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Abstract— In this paper, the design of a data driven con-
troller using a small-gain theorem approach for improving the
positioning accuracy of a piezoelectric tube scanner (PTS) is
demonstrated. Open-loop frequency responses of both the X-
PTS and Y-PTS are measured using a band-limited sweep sine
signal and are used as primary data for this control design.
The frequency response of the controllers is synthesized by
the application of the small-gain theorem constraints over the
entire frequency range for both the axes. The experimental
implementation of this feedback data driven controller provides
significant vibration reduction, with 19 dB and 15 dB damping
at the resonance frequencies of the X and Y-axes of the
PTS, respectively. A comparison between the open-loop and
closed-loop tracking performance for triangular signals shows
significant improvement up to the scanning frequency of 150
Hz. Moreover, the design of this data driven controller is less
complex than conventional controller design methods as it does
not need a system model.

I. INTRODUCTION

The atomic force microscope (AFM) is a type of scanning
probe microscope (SPM) which is capable of capturing
high resolution images in different mediums, including vac-
uum, liquid and air [1], [2]. Over the last few decades,
the AFM has had applications in many disciplines, such
biological sciences, surface science and medical research.
The capability of performing precision imaging at an atomic
resolution, makes the AFM a suitable tool in nano-science
applications [3], [4]. The basic components of an AFM
comprise of an AFM head, cantilever (a sharp probe) and
a piezo electric tube actuator. A sample is moved under a
fixed cantilever to scan atomic resolution images of both
electrically conductive and non-conductive samples. A laser
beam emitted from a laser diode is reflected from the back of
the cantilever tip and it is detected by a photodiode [5]. The
amount of angular variation measured by the photodetector
indicates the variation of the height of the sample surface.
The movement of the PTS along the Z-axis is governed by
the output of the photodiode and the movement of the PTS
along the X and Y-axes depends on the voltages applied to
the respective directions [1]. The precision tracking of the
reference signals along the X and Y-axes is limited due to
vibration effects, creep, hysteresis effects and cross coupling
effects [6], [7]. The nonlinear hysteresis effect that occours
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due to the application of high voltages to the X and Y-axes,
can be around 10-15 percent of the total displacement in a
long traversal motion [8]. The cross-coupling effect in the
PTS occurs due to its collocated structure, which distorts
the scanned image [9]. Additionally, during slow scanning
the creep effect becomes dominant, which adversely affects
the vertical positioning of the sample [10].
In the traditional raster scanning method, a triangular signal
is applied along the X-axis with a slowly increasing staircase
or ramp signal along the Y-axis. The main problem with the
raster scanning method is that the triangular signal contains
all the odd harmonics of the fundamental frequency. Then the
imaging performance of an AFM is limited by the vibration
of the PTS, due to the excitation of its lightly damped
resonant modes by the higher harmonics of the triangular
reference signal [11]. The low resonant frequency of PTS
limits the system bandwidth and scanning speed of an AFM.
The scanning speed for most commercially available AFMs
is limited to 1 percent of the first resonance frequency of the
PTS [12].
In commercially available AFMs, a proportional integral (PI)
controller is used for nanopositioning control. Generally,
the performance of the PI controller is reasonably good for
low frequency applications, as the closed-loop bandwidth is
limited. The maximum closed-loop bandwidth that can be
typically achieved by using a PI controller is less than 2ζ wn,
where ζ is the damping constant of PI controller and wn is
the first resonance frequency of the PTS. The normal value
of the damping constant for a PI controller is 0.01 and the
first resonance frequency of PTS is usually around 1 kHz,
which means the scanning speed is limited to 10 Hz [13].
Many approaches have been undertaken by researchers to
mitigate the effect of vibration in the PTS. Some of those
approaches have damped the resonant peak significantly, but
still suffer from the problems of limited bandwidth and poor
tracking of the reference signal. It is essential to overcome
this problem to increase imaging quality and the AFM’s
scanning speed. A signal transformation method is used to
track the reference triangular signal in [14]. As this method
does not damp the resonant peak by a significant amount,
its performance is limited to low frequencies. An integral
resonant controller (IRC) can provide a scanning speed of
0.1 fr, while suppressing the resonant mode of the PTS,
where fr is the first resonant frequency of PTS [15]. An LQG
controller shows improved positioning performance upto 125
Hz by reducing the first resonant peak, while giving better
tracking results than a PI controller [12].
The data driven controller approach is a recent approach,



where prior identification of the plant transfer function is
not necessary [16], [17]. A reference tracking data driven
controller is designed based on a H2 approach in [18]. In
this control design method, measured input/output data is
only required to guarantee the specific system performance.
A data driven controller can be synthesized without con-
structing a transfer function or state-space model of the
plant. Model identification is a major challenge in traditional
controller design methods [19], [20]. The stability, robustness
and convergence of the closed-loop system can be guaranteed
by mathematical analysis of the input/output data of the
controlled system under specified constraints [21], [22], [23].
Data driven controller design reduces the complexity of the
controller design problems. The main problem associated
with data driven controller design is ensuring the closed-
loop system stability for the designed controller.
In the proposed design process, frequency response data of
the SISO system for the AFM is measured by using a band-
limited swept sine signal. The controller frequency response
is calculated by minimizing the error between the reference
input and observed position output of the closed-loop system
at each frequency, which leads to the damping of the first
resonant peak.
The design process imposes small-gain constraints on the
controller frequency response. The small-gain theorem states
that if the loop gain corresponding to two stable systems is
strictly less than one, then their feedback interconnection
will be stable [24], [25]. From the frequency responses of
both the X-PTS and Y-PTS it is observed that, PTSs have
very high gains for a small range of frequencies near the
resonant frequencies. The highest resonant peak is mainly
responsible for creating vibrations in the PTS. Small-gain
constraints force the controller gain in the resonant region to
be low. The amount of damping obtained is higher for much
a lower gain within this frequency range.
In this work, a data driven controller based on the small-
gain theorem is proposed to reduce the vibration effect of the
PTS. The open-loop frequency response data for the position
sensors in both the X and Y-directions is used in calculating
the controller frequency response. An optimization problem
is formulated based on the reference input and error. In addi-
tion, the small-gain constraints ensure closed-loop stability
of the PTS system. Finally, by using the Prediction Error
Minimization (PEM) approach, the controller transfer func-
tion was identified. Practical implementation of the proposed
controller on an AFM shows a significant amount of damping
of the first resonant peak, as well as a good tracking of
the reference input for different scanning frequencies (upto
150Hz) for both the X and Y-axes tracking.
The remainder of the paper is organized as follows: The
experimental setup and data acquisition method is presented
in Section II, the controller design procedure is discussed in
Section III, and Section IV presents the experimental results.
Finally, Section V concludes the paper.
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Fig. 1. Block diagram of the experimental setup used in AFM nano-
positioning.

II. EXPERIMENTAL SETUP AND DATA
ACQUISITION

The experimental setup for the proposed scheme consists
of: 1) an NT-MDT Ntegra scanning probe microscope (SPM)
in which the PTS is placed; 2) a dual channel dynamic signal
analyzer (SA) HP35665A to measure the frequency response
between the reference input and the X and Y axes capacitive
position sensor outputs; 3) a DSPACE system for the digital
implementation of the controller with a sampling frequency
of 80 kHz; 4) a high-voltage amplifier (HVA) with a constant
gain of 15 which supplies power to the PTS ; 5) a signal
access module which allows direct connection to the PTS
electrodes; 5) a vibration isolator TS150 to isolate the AFM
from the effect of external vibrations; 6) control electronics;
7) a computer to operate the AFM’s NOVA in-built software.
A scan-by-sample scanner z13037cl is used, which performs
the scanning in constant force contact mode. The usual
scanning range is 100 µm × 100 µm × 10 µm and the
resonant frequency for X and Y axes is approximately 800-
910Hz and 5 kHz in the Z-direction. The displacements in
the X, Y, Z directions are sensed by capacitive sensors. The
experimental setup shown in Fig. 1 gives the interconnection
between all components.

In the proposed design scheme, input-output logarithmic
frequency responses of both the X-axis and Y-axis PTS have
been generated using the SA and processed in MATLAB.
The measured frequency responses of the X-PTS and Y-
PTS are shown in Fig. 2(a) and Fig. 2(b), respectively. The
resonant peak for the X-PTS is at 813 Hz and the two
resonant peaks of the Y-PTS are at 780 Hz and 903 Hz.
To avoid vibration effects, the open-loop scanning speed is
limited to around 8-9 Hz which is around 100 times less
than the resonant frequencies. For the data driven controller
design, the measured frequency response of the PTS is
used to determine the frequency response of the required
controller.

III. CONTROLLER DESIGN

This section provides a brief description of the data driven
controller design using the small-gain constraints. In order
to guarantee robustness and stability of the closed-loop PTS
system, a positive feedback interconnection is considered to
design the controller as shown in Fig. 3. From the block
diagram in Fig. 3, the relationship between the reference
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Fig. 2. Measured frequency response plot (a) input to the X-PTS and output from the X position sensor (b) input to the Y-PTS and output from the Y
position sensor.
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Fig. 3. Closed-loop system with the data-driven controller.

input, system output and the error can be calculated as
follows:

Y (s) =
−M(s)C(s)

1−M(s)C(s)
R(s); (1)

E(s) =
−1

1−C(s)M(s)
R(s). (2)

Here Y (s) is the measured output signal, C(s) is the
controller transfer function, E(s) is the error signal and
M(s) is transfer function of the PTS. To get good tracking
performance, our main objective is to reduce the error
function given in (2). From the block diagram shown in
Fig. 3 we obtain the following transfer function matrix
(where U(s) is the control input):

[
E(s)
Y (s)

]
=

[
M11(s) M12(s)
M21(s) M22(s)

][
R(s)
U(s)

]
; (3)

E(s) = M11(s)R(s)+M12(s)U(s)

=−R(s)+M(s)U(s);
Y (s) = M21(s)R(s)+M22(s)U(s)

= M(s)U(s);
U(s) =C(s)E(s).

(4)

Using (4), the relationship between R(s) and E(s) is given

as follows:

E(s) = (−1+M(s)N(s))R(s) (5)

where N(s) =C(s)(C(s)M(s)−1)−1.
The control objective is to choose the frequency response
C( jω) at each frequency by minimizing the norm of the
transfer function matrix from R(s) to E(s). Two constraints
have been applied over the entire frequency region. For both
the X-axis PTS and Y-axis PTS, the same design procedure
is followed. The controller design procedure is discussed in
detail in the following section:

A. Controller design using the small-gain theorem

The minimization of the error function subject to small-
gain constraints gives the optimum value for the controller
magnitude and phase for each frequency between 10 Hz and
2000 Hz. The main motivation for applying the small-gain
theorem for the entire frequency region is to ensure stability
of the closed-loop system. The optimization problem is
described as follows:

min
C( jω)
‖−1+M( jω)N( jω)‖2

(6)

subject to

‖C( jω)‖2‖M( jω)‖2 < 1, (7)

‖C( jω)‖2 ≤ µ. (8)

The first constraint (7) is SG constraint that ensures that
the loop gain of the system remains less than unity for the
calculated controller. The second constraint (8) limits the
gain of the controller. Normally, zero steady state error is
achieved by designing infinite gain controller. This is not
practical as it creates complexity in system realizability.
By limiting the gain of the controller to a certain value
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Fig. 4. A comparison of the vibration damping between the open-loop and closed-loop (a) input to the X-PTS and output from the X position sensor (b)
input to the Y-PTS and output from the Y position sensor.

ensures easier system realization. The non-convexity of this
optimization problem has been addressed by replacing C( jω)
by N( jω) as follows:

N( jω) =C( jω)(C( jω)M( jω)−1)−1;

C( jω) = N( jω)(M( jω)N( jω)−1)−1.
(9)

Then the constraint from (7) changes to:

‖C( jω)‖2‖M( jω)‖2 < 1;
⇔C( jω)C∗( jω)M( jω)M∗( jω)< 1;

⇔ (N∗( jω)M∗( jω)−1)−1N∗( jω)N( jω)

×(M( jω)N( jω)−1)−1M( jω)M∗( jω)< 1;
⇔M∗( jω)N∗( jω)+M( jω)N( jω)< 1;

(10)
It is assumed that, M( jω) = A + jB, N( jω) = a + jb.

Then the non-linear inequality (10) simplifies to:

2aA−2bB < 1. (11)

Similarly, the second constraint (8) can be rewritten in a
convex form as follows:

‖C( jω)‖2 ≤ µ;
⇔C( jω)C∗( jω)≤ µ;

⇔ (N∗( jω)M∗( jω)−1)−1N∗( jω)N( jω)

×(M( jω)N( jω)−1)−1 ≤ µ;
⇔ N∗( jω)(1−µM( jω)M∗( jω))N( jω)

+µ(M∗( jω)N∗( jω)+M( jω)N( jω))≤ µ;

⇔ (a2 +b2)(1−µ(A2 +B2))+2µ(aA−bB)≤ µ.
(12)

In solving the aforementioned optimization problem, the
MATLAB built-in function fmincon was applied. The main
motivation behind choosing fmincon for minimizing (6) is
that it can minimize a non-linear function subject to inequal-
ity constraints. The Interior-Point algorithm is chosen among

the four available algorithms (Interior-Point, Trust-Region-
Reflective, SQP, SQP-legacy, Active-Set) in fmincon, which
gives better results for convergence [26]. In the solution
of the optimization problem, the selection of the parameter
µ is critical. As the value of µ increases, the better is
the closed-loop response, reducing the error between the
reference input and the output. However, for higher values
of µ the controller identification becomes more difficult. For
feasible implementation of the controller, a suitable value of
µ is selected, which can provide good tracking performance
while giving an easily identifiable frequency response for
the controller. At each frequency point of the open-loop
response, the optimization is done to find N( jω). Hence, the
controller frequency response data C( jω) can be calculated
from (9).

B. Identification of the Controller Response

The MATLAB System Identification Toolbox is used to
identify the transfer function for the proposed controllers
for both the X-PTS and Y-PTS. The controller is identified
using a frequency domain Prediction Error Minimization
(PEM) estimation method. The controller transfer function
for the X-PTS is identified as follows:

Cx(s) =
1.734e04s2−6.935e06s+5.999e11

s3 +1.706e04s2 +1.052e08s+3.46e11
.

Similarly, the same procedure is applied to design the
controller for the Y-PTS. The transfer function for the
Y-PTS control is identified as follows:

Cy(s) =
−1.72s4 +3301s3−1.252e08s2 +1.248e11s−2.237e15
s4 +1.684e04s3 +1.402e08s2 +5.947e11s+1.275e15

.

IV. EXPERIMENTAL RESULTS
A. Damping Performance

The proposed data driven controller is implemented on an
AFM and its performance has been evaluated by measuring
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Fig. 5. Reference input (black solid line), open-loop (green dashed-dotted line) and closed-loop (dashed red line) X sensor output at different frequencies
in the implementation of the proposed controller.
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Fig. 6. Open-loop error (red solid line) and closed-loop error (dashed-dotted blue line) between the reference input and X sensor output at different
frequencies in the implementation of the proposed controller.
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Fig. 7. Comparison of X-axis tracking performance between the proposed
controller (green solid line) and the built-in PI controller (red dotted line)
at different frequencies.

the open-loop and closed-loop frequency responses on the
both X and Y-axes. The controller provides significant damp-
ing at the resonant peaks, while reducing the vibration effects
in the PTS along the lateral axes. The open-loop and closed-
loop responses are shown in Fig. 4(a) for the X-PTS and in
Fig. 4(b) for the Y-PTS. The first resonant peak is damped
by 19 dB in the X-PTS by using the proposed controller.
This result can be observed from Fig. 4(a). Similarly in the
Y-PTS, 15 dB damping of the first resonant peak and 12 dB
damping of second resonant peaks are achieved, as can be
seen in Fig. 4(b).

B. Tracking Performance

To illustrate the proposed controller’s performance in
the time domain, a set of triangular signals with different
frequencies (10, 30, 60, 100, 120 and 150 Hz) are generated
using the dSPACE system and applied along the X-direction
of the PTS. The reference input, open-loop and closed-loop
output are shown in each of the figures from Fig. 5(a)-(f).
The result in Fig. 5 shows excellent tracking of the reference
input compared to the open-loop response. Moreover, the
oscillatory motion of the open-loop response is reduced by
a significant amount as shown in Fig. 5(e). Furthermore,
the comparisons between open-loop error and closed-loop
error are shown in Fig. 6(a)-(f). The error signal is found
from difference between the reference input and output of
the position sensor. Fig. 6 shows that, the magnitudes of
the closed-loop errors are small compared to the magni-
tudes of the open-loop errors. The closed-loop tracking of
triangular signal by the proposed controller and the built-
in PI controller at different frequencies (10 Hz, 30 Hz, 60
Hz and 120 Hz) are shown in Fig.7. From Fig.7, it can
be seen that the PI controller response is being deviated
from triangular shape to sinusoidal shape as the frequency
is increased. Therefore, the proposed scheme shows better
tracking performance compared to the existing PI controller
of the AFM.

V. CONCLUSION

In this paper, a data-driven controller is designed and
implemented on an AFM. By the application of small-gain
contraints and input-output error minimization, the proposed
controller is designed to reduce vibration effects in the PTS.
This SISO based data-driven controller provides significant
damping performance for both the X-PTS (19 dB damping
of the first resonant peak) and Y-PTS (15 dB damping of the
first resonant peak and 12 dB damping of the second resonant
peak). The controller shows an excellent closed-loop tracking
of triangular signals upto 150 Hz along the X-direction of
the PTS. In future, this controller will be extented to multi-
input multi-output (MIMO) systems for high speed imaging
performance and reduction of cross-coupling effects.
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