
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 929 (2018) 353–376

www.elsevier.com/locate/nuclphysb

Asymptotic correlation functions and FFLO signature 

for the one-dimensional attractive Hubbard model

Song Cheng a,d,f, Yuzhu Jiang a,b, Yi-Cong Yu a,b, Murray T. Batchelor c,d,e, 
Xi-Wen Guan a,b,d,∗

a State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and 
Mathematics, Chinese Academy of Sciences, Wuhan 430071, China

b Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China
c Centre for Modern Physics, Chongqing University, Chongqing 400044, China

d Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, 
Canberra ACT 0200, Australia

e Mathematical Sciences Institute, Australian National University, Canberra ACT 0200, Australia
f University of Chinese Academy of Sciences, Beijing 100049, China

Received 28 October 2017; received in revised form 17 February 2018; accepted 22 February 2018
Available online 26 February 2018

Editor: Hubert Saleur

Abstract

We study the long-distance asymptotic behavior of various correlation functions for the one-dimensional 
(1D) attractive Hubbard model in a partially polarized phase through the Bethe ansatz and conformal field 
theory approaches. We particularly find the oscillating behavior of these correlation functions with spatial 
power-law decay, of which the pair (spin) correlation function oscillates with a frequency �kF (2�kF ). 
Here �kF = π(n↑ − n↓) is the mismatch in the Fermi surfaces of spin-up and spin-down particles. Conse-
quently, the pair correlation function in momentum space has peaks at the mismatch k = �kF , which has 
been observed in recent numerical work on this model. These singular peaks in momentum space together 
with the spatial oscillation suggest an analog of the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state in the 
1D Hubbard model. The parameter β representing the lattice effect becomes prominent in critical exponents 
which determine the power-law decay of all correlation functions. We point out that the backscattering of 
unpaired fermions and bound pairs within their own Fermi points gives a microscopic origin of the FFLO 
pairing in 1D.
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1. Introduction

With addition of an on-site interaction term to the tight binding Hamiltonian, the Hubbard 
model successfully provides a paradigm for condensed matter physics [1–4]. In contrast to 
its simple form, this model exhibits diverse features of many-body systems, such as a Mott 
phase, high Tc superconductivity, quantum phase transition, Fulde–Ferrell–Larkin–Ovchinnikov 
(FFLO) phase, spin-charge separation etc. Recently this model has received further attention in 
the experimental developments of trapping ultracold atoms on optical lattices, which provides a 
prominent opportunity to verify theoretical predictions of this kind [5–10]. The one-dimensional 
(1D) Hubbard model can be exactly solved through the application of the Bethe ansatz [11,12], 
a thorough study of which may also help to understand key aspects of many-body physics in 
higher dimensions.

The Hubbard model with attractive interaction is considered as a promising candidate to ex-
plain high Tc superconductivity. To this end, understanding the pairing mechanism in 1D is of 
significant importance. According to the Bardeen–Cooper–Schrieffer (BCS) theory, a Cooper 
pair is formed by electrons with opposite spins and momenta and total momentum zero. This 
balance between Fermi energies breaks down in the presence of strong magnetic field, so that 
a novel superconductive state – the FFLO state – appears [13,14]. The FFLO pair carries non-
zero center-of-mass momentum, originating from the strong magnetic field. The superconducting 
order parameter and density of spins in the FFLO state exhibit a periodic oscillation in the spa-
tial coordinate. The experimental observation of the FFLO state in various materials has been 
sought for decades. Within this scenario, more evidence has been found in heavy-fermion sys-
tems [15,16].

The pair mechanism of the 1D attractive Hubbard model has been investigated [17–19]. 
Cooper pairs in 1D exist in the region B < Bc1 below the critical magnetic field Bc1, where 
the average distance between pairs is much larger than the average pair size. This means that 
the single-particle Green’s function decays exponentially and the single-pair correlation func-
tion decays as a power of distance. Once exceeding the critical magnetic field (B > Bc1), the 
field begins to break up the pairs, and both the above correlation functions decay as a power of 
distance.

The FFLO state in the 1D attractive Hubbard model has been extensively studied by various 
methods, such as the numerical approaches of the density matrix renormalization group (DMRG) 
[20–24] and quantum Monte Carlo (QMC) [25,26]. It has been found that the pair correlation 
complies with a power-law decay, i.e., npair ∝ cos (kFFLO |x|) /|x|α , and its corresponding mo-
mentum distribution has peaks in the position of kFFLO = π

(
n↑ − n↓

)
[20]. As far as we know, 

the confirmation of the FFLO state in 1D mainly relies on numerics, although the application 
of conformal field theory (CFT) has provided a definite answer for the FFLO signature of the 
1D attractive Fermi gas [27]. In this paper we focus on asymptotic correlation functions of the 
1D attractive Hubbard model in the partially polarized phase. In particular, we investigate the 
long-distance asymptotics of the single-particle Green’s function, the charge density correlation 
function, the spin correlation function and the pair correlation function. We present a theoretical 
confirmation of the existence of the FFLO state in the 1D attractive Hubbard model. In contrast 
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to the continuum case of the 1D attractive SU(2) Fermi gas, here the lattice effects characterized 
by a parameter β become prominent in the critical exponents of all correlation functions.

The paper is organized as follows. In Sec. 2, we make a brief introduction to the exact so-
lution of the 1D attractive Hubbard model and derive the finite-size correction to the ground 
state. In Sec. 3, we discuss three types of elementary excitations and the dressed charge integral 
equations. The dressed charge matrix is derived in the low density limit, which affords access 
to the conformal dimensions. The long-distance asymptotics of the various correlation functions 
are studied in Sec. 4, along with the discussion of the FFLO signature in the partially polarized 
phase. Sec. 5 is reserved for the conclusion.

2. Exact solution of the Hubbard model and ground state

The 1D fermionic Hubbard model is described by the Hamiltonian

H = −
L∑

j=1

∑
a=↑,↓

(
c

†
j,acj+1,a + c

†
j+1,acj,a

)
+ u

L∑
j=1

(
1 − 2nj,↑

) (
1 − 2nj,↓

)

− B

L∑
j=1

(n↑,j − n↓,j ) − μ

L∑
j=1

(n↑,j + n↓,j ), (1)

where ĉ†
j,a and ĉj,a , with n̂j,a = ĉ

†
j,a ĉj,a , are the creation and annihilation operators of fermions 

with spin a (a =↑ or a =↓) at site j on a 1D lattice of length L. The chemical potential and 
magnetic field are denoted by μ and B , respectively. Meanwhile u represents the on-site inter-
action between particles (u > 0 for repulsion and u < 0 for attraction). The Hamiltonian (1) is 
exactly solvable with periodic or open boundary conditions [4,11,12,28–32].

By means of the (nested) Bethe ansatz, the diagonalization of Hamiltonian (1) leads to a set 
of nonlinear algebraic equations, known as the Lieb–Wu equations and written as [11,12]

exp(ikjL) =
M∏

α=1

sinkj − �α + iu

sinkj − �α − iu
, j = 1,2, . . . ,N, (2)

N∏
j=1

sin kj − �β + iu

sin kj − �β − iu
= −

M∏
α=1

�α − �β + 2iu

�α − �β − 2iu
, β = 1,2, . . . ,M. (3)

Here � is the spin rapidity and k is the quasimomenta of fermions. N and M are the total number 
of fermions and the number of fermions with down spins. The energy E and momentum P of 
this model are

E = −2
N∑

j=1

coskj + u(L − 2N) − 2Bm − μN, (4)

P =
N∑

j=1

kj mod 2π. (5)

The magnetization per site m = N−2M
2L

.
The distributions of the quasimomenta {ki} with i = 1, 2, . . . , N and spin rapidities 

{
�β

}
with 

β = 1, 2, . . . , M in the thermodynamic limit comply with the string hypothesis. Accordingly, all 
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roots of the Lieb–Wu equations are divided into three categories. These are single real k, k–�

strings and �–� strings [33–35]. Namely single real k’s, the α-th k–� string of length m, with

k1
α = arcsin(�′

α
m + im |u|),

k2
α = arcsin(�′

α
m + i (m − 2) |u|),

k3
α = π − k2

α,

...

k2m−2
α = arcsin(�′

α
m − i (m − 2) |u|),

k2m
α = arcsin(�′

α
m − im |u|), (6)

for which there are 2m k’s accompanied by m spin-rapidities in � space, with

�′
α

m,j = �′
α

m + i (m + 1 − 2j) |u|, (7)

where j = 1, 2, . . . , m and �′
α

m is the real center of the k–� string. There is also the β-th �–�

string of length m

�
m,j
β = �m

β + i (m + 1 − 2j) |u|, (8)

where j = 1, 2, . . . , m, and �m
β is the real center of the � string. The � strings represent the spin 

wave bound states in the spin sector.
The situation for the ground state is much simplified, where only single real k’s and k–�

strings of length one (m = 1) are permitted. The �–� strings are suppressed due to the fer-
romagnetic ordering, see analysis in detail in [35]. This means that the quasimomenta of 
fermions in bound pairs and the excess unpaired fermions can be respectively written as 
kb
η,± = arcsin(kb

γ ± i|u|) and ku
β , with η = 1, 2, . . . , M . For simplicity, we have denoted k as 

ku
β and � as kb

γ . Substituting the above simplified string hypothesis into Eqs. (2) and (3) and then 
taking logarithms yields the discrete Bethe ansatz equations in the form

2π

L
Iu
j = ku

j − 1

L

Nb∑
α=1

θ

(
sin ku

j − kb
α

|u|

)
, (9)

2π

L
Ib
α = 2 Re

[
arcsin(kb

α + i|u|)
]
− 1

L

Nu∑
j=1

θ

(
kb
α − sinku

j

|u|

)
− 1

L

Nb∑
β=1

θ

(
kb
α − kb

β

2|u|

)
, (10)

where Nu (Nb) is the number of unpaired fermions (bound pairs) satisfying Nu + 2Nb = N . 
The quantum numbers Iu

j and I b
α take the values

Iu
j ∈ Z+ Nb

2
, I b

α ∈ Z+ Nu + Nb + 1

2
. (11)

The ground state energy and momentum are explicitly expressed as

E =
Nu∑
j=1

(
−2 cosku

j − μ − 2u − B
)

+
Nb∑
γ=1

[
−2μ − 4u − 4Re

√
1 −

(
kb
γ + i|u|

)2
]

, (12)

P =
Nu∑
j=1

ku
j +

Nb∑
η

(
kb
η,+ + kb

η,−
)

. (13)
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We define counting functions, yu
L(ku

j ) = 2πIu
j /L and yb

L(kb
β) = 2πIb

β /L, which are mono-
tonic increasing functions and satisfy the equations

ρu
L(ku) = 1

2π

dyu
L(ku)

dku

= 1

2π
− 1

L

Nb∑
j=1

a1

(
sinku − kb

j

)
cosku, (14)

ρb
L(kb) = 1

2π

dyb
L(kb)

dkb

= 1

2π

π∫
−π

dk a1(k
b − sin k) − 1

L

Nu∑
j=1

a1(k
b − sin ku

j ) − 1

L

Nb∑
j=1

a2(k
b − kb

j ). (15)

Here ργ

L(kγ ) (γ = u, b) is the root density of the corresponding quasimomentum and an(x) =
1
π

n|u|
(nu)2+x2 .
To obtain finite-size corrections in terms of the above root densities when L � 1, we utilize 

the Euler–MacLaurin formula to obtain the integral equations (up to high orders)

ρu
L(ku) = 1

2π
− cosku

Qb+∫
Qb−

dkb a1(sin ku − kb)ρb
L(kb)

− 1

24L2 cosku a′
1(sin ku − kb)

ρb
L(kb)

∣∣∣∣∣
kb=Qb+

kb=Qb−

(16)

ρb
L(kb) = 1

2π

π∫
−π

dk a1(k
b − sin k) −

Qu+∫
Qu−

dku a1(k
b − sinku)ρu

L(ku)

−
Qb+∫

Qb−

dk a2(k
b − k)ρb

L(k) (17)

− 1

24L2

⎡
⎣ cosku a′

1(k
b − sin(ku))

ρu
L(ku)

∣∣∣∣∣
ku=Qu+

ku=Qu−

+ a′
2(k

b − k)

ρb
L(k)

∣∣∣∣∣
k=Qb+

k=Qb−

⎤
⎦ ,

where a′
n(x) is the derivative of an(x) and Qγ

± (γ = u, b) denote the Fermi points.
It is necessary to introduce the thermodynamic Bethe ansatz (TBA) equations for the deriva-

tion of finite-size corrections to the ground state and low-lying excitations. The TBA equations 
describe the full thermodynamics of the model in the whole temperature regime [33–35]. Build-
ing on these equations, the equation of states can be derived in terms of densities of single 
fermions and bound states [35]. In the ground state, the phase diagram consists of five states 
of the bound pairs and excess fermions in the B–μ plane, see Fig. 1. The T = 0 phase diagram is 
presented in the left panel of Fig. 1, whereas the right panel presents the low temperature phase 
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Fig. 1. The phase diagram of the 1D attractive Hubbard model. The left panel is for T = 0, where μc = 2|u| −
√

u2 + 1, 
Bc1 = 2|u| − 2 + 2 

∫∞
−∞ dw

J1(w) exp(−|u|w)
w cosh(uw)

, and Bc2 = 2 + 2|u|, see analytical phase boundaries in [35]. The right 
panel is a contour plot of the compressibility Wilson ratio Rκ

W
with interaction u = −1 and temperature T = 10−3. The 

values of the Wilson ratio have a sudden enhancements in the vicinities of the phase boundaries at low temperatures. Both 
diagrams coincide and present five quantum phases. These are I: vacuum; II: fully polarized phase, less than half-filling; 
III: half-filling phase and fully polarized; IV: partially polarized phase, less than half-filling; V: fully paired phase and 
less than half-filling.

diagram obtained via the compressibility Wilson ratio, which is defined by Rκ
W = π2k2

B

3
κ

Cv/T
[35]

in terms of the Boltzmann constant kB , the compressibility κ and the specific heat Cv . This di-
mensionless ratio measures the competition between quantum and thermal fluctuations, which 
exhibits an enhancement near the quantum critical points and thus serves as a powerful tool in 
determining the low temperature phase diagram. Hereafter we only concentrate on the partially 
polarized phase IV, which, at zero temperature, presents a novel FFLO-like state on a 1D lat-
tice. At low temperature, the low energy physics of this phase reveals a subtle two-component 
Tomonaga–Luttinger liquid (TLL), composed of bound pairs and of unpaired fermions.

The TBA equations for the ground state of the 1D attractive Hubbard model are written as

εu
(
ku
)= −2 cosku − μ − 2u − B −

Qb+∫
Qb−

dkb a1(sin ku − kb)εb(kb) (18)

εb
(
kb
)

= −2μ − 2

π∫
−π

dku cos2 ku a1(sin ku − kb) −
Qb+∫

Qb−

d�a2(k
b − �)εb(�)

−
Qu+∫

Qu−

dku cosku a1(sin ku − kb)εu(ku). (19)

These are also called the dressed energy equations εb,u(kb,u) describing the excitations of bound 
pairs and unpaired fermions for pure charge degrees of freedom. In contrast to the low-lying exci-
tations in the repulsive Hubbard model [4], the excess fermions cause a ferromagnetic fluctuation 
which was fully suppressed in zero temperature limit, see analysis in [35]. Therefore the only ex-
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istence of the Fermi points for the bound pairs and unpaired fermions results in two branches of 
gapless excitations in low energy sector. Thus the calculation of finite-size correction is naturally 
accessible by virtue of root density formalism. For the pure paired phase of this model, a similar 
study was carried out in [18].

The conformal invariance of a 1D many-body system at T = 0 provides a universality class of 
criticality in terms of the central charge C of the underlying Virasoro algebra. Indeed, the dimen-
sionless central charge classifies the finite-size scaling form of energies in low-lying excitations. 
In particular, the C = 1 universality class gives rise to a systematic calculation of the critical 
exponents which govern the power-law decay of correlation functions in long-distance [39–41]. 
With the help of the root densities presented in Eqs. (16) and (17) and the TBA equations (18)
and (19), we derive the finite-size correction to the ground state energy in the form

�E

L
= −

∑
γ=u,b

Cπ

6L2 vγ , (20)

where C = 1 is the central charge for both branches of excitations. In the above equations vu,b

are the sound velocities of the unpaired fermions and bound pairs. The sound velocities are 

defined by vγ = ± dεγ (kγ )
dpγ (kγ )

∣∣∣
kγ =±Qγ

= ± dεγ /dkγ

2πργ (kγ )

∣∣∣
kγ =±Qγ

for γ = u, b. Here we have denoted 

±Qγ as the Fermi points of corresponding single fermions and bound pairs and the momenta 
pγ (kγ ) = limL→∞ y

γ

L(kγ ).

3. Low-lying excitations and dressed charge matrix

In order to obtain the conformal dimensions and the critical exponents, the finite-size correc-
tions to the low-lying excitations need to be calculated. The 1D attractive Hubbard model has 
two branches of gapless excitations in terms of the unpaired fermions and bound pairs at zero 
temperature. The method used in this work follows the scheme established in Refs. [4,36–38]. 
In general, the low-lying excitations can be realized by combination of three types of elementary 
excitations, all of which involve the distortion of the Fermi points due to the transformation or 
variation of the Fermi points. Such changes can be characterized by the changes in the quantum 
numbers given in Eq. (11).

Excitations of Type I move particles inside the Fermi sea to location j outside the Fermi 
sea, known as a particle–hole excitation, see Fig. 2 (b). The lowest particle–hole excitation is 
described by the change of quantum numbers Iγ

j close to I γ
± (γ = u, b), where I γ

+ = I
γ
max + 1

2

and I γ
− = I

γ

min − 1
2 . Here the superscript u stands for the unpaired fermions and b for the bound 

pairs, respectively. The changes of the total momentum and energy are given by

�P = 2π

L

∑
γ=u,b

(
N

γ
+ − N

γ
−
)

mod 2π, (21)

�E =
∑

γ=u,b

2π

L
vγ
(
N

γ
+ + N

γ
−
)
, (22)

where Nγ
+ > 0 (Nγ

− > 0) stands for the change of the quantum number for corresponding particle 
near the right (left) Fermi point.

Type II excitations originate from the change of particle numbers of unpaired fermions and 
bound pairs in the Fermi seas, see Fig. 2 (c). It is easy to see that the particle number is given by 
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Fig. 2. A sketch of distributions for the quantum number Iγ
j

(γ = u, b) in the ground state and excited states. There are 
three types of elementary excitations: (a) the symmetric distribution for the ground state; (b) a particle–hole excitation 
near the right Fermi point, the Type I excitation; (c) one more particle is added to the right Fermi point, the Type II 
excitation; (d) two particles near the left Fermi point are moved to the right Fermi point, the Type III excitation. One may 
find that all of the possible vacancies for quantum numbers in Type II and Type III excitations are occupied by particles, 
which are different from the Type I excitation.

Nγ = I
γ
+ − I

γ
− , and a Type II excitation is characterized by quantum number �Nγ = N

γ
e − N

γ
g

where subscripts e and g respectively represent the excited state and ground state.
Type III excitations are caused by the backscattering process, where particles from one Fermi 

point move to the other one, see Fig. 2 (d). They are characterized by quantum number �Dγ =
I

γ
++I

γ
−

2 , (γ = u, b). In light of the ‘continuous’ Fermi sea in the Type II and Type III excitations, 
quantum number �Nα and �Dα characterize the changes of the sizes of Fermi seas and the 
displacements of the center of Fermi seas, respectively.

The calculation of finite-size corrections for Type I excitations is straightforward. Calcula-
tions for the Type II and Type III excitations can also be carried out in a systematic way. These 
calculations are given in the Appendix. Here we summarize the results for the three types of 
elementary excitations. For convenience in the following calculation of the conformal dimen-
sions, the excitations can be cast into unified finite-size scaling forms of the energy and total 
momentum, which read

�E = 2π

L

[
1

4

(
� 
N

)t ·
(
Ẑ−1

)t · Ŝv · Ẑ−1 · � 
N +
(
� 
D

)t · Ẑ · Ŝv · Ẑt · � 
D

+ vα
(
Nα+ + Nα−

)]
, (23)

�P = 2π

L

∑
α=u,b

�Dα · [Nα+ − Nα− + �Dα
(
Nα + �Nα

)]
. (24)

For both results there are additional higher order corrections. In these equations we have intro-
duced the notation

� 
N =
[

�Nu

�Nb

]
, � 
D =

[
�Du

�Db

]
, (25)

Ŝv =
[

vu 0
0 vb

]
, Ẑ =

[
Zuu(k

u = Qu+) Zub(k
b = Qb+)

Zbu(k
u = Qu+) Zbb(k

b = Qb+)

]∣∣∣∣
G

. (26)
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The superscript t in the above equations stands for matrix transpose, and the quantum numbers 
�Dβ (β = u, b) obey the relations

�Du ∈ �Nu + �Nb

2
+Z, �Db ∈ �Nu

2
+Z, (27)

which stems from the Type III excitations with the quantum numbers Iβ
± (β = u, b) through 

the relation Eq. (11). Although the parities of particle numbers Nu and Nb do not affect the 
physical properties of the model in the thermodynamic limit, they may affect the degeneracy of 
the ground state and also affect the parities of �Du,b. For example, when both Nu

g and Nb
g are 

even numbers, according to the first equation of (11), the quantum numbers Iu of the ground state 
have two possible choices, {−Nu

g /2, −Nu
g /2 + 1, · · · , Nu

g /2 − 1} and {−Nu
g /2 + 1, −Nu

g /2 +
2, · · · , Nu

g /2}. In this sense, the ground state is two-folder degeneracy. On the other hand, when 
Nb

g is odd and Nu
g is even, the ground state is nondegenerate. In the following discussion on the 

correlation functions, without losing generality, we will choose Nb
g to be odd and Nu

g to be even.

To obtain the relation (27), one may use the definitions of �Dβ and Iβ
±. It is easily seen that 

�Du = Iu+−Iu−
2 + Iu−, where Iu± are the quantum numbers of excited states and Iu− = Iu

1 − 1
2 is the 

left most quantum number, its parity depends on Nb through the first equation of (11). Based on 
the supposed parities of Nb

g and Nu
g , thus we have

�Du ∈ �Nu + Nu
g

2
+ �Nb + Nb

g − 1

2
+Z

∈ �Nu + �Nb

2
+Z.

Similarly, one can derive the result for �Db.
The dressed charges at the Fermi points Qγ

+ (γ = u, b) are obtained from the elements of the 
dressed charge matrix, which satisfy the integral equations

Zuu(k
u) = 1 −

Qb+∫
Qb−

dkb a1(k
b − sin ku)Zub(k

b), (28)

Zub(k
b) = −

Qu+∫
Qu−

dku cosku a1(sin ku − kb)Zuu(k
u)

−
Qb+∫

Qb−

dk̃b a2(k
b − k̃b)Zub(k̃

b), (29)

Zbu(k
u) = −

Qb+∫
Qb

dkb a1(k
b − sin ku)Zbb(k

b), (30)
−
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Zbb(k
b) = 1 −

Qu+∫
Qu−

dku cosku a1(sin ku − kb)Zbu(k
u)

−
Qb+∫

Qb−

dk̃b a2(k
b − k̃b)Zbb(k̃

b), (31)

which were also given from different aspect [44]. We note that the form of the dressed charges is 
quite different from those for the 1D repulsive Hubbard model [4].

In the ground state, phase V is gapped in the spin sector due to the existence of the bound 
pairs. However, the system becomes gapless if the magnetic field is greater than the lower crit-
ical field, at which bound pairs break. Consequently, phase IV consists of both bound pairs 
and unpaired fermions. The conformal invariant symmetry enables one to obtain the finite-size 
scaling forms Eqs. (20) and (23). In what follows we will calculate the conformal dimensions 
which determine the critical exponents of two-point correlation functions between primary fields 
〈Ô†(x, t)Ô(x′, t ′)〉.

We focus on the asymptotics of correlation functions in phase V. For this phase, one expects 
a power-law decay of the correlation function at T = 0. Meanwhile, at T > 0, the correlation 
functions should decay exponentially. The conformal scaling dimensions can be read off as

2�u± =
(

Ẑuu · �Du + Ẑbu · �Db ± Ẑbb · �Nu − Ẑub · �Nb

2 det{Ẑ}

)2

+ 2Nu±, (32)

2�b± =
(

Ẑub · �Du + Ẑbb · �Db ± Ẑuu · �Nb − Ẑbu · �Nu

2 det{Ẑ}

)2

+ 2Nb±, (33)

where Nα± (α = u, b) characterizes the descendent field from the primary field. It follows that the 
long-distance asymptotics of the two point correlation functions are given by

〈Ô(x, t) Ô(0,0)〉 = exp
[−i 2π

L

(
Nu · �Du + Nb · �Db

)
x
]

(x − ivut)2�u+ (x + ivut)2�u− (x − ivbt)2�b+ (x + ivbt)2�b−
. (34)

The dressed charge equations can be simplified in the low density regime, i.e., with small 
integration boundaries Qγ 
 1 (γ = u, b). Here we replace Qγ

± by ±Qγ in the dressed charge 
matrix, whose elements are calculated for the ground state. Obviously, the dressed charge equa-
tions can be separated into two sets of coupled integral equations, composed of Eqs. (28) and 
(29), and of Eqs. (30) and (31), respectively. By analyzing the order of Qγ in the dressed equa-
tions Eqs. (28)–(31) we can further obtain asymptotic forms of these equations.

To begin, we substitute Eq. (29) into Eq. (28) to give

Zuu(k
u) ≈ 1. (35)

We further substitute this equation into Eq. (29) to readily obtain

Zub(k
b) ≈ −

Qu∫
−Qu

dku cosku a1(sin ku − kb) −
Qb∫

b

dk̃b a2(k
b − k̃b)Zub(k̃

b)
−Q
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≈ − 1

π
arctan

(
sinku − kb

|u|
)∣∣∣∣

ku=Qu

ku=−Qu

−
Qb∫

−Qb

dk̃b a2(k
b − k̃b)Zub(k̃

b)

≈ −2Qu

π |u| . (36)

Similarly, we have

Zbu(k
u) ≈ −

Qb∫
−Qb

dkb a1(k
b − sin ku)

≈ − 1

π
arctan

(
kb − sin ku

|u|
)∣∣∣∣

kb=Qb

kb=−Qb

≈ −2Qb

π |u| , (37)

Zbb(k
b) ≈1 −

Qb∫
−Qb

dk̃b a2(k
b − k̃b)

≈ 1 − 1

π
arctan

(
kb − k̃b

2|u|

)∣∣∣∣∣
k̃b=Qb

k̃b=−Qb

≈ 1 − Qb

π |u| . (38)

Thus we obtain the dressed charge matrix to leading order, namely

Ẑ ≈
[

1 − 2Qu

π |u|
− 2Qb

π |u| 1 − Qb

π |u|

]
. (39)

By virtue of the TBA equations (18) and (19) with the condition εγ (±Qγ ) = 0 (γ = u, b), 
and using standard thermodynamic relations, one can express the cut-off quasi-momenta in terms 
of particle densities [35]

Qu ≈ πnu + 2π

|u| nu nb, (40)

Qb ≈ π

β
nb + π

β2|u|n
b(nb + 2nu), (41)

where the density nγ = Nγ /L (γ = u, b) must satisfy both conditions nγ /(β|u|) 
 1 and 
nγ /|u| 
 1. In the above equations, the lattice parameter is defined by

β =
π∫

−π

dk a1 (sin k) . (42)

Furthermore, in the strong coupling regime, we have β ≈ 2/|u|. Without losing generality, the 
approximation used here requires that nγ (γ = u, b) is less than the order of 1/|u|. Meanwhile 
the condition nγ /(β|u|) 
 1 is required. For the weak coupling regime, numerical calculation 
enables the confirmation of the asymptotic behavior of the correlation functions. In Fig. 3, we 
show the numerical solution of the dressed charge equations (28)–(31).

We then substitute Eqs. (40) and (41) into Eq. (39). Using the leading order of nγ (γ = u, b) 
gives the dressed charge in the form
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Fig. 3. Numerical results for the dressed charges Zuu(Qu), Zub(Qb), Zbu(Qu) and Zbb(Qb) vs polarization for differ-
ent values of interaction strength. Here we have denoted γ = n/|u|. The numerical solution is obtained by solving the 
dressed charge equations (28)–(31).

Ẑ ≈
[

1 − 2nu

|u|
− 2nb

|u|β 1 − nb

β|u|

]
. (43)

With the help of this dressed charge matrix, the conformal dimensions given in Eqs. (32) and 
(33) in the low density regime can be approximated as

2�u± ≈
(

�Du ± 1

2
�Nu

)2

+ 2

(
�Du ± 1

2
�Nu

)(
− 2nb

|u|β �Db ± nu

|u|�Nb

)
+ 2Nu±

(44)

2�b± ≈
(

�Db ± 1

2
�Nb

)2

+ 2

(
�Db ± 1

2
�Nb

){
−2nu

|u| �Du + nb

|u|β
[
−�Db

±
(

�Nu + 1

2
�Nb

)]}
+ 2Nb±. (45)

These results provide a direct calculation of the asymptotics of the correlation functions.

4. Asymptotic behavior of correlation functions at zero temperature

We study four types of correlation functions. These are the single-particle Green’s function 
G↑(x, t) = 〈ĉ†

x,↑(t)ĉ0,↑(0)〉, the charge density correlation function Gnn(x, t) = 〈n̂†
x(t)n̂

†
0(0)〉, 

the spin correlation function Gz(x, t) = 〈ŝz
x(t)ŝ

z
0(0)〉, and the pair correlation function Gp(x, t) =

〈ĉ†
x,↑(t)c

†
x,↓(t)ĉ0,↑(0)ĉ0,↓(0)〉. Here n(x, t) = ĉ

†
x,↑(t)ĉx,↑(t) + ĉ

†
x,↓(t)ĉx,↓(t) and Sz(x, t) =

1
2

[
ĉ

†
x,↑(t)ĉx,↑(t) − ĉ

†
x,↓(t)ĉx,↓(t)

]
. Each of these correlation functions is accessible through 

choosing suitable quantum numbers �Nγ (γ = u, b) with respect to the low-lying excitations.
The single-particle Green’s function decays exponentially if the magnetic field B < Bc1, 

for which the external field does not provide enough energy to break up bound pairs. How-
ever, if Bc1 < B < Bc2 then the excess unpaired fermions appear in this gapless phase. In 
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this regime every correlation function satisfies power-law decay [39–43]. The single-particle 
Green’s function is determined by the quantum numbers (�Nu, �Nb) = (1, 0), which results 
in (�Du, �Db) ∈ (Z + 1/2, Z + 1/2). Using Eq. (34) the leading terms of the single-particle 
Green’s function are

G↑(x, t) ≈ A↑,1
cos

(
π(n↑ − 2n↓)

)
|x + ivut |2θ1 |x + ivbt |2θ2

+ A↑,2
cos

(
πn↑

)
|x + ivut |2θ3 |x + ivbt |2θ4

, (46)

where the critical exponents are given by

θ1 ≈ 1 + 2nb

|u|β , θ2 ≈ 1

2
+ 2nu

|u| − nb

|u|β , θ3 ≈ 1 − 2nb

|u|β , θ4 ≈ 1

2
− nu

|u| − nb

|u|β . (47)

The leading order term is associated with the quantum numbers (�Du, �Db) = ±(1/2, −1/2), 
with the next term coming from (�Du, �Db) = ±(1/2, 1/2). The coefficients A↑,1 and A↑,2
cannot be derived from the CFT approach, yet this does not impede our understanding of the 
long-distance asymptotic behavior of the correlation functions. Here we have introduced particle 
densities n↑ = (Nu + Nb)/L and n↓ = Nb/L for the particles with up and down spins.

We now turn to the charge density correlation function and the spin correlation func-
tion, both of which are characterized by quantum numbers (�Nu, �Nb) = (0, 0), implying 
(�Du, �Db) ∈ (Z, Z). The leading terms are expressed as

Gnn ≈ n2 + Ann,1
cos

(
2π(n↑ − n↓)x

)
|x + ivut |2θ1

+ Ann,2
cos

(
2πn↓x

)
|x + ivbt |2θ2

+ Ann,3
cos

(
2π(n↑ − 2n↓)x

)
|x + ivut |2θ3 |x + ivbt |2θ4

, (48)

Gz ≈ m2
z + Az,1

cos
(
2π(n↑ − n↓)x

)
|x + ivut |2θ1

+ Az,2
cos

(
2πn↓x

)
|x + ivbt |2θ2

+ Az,3
cos

(
2π(n↑ − 2n↓)x

)
|x + ivut |2θ3 |x + ivbt |2θ4

, (49)

where the critical exponents are given by

θ1 ≈ 2, θ2 ≈ 2 − 4nb

|u|β , θ3 ≈ 2 + 8nb

|u|β , θ4 ≈ 2 + 8nu

|u| − 4nb

|u|β . (50)

Here the constant terms n2 and m2
z originate from quantum numbers (�Du, �Db) = (0, 0), 

while the second, third, and fourth terms come from (�Du, �Db) = ±(1, 0), ±(0, 1) and 
±(−1, 1), respectively. The amplitudes Ann,i and Az,i (i = 1, 2, 3) like A↑,1 and A↑,2 cannot 
be derived from the CFT approach too. For the first two oscillating terms in the above corre-
lators, the exponents are very close in low density limit. We thus have to consider the roles 
of amplitudes. By comparing our analytical results with the numerical results given in [20,23], 
we confirm the existence of the leading oscillation term with the frequency 2π(n↑ − n↓). They 
showed that the dominant contribution in the spin-spin correlation should come from the term 
with spatial oscillation frequency 2π(n↑ − n↓), see Eq. (49).

Last but not least we discuss the pair correlation function Gp(x, t), which is described by the 
quantum numbers (�Nu, �Nb) = (0, 1), allowing (�Du, �Db) ∈ (Z + 1/2, Z). We find that 
the leading terms for the pair correlation function are
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Gp(x, t) ≈ Ap,1
cos

(
π(n↑ − n↓)x

)
|x + ivut |2θ1 |x + ivbt |2θ2

+ Ap,2
cos

(
π(n↑ − 3n↓)x

)
|x + ivut |2θ3 |x + ivbt |2θ4

, (51)

with critical exponents

θ1 ≈ 1

2
, θ2 ≈ 1

2
+ nb

|u|β , θ3 ≈ 1

2
− 4nb

|u|β , θ4 ≈ 5

2
− 4nu

|u| − 3nb

|u|β . (52)

Here the first and the second terms are associated with (�Du, �Db) = ±( 1
2 , 0) and ±( 1

2 , 1), 
respectively.

The asymptotic behavior of the correlation functions reveals an important many-body cor-
relation nature and lattice effect, which is apparent in the lattice parameter-dependent critical 
exponents. Moreover, the leading order terms of the pair correlation function and spin corre-
lation function reveal spatial oscillating behavior in their long-distance asymptotics. The pair 
correlation function oscillates with a wave number �k = π(n↑ − n↓). So does the spin corre-
lation function with 2�k. Our analytic results provide a confirmation of the previous numerical 
observations of this oscillatory nature [20–24]. The oscillation stems from the backscattering 
processes in the two Fermi seas, where the imbalance between the densities of spin-up and spin-
down particles results in the mismatch of their Fermi surfaces. It is interesting to see that the 
spatial oscillation in the 1D attractive Hubbard model is the feature of the Larkin–Ovchinnikov 
phase predicted in [14]. We find that the oscillation terms in the spin and pair correlation func-
tions arise from the Type III elementary excitations (backscattering process). Our theoretical 
result for the wave number shows good agreement with the numerics [20,23], where the numer-
ical wave number is almost �k = π(n↑ − n↓) for finite x, t . Due to this reason, Az,1 might be 
much larger than Az,2 and also Az,3 for finite x, t . The amplitude Ann,i and Az,i (i = 1, 2, 3) 
cannot be derived through the conformal field theory approach. For the asymptotic behavior of 
correlations, the amplitudes Ann,i and other amplitudes are not important in the limit x, t → ∞. 
Finally, we point out that the parameter β defined in Eq. (42) represents the lattice effect, and 
thus distinguishes the Hubbard model from its continuum limit – the 1D attractive SU(2) Fermi 
gas [35].

Applying Fourier transformation to the above correlation functions allows the derivation of 
their counterparts in momentum space [38]. For the equal-time correlation function,

g(x, t = 0+) = exp(ik0x)

(x − i 0)2�+ (x + i 0)2�− , (53)

where �± = �u± + �b±. The Fourier transformation is thus

g̃(k ≈ k0) ∼ [
sign(k − k0)

]2s |k − k0|ν . (54)

Here the conformal spin and the exponent are given by s = �+ −�− and ν = 2(�+ +�−) − 1. 
Consequently, the Fourier transforms of the equal-time correlation functions near the singulari-
ties k ≈ k0 are expressed as

G̃↑(k) ∼ [
sign

(
k − π(n↑ − 2n↓)

)]2s↑ |k − π(n↑ − 2n↓)|ν↑ , (55)

G̃nn(k) ∼ [
sign

(
k − 2π(n↑ − n↓)

)]2snn |k − 2π(n↑ − n↓)|νnn, (56)

G̃z(k) ∼ [
sign

(
k − 2π(n↑ − n↓)

)]2sz |k − 2π(n↑ − n↓)|νz , (57)

G̃p(k) ∼ [
sign

(
k − π(n↑ − n↓)

)]2sp |k − π(n↑ − n↓)|νp , (58)

where
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Fig. 4. The pair correlation function in momentum space G̃p(k) vs k for different polarization P = 0, 0.5, 0.75, and 0.9
with interaction u = −3 and particle density n = 0.02. The inset shows the singular behavior of G̃p(k) at k = 0.01π

and P = 0.5. This plot uses natural units for the quasimomentum k. See the discussion on the amplitude of the pair 
correlation in text.

2s↑ ≈ 1, ν↑ ≈ 1

2
+ 2nu

|u| + nb

|u|β , (59)

2sz = 2snn ≈ 0, νz = νnn ≈ 1, (60)

2sp ≈ 0, νp ≈ nb

|u|β . (61)

We plot the pair correlation function in momentum space in Fig. 4. This plot just demonstrates 
the peak positions and shows finite divergence of the peaks. The amplitude of the pair correlation 
is not valid in this approach. Therefore any y-axial scale is meaningless.

Notably, the correlation functions in momentum space shown in Eqs. (55) to (58) are valid 
only in the vicinity of the wave numbers k0, i.e., k ≈ k0. Fig. 4 shows that G̃p(k) has a singu-
larity in non-zero momentum in a partially polarized phase. This qualitatively agrees with the 
numerical result given in [20]. One should notice that this plot is correct only if k ≈ π(n↑ − n↓), 
where the extrapolation is used for the purpose of better visualization.

5. Conclusion

In this paper we have investigated four types of correlation functions for the 1D attractive 
Hubbard model at zero temperature. The finite-size corrections to the ground state and the low-
lying excitations are derived explicitly. Based on these corrections to the momentum and energy, 
we have applied CFT in the study of long-distance asymptotic behavior of the correlation func-
tions. The critical exponents have been obtained explicitly in this way. In contrast to the Fermi 
gas, these asymptotics of correlation functions essentially depend on the parameter β which rep-
resents the lattice effect. We have found that the spin and pair correlation functions have spatial 
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oscillations with frequencies 2π(n↑ −n↓) and π(n↑ −n↓), respectively. From the perspective of 
CFT, this type of oscillation is induced by the backscattering process of unpaired fermions and 
bound pairs among the Fermi points. This gives a microscopic origin of the FFLO pair correlation 
in the 1D system. Using the Fourier transform, we have also derived the correlation functions in 
momentum space. The pair correlation is singular at the mismatch point k = π(n↑ − n↓), which 
confirms the frequency found by numerical methods [20]. Meanwhile the correlation functions 
at zero temperature display power-law decay in the partially polarized phase IV. This suggests 
an analog of long-range order in a 1D many-body system and thus demonstrates the existence 
of a superconducting state. We further point out that the dressed charge matrix in this CFT ap-
proach can be numerically resolved for arbitrary interaction strength u < 0 (see Fig. 3). It follows 
that one can calculate the conformal dimensions and critical exponents for arbitrary interaction 
strength. Our results provide benchmark physics of 1D strongly correlated fermions on a lattice 
which may be testable in current ultracold atomic experiments [5–10].
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Appendix A. Finite-size corrections for the three types of excitations

In this Appendix we calculate the leading finite-size corrections for Type I, Type II and 
Type III excitations.

The situation for Type I elementary excitations is simple, which are a special case of particle–
hole excitations. The change in energy of a particle–hole excitation is expressed by

�E =
∑

α=u,b

∑
β=+,−

[
εα(kα

p,β) − εα(kα
h,β)

]
, (A.1)

where we use subscripts p and h to label a particle and a hole. Due to the Type I excitation 
taking place close to the Fermi points, the difference in the last equation can be approximated as 
the leading term of a Taylor expansion around the Fermi points. Hence, the change in energy of 
Type I excitations is written as

�E ≈
∑

α=u,b

∑
β=+,−

[
∂εα

∂kα

∣∣∣∣
kα=Qα

β

(
kα
p,β − kα

h,β

)]
. (A.2)

Then noticing that the counting function connects the momentum kα and quantum number Iα , 
we similarly introduce a Taylor expansion in the last equation, with result

�E ≈
∑

α=u,b

∑
β=+,−

[
∂εα

∂kα

∣∣∣∣
kα=Qα

β

dkα

dyα

∣∣∣∣
kα=Qα

β

2π

L
Nα

β sign(β)

]

=
∑

α=u,b

2π

L
vα
(
Nα+ + Nα−

)
, (A.3)
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where yα = limL→∞ yα
L(kα) = pα(kα) is the counting function in the thermodynamic limit, and 

we have used the definition

vγ = ± dεγ (kγ )/dkγ

dpγ (kγ )/dkγ

∣∣∣∣
kγ =±Qγ

for the sound velocity.
In light of the zero momentum in the ground state, we can write down the change in total 

momentum,

�P =
∑

α=u,b

2π

L

(
Nα+ − Nα−

)
, (A.4)

where Nα+ = Iα+,e − Iα+,g and Nα− = Iα−,g − Iα−,e arise from the change in distribution of quantum 
numbers close to the right and left Fermi points, respectively. The subscripts e and g represent 
the excited state and ground state.

On the other hand, the derivations for the changes in energy and total momentum of Type II 
and III elementary excitations are rather complicated. We give an outline of these calculations 
here.

Prior to discussion of Type II and III excitations, we write down the root density in the ther-
modynamic limit,

ργ (kγ ) = ρ
γ

0 (kγ ) +
∑

β=u,b

Q
β
+∫

Q
β
−

dkβ K̂γβ(kγ ; kβ)ρβ(kβ), (A.5)

where for simplicity we have denoted ρu
0 (ku) = 1

2π
, ρb

0 (kb) = 1
2π

∫ π

−π
dk a1(k

b − sin k), and in-
troduce the matrix expression

K̂
(
ku, kb; k,�

)
=
[

0 K̂ub(k
u;�)

K̂bu(k
b; k) K̂bb(k

b;�)

]
(A.6)

=
[

0 − cosku a1(sin ku − �)

−a1(k
b − sin k) −a2(k

b − �)

]
(A.7)

for the integral kernels. We then use a simpler expression for Eq. (A.5),

ργ (kγ ) = ρ
γ

0 (kγ ) +
∑

β=u,b

K̂γβ(kγ ; kβ) ⊗ ρβ(kβ), (A.8)

where ⊗ stands for an integral on kβ over interval [Qβ
−, Qβ

+].
The low-lying excitation corresponds to small variations in the Fermi points from the ground 

state case. This allows expansion of the energy per site with respect to the changes of the Fermi 
points to leading order,

eE(Qu±,Qb±)

= eE(±Qu,±Qb) + 1

2

∑
α=u,b

[
∂2eE

∂(Qα+)2

∣∣∣∣
G

(Qα+ − Qα)2 + ∂2eE

∂(Qα−)2

∣∣∣∣
G

(Qα− + Qα)2
]

,

(A.9)
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where eE =∑
α=u,b

∫ Qα+
Qα−

dkα εα(kα)ρα
0 (kα) is the energy per site, and ±Qα denotes the ground 

state Fermi points. The subscript G implies Qu± = ±Qu and Qb± = ±Qb . In this expansion, the 

first order derivative ∂eE

∂(Qα+)

∣∣∣
G

vanishes due to the fact that the Fermi points minimize the energy 

in the ground state.
With the help of the TBA equations and integral equations of root densities, the second order 

derivative is given by

∂2eE

∂(Qα±)2

∣∣∣∣
G

= ± ∂εα(kα)

∂Qα±

∣∣∣∣
G,kα=±Qα

ρα(±Qα). (A.10)

Substituting this result and the sound velocity vγ = ± dεγ (kγ )/dkγ

2πργ (kγ )

∣∣∣
G

into Eq. (A.9) yields

eE(Qu±,Qb±) = eE(±Qu,±Qb)

+ π
∑

α=u,b

vα
[
ρα(Qα)

]2
[
(Qα+ − Qα)2 + (Qα− + Qα)2

]
, (A.11)

with additional higher order correction terms.
In order to rewrite Qγ

+ − Qγ and Qγ
− + Qγ in terms of �Nγ and �Dγ , we introduce the 

notation νγ = I
γ
+−I

γ
−

L
= Nγ

L
and δγ = I

γ
++I

γ
−

2L
= Dγ

L
, where Nu (Nb) stands for the number of 

unpaired fermions (bound pairs). Dγ is the position of the center of the Fermi sea for unpaired 
fermions (bound pairs). Their explicit expressions are given by

νγ =
Q

γ
+∫

Q
γ
−

dk ργ (k) (γ = u,b) (A.12)

δu =1

2

⎛
⎜⎝

Qu+∫
π

+
Qu−∫

−π

⎞
⎟⎠dk ρu(k) + 1

2π

Qb+∫
Qb−

dkb θ

(
kb

|u|
)

ρb(kb), (A.13)

δb = 1

2

⎛
⎜⎝

Qb+∫
∞

+
Qb−∫

−∞

⎞
⎟⎠dk ρb(k), (A.14)

with θ(x) = 2 arctan(x).
The total differential of νγ (γ = u, b) with respect to Qβ

± (β = u, b) in the vicinity of the 
ground state is

dνγ =
∑

β=u,b

[
∂νγ

∂Q
β
+

∣∣∣∣∣
G

dQ
β
+ + ∂νγ

∂Q
β
−

∣∣∣∣∣
G

dQ
β
−

]
. (A.15)

We furthermore denote

d
ν =
[

dνu

dνb

]
, d 
Q± =

[
dQu±
dQb±

]
,

{
V̂±

}
γβ

= ∂νγ

∂Q
β
±

∣∣∣∣∣
G

. (A.16)

Then Eq. (A.15) can be rewritten as a vector equation,



S. Cheng et al. / Nuclear Physics B 929 (2018) 353–376 371
d
ν = V̂+d 
Q+ + V̂−d 
Q−. (A.17)

Here we need to calculate

∂νγ

∂Q
β
±

=
Q

γ
+∫

Q
γ
−

dk
∂ργ (k)

∂Q
β
±

± ργ (Q
β
±)δγβ . (A.18)

According to Eq. (A.8), it is straightforward to derive

∂ργ (kγ )

∂Q
β
±

= ±K̂γβ(kγ ; kβ = Q
β
±)ρβ(Q

β
±) +

∑
η=u,b

K̂γ η(k
γ ; kη) ⊗ ∂ρη(kη)

∂Q
β
±

, (A.19)

which together with the dressed charge equations yields

∂νγ

∂Q
β
±

= ±ρβ(Q
β
±)Zγβ(kβ = Q

β
±). (A.20)

We also introduce the notation

Ẑ =
[

Zuu(k
u = Qu+) Zub(k

b = Qb+)

Zbu(k
u = Qu+) Zbb(k

b = Qb+)

]∣∣∣∣
G

, (A.21)

ρ̂ =
[

ρu(ku = Qu+) 0
0 ρb(kb = Qb+)

]∣∣∣∣
G

, (A.22)

making use of which in Eq. (A.20) gives the compact expression

V̂± = ±Ẑ · ρ̂. (A.23)

Now we can express Eq. (A.17) as

d
ν = Ẑ · 
ρ · d 
Q+ − Ẑ · 
ρ · d 
Q−. (A.24)

In the next stage, we similarly consider the total differential of δγ with respect to Qβ
± in the 

vicinity of the ground state,

dδγ =
∑

β=u,b

[
∂δγ

∂Q
β
+

∣∣∣∣∣
G

dQ
β
+ + ∂δγ

∂Q
β
−

∣∣∣∣∣
G

dQ
β
−

]
. (A.25)

Similarly, we introduce the notation

d
δ =
[

dδu

dδb

]
,

{
Ŵ±

}
γβ

= ∂δγ

∂Q
β
±

∣∣∣∣∣
G

, (A.26)

in terms of which Eq. (A.25) can be rewritten as the vector equation

d
δ = Ŵ+d 
Q+ + Ŵ−d 
Q−. (A.27)

We further calculate
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∂δu

∂Q
β
±

= 1

2
ρu(Qu±) · δuβ ± 1

2
θ

(
Qb±
|u|

)
ρb(Qb±) · δbβ

+ 1

2

⎛
⎜⎝

Qu+∫
π

+
Qu−∫

−π

⎞
⎟⎠dku ∂ρu(ku)

∂Q
β
±

+ 1

2π

Qb+∫
Qb−

dkb θ

(
kb

|u|
)

∂ρb(kb)

∂Q
β
±

(A.28)

∂δb

∂Q
β
±

= 1

2
ρb(Qb±) · δbβ + 1

2

⎛
⎜⎝

Qb+∫
∞

+
Qb−∫

−∞

⎞
⎟⎠dkb ∂ρb(kb)

∂Q
β
±

. (A.29)

Substituting Eq. (A.19) into Eqs. (A.28) and (A.29) then yields

∂δu

∂Q
β
±

= ±1

2
ρβ(Q

β
±)

⎡
⎢⎣
⎛
⎜⎝

Qu+∫
π

+
Qu−∫

−π

⎞
⎟⎠dku K̂uβ(ku; kβ = Q

β
±) ± δuβ + 1

π
θ

(
Qb±
|u|

)
· δbβ

⎤
⎥⎦

+ 1

2π

Qb+∫
Qb−

dkb ∂ρb(kb)

∂Q
β
±

⎡
⎢⎣θ

(
kb

|u|
)

+ π

⎛
⎜⎝

Qu+∫
π

+
Qu−∫

−π

⎞
⎟⎠dku K̂ub(k

u; kb)

⎤
⎥⎦ , (A.30)

∂δb

∂Q
β
±

= ± 1

2
ρb(Qb±)

⎡
⎢⎣
⎛
⎜⎝

Qb+∫
∞

+
Qb−∫

−∞

⎞
⎟⎠dkb K̂bβ(kb; kβ = Q

β
±) ± δbβ

⎤
⎥⎦

+ 1

2

∑
γ=u,b

Q
γ
+∫

Q
γ
−

dkγ ∂ργ (kγ )

∂Q
β
±

⎡
⎢⎣
⎛
⎜⎝

Qb+∫
∞

+
Qb−∫

−∞

⎞
⎟⎠dkb K̂bγ (kb; kγ )

⎤
⎥⎦ . (A.31)

Now we introduce a set of new integral equations similar to the dressed charge equations, of 
the form

σuη(k
η) = δbη ·

⎡
⎢⎣ 1

π
θ

(
kb

|u|
)

+
⎛
⎜⎝

Qu+∫
π

+
Qu−∫

−π

⎞
⎟⎠dku K̂ub(k

u; kb)

⎤
⎥⎦

+
∑

γ=u,b

K̂T
ηγ (kη; kγ ) ⊗ σuγ (kγ ), (A.32)

σbη(k
η) =

⎛
⎜⎝

Qb+∫
∞

+
Qb−∫

−∞

⎞
⎟⎠dk̃b K̂bβ

(
k̃b; kη

)
+

∑
γ=u,b

K̂T
ηγ

(
kη; k̃γ

)
⊗ σbγ

(
k̃γ
)

, (A.33)

where η = u, b and the integral kernel matrix K̂T is written as

K̂T (ku, kb; k,�) =
[

0 K̂T
ub(k

u;�)

K̂T (kb; k) K̂T (kb;�)

]

=
[

0 −a1(sin ku − �)

− cosk a (kb − sin k) −a (kb − �)

]
. (A.34)
1 2
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With the help of the above integral equations for σαβ(kβ) and Eq. (A.19), we obtain

∂δα

∂Q
β
±

= ±1

2
ρβ(Q

β
±)
[
σαβ(Q

β
±) ± δαβ

]
, (A.35)

and {
Ŵ
}

± =
{
±1

2
ρβ(Q

β
±)
[
σαβ(Q

β
±) ± δαβ

]}∣∣∣∣
G

. (A.36)

We now further define

σ̂ =
[

σuu(Q
u+) σub(Q

b+)

σbu(Q
u+) σbb(Q

b+)

]∣∣∣∣
G

, (A.37)

in terms of which Eq. (A.36) can be recast in the vector form

Ŵ± = 1

2

(
σ̂ + Î

)
· ρ̂. (A.38)

Moreover, σ̂ can be expressed in terms of Ẑ. Taking the derivative of Eqs. (A.32) and (A.33)
with respect to their arguments, we then obtain

σ ′
uη(k

η) = 2a1(k
b) δbη − K̂T

uη(k
u; kη)

∣∣∣ku=Qπ+
ku=π

− K̂T
uη(k

u; kη)

∣∣∣ku=Qπ−
ku=−π

−
∑

γ=u,b

[
K̂T

γ η(k
η; kγ )σuγ (kγ )

]∣∣∣kγ =Q
γ
+

kγ =Q
γ
−

+
∑

γ=u,b

K̂ηγ (kη; kγ ) ⊗ σ ′
uγ (kγ ),

(A.39)

σ ′
bη(k

η) = − K̂T
bη(k

η; kb)

∣∣∣kb=Qb+
kb=∞ − K̂T

bη(k
η; kb)

∣∣∣kb=Qb−
kb=−∞

−
∑

γ=u,b

[
K̂T

γ η(k
η; kγ )σbγ (kγ )

]∣∣∣kγ =Q
γ
+

kγ =Q
γ
−

+
∑

γ=u,b

K̂ηγ (kη; kγ ) ⊗ σ ′
bγ (kγ ).

(A.40)

Taking the integral of σ ′
uη(k

η) with respect to kη over interval [Qη
−, Qη

+] leads to

δuβ − ẐT
uβ −

∑
γ=u,b

σ̂uγ · ẐT
γβ = 0. (A.41)

Similarly, the integral of σ ′
bη(k

η) leads to

δbβ − ẐT
bβ −

∑
γ=u,b

σ̂bγ · ẐT
γβ = 0. (A.42)

We rewrite the above two equations in the vector form

Î − ẐT − σ̂ · ẐT = 0. (A.43)

Inserting this result into Eq. (A.38) then yields

Ŵ± = 1

2

(
ẐT

)−1 · ρ̂. (A.44)
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Using this last equation, the result given in Eq. (A.27) can be expressed as

d
δ = 1

2

(
ẐT

)−1 · ρ̂ · d 
Q+ − 1

2

(
ẐT

)−1 · ρ̂ · d 
Q+. (A.45)

Now we rewrite Eqs. (A.45) and (A.17) in the form

[
d
ν
d
δ
]

=
⎡
⎣ Ẑ −Ẑ

1
2

(
ẐT

)−1
1
2

(
ẐT

)−1

⎤
⎦ ·

[
ρ̂ d 
Q+
ρ̂ d 
Q−

]
, (A.46)

whose inverse is given by[
ρ̂ d 
Q+
ρ̂ d 
Q−

]
=
[ 1

2 Ẑ−1 ẐT

− 1
2 Ẑ−1 ẐT

]
·
[

d
ν
d
δ
]

. (A.47)

Finally, we express Eq. (A.11) in terms of dQ
γ
± (γ = u, b), which gives, subject to higher 

order correction terms,

eE(Qu±,Qb±) − eE(±Qu,±Qb)

= π
∑

γ=u,b

vγ
[
ργ (Qγ )

]2
[
(Q

γ
+ − Qγ )2 + (Q

γ
− + Qγ )2

]

= π
∑

γ=u,b

vγ
[
ργ (Qγ )

]2
[
(dQ

γ
+)2 + (dQ

γ
−)2

]
. (A.48)

In light of the definitions of Ŝ, ρ̂, � 
N , � 
D, with νγ = Nγ /L and δγ = Dγ /L (γ = u, b), this 
last equation gives our final result,

eE(Qu±,Qb±) − eE(±Qu,±Qb)

= 2π

L2

[
1

4

(
� 
N

)T ·
(
Ẑ−1

)T · Ŝv · Ẑ−1 · � 
N +
(
� 
D

)T · Ẑ · Ŝv · ẐT · � 
D
]

, (A.49)

for the leading finite-size correction term.
The change in total momentum caused by Type II and III excitations is given by

�P =
∑

γ=u,b

Nγ∑
j=1

2πI
γ

j

L

=
∑

γ=u,b

2π

L

1

2

(
I

γ
+ − I

γ
−
) (

I
γ

N + I
γ

1

)

= 2π

L

∑
γ=u,b

�Dγ · (Nγ + �Nγ
)
. (A.50)

After the above lengthy calculations, the changes in the energy and total momentum of the 
three types of elementary excitations have been derived. The change in energy shown in Eqs. (22)
and (A.49) is summarized as Eq. (23). The change in total momentum shown in Eqs. (21) and 
(A.50) is summarized as Eq. (24).
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