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SUMMARY

In this paper we discuss quantization effects in rigid formation control systems when target formations are
described by inter-agent distances. Because of practical sensing and measurement constraints, we consider
in this paper distance measurements in their quantized forms. We show that under gradient-based formation
control, in the case of uniform quantization, the distance errors converge locally to a bounded set whose
size depends on the quantization error, while in the case of logarithmic quantization, all distance errors
converge locally to zero. A special quantizer involving the signum function is then considered with which
all agents can only measure coarse distances in terms of binary information. In this case the formation
converges locally to a target formation within a finite time. Lastly, we discuss the effect of asymmetric
uniform quantization on rigid formation control. Copyright © 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Quantized control has been an active research topic in the recent decade, motivated by the fact that
digital sensors and numerous industrial controllers can only generate quantized measurements or
feedback signals [1,2]. Recent years have also witnessed extensive discussions on quantized control
for networked control systems. This is because data exchange and transmission over networks often
occurs in a digitally quantized manner, thus giving rise to coarse and imperfect information; see
e.g., [3-8].

In this paper, we aim to discuss the quantization effect on rigid formation control. Formation
control based on graph rigidity is a typical networked control problem involving inter-agent
measurements and cooperations. There have been many papers in the literature focusing on control
performance and convergence analysis for rigid formation control systems (see e.g. [9-14]),
with virtually all assuming that all agents can acquire the relative position measurements to
their neighbors perfectly. We remark that there are some recent works on linear-consensus-based
formation control with quantized measurements. An exemplary paper along this line of research
is [15], which showed that by using very coarse measurements (i.e., measurements in terms of binary
information) the formation stabilization task can still be achieved. The case of coarse measurements
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can be seen as a special (or extreme) quantizer, which generates quantized feedbacks in the form of
binary signals. However, in [15] and similar works on linear-consensus-based formation control,
a common knowledge of the global coordinate frame orientation is required for all the agents
to implement the control law. This is a strict assumption and is not always desirable in practical
formation control systems. Actually, it has been shown in [16] that coordinate orientation mismatch
may also cause undesired formation motions in linear-consensus-based formation systems. All these
restrictions and disadvantages are known to be avoidable in rigid formation control systems, in
which any common knowledge of the global coordinate system is not required.

In the framework of quantized formation control, we also consider in the latter part of this paper a
special quantizer described by the signum function. This part is motivated by the previous work [17]
which discussed triangular formation control with coarse distance measurements involving the
signum function. In this paper we will consider a more general setting, which extends the discussions
from the triangular case in [17] to more general rigid formations.

The aim of this paper is to explore whether the introduction of quantized measurement and
feedback can still guarantee the success of formation control, and to what extent the controller
performance limits exist. Our broad conclusion is that quantization is not fatal, but may reduce
performance in achieving a target formation.

In this paper, we focus on local convergence of target formations with general shapes, by
assuming that initial formations are minimally and infinitesimally rigid, and are close to a target
formation, which is a common assumption that has been widely used in many papers on rigid
formation control; see e.g. [9, 12, 14,18, 19]. We note that local stability is also a practical problem,
arising when wind disturbs a formation away from its desired shape, and the original shape has to
be recovered. Local convergence of formation shape also has practical significance. For example,
agents can firstly assemble an approximate formation close to the desired shape, and then apply the
control law to achieve the target formation guaranteed by the local convergence. Global analysis
of formation convergence and stability is however only available for some particular and simple
formation shapes (see e.g., [10] for 2-D triangular shape, [20] for 3-D tetrahedral shape, and [21]
for 2-D triangulated formations), while global analysis for rigid formation systems with general
shapes is a challenging and open problem. Global analysis of formation convergence is therefore
beyond the scope of this paper and will not be discussed here.

A preliminary version of this paper was presented in [22]. The extensions of this paper compared
to [22] include detailed proofs for all the key results which were omitted in [22], examples on
several quantizer functions, and a new section to discuss the formation convergence when using
an asymmetric uniform quantizer. Furthermore, simulation results which support the theoretical
analysis are provided in this extended paper.

The remaining parts are organized as follows. Section 2 briefly reviews some background on
graph rigidity and two commonly-used quantizer functions. Section 3 discusses the convergence of
the formation systems under two quantized formation controllers. In Section 4 we show a special
quantized formation controller with binary distance information. Section 5 focuses on the case of
an asymmetric uniform quantizer and its performance. Some illustrative examples are provided in
Section 6. Section 7 concludes this paper.

2. BACKGROUND AND PRELIMINARIES

2.1. Notations

Most notations used in this paper are fairly standard, and here we introduce some special notations
that will find use in later analysis. The the operator col(-) defines the stacked column vector.
For a given matrix A € R"*™, define A := A® I; € R"®™d where the symbol ® denotes the
Kronecker product and I, is the d-dimensional 1dent1ty matrix with d = {2, 3}. We denote by [|z||
the Euclidean norm of a vector z, by & : W the unit vector of z # 0, and by 7 : HIII the
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QUANTIZED RIGID FORMATION CONTROL 3

reciprocal of the norm of x # 0. For a stacked vector  := [z{ ,z5,..., %] | T with z; € Rl i e
{1,...,k}, we define the block diagonal matrix D, := diag{z;},c(1,. x} € RF*¥.

2.2. Graph rigidity

Consider an undirected graph with m edges and n vertices, denoted by G = (V, £) with vertex set
YV =1{1,2,--- ,n} and edge set £ C V x V. The neighbor set N; of node i is defined as \; := {j €
V: (i,j) € £}. We define an oriented incidence matrix B € R™*™ for the undirected graph G by
assigning an arbitrary orientation for each edge. Note that for a rigid formation modelled by an
undirected graph considered in this paper, the orientation of each edge for writing the incidence
matrix can be defined arbitrarily and the stability analysis in the next sections remains unchanged.
By doing this, we define the entries of B as by, = —1, if i = £211, or by, = +1, if i = EM, or
bir = 0 otherwise, where £{! and €14 denote the tail and head nodes, respectively, of the edge &y,
ie. & = (&1l ghead) For a connected undirected graph, one has null(B ") = span{1,,}.

We denote by p=[p{, ps, -+, p,]T € R the stacked vector of all the agents’ positions
p; € R We also define non-collocated positions for all agents as those positions for which p; # Dj
forall (i, j) € €. The pair (G, p) is said to be a framework of G in R%. The incidence matrix B defines
the sensing topology of the formation, i.e. it encodes the set of available relative positions that can
be measured by the agents. One can construct the stacked vector of available relative positions by

:=B'p, (1)

where each element z;, € R? in z is the relative position vector for the vertex pair defined by the
edge &.

Let us now briefly recall the notions of infinitesimally rigid framework and minimally rigid
framework from [23] and [24]. Define the edge function fg(p) := cgl (|lzx/|*) where the operator

col defines the stacked column vector. We denote the Jacobian of % fg(p) by R(z), which is

called the rigidity matrix. An easy calculation shows that R(z) = DZTET. A framework (G, p) is
infinitesimally rigid if rank(R(z)) = 2n — 3 when it is embedded in R? or if rank(R(z)) = 3n — 6
when it is embedded in R3. If additionally |£| = 2n — 3 in the 2D case or || = 3n — 6 in the 3D
case then the framework is called minimally rigid. In this paper we assume that the target formation
is infinitesimally and minimally rigid, while the convergence results obtained in this paper can be
extended to non-minimally but still infinitesimally rigid target formations by following the analysis
in [18] or [14].

2.3. Quantizer functions

In this paper, we mainly consider two types of quantizers: the uniform quantizer and the logarithmic
quantizer [4-8]. In later sections we will also consider two special quantizers, namely a quantizer
involving the signum function and the asymmetric uniform quantizer, derived from these quantizer
functions.

2.3.1. Definition of the quantizers The symmetric uniform quantizer is a map ¢,, : R — R such that

Gu() = b, ({ﬂ) , o)

where ¢, is a positive number and |a],a € R denotes the nearest integer to a. We also define
|2 +h] = hforany h € Z.
The logarithmic quantizer is an odd map ¢; : R — R such that

exp(q. (Inx)) when z > 0;
q(x) = 0 when z = 0; 3)
—exp(qu(In(—2)))  when x < 0.

where exp(-) denotes the exponential function.
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Logarithmic quantizer (gain é'u =0.5)

Figure 1. Logarithmic quantizer function with the gain §,, = 0.5, defined in (3).

2.3.2. Properties of the quantizers For the uniform quantizer, the quantization error is always
bounded by 4, /2, namely |g,(z) — z| < % forall z € R.

For the logarithmic quantizer, it holds that ¢;(z)x > 0, for all € R, and the equality holds if and
only if z = 0. The quantization error for the logarithmic quantizer is bounded by |¢;(z) — z| < §;|z],
where the parameter d; is determined by ¢; = exp(%) — 1 (note that §; > 0 because §,, > 0).

The above definitions for scalar-valued uniform and logarithmic quantizers can be generalized
to vector-valued quantizers for a vector in a component-wise manner. For an illustration of a
logarithmic quantizer function, see Figure 1. Note that in Section 5 we will further consider an
asymmetric uniform quantizer, and will provide some comparisons between a symmetric uniform
quantizer and an asymmetric uniform quantizer.

2.4. Nonsmooth analysis

Consider a differential equation
@(t) = X(x(t)), )

where X : RY — R¢ is a vector field which is measurable but discontinuous. The existence of a
continuously differentiable solution to (4) cannot be guaranteed due to the discontinuity of X (x(¢)).
Also, as shown in [5], the Caratheodory solutions (for definitions, see [25]) may not exist from a
set of initial conditions of measure zero in quantized control systems. Therefore, we understand the
solutions to the quantized rigid formation system in the sense of Filippov [26]. We first introduce
the Filippov set-valued map.

Definition 1
Let D(RY) denote the collection of all subsets of R%. The Filippov set-valued map F[X]: R% —
D(R?) is defined by

FIXI@) & () [) ©fXB@0)\S)}, =zeR (5)

6>0 u(8)=0

where €0 denotes convex closure, S is the set of  at which X (z) is discontinuous, B(z, ) is the
open ball of radius § centered at z;, and [ 4(S)=0 denotes the intersection over all sets S of Lebesgue
measure zero.

Because of the way the Filippov set-valued map is defined, the value of F[X] at a discontinuous
point z is independent of the value of the vector field X at z. Filippov solutions are absolutely
continuous curves that satisfy almost everywhere the differential inclusion #(t) € F[X](x) defined
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QUANTIZED RIGID FORMATION CONTROL 5

above. Some properties of the Filippov solution and examples of how to compute a Filippov set-
valued map can be found in the review [25].

3. FORMATION CONTROL WITH QUANTIZED MEASUREMENTS

3.1. Quantized formation controllers

In rigid formation control each agent is required to measure the relative position (i.e. bearing and
range) to its neighbors via a bearing sensor and a range sensor. If one assumes perfect measurements,
a commonly-used formation controller can be written as (see e.g. [19,27])

Di = _szk(HZk” — di) 2, (6)
=1

where dj, is the desired distance for edge k which is adjacent with agent 7 , and other symbols
appeared in (6) have been introduced in Sections 2.1 and 2.2. Note that more general forms of
formation controllers to stabilize rigid formations are discussed in [14].

In the presence of quantized sensing and measurement, the right-hand side of the above formation
control system (6) needs modification. Here we assume that the distance measurement (with an
offset, see the following equation (7)) is quantized, and the bearing measurement is unquantized.
This assumption is reasonable because the bearing measurement is always bounded (described by
a unit vector, or by an angle in [—m, ) in the 2-D case). A normal digital sensor, say a 10-bit
uniform quantizer, applying to bearing measurements gives rather accurate measurement with very
small error to the true bearing. This is not the case for distance measurements which may have larger
magnitudes. We use quantized distance measurement in the formation controller design, while in the
future work this may be relaxed by considering both quantized range and bearing measurements.
With such considerations, a quantized formation control system can be written as

m
pi ==Y bir alll 2] — d) 2, (7)
k=1

where ¢ is a quantization function, which can be the uniform quantizer or the logarithmic quantizer
defined in Section 2.3. We also assume that all the agents use the same quantizer ¢(-), and their
initial positions start with non-collocated positions (which ensures zj(0) # 0 for all k).

It is clear from (7) that each agent needs to measure relative position information (e.g., bearing
and distance) to its neighbors. We also note that in practice agents could be equipped with sensors
which produce separately the distance measurement and bearing measurement. For example, laser
scanners or radars can give separately the range information (via round-trip travelling time of the
signal) to its neighbors, and the bearing information to its neighbors in terms of Z;, with respect to
that agent’s own local coordinate frame (as will be clarified later in Lemma 2).

Remark 1

One may wonder why there is not use of the quantization feedback in the form of ¢(||zx||), i.e.
the direct quantized distance measurement, in the control (7). We note three reasons for choosing
q(||zx]| — di) instead of ¢(||zx||), from the viewpoint of using quantization as a necessity (arising
from limited measurement capabilities), and the advantages that are brought about by adopting such
a quantization strategy:

o In rigid formation control, the control objective is to stabilize the actual distances between
neighboring agents to prescribed values. If one chooses the quantization strategy in the form
of ¢(||zk||), then this control objective may not be achieved. To this end, the quantization
strategy q(||zx|| — di) used in (7) can be interpreted as arising from a digital distance sensor
with an embedded or prescribed offset (where the offset is the desired distance dy,), which is
practical in real-world applications.
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e In the case of non-uniform quantizers (e.g., logarithmic quantizer), the quantization accuracy
(or resolution) usually increases when the quantizer input approaches closer to the desired
state (which is the origin in this case). Thus, when the formation approaches closer to the target
formation, a higher quantization accuracy (if possible) is required, and this cannot be achieved
if one uses the quantization function (e.g., logarithmic quantization) on the actual distance in
the form of ¢(||zx||). Furthermore, such a quantization is appealing as a design choice as one
can have finite time convergence (as proved in the later section), which is another advantage
from the formation convergence viewpoint.

o We will further show in Section 4 that the chosen quantization strategy ¢(||zx|| — dx) will
specialize to a simple and effective quantizer with coarse binary distance measurement. This
also brings about the finite time formation convergence, as will be discussed in Section 4.

In the presence of quantized measurement and feedback, the right-hand side of (7) is
discontinuous and we will consider the following differential inclusion

piEI[ZbikQ(|2k||_dk)2k - (8)
k=1

In the following, we define the distance error for edge k as ex = ||zx|| — dx. We then calculate
the differential inclusion F(g(ey)) which will be used in later analysis. In the case of a symmetric
uniform quantizer, the differential inclusion F (g, (ex)) can be calculated as

_ h6u7 er € ((h - %)&u (h + %)511.) 7h € Za
F(qu(er)) = { (W6, (h+ 1)8,], er = (h+1)d,, heZ

Note that e, F (g, (ex)) > 0 for all ey, and e, F (gu(ex)) = 0 if and only if e, € [—%, %]. We refer
the reader to Section 2.3 for the definition and meaning of notations such as §,, and h.
In the case of a logarithmic quantizer, the differential inclusion F(g;(ex)) can be calculated as

Flater) = | sien(edexplaulinlen])), e # e h e Z;
e = [CXP(h(su),eXP((h + 1)6u)]; € = e(h+%)5u,h c7.
(

Also note that e, F(q;(ex)) > 0 for all e, # 0, and exF(q;(e)) = 0 if and only if e, = 0.
We define the distance error vector as e = [e1, €9, ..., em]T. Then in a compact form, one can
rewrite the dynamics of (8) as

pe F|[ = BD: qe(col (I141))] ©)

In order not to overload the notation, here by Z we exclusively mean the vector-wise normalization
of z, therefore D in the above equation and in the sequel is defined as D; = diag{Z1, ..., 2, }. This
notation rule will also be applied to Z in the sequel. Note that the differential inclusion F(¢(e)) with
the vector e is defined according to the product rule of Filippov’s calculus properties (see [28]).

Example 1

We show an example to illustrate the formation control system with quantized measurements.
Consider a formation system aiming to achieve a double tetrahedron shape in 3-D space (see Figure
2), which consists of five agents labeled by 1,2, 3,4, 5 and nine edges. The formation is minimally
rigid. For the purpose of writing an oriented incidence matrix, suppose that the nine edges are
oriented from 4 to j just when ¢ < j. Then we can number the edges in the following order:
12,13,14,23, 34, 24,25, 35, 45. Thus, the following oriented incidence matrix for the undirected
graph in Figure 2 can be obtained

-1 -1 -1 0 0 0 0 0 O
1 o 0 -1 0 -1 -1 0 O
B=|0 1 0 1 -1 0 0 -1 0 (10)
0 0 1 0 1 1 0 0 -1
o 0 0 0 0 O 1 1 1
Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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4

Figure 2. A 3-D double tetrahedron formation shape, with 5 agents and 9 distances.

The composite relative position vector z is then defined according to the orientation for each edge,

. . . . =T .
as in the incidence matrix B, in the form of z = B p. As an example, one has z; = py — p1, i.e. the
vector z; at edge 1 is defined by the relative position between agent 2 and agent 1. The formation
dynamics for agent 1 can be written as

p1 € Flq(l|z1]l — d1) 21 + q(||22]] — d2)22 + q([|23]] — d3)23] - (11)

and similarly one can obtain the system equation for other agents.
By defining the matrix B and D;, one can obtain compact equations of system dynamics in the
compact form of (9).

3.2. Properties of quantized formation control systems

We first discuss the solution issue of the formation control system (8). However, it is more
convenient to focus on the dynamics of the relative position vector z, which can be derived from (8)
as follows

,é:ET]')Ef[—ETEDiq(e(cgl(||Zk|\))}. (12)

First note that at any non-collocated finite initial point p(0), the right-hand side of (8) and of (12) is
measurable and locally essentially bounded. Thus, the existence of a local Filippov solution of (8)
and of (12) starting at such initial points is guaranteed.

We then derive a dynamical system from (9) to describe the evolution of the distance error vector
e. According to the definition of the distance error ey, e is a smooth function of z;. Thus, by using
the calculus property (see [25]) and the set-valued Lie derivative computation theorem (see [29]),
one can show é;, exists and ¢, = mz; Zr, holds almost everywhere. The dynamics for the distance
error vector e can be obtained in a compact form as

¢=D:D]:=D:DIB p=D:R(z)p, a.c.
€ —-F [DgR(Z)RT(Z>ng(6)} , a.e. (13)

A more general compact form of the system equation é can be found in [19, Section III]. Again, the
existence of a local Filippov solution of (13) starting with a non-collocated finite initial point p(0) is
guaranteed. In the next section, we will also show that the solutions to (13) (as well as the solutions
to (8) and (12)) are bounded and can be extended to ¢ — oo when agents’ initial positions are chosen
non-collocated and close to a target formation shape. Also, as shown in [18], when the formation
shape is close to the desired one, the entries of the matrix R(z)R " (z) are continuously differentiable
functions of e. Since the nonzero entries of the diagonal matrix D; are of the form m which are
also continuously differentiable functions of e, we conclude that the system described in (13) is a
self-contained system, and we will call it the distance error system in the sequel.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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Example 2
(Continued) We again use the formation shape shown in Figure 2 to illustrate the derivation of the
above system equations.

According to the definition of the relative position vector z one can derive the compact form of
the system dynamic equation for z, as shown in (12). From the construction of the incidence matrix
B and the relative position vector z, the rigidity matrix can be obtained as

[ —z 2z 0 0 0 7
—zg 0 oz 0 0
—zg 0 0 za 0
0 -z =z 0 0

R= 0 0 —zd 2z 0 (14)

0 -2 0 2 0
0 -2z 0 0 2
0 0 —z 0 2z

L 0 0 0 -z 2 |

From the expression of the matrix R(z) in (14), it is obvious that the entries of the matrix
product R(z)RT(z) are either zero, or inner products of relative position vectors in the form of
zZT zj, which are functions of the distance error vector e (for detailed analysis, see e.g., [14, 18]).
Since the diagonal matrix D; is defined as D; = diag{Z1, ..., Zo} with Z; = m, it is clear that
the entries of the matrix D; are also functions of e, and therefore the entries in the matrix product
D:R(2)R" (2)D; are functions of e. Hence, the distance error system in (13) is a self-contained
system, for which we can apply the Lyapunov argument to show its stability. Note the compact
form of the error system (13) can be derived by the definition of the distance error e.

Finally, we show some additional properties of the formation control system with quantized
information. Note that through this paper we assume that the underlying graph modelling inter-
agent interactions is undirected.

Lemma 1
In the presence of the uniform/logarithmic quantizer, the formation centroid remains stationary.

Proof
Denote by p. € R¢ the center of the mass of the formation, i.e., p. = = >°" | p; = 1(1, ® Iaxa) ' p.

By applying the calculus property for the set-valued Lie derivative (see [25] or [29]), one has

. 1 .
pc(t) :E(ln & Idxd)Tp

€— %(171 ® Iaxa) ' R"(2)D:Fq(e(2))] forae.t. (15)
Note that (1,, ® Igxq) " R"(z) = 0. Therefore,
Pe(t) € — %(171 ® Iixa) ' R (2)D:F[q(e(2))] = {0} for ace. t. (16)
Thus p. =0 for a.e. t, which indicates that the position of the formation centroid remains
constant. O
Lemma 2

To implement the control, each agent can use its own local coordinate system to measure the relative
position (quantized distance and unquantized bearing) of its neighbors, and a global coordinate
system is not involved.

Note that the above lemma implies the SE(N) invariance (i.e., translational and rotational
invariance) [30] of the proposed formation controller, which enables a convenient implementation
of the quantized formation control law without coordinate frame alignment for all of the agents. We
refer the readers to [30] for a general treatment on coordinate frame issues in networked control
systems.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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QUANTIZED RIGID FORMATION CONTROL 9

Proof

The key part in the proof of local coordinate requirement is to show the control function for all the
agents is an SE(N)-invariant function . The control function for agent i is f; = >, bix q(||zx|| —
dy) 2. Given an arbitrary coordination rotation R € SO(N) and displacement of origin w € RY,
there holds

fi(Rpr +w, .., Rpp +w) =Y biq(|[ze]| — di) R 2

k=1
=R bk qll|ze]] — di) 2
k=1
= Rfi(p1,---,pn) a7
and the statement is proved. O

3.3. Convergence analysis
In this section we aim to prove the following convergence result.

Theorem 1
Suppose the target formation is infinitesimally and minimally rigid and the formation controller
with quantized measurement is applied.

o In the case of a uniform quantizer, the formation converges locally to an approximately correct
and static shape defined by the set Fypprox = {elex € [—%, %],k € {1,...,m}};

o In the case of a logarithmic quantizer, the formation converges locally to a correct and static
formation shape.

In the proof we will use the Lyapunov theory of nonsmooth analysis, for which we construct a
Lyapunov function candidate as

m

V(e) = Vi(ex), with Vi(ey) = /k q(s)ds. (18)
0

k=1

Before giving the proof of Theorem 1, we first show some properties of the function V' defined
in (18). For the definition of function regularity in nonsmooth analysis, see e.g. [31, Chapter 2]
or [25, Page 57].

Lemma 3
The function V constructed in (18) is positive semidefinite, and is regular everywhere.

Proof
The positive semidefiniteness of V' is obvious from the property of the quantization functions g,
and g;. Note that V(e) = 0 if and only if e € {e|ex € [~%, %],k € {1,...,m}} for a uniform

quantizer g,,, or when e = 0 for a logarithmic quantizer g;. The proof for the regularity is omitted
here but follows similarly to the proof of the previous paper [6, Lemma 6]. We note a key fact that
supports the regularity statement of V: V' is continuously differentiable almost everywhere, while at
the nondifferentiable points V' has corners of convex type. From the sufficient condition of regular
functions stated in [32, Page 200], ¢ this key fact implies that V' is regular everywhere. U

TA function f is said to be SE(N)-invariant if for all R € SO(N) and all z1,...,zp,w € RN, there holds
Rf(z1,...,2n) = f(Rz1 +w,..., RTyn +w).

t“Roughly speaking, we can think of regular functions as those that, at each point, are either smooth, or else have a
corner of convex type” [32, Page 200].

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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Furthermore, according to the definition of generalized derivative (see e.g. [31, Chapter 2]), one
can calculate the generalized derivative of Vj, (for the case of a uniform quantizer) as

[Rdy, (R +1)6.], exr = (h+ )6, heZ
oV, = 27
q(ex), elsewise
Similarly, one can also calculate the generalized derivative of Vj(ey) for the case of a logarithmic
quantizer (which is omitted here). The generalized derivative of V' (e) can be obtained by the product
rule (see [25, Page 50]). Now we are ready to prove Theorem 1.

Proof

We choose the Lyapunov function constructed in (18) for the distance error system (13) with
discontinuous right-hand side. Note that R(z)R" (z) and D; are positive definite matrices at the
desired formation shape. Similarly to the analysis in [14] and in [19], we define a sub-level
set B(p) = {e: V(e) < p} for some suitably small p, such that when e € B(p) the formation is
infinitesimally minimally rigid and the initial formation shape is close enough to the prescribed
shape (which implies that inter-agent collisions cannot be possible). Note that all these imply that
R(2)RT (2) and D; are positive definite when e € B(p). Note also that the defined sub-level set B(p)
is compact, and the matrix Q(e) := D:R(2)RT (2)D: is also positive definite when e € B(p). As a
consequence, in the following we rewrite the distance error system as ¢ € F [—Q(e)q(e)].

The regularity of V' shown in Lemma 3 allows us to employ the nonsmooth Lyapunov theorem
[29, Section 2] to develop the stability analysis. We calculate the set-valued derivative of V' along
the trajectory of the distance error system (13). By applying the calculation rule for the set-valued
derivative (see [25, Pages 62-63]), one can obtain

V(@)(B) S E(]})V(E) = {a S ]R|Elv (S é(13),
such that ¢ v = a,V¢ € OV (e)}. (19)

Note that the set £(;3)/(¢) could be empty, and in this case we adopt the convention that max(()) =
—o0. When it is not empty, there exists v € —Q(e)q(e) such that (Tv = a for all ¢ € OV (e). A
natural choice of v is to set v € —Q(e)¢, with which one can obtain a = —¢ " (¢)Q(e)q(e). Let Amin
denote the smallest eigenvalue of Q(e) when e(p) is in the compact set B (i.e. Amin = reneizlsl A(Q(e)) >

0). Note that Ay, exists because the set B is a compact set and the eigenvalues of a matrix are
continuous functions of the matrix elements, ~and Amin > 0 because Q(e) is positive definite with
e € B(p) as mentioned above. Then if the set £(;3)V (e) is not empty, one can show

max (L3 V(e)) < —Amina(e) qle) (20)

and if the set £(13,V/ (e) is empty, one has max (L3 (e)) = —oo. Note that both cases imply that V/
is non-increasing, and consequently the Filippov solution e(¢) of (13) is bounded. Thus, all solutions
to (13) (as well as the solutions to (8)) are bounded and can be extended to ¢ = oo (i.e., there is no
finite escape time).

We now divide the rest of the proof into two parts, according to different quantizers:

e The case of uniform quantizers: it can be seen that max (L 3V (e)) < 0 for all e € B(p)
and 0 € max(ﬁ(B)V(e)) if and only if e € Fypprox. Also note that Fypp0x is compact, and is
positively invariant for the distance error system (13) (i.e. if the initial formation is such
that e(0) € Fypprox, then all agents are static and e(t) € Fypprox for all ¢). According to the
nonsmooth invariance principle [29, Theorem 3], the first part of the convergence result is
proved. Since this is a convergence to a closed and bounded set Fyp0x (i.€., a compact set),
and outside this set the set-valued derivative of V' along the trajectory of the distance error
system is always negative (i.e., max(L3)V (e)) < 0 for e € B(p) \ Fupprox) While B(p) is also
a compact set, the convergence to Fypprox 1S achieved within a finite time. Note also from (7)
the final formation is stationary because p(t) = 0 for e(t) € Fiypprox-

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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Vie) =as

Figure 3. Illustration of finite time convergence to a compact set Fyyox () centered at e = 0. Outside this set

Fapprox the set-valued derivative of V' along the trajectory of the distance error system is always negative. In

the figure, three level sets of V' (e) with a3 > a2 > a; are shown, which are compact sets with respect to e.
Note as also shown in the figure V'(e) is a positive definite and strictly increasing function of e.

e The case of logarithmic quantizers: it can be seen that max (L3 (e)) < 0 for all e € B(p)
and 0 € max(L;3)V (e)) if and only if e = 0. According to the nonsmooth invariance principle
[29, Theorem 3], the second part of the convergence result is proved. Also note from (7) the
final formation is stationary.

The proof is thus completed. (]

Remark 2

(Finite time convergence to a compact set) In the above we have shown the trajectories of distance
errors in the formation system under uniform quantization converge to a bounded and closed set
Fipprox Within a finite time, the size of which also depends on the uniform quantizer errors. The key
recipes to guarantee the finite time convergence are the following: (i) the set Fy,prox and the sublevel
sets V(e) are compact sets; (ii) Outside the set Fipprox the set-valued derivative of V' along the
trajectories of the distance error system is always negative; and (iii) the function V' (e) is a strictly
increasing function of e. An intuitive illustration of the finite time convergence of distance error
trajectories to the set Fypprox 1S shown in Figure 3.

Remark 3

We now show a stronger convergence result (i.e., convergence to a point in the set) in addition to the
finite time convergence in the case of uniform quantizers (2). We observe that a sufficient condition
for the position p; of agent 4 to converge to a fixed point is that fooo p;(t)dt < oo, which is true since
(i) initially all agents are at finite positions (i.e., p;(0) < 0o), and (ii) all p;(¢) (associated with the
control input) are upper bounded and converge to the origin in finite time. By the integration law this
implies p;(t).~7 is constant at a fixed position when e(t);~7 € Fypprox Where T is the finite settling
time of convergence, which further implies that the distance error e(t) converges to a fixed point in
the set Fipprox.

4. A SPECIAL QUANTIZER: FORMATION CONTROL WITH BINARY DISTANCE
INFORMATION

4.1. Rigid formation control with coarse measurements

In this section we consider the special case in which each agent uses very coarse distance
measurements, in the sense that it only needs to detect whether the current distance to each of
its neighbors is greater or smaller than the desired distance. This gives rise to a special quantizer

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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defined by the following signum function:

1 when x > 0;
sign(z) = 0  when z =0;
—1  whenz <0.

Accordingly, we obtain the following rigid formation control system with binary distance
measurements:

m
pi=— Y bisign(||zll — di) 2 @21
k=1

Remark 4
Formation control using the signum function has been discussed in several previous papers. In
[33], a finite-time convergence was established for stabilization of cyclic formations using binary
bearing-only measurements. A linear-consensus-based formation control with coarsely quantized
measurements was discussed in [15], while the implementation of the controller requires a common
sense of global coordinate frame orientation. The work closest to the controller setting in this section
is the paper [17], which studied the stabilization control of a cyclic triangular formation with the
controller (21). Here we extend such controllers to stabilize a general undirected formation which is
minimally and infinitesimally rigid. The above controller (21) can also be seen as a high-dimensional
extension of the one-dimensional formation controller studied in [34].

Remark 5

Note that the right-hand side of (21) is composed of the sum of a unit vector multiplied by a signum
function. This implies that the formation controller (21) is of special interest in practice since the
control action is explicitly upper bounded by the cardinality of the set of neighbors for each agent
1, which prevents potential implementation problems due to saturation.

Again, we consider the Filippov solution to the formation control system (21). The differential
inclusion F(sign(ey)) can be calculated as

1 |2kl > d,
]:(Sign(ek)) = [7171]7 sz“ = dk’a
-1 sz” < dp.

In a compact form, the rigid formation system (21) can be rewritten as
b € FI=R'(2)Dzsign(e)], (22)

where sign(e) is defined in a component-wise way.

Note that the right-hand side of (22) is measurable and essentially bounded at any non-collocated
and finite point p, and the existence of a local Filippov solution to (22) is guaranteed from such an
initial point p(0). In the following analysis we will also show that the solutions are bounded and
complete.

Similar to the analysis in deriving the distance error system shown in Section 3.2, the distance
error system with binary distance information can be obtained as

¢ € F[-D:R(2)R" (2)Dssign(e)], a.e. (23)

Again, similar to the analysis for (13), one can also show that (23) is a self-contained system when
e takes values locally around the origin.

4.2. Convergence analysis

The main result in this section is stated in the following convergence theorem for the formation

controller (22) with binary distance information.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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Theorem 2

Suppose the target formation is infinitesimally and minimally rigid, the initial formation shape
is close to the target formation shape, and the formation controller (21) with binary distance
information is applied.

e The formation converges locally to a static target formation shape;
e The convergence is achieved within a finite time upper bounded by 7™ =
is defined in the proof.

0 _
Lﬁ s where Apin
min

Proof

Part of the proof for this theorem is similar to the proof of Theorem 1. Choose the Lyapunov function
defined as V ="}, Vi(ex) with Vi (ex) = |ey| for the distance error system (23). Note that V/
is a convex and regular function of e. Also V is locally Lipschitz at e = 0 and is continuously
differentiable at all other points. The generalized derivative of Vi (ey) can be calculated as

1, er > 0;
oV =< [-1,1], er=0;
-1, er < 0.

and the generalized derivative of V' can be calculated similarly via the product rule (see [25]). We
define a sub-level set B(p) = {e : V(e) < p} for some suitably small p, such that when e € B(p)
the formation is infinitesimally minimally rigid and R(z)R" (z) and D; are positive definite. Now
the matrix Q(e) := D;R(2)R " (2)Ds is also positive definite when e € B(p). Let Ayin denote the

smallest eigenvalue of Q(e) when e(p) is in the compact set B (i.e. Apin = mig A(Q(e)) > 0).
ec

In the following, we calculate the set-valued derivative of V' along the trajectory described by the
differential inclusion (23). The argument follows similarly to the analysis in the proof of Theorem
1. By applying the calculation rule for the set-valued derivative (see [25, Pages 62-63]), one can
obtain

V(e)(23) S 2(23)‘/(6) = {CL S Rlﬂ’l) c é(23),
such that ¢Tv = a,V¢ € OV (e)}. (24)

If the set £(23)V/ () is not empty, there exists v € —Q(e)sign(e) such that ¢"v = a forall ¢ € AV (e).
A natural choice of v is to set v € —Q(e)¢, with which one can obtain a = —sign ' (¢)Q(e)sign(e).
Then one can further show

max (L3 V (e)) < —Aminsign(e) Tsign(e), (25)

if the set is not empty, while if it is empty we adopt the convention max (L3, V (e)) = —oc. Note
that this implies that V' is non-increasing, and consequently the Filippov solution e(t) is bounded.
Thus, all solutions to (23) (as well as the solutions to (22)) are complete and can be extended to
t = oo (i.e., there is no finite escape time). It can be seen that max (L3 V (e)) < 0 for all e € B(p)
and 0 € max (L3 V (e)) if and only if e = 0. According to the nonsmooth invariance principle [29,
Theorem 3], the asymptotic convergence is proved.

We then prove the stronger convergence result, i.e., the finite-time convergence. From the
definition of the sign function in (21), there holds sign(e) "sign(e) > 1 for any e # 0, which implies

max(£(23)V(e)) < _;\min (26)

for any e # 0. Thus, by applying the Finite-time Lyapunov Theorem [35], any solution starting
at e(0) € B(p) reaches the origin in finite time, and the convergence time is upper bounded by
T =V (e(0))/Amin = [le(0)[l1/Amin- [

Remark 6
(Finite time formation convergence) Different to the finite time convergence to an approximate

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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Figure 4. (a) Symmetric uniform quantizer function, defined in (2). (b) Asymmetric uniform quantizer
function, defined in (27).

formation shape under uniform quantizers as shown in Theorem 1, in Theorem 2 it is shown
the formation system converges locally to a correct formation shape under binary distance
measurements, which is a more desirable convergence result. Also, compared to the finite time
formation controller discussed in the paper [36] in which a sig function is used, the finite time
formation controller in (21) requires less information in the distance measurements, in which very
coarse measurements in terms of binary signals are sufficient.

Remark 7

(Dealing with chattering) In the controller (21) the sign function is used, which may cause
chattering of the solutions to the formation system when the formation is very close to the desired
one (i.e. when e is very close to the origin). This is because in practice imperfections (e.g.,
perturbations in measurements or delays) could cause agents’ state trajectories to ‘chatter’ across
the discontinuity surface (see e.g. [37, Chapter 3.5]). Possible solutions to eliminate the chattering
include the following:

e Add deadzone (approximated by smooth functions) to the sign function around the origin
(similar to the case of uniform quantizers; see Part 1 of Theorem 1). This will give rise to
a trade-off in the convergence, i.e., the distance error does not converge to the origin but to
a bounded set, the size of which depends on (for a fixed number of agents) how large the
deadzone parameter is chosen (see e.g. [38,39]);

e Use the hysteresis principle in the quantization function design [5].

The adoption of the above techniques to avoid chattering will be discussed in future research.

5. ASYMMETRIC UNIFORM QUANTIZER

In [6], it has been shown that when an asymmetric uniform quantizer (defined below) is applied
to double-integrator consensus dynamics some undesirable motions may occur. In this section we
investigate whether there are undesired motions for rigid formation control in the presence of an
asymmetric uniform quantizer.

We consider the following asymmetric uniform quantizer (the same as in [6]), defined by

0y (7) = 0y (Lﬂ) : 27

where §,, is a positive number and |a |, a € R denotes the greatest integer that is less than or equal
to a. For a comparison of the uniform quantizers defined in (2) and in (27), see Fig. 4.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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5.1. Motivating example: two-agent formation case

We first consider a two-agent formation case. Suppose two agents are controlled to achieve an inter-
agent distance of dy» with the quantization function (27). The system dynamics for agents 1 and 2
can be described, respectively, as

p1 = q, (||z1l] — di2) % (28)

and

P2 = —q,, (|21l — di2) %1 (29
where z; = pa — p1, and ¢ (-) denotes the asymmetric uniform quantizer in (27).

Lemma 4
Consider the two-agent formation control system (28) and (29) with the asymmetric quantization
function (27).

o If the initial distance between agents 1 and 2 is greater than di5 + J,, then the inter-agent
distance ||z|| will converge to d;2 + d,, and the final formation will be stationary;

o If the initial distance between agents 1 and 2 is smaller than the desired distance d2, then the
inter-agent distance ||z|| will converge to the desired distance d2 and the final formation will
be stationary;

o If the initial distance between agents 1 and 2 is between d;5 and d15 + J,,, then both agents 1
and 2 remain stationary and the inter-agent distance ||z|| remains unchanged.

The proof is obvious and is omitted here as it can be inferred from previous proofs.

Remark 8

In the above example it can be seen that in the case of an asymmetric uniform quantizer, there exist
no undesired motions, which is different to the result observed in [6] which showed unbounded
velocities. Apart from the difference in system dynamics under discussions, the key difference that
leads to the distinct behaviors is that when the asymmetric quantizer is applied to the consensus
dynamics (which is to quantize a vector), there holds F[g: (r; — r;)] + Flg}(r; — r;)] = —d,, when
r; — ;i # kd,, where r; — r; denotes the relative position vector (see Section 5 of [6]). Note that
in the above formation controller, the quantization applies only to the distance error term (i.e.
¢’ (|lp2 — p1l| — d12)) which is a scalar, and the asymmetric property of the quantizer only affects
the convergence of the distance term.

5.2. General formation case

We consider the general formation case with more than two agents, in which each agent employs
asymmetric uniform quantizers in individual controllers.

Theorem 3
Suppose each individual agent takes the asymmetric uniform quantizer (27) in the quantized
formation controller (7). Then the inter-agent distances converge within a finite time to the set

Faym = {eler € [0,6,], k € {1,...,m}}.

The proof is omitted here as it can be directly inferred from the previous proof of Theorem 1.

6. ILLUSTRATIVE EXAMPLES AND SIMULATIONS

In this section we show several numerical examples to illustrate the theoretical results obtained
in previous sections. In the following illustrative examples we consider the stabilization control
of a five-agent minimally rigid formation in the 3-D space, as a continuation of Example 1.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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Figure 5. Stabilization control of a rigid formation: symmetric uniform quantization case. Left: the

trajectories of five agents and the final formation shape. Right: Time evolutions of the distance errors. It

is obvious from the right figure that the formation shape converges to an approximately correct one in a
finite time.
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Figure 6. Stabilization control of a rigid formation: logarithmic quantization case. Left: the trajectories of
five agents and the final formation shape. Right: Time evolutions of the distance errors.

The underlying graph describes a double tetrahedron shape of nine edges (see Figure 2 for an
illustration), and the desired distances for all edges are set as 6. Y The initial positions are chosen
such that the initial formation is infinitesimally rigid and is close to a target formation shape. For all
simulations, we set the quantization gain as d,, = 0.5.

Agents trajectories, the final formation shape and the evolutions of nine distance errors under
symmetric uniform quantization and under logarithmic quantization are shown in Figure 5 and
Figure 6, respectively. It is obvious from these two figures that with symmetric uniform quantizer
the formation errors converge to the bounded set Fipprox = {€|ex € [-0.25,0.25],k € {1,...,m}}
in a finite time, and with the logarithmic quantizer the formation converges to the target shape
asymptotically, which are consistent with the theoretical results in Theorem 1.

The formation convergence behavior with binary distance measurements under the quantization
strategy (21) is depicted in Figure 7. It can be seen from Figure 7 that with very coarsely quantized
distance measurement via a simple signum function as in (21), the formation converges to the target
shape within a finite time, but the price to be paid is the occurrence of chattering (as shown in the
right part of Figure 7).

Finally, when the asymmetric uniform quantizer (27) is used in the formation control system (7),
the formation converges to an approximate one with all distance errors converging to the bounded
set Faym = {eler € [0,0.5], k € {1,...,m}} within a finite time, as shown in Figure 8. This supports
the conclusion of Theorem 3.

§Note that the realization of a target formation with the given nine desired distances is not unique up to rotation and
translation [23].
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Figure 7. Stabilization control of a rigid formation: binary measurement case. Left: the trajectories of five
agents and the final formation shape. Right: Time evolutions of the distance errors.
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Figure 8. Stabilization control of a rigid formation: asymmetric uniform quantization case. Left: the
trajectories of five agents and the final formation shape. Right: Time evolutions of the distance errors.

7. CONCLUDING REMARKS

In this paper we consider the rigid formation control problem with quantized distance
measurements. We have discussed in detail the quantization effect on the convergence of rigid
formation shapes under two commonly-used quantizers. In the case of the symmetric uniform
quantizer, all distances will converge locally to a bounded set, the size of which depends on the
quantization error. In the case of the logarithmic quantizer, all distances converge locally to the
desired values. We also consider a special quantizer with a signum function, which allows each
agent to use very coarse distance measurements (i.e. binary information on whether it is close
or far away to neighboring agents with respect to the desired distances). We show in this case
the formation shape can still be achieved within a finite time. We further discuss the case of
an asymmetric quantizer applied in rigid formation control system, and analyze the convergence
property of distance errors.
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