Regional brain atrophy predicts time to conversion to Alzheimer’s disease, dependent on baseline volume

Hossein Tabatabaei-Jafari, MD, Marnie E. Shaw, PhD, Erin Walsh, PhD, Nicolas Cherbuin, PhD, For the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

PII: S0197-4580(19)30319-7
DOI: https://doi.org/10.1016/j.neurobiolaging.2019.08.033
Reference: NBA 10660

To appear in: Neurobiology of Aging

Received Date: 15 January 2019
Revised Date: 29 August 2019
Accepted Date: 31 August 2019

Please cite this article as: Tabatabaei-Jafari, H., Shaw, M.E., Walsh, E., Cherbuin, N., For the Alzheimer’s Disease Neuroimaging Initiative (ADNI), Regional brain atrophy predicts time to conversion to Alzheimer’s disease, dependent on baseline volume, Neurobiology of Aging (2019), doi: https://doi.org/10.1016/j.neurobiolaging.2019.08.033.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Elsevier Inc. All rights reserved.
Title: Regional brain atrophy predicts time to conversion to Alzheimer’s disease, dependent on baseline volume

Authors:
Hossein Tabatabaei-Jafari MD
Marnie E. Shaw PhD
Erin Walsh PhD
Nicolas Cherbuin PhD

For the Alzheimer’s Disease Neuroimaging Initiative (ADNI) *

Affiliations:
1 Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, Australia
2 College of Engineering and Computer Science, The Australian National University, Canberra, Australia

Correspondence:
Hossein Tabatabaei-Jafari,
Centre for Research on Ageing, Health and Wellbeing, Florey Building 54, Mills Road, Australian National University, Acton, ACT, 2601 Australia
Tel: (612) 61259032, Fax: (612) 61251558
Email: hossein.tabatabaei@anu.edu.au

* Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found in the supplemental file.

Figures: 1

Tables: 3

Supplementary files: 1 consists of two tables and one figure
Abstract

A key question for the design of clinical trials for Alzheimer’s disease (AD) is whether the timing of conversion from mild cognitive impairment (MCI) to AD can be predicted. This is also an important question for the clinical management of MCI. This study aims to address this question by exploring the contribution of baseline brain volume and annual volume change, using Cox regression, in predicting the time to conversion. Individuals with MCI, who converted to AD (n=198), reverted to normal (n=38), or remained stable (n=96) for at least five years were included in this study. The results revealed that the volumes of all the brain areas considered were predictive of the time to conversion from MCI to AD. Annual change in volume was also predictive of the time to conversion but only when initial volumes were above a certain threshold. This is important because it suggests that reduction in atrophy rate, which is the outcome of some clinical trials, is not inevitably associated with delay in conversion from MCI to AD.

Key words: Hippocampus; Mild Cognitive Impairment; Alzheimer’s Disease; time to conversion; interaction; MRI

1. Introduction

Progressive neurodegeneration is a hallmark of Alzheimer’s disease (AD). However, it is also prevalent in normal ageing (Fjell, et al., 2014). One major difference is that the rate of degeneration in the pathological progression leading to AD is substantially higher than in normal ageing. A meta-analysis of longitudinal studies conducted in the last two decades revealed that the shrinkage rate in the prodromal stage of AD --mild cognitive impairment
(MCI)-- is at least twice that observed in normal ageing (Tabatabaei-Jafari, et al., 2015). This is seen in the whole brain and even more so in brain areas typically more affected in the first stage of the disease, such as the hippocampus and entorhinal cortex. Moreover, degeneration begins decades before the disorder emerges clinically, sometimes even in early adulthood (Braak and Braak, 1997). These findings underpin the hope that early intervention aimed at decreasing brain shrinkage may stop, or at least slow down, further progression to clinical AD.

Several intervention trials, using nutrient supplements or medication, have been effective in reducing the atrophy rate in total or regional brain volumes in those with MCI (Douaud, et al., 2013,Dubois, et al., 2015,Kile, et al., 2017,Kobe, et al., 2016,Prins, et al., 2014,Zhang, et al., 2017). However, whether these changes can modify the course of AD progression and delay the time to conversion remains an unresolved question. To address such questions, it is necessary to better understand the contribution brain atrophy makes to the course of the disease, and particularly to the progression from MCI to AD.

In contrast to studies predicting conversion from MCI to AD, studies that have investigated the time to conversion are limited in number. They generally suggest an association between the pace of neurodegeneration and the time to AD conversion (Falahati, et al., 2017,Jack, et al., 2005,Liu, et al., 2017,Teipel, et al., 2015). Most attempts have used spatial patterns of longitudinal volume loss (using machine learning) to successfully predict the time to conversion (Gavidia-Bovadilla, et al., 2017,Li, et al., 2012,Risacher, et al., 2010,Teipel, et al., 2015,Thung, et al., 2018). Falahati el al. developed a “severity index”, based on degeneration in 34 measures of regional cortical thickness and 21 regional subcortical volumes and showed that it was predictive of the time to AD conversion for up to 3 years
follow-up. The index showed 95% correct prediction of conversion within the first year and 80% over 3 years (Falahati, et al., 2017). Global volume change such as whole brain atrophy and ventricular enlargement, but not regional brain atrophy rates (hippocampal and entorhinal cortex), has also been shown to be predictive of AD conversion but only for a short follow-up and in the context of a relatively small study (Jack, et al., 2005). Although these limited numbers of studies are conceptually supportive of the idea that faster degeneration will lead to earlier conversion, the findings are based on a short-term follow-up and the approaches are complex and methodologically difficult to implement at individual level that is a requirement for clinical trials and clinical practice. Simple measures such as regional brain volume and regional atrophy rate investigated in a longer follow up may be more practical for individual evaluation, especially in a clinical setting or for clinical trials.

Therefore, strong evidence supporting the use of atrophy rate in the prediction of time to conversion from MCI to AD is still lacking. Additionally, it is necessary to clarify the extent to which the predictive value of atrophy rate depends on baseline volume. This is needed because the clinical impact of any future degeneration is likely to be highly dependent on prior atrophy and/or brain reserve indexed by the current volume of a region of interest. To address these questions, the present study aimed to investigate the value of global as well as regional baseline volume and atrophy rate and their interaction over long-term follow-ups in predicting conversion from MCI to AD.

2. Methodology

2.1. Study Participants

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of MCI and early AD.

All participants of ADNI I/GO/2, who were diagnosed with MCI at baseline, remained stable for at least six months, and underwent MRI scanning more than twice, were considered for inclusion. MCI who converted to AD (MCIC, n=198), reverted to CN (MCIR, n=38), or remained stable for more than five years (MCIS, n=96) were included in this study.

Details of the diagnostic criteria can be found at the ADNI web site (http://www.adni-info.org/Scientists/AboutADNI.aspx). Briefly, participants were classified as MCI if they had an MMSE score greater than 24, a CDR of 0.5, a report of subjective memory concern, an objective memory loss, preserved daily living activity and did not meet diagnostic criteria for dementia. Participants were classified as AD if they had a MMSE score less than 26, CDR 0.5 or above, and fulfilled criteria for clinically probable AD according to the Institute of Neurological and Communicative Diseases and Stroke/Alzheimer’s Disease and Related Disorders Association. It is also important to note that a Geriatric Depression Scale (GDS) score of less than 6 was a requirement for participation in the ADNI study (Petersen, et al., 2010), so all participants had a GDS score of normal range.

2.2. Neuroimaging acquisition and processing

Participants underwent high-resolution MRI brain scans on 1.5 (N=889) or 3 T (N=872) scanners from General Electric, Siemens, or Philips (Milwaukee, WI, USA; Germany; the Netherlands respectively) using a standardized ADNI acquisition protocol for 3D MP-RAGE
sequence (Jack, et al., 2008). Images which had undergone specific ADNI preprocessing correction steps to standardize images from different sites and platforms, were obtained for this study: (1) Grad wrap; a specific correction of image geometry distortion due to non-linearity, (2) B1 non-uniformity; B1 calibration to correct the image intensity non-uniformity that results when RF transmission is performed with a more uniform body coil while reception is performed with a less uniform head coil, (3) N3 correction; a histogram peak sharpening algorithm applied after grad wrap and B1 correction. For MCI participants, only images acquired before conversion to AD or reversion to CN were included. The MRI scans of individual participants were acquired on the same scanner with the same parameters throughout the follow-up.

All scans were segmented with FreeSurfer version 5.3 (http://surfer.nmr.mgh.harvard.edu/), processed with the longitudinal pipeline. For each participant, all scans were initially processed by the default workflow. Then an unbiased template (an average template) was created from all time points. The unbiased template was used as a base for registering all the time point scans to reduce the random within-subject variation in the processing procedure of the longitudinal analysis. Finally, all time points were longitudinally processed.

The output-segmented images were visually checked. The criterion was a clear segmentation error as assessed by an experienced neuroscientist. Scans with segmentation errors were re-processed and would only be excluded if the error could not be corrected. Six scans with error were not correctable and excluded from the study.

2.3. Measurements
Four brain volumes were considered as regions of interest (ROI) in this study: (1) total whole brain volume (sum of the total gray and white matter), (2) total ventricular volume (sum of the lateral, third and fourth ventricular volumes), (3) total hippocampal volume (sum of the left and right hippocampus), and (4) total entorhinal cortex volume (sum of the left and right entorhinal cortex). Baseline volume and annual change rate (atrophy rate for the whole brain, hippocampus and entorhinal cortex and enlargement rate for the ventricles) of each ROI were investigated as the measures of interest for predicting time to conversion from MCI to AD.

The annual change rate for each ROI was computed by the least square linear regression method for each individual separately: brain volume (at each time point) was used as the dependent variable, with age at each time point (centred at 55, the minimum age at baseline) as the independent variable. The regression coefficient for age was considered as the volume change for each year increase in age in mm3. The regression coefficient was used to compute the annual change rate in percent using the formula

$$100 \times \left(\frac{\text{the regression coefficient for age}}{\text{baseline volume}} \right)$$

Since the results from our previous study revealed that baseline scores on the Mini Mental State Examination (MMSE), the Alzheimer's Disease Assessment Scale (ADAS cognitive version), the Functional Assessment Questionnaire (FAQ), and the Rey Auditory Learning Test (RAVLT; immediate memory subtype) were predictive of time to conversion from MCI to AD when also taking into account hippocampal volume (Tabatabaei-Jafari, et al., 2019), the annual change rates of these measures were also evaluated to better characterise the participants.
While CSF level of amyloid β 1-42 and total and phosphorylated tau were only available for a sub-sample of participants (236 for amyloid β, 232 for total tau, and 236 for phosphorylated tau out of the 332 participants) they could not be included in analyses but are reported to better characterise the sample investigated.

2.4. Statistical analysis

Statistical analyses were performed using the R statistical software (version 3.3.2). Data were checked for missing values and for univariate and multivariate outliers using Mahalanobis distance. There were no missing values or outliers. Group differences in demographic variables were assessed by t-test for continuous variables and chi square tests for categorical variables. The alpha level was set at < 0.05.

Cox regression analysis (package survival; version 2.40-1) using time-to-event as time metric was used to investigate the predictive value of brain ROIs for time to conversion from MCI to AD. The event in the model was specified as happened if the individual converted to AD, thus MCIs were coded as 1 and MCIs and MCIr were coded as 0 in the model. For MCIs the time-to-event was the time from baseline to last scan while in MCIs and MCIr it was the time from baseline to diagnosis change (Change to AD for MCIs and change to CN for MCIr). One-sided Wald tests were used to test associations because only increase in the risk of conversion to AD was predicted. Baseline volume and annual change rate were considered as predictors of time to conversion and were standardised to reduce the variance inflation factor (VIF) in the model. Baseline volumes were adjusted for age, sex, field strength and intracranial volume using the residual method before adopted in the models (Pintzka, et al., 2015).
Univariate models were used to investigate the association between brain measures and time to conversion. Four separate bivariate models, each consisting of standardized baseline volume, standardized annual change rate, and their interaction, were conducted for the whole brain, ventricles, hippocampus, and entorhinal cortex. Hazard ratios with 95% confidence intervals for a 1-SD different in baseline volume and 1-SD change in annual change rate were used to quantify the magnitude of the effect. In the case of significant interaction between baseline volume and annual change rate (as continuous variables), to better conceptualise the interaction, participants were categorized into three groups based on their baseline volume (for each brain area separately) and the bivariate analyses were repeated with categorical baseline volume in the model. Categorization was based on the standard deviation (SD, round values): (1) small category: smaller than one SD below the mean, (2) medium category: one SD below and above the mean, and (3) large category: larger than one-SD above the mean. Additionally, to better visualize the contribution of baseline volume and annual change rate in predicting conversion from MCI to AD, the density of those converted to AD over time was plotted across different stratified annual change rate for each baseline volume category separately.

3. Results

3.1. Participants’ characteristics

Three hundred and thirty two participants (59% male), who were followed up for up to ten years (5.35 ±2.31 year), were categorized into MCIr, MCIs, and MCIc (Table 1). Individuals with MCIc were about three years older than other MCI. There was no significant difference in education across the groups, but the proportion of males was somewhat lower in MCIr (47.37%) than in MCIs (60.42%) and MCIc (60.42 %). The proportion of individuals
carrying the APOE e4 allele was significantly larger in MCIc than others, and more so for those with two e4 alleles (Table 1, Supplementary table 1).

3.2. Baseline brain volumes and annual changes

For all ROIs baseline volumes and annual change rates were different between MCIc and other MCI types. Differences were most pronounced in the hippocampus, entorhinal cortex, and ventricles and followed the direction MCIr > MCIs > MCIc for volumes, and MCIr < MCIs < MCIc for change rates (Table 1, Supplementary table 1).

Despite significant group differences, the distribution of the brain measures revealed a large overlap across the groups (Supplementary Figure 1). When considered across the whole sample there was no significant correlation between baseline volume and annual change rate for the whole brain, and the ventricles. A moderate correlation was detected for the hippocampus (r=0.27), and a smaller correlation for the entorhinal cortex (r=0.12). However, when computed separately in each group, associations between baseline volume and annual change rate were only significant in MCIs for the hippocampus and entorhinal cortex as well as for the ventricles in MCIc (r=-0.19) (Supplementary table 2).

3.3. Cognitive/functional Measures

Similar to brain measures, cognitive/functional measures were significantly different between MCIc and other MCI types. Differences were most pronounced in baseline volumes following the order MCIr < MCIs < MCIc. While, annual changes were significantly different between MCIc and other MCI types, differences between MCIr and MCIs did not followed a constant pattern (Table 1, Supplementary table 1).
3.4. CSF measures

The pattern in CSF differences was consistent (in the sub-sample that data was available) across the groups. Amyloid β was significantly lower in MCIc than MCIs and MCIr, and total tau and phosphorylated tau were significantly greater in MCIc than MCIs and MCIr. These measures were not different between MCIr and MCIs (Table 1, Supplementary table 1).

3.5. Prediction of time to AD conversion

Baseline volume and annual change rate for each brain area significantly predicted time to AD conversion (Z > 5, p<0.01) when they were evaluated separately (univariate model). When baseline volume and annual change rate were tested in the same model (bivariate model) both measures remained significantly predictive in all ROIs. Additionally, an interaction between annual change rate and baseline volume was detected. It means in addition to a constant increase in the risk for each 1-SD decrease in ROIs’ baseline volume (1-SD increase in ventricular volume) and 1-SD increase in annual volume loss there was an additional risk for each measure, which was dependent on the other measure (Table 2). To better conceptualise this interactive effect between the two measures, analyses were repeated with a categorical baseline volume (small, medium and large) and annual change rate in percent in the model (Table 3). Following are brief reports for each ROI separately.

Whole brain: Atrophy rate did not predict time to conversion in whole brain baseline volumes less than 1,040,000 mm3, whereas it had significant predictive value at higher volumes. Medium to large whole brain volumes were associated with 61% and 72% lower risk of conversion from MCI to AD compared to small volumes. An additional 35% and 43%
decrease in the risk of conversion were demonstrated for every one percent lower atrophy rate in medium and large volumes.

Ventricles: Enlargement rate did not predict time to conversion in ventricular baseline volumes larger than 55,000 mm3, while it had significant predictive value at small volumes (lower than 28,000 mm3). Medium to small volumes were respectively associated with 48% and 83% lower risk of conversion from MCI to AD compared to large volumes. An additional 14% increase in the risk of conversion was demonstrated for one percent greater enlargement rate in small volumes.

Hippocampus: Atrophy rate did not predict time to conversion in hippocampal baseline volumes less than 5500 mm3, whereas it had significant predictive value at higher volumes. Medium to large volumes were associated with 69% and 95% lower risk of conversion from MCI to AD compared to small volumes. An additional 15% and 50% decrease in the risk of conversion were demonstrated for every one percent lower atrophy rate in medium and large volumes.

Entorhinal cortex: Atrophy rate did not predict time to conversion in entorhinal cortex baseline volumes less than 2800 mm3, while it had significant predictive value at large volumes (larger than 4000 mm3). Medium to large entorhinal cortex volumes were respectively associated with 47% and 86% lower risk of conversion from MCI to AD compared to small volumes. An additional 24% decrease in the risk of conversion was demonstrated for one percent lower atrophy rate in large entorhinal cortex baseline volumes.
Since APOEe4 carrier prevalence was significantly higher in MCIc than other MCI types, post hoc analyses were done to investigate the effect of APOEe4 on the predictive values of baseline volumes and annual change rates and their interactions. The result showed that APOEe4 genotype had no effect on the predictive values of these measures as well as their interactions.

Figure 1 demonstrates the distribution of individuals converted from MCI to AD within ten years using Cox analysis to estimate probability in each separate baseline category across stratified annual atrophy rates (enlargement rate for the ventricles). It reveals that at hippocampal baseline volumes less than 5500 mm³, conversion within 3 years occurs regardless of the atrophy rate. A similar but somewhat weaker pattern was observed for an entorhinal cortex volume smaller than 2800 mm³, a whole brain volume smaller than 1,040,000 mm³, and a ventricular volume larger than 55,000 mm³. In contrast, atrophy rate (enlargement rate for the ventricles) is determinant of probability of conversion over time at medium to large baseline brain volumes (medium to small for the ventricles). It is especially noticeable for the hippocampus with atrophy rate more than the average.

4. Discussion

This study aimed to investigate of the volume or change in volume over time of different brain regions could predict the time to conversion from mild cognitive impairment to Alzheimer’s disease. The main finding was that the baseline volumes of the whole brain, ventricles, hippocampus, and entorhinal cortex and their respective atrophy rates (enlargement rate for ventricles) were all significant predictors of earlier conversion. However, the predictive value of these ROIs’ atrophy rates was highly dependent on their baseline volume.
While volume and change in volume over time are predictive across all ROIs, the effect of baseline volume on the predictive value of volume change over time is more distinctive in the hippocampus than other ROIs (figure 1). Individuals with hippocampal volumes smaller than 5500 mm3 mostly convert to AD within three years regardless of atrophy rate. This has an important implication for clinical trials aiming to delay AD conversion by reducing atrophy rate. In these trials, any treatment effects on brain atrophy rate should be interpreted in light of baseline volumes since at small hippocampal volumes, any reduction in atrophy rate is less likely to be associated with delay in disease progression. Indeed, it may be better for clinical trials to exclude individuals with small hippocampal volumes to identify interventions that can really delay the conversion by reducing volume loss. Additionally, hippocampal volume can be used as a simple heuristics to identify those at risk of early conversion in clinical practice. However, it is important to note that the baseline brain volumes in this study were normalised for age, sex, field strength and ICV, and therefore hippocampal threshold for small volume (i.e. 5500 mm3) for any individual must be corrected with the provided formula

\[\text{Hippocampal threshold} = \begin{cases}
3141 + 74.5 \times \text{Age} - 477.5 \times \text{field strength} - 0.0014 \times \text{ICV} & \text{if Male} \\
3438 + 74.5 \times \text{Age} - 477.5 \times \text{field strength} - 0.0014 \times \text{ICV} & \text{if Female}
\end{cases} \]

While we cannot shed light on specific reasons for this hippocampal threshold we speculate that volumes below this value are indicative of an accumulation of pathology, which makes conversion to AD all but inevitable. Regional accumulation of pathology is associated with concomitant spread of pathology to the adjacent brain areas. At early stages of the disease, neuropathology and brain atrophy is mainly limited to the medial and inferior temporal lobes (including hippocampus and entorhinal cortex) particularly in relation to tauopathy. As the
disease progresses, degeneration spreads into more posterior regions of the temporal lobe and starts to spread to the parietal lobe. By the time of conversion to AD, atrophy has become more severe in the areas first affected and has spread further into the frontal lobes (Braak and Braak, 1991, Thal, et al., 2002, Whitwell, et al., 2007). Therefore, hippocampal volume below a certain threshold is not only indicative of pathology accumulation in this structure but also of spreading neurodegeneration in adjacent regions, which together indicate poorer prognosis.

In contrast, in those with larger ROI volumes, atrophy rate is a predictor of the time to conversion but is dependent on baseline volume. The pattern in larger volumes is also somewhat more distinctive in the hippocampus than other ROIs. Atrophy rate in those with medium to large hippocampal baseline volume (5500 mm^3 to 7500 mm^3) is determinant of the risk of AD conversion, whereas at volume larger than 7500 mm^3 atrophy rate more than the average i.e. more than 3%/y is determinant. This can also be explained by the contribution of previous (reflected in baseline volume) and ensuing (reflecting in atrophy rate) neurodegeneration in prediction of progression. It is likely that at medium baseline volumes there is a balance between previous and ensuing neurodegeneration, thus both measures are determinant of the time to conversion. While at volume larger than 7500 mm^3, because of low level of previous degeneration only a large atrophy rate (more than the average of 3%/y) can be determinant of time to AD conversion.

The present results are particularly significant because they provide a guide on how structural imaging measures can assist in predicting conversion to AD as recommended by the National Institute on Aging and the Alzheimer’s Association (NIA-AA) although to date they have been unable to advise on how this should or could be done (Jack, et al., 2018).
This approach also aligns with our understanding of AD’s pathological progression, which recognizes MCI as a clinical stage of the disease continuum, rather than a distinct clinical entity with a higher risk of AD conversion (Albert, et al., 2011, Dubois, et al., 2016).

It is noteworthy that the selection of the brain ROIs in this study was based on the typical spread of the neurofibrillary tangles and neurodegeneration in the course of the disease. Typically, AD’s neurofibrillary tangles aggregation and subsequent neurodegeneration originate in the transentorhinal cortex and spread through the hippocampus to subcortical structures and the lateral temporal, parietal and frontal association and primary cortices (Braak and Braak, 1991). However, there is some evidence demonstrating the presence of at least two atypical subtypes of AD that do not follow the typical pattern i.e. limbic-predominant AD and hippocampus sparing AD (Byun, et al., 2015, Ferreira, et al., 2017, Whitwell, et al., 2012). In the limbic-predominant AD fibrillary tangles and degeneration remain restrictively in medial temporal lobe and cortical areas remain relatively preserved. The hippocampus and entorhinal cortex are severely involved and progression to the final stages of the disease is faster than the other subtypes (Ferreira, et al., 2017, Murray, et al., 2011). Thus, hippocampal atrophy would be expected to remain predictive of time to conversion, and to be consistent with the present findings. In contrast, in the hippocampus-sparing subtype the pathology originates in the lateral cortical areas and the medial temporal lobe including the hippocampus remains preserved and hippocampal atrophy is in line with that found in normal ageing (Ferreira, et al., 2017). Thus hippocampal atrophy is not expected to be predictive of time to AD conversion. Of relevance to the present findings the possible presence of this subtype in the sample investigated – it affects approximately 10% of all AD cases in the population – may have negatively impacted the predictive value of the measures investigated, although probably only to a small extent.
To our knowledge, the present study is the first investigation of interaction between brain volume and annual change rate in predicting the time to conversion from MCI to AD. Additionally, unlike previous studies, which investigated the prediction of conversion from MCI to AD within follow-ups of one to three years (Jack, et al., 2005, Liu, et al., 2017, McEvoy, et al., 2011, Risacher, et al., 2009), the follow-up time of the present study was up to ten years. However, these findings need replications in other population before their usefulness in clinical practice can ascertained.

5. Conclusion

These findings are among the first to demonstrate that simple structural imaging measures can make a useful contribution in predicting disease progression from MCI to AD. Importantly, they provide specific guidance on volumetric thresholds in specific brain structures, which can be used to inform clinical assessment. However, while this is an important first step, further investigation in different, more diverse and larger populations is needed before recommendation for their routine use in clinical trials and clinical practice can be confidently made.

Funding:

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Acknowledgments
Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI; National Institutes of Health Grant U01 AG024904). ADNI
is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer’s Association; Alzheimer Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is co-ordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. This research was partly undertaken on the National Computational Infrastructure (NCI) facility in Canberra, Australia, which is supported by the Australian Commonwealth Government and was supported by an Australian Government Research Training Program (RTP) Scholarship.

Figures Legends:

Figure 1: Distribution of probability of conversion over time: Separate illustration of probability density measured by Cox proportional models in four brain areas at three baseline categories across stratified respected annual atrophy rate (enlargement rate for the ventricles) within ten years. The figure shows that at hippocampal baseline volumes less than 5500 mm3 conversions mostly happen within three years regardless of atrophy rate. Similar
patterns but relatively less determinant are noticeable at entorhinal cortex volumes lower than 2800 mm3, at whole brain baseline volumes lower than 1,040,000 mm3, and at ventricle baseline volumes larger than 55,000 mm3. In contrast, atrophy rate (enlargement rate for the ventricles) has an impact on probability of conversion over time at medium to large baseline brain volumes (medium to small for the ventricles), especially noticeable for the hippocampus with atrophy rate more than the average.

References:

Table 1: Participants characteristic and measurements

<table>
<thead>
<tr>
<th></th>
<th>MCIr</th>
<th>MCIs</th>
<th>MCIC</th>
<th>Significant pair difference (p <0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>38</td>
<td>96</td>
<td>198</td>
<td>-</td>
</tr>
<tr>
<td>Age; year, Mean (SD)</td>
<td>69.30 (8.23)</td>
<td>71.65 (7.48)</td>
<td>74.25 (7.16)</td>
<td>MCIc vs. MCIr & MCIs</td>
</tr>
<tr>
<td>Age range, year</td>
<td>55 - 87</td>
<td>57 - 88</td>
<td>55 – 89</td>
<td>-</td>
</tr>
<tr>
<td>Male sex; N (%)</td>
<td>18 (47.37)</td>
<td>58 (60.42)</td>
<td>121 (61.42)</td>
<td>No difference</td>
</tr>
<tr>
<td>Education; year, Mean (SD)</td>
<td>16.68 (2.52)</td>
<td>15.88 (3.04)</td>
<td>16.01 (2.78)</td>
<td>No difference</td>
</tr>
<tr>
<td>APOE e4; N (%)</td>
<td>One allele 17 (45)</td>
<td>22 (23)</td>
<td>102 (51.51)</td>
<td>MCIc vs. MCIr & MCIs</td>
</tr>
<tr>
<td></td>
<td>Two alleles 1 (3)</td>
<td>6 (6)</td>
<td>32 (16.33)</td>
<td>MCIr vs. MCIs</td>
</tr>
<tr>
<td>Number of scan points</td>
<td>11.4 (2.7)</td>
<td>7.7 (2.5)</td>
<td>5.9 (1.8)</td>
<td>MCIc vs. MCIr & MCIs</td>
</tr>
<tr>
<td></td>
<td>Follow-up, Range; day 1082 - 3662</td>
<td>1850 - 3927</td>
<td>343 - 3690</td>
<td>-</td>
</tr>
</tbody>
</table>
Predicting time to AD conversion

<table>
<thead>
<tr>
<th>Follow-up, Mean (SD)</th>
<th>1704 (676)</th>
<th>2381 (686)</th>
<th>1790 (869)</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to Diagnosis change, Range; day</td>
<td>184 - 1583</td>
<td>-</td>
<td>357 - 3714</td>
<td>-</td>
</tr>
<tr>
<td>Time to DX change, Mean (SD)</td>
<td>762 (411)</td>
<td>-</td>
<td>1041 (603)</td>
<td>-</td>
</tr>
</tbody>
</table>

Brain Measures

Whole Brain

<table>
<thead>
<tr>
<th>Baseline, mm³</th>
<th>1081597 (35162)</th>
<th>1095415 (38165)</th>
<th>1070628 (42231)</th>
<th>MCIC vs. MCIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual change rate, %/y</td>
<td>-0.15 (1.20)</td>
<td>-0.55 (0.37)</td>
<td>-0.73 (1.26)</td>
<td>MCIC vs. MCIR</td>
</tr>
</tbody>
</table>

Ventricles

<table>
<thead>
<tr>
<th>Baseline, mm³</th>
<th>37782 (14261)</th>
<th>38808 (15115)</th>
<th>44744 (17982)</th>
<th>MCIC vs. MCIR & MCIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual change rate, %/y</td>
<td>2.42 (3.94)</td>
<td>3.93 (2.66)</td>
<td>7.62 (5.74)</td>
<td>MCIC vs. MCIR & MCIs</td>
</tr>
</tbody>
</table>

Hippocampus

<table>
<thead>
<tr>
<th>Baseline, mm³</th>
<th>7229 (794)</th>
<th>7035 (953)</th>
<th>6127 (912)</th>
<th>MCIC vs. MCIR & MCIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual change rate, %/y</td>
<td>0.13 (3.34)</td>
<td>-1.29 (1.10)</td>
<td>-3.12 (2.86)</td>
<td>MCIC vs. MCIR & MCIs</td>
</tr>
</tbody>
</table>

Entorhinal cortex

<table>
<thead>
<tr>
<th>Baseline, mm³</th>
<th>3787 (693)</th>
<th>3645 (644)</th>
<th>3224 (698)</th>
<th>MCIC vs. MCIR & MCIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual change rate, %/y</td>
<td>-0.11 (5.05)</td>
<td>-1.75 (1.56)</td>
<td>-3.62 (5.95)</td>
<td>MCIC vs. MCIR & MCIs</td>
</tr>
</tbody>
</table>

Cognitive/functional measures

MMSE

<table>
<thead>
<tr>
<th>Baseline</th>
<th>28.53 (1.50)</th>
<th>28.22 (1.42)</th>
<th>27.09 (1.78)</th>
<th>MCIC vs. MCIR & MCIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual change, u/y</td>
<td>0.64 (1.94)</td>
<td>-0.15 (0.29)</td>
<td>-0.93 (1.94)</td>
<td>MCIC vs. MCIR & MCIs</td>
</tr>
</tbody>
</table>

ADAS cog

| Baseline | 10.66 | 12.08 | 19.94 (5.81) | MCIC vs. MCIR & MCIs |
Table 2: Cox Proportional Hazard

<table>
<thead>
<tr>
<th></th>
<th>Coef.</th>
<th>SE</th>
<th>HR (95% CI)</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Brain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline volume</td>
<td>0.43</td>
<td>0.08</td>
<td>1.53 (1.31 – 1.79)</td>
<td>5.344, p<0.0001</td>
</tr>
</tbody>
</table>

MClc= mild cognitive impairment converted to Alzheimer’s disease; MCIs= mild cognitive impairment remained stable for more than five years; MCIr= mild cognitive impairment reverted to cognitively. APOE e4; Apolipoprotein E allele 4; MMSE = mini-mental state examination; ADAS cog= Alzheimer Disease Assessment Scale (cognitive subscale); RAVLT = Rey Auditory Verbal Learning Test; FAQ = functional assessment questionnaire. CSF= cerebrospinal fluid; Aβ= amyloid-beta 1–42; TAU=total tau protein, P-TAU=phosphorylated tau protein. Baseline measures adjusted for age, sex, field strength and intracranial volume.
<table>
<thead>
<tr>
<th></th>
<th>Coef.</th>
<th>SE</th>
<th>HR (95%CI)</th>
<th>Z, P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Brain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium whole brain</td>
<td>-0.96</td>
<td>0.21</td>
<td>0.39 (0.25 – 0.58)</td>
<td>-4.488, p<0.0001</td>
</tr>
<tr>
<td>Large whole brain</td>
<td>-1.28</td>
<td>0.32</td>
<td>0.28 (0.15 – 0.53)</td>
<td>-3.949, p<0.0001</td>
</tr>
<tr>
<td>Atrophy rate a</td>
<td>0.08</td>
<td>0.18</td>
<td>1.08 (0.76 – 1.54)</td>
<td>0.438, p=0.66</td>
</tr>
</tbody>
</table>

Table 3: Risk of conversion from MCI to AD over time (Cox Proportional Hazard ratios) in medium and large brain volume categories (small and medium categories in the ventricles) compared with the small brain volume category (large category in the ventricles). Small category: smaller than one SD below the mean, Medium category: one SD below and above the mean, and Large category, larger than one SD above the mean.

HR; hazard ratio for 1-SD decrease in whole brain, hippocampal volume and entorhinal cortex volume and their annual rates as well as 1-SD increase in ventricular volume and its annual ventricular volume enlargement.
All measures have been adjusted for age, field strength and intracranial volume.
Predicting time to AD conversion

<table>
<thead>
<tr>
<th>Area</th>
<th>Coef</th>
<th>SE</th>
<th>HR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium whole brain: atrophy rate</td>
<td>-0.44</td>
<td>0.21</td>
<td>0.65 (0.43–0.98)</td>
<td>-2.072, p<0.05</td>
</tr>
<tr>
<td>Large whole brain: atrophy rate</td>
<td>-0.56</td>
<td>0.34</td>
<td>0.57 (0.34–0.96)</td>
<td>-2.132, p<0.05</td>
</tr>
<tr>
<td>Ventricles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium ventricles</td>
<td>-0.65</td>
<td>0.32</td>
<td>0.52 (0.28–0.97)</td>
<td>-2.068, p<0.05</td>
</tr>
<tr>
<td>Small ventricles</td>
<td>-1.76</td>
<td>0.48</td>
<td>0.17 (0.07–0.42)</td>
<td>-3.664, p<0.001</td>
</tr>
<tr>
<td>Enlargement rate b</td>
<td>0.05</td>
<td>0.05</td>
<td>1.05 (0.96–1.15)</td>
<td>1.000, p=0.32</td>
</tr>
<tr>
<td>Medium ventricles: atrophy rate</td>
<td>0.04</td>
<td>0.05</td>
<td>1.04 (0.94–1.14)</td>
<td>0.757, p=0.45</td>
</tr>
<tr>
<td>Small ventricles: atrophy rate</td>
<td>0.13</td>
<td>0.06</td>
<td>1.14 (1.01–1.29)</td>
<td>2.065, p<0.05</td>
</tr>
<tr>
<td>Hippocampus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium hippocampus</td>
<td>-1.16</td>
<td>0.28</td>
<td>0.31 (0.18–0.54)</td>
<td>-4.122, p<0.0001</td>
</tr>
<tr>
<td>Large hippocampus</td>
<td>-3.09</td>
<td>0.50</td>
<td>0.05 (0.02–0.12)</td>
<td>-6.252, p<0.0001</td>
</tr>
<tr>
<td>Atrophy rate a</td>
<td>-0.04</td>
<td>0.05</td>
<td>0.96 (0.86–1.06)</td>
<td>-0.818, p=0.41</td>
</tr>
<tr>
<td>Medium hippocampus: atrophy rate</td>
<td>-0.16</td>
<td>0.06</td>
<td>0.85 (0.75–0.97)</td>
<td>-2.472, p<0.05</td>
</tr>
<tr>
<td>Large hippocampus: atrophy rate</td>
<td>-0.69</td>
<td>0.14</td>
<td>0.50 (0.38–0.66)</td>
<td>-5.022, p<0.0001</td>
</tr>
<tr>
<td>Entorhinal cortex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium entorhinal</td>
<td>-0.64</td>
<td>0.22</td>
<td>0.53 (0.34–0.81)</td>
<td>-2.954, p<0.01</td>
</tr>
<tr>
<td>Large entorhinal</td>
<td>-1.97</td>
<td>0.35</td>
<td>0.14 (0.07–0.28)</td>
<td>-5.600, p<0.0001</td>
</tr>
<tr>
<td>Atrophy rate a</td>
<td>-0.05</td>
<td>0.03</td>
<td>0.96 (0.91–1.01)</td>
<td>-1.623, p=0.11</td>
</tr>
<tr>
<td>Medium entorhinal: atrophy rate</td>
<td>-0.03</td>
<td>0.04</td>
<td>0.98 (0.90–1.04)</td>
<td>-0.900, p=0.37</td>
</tr>
<tr>
<td>Large entorhinal: atrophy rate</td>
<td>-0.27</td>
<td>0.07</td>
<td>0.76 (0.67–0.87)</td>
<td>-3.941, p<0.0001</td>
</tr>
</tbody>
</table>

Coef= coefficient, **SE=** standard error, **HR=** hazard ratio.

All measures have been adjusted for age, sex, field strength and intracranial volume.

a Atrophy rate in the small volume category

b Enlargement rate in the large ventricular volume category
Time to conversion (day)
Highlights

- Global/regional brain volumes and atrophy rates predict time to AD conversion

- Predictive value of atrophy rates differ across their baseline volumes

- At hippocampal volumes less than 5500 mm3, early conversion is inevitable regardless of atrophy

- At hippocampal volumes larger than 7500 mm3, atrophy more than 3%/y is determinant of time to conversion
15 January 2019

Dear Dr Peter R. Rapp
Editor-in-chief,
Neurobiology of Aging

Dear Dr Rapp

The authors have reported no conflicts of interest. This study was partially undertaken on the National Computational Infrastructure (NCI) facility in Canberra, Australian and was supported by an Australian government Research Training Program (RTP). The funding sources were not involved in the design, collection, analysis or interpretation of data, or in the writing of the report or the decision to submit. This paper is our original unpublished work and it has not been submitted to any other journal for reviews. All authors have reviewed the contents of the manuscript, and approved its contents and validated the accuracy of the data.

Sincerely,

Hossein Tabatabaei-Jafari, MD
Centre for Research on Ageing, Health and Wellbeing, The Australian National University
Canberra, ACT2601, Australia
P: +61 2 6125 9032, F: +61261251558
Hossein.tabatabaei@anu.edu.au

Erin Walsh
Centre for Research on Ageing, Health and Wellbeing, The Australian National University
Canberra, ACT2601, Australia
P: +61 2 6125 8291
erin.walsh@anu.edu.au

Marnie E. Shaw
College of Engineering & Computer Science
Brian Anderson Building 115, North Road
Canberra, ACT2601, Australia
P: +61 2 6125 2762
marnie.shaw@anu.edu.au

Nicolas Cherbuin