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Modulation stability analysis and solitary wave solutions of nonlinear
higher-order Schrodinger dynamical equation with second-order
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Abstract: In optical fibers, the higher-order nonlinear Schrédinger (NLS) dynamical equation which describes the beyond
the classic slowly varying envelopes and spatiotemporal dispersion of pulses is investigated. By applying the proposed
modified extended mapping method, the optical soliton solutions of higher-order NLS dynamical equation with the
coefficients of group velocity dispersion, second-order spatiotemporal dispersion and cubic nonlinearity are deduced. The
obtained solutions have important applications in applied sciences and engineering. The formation conditions are specified
on parameters in which optical solitons can exist for this media. The moments of some constructed solutions are presented
graphically which facilitate the researchers to comprehend the physical phenomena of this equation. The modulation
instability analysis is utilized to discuss the model stability, which verifies that all obtained solutions are stable and exact.
Other such forms of the system arising in sciences and engineering can also be solved by this steadfast, influential and
effective method.
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1. Introduction

The nonlinear Schrodinger equations (NLSEs) having the
coefficients of group velocity dispersion and second-order
spatiotemporal dispersion are important physical models
and illustrate the dynamics of optical soliton promulgation
in the optical fibers for trans-continental communication
[1-5]. In optical fibers, most of these models are regularly
expressed in the time domain, and when fields at different
frequencies propagate through the fiber the common
practice is also to write a distance equation for each field
component. The nonlinear transformation of dielectric of
the fiber termed as the Kerr effect is applied to neutralize
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the dispersion effect; in this state, the optical pulse might
lean to form a steady nonlinear pulse known as an optical
soliton. The bit rate of transmission is restricted by the
dispersion of the fiber material. The fiber loss is the only
factor that contributes to the drop in the pulse quality by
expansion in the pulse width (for more details see refer-
ences [6-8]).

In optical fibers, the dynamical models of soliton
propagation are an area of enormous curiosity because of
the broad applications in ultrafast signal routing systems,
trans-continental and short-light-pulse telecommunication
[9, 10]. These systems are mostly articulated in time
domain, and when different frequency fields propagate
throughout the fiber the ordinary practice is also to inscribe
a distance equation for every field component. In dielectric
fibers, the authors in [10] examined the optical solitons
experimentally and theoretically. Solitons in homogeneous
and Hamiltonian systems are localized solitary waves
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having special properties such as enormously robust to
perturbations, without changing structure during propaga-
tion at a constant speed, stable with respect to collision
with other solitons. If the length of dispersion is similar to
nonlinear length [11] then a chirp-free pulse results. In last
few years, the field of optical fiber communication systems
attained much concentration of researchers for
investigation.

In recent decades, several researchers have paid much
attention to constructing the exact solutions to a number of
nonlinear Schrodinger models. Various systematic and
powerful techniques have been formulated to obtain exact
explicit solutions in many forms such as the trial equation
technique, mapping method, inverse scattering method,
variational method, semi-inverse variational principle,
Bécklund transformations, Darboux transformation, Hir-
ota’s bilinear method, the extended tanh method, expansion
methods, simple equation method, auxiliary equation
method, direct algebraic method, mapping method, modi-
fied simple equation method, the rational expansion
method [12-23]. Soliton solutions gained a lot of interest of
researchers to study interactions, structures and more
properties. Exact solitary wave solutions of few nonlinear
equations via an expansion just about an integrable ODE
are of current interest to the community of engineering and
applied science, and the studies give improvements to the
accessible literature on related topics [24-38].

The governing NLSE with group velocity dispersion
coefficient and second-order spatiotemporal dispersion
coefficient [39] is as

l(qx+ﬁqu) +ﬁ2qtt+ﬁ3qxx+ |6]|26]:0» (l)

where the dependent function is g(x, f) that signifies the
macroscopic complex-valued wave profile. Furthermore,
the 3, is proportional to the ratio of group speed and /3, and
p5 are the coefficients of group velocity dispersion and
spatial dispersion, respectively. For more details, see ref-
erences [39-43].

In the current study, the soliton solutions of nonlinear
higher-order NLS equation (1) with group velocity dis-
persion coefficient, second-order spatiotemporal disper-
sion, and cubic nonlinearity are constructed by the
proposed modified extended mapping method.

This article is devised as follows: In Sect. 2, the key
steps of the proposed method are given. The application of
the proposed method to higher-order NLSE is presented in
Sect. 3, and exact soliton and solitary wave solutions are
constructed. In Sect. 4, the behavior of the solitons is dis-
cussed physically. Lastly, the conclusions are revealed.

2. Description of the proposed method

We give the algorithm of the proposed modified extended
mapping method for constructing the soliton solutions of
nonlinear partial differential equations (PDEs). Let us
assume a nonlinear PDE in general form having two
independent variables ¢ and x as

G(%%ﬂxﬂm Gxxxs - - ) = 07 (2)

where the g(x, 7) is a function and G is a polynomial
function. Consider that Eq. (2) has the form

g ) = (&) =3 Al (@) + Y BLg(©)
» =0 i=—1 (3)
T3 CLr @),
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where

¢/(8) = Va0 + 1 9(®) + 0020 + 19°(9) + 29" (2)
and
& =k(x — wt),
(4)

where A;, B;, C;, 00, 01,00,03,04,k and o are arbitrary
constants. Utilizing the homogeneous balancing principle
on Eq. (2), the series of coefficients Ay, Ay, ..., Ay, B1, ...,
By, Cy, ..., Cy,k, w can be obtained.

3. Application of the proposed method to higher-order
NLSE

As Eq. (1) is complex, assume the traveling wave solution
of Eq. (1) in the form as

Q(xv t) = W(f)fh»

where (&) is the amplitude components of the wave
profiles, 7 is the phase factor, and 7,v,? indicate the
frequency of solitons, the wave number and the phase
constant, respectively. Substituting Eq. (5) into Eq. (1) and
separating the real and imaginary parts yields

(Bl + B3k )Y" (&) — (B3y” + Bov® — Brv + 7)Y ()
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(6)

Applying homogeneous balancing principle on Eq. (6), the
solution of Eq. (6) is
C] (p/

. B
Y(E) =Ag+ A1+ — + 2. (7)
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Putting Eq. (7) into Eq. (6) and setting the coefficients of

¢'o" to zero, we got a system of equations in parameters

Ao,Al,Bl, Cl,do, o1, 0o, A3, 064,](7 @, Vv, ﬁl(l = 1,2, 3)

Mathematica software is utilized to solve this system of

equations. We obtained the following cases of solutions:
Case 1 09 =0y =0,

Set 1
Ao =0, A =%y B, =0,
C = ik\/ﬁzuﬂ + ﬁ3
=,
V2
o Bi(Brw® + f3) £ \/—(ﬁz(”z + B3) (B2 (200 B3k (Bo? + B3) — 1) — ﬁ%ﬁ,%)
' 2B, (B@* + B3) '
(8)
Set 2
Ay =0, A :,Wiv““(/i;;“ﬁs)’ B —0.
Cr — iik\/ﬁz(oz + B3
| - =
V2
BB+ )~ (5207 B) (Ba(mBR B + ) )~ i)
B 2B, (B* + B3) '
)

The following soliton and solitary wave solutions of Eq. (1)
are obtained from set 1:

ik/ B0 + By (2223 — o2 (48 — 4an) sinh (/556 )

qu(x,1) = -
\/§<a4 - Wcosh(ﬁf))
TN gy >0, o2 > dopoy.
(10)
ko 4 B (208 — o) sinh (/358) + 200/
qia(x,1) = — \/j(\/mcosh(\/a—zf) + zx4)
)y, >0, od > dapoy.
(1)
iky/Baa ¥ s (2203 — 12 (20 — ) cosh(/52)
qi3(x,1) = - \/E(ou _ \/msinh(\/@é))
SN gy >0, o2 <dopuy.
(12)
WAl A )
() = —

V2 (\fAas — o sinh (/7€) + )

yx—vi+) o > 07

el R oc% <4dopoy.

(13)

iky/ Br? + B <\/W =+ sech? (‘/;‘_5) — 20, (1 + tanh (@))j

q1s(x, 1) = 2@}(1 itanh(@))
ei(‘,’x—vr+17)7 w >0, ag = doyas,
(14)
ik\/Br* + B3 <2o<2 (1 =+ coth (@)Yju\/m + csch? (J;‘g))
qi6(x,1) = — 2¢274(1 icoth(@zs))

FY) 5, oF = dopoy.

(15)
Similarly, one can achieve more new solutions of Eq. (1)
from set 2.
Case2a0:a1 :Cl3:O,
Set 1
Ay
V2y/ =B + B3)

/2B +3) (o4 (BB 4-2) ~22043 5,3

Ay=B1=C, =0, k=F

L bE o B
2B,
(16)
Set 2
A=A =B =0,
\/602(51 = 2B0)*+4B3v(Byy — 1) — 1

C[ = :l: )

2+/02 P4 (17)

\/—wz(ﬂl = 2B0) +4B3v(By — Bov) + 1

k=F
2\/2“2ﬁ3(ﬁ2w2 + ﬁ%)
Set 3
A 2A
Ag=Bi =0, Ci=+"1  k=-— V24, :
Vo V=04 (fr0? 4 f3)
/2B +53) (o4 (B BB, ) +42043 6,5
. B ¥ PR RN

2p,
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The following soliton and solitary wave solutions of Eq. (1)
are obtained from set 2

q21 (x, I) = —4/— %Al CSC(\/—Otgf)ei(yx_vtﬁ?), [0%) <0.
Vo oo
(19)

QQQ(X, t) =4/— Z—jAlcsch(,/ —Otgf)ei(yxiva, a, <0.
(20)
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g2 (x,1) = | /—%Al sec(y/—0l)e! ) g, <.
4
(21)

20,A V"¢
BaLe . o> 0. (22)

ei(yvat#ﬂ)
1 — opoye2vs

Goa(x,1) =

One can construct more soliton solutions of Eq. (1) from
sets 2 and 3 in the same way.
Case3og=0y =04 =0,

Set 1
Ag=A, =B, =0,
OR(B 2B+ 4By By — ) — 1
o 2v//Bs L)

\/_wz(ﬁl — 2B,v)*+4B3v(By — Bov) + 1
V20 B3(Br? + B3) .

Cc

k==

Set 2
Ay=A; =B =0,

- _ \/wz(ﬁ1 — 2B,v)*+4B3v(Byy — By) — 1

C )
: 2\/%2+/ B3
\/_wz(ﬁl - 252V)2+4ﬁ3"(ﬁ1 —pyv) +1
k=F .

V2o p5(B07 + B3)
(24)

The following solitary wave solutions of Eq. (1) are
constructed by substituting Eq. (23) into Eq. (7)

VT an (GE )\ R (B — 280) 4By (B — ) — 1

(i) = 2R,
el‘(}'X*\’l‘Fﬂ)’ o <0.
(25)
tanh(@ f) \/w2(ﬁl — Zﬁzv)2+4ﬁ3v([32v -p) -1
gan(x,1) = —
2v/Ps
ei(yx—errﬁ)’ oy > 0.
(26)

Similarly, one can construct more soliton solutions of
Eq. (1) from set 2.
Case 4 o3 =04 =0,

Set 1

; )
Ag=A =0, B —-— ik/ o0 (Br* + B3)

2 )
c = iik\//fzwz + f3 7
V2
Bi(Br0* + B3) T \/—(/}sz + 33)(ﬁ2(2a2[$3k2(/)’2w2 +p)—1)— ﬁ%ﬁ.@)
' 2B, (Br0* + B3) '
(27)
Set 2
A—n, =0, B =% %(/i;;z“}})’ ¢ :ik\/[ii;u;fﬁg’
b Bi(Bo® + B3) £ *\/*(ﬁzwz + B3) (B2 (202 B3> (Brc? + B3) — 1) — BiBs)
2B, (Bro0* + Bs) ’
(28)

We achieved the following solitary wave solutions of
Eq. (1) from set 1:

(o} — dogrz) sec? (% /oo, — a%f) + ”‘—W + 2v2i\/aguak/ Br? + B3

qai(x,1) =

2(1. — /Aoy — of tan(% VAo, — o:%g’))

L

e

(29)

Similarly, one can achieve more new exact solution of
Eq. (1) from set 22
Case 5 oy = =

Maal = 3 :Oa
Set 1

V204B;
V=05 (r0? + ;) ’

Ag=A,=C, =0, k==

/(B0 +53) (o0 (B Bi+B2) —814, 357 (30)
L hE AR
2,
Set 2
Ap=0, A = :I:L V"\;%w%’
B — :Fifxzk\//fzwz + ps Cr— _iky/Br® + B3
1= 72\/5\/@ ) 1= 7\/5 s
Bu(Bac® + B3) = ) (Ba0? + B) (Baf + Baldoa B2 (B + ) + 1))
.
2B, (Br0* + B3)
(31)

Set 3

BB + B) = = (5o + ) (Ba(8aB (Br0” + By) — 1) = 1)
' 2B, (0% + B3) '
Ci = tik\/2(Br0% + f3).

Ay =A| =B :O,
(32)

Set 4
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Ay

V2= (B0 + B3)

P /2B +3) (o4 (B B3 4-2) ~22043 .3
1+ % (B0 1 o)

2,

Ay=B =C =0, k=+

y =

(33)

We construct the following solitary wave solutions of
Eq. (1) from set 1:

2004 [2%) i(vx—
£ =+ B t i(yx—vt+0)
gs1(x,1) \/ o 1€O (\/ 25)3 ) (34)

a >0, o4 >0.

20(4 (%) i(vx—
1) = £/ — 2By coth ( 4] — ==& ) l* )
q52(-x> ) % 1€CO ( D) é)e ) (35)

05 <0, oy > 0.

One can construct more new solutions of Eq. (1) from sets
2, 3 and 4 similarly.
Case 6 09g=0a; =a, =0,

Fis’uggl -c)

-2 -1 0 1 2

Figure(1 - f)

-2 -1 0 1 2

Figure(1 — i)
T

Fig. 1 Exact solitons in various shapes based on solutions (10), (11) and (15)
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Figure(2 — ¢)

Figure(2 - f)
;

Fig. 2 Exact solitary wave in different shapes based on solutions (20) and (22)

Set 1

i\/d4(ﬁ3ﬁ%+ﬁz)k
Ap=B; =0, A =

\/5(:81 —2B,v)

i/ BsBT + Bok (36)
\/5(/31 —2B,v) 7
_ VA4B3v(BL = Bv) + 1

Bi — 2By .

i\/“4(ﬁ3ﬁ% + Bo)k
A1 = :l: 9
\/E(ﬁ1 —2B,v)
iv/BsBi + Bok (37)
Cl=4—v
\/5(/31 —2B,v)
_ VABV(B, — Bav) + 1
v=F Bi — 2B,y '

The following solitary wave solutions of Eq. (1) are
constructed by substituting set 1 into Eq. (7):

)

C ==

Set 2

Ap =B, =0,

\/ 2(/33/3% + B,)ik (203 /og F a3&)

(238% — dau) (By — 2B,)

as > 0.

ge1(x,1) = —
ei(yvatﬂ?) ,
(38)

Similarly, one can achieve more solitary wave solution of
Eq. (1) from set 2.

4. Modulation instability

Several higher-order nonlinear systems show an instability
that leads to the investigation of the modulation of the
steady state as a consequence of interaction among the
dispersive and nonlinear effects. To obtain the modulation
instability of higher-order NLSE (1) by utilizing the stan-
dard linear stability analysis [5, 42] to scrutinize how weak
and time-dependent perturbations establish along the
propagation distance. The steady-state solution of higher-
order NLSE has the form
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Fig. 3 Exact solitary wave in different shapes based on solutions (25) and (29)

a0e0) = (VP+y(x,0)e?0, g) =Pu,  (39)
where the optical power P is normalized. The perturbation
W(x,t) is investigated by using linear stability analysis.
Substituting Eq. (39) into Eq. (1) and linearizing, we obtain

oy 0 o
i(By +2aﬁzp)a—lf+ia—f+ﬁ2 atlzp
62
+ ﬁza—,:/; — Pa(fy + Pafy)yy + P(2y + ") =0,

(40)

where * denotes complex conjugate. Assume that the
solution of Eq. (40) has the form

1//(x, t) — 5leik(x7mt) + 5267ik(x7wt)7 (41)

where k and o are the normalized wave number and fre-
quency of perturbation. The dispersion relation = w(k)
of a constant coefficient linear evolution equation deter-
mines how time oscillations ¢ are associated with spatial
oscillations e*”’ of wave number k; putting Eq. (41) in
Eq. (40), we achieved a dispersion relation. The graph of
the achieved dispersion relation is shown in Fig. 5.

5. Results and discussion

The extracted solitary wave solutions via the modified
extended mapping method are different from the achieved
solutions of various researchers by other methods because
the considered solution (7) of the current method is dif-
ferent from the existing methods. Equation (4) gives some
special type of solutions such as rational functions and
trigonometric and hyperbolic trigonometric functions via
choosing different values of parameters. So, our achieved
solutions are new and have not been formulated previously.

Figure 1 evaluates the solitary wave solutions in various
shapes based on Case 1 solutions. Figure la—c denotes the
dark solitary wave, bright solitary wave and solitary wave
of solutions (10), (11) and (15) at apb, = 0.5, a3 = 1,04 =
—1,k=05, 8,=1,0,=—-15p=10=159=—1,
06220.5,063:1,064:—1,](:0‘5, ﬁl :17,32
15 =1Lwo=159=-1 and w, =103 =2, 04 =
Lk=05, pi=1p=-15pk=1L,w=1519=-1,
respectively. Figure 1b, e, h and c, f, i evaluates the solitons
in one-dimensional and contour plots of the same solutions,
respectively.

Figure 2 evaluates the exact solitary wave solutions in
different forms based on Case 2 solutions. Figure 2a, d
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Fig. 4 Exact solitary wave in different shapes based on solutions (34) and (35)

denotes the periodic solitary wave and solitary wave of
solutions (20) and (22) at oy = —0.5,04 = 1,6, =
L=-15 p=1lo=1,9=—-1,A, =15 and o, =
0~5,0(4 = 17ﬁl = 17ﬁ2 =-1,

p3=05w=19=-1,A; =15, respectively. Fig-
ure 2b, e and c, f evaluates the solitary wave in one-di-
mensional and contour plots of the same solutions at same
parameters, respectively.

In Fig. 3, the exact solitary wave solutions in different
shapes are drawn based on Case 3 and Case 4 solutions.
Figure 3a, d denotes the solitary wave and periodic solitary
wave of solutions (25) and (29) at ap = —0.5,03 = 1,8, =
05, pfr=-2,/h=lLo=19=—-1A=15v=—1
and =0 =0=1k=1, pi=1,p,=-1.5,
3 =0.75,0 = 1,9 = 1, respectively. Figure 3b, e and c, f
evaluates the solitary wave in one-dimensional and contour
plots of the same solutions, respectively.

Figure 4 evaluates the exact solitary wave solutions in
different forms based on Case 5 solutions. Figure 4a, d
signifies the periodic solitary wave and solitary wave of
solutions (34) and (35) at o, =0.5,04 = 1,6, =1, f, =
-1, =05 0=1,9=—-1,Bi=15and p = —1,04 =
Lp=1, pB=-1,p=050w0=-1,9=1,B =1.5,
respectively. Figure 4b, e and c, f evaluates the solitary
wave in one-dimensional and contour plots of the same

solutions at same parameters, respectively. The dispersion
relation w = w(k) between frequency w and wave number
k of perturbation is presented in Fig. 5.

6. Conclusion

In this article, we have effectively extracted the optical
soliton and solitary wave solutions of higher-order NLSE
with the coefficients of group velocity dispersion, second-
order spatiotemporal dispersion and cubic nonlinearity via
employing the effective and powerful method, namely
modified extended mapping method. The constructed
solitons and solitary wave solutions are of scrupulous
interest experimentally and theoretically due to their
potential applications in high-speed optical fiber transmis-
sion system, trans-oceanic distances, and so on. The
moments of some achieved solutions are presented graph-
ically and also specified the formation conditions for soli-
tons which help the researchers to know the physical
phenomena of this model. Numerous solutions are novel
from achieved solutions. The modulation instability (MI)
analysis is employed, and an analytic expression for the MI
gain has been established which is sensitive to the septic
nonlinearity. The constructed solutions and computational
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Fig. 5 Graph of dispersion relation w = w(k)

work authenticate the effectiveness, simplicity, and power
of the proposed method. The method can also be functional
to other sorts of higher-order nonlinear models in current
areas of research.
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