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Abstract

This thesis is comprised of theoretical investigations on several different strong field
and/or sub-femtosecond processes resulting from the interaction between atoms
and short laser pulses. Said theory is based on the numeric solution of the time-
dependent Schrödinger equation (TDSE) by high performance computing methods.
Specifically, Chapter 2 examines the Attoclock, a strong field problem designed to
clock the escape of an electron as it tunnel ionises. In which, we present both the
result of a collaboration yielding the first agreement between ab initio theory and
experiment [Sainadh et al., Nature 568, 75 (2019)], and a straightforward model
based on classical scattering for an idealised version of the problem [Bray et al.,
Phys. Rev. Lett. 121, 123201 (2018)]. Chapter 3 considers reconstruction of at-
tosecond beating by interference of two-colour transitions (RABBITT) in which an
attosecond pulse train ‘pump’ and infrared pulse ‘probe’ simultaneously impinge on
a target with a precisely controlled delay between them. The oscillating phase of
the ionisation probability as a function of this delay yields the angular anisotropy
parameter and Wigner time delay for its corresponding energy. We calculate and
present these quantities for the valence p-shell of various noble gas atoms [Bray et
al., Phys. Rev. A 97, 063404 (2018)] and additionally examine the effect of an encap-
sulating C60 fullerene cage on the 4d shell of Xe [Bray et al., Phys. Rev. A 98, 043427
(2018)]. In Chapter 4 we look at the effect of electron correlation on high harmonic
generation (HHG), the process by which attosecond pulses are produced, from one
and two colour fields. We perform single active electron calculations for the 5p shell
of Xe and model the correlation as an enhancement factor taken as the ratio be-
tween photoionisation cross-sections computed with and without said correlations.
Doing so we report solid agreement with experimentally observed spectra for both
field setups [Bray et al., Phys. Rev. A 100, 013404 (2019)]. Finally, Chapter 5
investigates the non-dipole problem of the state resolved strong field acceleration of
neutral species. This requires the solution of the coupled two-body TDSE of the
centre of mass and reduced mass electron, each with three degrees of freedom, in a
non-spatially uniform field. Accordingly it necessitates its own dedicated solution
method. Developing and applying said method to atomic hydrogen we compute
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an acceleration for each state consistent with experimental observation [Bray et al.,
Phys. Rev. Lett., Submitted]. Additionally our method allows us, via comparison
with classical expressions, to derive the time at which each excited state was pro-
duced and, by similar means, an effective polarisibility for the ground state. Most
interestingly this latter value is of opposite sign to the typical +9/2, providing an
unambiguous signature of having entered the Kramers-Henneberger regime.
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Chapter 1

Introduction

We begin with general motivation for the problems considered within this work and
with definitions and theory common to two or more subsequent chapters. Note
that our presentation is within a non-relativistic spin-free framework (will the small
exception of Section 4.1.1) and given in atomic units.

1.1 Motivation

The role of time in quantum mechanics is under never greater scrutiny due to the de-
velopment and application of ultrafast pulsed lasers. Similar to a snapshot camera,
by interacting with a system on a timescale comparable with its dynamics, one gains
access to its underlying temporal nature. With pulse durations now commonly in
the few-femtoseconds (10−15 s) or even attoseconds (10−18 s), the motion of electrons
within atoms is within reach. As such, problems involving these pulses interacting
with atoms are sufficiently fundamental that experiments provide unprecedented
tests of the theory at the heart of quantum mechanics. In this work we consider
several such problems and compute experimental observables by means of methods
based on the solution of the time-dependent Schrödinger equation. Namely; we con-
sider the attoclock (Chapter 2), reconstruction of attosecond beating by interference
of two-photon transitions (Chapter 3), high harmonic generation (Chapter 4), and
the state-resolved acceleration of neutrals (Chapter 5). Problem specific motivation
and background for the work we have conducted can be found immediately following
each respective chapter heading.

1.2 Pulse description

Our description of the laser pulse is as an external freely propagating (zero scalar
potential) electromagnetic wave of electric field E, and magnetic field B, via the

1



2 § 1.2 Pulse description

vector potential A, such that

B = ∇×A (1.1)

E = −∂A
∂t

. (1.2)

1.2.1 Dipole approximation

In the ‘dipole’ or ‘long wavelength’ approximation we assume the wavelength of the
electromagnetic oscillation is much larger that the physical dimensions of our system
of interest. Equivalently we say that the field is uniform in space across our system
such that A(r, t) → A(t). Dropping this spatial dependence sets the curl of A to
be zero and accordingly the same for the magnetic field B.

The shortest wavelengths typically encountered in strong field problems are of
the order of 100’s of nanometres while the physical dimensions are on the scale of
Bohr radii (∼ 0.053 nm). Accordingly the dipole approximation is commonly used
in such problems to the point where it often does not receive explicit mention. An
exceptional problem for which we must go beyond this approximation is discussed
in Chapter 5.

1.2.2 Explicit form

Unless otherwise stated, the form of the vector potential used to describe the pulse
is the following

A(t) = A0f(t)√
1 + ε2

[
cos(ωt+ φ)x̂+ ε sin(ωt+ φ)ŷ

]
. (1.3)

In (1.3) A0 is the amplitude, f(t) is an envelope function (maximal for t = 0), ε is
the ellipticity, ω is the frequency, and φ is the carrier envelope phase (CEP). This
form relates straightforwardly to the peak intensity as (see Appendix A.1)

I = (ωA0)2 = E2
0 . (1.4)

The two commonly used envelope functions are:

Sinusoidal

f(t) =


[
cos

(
ωt
2N

)]n
−Nπ/ω ≤ t ≤ Nπ/ω

0 elsewhere
(1.5)

Here N determines the number of cycles and n the steepness of the falloff. The
advantage of this form is that it has a natural well defined point from which the
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pulse is both differentiable and zero.

Gaussian

f(t) =



exp
{
−αt2

}
|t| ≤ t1

exp
−α

(
t1 + 2

π
(t2 − t1) tan

(
π
2
|t|−t1
t2−t1

))2
 t1 < |t| ≤ t2

0 t2 < |t|

(1.6)

Here t1 and t2 are positive times which determine the ‘soft’ and ‘hard’ cutoffs of the
raw Gaussian. Such modification is necessary as a Gaussian function is only zero in
the infinite limit and to ensure where the hard zero is chosen is reached smoothly.
The parameter α determines the steepness of the envelope and is related to the
full-width-half-maximum w (FWHM) of the intensity as the limit of the convergent
sequence (see Appendix A.2)

α = lim
n→∞

αn, αn+1 = 2
w2

[
ln 2 + ln(1 + (wαn/ω)2)

]
(1.7)

α0 = 2 ln 2
w2 . (1.8)

For sufficiently long pulses for which the time derivative of the envelope can be
neglected we simply have

α = 2 ln 2
w2 . (1.9)

Gaussian pulses are thought to better approximate those produced in experiment.

1.2.3 Keldysh parameter

The Keldysh parameter [1]

γ =
ω
√

2Ip
E0

= 4πτtunnelling

τfield
; τfield = 2π

ω
, τtunnelling = Ip/E0√

2Ip
, (1.10)

is an often encountered quantity when considering laser-atom interactions. It can
be thought of as a ratio between the time for a classical particle to transmit through
the distorted potential barrier of the atom (field-free ionisation energy Ip) exposed
to a laser field and the oscillation period of the field itself. For γ � 1 the oscillation
of the field is slow relative to the potential tunnel ionisation process and thus the
latter is expected to dominate. Such a scenario is accordingly said to be in the
tunnelling regime. Conversely for γ � 1 and multiphoton ionisation/regime.

The Keldysh parameter can also be interpreted as a ratio of the ionisation po-
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tential and a quantity known as the ponderomotive energy for an electron

γ2 = Ip
2Up

. (1.11)

This quantity is the cycle averaged kinetic energy for a free particle in a sinusoidal
electric field of amplitude E0 and frequency ω. For a particle of charge q and mass
m it is given by

Up = q2E2
0

4mω2 . (1.12)

1.3 Solution method

The time-dependent Schrödinger equation describes exactly the evolution of a non-
relativistic system

i
∂

∂t
|Ψ〉 = Ĥ|Ψ〉 . (1.13)

It is this equation that we seek to solve within the single-active-electron approxima-
tion. The remainder of this section is dedicated to the three distinctive features of
our approach

• The propagator is ‘split’ into several parts via a Peaceman-Rachford based for-
mulation. Doing so avoids the need for matrix inversion in favour of tridiagonal
algorithms and allows for greater parallel computation.

• A rotating coordinate frame is used such that the vector potential is always
aligned with the local z-axis and corresponding angular momentum projection.
This provides us with the familiar and desirable conservation rule of ∆m = 0
even when departing from linear polarisation at the cost of performing small
angle rotations for each timestep.

• Spatial derivatives are of the form ∇(1,2) = M−1
1,2∆1,2 where M and ∆ are

tridiagonal matrices i.e. only involve nearest neighbour terms. In such a form
for a uniform grid of spacing h yields derivatives accurate to O(h4) at the cost
of no longer being strictly anti-Hermitian or Hermitian for first (1) and second
(2) orders respectively.

1.3.1 Gauge choice

The Hamiltonian describing a particle of mass m and charge q interacting with our
laser field in the presence of a central potential V (r) written in the so-called velocity
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gauge [2, 3] is

Ĥv = 1
2m(p̂− qA(t))2 + V (r) . (1.14)

Here p̂ = −i∇r is the momentum operator for said particle. Applying the unitary
transformation

Gv = exp(−iqr ·A(t)) (1.15)

such that |Ψ〉 → G|Ψ〉 yields the equivalent expression in the length gauge

Ĥ l = 1
2m p̂

2 − qr ·E(t) + V (r) . (1.16)

Applying instead the following Kramers-Henneberger transformation [4]

Ga = exp
(
−iα(t) · p̂

)
(1.17)

α(t) = − q

m

∫ t

−∞
A(t′)dt′ (1.18)

yields the acceleration gauge / frame

Ĥa = 1
2m(p̂2 + q2A2(t)) + V (r +α(t)) . (1.19)

This form constitutes a shift of coordinates to that which follows the position of the
particle under the influence of the pulse alone. Accordingly, for this formulation the
Coulomb potential is moving in time.

Our numerical approach [5, 6] is based on the velocity gauge. The reasoning
behind this is that for the length gauge expression the presence of the r ·E(t) term is
prone to precision loss when describing ionisation (r →∞), while the consequences
of having a moving Coulomb field for the acceleration form are more costly than any
benefit gained. Nonetheless do note that our choice is not universal and in different
contexts others may be made, a particularly interesting example of which being the
mixed gauge choice in [7].

1.3.2 Propagator on a grid

The solution method is said to be ‘on-the-grid’ as opposed to using time-dependent
basis functions. In such, the wavefunction is defined on a discrete radial grid at
a given time t, and a propagator is calculated such that for a sufficiently small
timestep |Ψ(t + δt)〉 ≈ Û(t + δt, t)|Ψ(t)〉 to any desired precision. Accordingly the
substantive part of such an approach is in the construction of this propagator.
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Recall that the equation we wish to solve is of the form [8]

i
∂

∂t
|Ψ〉 = Ĥ|Ψ〉 (1.20)

=⇒ |Ψ(t+ δt)〉 = exp
(
−iĤδt

)
|Ψ(t)〉 (1.21)

=⇒ Û(t+ δt, t) = exp
(
−iĤδt

)
. (1.22)

As such, the simplest approximation for the propagator is obtained by taking the
first two terms (constant and linear) in the expansion of the matrix exponential

ÛEul
fwd(t+ δt, t) = 1̂− iĤδt , (1.23)

known as the forward Euler method. Similarly, we have the backward Euler

ÛEul
bak(t+ δt, t) =

(
1̂ + iĤδt

)−1
. (1.24)

The Crank-Nicolson method [9]

ÛCN(t+ δt, t) =
(

1̂ + iĤ
δt

2

)−1 (
1̂− iĤ δt

2

)
, (1.25)

improves on the above by approximating instead the matrix exponential to quadratic
order. This is a central difference, or the trapezoidal rule, an approximation com-
bining both the forward and backward Euler steps for t+ δt/2. It is also worthy of
note that the resulting operator from this combination is unitary.

For the Crank-Nicolson method, the computationally limiting factor is the in-
volved matrix inversion. However, in several cases (e.g. diffusion), properties of the
Hamiltonian may be exploited such that it may be instead solved using tridiago-
nal matrices. To make full use of such properties we turn to the iterative methods
known as Peaceman-Rachford [10, 11]. In which we consider

Ĥ = Ĥ1 + Ĥ2 (1.26)
=⇒ Û(t+ δt, t) = exp

(
−i(Ĥ1 + Ĥ2)δt

)
, (1.27)

and make the approximation

ÛPR(t+ δt, t) =
(

1̂ + iĤ1
δt

2

)−1 (
1̂ + iĤ2

δt

2

)−1

×
(

1̂− iĤ2
δt

2

)(
1̂− iĤ1

δt

2

)
. (1.28)

Doing so allows us to instead of finding the matrix inverse of our Hamiltonian in
aggregate, to treat its summed components separately via tridiagonal methods in
parallel.

Note that while the above discussion in the strictest sense only applies for a time-
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independent Hamiltonian, the extension of Crank-Nicolson for time dependence is

ÛCN(t+ δt, t) =
(

1̂ + iĤ(t+ δt)δt2

)−1 (
1̂− iĤ(t)δt2

)
, (1.29)

and accordingly for Peaceman-Rachford

ÛPR(t+ δt, t) =
(

1̂ + iĤ1(t+ δt)δt2

)−1 (
1̂ + iĤ2(t+ δt)δt2

)−1

×
(

1̂− iĤ2(t)δt2

)(
1̂− iĤ1(t)δt2

)
. (1.30)

1.3.3 Rotating coordinate frame

For problems involving non-linear polarisation we choose to rotate our coordinate
system such that A(t) is always aligned with the local z-axis and its corresponding
angular momentum projection m. Doing so allows us to consider only a single
momentum operator with the familiar property of ∆m = 0. Let us now examine
the consequences of working in such a rotating coordinate system.

We define the rotation relative to the laboratory frame as the 3 × 3 unitary
matrix R such that

R(t) ·A(t) =


0
0

Ar(t)

 , (1.31)

where Ar is the radial magnitude of A. Using R we relate our wavefunction in the
lab frame and the local frame via

Ψlab(r, t) =
∑
LM

Ψloc
LM(r, t)
r

YLM
(
R(t) · r̂

)
, (1.32)

where YLM is the spherical harmonic of total angular momentum L ∈ [0,∞) and
z-projection M ∈ [−L,L]. Substituting this wavefunction into the lab frame TDSE
with velocity gauge Hamiltonian (1.14) yields a Hamiltonian in the rotating local
frame of the form

Ĥ loc(t) = Ĥlaser(t) + Ĥatom + Ĥrot(t) . (1.33)

Here Ĥatom is the familiar time-independent Hamiltonian

Ĥatom = 1
2 p̂

2
r + V (r) + L(L+ 1)

r2 , (1.34)

while Ĥlaser and Ĥrot are the time-dependent laser and rotational couplings respec-
tively (see Eqs. (18)-(25) of [6]).

Applying (1.30) to this derived Hamiltonian we have our ‘H.G. Muller’ propaga-
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tor

ÛHGM(t+ δt, t) =
(

1̂ + iĤlaser(t+ δt)δt4

)−1 (
1̂ + iĤatom

δt

4

)−1 (
1̂ + iĤrot(t+ δt)δt4

)−1

×
(

1̂− iĤrot(t)
δt

4

)(
1̂− iĤatom

δt

4

)(
1̂− iĤlaser(t)

δt

4

)
. (1.35)

It is this propagator that is applied to our wavefunction at each timestep throughout
the calculation. For details on the computation of each term please see Eqs. (37)-(47)
and corresponding Sections 2.3.1-4 of [6].

1.3.4 Implicit spatial derivatives

Please note that the discussion in this section only considers the interior points
of a uniformly spaced grid of spacing h. For the treatment of the grid edges or
non-uniform spacing please see Section 2.2 of [6].

In the calculation of our propagator we unsurprisingly need first and second
radial derivatives. While we could simply take use the following finite difference
expressions accurate to O(h2)

∇(1)f ≈ fn+1 − fn−1
2h (1.36)

∇(2)f ≈ fn+1 − 2fn + fn−1

h2 , (1.37)

the accuracy of such spatial derivatives strongly influences the quality of the calcu-
lation for a given radial grid. While expressions (1.36) and (1.37) are not sufficiently
accurate, they are exceedingly simple to calculate due to being tridiagonal in matrix
form, a property we wish to preserve. As such we look for approximations of the
form

∇(1,2) ≈M−1
1,2∆1,2 , (1.38)

where M1,2 and ∆1,2 are tridiagonal. Applying this to a function f defined on our
radial grid, we have

Mn−1f
(1,2)(r − h) +Mnf

(1,2)(r) +Mn+1f
(1,2)(r + h)

≈ ∆n−1f(r − h) + ∆nf(r) + ∆n+1f(r + h) , (1.39)

for Mn and ∆n being the non-edge diagonal elements of the matrices. We will
additionally impose the constraint that Mn−1 + Mn + Mn+1 = 1 to ensure the
solution is unique and non-trivial. Expanding f around the point r in a Taylor
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series we have

Mn−1

 ∞∑
m=0

f (m+1,2)(r)
m! (−h)m

+Mnf
(1,2)(r) +Mn+1

 ∞∑
m=0

f (m+1,2)(r)
m! hm


≈ ∆n−1

 ∞∑
m=0

f (m)(r)
m! (−h)m

 + ∆nf(r) + ∆n+1

 ∞∑
m=0

f (m)(r)
m! hm

 . (1.40)

With our previously mentioned constraint, we essentially have an equation in 5
unknowns and, accordingly, from equating derivatives of f (m) for m ∈ 0, 4 we will
completely define said unknowns. These equations are of the form

H(m− x)
h2

Mn−1
(−1)m−x

(m− x)! + δx,mMn+Mn+1
1

(m− x)!


= ∆n−1

(−1)m

m! + δ0,m∆n+ ∆n+1
1
m! , (1.41)

for the approximation to ∇(x), x ∈ 1, 2. Here H(x) is the unit step function with
H(0) = 1, and δi,j is the Kronecker delta. The explicit solutions are

∇(1) ≈ {Mn−1,Mn,Mn+1} = 1
6{1, 4, 1} , {∆n−1,∆n,∆n+1} = 1

2h{−1, 0, 1}

(1.42)

∇(2) ≈ {Mn−1,Mn,Mn+1} = 1
12{1, 10, 1} , {∆n−1,∆n,∆n+1} = 1

h2{1,−2, 1} .

(1.43)

By our construction we will have an equality up to terms in f (4) which corresponds
to errors of order O(h4) and O(h3) for ∇(1) and ∇(2), respectively. Upon inspection,
however, we find that the second derivative solution also satisfies (1.41) for m = 5.
Accordingly both operators have errors O(h4).

An important consequence of this approximate construction, however, is that the
operator M−1

1 ∆1 is not strictly anti-Hermitian as (∇(1))† = −∇(1). In fact, similarly
for non-uniform radial grids, the approximation M−1

2 ∆2 is no longer Hermitian [6].
Accordingly, our Hamiltonian itself is only approximately Hermitian and, as such,
requires special treatment. For a non-Hermitian matrix H we must consider both
left and right eigenvectors of the form

HR = εR (1.44)
L†H = εL† (1.45)

as L 6= R. Equivalently we must consider both left and right wavefunctions which
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satisfy

i
∂

∂t
|ΨR〉 = Ĥ |ΨR〉

i
∂

∂t
|ΨL〉 = −Ĥ†|ΨL〉 . (1.46)

From which we observe that the two functions may be propagated in an identical
fashion simply by replacing Ĥ → −Ĥ†. Under this non-Hermitian formulation the
expectation value of an observable O is

〈O〉 = 〈ΨL|O|ΨR〉 . (1.47)

It is truly worthily of note that the accuracy and efficiency saving of these operators
is such that it supersedes the cost of propagating a second wavefunction. Addi-
tionally it can be shown that there exists a Hermitian Hamiltonian equivalent, that
while impractical to repeatedly evaluate, guarantees that propagation is possible
without an exponentially growing norm [6].

1.3.5 Photoelectron spectra extraction

In Chapters 2 and 3 the primary observable of interest is the distribution of photo-
electron momenta, or spectra, resulting from the given process. To do so we employ
the surface flux methods of [12, 13] for which their basis is detailed in the following.

Assuming we have the wavefunctions |Ψ〉 which are solutions for Hamiltonian
Ĥ, let us consider instead the solutions |X〉 of ĤA which is comprised of only the
asymptotic in r parts of Ĥ. Accordingly the |X〉 are the asymptotic states of |Ψ〉
such that the amplitude given by

a(t)X = 〈X(t)|Ψ(t)〉 (1.48)

for sufficiently large t is the ionisation probability to |X(t)〉. However, at such large
t, it is numerically impractical to maintain the entirety of the wavefunction within
a finite radial box. As such, we turn to surface flux methods.

Let us say at large asymptotic time t the overlap (1.48) is dominated far from
the origin, beyond some radius R. Therefore we can write

a(T )X =
∫

d3rX∗(r, T )Θ̂RΨ(r, T ) , (1.49)

where Θ̂R is the operator form of the positive spherical step function with the def-
inition on the boundary Θ̂R|R〉 = |R〉. Similarly, let our R be such that at time 0
the entire wavefunction is contained within r < R, hence

a(0)X =
∫

d3rX∗(r, 0)Θ̂RΨ(r, 0) = 0 . (1.50)
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Accordingly, we can write

a(T ) = a(T )− a(0)

=
∫ T

0
dt ∂

∂t

∫
d3rX∗(r, t)Θ̂RΨ(r, t)

=
∫ T

0
dt i

∫
d3rX∗(r, t)

(
ĤAΘ̂R − Θ̂RĤ

)
Ψ(r, t)

=
∫ T

0
dt i

∫
d3rX∗(r, t)

[
ĤA, Θ̂R

]
Ψ(r, t) , (1.51)

where
[
ĤA, Θ̂R

]
is their commutator. This commutator is only non-zero on the

boundary r = R as it is here where it does not trivially commute with radial
derivative operators. We will see this explicitly below. Accordingly, we write (1.51)
as the surface integral

a(T ) =
∫ T

0
dt i

∫
r=R

dΩ X∗(r, t)
[
ĤA, Θ̂R

]
Ψ(r, t) . (1.52)

Infinite time correction

However, for (1.52) to be the asymptotic value with respect to time, we require
the entire of the wavefunction to have passed through said surface, which requires
significant propagation beyond the end of the pulse. To overcome this, we consider
an infinite time correction to (1.52) given that A(t > T ) = 0. Beyond this point the
Hamiltonian is now time independent and consequently the wavefunction simply is
given by

|Ψ(t)〉 = e−iE(t−T )|Ψ(T )〉 t > T , (1.53)

where the total energy E satisfies Ĥ(t > T )|Ψ(t)〉 = E|Ψ(t)〉. Similarly, we can
write the time dependence of 〈X(t)| as

〈X(t)| = 〈X(T )|ei(ε+i0)(t−T ) , (1.54)

where ε is the energy of the state. Here an infinitesimal imaginary component
i0 = limx→0 ix is added to ensure outgoing spherical boundary conditions (→ 0) at
infinity. Accordingly, the extension of (1.52) becomes

a(∞)− a(T ) =
∫ ∞
T

dt iei(ε+i0−E)(t−T )
∫
r=R

dΩ X∗(r, T )
[
ĤA, Θ̂R

]
Ψ(r, T )

= 1
ε+ i0− E

∫
r=R

dΩ X∗(r, T )
[
ĤA, Θ̂R

]
Ψ(r, T ) . (1.55)

Asymptotic states

We now have our amplitudes given by (1.52) and (1.55). What remains is our choice
of the asymptotic Hamiltonian ĤA of which we will consider the two: Volkov and
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Coulomb,

ĤV = 1
2(p̂+A(t))2 (1.56)

ĤC = 1
2 p̂

2 + V (r) . (1.57)

The Volkov states have the advantage of being solutions in the presence of the exter-
nal field allowing the projection to be calculated while the pulse is present via (1.52).
After the pulse the Volkov states are simply plane waves. A consequence, however,
is that R must be sufficiently large such that the atomic potential may be neglected.
Contrastingly, the Coulomb waves solutions of its corresponding Hamiltonian are
exact regardless of the R chosen yet require the pulse to be over. As such, we re-
quire T sufficiently large such that the entirety of the wavefunction remains within
the volume r < R, or equivalently the right hand side of Eq. (1.52) is equal to zero,
effectively losing any efficiency gained from this surface formulation. Nonetheless, it
provides a useful check against the Volkov form when both are numerically viable.

Let us finally evaluate the explicit forms of Eqs. (1.52) and (1.55) by computing
the commutator with the step function. For the Volkov Hamiltonian[

ĤV , Θ̂R

]
= −1

2
[
∇ · ∇, Θ̂R

]
+ i

[
A · ∇, Θ̂R

]
= −1

2

(
∇ ·

[
∇, Θ̂R

]
+
[
∇·, Θ̂R

]
∇
)

+ iA ·
[
∇, Θ̂R

]
= −1

2

(
1
r2∂r

(
r2δ(r −R)

)
+ δ(r −R)∂r

)
+ iArδ(r −R) , (1.58)

where δ(r − R) is the Dirac delta function and Ar is the radial magnitude of A.
Substituting this result into Eq. (1.52) and conjugating to make the operator i∂r/r2

act to the left, we have

a(T ) =
∫ T

0
dt

∫
r=R

dΩ
(
i

2
[
∂r, X

∗(r, t)
]
− ArX∗(r, t)

)
Ψ(r, t) . (1.59)

The commutator for the Coulomb Hamiltonian is identical to (1.58) setting Ar = 0
but, as mentioned above, Eq. (1.59) is thus invalid for t < T where A(t) is non-zero.
Accordingly, however, for Eq. (1.55) defined such that A(t) = 0 for t > T both
Hamiltonians yield

a(∞)− a(T ) = 1
ε+ i0− E

∫
r=R

dΩ 1
2
[
∂r, X

∗(r, T )
]

Ψ(r, T ) . (1.60)
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Attoclock

This chapter is based on the following publications:

A. W. Bray, S. Eckart, and A. S. Kheifets, “Keldysh-Rutherford model for the
attoclock,” Phys. Rev. Lett. 121, 123201 (2018).

U. S. Sainadh, H. Xu, X. Wang, A. Atia-Tul-Noor, W. C. Wallace, N. Douguet,
A. Bray, I. Ivanov, K. Bartschat, A. Kheifets, R. T. Sang, and I. V. Litvinyuk,
“Attosecond angular streaking and tunnelling time in atomic hydrogen,” Na-
ture 568, 75 (2019).

A. W. Bray, “The attoclock and tunnelling time,” J. Phys. Conf. Ser. (ICPEAC
2019), Accepted.

A quintessential example of a time resolved atomic physics problem is that known
as the ‘attoclock’. In such, the rotating electric field vector of a (near)-circularly
polarised laser pulse applied to a target atom or molecule maps the timing of the
resultant tunnel ionisation onto the photoelectron momentum. From the distribu-
tion of this momentum, a measurement of the ‘tunnelling time’ for the process is
derived. However, despite a decade passing since the techniques inception [14], lack
of consensus persists over its interpretation, in no small part due to the notion of
tunnelling time itself.

First examined by MacColl [15] in 1932, the concept of a tunnelling time has
received great attention and is the subject of a recent review [16]. The problem of a
Gaussian wavepacket scattering from a rectangular finite potential barrier as exam-
ined by [15, 17] is illustrated in Figure 2.1. However, due to its somewhat arbitrary
nature, in several different contexts a quantity using this moniker has been defined.
Each of these definitions are mutually incomparable as they are fundamentally dif-
ferent methods of quantifying the underlying physical process. Hence the question
is, does the attoclock contain any physics attributable to a tunnelling time, and if
so, is it compatible with an existing definition or is yet of another form?

13

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.123201
https://www.nature.com/articles/s41586-019-1028-3
https://www.nature.com/articles/s41586-019-1028-3
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Figure 2.1: (Animation for javascript enabled PDF viewer, left to right stills in print)
Animation: (Left column) Illustration of a Gaussian wavepacket tunnelling through a rect-
angular finite potential barrier as examined by [15, 17] in a stationary coordinate system
(top) or one which follows the centre of an undisturbed packet (bottom). (Right column)
A comparison between an undisturbed wavepacket (top) and that which is transmitted,
scaled to be of equal magnitude (bottom). Stills: As for the (Left column) described above
but only for the stationary coordinate system.

For an attoclock experiment to conclude an observation of tunnelling time, the
rotation observed in the photoelectron momentum distribution must be unexplained
by classical trajectories assuming instantaneous tunnelling. For the earliest reported
attoclock measurements, this was not found to be the case [18, 19]. In stark contrast,
the results of Landsman et al. [20] observed rotations far beyond what could be
explained by such trajectories. However, to this date, the data remains unexplained
by ab initio theory despite considerable effort [21, 22]. The remaining suggestion
of tunnelling times in attoclock problems is from Camus et al. [23]. This work
relies on the finding that the difference in rotations from two atomic targets is not
well explained by trajectories both with instantaneous tunnelling and zero initial
velocity.

On the theoretical side, using near single-cycle pulses, the nature of the rotation
has been found to be of entirely Coulombic origin [24, 25]. To experimentally confirm
this finding it has been suggested to examine negative ions [26]. Further evidence is
provided via backpropagation [27] or through application of an additional linearly
polarised field [28]. Most convincing, however, is the recent work of Sainadh et
al. [29], which presents agreement between theory and experiment for an atomic
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hydrogen target, and concludes that they see no rotations attributable to a delay in
the tunnelling process.

The remainder of this chapter is dedicated to the physics behind the attoclock
(Section 2.1) and the contributions to this problem that [29] and [25] constitute
(Sections 2.2 and 2.3 respectively).

2.1 Physical mechanism

As mentioned above, an attoclock experiment makes use of the rotating electric
field vector of a (near)-circularly polarized laser pulse applied to a target atom or
molecule to map the timing of the resultant tunnel ionisation onto the photoelectron
momentum. In this section, we wish to elucidate the physics by which this mapping
is possible.

The problem is one of strong field ionisation and, accordingly, falls within the so-
called tunnelling regime. Typical pulse parameters are 800 nm wavelengths, peak
intensities around 1 × 1014 W/cm2, and full-width-half-maximums in intensity of
several femtoseconds. In this regime, we may think of the influence of our laser field
as a modification to the atomic binding potential such that

Vtot(r, t) = −1/r +E(t) · r . (2.1)

As the pulse progresses in time the Vtot potential ‘tips over’ and, for non-linear po-
larisation, rotates. This allows the initially bound electron to escape via tunnelling
through the tipped-over barrier to energetically allowed regions. Figure 2.2 illus-
trates this process. The momentum distribution of these escaped electrons (e.g.
Figure 2.3) is then contrasted against those of classical trajectories to determine
if the tunnelling process involved any delay. The core of these comparisons rely
on the mapping of the pulse vector potential at the moment of ionisation onto the
photoelectron momenta which, in its simplest form, is

pt→∞ = −A(tion) . (2.2)

The above expression is the result of integrating Newton’s law from some moment of
ionisation (tion) to infinity of the electron moving classically due to the electric field
of the pulse. This can clearly be improved upon, most notably by the inclusion of
the Coulomb force from the parent ion, but nonetheless captures the mechanism by
which the timing of the electrons appearance in the continuum is imprinted onto its
final momentum. The imprint manifests as a rotation of the resulting momentum
distribution and, should the rotation be to an extent unexplainable by classical
trajectories beginning at the peak electric field, the remaining angle is interpreted
as the delay of the tunnelling process.
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Figure 2.2: (Animation for javascript enabled PDF viewer, left to right stills in print)
The distortion of the atomic potential as a function of time for a typical attoclock pulse
(orange surface) vs the initial binding energy (blue plane). Where these two surfaces
intersect the bound electron is able to adiabatically tunnel.

However, the comparison of the distribution of a fundamentally quantum me-
chanical process with classical trajectories is not straightforward. Firstly, the dis-
tribution needs to be characteristic of these trajectories. This is indeed the case
for the near-single-cycle pulses (top row of Figure 2.3) that have been theoretically
examined, as the resulting distributions have a well defined angle about which it
is symmetric. In contrast, for few-femtosecond pulses, the distribution is compli-
cated by above-threshold-ionisation (ATI) fringes from inter-cycle interference, a
phenomena unexplainable by classical physics. Secondly, the boundary conditions
appropriate for the trajectory are critical to its comparison, this being contingent
on assumptions of the adiabaticity of the tunnelling process.

A further consideration pertinent to the observed attoclock distribution in Fig-
ure 2.3 is the carrier envelope phase or CEP (see Equation (1.3)). This is the phase
of the underlying electric field profile of the pulse within its envelope. For short
pulses with circular polarisation (top row), the peak field strength simply rotates
in the plane with varying CEP and accordingly the same occurs for the resulting
momentum distribution. However, for the few-femtosecond pulses with elliptical
polarisation (bottom row), the direction of the peak field strength only changes
subtly with variation of CEP. In fact, it is only the ellipticity that modulates the
field strength significantly enough for the distribution to exhibit the characteristic
two-lobes observed in experiment. Consequently, these ‘long pulse’ distributions are
dependent on the precise CEP, and are accordingly averaged over for comparison.
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Figure 2.3: Example photoelectron spectra resulting from hydrogen for short (top row)
and long (bottom row) pulses. Left column: electric field components of the pulse as a
function of time. Centre column: electric field magnitude vs direction of vector-potential
parametrically with time. Right column: the 3D-TDSE calculated spectra in the polari-
sation plane coloured linearly from red (min) to black (max). The short pulse is approx-
imately 1.6 fs FWHM in intensity of peak 0.86 × 1014 W/cm2, 800 nm, ellipticity 1.0,
and anti-clockwise helicity. Its corresponding distributions assume CEP stability. The
long pulse is approximately 6 fs FHWM in intensity of peak 1.5 × 1014 W/cm2, 770 nm,
ellipticity 0.85, and clockwise helicity. Its corresponding distributions are averaged over
CEP.

2.2 Atomic hydrogen ab initio theory and exper-
iment

Our work [29] constitutes the first demonstrated agreement between ab inito theory
and experiment for the attoclock problem. By examining the simplest atomic target,
hydrogen, we are able to have the highest confidence in our findings. In contrast, all
previous works [14, 18–20, 23] have been performed on multi-electron noble gasses
for which the TDSE based theoretical treatment involves potentially detrimental
approximations. Particularly the persistent disagreement surrounding the helium
experiment of [20] motivates our own, given the considerable effort made in aim of
its resolution [21, 22, 30].

A pulse of approximately 6 fs FWHM at 770 nm and ellipticity 0.85 is applied to
an atomic hydrogen target and the CEP averaged momentum distribution as a func-
tion of peak intensity is both measured in experiment and calculated. Additionally,
we perform identical calculations with a Yukawa potential V (r) = Ze−r/λ/r with
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Z = 1.908 and λ = 1.0. Doing so yields a contrasting distribution from a hydrogenic
initial wavefunction of equal energy while exponentially screening the Coulomb po-
tential. Two such contrasting distributions are given in the bottom row of Figure 2.4.
Equivalent calculations involving short pulses (1.6 fs FWHM) are given in the top
frame for comparison. These distributions are radially integrated and fitted with
Gaussians to extract an angle which is then compared directly between theory and
experiment in Figure 2.5.

Figure 2.4: Left column: 3D-TDSE calculated photoelectron spectra from hydrogen for
short (top) and long (bottom) pulses. The short pulse is approximately 1.6 fs FWHM in
intensity of peak 0.86 × 1014 W/cm2, 800 nm, ellipticity 1.0, and anti-clockwise helicity.
Its corresponding distributions assume CEP stability. The long pulse is approximately 6
fs FWHM in intensity of peak 1.5 × 1014 W/cm2, 770 nm, ellipticity 0.85, and clockwise
helicity. Its corresponding distributions are averaged over CEP. Right column: As for left
but from a Yukawa potential (screening parameter λ = 1) of hydrogenic binding energy.
The colouration of probability is linear and normalised from red (min) to black (max).

As mentioned in Section 2.1 and illustrated in Figure 2.4, in general, for long
pulses, the fringes resulting from inter-cycle interference each feature distinct rota-
tions [31]. Consequently, the radial integration of a distribution consisting of several
Gaussians of differing rotations is sensitive on their individual weighting. To over-
come this, care was taken such that the same extraction method was applied directly
to both theoretically calculated and experimentally observed spectra. In doing so,
we find excellent agreement between the two. Amusingly, no such issue occurs for
the strongly screened distribution as each fringe has a rotation of zero.
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Figure 2.5: Experimental and theoretical attoclock rotations as a function of inten-
sity [29]. The experimental observations (black diamonds with estimated experimental
and fitting errors) are compared to ab initio 3D-TDSE simulations with Coulomb poten-
tials provided by two independently developed computational methods marked as 1 and
2 (respectively orange and blue filled circles). To disentangle the effects of the Coulomb
potential on the continuum electron, we also include the TDSE simulations for a Yukawa
potential (orange and blue filled triangles representing calculations by the same two inde-
pendent groups marked as 1 and 2). Numerical errors are comparable to, or less than, the
symbol size. The horizontal dashed blue line is drawn at the zero offset angle. The same
extraction procedure was used to determine the offset angles from experimental results and
theoretical simulations for both Coulomb and Yukawa potentials. Our numerical experi-
ment demonstrates that the observed angular offsets are entirely due to the photoelectron
scattering by the long-range Coulomb potential of the ion.

After establishing consensus between the TDSE theory and observation we turn
to the Yukawa screened potential. We find that identical calculations with this
potential yield zero rotations within numerical accuracy across the entire range of
intensities considered. This we take as strong indication of the observed rotations
being entirely due to the Coulombic attraction to the ionised core which is being
removed in the latter scenario. Nonetheless, to demonstrate this connection more
directly, we next look to the idealised short pulse attoclock problem.

2.3 Short pulse theory

Having established the validity of our theoretical methods for physically realisable
pulses, we turn to idealised short pulse attoclocks [25]. As discussed in Section 2.1,
for such pulses non-zero rotations can be unambiguously attributed to a given distri-
bution due to their perfect symmetry. Figure 2.6 presents the computed distributions
for various Yukawa screening parameters λ with hydrogenic initial state energy. We
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find that the rotation can be smoothly controlled by the level of screening between
the hydrogenic case (λ → ∞) and zero (λ → 0). From this further suggestion that
the cause of rotation is from the Coulombic force the electron experiences throughout
its escape trajectory, we next look to formulate an appropriate classical scattering
theory that we may contrast against our TDSE calculated dependency.

Figure 2.6: 3D-TDSE calculated photoelectron spectra from Yukawa potentials of vary-
ing screening and equal initial state energy of 0.5 a.u. The pulse is approximately 1.6 fs
FWHM in intensity of peak 0.86×1014 W/cm2, 800 nm, ellipticity 1.0, and anti-clockwise
helicity. The explicit screening values from left to right are λ ∈ {∞, 40, 20, 13, 10, 7} and
Z ∈ {1.0, 1.0249, 1.0495, 1.0739, 1.0980, 1.1458}.

2.3.1 Keldysh-Rutherford model

As opposed to the commonly employed ‘strong field approximation’ for the attoclock
[1, 32–35] in which the effect of the Coulombic interaction is neglected, we instead
look to neglect the effect of the pulse post ionisation. By doing so the resulting
trajectory becomes that of Rutherford scattering or its equivalent for a screened
potential. For short pulses at low intensity, we expect this approximation to be
reasonable, and by comparison in this regime provide significant insight into the
physics behind the attoclock observable.

The scattering angle for a charged particle in a central 1/r potential is given by
the Rutherford formula [36]

θ = 2 cot−1

ρv2
∞

Z

 , (2.3)
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where ρ is the impact parameter and v∞ is the asymptotic velocity. In a more
general case of a screened potential of the form V (r) = −Z/r exp(−r/λ), the offset
angle is given by a modified expression [37]

θ = 2 cot−1

 ρv2
∞

Z exp(−1/z0)


+ 2ρ

λ

∫ z0

0

1√
y0(z)

− 1√
y(z)

dz , (2.4)

where z0 is the root of

y(z) = 1− (ρ/λ)2z2 − (d/λ)z exp(−1/z), (2.5)

and

y0(z) = 1− (ρ/λ)2z2 − (d/λ)z exp(−1/z0) . (2.6)

Here d = 2Z/(mv2
∞) is the so-called collision diameter. If the last term in the RHS

of y(z) can be neglected, Eq. (2.4) simply becomes

θ = 2 cot−1

 ρv2
∞

Z exp(−ρ/λ)

 . (2.7)

The trajectory for an attractive potential is depicted in the left frame of Figure 2.7
along with the instantaneous electric and vector potential at the moment of ionisa-
tion and equivalent attoclock angle θA = θ/2.

Figure 2.7: Left: The classical scattering trajectory of a particle in a central attractive
potential. The scattering angle θ is defined by the impact parameter ρ and the asymptotic
velocity v∞. The tunnel ionized electron enters this trajectory at the point of the closest
approach r0 driven by the peak electric field E0 and arriving to the detector at the angle
θA relative to the vector potential A0. Right: The Coulomb potential is tipped by the
light field. A finite width potential barrier is created, through which the electron wave
packet leaks out. Ip refers to the binding energy of the electron in an unperturbed atomic
system. See text for further symbol definitions.
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To evaluate Eq. (2.3) (or (2.4)) we simply need a ρ and v∞. Firstly, we con-
sider the distance of closest approach r0 from the maximally ‘tipped-over’ potential
depicted in the right frame of Figure 2.7. The largest solution (r1) of

Z/r + E0r = Ip , r1,2 = b/2±
√
b2/4− ab , (2.8)

where b = Ip/E0 is the Keldysh tunnel width and a = Z/Ip gives the distance of
closest approach assuming adiabatic tunnelling r0 = r1. Instead, however, we will
simply take r0 ≈ b, and further that the impact parameter ρ ≈ r0. To a similarly
approximate level, we will take v∞ ≈ A0 obtained directly from Eq. (2.2). Do note
that these are both very crude approximations but, accordingly, provide the greatest
simplicity and hence intuition into to the problem possible.

To demonstrate this we present the low intensity scaling of our models against
hydrogen TDSE results in Figure 2.8. It is in this region that we anticipate our field-
free treatment to be most applicable. If we apply the small angle approximation
to the cotangent function the KR model predicts a I−0.5 intensity dependence. In
contrast, instead fitting the KR model without this approximation, labelled KR’, in
the low intensity region yields I−0.44 or I−0.41 from the TDSE.
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Figure 2.8: The attoclock offset angle θA as a function of the field intensity I from the
present set of TDSE calculations on hydrogen (red filled circles), the set labelled H2 of [24]
(blue asterisks), and the KR and KR′ models (filled and empty triangles). The present
TDSE results are fitted with I−0.41.

Angles extracted from TDSE of various screenings are given in the top frame
of Figure 2.9 and contrasted against the prediction from Eq. (2.4), labelled KY’, in
the bottom frame. In which we find the predicted and calculated dependencies to
be broadly similar. The largest exception to this occurs with decreasing intensity
for the intermediate λ at which the tunnel width b = Ip/E0 becomes comparable
with the screening length and, as such, a classical treatment becomes inadequate
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[37]. From this value and beyond, the angle is exponentially suppressed to the
point where it is identically zero across all intensities considered at λ = 1. We take
this similarity to classical scattering as further indication that there is no physics
contained within this problem that would be attributable to a tunnelling time.

Figure 2.9: The attoclock offset angle as a function of the field intensity for a model
Yukawa atom with different screening constants λ. Top: TDSE calculations. Bottom:
Predictions of the KY’ model.

Finally, to better demonstrate the significance of the attoclock angles depen-
dence with Yukawa screening, we consider the barriers from which the electron
must escape at the peak of the pulse in Figure 2.10. With decreasing intensity, the
barriers increase in height and width, with the effect on the attoclock angle being
a gradual increase. Conversely, an increasing screening yields a similarly wider and
higher barrier, yet the resulting angles are decreasing and, in fact, for the strongest
screening presented disappear entirely. This again indicates that the attoclock ob-
servable is not attributable to the tunnelling process. However, it should be noted
that while the initial state energy is identical in each case, their wavefunctions are
comparatively compressed in coordinate space, albeit remaining hydrogenic.
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Figure 2.10: Left: The distorted atomic potential at the peak field strength for several
intensities in units of W/cm2. Right: The same but for several Yukawa screenings a = 1/λ.
In the former case the attoclock rotations increase with barrier width and height while in
the latter they are strongly suppressed.

2.4 Conclusions

In Section 2.2 we have demonstrated the first agreement between exact ab initio the-
ory and experiment by considering an atomic hydrogen target. Additionally, we find
that for identical calculations, involving strongly screened Yukawa potentials of the
same initial state energy, the rotations in the photoelectron momentum distribution
become completely negligible.

In Section 2.3 we examine an idealised attoclock with ‘short’ near single cycle
pulses and make comparison with a simple model based on the assumption of scat-
tering purely due to the effect of the central potential. We hypothesise for such short
pulses at low intensity this to be the origin behind the attoclock observable, and
indeed find solid qualitative agreement with said model. Additionally, we demon-
strate a smooth transition between the hydrogenic and ‘hard zero’ scenarios with
variation of the Yukawa screening parameter.

Taken in aggregate, we consider the above findings as strong evidence against
the interpretation of the attoclock rotations in terms of a tunnelling time. This is in
addition to a plethora of works coming to the same conclusion by various other means
[24, 26–28]. However, it must be said that such work does not directly address the
yet outstanding opposite conclusion drawn by the experiments of Landsman et al.
[20] and Camus et al. [23].
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Reconstruction of attosecond
beating by interference of
two-photon transitions
(RABBITT)

This chapter is based on the following publications:

A. W. Bray, F. Naseem, and A. S. Kheifets, “Simulation of angular-resolved
RABBITTmeasurements in noble-gas atoms,” Phys. Rev. A 97, 063404 (2018).

A. W. Bray, F. Naseem, and A. S. Kheifets, “Photoionization of Xe and
Xe@C60 from the 4d shell in RABBITT fields,” Phys. Rev. A 98, 043427
(2018).

Reconstruction of attosecond beating by interference of two-photon transitions (RAB-
BITT) is a spectroscopic technique in which an attosecond pulse train (APT) ‘pump’
and its attenuated driving infrared (IR) pulse ‘probe’ impinge on a target with a well
controlled delay between them [38–40]. The APT is comprised in frequency space
of a wide range of large odd harmonics and is produced by the process described
in Chapter 4. These high energy frequency components ionise the target atom and
lead to a series of peaks in the photoelectron with spacing 2ω. Once ionised, they
interact with the IR probe field via the mechanism of above threshold ionisation [41],
absorbing and emitting photons of energy ω. This leads to the primary ionisation
peaks corresponding to the odd harmonics N being interspersed with sidebands at
the even harmonics from absorption of an IR photon from the Nω peak and emission
from the (N + 2)ω peak (see Figure 3.1). It is the interference between these two
quantum pathways, and the resulting oscillation of their combined signal with the
IR/APT delay, that gives rise to the methods name.
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Figure 3.1: Left: depiction of the energy levels involved in the two interfering quantum
pathways leading to the (N + 1)ω sideband in a RABBITT measurement. These being
absorption of the odd harmonic Nω followed by an IR photon ω and absorption of the
harmonic (N + 2)ω followed by emission of ω. Right: an example of RABBITT spectra,
in this case for He at a driving frequency of 780 nm, featuring primary ionisation peaks
(PP) at odd harmonics and sidebands (SB) in between.

3.1 Theory

In this section we derive the relation between the TDSE calculated photoelectron
spectra and two quantities known as the angular anisotropy parameter β and the
Wigner time delay τW . It should be noted that our description [42] is contingent on
the IR intensity being sufficiently low that the soft-photon approximation is valid
[43, 44] and that only single photon absorption or emission from the field is non-
negligible. Working under these assumptions allows us to write the amplitude for
the sideband as the coherent sum of the two pathways [45, 46]

Tsideband =
∣∣∣∣M(+)

N +M(−)
N+2

∣∣∣∣2 (3.1)

=
∣∣∣∣M(+)

N

∣∣∣∣2 +
∣∣∣∣M(−)

N+2

∣∣∣∣2 + 2
∣∣∣∣∣M(+)

N

(
M(−)

N+2

)∗∣∣∣∣∣ cos
[
arg

(
M(+)

N

(
M(−)

N+2

)∗)]
.

HereM(+)
N is the amplitude for the absorption of the N XUV harmonic followed by

absorption of an IR photon and, similarly,M(−)
N+2 is for the N + 2 harmonic and IR

emission.
In the soft photon approximation (see Eqs. (1) and (11) of Maquet and Taïeb

[44]) the two above amplitudes are written as

M(+)
N = −2πiJ−1(a0 · k) exp[−i(φN + φ

(+)
IR )]

∑
ψi

〈k|ε · p̂|ψi〉 (3.2)

M(−)
N+2 = −2πiJ+1(a0 · k) exp[−i(φN+2 + φ

(−)
IR )]

∑
ψi

〈k|ε · p̂|ψi〉 , (3.3)

where α0 = E0/ω
2, k ' [2((N + 1)ω − Ip)]1/2 is the shifted momentum of the
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photoelectron, approximate as we have neglected the ponderomotive shift of the
ionisation potential, ω is the driving IR frequency, φ(±)

IR is the phase associated with
absorption or emission of a photon of said frequency, and φN and φN+2 are the two
odd harmonic XUV phases. 〈k|ε · p̂|ψi〉 is the velocity form dipole matrix element
for the field with polarisation vector ε from the initial bound state |ψi〉 of energy
Ip to the continuum state |k〉. J±1 is the corresponding Bessel function of the first
kind.

With these expressions, let us now consider the terms in Eq. (3.1). Firstly, we
find that∣∣∣∣M(+)

N

∣∣∣∣2 , ∣∣∣∣M(−)
N+2

∣∣∣∣2 ,
∣∣∣∣∣M(+)

N

(
M(−)

N+2

)∗∣∣∣∣∣ ∝ |J1(α0 · k)|2
∑
ψi

|〈k|ε · p̂|ψi〉|2

∝ cos2 θ
[
1 + βP2(cos θ)

]
, (3.4)

where we have taken J1(x) ' x/2 + O(x3) and employed both the property J−n =
(−1)nJn and the summation (Eq. (3.15) of Amusia [47])

dσi
dΩ =

∑
ψi

|〈k|ε · p̂|ψi〉|2 = σi
4π

[
1 + βP2(cos θ)

]
. (3.5)

Here σi and dσi/dΩ are the total and differential photoionisation cross-sections for
the i-th atomic shell, respectively, and θ is the polar angle from the axis aligned
with the laser polarisation ε. β is known as the angular anisotropy parameter which
characterises the change in cross-section with θ and P2 is the 2nd order Legendre
polynomial. Hence, we expect both our constant value and magnitude of oscillation
with the interference to behave as Eq. (3.4).

For the phase of the interference term in Eq. (3.1) we have

arg
(
M(+)

N

(
M(−)

N+2

)∗)
= 2ω (τGD + τCC + τW) , (3.6)

where the finite difference group delay of the XUV is

τGD = φN+2 − φN
2ω , (3.7)

the continuum-continuum (CC) delay associated with the difference between IR
absorption and emission is

τCC = φ
(−)
IR − φ

(+)
IR

2ω , (3.8)

and the Wigner delay is

τW ≡
1

2ω arg

∑
ψi

∣∣〈k|ε · p̂|ψi〉∣∣2
 . (3.9)
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Additionally, we observe that if we introduce a shift τ to the IR relative to the APT
we add a further phase 2ωτ to (3.6). Hence, in aggregate, we expect the RABBITT
signal (3.1) to behave as

Tsideband = A+B cos(2ωτ − C) , (3.10)

where

A, B ∝ cos2 θ
[
1 + βP2(cos θ)

]
C = 2ω(τGD + τCC + τW) . (3.11)

Though note in the following we will take τGD = 0 as by our construction (see (3.12))
φN = 0 for each odd harmonic N . We will refer to the remainder τa = τCC + τW as
the atomic time delay.

3.1.1 RABBITT pulse description

In our calculation the RABBITT external field is the sum of both XUV and IR
fields. The XUV field is modelled by an attosecond pulse train (APT) with the
vector potential

Ax(t) =
5∑

n=−5
(−1)nAn exp

−2 ln 2(t− nT/2)2

τ 2
x

× cos
[
ωx(t− nT/2)

]
, (3.12)

where

An = A0 exp
−2 ln 2(nT/2)2

τ 2
T

 .

Here T = 2π/ω is the period of the IR field. By placing alternating sign attosecond
pulses at each half period, the field is spectrally comprised of odd harmonics about
a central XUV frequency of ωx and the relative strength of neighbouring harmonics
about this determined by time constants τx, τT . Each are chosen as appropriate for
the various atoms of interest based on their ionisation energies.

The vector potential of the IR pulse is modelled by the cosine squared envelope

A(t) = A0 cos2
(
π(t− τ)

2τIR

)
cos[ω(t− τ)] , (3.13)

of duration τIR = 14.5 fs and zero otherwise. The IR pulse is shifted relative to the
APT by a variable delay τ .
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3.2 Noble gasses

In this section we present the results of our computations of β and τW within our
single active electron (SAE) TDSE approach. By considering Ne though to Xe, our
goal is to both test the validity of several differing effective potentials as well as the
universality of a hydrogenic continuum-continuum correction τCC . This latter point
is motivated by the persistent disagreement between theory and experiment for Ar,
in which a hydrogenic correction was used [48]. More recently, however, a similar
situation was rectified for Ne [49] in contrast to an earlier experiment [50].

3.2.1 Effective potentials

As in the previous work on He and Ne [46], we employed an optimized effective
potential (OEP) [51]. This potential is derived by a simplified treatment of the
exchange term in the Hartree-Fock (HF) equations using the Slater X-α ansatz [52].
The OEP potential takes the form

Ve(r) = −1
r

1 + (Z0 − 1)
S∑
p=0

np∑
k=1

ck,pr
pe−βk,pr

 ≡ −Z∗(r)
r

, (3.14)

where the effective charge Z∗(r) varies from the unscreened nucleus charge Z0 as
r → 0 and unity at large distances r →∞. The former limit is satisfied by imposing
the condition ∑n0

k=1 ck,0 = 1.
A further model potential that we employ is that of a localized Hartree-Fock

(LHF) potential generated from a known continuous orbital calculated in a frozen
HF core [53]. The radial Schrödinger equation with the atomic Hamiltonian can be
rewritten such that the LHF is expressed in terms of the known HF radial orbital
and its second derivative

VHF(r) = κ2

2 −
`(`+ 1)

2r2 + P ′′κ`(r)
Pκ`(r)

. (3.15)

The LHF should be weakly sensitive to the choice of the momentum κ and the
orbital momentum `. For practical reasons, we chose κ = 0.01 and ` = 0 to avoid
multiple nodes of Pκ`(r) where the RHS of Eq. (3.15) diverges. The effective charge
Z∗ = −rVHF(r) derived from Eq. (3.15) is a smooth function outside of these nodes
and can be fitted with an analytical expression

Z∗HF(r) = (Z0 − 1)e−αr + 1 . (3.16)

The p = 0 term in Eq. (3.14) is analogous to the Muller potential introduced
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specifically for Ar [40]

VM(r) = −1
r

[
1 + 5.4 exp(−r) + 11.6 exp(−3.682r)

]
. (3.17)

Miller and Dow [54] suggested an alternative analytical expression

Z∗MD(r) = 1 + (Z0 − 1)(1− r/R)2θ(R− r)
1 + Cr +Dr2 , (3.18)

where θ(R− r) is the unit step function. The numerical parameters R, C and D are
chosen to match the variation of the angular anisotropy parameter β with energy
across the Cooper minimum (CM) known from experiment.

The valence shell energies calculated with various model potentials along with the
experimental threshold energies are compiled in Table 3.1. For the LHF potential,
we also show in parentheses the α parameters from Eq. (3.16).

Table 3.1: The valence shell energies, in atomic units, calculated with various model
potentials. The experimental thresholds are from [55]. The LHF entries also contain the
α parameters from Eq. (3.16).

Method Ne 2p Ar 3p Kr 4p Xe 5p

Expt [55] 0.792 0.579 0.514 0.445
HF 0.850 0.591 0.524 0.457
OEP [51] 0.851 0.590 0.528 0.467
LHF 0.843(2.29) 0.583(2.11) 0.202(2.80) 0.412(2.54)
Muller [40] 0.581
MD [54] 0.423 0.203

3.2.2 Neon 2p

In Figure 3.2 we display the angular anisotropy β parameters for the Ne 2p va-
lence shell extracted from the TDSE calculations with the LHF potential (top) and
the OEP potential (bottom). The βHH parameters extracted from the angular de-
pendence of the high harmonic peaks are plotted along with the βSB parameters
extracted from the angular variation of the RABBITT A and B parameters in Eq.
(3.11). We make comparison with those computed via the random phase approx-
imation with exchange (RPAE, see Section 4.1.1) shown with the solid line. This
calculation is known to reproduce accurately the experimental β parameters across
the studied photon energy range [56].

We see that the harmonics and sidebands TDSE calculations of β parameters
are consistent between each other and are fairly close to the XUV-only RPAE cal-
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culation, with the LHF results marginally closer to the RPAE than the OEP ones.
In the previous work [46] they employed the OEP potential and quoted βSB ' 0.3
for sideband 20 (SB20) which is in reasonable agreement with the present results of
both potentials.
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Figure 3.2: Angular anisotropy β parameters for the Ne 2p valence shell extracted from
the TDSE calculations with the LHF potential (top) and the OEP potential (bottom).
The βHH parameters extracted from the angular dependence of the high harmonic peaks
are plotted with (red) filled circles. The same parameters βSB extracted from the angu-
lar variation of the RABBITT A and B coefficients in Equation (3.11) are plotted with
(orange) triangles and (blue) asterisks, respectively. The RPAE calculation is shown with
the solid line. The experiment [56] is given by the points with the error bars.

Angular dependence of the atomic time delay τa(θk) as a function of the escape
angle is shown in Figure 3.3. The top and middle panels display the TDSE calcula-
tions with the LHF and OEP potentials, respectively. The bottom panel shows the
angular dependence of the Wigner time delay τW(θk) from the XUV-only RPAE cal-
culation. We see that both TDSE calculations are quite close to one another while
the RPAE calculation suggests an angular dependence which is an order of magni-
tude weaker. The consequence being that nearly all the angular dependence of the
atomic time delay in Ne comes from the CC correction introduced by the probe IR
field. A similar observation was made in He where the Wigner time delay is isotropic
[57]. In Ne, the Wigner time delay is not entirely isotropic because the 2p→ εs and
2p→ εd channels enter the ionization amplitude with their own spherical harmonics,
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namely Y00(θk) and Y20(θk). However, as a result of the Fano propensity rule [58],
the d-continuum is strongly dominant and the s-continuum contributes only a very
weak angular modulation. We note that this situation would change drastically near
the CM in Ar and heavier noble gases where the angular dependence of the Wigner
time delay is very strong.

The time delay in the polarization axis direction θk = 0 is shown in Figure 3.4.
On the top panel, we compare the atomic time delay from the TDSE calculation
with the LHF potential and the Wigner time delay τW from the RPAE calculation.
The hydrogenic CC correction τCC, which is shown separately, is then added to the
Wigner time delay. This correction, as a function of the photoelectron energy, is
represented by the analytic expression

τCC(E) = NE−3/2[a log(E) + b] , (3.19)

where the coefficients N , a, and b are found from fitting the regularized continuum-
continuum delay shown in Fig. 7 of [59]. We see that except for the near threshold
region where the photoelectron energy is very small and where the regularization of
τCC may not be applicable, the identity τa ' τW + τCC holds very well.

3.2.3 Argon 3p

The β parameters for the Ar 3p shell extracted from the angular dependence of the
high harmonic peaks and sidebands are shown in Figure 3.5. The TDSE calculations
performed with the LHF and OEP potentials are shown on the top and bottom
panels, respectively. The three sets of β parameters are compared with the RPAE
calculation and the experiment [60]. We observe from this figure that all three sets of
β parameters extracted from the TDSE calculation with the LHF potential follow
closely the RPAE prediction and agree with the experiment. At the same time,
the OEP TDSE results are displaced relative to the RPAE in the photon energy
scale by as much as 10 eV. This mismatch is a reflection of the displacement of the
CM position in the photoionisation cross-section. This position can be located very
accurately from the squared radial integral [61]∣∣∣∣∣∣∣

∞∫
0

P3p(r)PEd(r) rdr

∣∣∣∣∣∣∣
2

. (3.20)

A plot of this integral is given in Figure 3.6 where the radial orbitals of the bound
and continuous states have been calculated using the LHF, OEP, Muller [40], and
Miller and Dow [54] potentials. The equivalent value from the HF and RPAE cal-
culations are also shown. We see that the CM position is misplaced for each of the
potentials except the LHF. Subsequently, in the following, we present our TDSE re-
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Figure 3.3: Angular variation of the atomic time delay ∆τa = τa(θk)− τa(0) in various
sidebands of the Ne 2p RABBITT trace calculated with the LHF potential (top) and the
OEP potential (middle). Bottom: angular variation of the Wigner time delay ∆τW =
τW(θk)− τW(0) from the XUV-only RPAE calculation.

sults calculated with the LHF potential only. The angular variations of the atomic
time delay ∆τa = τa(θk)− τa(0) in various sidebands of the Ar 3p RABBITT trace,
and the Wigner time delay angular variation ∆τW = τW(θk) − τW(0) at the same
photon energies, are displayed in Figure 3.7 (top and bottom panels respectively).
In stark contrast to the analogous set of data for Ne 2p shown in Figure 3.3, the
angular variation of the Wigner time delay for Ar 3p is of the same order of magni-
tude, and is almost identical for SB30 near the CM. As a reference, in both panels of
Figure 3.7, the lowest order perturbation theory (LOPT) calculation [62] for SB32 is
shown. Beyond the CM (SB48 and SB60), the angular variation of the Wigner time
delay flattens whereas the same variation of the atomic time delay changes its sign
and simultaneously weakens in magnitude. In Figure 3.8 we compare the angular
variation of the atomic time delay ∆τa = τa(θk)− τa(0) in SB14 (top) and SB16. In
the experiment [63], SB16 is tuned in resonance with the 4s−15p autoionising state
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Figure 3.4: Time delay in the polarization axis direction θk = 0. Top: the atomic
time delay τa from the TDSE calculation (red filled circles) is compared with the Wigner
time delay (orange triangle) from the RPAE calculation. The CC correction τCC is shown
with the thin dotted line whereas the sum τW + τCC is displayed with the (blue) dotted
line. Bottom: the CC correction τCC (thin dotted line) is compared with the atomic and
Wigner time delay difference τa− τW from the TDSE calculations with the LHF and OEP
potentials (shown with the red filled and black open circles).

while SB14 is off the resonance. For SB14 we find a fairly good agreement between
the experiment and the present LHF TDSE calculation. The LOPT calculation
reported in [63] is also very close. For SB16 both the TDSE and LOPT calcula-
tions predict considerably weaker angular dependence than in the experiment and
the calculation which accounts for resonance by the Fano configuration interaction
formalism.

Various time delays for the Ar 3p shell in the zero angle polarization direction
are shown in Figure 3.9. On the top panel, we display the atomic time delay τa from
the TDSE LHF calculation, the Wigner time delay τW from the RPAE calculation,
the regularized hydrogenic CC correction τCC and their sum τW + τCC. We also
show the atomic time delay τa from the LOPT calculation [62]. The latter is almost
indistinguishable from the sum τW + τCC, but visibly different from the TDSE cal-
culation for τa. On the bottom panel we show the hydrogenic τCC and the argon
specific value τCC = (φ−CC−φ+

CC)/2ω obtained from the phases φ±CC reported in [63].
Both values, which are remarkably close, are compared with the difference τa − τW.
Unlike in the Ne 2p case, displayed on the bottom panel of Figure 3.4, these two
derivations of the CC correction give quite different results. This difference may
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Figure 3.5: The same as Figure 3.2 for Ar 3p shell. The experiment [60] is given by the
points with error bars.
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Figure 3.6: The squared radial integral (3.20) calculated with the LHF (red filled circles),
OEP (open green circles), Miller and Dow [54] (blue asterisks) and Muller [40] (purple
triangles) potentials for Ar. The HF and RPAE results are shown with black dotted and
solid lines respectively.

in principle be attributed to the different approximations used in TDSE-LHF and
RPAE calculations. The former employs a localized version of the HF potential and
neglects the correlation while the latter gives the full account to the exchange and
inter-shell correlation. However, the same calculations return quite similar sets of
β parameters. As such it is more likely that the hydrogenic approximation to τCC

breaks for the argon 3p shell.
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Figure 3.7: Top: angular variation of the atomic time delay ∆τa = τa(θk) − τa(0)
in various sidebands of the Ar 3p RABBITT trace calculated with the LHF potential.
Bottom: angular variation of the Wigner time delay ∆τW = τW(θk) − τW(0) from the
XUV-only RPAE calculation. The angular variation of time delay for SB32 from [62] is
shown for comparison.

-150

-100

-50

0

50

0 30 60 90

∆τ
a=

 τ
a(

θ k
)-

τ a
(0

) 
(a

s)

Ejection angle θk (deg)

SB14  
LHF TDSE

Expt [3]
  

Theo [3]

-150

-100

-50

0

50

0 30 60 90

∆τ
a=

 τ
a(

θ k
)-

τ a
(0

) 
(a

s)

Ejection angle θk (deg)

SB16  
LHF TDSE

Expt
Theo

Theo(R)

Figure 3.8: The same as Figure 3.7 for SB14 (top) and SB16 (bottom). Two sets of
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triangles connected by the solid line. The bottom panel also shows the calculation from
[63] which includes the Fano resonance (black solid line).
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Figure 3.9: The same as Figure 3.4 for Ar 3p shell. In addition, the atomic time delay τa
from the LOPT calculation [62] and the CC correction τCC = (φ−CC − φ

+
CC)/2ω obtained

from the phases φ±CC reported in [63] are shown.

3.2.4 Krypton 4p

We test validity of various effective potentials for Kr by determining the CM position
in the 4p photoionisation cross-section. We do so by comparing the squared radial
integrals (3.20) calculated with the bound state 4p orbital and the continuous d-wave.
This comparison is shown in Figure 3.10. Unlike in the case of Ar 3p photoionisation,
illustrated in Figure 3.6, the CM position calculated in the HF and RPAE differs
by nearly 20 eV. This is so because of the influence of the inter-shell correlation
between the 4p and 3d shells which is accounted for in the RPAE but not in the HF
calculation. This correlation is absent in the case of Ar 3p as the 3d shell is vacant
for this atom. The CM position calculated with the LHF and MD potentials is in
between the HF and RPAE whereas the OEP calculation displaces the CM to lower
energies very significantly. We discard the OEP in the following.

The three sets of angular anisotropy β parameters extracted from the high har-
monic peaks and the side bands are shown in Figure 3.11 calculated with the LHF
(top) and MD (bottom) potentials. We see that agreement between the TDSE and
RPAE calculations is generally good but these calculations diverge at higher photon
energies. This occurs well below the 3d threshold whose position can be identified
by the converging autoionisation resonances visible in the RPAE curve. The ex-
periment [64] clearly favours the RPAE calculation. Partial agreement between the
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Figure 3.10: The squared radial integral (3.20) calculated with the LHF (red filled
circles), OEP (open green circles), Muller [40] (blue asterisks) and Miller&Dow [54] (purple
triangles) potentials for Kr. The HF and RPAE results are shown with black dotted and
solid lines respectively.

TDSE calculations with the LHF and MD potentials, the RPAE, and the experiment
may be somewhat fortuitous given a strong deviation of the TDSE binding energies
from the experimental threshold (see Table 3.1). Should the β parameters in Fig-
ure 3.11 be plotted versus the photoelectron energy, this agreement will disappear.
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Figure 3.11: The same as Figure 3.2 for the Kr 4p shell. The experimental data are
from [64].
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3.2.5 Xenon 5p

This tendency of deviation of the TDSE calculations with various local potentials
from the RPAE and experiment is aggravated further in Xe. As an illustration,
we show in Figure 3.12 the CM position deduced from the squared radial integral
(3.20). Firstly, we observe that the HF and RPAE results diverge by as much as
40 eV. This is a clear sign of a very strong correlation between the 5p and 4d shells
accounted for in the RPAE but missing in the HF. Similarly, both the LHF and
OEP give CM positions displaced by 20 eV from the RPAE.

It is well known that missing the inter-shell correlation between the 5p and
4d shells in Xe has a profound effect on the anisotropy β parameter. It becomes
strongly displaced relative to the experiment as shown graphically in Figure 1 of
[65]. We therefore do not expect any reasonable agreement of the presently employed
TDSE/SAE model with the experiment either.
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Figure 3.12: The squared radial integral (3.20) calculated with the LHF (red filled
circles), and OEP (open green circles) potentials for Xe. The HF and RPAE results are
given by the black dotted and solid lines respectively.

3.3 C60 caged Xe

In this section we examine the RABBITT process from the 4d-shell of Xe within our
SAE TDSE approach. Away from the inner 4p threshold, the effects of intershell
correlation are negligible. This is in contrast to ionisation from the 5p orbital con-
sidered earlier (Section 3.2.5). Additionally, we consider the effect of a encapsulating
C60 cage by adding the potential

V (r) =
 −U0 < 0 if Rinner ≤ r ≤ Rinner + ∆

0 otherwise
, (3.21)

to that used in Section 3.2.5. Here Rinner = 5.8 a.u., ∆ = 1.9 a.u., and U0 =
0.302 a.u. Such a simple model is adequate in the present case because the 4d-shell
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is sufficiently deeply bound such that it cannot hybridize with any of the levels
of C60. In addition, the photon energy range (80 to 200 eV) is well away from the
C60 plasmons so that interchannel coupling with atomic photoionisation is negligible.

The calculations for the free Xe and encapsulated Xe@C60 atoms are shown along
with their difference in Figure 3.13. The corresponding sets of β parameters from the
XUV only RPAE calculation are displayed on the top panel of this figure. The two
sets of experimental data collated in [66] are shown with empty circles and diamonds.
The β parameters display a fair correspondence between the RPAE and the three
sets from the TDSE HH, A, and B parameters. The β oscillations with photon
energy in the trapped Xe@C60 atom are similar but somewhat dampened in the
TDSE calculation as compared to the RPAE. The progressive deviation of the RPAE
calculation from the experiment visible on the top panel of Figure 3.13 indicates
an onset of the 4d/4p inter-shell correlation which is not included in the present
calculation. This agreement can be significantly improved in a fully relativistic
RRPA calculation with inclusion of all interacting shells [67].
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Figure 3.13: Angular anisotropy β parameters of the 4d-shell of Xe from the RPAE
(top) and TDSE (bottom) calculations. The dotted line visualises the encapsulated
Xe@C60 atom whereas the solid red line displays the free Xe atom. The difference of
the Xe@C60 and Xe results is highlighted by a thin blue solid line. The three sets of the
β parameters in the TDSE are deduced from the angular variation of the high harmonic
peaks (HH) as well as the A and B parameters (3.11). The cage-free experimental data
collated in [66] are shown with empty circles and diamonds (top panel).

The atomic time delay in the polarization direction is shown in Figure 3.14. On
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the top panel we show the RPAE result which we express as the sum τa = τW + τcc

of the Wigner time delay and the regularized CC correction displayed in Fig. 7 of
[59]. The Wigner time delay is calculated as the energy derivative of the phase of
the 4d photoionisation amplitude [68]. On the bottom panel we show the TDSE
result calculated directly using Eq. (3.11). We see that both sets of calculations
show a close correspondence, both for the free and encapsulated Xe atoms. The
largest oscillation of the time delay occurs at the same photon energy range as of
the β parameter and the angular integrated cross-section. The energy (≈ 80 eV)
corresponds to the de Broglie wavelength resonating with the fullerene cage.
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Figure 3.14: Atomic time delay τa in the polarization direction deduced from the RPAE
calculation as the sum τW + τcc (top) and as obtained directly from TDSE by Eq. (3.11)
(bottom). The dotted blue line visualizes the Xe@C60 calculation whereas the solid red
line shows the free Xe atom result.

The angular variation of the atomic time delay ∆τa = τa(θk)− τa(0) is displayed
in Figure 3.15 for the free (top) and encapsulated (bottom) Xe atoms. In this figure
we selected the sidebands where the energy oscillation of the time delay shown in
Figure 3.14 is largest. We see that the angular variation changes significantly with
increase of the SB order. This change is somewhat larger in the free Xe atom with
a significant negative variation in SB48 and 50. This effect is less prominent in
the Xe@C60 atom. All the sidebands presented with the except SB44 only exhibit
noticeable angular variation close to 90◦ emission angle.

At higher photon energies, the 4d → Ef photoionisation channel dominates
completely and the angular variation of the time delay vanishes. Another area
of a significant angular variation of the time delay is near the Cooper minimum
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above the photon energy of 180 eV. This region is shown in Figure 3.16. Here
the angular variation is always positive and the time delay grows with increasing
photoelectron emission angle. This growth begins immediately with the angular
increase in contrast to the near threshold region shown in Figure 3.15. It is attributed
to the weakening of the typically stronger 4d → Ef photoemission channel and a
more intense competition from its normally minor partner 4d → Ep. The effect
of trapping is minimal at the photoelectron energy as the de Broglie wavelength is
much smaller than the cage radius.
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Figure 3.15: Angular variation of the atomic time delay ∆τa = τa(θk) − τa(0) with the
photoelectron emission direction for various side bands. Top: the free Xe atom, bottom -
the trapped Xe@C60 atom.

3.4 Conclusions

Our results can be broadly categorized into the two groups. In lighter atoms, Ne
and Ar, the single active electron model is generally valid. The Ne calculations are
particularly robust with all the tested effective potentials producing accurate results
close to the RPAE predictions both for the angular anisotropy and the time delay.
In Ar, because of the appearance of the Cooper minimum, the TDSE calculations
become very sensitive to the choice of the effective potential and a simple analytic
fit to the localized HF potential produces the best results for β parameters. At
the same time, this calculation suggests deviation of the CC correction from the
regularized hydrogenic expression. Because of the Cooper minimum, the angular
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Figure 3.16: The same as in Figure 3.15 near the Cooper minimum.

variation of the Wigner time delay is of the same magnitude as the variation of
the atomic time delay. In Ne, the angular variation of the Wigner time delay is
negligible.

In heavier atoms, Kr and particularly in Xe, the inter-shell correlation between
the valence np-shell and sub-valent (n− 1)d-shell becomes very strong. In Kr, with
some choice of effective potentials, the present model can return sensible Cooper
minimum position and β parameters away from the (n− 1)d shell threshold. In Xe,
no effective potential is expected to replace the strong effect of inter-shell correlation
and the present model is generally invalid.

Finally, we examined the effect of a C60 cage on the RABBITT ionisation of the
4d-shell of Xe in a region away from resonances. The computed angular anisotropy
parameters and time delays are generally quite close with the largest effect being
when the photoelectron de Broglie wavelength λ = 2π/k is close to the cage radius
R. Approaching this point, significant oscillations with energy of these quantities
occur.
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Chapter 4

High harmonic generation (HHG)

This chapter is based on the following publication:

A. W. Bray, D. Freeman, S. Eckart, and A. S. Kheifets, “Correlation enhance-
ment of high-order harmonic generation in Xe,” Phys. Rev. A 100, 013404
(2019).

High harmonic generation (HHG) is the process by which an atom interacting with
an intense laser pulse re-emits radiation at large multiples of the driving frequency.
This upconversion is made possible by the strong non-linearity of said interaction
[69]. Thought of as a three step (or simple man) model [70–72] the process is com-
prised of: (1) tunnel ionisation, (2) propagation, and (3) radiative recombination
(see Figure 4.1). Accordingly HHG is most often considered involving linearly po-
larised fields for which the probability of recombination is high. In such a case,
along with validity of the dipole approximation (see Section 1.2.1) and a homoge-
neous medium, only odd harmonics may be produced due to the inversion symmetry
present [73, 74].

A typical HHG spectrum is characterised by a rapid decrease for low harmonics,
a broad plateau region, and finally a sharp cutoff beyond a photon energy Ecutoff '
3.17Up + Ip. This cutoff is explained within the three step model as the maximum
energy the electron can gain during the propagation stage. For a given gained
energy there are two corresponding classical trajectories, one ‘short’ and another
‘long’ in terms of recombination time [75]. At the cutoff energy, the two classical
trajectories within the model converge. The purely quantum analogue of this model
[76, 77] makes use of the saddle point approximation and in doing so similarly invites
interpretation via short and long trajectories.

In an experimental target, there are a multitude of atoms each of which is a con-
tributing source of radiation. For their coherent sum to be a simple multiple of that
of a single atom, each must be phase matched such that they are constructively in-
terfering with one another. However, this is made complicated by differing intensity
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dependencies of the phase from the contributing short and long trajectories as well
as dispersive effects from the presence of free electrons in the medium generated
by ionisation [78–81]. Theoretically these effects can be modelled by accounting
for the experimental geometries and simultaneously solving Maxwell’s equations in
concert with TDSE albeit with some complications regarding boundary conditions
[82]. Conversely, macroscopic effects can be experimentally minimised by working
in regimes where ionisation is negligible, employing thin targets, and optimising ge-
ometries [83, 84]. Similarly, in two colour HHG, the breaking of symmetry between
subcycles means only a single trajectory contributes and accordingly needs to be
phase matched [85, 86].

Most importantly, by further novel field combinations or exploiting macroscopic
phenomena, single [87, 88] or trains [39, 89] of attosecond pulses can be generated.
Employing such pulses grants access to the timescale at which electrons evolve, the
study of which is now termed attosecond science. As such, maximising the conver-
sion efficiency of their generation is of considerable interest. One such mechanism
for achieving this is simply increasing the source density by using solid targets [90–
92]. Another is by making use of the greatly enhanced probability of recombination
driven by electron correlation [83–86, 93]. It is the latter mechanism that we inves-
tigate in the remainder of this chapter.

Figure 4.1: (Animation for javascript enabled PDF viewer, left to right stills in print)
The distortion of the atomic potential as a function of time within a single cycle of a
linearly polarised pulse to illustrate the three-step HHG process. The electron tunnel
ionises, propagates, is driven back towards the parent ion, and radiatively recombines.
The blue curve depicts the potential −1/r + E(t) · r, the orange line the ground state
energy of −0.5 a.u., the red dot the electron, and the black undulating line the emitted
photon.



High harmonic generation (HHG) 47

4.1 Theory

The expectation value of the power radiated by a single atom is given by the Larmor
formula [94, 95]

〈P (t)〉 = 2
3c2

〈d2r(t)
dt2

2〉
, (4.1)

where c is the speed of light. This proportionality to the acceleration can be seen
from entirely classical physics in which it is directly proportional to the electric field
which, when squared, gives the power. The spectral composition is then analysed
by taking the Fourier transform.

However, it is not uncommon to compute instead the spectra via only the dis-
placement 〈r(t)〉 (differing from the dipole by a factor of q) [96]. Importantly, this
is only equivalent upon multiplication by ω4 when the dipole is vanishing for large
t and hence ionisation must be negligible [97]. In the following, we choose instead a
more general approach of computing the acceleration directly via〈

d2r(t)
dt2

〉
= d2 〈r(t)

〉
dt2

=
〈
−∇V (r) +E(t)

〉
, (4.2)

assuming a multiplicative potential (i.e. [Ĥ, V ] = 0) and applying the Ehrenfest
theorem [98].

The computation of Eq. (4.1) requires the full wavefunction for the system of in-
terest. While for single electron targets our method indeed provides this, for others
we must work within the single active electron approximation. In many circum-
stances within strong field physics such a treatment is sufficient (see Chapter 2, for
example). However, this is not the case for HHG. Recombination or, equivalently, its
inverse of photoionisation, can be strongly influenced by multi-electron correlation
particularly across and approaching thresholds [99]. As such, we look to account
for its effect within our approach. Furthermore, it is worth explicitly stating that
from this point onwards we will only be considering the spectrum in the polarisation
direction z due to the pseudo-one-dimensional nature of the problem.

To do so, we make the ansatz that effect of correlation can be factorised our from
the uncorrelated HHG acceleration such that

〈Pz(ω)〉 ∝ ρz(ω)
∫

dt
〈

d2z(t)
dt2

〉
SAE

e−iωt , (4.3)

where ρz(ω) accounts for the correlated enhancement and the subscript SAE denotes
computation under the single active electron approximation. The validity of such an
ansatz was demonstrated by Morishita et al. [100] and underpins the quantitative
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rescattering approach (QRS) [101, 102]. We further assume that this enhancement
ρ(ω) is given by the ratio of photoionisation cross-sections in the polarisation direc-
tion computed with and without correlations,

ρz(ω) = σcorr.
z (ω)/σuncorr.

z (ω) . (4.4)

For the uncorrelated cross-section we simply compute the transition amplitude be-
tween the Dirac-Hartree-Fock orbitals for initial and final states [103]. Doing so we
are essentially taking the other electrons to be ‘frozen’ throughout the process. For
the cross-section computed including the effects of electronic correlation our chosen
method is the relativistic random phase approximation (RRPA) [104] due to its ap-
plicability for high Z targets such as Xe. Figure 4.2 depicts the direct and correlated
photoionisation processes as included within the RRPA and we briefly outline the
theory behind the method in Section 4.1.1.

�
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ħω E'l' E'l'

ħω
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5p

       Direct                      Recombination                                   Inelastic scattering

Figure 4.2: Graphical representation of the direct (left) and correlation (centre and
right) photoionisation processes included in the RRPA. Straight lines with arrows to the
right/left represent a photoelectron/hole. The dashed line depicts a photon and the wavy
line represents the Coulomb interaction. The dashed circle indicates summation of direct
and exchange correlation processes to infinite order. The arrow direction corresponds to
photoionisation and is the reverse in the case of HHG.

For our single active electron TDSE computation, we choose model potentials
as in Chapter 3 based on their appropriate asymptotic forms (V (r) → −1/r for
r →∞ and V (r)→ −Z/r for r → 0), accuracy in reproducing experimental bound
state energies, and Cooper minima positions. Namely, for Kr we use the potential
described in [105]

VKr(r) = −1
r

(
1 + 6.42e−0.905r + 28.58e−4.20r

)
, (4.5)

and for Xe the form of [51]

VXe(r) = −1
r

1 + 53
(

0.89e−13.42r + 0.11e−0.71r

+ r 4.05e−6.20r

− r2 33.18e−63.45r

+ r3 16.15e−7.08r

+ r4 15.67e−6.14r
) . (4.6)



High harmonic generation (HHG) 49

Finally, it should be noted that single atom theoretical spectra, as derived above,
exhibit sharp oscillations over several orders of magnitude at an energy resolution
unattainable by experiment. Consequently, for comparison, we apply the following
Gaussian convolution to our raw data

〈P conv.
z (ω)〉 =

∫∞
0 〈Pz(ω′)〉e−σ(ω−ω′)2

dω′∫∞
0 e−σ(ω−ω′)2

dω′
, (4.7)

with σ = 0.01. The effect of this convolution is demonstrated in Figure 4.3.
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Figure 4.3: Comparison between the raw theoretical HHG spectrum (4.3) (dashed black
line) and that smoothed via Gaussian convolution (4.7) (blue solid line). The spectra in
particular are from the Kr computation described in Section 4.2.1.

4.1.1 Relativistic Random Phase Approximation (RRPA)

The random phase approximation (RPA) [106] is derived as an extension of the
Hartee-Fock approximation for a many electron target to interaction with a weak-
external field. To do so, the full time-dependant Hartree-Fock [107] equations are
expanded in powers of the external field, and truncated at first order. From there,
terms corresponding to doubly excited orbitals are neglected, an approximation
thought reasonable for large systems such terms describing the interaction of many
alternative pairs of excited particles have essentially ‘random’ coefficients, conse-
quently nullifying their contribution [108]. It is interesting to note however, that
the states neglected within the RPA introduce a Pauli violation associated error of
order N−1 where N is the total number of atomic electrons [47].

The relativistic formulation (RRPA) [104] is derived from the time-dependent
Dirac-Hartree-Fock equivalent. In which, the transition amplitude corresponding to
ionisation by an external field of frequency ω is given by

T (ω) =
N∑
i=1

∫
d3r 〈wi+|α ·A(ω)|ui〉+ 〈ui|α ·A(ω)|wi−〉 . (4.8)
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Here |ui〉 and |wi±〉 are the Dirac-Fock and field perturbed orbitals respectively,

α =
 0 σ

σ 0

 (4.9)

and σ are Pauli spin matrices [109]. It is this T (ω) amplitude which, squared, is
proportional to the photoionisation cross-section at energy ω, and subsequently that
which we take as the correlated component of our enhancement ratio (4.4).

4.2 Results

We now examine the applicability of our formulation to the long wavelength ex-
periments of Shiner et al. [84, 110] and the two colour problem of Faccialà et al.
[85, 86]. Both cases are strongly affected by electron correlation driven enhance-
ment and increasingly test our ansatz with the complexity of the applied external
field.

4.2.1 Single-colour

As the first test of our computational procedure we calculate the HHG spectrum of
Kr. We do so as its spectra are not substantively affected by correlation enhancement
due to no prominent resonances in the region of interest. The pulse (1.3) is a linearly
polarised field of duration 8.8 fs FWHM in intensity of peak 1.8 × 1014 at 1800
nm. Figure 4.3 presents the raw result of our computation (4.3) contrasted against
its convolution (4.7). This convolution is contrasted against experiment [84, 110]
and an analogous R-matrix calculation [111] in the top frame of Figure 4.4. The
agreement between each is generally favourable. In particular, our computation
matches well the location of the spectral cutoff of the experimental spectra albeit
with a marginally higher magnitude. All three datasets have approximately equal
predictions for the Cooper minimum. We next calculate the HHG spectrum from
Xe under identical conditions. In this case, the spectra are strongly enhanced across
the so-called ‘giant resonance’ induced to the valence 5p-shell by its correlation with
the 4d-shell [112]. Our results before and after RRPA enhancement are given in the
bottom frame of Figure 4.4 and compared again with the experiment [84] and the
R-matrix calculation [111]. Additionally we include the QRS 25 Torr dataset from
Fig. 3(c) of [113] given for peak intensity 2 × 1014 W/cm2. This latter approach
includes macroscopic effects introducing dependencies on the focusing position and
gas pressure. Of the QRS calculations presented [113], it is this which appears to
have the best agreement with the Shiner experiment. Our reproduction of the giant
resonance is an improvement over the R-matrix method. However, both of these
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approaches exhibit a broader tail at high energies than that seen in the experiment.
Conversely, the QRS method places the resonance well in line with the experiment
but with an altogether sharper dependency.
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Figure 4.4: Top: The HHG spectrum of Kr from experiment [84] (black solid line), the
R-matrix calculation [111] (blue sparse dashed line), and our present TDSE theory (green
dense dashed line). Bottom: As above for Xe with the addition of our RRPA enhanced
TDSE theory (red dash-dotted line) and QRS calculation [113] (black thin dashed line).

4.2.2 Two-colour

Having examined our approach applied to a strongly correlated problem involving
an ordinary external field, we now look to calculate the two-colour HHG spectra
of Xe [85]. To do so we sum two linearly polarised pulses of the form (1.3). The
primary ω field corresponds to 1550 nm, is of peak intensity 7 × 1013 W/cm2, and
has FWHM duration of 8.8 fs with respect to this intensity. The secondary 2ω field,
accordingly corresponding to 775 nm, has the same FWHM duration, phase χ and
electric field strength 0.4 relative to the primary. The present TDSE calculated
HHG spectra, both raw and enhanced by the RRPA 5p/4d intershell correlation,
are displayed in the middle and bottom frames of Figure 4.5 respectively. They are
drawn as two-dimensional (2D) false colour plots in the energy and relative phase
χ coordinates. The top frame of Figure 4.5 exhibits the experiment as presented in
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[86].
We find solid qualitative agreement between our results and that of the exper-

iment and, as desired, applying the enhancement ratio appropriately magnifies the
caustic in the cutoff region. The most notable difference is the differing phase at
which the low-energy maxima occurs, being approximately χ = 0.75π in the ex-
periment and our theory predicting closer to 0.10π below this. Additionally, the
experiment exhibits a much stronger relative background across phases than what
we see in our calculation. This being a feature similarly found in their comparison
with time-dependent configuration interaction singles (TDCIS) based theory [85].
A more detailed comparison is made in Figure 4.6 where the phase maximum of
the spectra shown in Figure 4.5 is traced (maxχ〈P conv.

z 〉). On the top panel we dis-
play the TDSE calculation compared with the uncorrelated (5p only) TDCIS theory.
Here we find the observed trend to be essentially equivalent bar minor features. On
the bottom panel comparison is made of between our RRPA enhanced spectra and
the correlated TDCIS (5p, 4d, 5s) as well as the experiment. Again we find very
solid agreement between all three datasets. Most notably, we did not find a notice-
able disagreement between our calculation and the experiment around 63 eV photon
energy which is visible in the TDCIS calculation.

4.3 Conclusions

We performed simulations of HHG spectra from Xe in both one- and two-colour
fields from the numerical solution of the one-electron TDSE and account for the
effects of intershell correlation as a ratio of photoionisation cross-sections. In both
cases, we find solid agreement between our results and those of experiment and
to either be an improvement, or equivalently accurate, to those of more elaborate
theories. This is attributed to the equivalence of the recombination process in the
production of HHG to the time reversal of photoionisation. Accordingly, we find
the correlation effects to behave similarly, even when the dynamics is complicated
significantly by the introduction of the secondary field. Such an observation suggests
that further aspects of two-colour HHG production can be efficiently and effectively
studied through the lens of correlated photoionisation. To this end, we will next
apply our techniques to other atomic systems where the HHG process is enhanced by
intershell correlation and giant resonances. One such system is atomic manganese
where a giant autoionisation resonance due to transition from the 3p to a partially
filled 3d shell enhances strongly photoionisation and photorecombination from the
outer valence shell. This enhancement is recorded in the HHG spectrum accordingly
[93].
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Figure 4.5: The HHG spectrum of Xe recorded as a function of the photon energy and
the relative ω/2ω phase χ. Top: Experimental spectra from [86]. Middle: Present TDSE
calculation. Bottom: TDSE spectra enhanced by RRPA. Contours connect regions of
equal intensity in intervals of approximately 7%.
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Figure 4.6: The maximum HHG yield of Xe with phase for a given photon energy
(maxχ〈P

conv.
z 〉). Top: Our raw TDSE compared with the 5p only TDCIS theory [85].

Bottom: Enhanced TDSE result compared with the correlated TDCIS theory and exper-
imental measurements [85].



Chapter 5

State-resolved acceleration of
neutrals

This chapter is based on the following publication:

A. W. Bray, U. Eichmann, S. Patchkovskii, “Dissecting strong-field excitation
dynamics with atomic-momentum spectroscopy,” Phys. Rev. Lett., Submitted.

Somewhat counterintuitively, linearly polarised fields with increasingly high inten-
sities, rather than completely ionising the target atom, leads to atomic stabilisation
[114, 115]. This effect at high frequencies has been interpreted in terms of the
Kramers-Henneberger picture [4, 116] with the electron moving in a binding time-
averaged effective potential, leaving the target in a complex mixture of Rydberg
states.

This same phenomena has been observed in the context of today’s IR pulsed
laser systems via a process termed frustrated tunnelling ionisation [117]. In which
case, the Rydberg state distribution was found to scale as 〈n〉 ∝

√
E/ω, consistent

with the maximal excursion distance of the electron in the field rmax = E2/ω and the
radial expectation of said states 〈rRyd〉 ∝ n2. However, an unexpected observation
was the large (up to 1014g) acceleration of the neutral species produced [118]. Said
acceleration was present only for those atoms at significant distance from the focal
centre and, consequently, was attributed to the ponderomotive force from the large
field gradient in this region. Convincing theoretical grounding exists for the total
yields across a wide range of intensities [119], yet is lacking in a vital aspect, state
resolution.

The acceleration of neutrals has two promising applications conditional on its
state dependency. If the acceleration is widely universal, of particular interest if
applicable to the ground state, then the process would represent an effective mech-
anism for their spatial manipulation. Instead, if there is large dispersion across
electronic states, then via this mechanism one may design velocity selective gratings
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for specific Rydberg states.
The remainder of this chapter is dedicated to the detailing and applying a the-

oretical method suitable for this very problem. Namely, the acceleration of the
specific electronic states generated upon application of intense, linearly polarised,
and non-spatially-uniform fields.

5.1 Non-dipole laser fields

The small length scales of atomic physics problems typically allow for external laser
fields to be treated as spatially uniform (see Section 1.2.1). Nonetheless, the reality
is such the fields involved in strong field problems do have spatial dependences. For
a focussed laser beam, the lowest order solution for a sufficiently long pulse is of the
form

A(r, t) = A0
w0
w(x) exp

−y2 + z2

w(x)2 − γt
2


× cos

ωt− kx− ky2 + z2

2R(x) + arctan(x/xR) + φ

 ẑ (5.1)

w(x) = w0

√
1 + (x/xR)2 (5.2)

R(x) = x+ x2
R/x , (5.3)

known as a Gaussian mode [120], or equivalently, the transverse electromagnetic
mode TEM00 [121]. Here xR = kw2

0/2 is the Rayleigh length, and w0 is the beam
waist which characterises the degree to which the beam is focused. γ, as has pre-
viously been denoted α (Eq. (1.6)), is the parameter that determines the Gaussian
FWHM of the pulse intensity in time, and φ is again the carrier envelope phase
(CEP). Without loss of generality, we have chosen x as the propagation, y as the
transverse, and z as the polarisation directions respectively. Non-linear polarisation
is achieved through superposition of several such fields.

As previously mentioned, typically in atomic physics problems this spatial de-
pendence can be neglected due to the small length scales involved. However, an
exception occurs when the physics itself stems from this dependency. This is true
in our case as the observed ponderomotive acceleration is a result of the large field
gradients experienced at distance far from the beam centre. Hence, for this problem
we require the full treatment of the fields spatial dependency. In particular, we will
consider a pulse of the form (5.1) at λ = 800 nm, peak intensity 1 × 1015 W/cm2,
beam waist w0 = 2λ, and a temporal FWHM in intensity of 5.32 fs.
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Figure 5.1: Representation of a Gaussian pulse (5.1) (x-propagation, z-polarization) at
t = 0 along the z = 0 plane as contours (left) and shaded 3D surface (right). Pulse
parameters are wavelength λ = 800 nm, peak intensity 1 × 1015 W/cm2, beam waist
w0 = 2λ, and a FWHM in intensity of 5.32 fs.

5.2 Classical prediction

We now wish to derive the final velocity due to the ponderomotive force of an atom
with polarisability α when exposed to the above non-uniform field (5.1). In the
general case, we write Newton’s law as the following:

M
∂v

∂t
= −∇r

−E2(r, t)
2 α

 . (5.4)

Letting tb represent the time at which this particle is ‘born’ we can write Eq. (5.4)
in integral form

v = α

2M

∫ ∞
tb

∇rE
2(r, t) dt . (5.5)

Restricting to our specific field (x-propagation, z-polarisation) and the initial con-
dition x0 = 0, z0 = 0 we have for the velocity in the transverse direction

vy = − 2yα
Mw2

0

∫ ∞
tb

E2(y, t) dt . (5.6)

We now make the assumption that the position of the atom does not change on the
time scale of the pulse. This allows us to treat y = y0 as a constant with respect to
the integral and to write for the final transverse velocity

vy = −αA2
0

2y0

Mw2
0
e−2y2

0/w
2
0

∫ ∞
tb

(
ω sin(ωt) + 2tγ cos(ωt)

)2 e−2γt2dt . (5.7)

Finally, we recognise that the cosine term stems from the finite width of the pulse
and for γ � ω2 its contribution is negligible. This is indeed the case for our pulse.
Additionally, we recognise that Eq. (5.7) is a strictly increasing function as tb → −∞
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allowing us to compute an upper bound of

vmax
y = −αE2

0
y0

mw2
0
e−2y2

0/w
2
0

√
π

2γ . (5.8)

Taking αf = −1/ω2 as the polarisability of a free electron (5.8) evaluates to approx-
imately 24.3 m s−1 compared to numeric solution of (5.6) 24.4 m s−1 thus validating
the applicability of our assumptions. Instead, taking α0 = 9/2 as the polarisability
of the ground state of hydrogen (5.8) yields approximately −0.4 ms−1.

5.2.1 Reconstructing Rydberg ionisation times and ground
state effective polarisability

Armed with Eq. (5.5) there are two further interesting comparisons we may make, in
addition to the upper bounds on vy computed above. Firstly, if we assume that each
Rydberg produced has approximately the polarisability of a free electron, we can
use our TDSE resultant vy to solve Eq. (5.5) in reverse to yield the excitation time
tb. It must be stated however that as the polarisability is a cycle averaged quantity
that determining tb in this way cannot provide meaningful sub-cycle resolution.
Secondly, the ground state does not have a birth time per se, rather it exists for
all time tb = −∞. As such we may instead use Eq. (5.5) to compute the effective
polarisability of this state by comparison with our TDSE value.

5.3 TDSE solution

Here we wish to formulate a Hamiltonian suitable for this problem from which we
may construct our propagator. For its full derivation please see Appendix A.3.

We begin with the general minimal-coupling two-body expression

Ĥ = 1
2m1

(
p̂r1 − q1A(r1)

)2
+ 1

2m2

(
p̂r2 − q2A(r2)

)2

+ v(r1 − r2) + u
(
m1
M
r1 + m2

M
r2

)
(5.9)

containing terms u and v representing potentials associated with the inter-particle
separation and the centre of mass (c.o.m.) position. However, as the external field
has no spherical symmetry, the solution of (5.9) is a truly 6-dimensional problem
and is accordingly numerically challenging. Nonetheless, there are other properties
that we may make use of. Namely:

1. X = r1 − r2 , R = r1m1/M + r2m2/M

We shift to c.o.m. coordinates.

2. µ = m1 � m2 = M
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Assume the mass of the nucleus is much greater than the electron.

3. q2 = −q1 = −q

We say the two original particles are of equal and opposite charges.

4. A(X +R) ≈ A(X) + ∇RA(X) ·R

Approximate the field as linear in R about X as R� X.

5. Drop terms of order µ/M or below in the reduced mass Hamiltonian ĤX .

6. Drop linear field correction term in the c.o.m. Hamiltonian ĤR.

This essentially assumes that the dynamics of the c.o.m. come entirely from
its coupling to the reduced mass particle. The constant field interaction term
naturally cancels as the c.o.m. particle has no charge to zeroth order.

Having made these assumptions we may now write (5.9) as

Ĥ = ĤX + ĤR , ĤX = 1
2µ

(
p̂X − qA(R+X)

)2 + v(X) (5.10)

ĤR = 1
2M p̂2

R + u(R) , (5.11)

and seek solutions in the close-coupling form

Ψ(X,R, t) =
∑
n

ϕn(X, t)χn(R) , (5.12)

where the χn(R) are the time-independent eigenfunctions of ĤR. We now choose
u(R) as the harmonic oscillator potential x̂2

Rk/2 such that our solutions χn(R) of
energy εn and all of their subsequent matrix elements (see Tables A.1 and A.2) are
known analytically. In doing so, we must be careful that our choice of k is such
that the trapping potential is of negligible influence in comparison to the remain-
ing aspects of the physics. On the other hand however, we wish this potential to
be of sufficient depth such that only the ground state and first order solutions for
each Cartesian direction are populated. As a result of our investigations we find a
value of k = 10−4 to be satisfactory. The key physical question however is ensuring
the c.o.m. motion of the target, which is characterized by a finite temperature, is
appropriately treated by our choice of u(R). In a gas, the position of the c.o.m.
is determined to within the thermal de Broglie wavelength and is therefore best
represented by a finite, compact wavepacket. As long as the de Broglie wavelength
remains small compared to the laser wavelength, the exact shape and precise dimen-
sions of this wavepacket are not material for the outcome, and as such, our choice
is an appropriate one. Restricting ourselves to this regime, we have a Schrödinger
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equation of the form

i
∂ϕn
∂t

= (ĥ0 + εn)ϕn +
∑
m

ĥnmϕm for n,m ∈ {0, x, y, z} , (5.13)

where ĥ0 and ĥnm are complicated functionals of the field the reduced mass mo-
mentum operator p̂X , and harmonic oscillator matrix elements, but despite their
complexity are straightforward to compute. For their exact forms please see Ap-
pendix A.3. Finally, we have formulated our problem (5.13) in terms of a system
of four coupled three-dimensional equations, that may now be solved at a computa-
tional cost comparable with that involved in a fixed-nuclei electronic TDSE code.

5.3.1 Conditional velocity expectation

Presuming we have the solution |Ψ〉 of (5.13) at a time for which the pulse is gone, let
us compute the experimental observable we are interested in: the c.o.m. velocity for
a given electronic state. We begin with the expectation value of the final momentum
given by

〈p̂R〉 = 〈Ψ|p̂R|Ψ〉 =
∑
nm

〈ϕn|ϕm〉pnm (5.14)

where

pnm = 〈χn|p̂R|χm〉 . (5.15)

The values of (5.15) are given in Table A.2. For the state-resolved velocity, we insert
the identity

1 =
∑∫
f

|ϕf〉〈ϕf | , (5.16)

divide by the c.o.m. mass, and look at the contribution from a single bound state
|ϕf〉

〈v̂R,f〉 = 1
M

∑
nm

〈ϕn|ϕf〉〈ϕf |ϕm〉pnm . (5.17)

This quantity is the contribution to the total velocity expectation from the given
state. If, instead, we want the velocity conditional on having observed the system
in said state, by Lüders’ rule [122], we must normalise by the probability to be in
this state,

〈v̂R,cond. f〉 = 1
M

∑
nm〈ϕn|ϕf〉〈ϕf |ϕm〉pnm∑

n |〈ϕf |ϕn〉|2
. (5.18)
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This has been argued (though with some contention [123, 124]) to be the quantum
analogue of conditional probability

P (A|B) = P (A ∩B)
P (B) . (5.19)

5.4 Results

In this section we present the results of our computations of centre of mass velocity
conditional expectations (5.18) for the Gaussian pulse described in Section 5.1. Us-
ing these results we compute the ionisation times tb for each excited state produced
and the effective ground state polarisability as described in Section 5.2.1.

Before said presentation, however, there are several considerations that merit
discussion. Firstly, we will restrict our discussion to states with magnetic quantum
number m = 0. However, as this is a fully non-dipole treatment we indeed do find
non-zero m ± 1 (2) populations. However, they are four (eight) orders of magni-
tude smaller than for m = 0, a scaling consistent with the lowest-order magnetic
transition probabilities. Secondly, we examine displacements from the beam cen-
tre exclusively along the y-axis. Doing so disentangles the three mechanisms for
momentum transfer under such a scenario: the radiation pressure (x, propagation),
ponderomotive (y, transverse), and asymmetry (z, polarisation). The velocity due to
radiation pressure is uninteresting however, as it is determined entirely by the energy
difference between the ground and excited states vx = (En−E0)/Mc. Furthermore,
the asymmetry acceleration is approximately zero within numeric accuracy. As such,
our analysis is entirely focused on the ponderomotive/transverse velocity. Accord-
ingly, our displacement of choice is y0 = w0/2 and it is for this position that said
velocity is maximised (inferred from Eq. (5.4)). Finally, in problems involving strong
field excitation the effect of channel closings and associated resonances are highly
prominent [119]. A channel closing occurs when the intensity rises to the point
where a process involving n-photons of the laser frequency becomes insufficient to
cause ionisation. For such a process to ionise the target we require nω > Ip + Up,
Up ∝ I. As such, with increasing intensity the n-photon absorption channel closes
and instead comes into resonance with the Rydberg pseudo-continuum, enhancing
the production of these reaction products. For an 800 nm laser this corresponds to a
channel closing every 26 TW/cm2. Accordingly, we average our result across 7 dis-
placements corresponding to 12 TW/cm2 steps along the Gaussian intensity profile
centred about w0/2. Doing so, we effectively suppress the resonance contributions
which are highly sensitive to the intensity.

Our choice of Cartesian grid in performing the calculations is also worthily of
mention. As we are interested in the species that remain bound, we do not need to
prevent ionised flux from reaching the box boundaries. Nonetheless, the n species
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distribution at 1015 W/cm2 is expected to peak at approximately n = 7 [117], and
with Rydberg radial expectation values scaling as n2, this quickly proves to be a
restriction. Furthermore, to support these states, we additionally need to account
for the field induced oscillation of magnitude A0/ω. An advantage, however, is
that this oscillation occurs in the direction of polarisation (z) and accordingly does
not need to be accounted for in the remaining propagation (x) and transverse (y)
directions. For the radial box we have chosen {x ∈ ±78.6, y ∈ ±78.6, z ∈ ±152.1},
we are only able to fully support states up to n ≤ 6 and, accordingly, it is for these
that we present results.

5.4.1 Transverse velocities

The volume-averaged numerical results at this point are illustrated in Figure 5.2.
The local peak intensity of the field is ≈ 6.1× 1014 W/cm2. The ionization is in the
saturation regime, with ≈ 9% of the population surviving in the 1s ground state
after the pulse. Additionally, ≈ 2.4% of the atoms are excited to Rydberg states with
n ≤ 6. Although our simulation volume does not allow an accurate determination
of excitation probabilities for higher Rydberg states, we estimate that at least 2%
of the atoms are left in Rydberg states with n ≥ 7. For all electronic states in
Figure 5.2c other than the ground state, the final transverse velocities are in the
range of 12 to 20 m s−1.

5.4.2 Reconstructed Rydberg ionisation times

As described in Section 5.2.1, by assuming free-electron-like polarisability we may
solve Eq. (5.5) for tb to yield the excitation time. The results for the volume-averaged
excitation time reconstruction are presented in Figure 5.3. In nearly all cases, ex-
cited states are formed before the peak of the envelope, with two main clusters at
approximately −0.7 (2p, 3s, 3d, 4d, 5s, 5d, 5f , 5g, 6d, 6g, and 6h) and −1.7 fs (3p,
4s, 4p, 5p, 6s, 6p, 6f). Interestingly, both clusters gravitate towards the zeros of the
vector-potential, near the peaks of the electric field. These times of birth are consis-
tent with the expectations from the semi-classical frustrated tunneling model [22].
Intriguingly, two of the excited states (2s and 4f) appear to be preferentially formed
near the peak of the vector-potential, respectively at −0.2 and +0.2 fs. These times
of birth, and the broad spread of the times of birth within the two clusters in Fig-
ure 5.4 would seem to indicate that the multi-photon excitation mechanism is also
active. This observation is consistent with the value of the Keldysh parameter, 0.4,
indicating dynamics in a regime intermediate between tunnelling and multi-photon
transitions.
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Figure 5.2: Hydrogen atom initially at the half-waist position. The results are volume-
averaged about the Cartesian point (0, w0/2 ± 648, 0). The local peak intensity is ≈
6 × 1014 W/cm2. (a) Vector-potential at the initial position as a function of time. The
upper horizontal axis gives the fraction of the pulse duration τ0. (b) Population of the
individual m = 0 bound states after the end of the pulse. (c) Final c.o.m. velocity in the
outward transverse direction in meters per second (1 a.u. ≈ 2.19× 106 m s−1). The right
vertical axis gives the time when a particle with free-electron polarisability needs to enter
the field to reach the observed transverse velocity (Eq. (5.8)). Final velocities above the
dotted horizontal line cannot be reached by a free-electron-like particle. The connecting
lines in panels (b,c) are only a guide for the eye.

Figure 5.3: Reconstructed excitation times for the c.o.m. velocity spectra averaged over
±648 a0 about the half-waist position (See text and Figure 5.2 for the raw data). The
vector potential at the Cartesian point (0, w0/2, 0) is given by the black solid line. Peak
of the envelope is at the time zero.
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5.4.3 Effective ground state polarisability

One result seen in Figure 5.2c, which so far has not been remarked upon, is the
behaviour of the 1s ground state. For the laser pulse in Figure 5.2a, it is weak-field
seeking, reaching the final outward velocity of ≈ 3.2 m s−1. We additionally find the
low-field-seeking behaviour of the 1s state persists for other field parameters as well.
The final 1s velocity is also insensitive to channel-closing effects, indicating that it
arises due to adiabatic modification of the ground state, rather than via transient
population of high-Rydberg states. Because the 1s state existed before the arrival of
the pulse, tb → −∞, we solve Eq. (5.5) for the effective polarisability αeff . We present
αeff as a function of the peak intensity of the laser pulse, for the same spatio-temporal
pulse profile as used in Figure 5.2. The results for I0 in the range of 0.5 to 20× 1014

W/cm2 are collected in Figure 5.4. At lower intensities, the numerical accuracy
is insufficient to determine the final c.o.m. velocity, while at higher intensities the
survival probability becomes too low. In the entire range of the intensities, the
effective polarisability is negative, as opposed to +9/2 expected for 1s in a weak field.
At higher intensities, the effective polarisability becomes comparable to the free-
electron value (≈ −308 at this laser frequency). This indicates a remarkable, field-
induced modification of the electronic structure of the ground state, characteristic of
entering the Kramers-Henneberger regime [4]. Observation of Kramers-Henneberger
regime for an atomic ground state in strong, low-frequency fields has been long
sought after, with no unambiguous detection thus far [125].

Figure 5.4: Effective polarisability αeff (green solid line; left vertical axis) and survival
probability (red dashed line; right vertical axis) of the 1s ground state. The spatio-
temporal field profile is the same as in Figure 5.2. The peak intensity I0 varies from 0.5
to 20 × 1014 W/cm2. The horizontal axis shows the local peak intensity at the initial,
half-waist position of the atom (0.607× I0). These results are not volume-averaged as the
ground state does not exhibit channel closing induced resonances.
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5.5 Conclusions

We have developed a computationally tractable quantum mechanical approach to
correlations between c.o.m. motion and internal electronic dynamics in strong, non-
uniform laser fields. Using the technique, we demonstrate that the final c.o.m. ve-
locity is sensitive to the internal excitation dynamics. In particular, the transverse
ponderomotive velocity is determined by the total time the excited state spends in
the field. In the absence of resonances, it yields a measurement of the preferential
time of excitation. This procedure is robust to limited volume averaging, and can
be applied for different CEP values, for longer pulses, and for non-paraxial beams.
Finally, we demonstrate an unambiguous signature of the atomic ground state en-
tering the Kramers-Henneberger regime in strong, low-frequency fields, which has
been long sought-for. Taken together, our results suggest that c.o.m.-velocity spec-
troscopy is a powerful, and so far overlooked tool for understanding strong field
bound-state electronic dynamics on their natural timescale.
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Appendix A

Derivations

A.1 Pulse intensity

The Poynting vector (S = E ×B in vacuum) is the energy flux density of a given
electromagnetic field. The magnitude of its time average gives the intensity

I = |〈S〉|

= 1
8π |E|

2 (A.1)

for a freely propagating sinusoidal field. Though note that this factor of 1/8π is
typically absorbed into the atomic unit of intensity (see Eq. (A.5)) and as such in
the same system of units simply I = |E|2. For two orthogonal infinite sinusoidal
electric fields of amplitude E0/

√
1 + ε2 and εE0/

√
1 + ε2 the total intensity is simply

their sum and is given by

I = E2
0

1 + ε2

(
1 + ε2

)
= E2

0 . (A.2)

For a finite duration pulse we instead define the instantaneous intensity

I(t) = E(t)2 (A.3)

of which the peak is given by

I = max
t
I(t)

= E2
0 . (A.4)

It is this quantity that is most commonly quoted simply as the ‘intensity’ of a given
laser pulse.
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For conversion to SI units recall that the atomic unit of intensity is given by the
following

I0 = (Eh/(ea0))2 e2

8πα~
≈ 3.51× 1016 W/cm2 . (A.5)

A.2 Gaussian full-width-half-maximum

We wish to know the relation between the full-width-half-maximum w of intensity
and the parameter α for a Gaussian pulse of the form

A(t) = exp(−αt2) cos(ωt) . (A.6)

For this we need the upper bound of the instantaneous intensity which is related via

I = E2

=
(
−∂A/∂t

)2
=
(
exp(−αt2)

[
2tα cos(ωt) + ω sin(ωt)

])2

≤ exp(−2αt2)(4t2α2 + ω2) . (A.7)

Where we have used (a cos(x) + b sin(x))2 ≤ a2 + b2. At t = 0 Eq. (A.7) takes the
value of ω2. By definition we have that for t = w/2 it reaches half of this value, i.e.

ω2/2 = exp(−αw2/2)(w2α2 + ω2)

=⇒ α = 2
w2

[
ln 2 + ln(1 + (wα/ω)2

]
. (A.8)

Essentially our desired α is such that taking the RHS of (A.8) as a function and
applying it leaves its value unchanged. Defining the sequence

αn+1 = 2
w2

[
ln 2 + ln(1 + (wαn/ω)2)

]
(A.9)

α0 = 2 ln 2
w2 (A.10)

we find its limit to rapidly converge to this value

α = lim
n→∞

αn . (A.11)

This same result is reached regardless of the sinusoid chosen in (A.6) or by addition
of further orthogonal components and as such is applicable for the form (1.3).
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A.3 Hamiltonian for acceleration of neutrals

Beginning again with the general minimal-coupling two-body expression

Ĥ = 1
2m1

(
p̂r1 − q1A(r1)

)2
+ 1

2m2

(
p̂r2 − q2A(r2)

)2

+ v(r1 − r2) + u
(
m1
M
r1 + m2

M
r2

)
(A.12)

we find by making the shift to c.o.m. coordinates

X = r1 − r2 , R = r1m1/M + r2m2/M , (A.13)

yields the expression

Ĥ = 1
2µp̂

2
X −

(
1
m1
A1 −

1
m2
A2

)
· p̂X + 1

2m1
A2

1 + 1
2m2

A2
2 + v(X)

+ 1
2M p̂2

R −
1
M

(A1 +A2) · p̂R + u(R)− 1
µ
Ra

(
A

(a)
1 +A(a)

2

)
· p̂X

−Ra

(
1
m2
A

(a)
1 −

1
m1
A

(a)
2

)
· p̂R + 1

µ

(
A1 ·A

(a)
1 −A2 ·A

(a)
2

)

+ 1
2µRaRb

(
M

m2
A

(a)
1 ·A

(b)
1 + M

m1
A

(a)
2 ·A

(b)
2

)
(A.14)

where repeated indexes a, b ∈ {x, y, z} are summed over, we have used the shorthand

A1 = q1A
(

m2
M
X
)

(A.15)

A2 = q2A
(
−m1
M
X
)

(A.16)

A(b) = ∂

∂Xb

A , (A.17)

and assumed the field is both transverse ∇ ·A = 0, and can be approximated as
linear in R about X. We then take q1 = −q2 = −q, drop terms of order µ/M or
smaller, and the field coupling term in p̂R to write

Ĥ = 1
2µ

(
p̂X − q

(
A+A(a)Ra

))2
+ v(X) + 1

2M p̂2
R + u(R) . (A.18)

We have confirmed that dropping such terms yields numerically equivalent results
for our problem as the full expression Eq. (A.14). This is due to the short (sub-
picosecond) and moderately-intense IR fields leading to c.o.m. displacements small
compared to both the characteristic electron excursion and the laser-field wave-
length. As previously mentioned with this Hamiltonian under such small c.o.m.
displacements we can seek a close-coupling solution of the form

Ψ(X,R, t) =
∑
n

ϕn(X, t)χn(R) , (A.19)
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taking n ∈ {0, x, y, z}. Under this ansatz we seek solutions to the set of PDEs

i
∂

∂t
ϕn =

(
ĥ0 + εn

)
ϕn +

∑
m

ĥnmϕm n,m ∈ {0, x, y, z} , (A.20)

ĥ0 = 1
2µp̂

2
X + v − q

µ
A · p̂X + q2

2µA
2 (A.21)

ĥnm = ηnm · p̂X + κnm (A.22)

ηnm = − q
µ
A(a) 〈χn|Ra|χm

〉
(A.23)

κnm = q2

2µ

[(
A2
)(a) 〈

χn|Ra|χm
〉

+A(a) ·A(b) 〈χn|RaRb|χm
〉]

. (A.24)

To do so we employ a leap-frog propagator [126] with time-step 0.005 a.u. and have
verified its accuracy against the 4-th order Runge-Kutta [127, 128]. Taking u as the
harmonic oscillator potential x̂2

Rk/2 and consequently

〈Ra|χj〉 =
(
L

π

)
1

2jj!
Hj

(
L1/2Ra

)
e−LR

2
a/2 , (A.25)

the matrix elements present in Eqs. (A.23) and (A.24) are given in Table A.1. Here
Hj are Hermite polynomials and L =

√
kM . Similarly the matrix elements required

to evaluate Eq. (5.18) are found in Table A.2.

Table A.1: Harmonic oscillator matrix elements of the form 〈χn|R
n
{x,y,z}|χm〉, n ∈ {1, 2}.

Element value
〈χ0|Rx|χx〉 = 〈χ0|Ry|χy〉 = 〈χ0|Rz|χz〉 1√

2L

〈χ0|R2
x|χ0〉 = 〈χ0|R2

y|χ0〉 = 〈χ0|R2
z|χ0〉 1

2L

〈χx|R2
x|χx〉 = 〈χy|R2

y|χy〉 = 〈χz|R2
z|χz〉 3

2L

〈χx|R2
y|χx〉 = 〈χx|R2

z|χx〉 = and others 1
2L

〈χx|RxRy|χy〉 = 〈χx|RxRz|χz〉 = 〈χy|RyRz|χz〉 1
2L

Table A.2: Harmonic oscillator matrix elements of the form pnm = 〈χn|p̂R|χm〉.

n
m

0 x y z

0 0 −i
√

L
2 {1, 0, 0} −i

√
L
2 {0, 1, 0} −i

√
L
2 {0, 0, 1}

x i
√

L
2 {1, 0, 0} 0 0 0

y i
√

L
2 {0, 1, 0} 0 0 0

z i
√

L
2 {0, 0, 1} 0 0 0
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