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ABSTRACT

Computer simulations and machine learning provide complementary ways of identifying structure/property relationships that are typically
targeting toward predicting the ideal singular structure to maximize the performance in a given application. This can be inconsistent with
experimental observations that measure the collective properties of entire samples of structures that contain distributions or mixture of
structures, even when synthesized and processed with care. Metallic nanoparticle catalysts are an important example. In this study, we have
used a multi-stage machine learning workflow to identify the correct structure/property relationships of Pt nanoparticles relevant to oxygen
reduction, hydrogen oxidation, and hydrogen evolution reactions. By including classification prior to regression, we identified two distinct
classes of nanoparticles and subsequently generated the class-specific models based on experimentally relevant criteria that are consistent
with observations. These multi-structure/multi-property relationships, predicting properties averaged over a large sample of structures,
provide a more accessible way to transfer data-driven predictions into the lab.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0009129

I. INTRODUCTION

While it has been well established that the size, shape, and
surface structure of metallic nanoparticles are responsible for their
performance in a variety of applications, complete control over the
structure remains challenging1–4 due to competition and collabora-
tion between growth kinetics and thermodynamics during
synthesis.5–9 Considerable effort has been directed toward control-
ling the size and shape of metal nanoparticles,10–15 but many
samples persistently contain imperfect shapes, disordered lattices,
and defective surfaces.16–18

In the case of platinum, it is known that nanoparticles with
controlled sizes and shapes, characterized by surface facets and in
specific crystallographic orientations, can be used to tune the sensi-
tivity and selectivity of many important catalytic reactions.19,20

Important factors contributing to the morphology of individual
nanoparticles include the type and concentration of the precursor,
the reducing agent and stabilizer, the introduction of seeds or

foreign species,21 the impact of twinning and structural defects,22,23

and temperature. Among the methods developed to control these
factors, solution-phase synthesis is highly versatile24–27 and uses the
reduction and decomposition of a metal precursor in the presence
of a surfactant to engineer the structure of platinum.28–31

Understanding the relationship between these structural and pro-
cessing parameters and the desirable properties is one of the goals
of rational nanoparticle design, particularly in the engineering of
nanocatalysts, and so the extensive body of experimental literature
has been augmented with theoretical and computational studies
that provide insight into the properties of specific structures. For
example, a detailed computational screening of surface structures
for new nanocatalysts has been performed for the methanation
reaction,32 but due to the high computational cost of the
electronic structure calculations was limited to only a few dozen
instances.33–37 Studies such as these providing important informa-
tion on reaction efficiency, but are vulnerable to selection bias, con-
firmation bias, and reporting bias,38 as each of the limited systems
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being studied was carefully pre-determined. They also fail to
capture the averaged efficiency of real samples that contain a distri-
bution or mixture of sizes, shapes, and defects and are not in the
ground state.

The mismatch between the averaged performance measured
during experimental studies and the specific (and limited) focus of
conventional computational studies presents a problem when
attempts are made to translate computational predictions into the
lab. This problem is not unique to platinum nanoparticles but is
particularly relevant given the strong connection between the
highly complex surface structure and catalytic performance.
Machine learning (ML) methods, however, are ideally suited to
studying the complex multi-structure correlations that are difficult
to identify using conventional computational methods and are free
from some of the assumptions and biases introduced by human
researchers. It has been previously established that ML can produce
parametric functions of structural features capable of accurate pre-
dictions of useful properties based on a large set of atomistic simu-
lations.39 By combining a sufficiently large and diverse ensemble of
candidate nanostructures generated using conventional simulations
with an appropriate regressor, it is possible to identify the set of
features that drive performance,40 and in some cases, conditions
required to deliver the right structures in practice.41 ML is also
capable of determining classes of like-structures based on similarity
and then correlate these classes with some performance indicators
to provide a more averaged response to structure/property predic-
tion, akin to measuring a diverse mix of sizes and shapes.42,43 Most
importantly, ML is providing to be invaluable in the modern
design of catalysts.44,45

In this study, we use ML to predict the different classes of
platinum nanocatalysts based on structural features and two widely
used synthetic processing conditions and identify class-specific
structure/property relationships to established indicators of efficient
hydrogen evolution reactions (HERs), hydrogen oxidation reactions
(HORs), and oxygen reduction reactions (ORRs).19,20,46–48 We have
used an ensemble of 1300 unique platinum nanoparticles generated
from molecular dynamics (MD) trajectories that sample a large
variety of different temperatures and growth rates and apply
sophisticated clustering, classification, and regression algorithms to
identify how the overall characteristics of each class may enhance
or suppress performance. As we will show, the classification of the
nanoparticles into ordered and disordered structures is an impor-
tant first step to predicting the correct structure/property relation-
ships with machine learning. Following the separation of the
particles into these classes, regression is able to accurately identify
the important structural features responsible for ORR and HER/
HOR reactions in agreement with experimental observation, but
without prior classification, the predictions are confused and
provide no clear path to impact.

II. DATASET AND METHODS

In this study, we have used an existing set of atomistic plati-
num nanoparticles originally generated using molecular dynamics
to simulate growth via random addition of single Pt atoms and
unguided sintering and coalescence events or with experimentally
relevant morphologies relaxed using molecular dynamics at

elevated temperatures to allow for the formation or annealing of
twins. The set contains particles grown using different atomic dep-
osition rates (tau) and temperatures (T) to capture the effects of
inhomogeneous reaction kinetics and thermal fluctuations within a
range of values characteristic of experiments. The set is available
for download with detailed information on the simulation proce-
dure and an extensive list of 179 structural features based on
atomic, crystallographic, and topological descriptors.49 This list was
reduced to 121 dimensions (including structural and processing
features) by eliminating features with zero variance and then appro-
priately normalized so that all features occupy the range 0–1. This
dataset supersedes previous versions50 as it is larger, includes
ordered shapes as well as anisotropic and disordered particles, has
a larger range of processing conditions, and a greater number of
structural features. Growth time was not included as a feature in
this case, as some of the relaxed nanoparticles were included as
pre-grown structures.

Three indicators of molar catalytic activity have been used as
the target labels. The molar catalytic activity was estimated using a
surface coordination number (SCN) scheme that groups types of
surface imperfections based on the degree of under-coordination of
each surface atom, and the similarity with respect to known surface
features that have been shown to enhance different catalytic
reactions.19,20,46–48 Under this scheme, surface defects include all
adatoms in configurations (“top,” “bridge,” and “hollow”), where
the Pt coordination number can be 1, 2, or 3; surface microstruc-
tures include surface “kinks” and “steps,” where the Pt coordination
number can be 4, 5, 6, or 7; and surface facets include configura-
tions (in any hkl orientation), where the Pt coordination number
can be 8, 9, 10, or 11 (recalling the coordination number of Pt
atom in the bulk is 12). Although these assignments may seem
ambiguous, each of these groups are linked to a specific catalytic
reaction and were originally determined based on a full survey of
the literature.51–60 For example, surface facet-driven catalytic activ-
ity is suitable for hydrogenation reactions, while nanoparticles with
surface microstructure-driven activity are more efficient to catalyze
combustion reactions. A theoretical hydrogenation/combustion
selectivity can be defined as the ratio between surface facet-driven
catalytic activity and surface microstructure-driven catalytic activity.
This scheme has been shown to be suitable for investigating active
sites on nanoparticle surface in the past61–63 and has been success-
fully combined with theoretical analysis64 and machine learning.65

In the present study, we concentrate on surface microstructures
and surface facets, as we seek insights into HERs, HORs, and
ORRs.

A. Clustering

Clustering methods are unsupervised pattern recognition tech-
niques that group samples based on a similarity index without ref-
erence to target labels. There are many different clustering methods
available, each with advantages and disadvantages.66 In this study,
we have used a new clustering method that has the advantage of
including hyper-parameter optimization.67 Iterative label spreading
(ILS) is based on a general definition of a cluster and the quality of
a clustering result and is capable of predicting the number and type
of clusters and outliers in advance of clustering, regardless of the
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complexity of the distribution of the data. ILS can be used to evalu-
ate the results from other clustering algorithms or perform cluster-
ing directly. It has been shown to be more reliable than alternative
approaches for simple and challenging cases (such as the null and
chain cases) and to be ideal for studying noisy data with high
dimensionality and high variance as is typical for nanoparticle
systems.68

Direct clustering is achieved using this algorithm by initializ-
ing one labeled point and applying ILS to obtain the ordered
minimum distance [Rmin(i)] plot, as described in detail in Ref. 67.
The number of clusters can be automatically extracted by identify-
ing peaks in the Rmin(i) plot (due to density drops between clus-
ters) that divide the plot into n regions. This can be automated
using a continuous wavelet transform peak finding algorithm with
smoothing over p points. The smoothing essentially sets the
minimum cluster size to identify clusters of no smaller than p. One
point can be relabeled in each region (preferably at the minima) to
run ILS again and obtain a fully labeled dataset with n clusters
defined. ILS can also be applied to each individual cluster to
confirm that each region is a single cluster that should not be
divided further.

B. Classifiers

Classification is a type of supervised learning where the target
labels are also provided with the features. A classifier is trained
(using input training data) to recognize how unseen instances
relate to some known classes of instances and assigns them accord-
ingly. There are numerous classification algorithms available, and
the superiority of one over another depends on the application and
the dataset.

In this study, we have used the (non-linear, non-parametric)
Extra Trees Classifier (ETC), which fits a number of randomized
decision trees to the training sub-set, and averages over the results
to improve the predictive accuracy and control over-fitting. ETC is
generally faster than similar estimators and performs well in the
presence of noisy features typical of nanoparticle datasets. The
hyper-parameters of the ETC were optimized using a grid search
(criterion = “gini,” max_depth = None, max_features = “sqrt,”
min_impurity_split = 0.01, min_weight_fraction_leaf = 0, n_esti-
mators = 50, class_weight = None, oob_score = False, warm_start
= False) and applied using 10-fold cross validation and a 25/75
test/train split.

Decision trees are trained by recursively splitting the data but
are prone to over-fitting. For this reason, we calculated the learning
curve test for convergence of the training and cross validation
scores. These results compare well with alternative classifiers, logis-
tic regression (linear), and random forest (non-linear), which con-
firmed the results (see the supplementary material).

C. Regressors

Regression is a type of supervised learning to predict the rela-
tionship between the features and a target label. A regressor is
trained (using input training data) to recognize a continuous rela-
tionship and predict the expected target property for unseen data
based on the known features. Just as for classifiers, there are

numerous regression algorithms available, and the superiority of
one over another depends on the application and the dataset.

In this study, we have used the (non-linear, non-parametric)
Extra Trees Regressor (ETR) which, in a similar way to the ETC,
fits a number of randomized decision trees to a sub-set and aver-
ages over the results. Following classification, regression was per-
formed on each class individually for each target property label.
The hyper-parameters were optimized for each class using a grid
search (as described later on) and applied using 10-fold cross vali-
dation and a 25/75 test/train split.

The results were compared with the ridge regression (linear)
and random forest progression (non-linear) which resulted in more
significant under-fitting and over-fitting, respectively (see the
supplementary material).

III. RESULTS

To better understand the average performance of similar types
of platinum nanoparticles, clustering and classification were under-
taken before regression, in order to identify class-dependent struc-
ture/property relationships.

A. Classification

Using ILS, we identified two well defined clusters in the plati-
num nanoparticle ensemble. The distribution of the set visualized
using t-distributed stochastic neighbor embedding (t-SNE) is
shown in Fig. 1(a),69 which has successfully been useful in visualiz-
ing multi-dimensional nanoparticle datasets in the past.70 In
Fig. 1(b), we show the ILS Rmin(i) plot which shows two distinct
peaks identifying the two clusters. In both cases, the points have
been colored by the order in which the labels were iterated (blue to
red) by ILS, and we can see that that dark red points (labeled last),
are a greater distance from the prior points, suggesting they may be
outliers. This is also supported by the t-SNE distribution where
these points appear at the edges of the clusters.

Based on this result, we can assign each nanoparticle to a
cluster (1 and 2), as shown in Fig. 2(a), and perform classification
to determine if the clusters constitute classes. We first removed out-
liers (reducing the number of instances to 1279), which would oth-
erwise introduce bias into our machine learning models, and
applied the ETC. The results are captured in the confusion matrix
as shown in Fig. 2(b), where there is perfect accuracy, precision,
and recall. The impact of outlier removal is shown in the
supplementary material. The classes are perfectly separable based
largely on the growth rate (tau), various order parameters
(q6q6_X), and the growth temperature (T). This is shown in the
feature importance plot [see Fig. 2(c)], which also indicates that the
order parameters based on surface coordination q6q6_S0 (number
of surface atoms having 0 nearest neighbors with similar bonding
environments as itself ), q6q6_S2 (number of surface atoms having
two nearest neighbors with similar bonding environments as itself ),
and q6q6_avg_bulk (the average number of bulk atoms having an
environment similar to itself ) are important. These order parame-
ters are indicative of highly disordered surfaces where few atoms
are surrounded by similarly coordinated atoms. These are followed
by T, and a number of other order parameters similarly indicative
of neighbors with low structural similarity (both surface and total
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number of atoms, which are the same when the coordination
numbers are small). Figure 2(c) shows only the top 21 features of
the 121 features used to train the model. Figure 3 shows the distri-
bution of these two important features across the set, where we can
see that class 1 (upper right) exhibits a complicated spread of T but
obvious trends in tau. Class 2 (lower left) contains “as-grown” plat-
inum nanoparticles seeds relaxed using molecular dynamics at
673 K.

Based on this classification, we next examined the distribution
of the target property labels (the catalytic indicators, surface micro-
structures and surface facets) in each of the clusters, as shown in
Figs. 4(b) and 4(d), respectively. Here, we can see that both clusters
include the entire range of surface microstructure and surface facet
concentrations. This is confirmed when we color encode the t-SNE
plots with these property labels, where we can see that the distribu-
tion for each of these properties is different for the two classes
(which were only trained on the structural features), suggesting that
they will have different structure/property relationships, ordered
particles will behave very differently to disordered particles. A com-
parison of Figs. 4(a) and 4(c) with Figs. 3(a)–3(c) suggest a stronger

relationship between these property indicators and tau than for T .
The t-SNE plot for tau, Fig. 3(a), indicates that if clustering was
considered in this single dimension, then four clusters might be
appropriate. However, the property results in Fig. 4 show a clear
trend across the two clusters identified by ILS, in clear agreement
with that result, when the full feature set is taken into account.

B. Regression

Each of the two classes were then analyzed separately using
the ETR, following stratification. Stratification was necessary since
the distribution of the property labels in each class is imbalanced.
Examples of the stratification for the 25/75 test/train split is shown
in Fig. 5 for each class and property label. This process was
repeated for each k-fold during our 10-fold cross validation of each
model.

The ETR was used to predict the normalized concentration of
surface microstructures and surface facets for class 1 and class 2. In
each case, the hyper-parameters were optimized using a grid
search, as summarized in Table I.

FIG. 1. (a) x–y distribution of the 1300
platinum nanoparticles using t-
distributed stochastic neighbor embed-
ding (t-SNE), based on their similarity
in 121 dimensions, and (b) the order-
labeled Rmin plot generated using ILS
clustering showing two peaks identify-
ing the two distinct clusters (indicated
by the peaks highlighted with arrows).
Both plots are colored by the order in
which the labels were iterated from
blue to red.

FIG. 2. (a) Distribution of the 1300 platinum nanoparticles using t-SNE, colored by the cluster assigned using ILS, (b) the confusion matrix showing the classes are per-
fectly separable, and (c) the feature importance histogram showing the classes are largely determined by the processing conditions, tau and T , the order parameters
based on surface coordination q6q6_S0 (number of surface atoms having 0 nearest neighbors with similar bonding environments as itself ), q6q6_S2 (number of surface
atoms having two nearest neighbors with similar bonding environments as itself ), and q6q6_avg_bulk (the average number of bulk atoms having an neighbors with
bonding environment similar to itself ); this is followed by a number of other order parameters indicative of neighbors with low structural similarity.
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1. Class 1

The results of class 1 reveal similar structure/property relation-
ships for the concentration of surface microstructures and surface
facets with some important differences. In Fig. 7, we show the ETR
model fit for the training sets [Figs. 7(a) and 7(e)] and testing sets
[Figs. 7(b) and 7(f )], for the surface microstructures and surface
facets, respectively. For the surface microstructures (left column), we
obtained a training score of R2 ¼ 0:998, a testing score of
R2 ¼ 0:976, and a cross-validation score of R2 ¼ 0:98+ 0:013. For
the surface facets (right column) we obtained a training score of
R2 ¼ 0:999, a testing score of R2 ¼ 0:985 and a cross-validation
score of R2 ¼ 0:989+ 0:006. In both cases, these results indicate
there is no under-fitting (the model is sufficiently sophisticated to
capture the complexity in the data) and minimal over-fitting (the
model is not fitting to the noise). This is confirmed by the learning
curves shown in Figs. 7(c) and 7(g).

The most useful results come from the feature importance
histograms of the surface microstructures and surface facets,
provided in Figs. 7(d) and 7(h), respectively, which show only
the top 21 features of the 121 features used to train the models.
Here, we can see two different structure/property relationships.
In the case of the surface microstructures, the top five most
important features all relate to coordination numbers (the
average coordination number of Pt in the particle, Avg_total; the

concentration of Pt atoms with a total coordination of 10,
TCN_10; the concentration of Pt atoms with a total coordination
of 8, TCN_8; the concentration of Pt atoms with a total coordi-
nation of 11, TCN_11; and the concentration of surface atoms
with a coordination of 8, SCN_8). These coordination numbers
are predominantly indicative of internal disorder (recalling the
ideal bulk Pt coordination is 12). The three next most important
features all relate to the size of the nanoparticles [the average par-
ticle radius, R_avg; the minimum particle radius, R_min; and the
total number of bulk-like (non-surface) atoms, N_bulk]. An
example of a high surface microstructures class 1 nanoparticle
with atoms colored by the top five coordination numbers is
shown in Fig. 6(a).

In the case of the surface facets, the top five most important
features all relate to the size of the nanoparticles [the average par-
ticle radius, R_avg; the total number of bulk-like (non-surface)
atoms, N_bulk; the total number of Pt–Pt bonds, N_bonds; the
total number of Pt atoms, N_total; and the total volume of the
nanoparticle, Volume]. The three next most important features
all relate to Pt atoms with a coordination number of 7 (the con-
centration of surface atoms with a coordination of 7, SCN_7; the
concentration of Pt atoms with a total coordination of 7, TCN_7;
and the total concentration of Pt atoms a q6q6 order parameter
of 7, q6q6_T7). These atoms occupy sites on {110} facets

FIG. 3. t-SNE distribution of set
colored by the normalized processing
features: (a) the relative growth rate,
tau, and (b) the relative growth temper-
ature, T . Both plots are colored from 0
to 1 (from blue to red).

FIG. 4. (a) Distribution of the 1279 platinum nanoparticles (excludes outliers) using t-SNE, colored by the normalized concentration of surface microstructures, and (b) a
histogram of the distribution of surface microstructures, separated by class. (c) Distribution of the set using t-SNE, colored by the normalized concentration of surface
facets, and (d) a histogram of the distribution of surface facets, separated by class. Both t-SNE plots are colored from 0 to 1 (from blue to red).
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surfaces, and the total coordination number (TCN) for a {110}
surface atom is the same as the surface coordination number
(SCN). An example of a high surface facets class 1 nanoparticle
with atoms colored by the top five coordination numbers is
shown in Fig. 6(b).

2. Class 2

The results of class 2 also show unique structure/property rela-
tionships for the concentration of surface microstructures and
surface facets. In Fig. 8, we show the ETR model fit for the training
sets [Figs. 8(a) and 8(e)] and testing sets [Figs. 8(b) and 8(f)] for
the surface microstructures and surface facets, respectively. For the
class 2 surface microstructures, we obtained a training score of
R2 ¼ 0:998, a testing score of R2 ¼ 0:888, and a cross-validation
score of R2 ¼ 0:983+ 0:013. For the surface facets, we obtained a
training score of R2 ¼ 0:999, a testing score of R2 ¼ 0:979, and a
cross-validation score of R2 ¼ 0:97+ 0:034. Although the surface
microstructures model gave a lower testing score than the surface
facets model (and the models for class 1), the learning curves
shown in Figs. 8(c) and 8(g) attest to minimal over-fitting.

Turning to the feature importance histograms of the surface
microstructures and surface facets provided in Figs. 8(d) and 8(h),
respectively, we can see that the structure of the surface is much
more important in this structurally ordered class. In the case of the
surface microstructures, half of the top eight most important fea-
tures relate to surface structure (the concentration of surface atoms
with a curvature between 1� and 10�, Curve_1-10; the concentra-
tion of surface atoms with q6q6 order parameter based coordina-
tion of 9, q6q6_S9; the concentration surface atoms with a

coordination number of 9, SCN_9; and the fraction of atom occu-
pying a {111} facet, S_111). There are three features related to coor-
dination numbers in this top group (Avg_total, SCN_9 and
TCN_9) and three order parameters based coordinations
(q6q6_T8, q6q6_S9 and q6q6_T9) indicating that it is not just
under-coordinated surfaces, but ordered under-coordinated surfaces
that are important, particularly planar surfaces with a low curvature
(Curve_1-10). The number 9 is associated with closed packed sur-
faces such as the {111} surfaces. An example of a high surface
microstructures class 2 nanoparticle with atoms colored by the top
five coordination numbers is shown in Fig. 6(c).

In the case of the surface facets for class 2, half of the top eight
important features also related to the surface structure (SCN_7,
q6q6_S7, Curve_31-40 and Curve_21-30), with a strong emphasis
on a coordination of 7 (SCN_7, q6q6_T7, q6q6_S7, TCN_7). These
features are related to {110} facets, and the following important fea-
tures contain coordination and order parameter of 11, which are the
subsurface atoms along [110] channels. The size is also a consider-
ation (R_min). An example of a high surface facets class 2 nanoparti-
cle with atoms colored by the top five coordination numbers is
shown in Fig. 6(d), where the {110} surface atoms are shown in dark
blue and the sub-{110} surface atoms are shown in red.

IV. DISCUSSION

Since surface microstructures are indicative of ORR reactions
and surface facets are indicative of HERs and HORs, these results
can be interpreted in terms of their potential impact on catalytic
performance.

FIG. 5. Stratified 27/75 test/train splits for (a) surface microstructures in class 1, (b) surface microstructures in class 2, (c) surface facets in class 1, and (d) surface facets
in class 2.

TABLE I. Hyper-parameters optimized using a grid search for each class and property label, using the extra trees regressor.

Hyper-parameters

Class Property indicator criterion max_depth min_samples_leaf min_samples_split n_estimators max_features oob_score

1 Surface
microstructures

mse None 2 3 100 auto False

1 Surface facets mse None 2 3 200 auto False
2 Surface

microstructures
mse None 2 3 500 auto False

2 Surface facets mse None 2 3 200 auto False
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In class 1, the results for disordered nanoparticles indicate
that ORR efficiency can be controlled by suppressing the crystallin-
ity of the particles (as well as the sizes), which can be done by con-
trolling the tau and T (see Sec. II A). This is consistent with
experimental evidence that amorphous particles display a higher
reactivity71 and complementary statistical analysis.72 Disordered
particles have disordered surfaces, and it has been confirmed using
density functional theory73 that stepped Pt(111) surfaces and nano-
particles with concave features can outperform the activity of flat
Pt(111).74 In this study, the authors concluded that concave

features can only occur on regular nanoparticles, but the disordered
structures contained in our dataset have an enormous fraction of
concave atoms. Both steps, and sufficient surface disorder, can
increase ORR activity. Other studies have found that (metastable)
thin nanorods are also high performing oxygen reduction cata-
lysts,75 but this sort of structure is not present in our dataset where
each nanoparticle was optimized as using molecular dynamics
during generation. This would be an interesting topic for future
work. Our dataset is also well beyond the sizes of small clusters that
have also been shown to be active.76

FIG. 6. Examples of Pt nanoparticles in the set, of comparable size, with atoms encoded by the coordination number for a (a) class 1 nanoparticle with a high concentra-
tion of surface microstructures, (b) class 1 nanoparticle with a high concentration of surface facets, (c) class 2 nanoparticle with a high concentration of surface microstruc-
tures, and (d) class 2 nanoparticle with a high concentration of surface facets. The coloring scheme designates dark blue atoms as having a coordination of 7, light blue 8,
green 9, yellow 10, and red 11.
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The results for this class also indicate that HER and HOR
efficiency can be controlled by moderating the overall size of
disordered nanoparticles (and affecting {110} facets), which can
also be done by controlling the tau and T . This is consistent

with evidence that disordered amorphous particles have a
higher fraction of edge-like atoms, which are known to
enhance hydrogen evolution and oxidation reactions77 and
scale as 1=R2.

FIG. 7. Results for the extra tree regression models for the surface microstructures (left) and surface facets (right), for the disordered Pt nanoparticles of class 1, including
(a) the surface microstructures training result, (b) the surface microstructures testing result, (c) the learning curves for predicting the surface microstructures, (d) the top 21
structural features determining the concentration of surface microstructures, (e) the surface facets training result, (f ) the surface facets testing result, (g) the learning
curves for predicting the surface facets, and (h) the top 21 structural features determining the concentration of surface facets.
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In the case of the ordered class 2, the surface microstruc-
tures model indicates that ORR efficiency of ordered Pt nano-
particles can be controlled by the moderating of the fraction of
flat {111} surfaces. This is consistent with experimental

observations.78–80 The surface facets model indicates that HER
and HOR efficiency can be controlled by the moderating of the
fraction of {110} surfaces and the overall size. This is also
entirely consistent with the experimental observation that HER/

FIG. 8. Results for the extra tree regression models for the surface microstructures (left) and surface facets (right), for the ordered Pt nanoparticles of class 2, including
(a) the surface microstructures training result, (b) the surface microstructures testing result, (c) the learning curves for predicting the surface microstructures, (d) the top 21
structural features determining the concentration of surface microstructures, (e) the surface facets training result, (f ) the surface facets testing result, (g) the learning
curves for predicting the surface facets, and (h) the top 21 structural features determining the concentration of surface facets.
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HOR is typically an order of magnitude higher on this
surface.79–81

In both cases, the regressor successfully identifies the right
structure/property relationship and highlights the importance of
features that are known to be important experimentally from the
entire list of 121. This experimentally consistent and actionable
result was only achieved because of the prior classification that per-
fectly separated the ordered and disordered particles. If we elimi-
nate this step and apply regression to the entire set, ignoring the
classes, then the results contain important features for each group
combined, as would be expected. Such predictions are confusing
and do not provide any logical basis for future work or a clear way
to guide experimental processes. This reinforces the need to apply a
strategy of data science and machine learning protocols when
seeking to understand complicated structure/property relationships
in nanoscience.

V. CONCLUSIONS

In this study, we have used an open dataset of ordered and
disordered platinum nanoparticles simulated using molecule
dynamics to predict the collective structure/property relationship
for classes containing distributions of Pt nanoparticles based on
their similarity in 121 dimensions. The dataset was cleaned and
processed to handle redundant features, outliers, normalization,
and imbalances. Based on clustering using iterative label spreading
(ILS), which is well suited to noisy and high-dimensional materials
datasets, we identified two clusters that were perfectly separable as
classes using the non-linear, non-parametric extra trees classifier.
One class contained exclusively disordered nanoparticles, and the
other exclusively ordered nanoparticles, which can be separated
based on the degree of surface disorder and the growth rate.

Using non-linear, non-parametric extra trees regressors, we
have subsequently shown that the two classes have different struc-
ture/property relationships. Disordered particles (typical of high
growth rates and low temperatures) perform better for oxygen
reduction reactions if the disorder is increased and perform better
for hydrogen evolution and hydrogen oxidation reactions if the
particles are small. Both conditions serve to increase the amount of
surface disorder and maximize edge-like atoms. The same machine
learning methods identified that ordered nanoparticles will
perform better for oxygen reduction reactions if the {111} surface
area is increased and will perform better for hydrogen evolution
and hydrogen oxidation reactions if the {110} surface area is
increased. These results agree with experimental observations and
support the use of machine learning for multi-structure/multi-
property relationships, based on properties averaged over a large
sample of structures, rather than specific predictions for individual
sizes or shapes that may not be easily controlled in the lab.

SUPPLEMENTARY MATERIAL

See the supplementary material for classification results using
logistic regression and the random forest classifier. Comparison of
the results of the extra trees classification with and without the out-
liers. Regression results for each target label and class using ridge
regression and random forest regression.
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