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ABSTRACT
Both observational and theoretical research over the past decade has demonstrated that the
probability distribution function (PDF) of the gas density in turbulent molecular clouds is a
key ingredient for understanding star formation. It has recently been argued that the PDF of
molecular clouds is a pure power-law distribution. It has been claimed that the log-normal
part is ruled out when using only the part of the PDF up/down to which it is complete, that is
where the column density contours are still closed. By using the results from high-resolution
magnetohydrodynamical simulations of molecular cloud formation and evolution, we find that
the column density PDF is indeed composed of a log-normal and, if including self-gravity,
a power-law part. We show that insufficient sampling of a molecular cloud results in closed
contours that cut-off the log-normal part. In contrast, systematically increasing the field of
view and sampling the entire cloud yields a completeness limit at the lower column densities,
which also recovers the log-normal part. This demonstrates that the field of view must be
sufficiently large for the PDF to be complete down to its log-normal part, which has important
implications for predictions of star formation activity based on the PDF.

Key words: MHD – turbulence – methods: numerical – stars: formation – ISM: clouds –
ISM: kinematics and dynamics.

1 IN T RO D U C T I O N

The (column-) density probability distribution function (henceforth
N-PDF or PDF) has become a powerful tool to analyse the dynam-
ics of molecular clouds both from an observational (Elmegreen &
Scalo 2004; Kainulainen et al. 2009; Brunt 2010; Ginsburg,
Federrath & Darling 2013; Kainulainen, Federrath & Henning 2013;
Lombardi et al. 2014; Burkhart et al. 2015; Schneider et al. 2015a,b,
2016; Federrath et al. 2016) and a theoretical perspective (Passot &
Vázquez-Semadeni 1998; Federrath, Klessen & Schmidt 2008;
Federrath et al. 2010; Konstandin et al. 2012; Girichidis et al. 2014;
Federrath & Banerjee 2015; Nolan, Federrath & Sutherland 2015;
Burkhart, Stalpes & Collins 2017). For isothermal gas, its shape is
best described by a log-normal function as a consequence
of interacting turbulent shocks modifying the density structure
(Vazquez-Semadeni 1994). Mathematically, this shape can be un-
derstood from the central-limit theorem of an ensemble of inde-
pendent events (Passot & Vázquez-Semadeni 1998; Kritsuk et al.
2007; Federrath et al. 2010). In contrast, in a thermally unstable
gas, a multiphase medium is formed, which consequently results
in a multipeaked PDF, with the peaks being located at the charac-
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teristic density of each phase (Pikel’Ner 1968; Field, Goldsmith &
Habing 1969; Gazol et al. 2001; Gazol, Vázquez-Semadeni & Kim
2005). However, the clear separation of the different peaks might
become washed out, when the turbulent motions in the unstable
gas become sufficiently strong (Vázquez-Semadeni, Gazol & Scalo
2000; Audit & Hennebelle 2005).

The high-density fraction of the PDF has either a log-normal
shape for isothermal, non-self-gravitating gas or forms a power-
law tail, when the dense gas structures are dominated by gravity
(Federrath & Klessen 2013; Girichidis et al. 2014; Kainulainen,
Federrath & Henning 2014) or have an equation of state softer than
isothermal (i.e. γ < 1). A physical explanation for the emergence
of a power-law tail due to gravity was given by Kritsuk, Norman &
Wagner (2011). The authors showed that the formation of power-law
density profiles in (small-scale) gravitationally collapsing regions
naturally leads to a power law in the density PDF and thus also
in the N-PDF (see also Federrath & Klessen 2013, and references
therein). In contrast, Lombardi, Alves & Lada (2015) suggest that
the power-law form of the PDF arises because the entire molecular
cloud can be described by a power-law density profile.

But, there can also be other reasons for a power-law tail. It was
shown that gas compression by external pressure (Tremblin et al.
2014) or sufficiently strong turbulence in the thermally bistable gas
can also yield a power-law tail (Vázquez-Semadeni et al. 2000).
Ballesteros-Paredes et al. (2011) have studied the evolution of the
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N-PDF of a molecular cloud formed in numerical simulations of
a thermally unstable gas including self-gravity. They showed that
a power-law tail naturally develops when self-gravity becomes im-
portant, but that the double-peak signature arising from thermal
instability is still visible in the PDF. With these previous studies
in mind, there might indeed arise a PDF, where the signature of
thermal instability is blurred and which thus shows a power-law tail
all the way down to the lowest densities.

The information content of the N-PDF is biased by several effects,
such as by contamination from clouds lying in the fore or back-
ground (Lombardi et al. 2015; Schneider et al. 2015a,b; Ossenkopf-
Okada et al. 2016). As discussed in Schneider et al. (2015a,b) and
Ossenkopf-Okada et al. (2016), this can be corrected for by sub-
traction of a constant offset. However, as Schneider et al. (2015a,b)
point out, such an approach might over or underestimate the influ-
ence of the line-of-sight contamination. In addition, Lombardi et al.
(2015) and Ossenkopf-Okada et al. (2016) show that it is mainly the
low-density part of the PDF that is affected by the contamination,
whereas the high-density (power-law) part is nearly unaffected.

However, it has recently been argued that N-PDFs, after subtrac-
tion of an offset to correct for contamination, are no longer log
normal, but rather show only a power-law form (Lombardi et al.
2015). A theoretical approach was conducted by Ward, Wadsley &
Sills (2014), who study N-PDFs in synthetic observations of sim-
ulated molecular clouds. The authors showed that dynamically old
clouds show a log-normal part in combination with a power-law
tail, but that the log-normal part systematically falls below the vi-
sual extinction threshold. Ward et al. (2014) conclude that a pure
power-law distribution might thus be due only to limited observa-
tional resolution.

The retrieved information of a PDF is only reliable within its
completeness limit (Kainulainen et al. 2013). From an observa-
tional perspective, it has been suggested that the PDF is complete
down to the smallest column density with a closed contour (Kain-
ulainen et al. 2013). By using this definition, it has recently been
argued that column density PDFs of a variety of high-galactic lati-
tude clouds (diffuse or star forming) have a power-law shape when
the last closed contour defines the completeness of the PDF (Alves,
Lombardi & Lada 2017). These authors stated that there is no obser-
vational evidence for log-normal PDFs and that molecular clouds
have PDFs well described by power laws.

In this study, we analyse the N-PDF of molecular clouds formed
in three-dimensional, magnetohydrodynamical simulations of con-
verging flows. We estimate the value of the last closed contour as
a function of a varying field of view (FoV) for a star-forming and
a quiescent region within the formed cloud complex, as well as for
the entire complex and study the obtained N-PDF. We show that the
value of the last closed contour moves towards higher column den-
sities for a decreasing FoV. We find that the log-normal part of the
N-PDF is well within the completeness of the PDF for a sufficiently
large FoV, emphasizing that N-PDFs are indeed composed of a log-
normal part (and a power-law tail, when gravitational collapse sets
in).

This paper is organized as follows: In Section 2 we introduce
the numerical set-up and the initial conditions. Section 3 provides
a brief description of the general time evolution of the formed
clouds and a comparison of the resulting N-PDF for a case with
and without self-gravity but otherwise identical parameters. This
is followed by the presentation of our results of the N-PDF for
different extents of the fields of view (FoVs) of two molecular
cloud regions in Section 4, and our conclusions are given in
Section 5.

2 SI M U L AT I O N DATA A N D M E T H O D S

The simulations presented here were carried out with the FLASH

code in version 2.5 (Fryxell et al. 2000).
We set up two cylindrical flows of warm neutral medium (WNM)

gas with a length l = 112 pc and a radius of R = 64 pc, which col-
lide head-on in the centre of the cubic simulation domain, which
has a volume of Vsim = (256 pc)3. The computational domain is
initially filled with gas of number density n = 1 cm−3 and temper-
ature T = 5000 K. The gas is able to heat and cool via optically
thin radiation, which is given in tabulated form according to the
prescription by Koyama & Inutsuka (2002) and used as a source
term in the energy equation. The fitting functions for the heating
and cooling rates are given by

� = 2 × 10−26 ergs−1, (1)

with the heating rate �, and

�(T )

�
= 107exp

(−1.184 × 105

T + 1000

)

+ 1.4 × 10−2
√

T exp

(−92

T

)
, (2)

where �(T) is the temperature-dependent cooling rate and T the tem-
perature in Kelvin (Koyama & Inutsuka 2002; Vázquez-Semadeni
et al. 2007). By using this definition, the gas is initially in the ther-
mally unstable regime and will develop into a two-phase medium.

The sound speed at the initial temperature is cS = 5.7 km s−1

and the WNM flows are initialized with a flow velocity of
vF = 11.4 km s−1, which corresponds to a isothermal Mach num-
ber of MF = 2, being thus mildly supersonic. In order to trigger
dynamical and thermal instabilities, the flows are additionally tur-
bulent with MRMS = 1, and the energy spectrum is of Burgers type,
E(k) ∝ k−2 (Ossenkopf & Mac Low 2002; Heyer & Brunt 2004).

Since the interstellar medium of galaxies is also magnetized
(Crutcher, Hakobian & Troland 2010; Beck 2012), we add a mag-
netic field B = B0x̂ aligned parallel to the flows with x̂ being the
unit vector in the x-direction. The initial magnitude is B0 = 3μG
in all simulations, indicating that the flows are magnetically crit-
ical with a normalized mass-to-magnetic flux ratio of μ/μcrit ∼
1. Note that accretion of gas from the environment will rapidly
increase the mass-to-flux ratio so that the cloud will be highly
supercritical.1

The simulations presented here use the adaptive mesh refinement
technique (Berger & Oliger 1984; Berger & Colella 1989). The root
grid is at resolution of �xroot = 64 pc. To sufficiently resolve the
dynamics at the initial stages, the collision layer is refined to a reso-
lution of �xlayer = 1 pc. We allow for a maximum of 12 refinement
levels, which gives a minimum cell size of �x = 0.0156 pc. The
grid is refined once the local Jeans length is resolved with less than
eight grid cells. To prevent the gas from fragmenting artificially, we
introduce Lagrangian sink particles when the gas is, besides other
checks, at a density of nthresh = 3 × 105 cm−3, which represent stel-
lar clusters rather than individual stars due to the limited spatial
resolution. This ensures that the simulations are fully resolved and
fragmentation of the cloud is due to physical processes (Truelove
et al. 1997; Federrath et al. 2010). Feedback from sink particles

1Please note that this statement is only true for the region defined by the
flow geometry. The mass-to-flux ratio of the whole box stays constant (and
supercritical) due to the choice of periodic boundary conditions.
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Table 1. Summary of the main simulation parameters.

Edge length 256 pc
Min. cell size 0.015625 pc

Flow length 112 pc
Flow radius 64 pc

Mflow 2
Mrms 1

(Bx, By, Bz)init (3,0,0) μG
Tinit 5000 K
ninit 1 cm−3

via winds, radiation, or supernovae is not included in the simula-
tions, such that our simulations are probing the density PDF pro-
duced by turbulent, magnetized inflowing gas streams and gravity
alone.

With these initial conditions at hand, the following set of equa-
tions of ideal magnetohydrodynamics in combination with Pois-
son’s equation for the self-gravity of the gas and heating and cooling
is solved during each time-step

∂

∂t
� + ∇ · (�u) = 0

�
∂

∂t
u + � (u · ∇) u = −∇Ptot + �g + (B · ∇) B

4π

∂

∂t
E + ∇ ·

[
(E + Ptot) u − (B · u) B

4π

]
= �u · g + n� − n2�

∂

∂t
B + ∇ × (B × u) = 0

∇ · B = 0

∇2	gas = 4πG�. (3)

In the above set of equations, �, u and B denote the gas mass den-
sity, the gas velocity, and the magnetic field, respectively. The total
energy density and pressure are given by E = �εint + �/2|u|2 +
1/(8π)|B|2 and Ptot = Pth + 1/(8π)|B|2, respectively. Furthermore,
the gravitational acceleration g = −∇	gas + gsinks consists of the
acceleration from the gravitational potential of the gas and the ac-
celeration by sink particles. This set of equations is numerically
solved by using the HLL5R Riemann solver to calculate the fluxes
across cell boundaries (Bouchut, Klingenberg & Waagan 2009;
Waagan, Federrath & Klingenberg 2011) and a tree solver to cal-
culate the gravitational potential (optimized for GPUs; Lukat &
Banerjee 2016). For the (magneto)hydrodynamics we apply peri-
odic boundary conditions, while we use isolated ones for the gravity.
This choice of mixed boundary conditions is purely of numerical
convenience and does not affect any of our results as we only extract
and use data far away from the boundaries, i.e. where the molecular
cloud forms.

An overview of the main simulation parameters is given in Table 1
and we refer the reader to Körtgen & Banerjee (2015) for a more
detailled description of the initial set-up.

3 R ÉSU MÉ O F TH E G E N E R A L C L O U D
E VO L U T I O N

In this section we briefly recap the evolution of the molecular
clouds formed in the shocked slab between the converging WNM
streams (see e.g. Banerjee et al. 2009; Körtgen et al. 2016; Körtgen,
Federrath & Banerjee 2017).

The time evolution of the cloud formed in the simulation, hav-
ing an initial turbulent Mach number MRMS = 1.0, is shown in
Fig. 1. The (dynamical) time for the gas at the outer edges of
the flows to reach the centre is t ∼ 10 Myr, so the column den-
sity maps present the more evolved stages of the cloud. The top
row of Fig. 1 shows the cloud complex face-on, where the line of
sight is along the initial flow direction. The bottom row depicts
an edge-on view. Generally it is seen that the cloud is composed
of filaments and dense clumps, which appear at the intersection of
multiple filaments. At late times, the previously teneous regions be-
tween the filaments are seen to be denser since the cloud is collaps-
ing globally (see also Vázquez-Semadeni, González-Samaniego &
Colı́n 2017). The turbulence generated by the inflows and by gravity
shapes the morphology in the sense that the filamentary morphology
prevails.

At t = 14.5 Myr the cloud size is comparable to the size of the
flows. The edge-on view reveals a bent morphology, which is the
result of dynamical instabilities that are triggered by the turbulence
within the flows. Over the course of the evolution, the cloud is ob-
served to shrink in size, due to the aforementioned collapse on a
global scale. As the free-fall time is much shorter for the denser parts
on smaller scales (Heitsch & Hartmann 2008; Vázquez-Semadeni
et al. 2009; Hennebelle & Chabrier 2011; Federrath & Klessen
2012), hierarchical fragmentation has led to the formation of sink
particles in the cloud interior. As more and more regions are collaps-
ing the number of sink particles increases. At the last time shown,
the number of sink particles has grown to Nsink = 16, where most of
them are in close orbits around each other, because of further frag-
mentation of the parental core, so that only a handful are readily
seen.

The outskirts of the cloud are observed to be highly irregular.
Initially, dynamical instabilities distort the gas flows. At late times,
the accretion flow on to the cloud is turbulent, which leads to fur-
ther irregularity of the cloud boundaries (Klessen & Hennebelle
2010).

3.1 The shape of the column density probability distribution
function

In Fig. 2 we show the column density PDF at different times and for
simulations without and with self-gravity. We remind the reader that
the dynamical time of the flows is t ∼ 10 Myr. The cloud evolution
shown here is thus not influenced anymore by the initially coherent
inflowing gas streams from the WNM.

The PDF of the non-gravitating gas is composed of multiple
peaks at log(N/cm−2) ∼ 19.6, 20.1, and 20.7, respectively. The left-
most peak at the lower column density is the surrounding medium. It
shows a small width, because it is non-turbulent initially. The middle
and right peaks show more evolution. At early times, t = 14.5 Myr,
the peaks appear to be well separated due to the action of ther-
mal instability and the resulting differentiation into a multiphase
medium (see e.g. Iwasaki & Inutsuka 2014). However, this double-
peaked signature becomes weaker at later times (see also Vázquez-
Semadeni et al. 2000). It is further seen that the PDF shifts towards
lower column densities. Initially, gas is being compressed by the
flows and starts to expand, once the compressing agent has vanished.
The high-density part of the PDF appears to be not significantly dif-
ferent from a log normal at any time. We point out that, in our case,
the emergence of a power-law tail is thus solely due to gravity and
not due to gas thermodynamics.

In contrast, the evolution of the PDF in the case with self-
gravity is different. First, with time, the PDF shifts towards higher
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Figure 1. Column density maps of the cloud complex formed in between the WNM flows at different times (from left to right: 14.5 , 20.5, and 26.5 Myr). The
upper panels show the complex seen face-on, that is, along the flow direction. Bottom panels show an edge-on view. The black dots represent sink particles
and the black boxes highlight the regions that will be analysed in more detail below. Integration length is L = 160 pc in all cases.

Figure 2. Column density PDF at three times for the whole cloud complex in scenarios without (left) and with self-gravity (right). Four differences are readily
seen. At first, the peak of the PDF shifts to slightly higher column densities for the case with self-gravity. Secondly, due to self-gravity, higher column densities
are reached. The shape of the PDF is composed of multiple peaks in the case without self-gravity due to the greater influence of thermal instability, whose
signature appears to be washed out in the case with self-gravity. Last, in the case with self-gravity, power-law tails emerge.

column densities (in the high-density regime) due to the influence
of self-gravity. Secondly, the emergence of a power tail is already
seen (see also Ballesteros-Paredes et al. 2011, who study the evo-
lution of the N-PDF in a thermally bistable, gravitationally influ-
enced medium). Furthermore, the shape of the PDF in certain col-
umn density regimes appears to vary more over time (e.g. around
log(N/cm−2) ∼ 20). For comparison, the non-self-gravitating sim-
ulation shows (more or less) just a shift of the PDF, but no clear
variation.

4 R ESULTS

4.1 Methodology of the cloud analysis

We present here the results of our analysis on the column density
PDF. In the upper right-hand panel of Fig. 1 we highlight the studied
regions and in Table 2 we provide information on the details of the
analysis. We focus on two regions: The first one is star forming.
One sink particle has already formed and the column density map
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Table 2. Centre position of the analysed regions and list of square boxes
used for data analysis in each region.

Region X Y Z
(pc) (pc) (pc)

Region 1 0 −27.7 −32
Region 2 0 14.75 −3.75

Box edge length (pc) A B C

Region 1 10.5 5.25 3
Region 2 16 8 4

indicates a strongly condensed region, forming a new sink particle
in the future. The second region is a quiescent one with no sink
particles and slightly lower, but still comparable column density to
the first one. This region furthermore shows a centrally condensed
column density structure.

For the analysis, we proceed as follows: We first produce a col-
umn density map of the specific region. Next, we calculate column
density contours with a contour spacing of �log(N/cm−2) = 0.01
in square FoVs of varying side-length centred around the centre of
the region and estimate the value of the last closed contour. This is
then highlighted in the column density map and in the N-PDF of
the individual FoV.

4.2 The completeness of the N-PDF

In Fig. 3 we show column density maps of the star-forming re-
gion 1 with overlaid column density contours. Some information
can be found in Table 2. The FoV decreases from left to right,
covering areas of 10 × 10 pc2, 5 × 5 pc2, and ∼3 × 3 pc2. This re-
gion is composed of a centrally condensed part near the already
formed sink particle, which is embedded in a larger-scale filamen-
tary structure (see also Fig. 1). The coloured contour lines depict
the last closed contour and we additionally show them within the
next larger FoV. In the bottom row of the same figure, we show
the column density distribution of the individual FoV. The value
of the last closed contour is indicated by the coloured vertical line.
It is evident that the value of the last closed contour shifts towards
higher column densities, being at log(N/cm−2) = 20.9 for the largest
and at log(N/cm−2) = 21.6 for the smallest FoV. Furthermore, it is
evident that the distribution above this value changes significantly.
For the smallest FoV, it resembles a power-law tail, as this area is
dominated by gravity. A small change in the slope of the power
tail is also observed for �log(N/cm−2) ∼ 22.7, probably being in-
dicative of a rotationally supported structure on the smallest scales
(e.g. Kritsuk et al. 2011). Increasing the FoV results in a slight shift
of the value of the last closed contour to smaller column densities.
Also for this FoV, the distribution above the last closed contour
more closely resembles that of a power-law distribution, though the
last closed contour is now seen to be closer to the turnover of the
distribution. Increasing the FoV even further results in a larger shift
of the last closed contour towards even smaller column densities. It

Figure 3. Top: Column density maps of a region undergoing gravitational collapse with decreasing FoV from 10 × 10 pc2 (left), over 5 × 5 pc2 (middle)
to 3 × 3 pc2 (right). The data range is 19 (white) < log(N

[
cm−2

]
) < 23 (black). Overlaid are contour lines of the column density. The green, blue, and red

contour lines indicate the last closed contour for the largest, intermediate, and smallest FoV, respectively. Black lines denote closed contours with contour
spacing of �log(N) = 0.2. Bottom: Corresponding column density PDF (grey) with overlaid value of the last closed contour, which highlights the completeness
limit. The black error bars denote the Poisson errors of each bin, calculated as

√
Nbin with Nbin being the pixel count of each bin. It is clearly seen that, for

a larger FoV, more and more of the PDF, which deviates from a power law falls within the completeness limit. Note the gradual shift of the value of the last
closed contour towards higher column densities for decreasing FoV.
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Figure 4. Same as Fig. 3 for a centrally condensed, but non-star-forming region. Please note that the contour spacing for the black contours has changed as the
column density profile is rather flat near the center. Note that, in the left-hand panel with a FoV of 16 × 16 pc2, turbulent motions in the cloud create regions
of enhanced density at various positions within the FoV. This will lead to a last closed contour at higher column densities, if a high-density region is located
near the boundaries of the FoV.

is now evident that the resolved distribution above the closed con-
tour does not resemble a pure power-law distribution anymore. This
distribution also includes part of the log-normal turnover, though we
emphasize that it does not completely fall within the completeness
limit.

For comparison, we show in Fig. 4 the column density maps
and corresponding distributions for a non-star-forming region. This
region appears to be also centrally condensed, with the column den-
sity profile being rather flat near the centre. The FoV is 16 × 16 pc2,
8 × 8 pc2, and 4 × 4 pc2. We point out that, in this region, it is not
clear how to interpret the shape of the column density distribu-
tion at larger column densities. However, it is still evident that
the value of the last closed contour shifts towards lower column
densities with increasing FoV, which shows that the above stated
argument also holds for other regions within the formed cloud
complex.

4.2.1 The last closed contour in a turbulent environment

So far we have studied the last closed contour for relatively centrally
condensed regions. The left-hand panel in Fig. 4 highlights the
effects of a turbulent environment, in which various overdensities
appear within the FoV. If these regions are of similar column density
or a high column density region resides near the boundaries of the
FoV, this will lead to a value of the last closed contour that is at
column densities well within the power-law tail. Instead, one has to
consider that in a fully turbulent medium, there will essentially be
no closed contour anymore for a sufficiently low column-density
threshold. This is just natural for a turbulent medium, so the current

way of using closed contours to define a column-density threshold
basically excludes the log-normal peak by construction. This applies
in particular for regions, where only a single last closed contour is
accepted within the FoV. Such single closed contours can only be the
result of gravitational collapse and hence those will only capture the
very highest density part of the PDF, where gravitational collapse
has turned the high-density wing of the original log-normal PDF
into a power-law tail.

Fig. 5 shows the column density distribution for a varying FoV for
the whole cloud complex that has been formed in the compression
layer of the two converging, turbulent WNM flows. Highlighted by
vertical lines are the values of the last closed contour for the given
FoV. It is obvious that, in the case of a turbulent, and thus patchy,
environment, the last closed contour is well within the power-law
regime of the distribution. Only the largest FoV, which captures the
entire initial radial extent of the WNM flows and some diffuse gas,
is able to also resolve the turnover in the distribution. We, however,
caution here that this is based on our rather idealized simulation
setup and things will look differently in the real ISM.

5 C O N C L U S I O N S

We have presented results from molecular cloud formation simu-
lations to study the completeness of the column density PDF. The
clouds have been formed in the shocked layer between two super-
sonically converging streams. We have produced column density
maps and PDFs of two different, but centrally condensed regions
within the formed complex to study the shape and completeness of
the PDF. In a next step, we calculated the value of the last closed
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The density PDF in MCs 5239

Figure 5. Distribution of column densities for three Fovs centred on the
centre of the simulation domain. Only the largest FoV contains the whole
cloud complex. The smallest FoV also excludes certain star-forming regions.
Similar to the individual regions within the complex, the turnover in the
distribution is only captured for a sufficiently large FoV.

contour in order to estimate the completeness limit of the N-PDFs.
We have found qualitatively good agreement of the shape of the
N-PDF with previous observational and numerical studies. We then
showed that the last closed column-density contour moves towards
higher column densities with decreasing size of the FoV. This means
that, for too small sizes of the FoV, the N-PDF is only complete
from the beginning of the power-law tail on towards the maximum
column density. However, a sufficiently large FoV captures the log-
normal part of the PDF. This was also confirmed by the analysis
of the column density distribution of the whole complex. Our re-
sults show that the N-PDFs of self-gravitating, turbulent molecular
clouds are well described by a log-normal peak and a power-law
tail. We conclude that a fully reliable observational study, which
takes into account the completeness limit of the PDF must cover
a sufficiently large FoV, which might be difficult due to increasing
contamination from neighbouring molecular clouds or a decreasing
signal-to-noise ratio at the low column-density end of the PDF.
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