and lower at higher HCV. General cognitive/functional measures were less predictive than 
immediate memory in predicting time to conversion to AD at small HCVs.
Conclusion: Effectiveness of cognitive measures and subtle functional abnormality in predicting conversion from MCI to 
AD is dependent on HCV, thus combined evaluation should be considered. A combination of HCV and immediate memory 
appear to perform best in predicting time to conversion.

Key words: Brain/cognitive reserve, Hippocampus, Mild cognitive impairment, MRI, Neuropsychological tests

Alzheimer’s disease (AD) is a progressive degenerative 
disorder that involves cognitive decline severe enough to 
substantially impair daily activities. Cognitive decline 
accompanied by preserved daily activities has been speci-
fied as mild cognitive impairment (MCI), and is commonly 
known to be the prodromal phase of AD (Petersen et al., 
1999). Approximately half of those with MCI progress to 
AD within 5 years (Pandya, Clem, Silva, & Woon, 2016). 
Identifying those who will progress to AD and predicting 
time to conversion remains an important clinical challenge.

Cognitive and functional performance is the central 
component of AD/MCI diagnostic. Thus, it is to be expected 
that cognitive performance is a sensitive predictor of con-
version from MCI to AD (Belleville et al., 2017). A com-
bination of measures from a range of domains typically 
provides a better predictor of disease progression (Belleville 
et al., 2017). Additionally, although intact daily function is 
the main clinical differentiator of MCI and AD diagnosis, 
subtle decline in daily function, while it remains in the nor-
mal range, is still predictive of conversion from MCI to AD 
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(Gomar et al., 2011; Li et al., 2017). Furthermore, a combi-
nation of cognitive/functional measures with neuroimaging 
measures has been reported to produce significantly higher 
predictive accuracy (Devanand et  al., 2008; Falahati, 
Westman, & Simmons, 2014; Moradi et  al., 2015). Our 
recent study showed that the combination of a new hippo-
campal index—hippocampus to cerebellum volume ratio, 
HCCR—and Mini-Mental State Examination (MMSE) 
could reliably identify those who progress from MCI to 
AD within 5 years with an area under receiver operating 
characteristic curve of 0.9 (Tabatabaei-Jafari, Walsh, Shaw, 
& Cherbuin, 2018).

Cognitive/functional impairment is positively associ-
ated with neurodegeneration, but this association is not 
straightforward and there is a mismatch between the extent 
of neural pathology and the severity of cognitive/functional 
impairment (Steffener & Stern, 2012). Although a combi-
nation of cognitive performance and neuroimaging mea-
sures has been previously shown to have a higher predictive 
value compared with either measure alone, the relative 
contribution of these measures to each other across their 
range is not well understood. To answer these important 
questions, this study aimed to investigate the predictive 
value of cognitive/functional measures across the range of 
hippocampal volumes (HCVs), in those who have a diag-
nosis of MCI and convert to AD within 5 years. HCV and 
cognitive/functional measures were selected on the basis 
of established associations with MCI and AD (Jack et al., 
2005; Li et al., 2017; Tabatabaei-Jafari, Shaw, & Cherbuin, 
2015; Tabatabaei-Jafari et al., 2018). We hypothesized that 
HCV would moderate the predictive value of cognitive/
functional performance. Additionally, we aimed to investi-
gate how well a combination of these measures would pre-
dict time to conversion from MCI to AD.

Method
Study Participants
Data used in the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu). The ADNI was 
launched in 2003 as a public–private partnership, led by 
Principal Investigator Michael W.  Weiner, MD. The pri-
mary goal of ADNI has been to test whether serial magnetic 
resonance imaging (MRI), positron emission tomography 
(PET), other biological markers, and clinical and neuro-
psychological assessment can be combined to measure the 
progression of MCI and early AD.

All participants of ADNI 1/GO/2 who were diagnosed 
with MCI at baseline were considered for inclusion. Those 
who were stable for at least 6 months after baseline diag-
nosis were included if they converted to AD within 5 years 
(MCIc; n = 183) or remained stable for more than 5 years 
(MCIs; n = 112).

Details of the diagnostic criteria can be found at the 
ADNI web site (http://www.adni-info.org/Scientists/

AboutADNI.aspx). Briefly, participants were classified as 
MCI if they had an MMSE greater than 24, a CDR of 0.5, a 
subjective report of memory concern, an objective memory 
loss, preserved daily living activity and did not meet diag-
nostic criteria for dementia. Participants were classified as 
having AD if they had MMSE scores less than 26, CDR 0.5 
or 1.0 and fulfill criteria for clinically probable AD accord-
ing to the Institute of Neurological and Communicative 
Diseases and Stroke/Alzheimer’s Disease and Related 
Disorders Association.

Neuroimaging Acquisition and Processing

Participants underwent high-resolution MRI brain scans 
on 1.5 (N = 165) or 3 T (N = 130) scanners from General 
Electric, Siemens, or Philips (Milwaukee, WI; Germany; 
the Netherlands, respectively) using a standardized ADNI 
acquisition protocol for 3D MP-RAGE sequence (Jack et al., 
2008). Images which had undergone specific ADNI prepro-
cessing correction steps to standardize images from different 
sites and platforms, were obtained for this study: (a) Grad 
wrap; a specific correction of image geometry distortion due 
to nonlinearity, (b) B1 nonuniformity; B1 calibration to cor-
rect the image intensity nonuniformity that results when RF 
transmission is performed with a more uniform body coil 
while reception is performed with a less uniform head coil, 
(c) N3 correction; a histogram peak sharpening algorithm 
applied after grad wrap and B1 correction.

FreeSurfer version 5.3 (http://surfer.nmr.mgh.harvard.edu/) 
was used for automatic volumetric segmentation. The output 
images were visually checked for accurate segmentation.

Measures

One neuroimaging, three cognitive and one functional 
measure that have been extensively used for diagnostic 
purposes and cognitive and functional evaluation in clini-
cal trials (Estévez-Gonzalez, Kulisevsky, Boltes, Otermin, & 
Garcia-Sanchez, 2003; Ito, Hutmacher, & Corrigan, 2012; 
Petersen et  al., 2005) and with established associations 
with AD and predictive of MCI conversion (Ito et al., 2012; 
Li et al., 2017) were considered.

Hippocampal Volume

The hippocampus is one of the first brain areas to be 
impacted by AD pathology, and one of the areas with great-
est shrinkage over the course of the disease (Tabatabaei-
Jafari et al., 2015). It is also the most sensitive structural 
predictor of AD conversion in MCI individuals (Eckerstrom 
et al., 2008). Therefore, HCV, the total volume of the left 
and right hippocampi adjusted for age, field strength, and 
ICV using the residual regression method described else-
where (Pintzka, Hansen, Evensmoen, & Haberg, 2015) was 
investigated as neuroimaging predictor.
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Mini-Mental State Examination

The MMSE (Folstein, Folstein, & McHugh, 1975) is the 
most widely used screening instrument for AD/dementia 
(Arevalo-Rodriguez et al., 2015). It consists of 11 items with 
total scores ranging between 0 and 30, which lower scores 
reflecting more severe cognitive impairment. The items 
evaluate orientation in time and space (10 points), imme-
diate recall (3 points), attention and calculation (5 points), 
delayed recall (3 points), language naming (2 points), fol-
lowing command (3 points), repetition (1 point), reading (1 
point), writing (1 point), and visuospatial (1 point).

The Alzheimer’s Disease Assessment Scale

The modified 13-items Alzheimer’s Disease Assessment 
Scale (ADAS)-cog version (Petersen et al., 2005) was used 
here to assess general cognitive function. The modified 
ADAS consists of word recall (10 items), commends (5 
items), construction (5 items), naming (5 items), ideational 
praxis (5 items), orientation (8 items), word recognition 
(12 items), recall instruction (5 items), spoken language (5 
items), word finding (5 items), comprehension (5 items), 
delayed word recall (10 items), and number cancelation (5 
items) in total 85 scores, which the higher score the severest 
the cognitive impairment.

Rey Auditory Verbal Learning Test

The Rey Auditory Verbal Learning Test (RAVLT) was used 
to evaluate episodic memory (Rey, 1941, 1964). It involves 
free recall of a list of 15 words in any order over five se-
quential trials. It is followed by recall of a second list of 
15 words. Finally, the participant is asked to remember as 
many words as possible from the first list immediately fol-
lowing the second list recall and after 30 min. The scoring 
system of the RAVLT based on the correct number of 
words in each trial (5 in total) and evaluates a wide diver-
sity of learning and memory functions including immediate 
memory, learning, and forgetting. The immediate recall 
score, RAVLT immediate, was considered for this study 
based on our introductory analyses that showed better 
predictive value for immediate memory compared with 
RAVLT learning and percentage of forgetting. The RAVLT 
immediate was computed as the total scores of trials 1–5.

The Functional Assessment Questionnaire

The Functional Assessment Questionnaire (FAQ) assesses 
abilities of daily living with total scores ranging from 0 to 
30. A  score of 0 indicates “no impairment” and 30  “se-
verely impaired” (Ito et al., 2012; Pfeffer, Kurosaki, Harrah, 
Chance, & Filos, 1982). The total FAQ score is the sum of 
10 daily activities, with each activity being rated from 0 to 3 
(0 = normal, 1 = has difficulty but does by self, 2 = requires 
assistance, 3  =  dependent). Evaluated activities are (a) 

writing checks, paying bills, or balancing a checkbook, (b) 
assembling tax records, business affairs, or other papers, (c) 
shopping alone for clothes, household necessities, or gro-
ceries, (d) playing a game of skill such as bridge or chess 
or working on a hobby, (e) heating water, making a cup of 
coffee, turning off the stove, (6) preparing a balanced meal, 
(f) keeping track of current events, (g) paying attention to 
and understanding a TV program, book, or magazine, (h) 
remembering appointments, family occasions, holidays, 
medications, and (i) traveling out of the neighborhood, 
driving, or arranging to take public transportation.

Statistical Analysis

Statistical analyses were performed using the R statistical 
software (version 3.3.2). No missing values were present 
in the measures of interest. Mahalanobis distance was used 
for detection of univariate and multivariate outliers. No in-
fluential outlier was detected. Group differences in dem-
ographic variables were assessed by t-test for continuous 
variables and chi square tests for categorical variables. 
Univariate and bivariate models were used to investigate 
prediction of conversion from MCI to AD within 5 years as 
well as prediction of the time to conversion. Each bivariate 
model consisted of standardized values of HCV and one of 
four cognitive/functional measures as well as their interac-
tion. The alpha level was set at <0.05.

Prediction of AD Conversion

Logistic regression analysis (package Stats; version 3.3.2 
and package Caret; version 6.3–73) was used to quan-
tify the magnitude of predictive values of the measures 
for predicting MCI conversion to AD. Univariate and bi-
variate models were applied. The odds ratios were used 
to quantify the magnitude of the main and interaction 
effects of the predictors. To graphically illustrate the ef-
fect of HCV, the probability of conversion for the cogni-
tive/functional measures at different categories of HCV 
was investigated. Participants were categorized into 
three groups; small HCV for those with HCV less than 
5,500  mm3 (smaller than 1 SD), medium HCV for the 
volume between 5500 and 7500 mm3 (within 1 SD), and 
large HCV for those with larger than 7,500 mm3 (larger 
than 1 SD).

Prediction of Time to AD Conversion

Cox proportional hazard analysis (package survival; 
version 2.40-1) was used to predict the time to AD con-
version using the univariate and bivariate models. The 
hazard ratio for 1 SD change in the measures was used to 
quantify the magnitude of the main and interactive effects 
of the measures. In the case of the presence of interac-
tive effect, to better interpret the effect the analyses were 

Journals of Gerontology: PSYCHOLOGICAL SCIENCES, 2019, Vol. XX, No. XX 3

Copyedited by: NI
D

ow
nloaded from

 https://academ
ic.oup.com

/psychsocgerontology/advance-article-abstract/doi/10.1093/geronb/gbz011/5298954 by Library user on 13 M
arch 2019



repeated with HCV as a categorical variable (small, me-
dium, and large) in the model. To graphically illustrate the 
contribution of cognitive/functional measures and HCV 
on probability of remaining MCI over time, separate 
Kaplan–Meier curves were plotted for different combina-
tions of categorical levels of HCV (small, medium, and 
large as defined above) and cognitive/functional meas-
ures (low and high). Cognitive/functional measures were 

categorized into low and high based on the median: 27 
for MMSE, 13 for ADAS, 2 for FAQ, and 31 for RAVLT. 
Participants were categorized into six combinations for 
each cognitive/functional measure (Supplementary Figure 
1). For example, for ADAS, they were categorized into 
small HCV/low ADAS, small HCV/high ADAS, medium 
HCV/low ADAS, medium HCV/high ADAS, large HCV/
low ADAS, and large HCV/high ADAS.

Table 1. Participants Characteristics and Measurements

Characteristics/Measures MCIs MCIc Group difference

Sample size 112 183
Age; year, mean (SD) 71.95 (7.65) 74.31 (6.90) Yes
Age range, year 57–88 55–89 —
Male sex; N (%) 72 (64.29) 112 (61.20) No
Education; year, mean (SD) 15.75 (3.03) 16.03 (2.73) No
APOE e4; N (%) 40 (35.71) 124 (67.76) Yes
 One allele 32 (28.57) 93 (49.21) Yes
 Two alleles 8 (7.14) 31 (17.32) Yes
Age at diagnosis change; year, mean (SD) — 76.83 (7.05) —
Time to diagnosis change; year, mean (SD) — 2.40 (0.89) —
MMSE, mean (SD) 28.11 (1.49) 26.93(1.73) Yes
ADAS, mean (SD) 13.45 (5.45) 20.19 (5.49) Yes
RAVLT immediate, mean (SD) 38.40 (10.34) 28.85 (7.11) Yes
FAQ, mean (SD) 1.75 (3.00) 4.96 (4.62) Yes
HCV,a mm3, mean (SD) 7052.82 (909.03) 6223.92 (875.56) Yes

Note. MCIc = mild cognitive impairment converted to Alzheimer’s disease within 5 years; MCIs = mild cognitive impairment stable for 5 or more years; APOE 
e4 = apolipoprotein E allele 4; MMSE = mini-mental state examination; ADAS = Alzheimer Disease Assessment Scale (cognitive subscale); RAVLT = Rey Auditory 
Verbal Learning Test; FAQ = functional assessment questionnaire.
aAdjusted by age, field strength, and intracranial volume.

Table 2. Logistic Regression and Cox Proportional Hazard Results: Bivariate Models

 Prediction of conversion Prediction of time to conversion

Variables Coef. SE OR (95% CI) Z, p value Coef. SE HR (95% CI) Z, p value

HCV and MMSE
HCV −0.92 0.16 0.40 (0.29–0.54) −5.67, p < .0001 −0.53 0.08 0.59 (0.51–0.68) −6.89, p < .00001
MMSE −0.63 0.15 0.53 (0.39–0.71) −4.17, p < .0001 −0.40 0.08 0.66 (0.57–0.78) −5.01, p < .0001
HCV: MMSE −0.35 0.17 0.71 (0.50–0.98) −2.05, p < .05 −0.25 0.08 0.78 (0.66–0.91) −3.18, p = .002
HCV and ADAS
HCV −0.66 0.17 0.52 (0.37–0.72) −3.86, p = .0001 −0.41 0.08 0.67 (0.57–0.78) −5.05, p < .0001
ADAS 1.18 0.19 3.26 (2.27–4.83) 6.16, p < .0001 0.64 0.08 1.91 (1.62–2.25) 7.79, p < .0001
HCV: ADAS 0.34 0.22 1.41 (0.92–2.14) 1.59, p = .11 0.23 0.09 1.26 (1.07–1.49) 2.70, p < .01
HCV and FAQ
HCV −0.95 0.17 0.39 (0.27–0.54) −5.56, p < .0001 −0.50 0.07 0.61 (0.53–0.70) −6.99, p < .0001
FAQ 1.05 0.22 2.84 (1.90–4.55) 4.72, p < .0001 0.38 0.06 1.46 (1.30–1.65) 6.28, p < .0001
HCV: FAQ 0.15 0.23 1.16 (0.73–1.77) 0.65, p = 0.52 0.06 0.06 1.06 (0.95–1.19) 1.09, p = 0.28
HCV and RAVLT
HCV −0.92 0.17 0.40 (0.28–0.55) −5.44, p < .0001 −0.49 0.08 0.61 (0.53–0.71) −6.46, p < .0001
RAVLT −0.18 0.20 0.31 (0.21–0.44) −6.04, p < .0001 −0.75 0.10 0.47 (0.39–0.58) −7.45, p < .0001
HCV: RAVLT −0.09 0.22 0.91 (0.59–1.40) −0.41, p = .68 −0.17 0.84 0.84 (0.70–1.01) −1.84, p = .07

Note. MMSE = mini-mental state examination (standardized); ADAS = Alzheimer Disease Assessment Scale (standardized); RAVLT = Rey Auditory Verbal Learn-
ing Test (immediate; standardized); FAQ = Functional Assessment Questionnaire (standardized); HCV = hippocampal volume adjusted by age, field strength, and 
intracranial volume (standardized).
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Results
Participants’ Characteristics
Two hundred ninety-five MCI participants were catego-
rized as MCI who subsequently converted to AD within 
5  years (MCIc; n  =  183), and MCI who were stable for 
more than 5 years (MCIs; n = 112). MCIs participants were 
about 2 years younger than MCIc but there were no sig-
nificant differences in sex ratio or education between the 
two groups. The proportion of APOE e4 carriers was sig-
nificantly higher in MCIc than MCIs. All the measures of 
interest (HCV and cognitive/functional measures) were sig-
nificantly different between the groups (Table 1).

Prediction of AD Conversion

HCV, MMSE, ADAS, RAVLT, and FAQ were evaluated 
separately (univariate model) and all were significant 
predictors of AD conversion. Each cognitive/functional 
predictor remained a significant predictor of conversion 
from MCI to AD when HCV was added to the model, and 
HCV also remained a significant predictor. Additionally, 
HCV had additive effects with ADAS, RAVLT, and FAQ, 
whereas HCV and MMSE had interactive effects (Table 
2). A graphical illustration (Figure 1) of the probability of 
conversion for the measures at three different categories 
of HCV (small, medium, and large) suggests that having a 
medium to large HCV had a protective effect against con-
version in MMSE from 24 to 30. However that protective 
effect was smaller at lower MMSE scores. The same pattern 
was demonstrated in the normal range of FAQ, that is, hav-
ing a medium to large HCV had a protective effect against 
conversion but the protection was lower when FAQ scores 
were closer to upper limit of the normal range. The pattern 
was relatively different for ADAS and RAVLT, where larger 
HCV was protective in medium ADAS or RAVLT.

Prediction of Time to Conversion

All the measures significantly predicted time to AD con-
version in separate univariate analyses (likelihood ratio 
test between 33 and 90, df = 1, p < .0001). Each cognitive/
functional predictor remained a significant predictor when 
HCV was added to the model, and HCV also remained 
a significant predictor. Additionally, HCV had additive 
effects with RAVLT, and FAQ, whereas HCV and MMSE, 
and HCV and ADAS had interactive effects (Table 2).

The analyses were repeated using categories of HCV 
(small, medium, and large) in the models instead of HCV 
as a continuous variable (Table 3). The results revealed that 
MMSE was not a predictor of conversion in small HCV, 
and that having a medium to large HCV, respectively, 
associated with 45% and 81% lower risk of conversion 
from MCI to AD over time compared with small HCV. 
An additional 32% decrease in the risk of conversion was 

Figure 1. Predicted probabilities of conversion to Alzheimer’s: 
Predicted probabilities of cognitive measures at different hippocam-
pal volumes. HCV has a reciprocal impact on predicted probability 
of the cognitive measures for conversion to Alzheimer’s. HCV = hip-
pocampal volume adjusted by age, field strength, and intracranial 
volume; MMSE = mini-mental state examination; ADAS = Alzheimer 
Disease Assessment Scale (cognitive subscale); RAVLT = Rey Auditory 
Verbal Learning Test (immediate memory subscale); FAQ = Functional 
Assessment Questionnaire.
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demonstrated for every 1 SD higher MMSE score in medium 
HCV but not in large HCV in comparison with small HCV. 
Similarly, ADAS was not predictive in small HCV and hav-
ing a medium to large HCV was associated with 90% and 
99.5% lower risk of conversion over time compared with 
small HCV. An additional 10% increase in the risk of con-
version was demonstrated for every 1 SD higher ADAS 
score in medium HCV but not in large HCV in comparison 
with small HCV. In contrast, RAVLT was predictive in all 
HCV categories including small HCV, although an addi-
tional 4% decrease in the risk of conversion was detected 
for every 1 SD higher RAVLT in medium HCV.

Kaplan–Meier curves (Figure 2) revealed that the con-
tribution of cognitive/functional measures in predicting 
the probability of remaining MCI over time was not con-
stant at all HCV categories. For example, MMSE was not 
a determinant factor at small HCV, while it was at medium 
to large HCV.

Discussion
This study aimed to investigate the predictive value of 
cognitive/functional measures in combination with HCV 
to predict conversion from MCI to AD within 5 years, as 
well as their capacity to predict time to conversion. The 

results demonstrated that the predictive value of cognitive/
functional measures is dependent on HCV. The findings re-
vealed that (a) in predicting the conversion from MCI to 
AD, the predictive value of cognitive/functional measures 
was higher at lower HCV, while it was lower at higher HCV, 
and (b) in predicting the time to AD conversion, the cog-
nitive/functional measures were somewhat more predictive 
when HCV was in the medium range (5,500 to 7,500 mm3) 
than at smaller or larger volumes, except for the immediate 
memory test that remained predictive across all HCV. The 
effect of HCV in predicting time to conversion was inter-
active with general cognitive measures (MMSE and ADAS) 
but additive with the functional assessment (FAQ) and im-
mediate memory test (RAVLT).

These findings are important because they demon-
strate that severity of cognitive impairment or subtle 
functional impairment and severity of neural pathology 
are both important in predicting probability of AD con-
version. Although cognitive/functional performance is 
closely linked with neuropathology, the association is not 
straightforward. There is an imperfect overlap between 
cognitive deficit and pathology severity (Neuropathology 
Group, Medical Research Council Cognitive & Aging, 
2001). Individual variability in brain/cognitive reserve 
is the most likely explanation for this effect (Medaglia, 

Table 3. Risk of Conversion from MCI to AD Over Time (Cox Proportional Hazard) by Hippocampal Volume Categories

Variables Coef. SE HR (95% CI) Z, p Value

MMSE and HCV
Medium HCV category −0.59 0.18 0.55 (0.39–0.79) −3.29, p = .001
Large HCV category −1.68 0.31 0.19 (0.10–0.35) −5.35, p < .0001
MMSE −0.07 0.14 0.93 (0.70–1.23) −0.5, p = .61
Medium HCV category: MMSE −0.38 0.17 0.68 (0.49–0.96) −2.21, p = .03
Large HCV category: MMSE −0.60 0.31 0.55 (0.30–1.00) −1.95, p = .05
ADAS and HCV
Medium HCV category −2.28 0.69 0.10 (0.03–0.39) −3.33, p = .0008
Large HCV category −3.11 1.05 0.04 (0.01–0.35) −2.96, p = .003
ADAS 0.03 0.03 1.03 (0.97–1.08) 0.94, p = .35
Medium HCV category: ADAS 0.10 0.03 1.10 (1.04–1.17) 3.14, p = .003
Large HCV category: ADAS 0.10 0.06 1.10 (0.99–1.23) 1.71, p = .09
FAQ and HCV
Medium HCV category −0.63 0.25 0.53 (0.33–0.87) −2.53, p = .01
Large HCV category −2.08 0.44 0.13 (0.05–0.30) −4.74, p < .0001
FAQ 0.06 0.03 1.06(1.00–1.13) 1.89, p = .06
Medium HCV category: FAQ 0.03 0.04 1.03 (0.96–1.10) 0.81, p = .42
Large HCV category: FAQ 0.08 0.06 1.09 (0.97–1.21) 1.47, p = .14
RAVLT and HCV
Medium HCV category 0.82 0.66 2.27 (0.62–8.28) 1.25, p = .21
Large HCV category 1.11 1.42 3.02 (0.19–49.31) 0.78, p = .44
RAVLT −0.04 0.02 0.96 (0.93–0.99) −2.05, p = .04
Medium HCV category: RAVLT −0.04 0.02 0.96 (0.92–0.99) −2.01, p = .045
Large HCV category: RAVLT −0.09 0.05 0.92 (0.83–1.01) −1.86, p = .06

Note. MMSE = mini-mental state examination (standardized); ADAS = Alzheimer Disease Assessment Scale (standardized); RAVLT = Rey Auditory Verbal Learn-
ing Test (immediate; standardized); FAQ = Functional Assessment Questionnaire (standardized); HCV = hippocampal volume adjusted by age, field strength, and 
intracranial volume (standardized).
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Pasqualetti, Hamilton, Thompson-Schill, & Bassett, 
2017; Steffener & Stern, 2012; Stern, 2009). Taking the 
severity of the pathology into account when evaluating 

cognitive/functional performance is a practical way to 
take into account the moderating effect of brain/cogni-
tive reserve.

There is accumulating evidence showing that individ-
uals with larger brain/cognitive reserve may cope better 
with neural damage, that is, at a given level of observed 
pathology, cognitive impairment is lower in those with 
larger brain/cognitive reserve (Stern, 2009). Diversity in 
efficacy and capacity of neural networks as well as com-
pensatory neural mechanisms such as using alternative 
neural networks may underlie this coping mechanism 
such that cognitive function may be maintained for some 
time in the context of increasing neurodegeneration. 
When brain/cognitive reserve is exhausted, further neu-
rodegeneration cannot be compensated for and failure in 
cognitive processes clinically manifest as conversion from 
CN to MCI or MCI to AD (Steffener & Stern, 2012). 
Therefore, since individuals vary in their levels of brain/
cognitive reserve, cognitive and functional performance 
alone is not a perfect predictor of decline. Cognitive 
reserve has been indirectly estimated in the literature 
by proxy variables including education, IQ, literacy, 
occupational complexity, participation in leisure activi-
ties and even personality variables (Steffener & Stern, 
2012). However, the accurate measurement of brain/cog-
nitive reserve is still the subject of ongoing research and 
much controversy (Steffener, Brickman, Rakitin, Gazes, 
& Stern, 2009; Steffener, Reuben, Rakitin, & Stern, 
2011; Stern et al., 2008; Zarahn, Rakitin, Abela, Flynn, 
& Stern, 2007). Altogether, a practical way to deal with 
the concealing effect of cognitive reserve is to take into 
account the severity of neuropathology when evaluating 
cognitive/functional performance.

In addition to predicting the likelihood of converting 
from MCI to AD, the prediction of time to conversion is also 
of clinical significance but has proven difficult to achieve. 
Our results suggest that combining HCV and cognitive/
functional measures is more effective in predicting time to 
conversion. However, the effect of HCV differs for different 
cognitive/functional measures. It has an interactive effect 
with MMSE and ADAS but an additive effect with FAQ or 
RAVLT immediate. That is, the increase in the risk of AD 
conversion for each one-point decrease in the MMSE (or 
increase in ADAS) is not constant at different HCV values 
and is smaller at larger HCV. In contrast, the increase in the 
risk is constant for every one-point decrease on the RAVLT 
immediate (or higher FAQ) at any HCV values. This may 
be because HCV is more reflective of AD related pathology 
than MMSE and ADAS. As a consequence, at HCV less 
than 5,500 mm3, one unit difference in MMSE (or ADAS) 
is less influential than at larger HCV. This may explain 
the fact that MMSE and ADAS are not predictive of time 
to conversion at HCV less than 5,500 mm3 and at more 
than 7,500 mm3, but predictive in the mid-range of HCV 
(5,500–7,500 mm3).

In contrast, the combined evaluation of performance in a 
specific domain (such as immediate memory) and the brain 
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Figure 2. Kaplan–Meier plots for remaining stable over time: Illustrating 
the contribution of cognitive/functional measure and hippocampal 
volume on probability of remaining stable over time in MCI. Participants 
were categorized into six combinations based on three levels of HCV 
(small, medium, and large) and two levels of cognitive/functional meas-
ures (low and high). HCV = hippocampal volume adjusted by age, field 
strength, and intracranial volume; MMSE = mini-mental state examina-
tion; ADAS = Alzheimer Disease Assessment Scale (cognitive subscale); 
RAVLT  =  Rey Auditory Verbal Learning Test (immediate memory sub-
scale); FAQ = Functional Assessment Questionnaire.
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structure underpinning that performance (HCV) may pro-
vide a more precise evaluation of the degree of neurodegen-
eration and the level of brain/cognitive reserve exhaustion. 
This may explain our findings that RAVLT immediate and 
HCV are more sensitive predictors of time to conversion. It 
may also explain the lack of interactive effect between these 
two measures.

It is important to note that because MMSE, ADAS, 
and FAQ evaluate performance across a larger number of 
neural networks, they may reflect the development of AD 
pathology across any of those networks and thus also pre-
dict the risk of AD conversion. However, because only part 
of their variability is related to hippocampal function, they 
do not appear to be as predictive of time to conversion than 
RAVLT immediate.

Many studies conducted to date have focused on 
combining MRI and cognitive/functional measures for 
improved diagnosis or prediction of AD conversion. Our 
study, in contrast, investigated the nature of the interaction 
between MRI and cognitive/functional measures in predict-
ing AD conversion and time to conversion. Understanding 
the relationship between structural and cognitive/func-
tional measures not only emphasizes the benefit of com-
bining these measures for diagnostic/ prognostic purpose, 
it may also help better conceptualize the impact of brain/
cognitive reserve on clinical/MRI measures.

In conclusion, AD is pathologically characterized by de-
generative processes, the severity of which can be measured 
with neuroimaging techniques. The functional consequence 
of the degeneration can be concurrently assessed with 
cognitive/functional tools. A  combination of both neuro-
imaging and cognitive/functional indexes are superior in 
predicting disease progression than either alone. However, 
the present findings indicate that the relative contribu-
tion of neuroimaging and cognitive/functional measures is 
not constant in predicting progression from MCI to AD. 
Cognitive/functional measures are predictors of conver-
sion but their predictive values are not constant at all levels 
of HCVs. Additionally, the most effective combination of 
measures to predict time to conversion is likely to involve 
those that assess hippocampal volume in conjunction with 
one of its main functions, immediate memory.

Supplementary Material
Supplementary data are available at The Journals of 
Gerontology, Series B: Psychological Sciences and Social 
Sciences online.
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a b s t r a c t

A key question for the design of clinical trials for Alzheimer’s disease (AD) is whether the timing of con-
version frommild cognitive impairment (MCI) toAD can be predicted. This is also an important question for
the clinical management of MCI. This study aims to address this question by exploring the contribution of
baseline brain volume and annual volume change, using Cox regression, in predicting the time to con-
version. Individuals with MCI, who converted to AD (n ¼ 198), reverted to normal (n ¼ 38), or remained
stable (n¼ 96) for at leastfive years, were included in this study. The results revealed that the volumes of all
the brain areas considered were predictive of the time to conversion from MCI to AD. Annual change in
volume was also predictive of the time to conversion but only when initial volumes were above a certain
threshold. This is important because it suggests that reduction in atrophy rate, which is the outcome of
some clinical trials, is not inevitably associated with delay in conversion from MCI to AD.

! 2019 Elsevier Inc. All rights reserved.

1. Introduction

Progressive neurodegeneration is a hallmark of Alzheimer’s
disease (AD). However, it is also prevalent in normal aging (Fjell
et al., 2014). One major difference is that the rate of degeneration
in the pathological progression leading to AD is substantially higher
than in normal aging. A meta-analysis of longitudinal studies con-
ducted in the last two decades revealed that the shrinkage rate in
the prodromal stage of ADdmild cognitive impairment (MCI)dis at
least twice that observed in normal aging (Tabatabaei-Jafari et al.,
2015). This is seen in the whole brain and even more so in brain
areas typically more affected in the first stage of the disease, such as
the hippocampus and entorhinal cortex. Moreover, degeneration
begins decades before the disorder emerges clinically, sometimes
even in early adulthood (Braak and Braak, 1997). These findings

underpin the hope that early intervention aimed at decreasing
brain shrinkage may stop, or at least slow down, further progres-
sion to clinical AD.

Several intervention trials, using nutrient supplements or
medication, have been effective in reducing the atrophy rate in total
or regional brain volumes in those with MCI (Douaud et al., 2013;
Dubois et al., 2015; Kile et al., 2017; Kobe et al., 2016; Prins et al.,
2014; Zhang et al., 2017). However, whether these changes can
modify the course of AD progression and delay the time to con-
version remains an unresolved question. To address such questions,
it is necessary to better understand the contribution brain atrophy
makes to the course of the disease and particularly to the pro-
gression from MCI to AD.

In contrast to studies predicting conversion from MCI to AD,
studies that have investigated the time to conversion are limited in
number. They generally suggest an association between the pace of
neurodegeneration and the time to AD conversion (Falahati et al.,
2017; Jack et al., 2005; Liu et al., 2017; Teipel et al., 2015). Most at-
tempts have used spatial patterns of longitudinal volume loss (using
machine learning) to successfully predict the time to conversion
(Gavidia-Bovadilla et al., 2017; Li et al., 2012; Risacher et al., 2010;
Teipel et al., 2015; Thung et al., 2018). Falahati el al. developed a
“severity index”, based on degeneration in 34 measures of regional
cortical thickness and 21 regional subcortical volumes and showed
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that it was predictive of the time to AD conversion for up to 3 years
follow-up. The index showed 95% correct prediction of conversion
within the first year and 80% over 3 years (Falahati et al., 2017).
Global volume change such as whole brain atrophy and ventricular
enlargement, but not regional brain atrophy rates (hippocampal and
entorhinal cortex), has also been shown to be predictive of AD
conversion but only for a short follow-up and in the context of a
relatively small study (Jack et al., 2005). Although these limited
numbers of studies are conceptually supportive of the idea that
faster degeneration will lead to earlier conversion, the findings are
based on a short-term follow-up and the approaches are complex
and methodologically difficult to implement at individual level that
is a requirement for clinical trials and clinical practice. Simple
measures such as regional brain volume and regional atrophy rate
investigated in a longer follow-up may be more practical for indi-
vidual evaluation, especially in a clinical setting or for clinical trials.

Therefore, strong evidence supporting the use of atrophy rate in
the prediction of time to conversion from MCI to AD is still lacking.
In addition, it is necessary to clarify the extent to which the pre-
dictive value of atrophy rate depends on baseline volume. This is
needed because the clinical impact of any future degeneration is
likely to be highly dependent on prior atrophy and/or brain reserve
indexed by the current volume of a region of interest. To address
these questions, the present study aimed to investigate the value of
global as well as regional baseline volume and atrophy rate and
their interaction over long-term follow-ups in predicting conver-
sion from MCI to AD.

2. Methodology

2.1. Study participants

Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography, other
biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of MCI and early AD.

All participants of ADNI 1/GO/2,whowere diagnosedwithMCI at
the baseline, remained stable for at least sixmonths, and underwent
MRI scanning more than twice, were considered for inclusion. In-
dividualswithMCIwho converted to AD (MCIc, n¼ 198), reverted to
cognitively normal (CN; MCIr, n ¼ 38), or remained stable for more
than five years (MCIs, n ¼ 96) were included in this study.

Details of the diagnostic criteria can be found at the ADNI web
site (http://www.adni-info.org/Scientists/AboutADNI.aspx). Briefly,
participants were classified as MCI if they had a MinieMental State
Examination (MMSE) score greater than 24, a CDR of 0.5, a report of
subjective memory concern, an objective memory loss, preserved
daily living activity, and did not meet diagnostic criteria for de-
mentia. Participants were classified as AD if they had an MMSE
score less than 26, CDR of 0.5 or above, and fulfilled criteria for
clinically probable AD according to the Institute of Neurological and
Communicative Diseases and Stroke/Alzheimer’s Disease and
Related Disorders Association. It is also important to note that a
Geriatric Depression Scale score of less than 6 was a requirement
for participation in the ADNI study (Petersen et al., 2010), so all
participants had a Geriatric Depression Scale score of normal range.

2.2. Neuroimaging acquisition and processing

Participants underwent high-resolution MRI brain scans on 1.5
(N ¼ 889) or 3 T (N ¼ 872) scanners from General Electric, Siemens,

or Philips (Milwaukee, WI, USA; Germany; the Netherlands,
respectively) using a standardized ADNI acquisition protocol for 3D
MP-RAGE sequence (Jack et al., 2008). Images which had undergone
specific ADNI preprocessing correction steps to standardize images
from different sites and platforms were obtained for this study: (1)
Grad wrap: a specific correction of image geometry distortion due
to nonlinearity, (2) B1 nonuniformity: B1 calibration to correct the
image intensity nonuniformity that results when RF transmission is
performed with a more uniform body coil while reception is per-
formed with a less-uniform head coil, (3) N3 correction: a histo-
gram peak sharpening algorithm applied after grad wrap and B1
correction. For MCI participants, only images acquired before con-
version to AD or reversion to CN were included. The MRI scans of
individual participants were acquired on the same scanner with the
same parameters throughout the follow-up.

All scans were segmented with FreeSurfer version 5.3 (http://
surfer.nmr.mgh.harvard.edu/), processed with the longitudinal
pipeline. For each participant, all scans were initially processed by
the default workflow. Then an unbiased template (an average
template) was created from all time points. The unbiased template
was used as a base for registering all the time point scans to reduce
the randomwithin-subject variation in the processing procedure of
the longitudinal analysis. Finally, all time points were longitudinally
processed.

The output-segmented images were visually checked. The cri-
terionwas a clear segmentation error as assessed by an experienced
neuroscientist. Scans with segmentation errors were reprocessed
and would only be excluded if the error could not be corrected. Six
scans with error were not correctable and excluded from the study.

2.3. Measurements

Four brain volumes were considered as regions of interest (ROIs)
in this study: (1) total whole brain volume (sum of the total gray
and white matter), (2) total ventricular volume (sum of the lateral,
third, and fourth ventricular volumes), (3) total hippocampal vol-
ume (sum of the left and right hippocampus), and (4) total ento-
rhinal cortex volume (sum of the left and right entorhinal cortex).
Baseline volume and annual change rate (atrophy rate for thewhole
brain, hippocampus, and entorhinal cortex and enlargement rate
for the ventricles) of each ROI were investigated as the measures of
interest for predicting time to conversion from MCI to AD.

The annual change rate for each ROI was computed by the least
square linear regression method for each individual separately:
brain volume (at each time point) was used as the dependent var-
iable, with age at each time point (centered at 55, the minimum age
at the baseline) as the independent variable. The regression coef-
ficient for age was considered as the volume change for each year
increase in age in mm3. The regression coefficient was used to
compute the annual change rate in percentage using the formula

100" ðthe regression coefficient for age = baseline volumeÞ

Because the results from our previous study revealed that the
baseline scores on the MMSE, the Alzheimer’s Disease Assessment
Scale (ADAS cognitive version), the Functional Assessment Ques-
tionnaire, and the Rey Auditory Learning Test (immediate memory
subtype) were predictive of time to conversion from MCI to AD
when also taking into account hippocampal volume (Tabatabaei-
Jafari et al., 2019), the annual change rates of these measures
were also evaluated to better characterize the participants.

While CSF level of amyloid b 1-42 and total and phosphorylated
tau were only available for a subsample of participants (236 for
amyloid b, 232 for total tau, and 236 for phosphorylated tau of the
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332 participants), they could not be included in analyses but are
reported to better characterize the sample investigated.

2.4. Statistical analysis

Statistical analyses were performed using the R statistical soft-
ware (version 3.3.2). Data were checked for missing values and for
univariate and multivariate outliers using Mahalanobis distance.
There were no missing values or outliers. Group differences in de-
mographic variables were assessed by t-test for continuous vari-
ables and chi-square tests for categorical variables. The alpha level
was set at < 0.05.

Cox regression analysis (package survival; version 2.40e1) using
time to event as time metric was used to investigate the predictive

value of brain ROIs for time to conversion fromMCI to AD. The event
in the model was specified as happened if the individual converted
to AD, thus MCIc were coded as 1 and MCIs and MCIr were coded as
0 in the model. For MCIs, the time to event was the time from the
baseline to the last scan, whereas in MCIc and MCIr, it was the time
from the baseline to diagnosis change (change to AD for MCIc and
change to CN for MCIr). One-sided Wald tests were used to test
associations because only increase in the risk of conversion to AD
was predicted. Baseline volume and annual change rate were
considered as predictors of time to conversion and were stan-
dardized to reduce the variance inflation factor in the model.
Baseline volumes were adjusted for age, sex, field strength, and
intracranial volume using the residual method before adopted in
the models (Pintzka et al., 2015).

Table 1
Participants characteristic and measurements

Diagnostic group MCIr MCIs MCIc Significant pair difference
(p < 0.05)

Sample size 38 96 198 -
Age; year, mean (SD) 69.30 (8.23) 71.65 (7.48) 74.25 (7.16) MCIc vs. MCIr and MCIs
Age range, year 55e87 57e88 55e89 -
Male sex; N (%) 18 (47.37) 58 (60.42) 121 (61.42) No difference
Education; year, mean (SD) 16.68 (2.52) 15.88 (3.04) 16.01 (2.78) No difference
APOE e4; N (%)
One allele 17 (45) 22 (23) 102 (51.51) MCIc vs. MCIr and MCIs

MCIr vs. MCIsTwo alleles 1 (3) 6 (6) 32 (16.33)
Number of scan points 11.4 (2.7) 7.7 (2.5) 5.9 (1.8) MCIc vs. MCIr and MCIs

MCIr vs. MCIs
Follow-up, range; day 1082 - 3662 1850 - 3927 343 - 3690 -
Follow-up, mean (SD) 1704 (676) 2381 (686) 1790 (869) -
Time to diagnosis change, range; day 184e1583 - 357e3714 -
Time to DX change, mean (SD) 762 (411) - 1041 (603) -
Brain measures
Whole brain
Baseline, mm3 1,081,597 (35,162) 1,095,415 (38,165) 1,070,628 (42,231) MCIc vs. MCIs

MCIr vs. MCIs
Annual change rate, %/y !0.15 (1.20) !0.55 (0.37) !0.73 (1.26) MCIc vs. MCIr

MCIr vs. MCIs
Ventricles
Baseline, mm3 37,782 (14,261) 38,808 (15,115) 44,744 (17,982) MCIc vs. MCIr and MCIs
Annual change rate, %/y 2.42 (3.94) 3.93 (2.66) 7.62 (5.74) MCIc vs. MCIr and MCIs

MCIr vs. MCIs
Hippocampus
Baseline, mm3 7229 (794) 7035 (953) 6127 (912) MCIc vs. MCIr and MCIs
Annual change rate, %/y 0.13 (3.34) !1.29 (1.10) !3.12 (2.86) MCIc vs. MCIr and MCIs

MCIr vs. MCIs
Entorhinal cortex
Baseline, mm3 3787 (693) 3645 (644) 3224 (698) MCIc vs. MCIr and MCIs
Annual change rate, %/y !0.11 (5.05) !1.75 (1.56) !3.62 (5.95) MCIc vs. MCIr and MCIs

Cognitive/functional measures
MMSE
Baseline 28.53 (1.50) 28.22 (1.42) 27.09 (1.78) MCIc vs. MCIr and MCIs
Annual change, u/y 0.64 (1.94) !0.15 (0.29) !0.93 (1.94) MCIc vs. MCIr and MCIs

MCIr vs. MCIs
ADAS cog
Baseline 10.66 (4.24) 12.08 (4.63) 19.94 (5.81) MCIc vs. MCIr and MCIs
Annual change, u/y !1.97 (4.31) 0.24 (0.57) 1.50 (3.98) MCIc vs. MCIr and MCIs

MCIr vs. MCIs
RAVLT immediate
Baseline 43.55 (10.21) 39.70 (10.96) 29.64 (7.98) MCIc vs. MCIr and MCIs
Annual change, u/y !1.44 (7.88) !0.46 (1.44) !2.06 (6.14) MCIc vs. MCIs

FAQ
Baseline 0.87 (1.73) 1.60 (3.07) 4.61 (4.54) MCIc vs. MCIr and MCIs
Annual change, u/y !0.16 (2.35) 0.22 (0.69) 1.61 (3.55) MCIc vs. MCIr and MCIs

CSF measures (baseline)
Amyloid b level, pg/mL 211.54 (50.51) 198.23 (48.10) 143.19 (42.85) MCIc vs. MCIr and MCIs
TAU 60.24 (29.31) 75.21 (49.97) 115.45 (55.86) MCIc vs. MCIr and MCIs
P-TAU 27.69 (14.45) 32.21 (49.97) 49.61 (26.13) MCIc vs. MCIr and MCIs

Baseline measures adjusted for age, sex, field strength, and intracranial volume.
Key: MCIc, mild cognitive impairment converted to Alzheimer's disease; MCIs, mild cognitive impairment remained stable for more than five years; MCIr, mild cognitive
impairment reverted to cognitively; APOE e4, apolipoprotein E allele 4; MMSE, MinieMental State Examination; ADAS cog, Alzheimer's Disease Assessment Scale (cognitive
subscale); RAVLT, Rey Auditory Verbal Learning Test; FAQ, functional assessment questionnaire; CSF, cerebrospinal fluid; Ab, amyloid-beta 1e42; TAU, total tau protein; P-TAU,
phosphorylated tau protein.
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Univariate models were used to investigate the association be-
tween brain measures and time to conversion. Four separate
bivariate models, each consisting of standardized baseline volume,
standardized annual change rate, and their interaction, were con-
ducted for the whole brain, ventricles, hippocampus, and entorhi-
nal cortex. Hazard ratios with 95% confidence intervals for a 1-SD
different in baseline volume and 1-SD change in annual change rate
were used to quantify the magnitude of the effect. In the case of
significant interaction between baseline volume and annual change
rate (as continuous variables), to better conceptualize the interac-
tion, participants were categorized into 3 groups based on their
baseline volume (for each brain area separately) and the bivariate
analyses were repeated with categorical baseline volume in the
model. Categorization was based on the standard deviation (SD,
round values): (1) small category: smaller than 1 SD below the
mean, (2) medium category: 1 SD below and above the mean, and
(3) large category: larger than one SD above the mean. In addition,
to better visualize the contribution of baseline volume and annual
change rate in predicting conversion fromMCI to AD, the density of
those converted to AD over time was plotted across different
stratified annual change rate for each baseline volume category
separately.

3. Results

3.1. Participants’ characteristics

Three hundred thirty-two participants (59% male), who were
followed up for up to ten years (5.35! 2.31 years), were categorized
into MCIr, MCIs, and MCIc (Table 1). Individuals with MCIc were
about three years older than other individuals with MCI. There was
no significant difference in education across the groups, but the
proportion of males was somewhat lower in MCIr (47.37%) than in
MCIs (60.42%) and MCIc (60.42%). The proportion of individuals
carrying the APOE e4 allele was significantly larger in MCIc than
others, and more so for those with two e4 alleles (Table 1,
Supplementary table 1).

3.2. Baseline brain volumes and annual changes

For all ROIs, baseline volumes and annual change rates were
different betweenMCIc and other MCI types. Differences weremost
pronounced in the hippocampus, entorhinal cortex, and ventricles

and followed the direction MCIr > MCIs > MCIc for volumes, and
MCIr < MCIs < MCIc for change rates (Table 1, Supplementary
table 1).

Despite significant group differences, the distribution of the
brain measures revealed a large overlap across the groups
(Supplementary Fig. 1). When considered across the whole sample,
there was no significant correlation between baseline volume and
annual change rate for the whole brain and the ventricles. A
moderate correlation was detected for the hippocampus (r ¼ 0.27),
and a smaller correlation for the entorhinal cortex (r ¼ 0.12).
However, when computed separately in each group, associations
between baseline volume and annual change rate were only sig-
nificant in MCIs for the hippocampus and entorhinal cortex as well
as for the ventricles in MCIc (r ¼ #0.19) (Supplementary table 2).

3.3. Cognitive/functional measures

Similar to brain measures, cognitive/functional measures were
significantly different between MCIc and other MCI types. Differ-
ences were most pronounced in baseline volumes following the
order MCIr <MCIs <MCIc. While annual changes were significantly
different between MCIc and other MCI types, differences between
MCIr and MCIs did not follow a constant pattern (Table 1,
Supplementary table 1).

3.4. CSF measures

The pattern in CSF differences was consistent (in the subsample
that data were available) across the groups. Amyloid b was signif-
icantly lower in MCIc than MCIs and MCIr, and total tau and
phosphorylated tau were significantly greater in MCIc than MCIs
and MCIr. These measures were not different between MCIr and
MCIs (Table 1, Supplementary table 1).

3.5. Prediction of time to AD conversion

Baseline volume and annual change rate for each brain area
significantly predicted time to AD conversion (Z > 5, p < 0.01)
when they were evaluated separately (univariate model). When
baseline volume and annual change rate were tested in the same
model (bivariate model) both measures remained significantly
predictive in all ROIs. In addition, an interaction between annual
change rate and baseline volume was detected. It means, in

Table 2
Cox proportional hazard

Diagnostic group Coef. SE HR (95% CI) Z

Whole brain
Baseline volume 0.43 0.08 1.53 (1.31e1.79) 5.344, p < 0.0001
Annual atrophy rate 0.32 0.09 1.38 (1.15e1.65) 4.024, p < 0.0001
Interaction 0.21 0.07 1.24 (1.08e1.41) 3.110, p < 0.01

Ventricles
Baseline volume 0.25 0.07 1.29 (1.14e1.46) 3.919, p < 0.0001
Annual enlargement rate 0.46 0.06 1.58 (1.41e1.77) 7.988, p < 0.0001
Interaction #0.16 0.08 0.85 (0.73e0.99) #2.133, p < 0.05

Hippocampus
Baseline volume 0.63 0.08 1.87 (1.60e2.19) 7.840, p < 0.0001
Annual atrophy rate 0.66 0.10 1.94 (1.61e2.33) 7.001, p < 0.0001
Interaction 0.45 0.09 1.56 (1.30e1.88) 4.755, p < 0.0001

Entorhinal cortex
Baseline volume 0.44 0.08 1.55 (1.33e1.80) 5.671, p < 0.0001
Annual atrophy rate 0.56 0.10 1.75 (1.45e2.12) 5.768, p < 0.0001
Interaction 0.30 0.10 1.35 (1.11e1.64) 3.061, p < 0.01

All measures have been adjusted for age, field strength, and intracranial volume.
Bolded values represents the significance of p < 0.05.
Key: HR, hazard ratio for 1-SD decrease in whole brain, hippocampal volume and entorhinal cortex volume and their annual rates as well as 1-SD increase in ventricular volume
and its annual ventricular volume enlargement.
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addition to a constant increase in the risk for each 1-SD decrease
in ROIs’ baseline volume (1-SD increase in ventricular volume) and
1-SD increase in annual volume loss, there was an additional risk
for each measure, which was dependent on the other measure
(Table 2). To better conceptualize this interactive effect between
the 2 measures, analyses were repeated with a categorical baseline
volume (small, medium and large) and annual change rate in
percent in the model (Table 3). Following are brief reports for each
ROI separately.

Because APOE e4 carrier prevalence was significantly higher in
MCIc than other MCI types, post hoc analyses were carried out to
investigate the effect of APOE e4 on the predictive values of baseline
volumes and annual change rates and their interactions. The result
showed that APOE e4 genotype had no effect on the predictive
values of these measures as well as their interactions.

Fig. 1 demonstrates the distribution of individuals converted
from MCI to AD within ten years using Cox analysis to estimate
probability in each separate baseline category across stratified
annual atrophy rates (enlargement rate for the ventricles). It reveals
that at hippocampal baseline volumes less than 5500 mm3, con-
version within 3 years occurs regardless of the atrophy rate. A
similar but somewhat weaker pattern was observed for an ento-
rhinal cortex volume smaller than 2800mm3, awhole brain volume
smaller than 1,040,000 mm3, and a ventricular volume larger than
55,000 mm3. By contrast, atrophy rate (enlargement rate for the
ventricles) is determinant of probability of conversion over time at
medium to large baseline brain volumes (medium to small for the
ventricles). It is especially noticeable for the hippocampus with
atrophy rate more than the average.

3.5.1. Whole brain
Atrophy rate did not predict time to conversion in whole brain

baseline volumes less than 1,040,000 mm3, whereas it had signif-
icant predictive value at higher volumes. Medium to large whole

brain volumes were associated with 61% and 72% lower risk of
conversion from MCI to AD compared with small volumes. An
additional 35% and 43% decrease in the risk of conversion were
demonstrated for every 1 percent lower atrophy rate in medium
and large volumes.

3.5.2. Ventricles
Enlargement rate did not predict time to conversion in ven-

tricular baseline volumes larger than 55,000 mm3, whereas it had
significant predictive value at small volumes (lower than
28,000 mm3). Medium to small volumes were, respectively, asso-
ciated with 48% and 83% lower risk of conversion from MCI to AD
compared with large volumes. An additional 14% increase in the
risk of conversion was demonstrated for 1 percent greater
enlargement rate in small volumes.

3.5.3. Hippocampus
Atrophy rate did not predict time to conversion in hippocampal

baseline volumes less than 5500 mm3, whereas it had significant
predictive value at higher volumes. Medium to large volumes were
associated with 69% and 95% lower risk of conversion from MCI to
AD compared with small volumes. An additional 15% and 50%
decrease in the risk of conversion were demonstrated for every 1
percent lower atrophy rate in medium and large volumes.

3.5.4. Entorhinal cortex
Atrophy rate did not predict time to conversion in entorhinal

cortex baseline volumes less than 2800 mm3, whereas it had sig-
nificant predictive value at large volumes (larger than 4000 mm3).
Medium to large entorhinal cortex volumes were, respectively,
associated with 47% and 86% lower risk of conversion from MCI to
AD compared with small volumes. An additional 24% decrease in
the risk of conversion was demonstrated for 1 percent lower atro-
phy rate in large entorhinal cortex baseline volumes.

Table 3
Risk of conversion from MCI to AD over time (Cox proportional hazard ratios) in medium and large brain volume categories (small and medium categories in the ventricles)
compared with the small brain volume category (large category in the ventricles)

Diagnostic group Coef. SE HR (95% CI) Z, p-value

Whole brain
Medium whole brain !0.96 0.21 0.39 (0.25e0.58) !4.488, p < 0.0001
Large whole brain !1.28 0.32 0.28 (0.15e0.53) !3.949, p < 0.0001
Atrophy ratea 0.08 0.18 1.08 (0.76e1.54) 0.438, p ¼ 0.66
Medium whole brain: atrophy rate !0.44 0.21 0.65 (0.43e0.98) !2.072, p < 0.05
Large whole brain: atrophy rate !0.56 0.34 0.57 (0.34e0.96) !2.132, p < 0.05

Ventricles
Medium ventricles !0.65 0.32 0.52 (0.28e0.97) !2.068, p < 0.05
Small ventricles !1.76 0.48 0.17 (0.07e0.42) !3.664, p < 0.001
Enlargement rateb 0.05 0.05 1.05 (0.96e1.15) 1.000, p ¼ 0.32
Medium ventricles: atrophy rate 0.04 0.05 1.04 (0.94e1.14) 0.757, p ¼ 0.45
Small ventricles: atrophy rate 0.13 0.06 1.14 (1.01e1.29) 2.065, p < 0.05

Hippocampus
Medium hippocampus !1.16 0.28 0.31 (0.18e0.54) !4.122, p < 0.0001
Large hippocampus !3.09 0.50 0.05 (0.02e0.12) !6.252, p < 0.0001
Atrophy ratea !0.04 0.05 0.96 (0.86e1.06) !0.818, p ¼ 0.41
Medium hippocampus: atrophy rate !0.16 0.06 0.85 (0.75e0.97) !2.472, p < 0.05
Large hippocampus: atrophy rate !0.69 0.14 0.50 (0.38e0.66) !5.022, p < 0.0001

Entorhinal cortex
Medium entorhinal !0.64 0.22 0.53 (0.34e0.81) !2.954, p < 0.01
Large entorhinal !1.97 0.35 0.14 (0.07e0.28) !5.600, p < 0.0001
Atrophy ratea !0.05 0.03 0.96 (0.91e1.01) !1.623, p ¼ 0.11
Medium entorhinal: atrophy rate !0.03 0.04 0.98 (0.90e1.04) !0.900, p ¼ 0.37
Large entorhinal: atrophy rate !0.27 0.07 0.76 (0.67e0.87) !3.941, p < 0.0001

Small category, smaller than one SD below the mean; medium category, one SD below and above the mean; and large category, larger than one SD above the mean.
All measures have been adjusted for age, sex, field strength, and intracranial volume.
Bolded values represents the significance of p < 0.05.
Key: AD, Alzheimer's disease; MCI, mild cognitive impairment; Coef, coefficient; SE, standard error; HR, hazard ratio.

a Atrophy rate in the small volume category.
b Enlargement rate in the large ventricular volume category.
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Fig. 1. Distribution of probability of conversion over time: Separate illustration of probability density measured by Cox proportional models in 4 brain areas at 3 baseline categories
across stratified respected annual atrophy rate (enlargement rate for the ventricles) within ten years. The figure shows that at hippocampal baseline volumes less than 5500 mm3,
conversions mostly happen within three years regardless of atrophy rate. Similar patterns but relatively less determinant are noticeable at entorhinal cortex volumes lower than
2800 mm3, at whole brain baseline volumes lower than 1,040,000 mm3, and at ventricle baseline volumes larger than 55,000 mm3. By contrast, atrophy rate (enlargement rate for
the ventricles) has an impact on probability of conversion over time at medium to large baseline brain volumes (medium to small for the ventricles), especially noticeable for the
hippocampus with atrophy rate more than the average.
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4. Discussion

This study aimed to investigate of the volume or change in
volume over time of different brain regions could predict the time
to conversion from MCI to AD. The main finding was that the
baseline volumes of the whole brain, ventricles, hippocampus, and
entorhinal cortex and their respective atrophy rates (enlargement
rate for ventricles) were all significant predictors of earlier con-
version. However, the predictive value of these ROIs’ atrophy rates
was highly dependent on their baseline volume.

Although volume and change in volume over time are predictive
across all ROIs, the effect of baseline volume on the predictive value
of volume change over time is more distinctive in the hippocampus
than other ROIs (Fig. 1). Individuals with hippocampal volumes
smaller than 5500 mm3 mostly convert to AD within three years
regardless of atrophy rate. This has an important implication for
clinical trials aiming to delay AD conversion by reducing atrophy
rate. In these trials, any treatment effects on brain atrophy rate
should be interpreted in light of baseline volumes because at small
hippocampal volumes, any reduction in atrophy rate is less likely to
be associated with delay in disease progression. Indeed, it may be
better for clinical trials to exclude individuals with small hippo-
campal volumes to identify interventions that can really delay the
conversion by reducing volume loss. In addition, hippocampal
volume can be used as a simple heuristics to identify those at risk of
early conversion in clinical practice. However, it is important to note
that the baseline brain volumes in this study were normalized for
age, sex, field strength, and ICV, and therefore, hippocampal
threshold for small volume (i.e., 5500 mm3) for any individual must
be corrected with the provided formula

Although we cannot shed light on specific reasons for this hip-
pocampal threshold, we speculate that volumes below this value
are indicative of an accumulation of pathology, which makes con-
version to AD all but inevitable. Regional accumulation of pathology
is associated with concomitant spread of pathology to the adjacent
brain areas. At early stages of the disease, neuropathology and brain
atrophy is mainly limited to the medial and inferior temporal lobes
(including hippocampus and entorhinal cortex) particularly in
relation to tauopathy. As the disease progresses, degeneration
spreads into more posterior regions of the temporal lobe and starts
to spread to the parietal lobe. By the time of conversion to AD, at-
rophy has become more severe in the areas first affected and has
spread further into the frontal lobes (Braak and Braak, 1991; Thal
et al., 2002; Whitwell et al., 2007). Therefore, hippocampal vol-
ume below a certain threshold is not only indicative of pathology
accumulation in this structure but also of spreading neuro-
degeneration in adjacent regions, which together indicate poorer
prognosis.

By contrast, in those with larger ROI volumes, atrophy rate is a
predictor of the time to conversion but is dependent on baseline
volume. The pattern in larger volumes is also somewhat more
distinctive in the hippocampus than other ROIs. Atrophy rate in
those with medium to large hippocampal baseline volume
(5500mm3e7500mm3) is determinant of the risk of AD conversion,
whereas at volume larger than 7500 mm3, atrophy rate more than
the average, i.e., more than 3%/y, is determinant. This can also be

explained by the contribution of previous (reflected in baseline
volume) and ensuing (reflecting in atrophy rate) neurodegeneration
in prediction of progression. It is likely that at medium baseline
volumes, there is a balance between previous and ensuing neuro-
degeneration; thus both measures are determinant of the time to
conversion. While at volume larger than 7500 mm3, because of low
level of previous degeneration, only a large atrophy rate (more than
the average of 3%/y) can be determinant of time to AD conversion.

The present results are particularly significant because they
provide a guide on how structural imaging measures can assist in
predicting conversion to AD as recommended by the National
Institute on Aging and the Alzheimer’s Association although to date
they have been unable to advise on how this should or could be
done (Jack et al., 2018). This approach also aligns with our under-
standing of AD’s pathological progression, which recognizes MCI as
a clinical stage of the disease continuum, rather than a distinct
clinical entity with a higher risk of AD conversion (Albert et al.,
2011; Dubois et al., 2016).

It is noteworthy that the selection of the brain ROIs in this study
was based on the typical spread of the neurofibrillary tangles and
neurodegeneration in the course of the disease. Typically, AD’s
neurofibrillary tangles aggregation and subsequent neuro-
degeneration originate in the transentorhinal cortex and spread
through the hippocampus to subcortical structures and the lateral
temporal, parietal, and frontal association and primary cortices
(Braak and Braak, 1991). However, there is some evidence demon-
strating the presence of at least 2 atypical subtypes of AD that do
not follow the typical pattern, i.e., limbic-predominant AD and
hippocampus-sparing AD (Byun et al., 2015; Ferreira et al., 2017;
Whitwell et al., 2012). In the limbic-predominant AD, fibrillary

tangles and degeneration remain restrictively in medial temporal
lobe and cortical areas remain relatively preserved. The hippo-
campus and entorhinal cortex are severely involved and progres-
sion to the final stages of the disease is faster than the other
subtypes (Ferreira et al., 2017; Murray et al., 2011). Thus, hippo-
campal atrophy would be expected to remain predictive of time to
conversion, and to be consistent with the present findings. By
contrast, in the hippocampus-sparing subtype, the pathology
originates in the lateral cortical areas and the medial temporal lobe
including the hippocampus remains preserved and hippocampal
atrophy is in line with that found in normal aging (Ferreira et al.,
2017). Thus, hippocampal atrophy is not expected to be predictive
of time to AD conversion. Of relevance to the present findings, the
possible presence of this subtype in the sample investigateddit
affects approximately 10% of all AD cases in the populationdmay
have negatively impacted the predictive value of the measures
investigated, although probably only to a small extent.

To our knowledge, the present study is the first investigation of
interaction between brain volume and annual change rate in pre-
dicting the time to conversion from MCI to AD. In addition, unlike
previous studies, which investigated the prediction of conversion
from MCI to AD within follow-ups of 1 to three years (Jack et al.,
2005; Liu et al., 2017; McEvoy et al., 2011; Risacher et al., 2009),
the follow-up time of the present study was up to ten years.
However, these findings need replications in other population
before their usefulness in clinical practice can ascertained.

Hippocampal threshold ¼ Male " 3141þ 74:5 * Age$ 477:5 * field strength$ 0:0014 * ICV
Female " 3438þ 74:5 * Age$ 477:5 * field strength$ 0:0014 * ICV
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5. Conclusion

These findings are among the first to demonstrate that simple
structural imaging measures can make a useful contribution in
predicting disease progression from MCI to AD. Importantly, they
provide specific guidance on volumetric thresholds in specific brain
structures, which can be used to inform clinical assessment. How-
ever, while this is an important first step, further investigation in
different, more diverse, and larger populations is needed before
recommendation for their routine use in clinical trials and clinical
practice can be confidently made.
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Supplementary	table	1:	Statistics	of	participants’	characteristics	(pair	
comparison)	
	

	 MCIc	vs.	MCIs	 MCIc	vs.	MCIr	 MCIs	vs.	MCIr	

Age	
t(df=180.93)=	2.83,	

p<0.01	
t(df=48.34)=3.46,	

p<0.01	
t(df=62.56)=-1.53,	

p=0.13	

Sex	 X2(df=1)=0,	p=1	
X2(df=1)=1.95,	

p=0.16	
X2(df=1)=1.39,	

p=0.24	

APOEe4		
X2(df=2)=39.05,	

p<0.0001	
X2(df=2)=8.29,	

p<0.05	
X2(df=2)=6.51,	

p<0.05	

Education	
t(df=173.95)=0.35,	

p=0.72	
t(df=55.83)=-1.50,	

p=0.14	
t(df=81.55)=1.58,	

p=0.12	

Number	of	scan	point	
t(df=146.82)=-6.16,	

p<0.0001	
t(df=43.65)=-
11.94,	p<0.0001	

t(df=62.75)=7.35,	
p<0.0001	

Brain	Measures	 	 	 	

Whole	Brain	 	 	 	

Baseline,	mm3	
t(df=206.23)=-5.04,	

p<0.0001	
t(df=59.47)=-1.70,	

p=0.09	
t(df=73.34)=-2.00,	

p<0.05	

Annual	change	rate,	%/y	
t(df=255.60)=-1.83,	

p=0.07	
t(df=54.07)=-2.71,	

p<0.01	
t(df=39.79)=-2.03,	

p<0.05	
Ventricles	 	 	 	

Baseline,	mm3	
t(df=220.14)=2.96,	

p<0.01	
t(df=61.95)=2.63,	

p<0.05	
t(df=71.70)=-0.37,	

p=0.71	

Annual	change	rate,	%/y	
t(df=291.55)=7.54,	

p<0.0001	
t(df=71.11)=6.87,	

p<0.0001	
t(df=50.93)=-2.18,	

p<0.05	
Hippocampus	 	 	 	

Baseline,	mm3	
t(df=180.89)=-7.77,	

p<0.0001	
t(df=57.39)=-7.64,	

p<0.0001	
t(df=80.93)=1.20,	

p=0.23	

Annual	change	rate,	%/y	
t(df=280.98)=-7.89,	

p<0.0001	
t(df=47.99)=-5.62,	

p<0.0001	
t(df=40.20)=2.56,	

p<0.05	
Entorhinal	cortex	 	 	 	

Baseline,	mm3	
t(df=202.35)=-5.12,	

p<0.0001	
t(df=52.45)=-4.58,	

p<0.0001	
t(df=63.75)=1.09,	

p=0.28	

Annual	change	rate,	%/y	
t(df=246.61)=-4.15,	

p<0.0001	
t(df=54.98)=-3.56,	

p<0.001	
t(df=39.38)=1.81,	

p=0.08	
Cognitive/functional	
measures	 	 	 	

MMSE	 	 	 	

Baseline	
t(df=230.58)=-5.91,	

p<0.0001	
t(df=58.73)=-5.25,	

p<0.0001	
t(df=64.49)=1.09,	

p=0.28	

Annual	change,	u/y	
t(df=211.03)=-5.40,	

p<0.0001	
t(df=40.91)=-4.19,	

p<0.001	
t(df=31.40)=2.35,	

p<0.05	
ADAS	cog	 	 	 	



Baseline	 t(df=230.87)=12.50,	
p<0.0001	

t(df=64.46)=11.44,	
p<0.0001	

t(df=70.99)=-1.69,	
p=0.10	

Annual	change,	u/y	 t(df=223.32)=3.35,	
p<0.001	

t(df=35.97)=3.75,	
p<0.001	

t(df=30.48)=-2.84,	
p<0.01	

RAVLT	immediate	 	 	 	

Baseline	 t(df=145.52)=-8.03,	
p<0.0001	

t(df=46.06)=-7.95,	
p<0.0001	

t(df=72.53)=1.93,	
p=0.06	

Annual	change,	u/y	 t(df=218.50)=-3.28,	
p<0.01	

t(df=40.94)=-0.84,	
p=0.41	

t(df=31.59)=-0.41,	
p=0.68	

FAQ	 	 	 	

Baseline	 t(df=261.49)=6.67,	
p<0.0001	

t(df=150.96)=8.73,	
p<0.0001	

t(df=116.37)=-1.75,	
p=0.08	

Annual	change,	u/y	 t(df=223.71)=5.28,	
p<0.0001	

t(df=57.02)=3.65,	
p<0.001	

t(df=32.80)=-0.92,	
p=0.37	

CSF	measures	(baseline)	 	 	 	

Amyloid	β	level,	pg/ml	 t(df=129.55)=-8.08,	
p<0.0001	

t(df=42.37)=-7.07,	
p<0.0001	

t(df=57.29)=1.26,	
p=0.21	

TAU	 t(df=158.41)=5.22,	
p<0.0001	

t(df=93.64)=7.73,	
p<0.0001	

t(df=94)=-1.09,	
p=0.06	

P-TAU	 t(df=184.35)=5.47,	
p<0.0001	

t(df=86.41)=6.42,	
p<0.0001	

t(df=76.81)=-1.33,	
p=0.19	

MCIc=	mild	cognitive	impairment	converted	to	Alzheimer’s	disease;	MCIs=	mild	cognitive	
impairment	remained	stable	for	more	than	five	years;	MCIr=	mild	cognitive	impairment	
reverted	to	cognitively.		APOE	e4;	Apolipoprotein	E	allele	4;MMSE	=	mini-mental	state	
examination;	ADAS	cog=	Alzheimer	Disease	Assessment	Scale	(cognitive	subscale);	RAVLT	=	
Rey	Auditory	Verbal	Learning	Test;	FAQ	=	functional	assessment	questionnaire. CSF= 
cerebrospinal fluid; Aβ=	amyloid-beta	1–42;	TAU=total	tau	protein,	P-TAU=phosphorylated	tau	
protein.	Baseline	measures	adjusted	for	age,	sex,	field	strength	and	intracranial	volume	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Supplementary	table	2:	Correlation	between	baseline	brain	volume	and	annual	
change	rate	in	the	whole	sample	and	across	the	groups	
	
	
	 All	groups	 MCIr	 MCIs	 MCIc	

Whole	brain	 r=-0.03,	p=0.54	 r=0.23,	p=0.17	 r=-0.04,	p=0.69	 r=-0.11,	p=0.13	

Ventricles	 r=-0.06,	p=0.31	 r=0.08,	p=0.62	 r=-0.01,	p=0.99	 r=-0.19,	p<0.01	

Hippocampus	 r=0.27,	p<0.0001	 r=-0.09,	p0.57	 r=0.24,	p<0.05	 r=0.12,	p=0.09	

Entorhinal	

cortex	
r=0.12,	p<0.05	 r=-0.11,	p=0.50	 r=0.32,	p<0.01	 r=0.05,	p=0.53	

	



	

Supplementary	figure	1:	Frequency	of	baseline	volumes	and	atrophy	rates	

across	the	groups.	Left	column	shows	the	overlap	of	baseline	volumes	and	right	

column	shows	the	overlap	of	atrophy	rates	(enlargement	rate	for	the	ventricles)	

across	MCI	groups.	

	MCIc=	mild	cognitive	impairment	who	convert	to	Alzheimer’s	disease,		

MCIs=	mild	cognitive	impairment	who	remain	stable	for	at	least	five	years,	and	

MCIr=	mild	cognitive	impairment	who	revert	to	cognitively	normal.			


