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eral necessary and sufficient conditions under which ‘spurious’ causal relations between (vector) time series are not induced
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causality from one vector to another one. In a number of cases, we clarify results in the existing literature, with a number of
calculations streamlining some existing approaches.
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1. INTRODUCTION

Granger causality is one of the most important concepts for the analysis of the structure of multivariate time series.
Accordingly, the original article of Granger (1969) triggered a substantial number of publications, see for example
Sims (1972), Pierce and Haugh (1977), Granger (1980, 1988) , Geweke (1982, 1984a, 1984b) , Boudjellaba et al.
(1992), Dufour and Tessier (1993), Dufour and Renault (1998), Al-Sadoon (2014) and the references therein. Here
we deal with an aspect of Granger causality, namely the sensitivity of Granger causality relations with respect to
measurement errors (or errors-in-variables) in the observations. In particular, we study the effect of additive noise
on Granger causality in the context of a general weakly stationary multivariate model, especially in view of finding
when spurious causality could appear, and when properties of non-causality are unaffected by measurement errors.

The problem of measurement errors is a classical issue in statistical theory; see for example the reviews of Fuller
(1987), Wansbeek and Meijer (2000), Carroll et al. (2006), Gustafson (2003), and Buonaccorsi (2010). However,
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SENSITIVITY OF GRANGER CAUSALITY 103

except for the early article by Newbold (1978), there is surprisingly little work on the effect of errors-in-variables
on Granger causality. In this work, Newbold showed that measurement errors can produce artificial feedback in the
noisy series, even though no such feedback is present before noise is superimposed. No general characterization
of cases where such spurious causality could appear was however provided. From a wider perspective, several
authors have emphasized that the addition of noise to time series (errors-in-variables) can substantially modify the
structure of the series, leading to distortions and identification problems; see for example the literature reviewed
by Maravall (1979), Anderson and Deistler (1984), Anderson (1985), Deistler and Anderson (1989), and Scherrer
and Deistler (1998). Note also that measurement errors may give rise to additive ‘outliers’ which may strongly
influence the results of estimation and testing procedures.

The question of the sensitivity to measurement errors is quite distinct for the effect of aggregation and sub-
sampling, for these transformations typically considerably reduce the effective sample size. For work on the latter
problems, the reader may consult Tiao and Wei (1976), Wallis (1974), Sims (1974), Wei (1982), Hylleberg (1986),
Marcellino (1999), Kaiser and Maravall (2001), Breitung and Swanson (2002), McCrorie and Chambers (2006)
Barnett and Seth (2011, 2015, 2017) , Smirnov and Bezruchko (2012), Gong et al. (2015), Ghysels et al. (2016),
and the references in the survey of Silvestrini and Veredas (2008).

Errors-in-variables can be interpreted as missing variables : if the noise were observable, it could be included
as an additional variable, and different conclusions can emerge. As previously observed by several authors (see
Hsiao, 1982; Lütktepohl, 1982; Dufour and Renault, 1998; Triacca, 1998, 2000), causality properties in the sense
of Wiener–Granger depend crucially on the information set considered, which can affect both the sheer presence
of causality (or non-causality) and causality measures (Geweke, 1982; Dufour and Taamouti, 2010; Dufour et al.,
2012). Of course, the central difficulty remains that noise is typically unobserved. In this article, we revisit the
questions of the effect of (unobserved) additive noise on Granger (non-)causality, and using the same tools, rapidly
traverse also issues of the effects of filtering and subsampling.

Let X = (X(t) | t ∈ ℤ), X(t) ∶ Ω → ℝd, be a vector process of dimension d with finite second moments, where ℤ
represents the integers and ℝ the real numbers. We assume that X is weakly stationary, centered (i.e., E[X(t)] = 0)
and Gaussian, with a full-rank rational spectral density.1 We postulate that the process X can be regarded as a
juxtaposition of two subprocesses X = (X⊤

A X⊤

B )
⊤. The broad question we study is whether the past values of XA

improve the prediction of XB. To be more precise, one says that XA does not Granger cause XB if

E[XB(t) |XA(s), XB(s) ∶ s < t] = E[XB(t) |XB(s) ∶ s < t] (1)

or equivalently

Var[XB(t) |XA(s), XB(s) ∶ s < t] = Var[XB(t) |XB(s) ∶ s < t]. (2)

Here E[XB(t) |XA(s),XB(s) ∶ s < t] denotes the conditional expectation of XB(t) [given the variables XA(s),
XB(s) such that s < t (and similarly elsewhere)], and Var the variance of the one-step-ahead forecast error. If
inequality holds in (1) and (2), one says that XA (Granger) causes XB. Granger (1969) in addition introduced the
notion of ‘instantaneous causality’ , meaning that the approximation of XB(t) can be more accurately achieved if
XA(t) is known:

E[XB(t) |XA(t), XA(s), XB(s) ∶ s < t] ≠ E[XB(t) |XA(s), XB(s) ∶ s < t] ; (3)

for further discussion of this notion, see Pierce and Haugh (1977) and Granger (1988). The assumption of
second-order stationarity is clearly restrictive, but is standard in the Granger-causality literature. Further, general
characterizations of non-causality are typically little affected when common forms of forms of non-stationarity –
such deterministic time trends and integration) – are allowed; see, for example, Dufour and Renault (1998) and
Dufour et al. (2006).

1 Without the Gaussian assumption, the results presented in this article continue to hold provided conditional expectations are replaced by
projections onto the Hilbert space spanned by components of the respective stationary processes.
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104 B. ANDERSON, M. DEISTLER AND J.-M. DUFOUR

It is clear from the above definitions that Granger causality depends on the vector X considered and on the way
X is split into subvectors XA and XB. Such choices (which are of course finite in number) depend on the context:
which variables are of interest, and the objectives of the analysis. For example, XA can represent policy instruments
(e.g., fiscal and monetary variables) or leading indicators of economic activity, and XB economic outcomes (e.g.,
national income, unemployment, etc.): the nature of the variables often provides a natural criterion for splitting X
into subvectors. Clearly, the causal structure of a time series should in general depend on such choices. However,
the question remains whether apparently less fundamental features, such as contamination by noise and various
linear transformations, including filtering and subsampling, can affect the causal properties of a time series.

This article studies the sensitivity of Granger causality to the addition of noise, the application of causal invert-
ible filters, and subsampling in weakly stationary processes. We give general conditions under which additive
noise or filtering creates distortions by inducing (spurious) Granger causality, as well as conditions under which
it does not. Even though additive noise and filtering can in general produce spurious Granger causality, there is
a remarkably wide range of cases where it does not. For example, if the ‘caused variable’ XB is not noisy, noise
added to the ‘causal variable’ XA cannot induce spurious Granger causality from XA to XB. This covers cases where
lagged values of XA are contaminated by noise, and XB does Granger-cause XA. We also give a continuity result
which entails a ‘small’ noise-to-signal ratio in measurement errors entails ‘small’ distortions in Granger causality.
In a number of cases, we clarify results in the existing literature, with a number of calculations streamlining some
existing approaches.

We also consider the effects of linear transformations, filtering and subsampling. In particular, we give general
necessary and sufficient conditions under which ‘spurious’ causal relations between (vector) time series are not
be induced by linear transformations of the variables involved. This also yields linear transformations (or filters)
which can eliminate Granger causality from one vector to another one.

Section 2 summarizes a collection of known results available for the characterization of Granger causality, using
canonical spectral factors, Wold decompositions and spectra. In Section 3, we establish some connections not
clearly stated in the earlier literature, which are useful for studying causality in the presence of measurement errors.
These include : a general lower bound on the conditional variance of the sum of two processes, and some general
relations between Granger causality and instantaneous causality. In Section 4, we study the effect of measurement
errors on Granger non-causality. Section 5 provides the continuity result in terms of signal-to-noise ratio. The
effects of linear transformations, filtering and subsampling are studied in Sections 6 and 7. Section 8 offers some
concluding remarks. Proofs appear in the Appendix.

2. CHARACTERIZATIONS OF GRANGER CAUSALITY

We review some classical characterizations of Granger causality which will be useful for studying the effect of
errors-in-variables. We first record some notational conventions associated with rational (matrix) transfer func-
tions (see e.g. Rozanov, 1967; Hannan and Deistler, (Hannan and Deistler, 2012)). We emphasize the use of
spectral methods, for which Geweke (1982, 1984a, 1984b) was an early promoter in the context of analyzing
Granger–Wiener causality.

A rational transfer function is called stable if its poles are outside the unit circle, and it is called miniphase or
minimum phase if its zeros are outside the unit circle. If we commence from a rational spectral density ΦXX(z),
z ∈ ℂ, which is positive definite everywhere on the unit circle, there is a spectral factorization

ΦXX(z) = W(z)Q W⊤(z−1) (4)

in which the spectral factor W(z) is a square real rational, stable and miniphase, transfer function and Q is positive
definite symmetric; see Rozanov (1967), Hannan and Deistler (2012). W(z) defines a linear filter on replacing z
by the backshift operator L (i.e., LX(t) ∶= X(t − 1)). The notation W(z) allows one to study the properties of lag
operators in terms of the analytical properties of functions of a complex variable z ∈ ℂ. Under the normalization
W(0) = Id, W(z) and Q are unique. We also consider the following assumption.

wileyonlinelibrary.com/journal/jtsa © 2018 The Authors. J. Time Ser. Anal. 40: 102–123 (2019)
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Assumption 1. (Full rank stationary process with no spectral zero on the unit circle) X = (X⊤

A X⊤

B )
⊤ is a

real full-rank stationary stochastic process in ℝd, with rational spectrum ΦXX(z) having no zero on the unit circle,
such that (4) is satisfied, W(0) = Id, and

W(z) =
[

W11(z) W12(z)
W21(z) W22(z)

]
, Q =

[
Q11 Q12
Q21 Q22

]
(5)

are partitioned conformably with X = (X⊤
A X⊤

B )
⊤.

The above assumption entails that X(t) has both a moving average (Wold) representation

X(t) = W(L)𝜖(t) (6)

and an autoregressive representation

Π(L)X(t) = 𝜖(t) (7)

where det[W(z)] ≠ 0 and det[Π(z)] ≠ 0 for |z| < 1, Π(z) = W(z)−1, and 𝜖(t) = [𝜖A(t)⊤ 𝜖B(t)⊤]⊤ represents
the innovations of the process, partitioned conformably with X = (X⊤

A X⊤

B )
⊤. The following theorems provide

characterizations of Granger causality; see Sims (1972), Pierce and Haugh (1977), Geweke (1982, 1984a, 1984b)
, Boudjellaba et al. (1992), Dufour and Tessier (1993), Dufour and Renault (1998). The first one is based on the
structure of the spectral factor matrix W(z).

Theorem 1. (Canonical spectral factor characterization of Granger causality) Suppose Assumption 1
holds. Then the following two conditions are equivalent:

(i) XA does not Granger cause XB;
(ii) W21(z) = 0.

The following conditions are also equivalent:

(i) XA neither Granger causes XB, nor does it cause XB instantaneously;
(ii) W21(z) = 0 and Q is block diagonal (i.e. Q12 = Q⊤

21 = 0).

The intuition behind the above claim is the following. Let the innovation process be denoted by 𝜖(t) =
[𝜖A(t)⊤ 𝜖B(t)⊤]⊤ with 𝜖A and 𝜖B two independent white noise processes. When W21(z) = 0, we have :

XA(t) = W11(L)𝜖A(t) + W12(L)𝜖B(t) , (8)

XB(t) = W22(L)𝜖B(t).

It is intuitively reasonable to conclude from these equations that knowledge of the XA process up till time t − 1
will not be of help in determining the 𝜖B process and thus the XB process. Spectral approaches for Granger causality
analysis were emphasized in the seminal work of Geweke (1982, 1984a, 1984b) .

For completeness, we note a further characterization of Granger causality, which follows from the above.

Theorem 2. (AR characterization of Granger causality) Suppose Assumption 1 holds, and X(t) has the
(possibly infinite) autoregressive representation

X(t) =
∞∑

i=1

AiX(t − i) + 𝜖(t) , Ai =
[

Ai11 Ai12
Ai21 Ai22

]
, Var[𝜖(t)] =

[ Σ11 Σ12
Σ21 Σ22

]
(9)

J. Time Ser. Anal. 40: 102–123 (2019) © 2018 The Authors. wileyonlinelibrary.com/journal/jtsa
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106 B. ANDERSON, M. DEISTLER AND J.-M. DUFOUR

where the Ai and the covariance matrix Var[𝜖(t)] of the innovations sequence 𝜖(t) are partitioned conformably with
X = (X⊤

A X⊤

B )
⊤. Then XA does not Granger cause XB if and only if Ai21 = 0 for all i ≥ 1. In addition, XA neither

Granger causes XB, nor does it cause XB instantaneously if and only if Ai21 = 0 for all i ≥ 1 and Σ12 = Σ⊤

21 = 0.

Theorems 1 and 2 give characterizations of the absence of causality based on the spectral factor and infinite
AR representations (the latter is obtained from the inverse of the spectral factor). Sims (1972) gave an additional
characterization (for d = 2), based on Wiener filtering ideas, where no factorization is required. Let the spectral
density ΦXX be partitioned conformably with X = (X⊤

A X⊤

B )
⊤ as

ΦXX =
[ΦAA ΦAB
ΦBA ΦBB

]
. (10)

Then we have the following spectral characterization of non-causality.

Theorem 3. (Transfer function characterization of Granger causality) Suppose Assumption 1 holds, and
let ΦXX be partitioned as in (10). Then, the following conditions are equivalent:

(i) XA does not Granger cause XB ;
(ii) ΦAB(z)Φ−1

BB(z) is a stable transfer function.

The following conditions are also equivalent:

(i) XA neither Granger causes XB nor does it cause XB instantaneously;
(ii) ΦAB(z)Φ−1

BB(z) is a stable transfer function assuming the value 0 at z = 0.

Remark 1. The above theorem can be viewed as an extension of the corresponding theorem given by (Sims,
1972, Theorem 2) in the special case where d = 2. Theorem 3 allows for d ≥ 2, and covers instantaneous
causality as well.2 We are not contending that the characterization of this theorem is necessarily attractive from a
computational point of view. As later parts of the article show though, the result is of theoretical interest, in that it
can be applied to give rapid derivations of the sensitivity properties associated with Granger causality.

Remark 2. The transfer function ΦAB(z)Φ−1
BB(z) is the transfer function of the optimum two-sided Wiener filter

for approximating the process XA from the process XB; the two-sided aspect refers both to the fact that the transfer
function has a Laurent series expansion with both negative and positive powers of z, and to the related fact that
XA(t) is being approximated from XB(s), −∞ < s < ∞, that is, from the past and future of XB. If the two-sided
transfer function in a particular case is causally one-sided, then future values of XB are irrelevant in approximating
current values of XA. This will be the case if past values of XA do not affect present or future values of XB.

Remark 3. It is important to note that the characterizations given in this section hold for series in discrete time
observed at a given frequency. They are directly applicable to continuous time series, and modifications arise
typically when the series are transformed or filtered. The effect of such transformations will be considered in
sections 6 and 7 below.

3. DIRECTIONS OF GRANGER CAUSALITY

In the literature, one finds remarkable similarity between conditions said to capture ‘XA does not cause XB’ and ‘XB

causes XA’ and similar pairings. To study the effect of errors-in-variables on causality, we establish in this section
some connections not clearly stated in the earlier literature. We start with the following preliminary result.

2 There may be a proof in the literature for d ≥ 2, but we are not aware of it. For completeness, a proof appears in the appendix.

wileyonlinelibrary.com/journal/jtsa © 2018 The Authors. J. Time Ser. Anal. 40: 102–123 (2019)
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Lemma 1. Let X and Y be two independent stationary stochastic processes with spectral densities. Let Z = X+Y .
Then the covariance matrix of the one step prediction error in approximating Z(t + 1) from Z(s), s ≤ t is bounded
from below by the sum of the covariance matrices of the one step prediction error in approximating X(t + 1) from
X(s), s ≤ t and in approximating Y(t + 1) from Y(s), s ≤ t ∶

Var[Z(t) |Z(s) ∶ s < t] ≥ Var[X(t) |X(s) ∶ s < t] + Var[Y(t) |Y(s) ∶ s < t]. (11)

Now we spell out the following relations between Granger causality and instantaneous causality.

Theorem 4. Adopt the same hypothesis as in Theorem 1. Suppose XA does not Granger cause XB nor does it cause
XB instantaneously. Then either the two processes are independent, or XB Granger causes XA. Further, suppose
alternatively that XA does not cause XB. Then, either the two processes are independent, or XB Granger causes XA,
or XB causes XA instantaneously.

Note that neither claim of the theorem goes in the reverse direction. This is because it is possible that both
XA Granger causes XB and simultaneously XB Granger causes XA. Such a situation will generally arise when the
canonical spectral factor W is not triangular (or diagonal), as in the following example:

XA(t) = 𝜖A(t) + XB(t − 1) , XB(t) =
1
2

XA(t − 1) + 𝜖B(t). (12)

Here, 𝜖A, 𝜖B are independent white noise processes with variances QA,QB. One can verify that[
XA(t)
XB(t)

]
= 1

1 + (1∕2)L2

[
1 L

(1∕2)L 1

] [
𝜖A(t)
𝜖B(t)

]
(13)

and the transfer function matrix is easily verified to be stable and minimum phase, assuming the value I when
z = 0. It is easily checked that Var[XA(t) |XA(s),XB(s), s < t] = QA,Var[XB(t) | XB(s),XA(s), s < t] = QB while
Var[XA(t) |XA(s), s < t] > QA,Var[XB(t) |XB(s), s < t] > QB by a similar argument to that used in the proof of
Theorem 4.

4. ADDITIVE NOISE AND GRANGER CAUSALITY

We consider the effect of additive noise on Granger causality (compare with Anderson and Deistler (1984) and
Anderson (1985)). Our starting point, again, is the full-rank stationary process X = [X⊤

A X⊤

B ]
⊤ with rational spectral

density.
Suppose that XA does not Granger cause XB. Suppose further that the processes XA,XB are both contaminated by

stationary colored additive noise processes NA,NB with rational spectral densities, which are independent of each
other and of the processes XA,XB. Then one can ask whether it is now true that the process X̄A = XA +NA does not
Granger cause the process X̄B = XB+NB. Perhaps of equal if not greater interest is the associated question : suppose
that X̄A, X̄B are regarded as noisy measurements of underlying processes XA, XB and that analysis of measurement
data reveals that X̄A does not cause X̄B. Can one conclude then that XA does not Granger cause XB?

In the next section, we will construct an example showing that the answer to the first question is generally
no, a conclusion that is perhaps not counterintuitive since non-causality corresponds to zero restrictions. In the
following section, we show how the Sims (1972) characterization of the absence of Granger causality summarized
in Theorem 3 reveals that the claim remains valid if the contaminating noise NB is zero, and this is generically
a necessary condition for the claim to hold. There is no similar requirement on the noise NA. In a article of Solo
(2007), several important questions are raised about the sensitivity of Granger causality (or its absence) to changes
in the underlying assumptions. We consider one of these, namely the effect of additive noise. Our results differ

J. Time Ser. Anal. 40: 102–123 (2019) © 2018 The Authors. wileyonlinelibrary.com/journal/jtsa
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108 B. ANDERSON, M. DEISTLER AND J.-M. DUFOUR

from those obtained in Solo (2007).3 We first study the stationary full-rank vector process X = {X(t) ∶ t ∈ ℤ}
such that X(t) = [XA(t)⊤ XB(t)⊤]⊤ can be regarded as the juxtaposition of two subprocesses XA and XB. Suppose
that XA does not Granger cause XB nor does it cause XB instantaneously.

4.1. Noise-induced Granger Causality

We will now introduce the promised example. To define the XA,XB processes where XA does not Granger cause XB

nor does it cause XB instantaneously, following Theorem 1 we shall choose an upper triangular canonical spectral
factor. The two processes are scalar, and we assume

W(z) =

[
1 + 1

2
z z

0 1 + 1

2
z

]
(14)

and we further assume the innovations covariance Q is the identity matrix. An easy calculation delivers

ΦXX =
[ΦAA ΦAB
ΦBA ΦBB

]
=

[
9

4
+ 1

2
z + 1

2
z−1 1

2
+ z

1

2
+ z−1 5

4
+ 1

2
z + 1

2
z−1

]
. (15)

Now assume that additive noise with a white spectrum of intensity 3

4
is added to XB, to produce a new process

X̄B, while no noise is added to XA. The cross spectrum between XA and XB is unaffected. So the new joint spectral
matrix is

ΦX̄X̄ =
[ΦAA ΦAB̄
ΦB̄A ΦB̄B̄

]
=

[
9

4
+ 1

2
z + 1

2
z−1 1

2
+ z

1

2
+ z−1 2 + 1

2
z + 1

2
z−1

]
. (16)

If it were true that X̄A does not Granger cause X̄B, nor cause X̄B instantaneously, then this matrix would need to
have a canonical spectral factor W̄(z) say, which like W(z) is upper triangular with W̄(0) = I, and an associated
innovations covariance matrix which is diagonal. To derive a contradiction, let us assume this to be the case and
find W̄(z). The upper triangularity implies that the (2, 2) term W̄22 of W̄(z) must satisfy W̄22(0) = I and

ΦB̄B̄(z) = W̄22(z)Q̄2W̄22(z−1) , (17)

which means that W̄22(z) itself is a canonical spectral factor, for ΦB̄B̄(z). One can easily verify that

2 + 1
2

z + 1
2

z−1 =

(
1 +

√
3

2

)(
1 + z

2 +
√

3

)(
1 + z−1

2 +
√

3

)
, (18)

so we see that

W̄22(z) = 1 + z

2 +
√

3
, Q̄2 = 1 +

√
3

2
(19)

Now consider the (1, 2) entry ΦAB̄(z) of the spectrum. From the fact that when W̄(z) is triangular, we have that

ΦAB̄(z) = W̄12(z)Q̄2W̄22(z−1) (20)

3 Solo in a private communication has indicated that an erroneous step in his proof leads to the discrepancy between his and our results.
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from which we obtain

1
2
+ z = W̄12(z)

(
1 +

√
3

2

)(
1 + z−1

2 +
√

3

)
. (21)

It is easy to see that W̄12(z) has a pole at −1∕(2 +
√

3), which is inside the unit circle. This is a contradiction to
the requirement on the poles of a canonical spectral factor that they should all lie outside the unit circle.

4.2. Spectral Characterization of Noise-induced Granger Causality

It is now straightforward to understand the effect of adding noise to the processes XA,XB on the property that XA

does not Granger cause XB. Suppose as before that NA,NB are two processes, independent of XA,XB and each other,
and added to XA,XB to yield new processes X̄A = XA + NA, X̄B = XB + NB. The outcome is that

ΦĀB̄ = ΦAB , ΦB̄B̄ = ΦBB + ΦNBNB
. (22)

The absence of Granger causality will carry over, that is, X̄A will not Granger cause X̄B if and only if (by
Theorem 3), ΦĀB̄Φ−1

B̄B̄
is a stable transfer function. If there is noise on the process XA but not the process XB, the

result is immediate that absence of causality continues to hold; the same transfer function fraction in fact arises,
for ΦABΦ−1

BB = ΦĀB̄Φ−1
B̄B̄

. On the other hand, if there is noise on the process XB, for ‘almost all’ spectra of ΦNBNB
,

including certainly a white spectrum, unless ΦBB is itself white, the zeros of ΦBB + ΦNBNB
will differ from those

of ΦBB and not be the same as the poles of ΦĀB̄ = ΦAB. So the cancellation of unstable pole-zero pairs in forming
the fraction will no longer occur and the absence of Granger causality will then be lost.

Now let us postulate that processes X̄A, X̄B are measured and found to have the property that X̄A does not Granger
cause X̄B; these processes are assumed to be noisy versions of underlying processes XA,XB, with the additive noise
processes being independent of each other and the underlying XA,XB processes. Ultimate interest lies in saying
whether or not XA Granger causes XB. Then the above argument shows that if we knew that there was no noise
perturbing XB, processing of the noisy measurements would allow answering of the question. On the other hand,
if there is noise perturbing XB, one could not infer from the presence or absence of a causality property involving
X̄A, X̄B the corresponding property for XA,XB. The noise process NB would need to have a specialized spectrum
for absence of causality in the noisy case to imply it in the noiseless case. Note that there is no adjustment to the
conclusions which arises in the special case of the noise process NB being white.

The results above are summed up in Theorem 5.

Theorem 5. Adopt the same hypothesis as in Theorem 1. Let NA,NB be two stationary processes with rational
spectra, with the same dimensions as XA,XB respectively, where X,NA,NB mutually independent, and set X̄A =
XA + NA, X̄B = XB + NB.

(i) If NB = 0, then

XA does not Granger cause XB if and only if X̄A does not Granger cause X̄B.

(ii) If NB ≠ 0 and not all the unstable zeros of ΦBB +ΦNBNB
cancel (unstable) zeros of ΦAB, we have the following

implications:
(a) if XA does not Granger cause XB, then X̄A Granger causes X̄B;
(b) if X̄A does not Granger cause X̄B, then XA Granger causes XB.

Remark 4. If XB is not noisy [NB = 0], noise associated with the ‘causal variable’ XA cannot induce spurious
Granger causality from XA to XB, despite possibly complicated dynamics on both XA and XB. Another special case
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of interest is provided by the situation where the two processes are actually independent. Then ΦAB = 0, and so the
relevant transfer function ΦABΦ−1

BB with or without noise added remains zero and there is no causality introduced
through the addition of noise.

We comment that our conclusions are at variance with those of Solo (2007), who asserts that addition of both
noise sequences NA, NB to XA,XB where XA does not Granger cause XB means that X̄A does not Granger cause
X̄B. There appears to be an unjustified assumption in his work (as confirmed in private communication) where he
constructs a triangular spectral factor for the X̄ process but does not ensure that the off diagonal term is guaranteed
to be stable–stability is simply assumed automatically. Such stability would be a necessary condition for asserting
that X̄A does not Granger cause X̄B.

5. SIGNAL-TO-NOISE RATIO AND GRANGER CAUSALITY

We argue a form of continuity result. If there is additive noise perturbing an arrangement where there is absence
of causality, then although generically absence of causality will be lost, we shall show that in a certain sense made
more precise below, the introduced degree of non-causality is small. The practical effect of this result is that small
amounts of noise in a particular situation may well be tolerable.

Our starting point is the following observation.

Lemma 2. Consider a complex matrix function M(z), analytic in 𝜌 < |z| < 𝜌−1, 0 < 𝜌 < 1 with M(z) = M⊤(z−1),
and positive definite on |z| = 1. Suppose

M(z) =
∞∑

i=−∞
miz

i, mi = m⊤

−i ∈ ℝd×d (23)

and define the causal and anticausal parts by

M+(z) =
1
2

m0+
∞∑

i=1

miz
i and M−(z) =

1
2

m0 +
−1∑

i=−∞
miz

i. (24)

Then the matrix function L(z) ∶= I + 𝜖M(z) is analytic in 𝜌 < |z| < 𝜌−1, with L(z) = L⊤(z−1), and positive
definite on |z| = 1. Further to first order in 𝜖 > 0, there holds

L = I + 𝜖M ≈ (I + 𝜖M+)(I + 𝜖M−) (25)

with I + 𝜖M+ stable and miniphase.

We remark that the terminology ‘to first order in 𝜖’ is shorthand for saying that the L2 norm of the error between
L above and the approximation of it on the right-hand side of (25), call it Δ(z), is of order 𝜖2 . The square of this
L2 norm can be computed with the aid of an integration of around the unit circle, as trace 1

2𝜋
∫ [Δ(exp(j𝜔))]2d𝜔 or

by taking the squared sum of the coefficients in the Laurent series of the error, that is,
∑∞

−∞ tr[𝛿i𝛿
⊤

i ].
We will use this result to show that small perturbations in a spectrum give small perturbations in the associated

spectral factors, and thence conclude that Granger causality is in a sense continuously dependent on the noise
spectrum, it being absent when there is no noise. Accordingly we consider the arrangement studied in the previous
section, with the introduction of a scaling parameter on the noise : thus X = [X⊤

A X⊤

B ]
⊤ and XA does not Granger

cause XB nor does it cause XB instantaneously. The canonical factor W(z) for the noise-free spectrum ΦXX(z) is
upper block triangular and the innovations covariance matrix Q is block diagonal, and they obey the fundamental
spectral factorization Eq. 4. Assume that 𝜖1∕2NB for some 𝜖 > 0 is a noise process additively perturbing XB, thus

X̄B = XB + 𝜖1∕2NB, ΦB̄B̄ = ΦBB + 𝜖ΦNBNB
.
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(We have effectively previously dealt with the effect of having a noise process NA perturbing XA–the noisy
process XA + NA is known to inherit the property of not Granger causing XB, and so no further consideration is
given to NA and for convenience we take it as zero).

Now note that

ΦX̄X̄ = ΦXX + 𝜖ΦNN . (26)

The spectrum ΦX̄X̄ gives rise to a canonical spectral factor, call it W̄(z) and an associated covariance matrix, call
it Q̄, satisfying

ΦX̄X̄(z) = W̄(z)Q̄W̄⊤(z−1). (27)

Our first result follows.

Theorem 6. Adopt the same hypothesis as in Theorem 1 and let NB be a stationary process with rational spectrum,
with the same dimension as XB , and with X,NB independent. For fixed positive 𝜖, define X̄B = XB + 𝜖1∕2NB so that
ΦX̄X̄ = ΦXX + 𝜖ΦNN where the (1, 1), (1, 2), (2, 1) blocks of ΦNN are zero, and the (2, 2) block is ΦNBNB

. Let W(z),Q
with W(z) upper block triangular and Q block diagonal and W̄(z), Q̄ define canonical spectral factorizations of
ΦXX(z) and ΦX̄X̄(z) as in (4) and (27) respectively. Then

1. W̄(z) − W(z) is O(𝜖) on |z| = 1;
2. Q̄ − Q is O(𝜖);
3. ΦAB̄ Φ−1

B̄B̄
− ΦAB Φ−1

BB is O(𝜖) on |z| = 1, and the anticausal part of ΦAB̄ Φ−1
B̄B̄

is O(𝜖) on |z| = 1;
4. for suitably small 𝜖, W̄22(z) is minimum phase.

We remark that the first and third bounds imply bounds on the L2 norms of the quantities which are also O(𝜖).
Evidently, the X̄ process is ‘close to’ a process in which XA does not cause X̄B in two senses : the canonical spec-
tral factor is close to upper block triangular with the innovations covariance matrix being block diagonal, and
(separately), the anti-causal part of the two-sided Wiener filter associated with predicting XA from X̄B has small
magnitude on |z| = 1 and in L2 norm.

In the above theorem, we focused on the changes to transfer functions and to the innovations covariance
caused by the introduction of noise. It is also relevant to compare the prediction error variances when XA(s),
s ≤ t,XB(s), s < t and XA(s), s ≤ t,XB̄(s), s < t are used to predict XB and X̄B respectively. The results are
summarized Theorem 7. It shows that the prediction error ‘measure’ of Granger causality is O(𝜖2).

Theorem 7. Adopt the same hypothesis as in Theorem 6 and assume that 𝜖 > 0 is sufficiently small that W̄22 is
minimum phase. Then there exist positive R,R′ of O(𝜖2) for which there hold the upper and lower bounds ∶

Var
[
X̄B(t) − E[X̄B(t) | X̄B(s) ∶ s < t]

]
≥ R + Q̄22 − Q̄⊤

12Q̄−1
11 Q̄12

= R + Var
[
X̄B(t) − E[X̄B(t) |XA(t), XA(s), X̄B(s) ∶ s < t]

]
(28)

and

Var
[
X̄B(t) − E[X̄B(t) | X̄B(s) ∶ s < t]

]
≤ (1 + R′)Var

[
X̄B(t) − E[X̄B(t) |XA(t), XA(s), X̄B(s) ∶ s < t]

]
. (29)

6. EFFECT OF FILTERING ON GRANGER CAUSALITY

Consider a stationary full-rank process X = [X⊤

A X⊤

B ]
⊤. Instead of observing processes XA,XB, we observe the

process [
X̄A(t)
X̄B(t)

]
= T(L)

[
XA(t)
XB(t)

]
, T(L) ∶=

[
TA(L) TAB(L)
TBA(L) TB(L)

]
, (30)
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where T(L) is a causal transfer function, partitioned conformably with [X⊤

A X⊤

B ]
⊤. We consider the question : if XA

does not Granger cause XB, will X̄A not Granger cause X̄B? Conversely, and on occasions more importantly, if one
observes that X̄A does not Granger cause X̄B, can one conclude that XA does not Granger cause XB? Questions of
this type go back some time, see for example, Pierce and Haugh (1977), Solo (2007, 2016) , Florin et al. (2013),
Barnett and Seth (2011), and Seth et al. (2013).

In the following theorem, we give a general necessary and sufficient condition for X̄A not to cause X̄B in the
sense of Granger.

Theorem 8. Suppose Assumption 1 holds, and let [X̄⊤

A (t) X̄⊤

B (t)]
⊤ be defined by (30) where T(L) is a causal stable

miniphase transfer function such that T(0) = Id. Then, X̄A does not Granger cause X̄B if and only if

Π21(L)TA(L) + Π22(L)TBA(L) = 0 (31)

where

Π(L) = W(L)−1 =
[Π11(L) Π12(L)
Π21(L) Π22(L)

]
and T(L)−1 =

[
TA(L) TAB(L)
TBA(L) TB(L)

]
(32)

are partitioned conformably with [X⊤

A X⊤

B ]
⊤.

Provided Π22(z) is miniphase, condition (31) shows it is generally possible to choose the filter T(L) so that X̄A

does not Granger cause X̄B, irrespective of the causal relation between XA and XB. Filtering can make Granger
causality invisible. In general, Granger causality from XA to XB is not invariant to the application of a multivariate
causal miniphase filter to X(t). When condition (31) holds, X̄A does not Granger cause X̄B even if XA does Granger
cause XB. Conversely, ifΠ12(L) = 0, so XA does not Granger cause XB, (31) does not hold if we haveΠ22(L)TBA(L) ≠
0 : XA does not Granger cause XB, and X̄A does Granger cause X̄B. For example, for a bivariate system (d = 2), the
latter situation happens when

Π(L) = I2 and T(L) =
[

1 0
0.5 L 1

]
; (33)

here X(t) = 𝜖(t) and

X̄A(t) = XA(t) = 𝜖A(t) , X̄B(t) = (0.5)XA(t − 1) + XB(t) = (0.5)X̄A(t − 1) + 𝜖B(t). (34)

Barnett and Seth (2011 Abstract, Sections 1 and 3) claim that ‘G-causality for a stationary vector autoregressive
(VAR) process is fully invariant under the application of an arbitrary invertible filter’. The above counterexample
shows clearly this claim should be qualified. Conditions under which this type of invariance hold are given by
Theorem 8.

In the following corollary, we consider the important case where T(L) has a block triangular form.

Corollary 1. Under the assumptions of Theorem 8, the following equivalences hold. If TBA(L) = 0,

XA does not Granger cause XB if and only if X̄A does not Granger cause X̄B. (35)

If TAB(L) = 0,

X̄A does not Granger cause X̄B if and only if Π21(L) = Π22(L)TB(L)−1TBA(L). (36)

Remark 5. (35) in Theorem 8 means that Granger causality from XA to XB is unaffected by linear causal filtering
as long as X̄B(t) only depends on current and past values of XB(t). The filtered series X̄A(t) can involve lagged
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values of both XA(t) and XB(t). Further, the fact that (35) is an equivalence means that non-causality between the
filtered series does allow one to conclude that the unfiltered series have the same property. Solo (2016) recently
considered the special case where TAB(L) = 0 and TBA(L) = 0, and showed only sufficiency (XA does not Granger
cause XB implies that X̄A does not Granger cause X̄B); see also Florin et al. (2013), Barnett and Seth (2011) and
Seth et al. (2013) for related results.

Remark 6. (36) of Theorem 8 gives a general condition under which Granger causality from XA to XB can be
suppressed through filtering. In particular, if Π21(z) is miniphase, we can always choose T(L) so that X̄A does not
Granger cause X̄B. For example, this is achieved by taking TB(L) invertible and

TBA(L) = TB(L)Π22(L)−1Π21(L) . (37)

In particular, by taking TB(L) = I and TBA(L) = Π22(L)−1Π21(L), we find that the filter

T(L) =
[

I 0
Π22(L)−1Π21(L) I

]
(38)

eliminates Granger causality from XA to X̄B: X̄B is ‘orthogonal’ to XA in the Granger sense.

Remark 7. The assumption that W(L) is miniphase entails that both WA(L) and WB(L) are miniphase when
WBA(L) = 0, for then det[W(z)] = det[WA(z)] det[WB(z)]. There is a heuristic explanation of why the introduction
of a non miniphase but stable WB(z) might produce causality where previously it did not hold. Suppose XA does
not cause XB, but XB does cause XA. For a specific example, suppose that XA(t) = XB(t − 2) + 𝜖A(t), XB(t) = 𝜖B(t),
with 𝜖A, 𝜖B independent white noise sequences. Now suppose that XB is subject to processing by a filter which
delays it. It is well understood in signal processing theory that any non-minimum phase filter introduces a delay;
a particularly evident example is the filter with transfer function zp, which produces a delay of p units. Suppose p
is say 3. Then XA(t) = X̄B(t + 1) + 𝜖A(t), so future values of X̄B are correlated with past values of XA, which means

precisely that XA does cause X̄B.

Remark 8. Consider the case where XA defines a filter which is simply a delay. Then the theorem says that if
XA does not Granger cause XB, the same will be true if XA is replaced by a delayed version of itself. This can of
course be argued from first principles also.

7. EFFECT OF SUBSAMPLING ON GRANGER CAUSALITY

A further question raised in the work of Solo (2007) deals with subsampling. Suppose that a process XA does
not Granger cause XB nor does it cause XB instantaneously. Suppose the two processes are subsampled. Will the
absence of Granger causality continue to hold for the subprocesses?

As we show here, again appealing to Theorem 3, absence of Granger causality may be lost, and Granger causality
may arise in the subsampled processes.

By way of brief comment, we note a refinement of the question. Subsampling of two processes at the same rate
may not occur synchronously. Thus, for example, samples of XA with even time index might be considered along
with samples of XB with odd time index. Also, subsampling may occur at different rates. In fact, it could be that
XA is not subsampled, while XB is. We will not consider these variants in this section.

We first note a very easily established theorem on the transformation of spectra under subsampling (see Hannan,
1970).4

4 The relation between Granger causality and subsampling could also be studied by postulating a deeper structural model, such as a
continuous-time model; for some earlier work on continuous-time Granger causality, see Florens and Fougère (1996) and Comte and Renault
(1996). We focus here on the standard discrete-time second-order stationary model described in Sections 1 and 2.
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Theorem 9. Let ΦXX(z) denote the spectrum of a process X, and suppose the process is sampled (synchronously
in the case of a multivariate process) every M time units for some positive integer M , to generate a process X̄,
defined for time instants … , −M, 0,M, 2M,… . Then the spectrum of X̄, defined using covariance data with lags
which are integer multiples of M as

ΦX̄X̄(zM) =
∞∑

k=−∞
zMkE[X(0)X⊤(−kM)] (39)

is expressible as

ΦX̄X̄(zM) = 1
M

M−1∑
i=0

ΦXX(𝜔iz) (40)

where 𝜔 = exp(
√
−12𝜋∕M).

The proof is an immediate consequence of the fact that

ΦXX(𝜔iz) =
∞∑

k=−∞
(𝜔iz)kE[X(0)X⊤(−k)] (41)

and the addition of these equations for i = 0,… ,M − 1.
In our counterexample, we shall take M = 2. This means that ΦX̄X̄(z) = ΦXX(z) + ΦXX(−z). In detail, consider a

process X defined by a unit matrix for the innovations covariance, and a canonical spectral factor given by

W(z) =
⎡⎢⎢⎣
∗∗∗ z

1− z
2

0
1− z√

2

1− z
2

⎤⎥⎥⎦ (42)

with the particular expression for the (1, 1) entry not being provided, since it turns out to be irrelevant to the
calculation. From this expression, it follows that the (1, 2) and (2, 2) entries of ΦXX are :

ΦAB(z) =

(
z

1 − z

2

)⎛⎜⎜⎝
1 − z−1√

2

1 − z−1

2

⎞⎟⎟⎠ =
z − 1√

2

5

4
− 1

2
(z + z−1)

, (43)

ΦBB(z) =
⎛⎜⎜⎝

1 − z√
2

(1 − z

2
)

⎞⎟⎟⎠
⎛⎜⎜⎝

1 − z−1√
2

(1 − z−1

2
)

⎞⎟⎟⎠ =
3

2
− 1√

2
(z + z−1)

5

4
− 1

2
(z + z−1)

. (44)

Based on the formula for subsampled spectra, we now have:

ΦĀB̄(z2) =
z − 1√

2

5

4
− 1

2
(z + z−1)

+
−z − 1√

2

5

4
+ 1

2
(z + z−1)

=
(1 − 5

2
√

2
) + z2

[ 5

4
− 1

2
(z + z−1)][ 5

4
+ 1

2
(z + z−1)]

, (45)

ΦB̄B̄(z2) =
3

2
− 1√

2
(z + z−1)

5

4
− 1

2
(z + z−1)

+
3

2
+ 1√

2
(z + z−1)

5

4
+ 1

2
(z + z−1)

=
[ 15

8
−
√

2 − 1√
2
(z2 + z−2)]

[ 5

4
− 1

2
(z + z−1)][ 5

4
+ 1

2
(z + z−1)]

, (46)
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hence

ΦĀB̄(z2)Φ−1
B̄B̄
(z2) =

(1 − 5

2
√

2
) + z2

15

8
−
√

2 − 1√
2
(z2 + z−2)

=
z4 + (1 − 5

2
√

2
)z2

− 1√
2
z4 + ( 15

8
−
√

2)z2 − 1√
2

. (47)

The denominator polynomial has four zeros on the unit circle (at ±0.81 ± 0.58
√
−1) and there are no cancella-

tions with the zeros of the numerator polynomial (at 0, 0,±0.876
√
−1 ). (The presence of unit circle zeros rather

than zeros inside the unit circle is not of particular note. One can also verify that if the (2, 2) term of the spectral
factor in the example is changed to be (1− z

3
)(1− z

2
)−1, then the denominator polynomial has two zeros inside and

two outside the unit circle, at ±1.382 and ±0.869.) So in both cases the transfer function is not causal. This means
that the downsampling destroys the absence of Granger causality.

This result is not consistent with the claim of Solo (2007). It would appear that in seeking to construct a canonical
spectral factorization for the subsampled process, he forces triangularity (which is needed to conclude absence of
Granger causality) but in the process cannot assure that the proposed spectral factor remains stable, that is, the
simultaneous requirements on the spectral factor for it to be triangular and stable cannot both be met. The fact that
an underlying process may have unidirectional Granger causality, while a time aggregated version of it (a form of
subsampling) has bidirectional Granger causality, has also been observed in Chambers and McCrorie (2004).

8. CONCLUSION

In this article, we have sought to explain how intuition can be misleading in determining the effect of certain
changes made to an underlying model on the Granger causality properties associated with that model. For the
important case of additive noise, we have established general conditions under which additive noise does not affect
non-causality properties, as well as conditions under which noise induces spurious Granger causality. It is clear
from these that additive noise generally distorts causal relations, even though there are interesting cases where it
does not. For example, in the case of measurement errors, if XB is not noisy, noise on XA does not induce spurious
Granger causality from XA to XB. To derive our results, we mostly rely on generating function methods, canonical
spectral factors, Wold decompositions and spectra. These approaches considerably simplify many proofs. Besides
rigorous demonstrations, our findings extend and qualify the early results of Newbold (1978), which focused on
special cases. Further, in our discussion of noise, we have drawn attention to the usefulness of thinking of an
‘amount’ of causality : if noise is ‘low’, the distortion to the predictability and Granger causal properties of the
process is also ‘low’.

We have also revisited the effects of linear transformations, filtering and subsampling on Granger causality
properties. These results include general necessary and sufficient conditions under which ‘spurious’ causal rela-
tions between time series are not induced by linear transformations of the variables involved. This characterization
also yields linear transformations (or filters) which can eliminate Granger causality from one vector to another
one. The various results presented allow one to correct some erroneous statements in the earlier literature [as in
Solo (2007) and Barnett and Seth (2011)] on Granger causality in the presence of measurement errors and variable
transformations.

The fact that additive noise can distort Granger causality relations means that empirical findings on such prop-
erties become more delicate to interpret. Indeed, inferences on ‘noisy variables’ remain perfectly valid as long
the causal properties are ascribed to observed variables. If we have no theory (such as an economic or a phys-
ical model) that can lead one to distinguish between a ‘true’ latent variable and a ‘measured’ variable, there is
no error-in-variables problem. Otherwise, one must be aware that the causal structure of the original ‘uncontami-
nated’ variables can be different. In this context, it is quite interesting to observe that no ‘spurious’ causality can
arise when noise only affects the output variable (see Theorem 5). Further, when the signal-to-noise ratio is large,
distortions on apparent causality will also be small (see Theorem 6).
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Similarly, the fact that aggregation and subsampling can distort dynamic relations has been widely discussed;
see Tiao and Wei (1976), Wallis (1974), Sims (1974), Wei (1982), Hylleberg (1986), Marcellino (1999), Kaiser and
Maravall (2001), Breitung and Swanson (2002), Gong et al. (2015), and the references in the survey of Silvestrini
and Veredas (2008). For a specific example showing that causal relations are modified by changing observation
frequency, see Dufour et al. (2012). However, Theorem 8 and Corollary 1 give general necessary and sufficient
conditions under which ‘spurious’ causal relations between (vector) time series will not be induced by linear
transformations of the variables involved. This also yields linear transformations (or filters) which can eliminate
Granger causality from one vector to another one.

Unaddressed to this point is a corresponding result on subsampling. It is well known that a continuous-time
band-limited process and a sampled version of it with sampling frequency in excess of twice the approximate
‘cut-off’ frequency of the continuous-time process have more or less the same information. This would suggest
that Granger causality properties of continuous-time band-limited processes would be ‘almost’ preserved if they
were sampled frequently enough, that is, in these circumstances the loss of Granger causality would be small. On
a possible avenue in this direction, see Pollock (2012).

Due to dependence on an information set, Granger causality properties are not generally invariant to obser-
vation frequency. In contrast with contamination by ‘noise’ – which is typically problematic – non-invariance
to observation frequency may not be a ‘problem’ . Indeed, it can have considerable practical meaning and
usefulness: different mechanisms may matter for short and long-run predictability as well as decisions, in the
same way that different ‘laws’ apply to micro-phenomena and macro-phenomena in physics. For economic and
financial decisions, short-run and long-decisions may depend on different factors and require different rules.
High-frequency decisions require prediction for data observed at high frequency, while longer-run decisions
require predictability for data observed at low frequencies. Granger causality analysis at different observation
frequencies can provide information on this. It would certainly be of interest to develop a systematic frame-
work for exploring and exploiting such features. The use of mixed frequency data [as proposed in Ghysels et
al. (2016)] could also be relevant in this context. However these problems clearly go beyond the scope of the
present article.

A different area worthy of examination is that of networked systems. The underlying structure could be viewed
using a directed graph, An edge from vertex i to vertex j would mean that process i is caused by process j . One could
begin by examining whether, in a path graph with vertex set {v1, v2,… , vN} and edge set {e12, e23,… , e(N−1)N},
Granger causality properties of nonadjacent nodes could be predicted from the corresponding properties of
adjacent nodes.

The results given in this article rely on the common assumption of (second-order) stationarity. Even though
there is no reason to think distortions induced by measurement errors would suddenly stop to exist in nonstation-
ary setups, it would be of interest to extend our results to nonstationarity setups, for example, through Hilbert
space techniques, especially to evaluate whether non-stationarity tends to increase or decrease the distortions.
Note that nonstationary models are explicitly allowed in Dufour and Renault (1998) and Dufour et al. (2006); for
other articles which apply Hilbert space methods to Granger causality, see Hosoya (1977), Florens and Mouchart
(1982, 1985) , Florens et al. (1993), Florens and Fougère (1996), Triacca (1998, 2000) , Al-Sadoon (2014). To
study measurement errors, careful consideration of the type of nonstationarities is needed, and different proof
methods may be required. Another possibly more general approach to incorporate non-stationarity would consist
in working with the underlying probability measures, along the lines suggested by Mykland (1986). We leave
such extensions to future work.
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APPENDIX A.

Proof of Lemma 1 Notice first that

E[Z(t) |X(s), Y(s) ∶ s < t] = E[X(t) + Y(t) | X(s), Y(s) ∶ s < t]
= E[X(t) |X(s), Y(s) ∶ s < t] + E[Y(t) |X(s), Y(s) ∶ s < t]
= E[X(t) |X(s) ∶ s < t] + E[Y(t) |Y(s) ∶ s < t] (A1)
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Accordingly, using the fact that the space spanned by Z(s) = X(s) + Y(s) for s < t is a subspace of the space
spanned by X(s),Y(s) for s < t , we have

Var[Z(t) |Z(s) ∶ s < t] ≥ Var[X(t) + Y(t) |X(s), Y(s) ∶ s < t]
= Var[X(t) |X(s) ∶ s < t] + Var[Y(t) |Y(s) ∶ s < t] (A2)

as claimed. Of course the independence of the processes X, Y is used at the second last step.

Proof of Theorem 3 First, consider the question of absence of Granger causality and instantaneous causality
and assume that condition 2 of Theorem 1 holds. Using (4), (10) and the fact that W21 = 0, it is easily checked that

ΦABΦ−1
BB = W12W−1

22 . (A3)

Also, the triangular structure of W and its minimum phase character imply that W−1
22 is stable. Hence ΦABΦ−1

BB is
also stable. It also assumes the value 0 at z = 0 because of the normalization condition W(0) = I.

To prove the converse, consider a canonical spectral factorization of the type of (4) (with no apriori restriction
on the block triangular structure of W). Suppose that ΦABΦ−1

BB ∶= T(z) is stable and zero at z = 0. We first assert
that this will imply the condition W21 = 0 in the minimum phase, stable spectral factor normalized to be I at
z = 0. To see this, suppose first that VB(z) is a minimum phase, stable transfer function with VB(∞) = I and RB is
a positive definite matrix such that

ΦBB(z) = VB(z)RBV⊤

B (z
−1). (A4)

Define

VAB(z) = ΦAB(z)Φ−1
BB(z)VB(z). (A5)

Note that VAB(z) is then stable and zero at z = 0. Note also that the last two equations yield

ΦAB(z) = VAB(z)RBV⊤

B (z
−1). (A6)

By the fact that ΦXX is positive definite for all z = ej𝜔, it follows that ΦAA − ΦABΦ−1
BBΦBA is also positive definite

for all z = ej𝜔, and accordingly, we can define a minimum phase, stable transfer function VA(z) with VA(0) = I and
a positive definite RA such that

ΦAA(z) − ΦAB(z)Φ−1
BB(z)ΦBA(z) = VA(z)RAV⊤

A (z
−1). (A7)

Observe that

ΦAB(z)Φ−1
BB(z)ΦBA(z) = ΦAB(z)Φ−1

BB(z)[VB(z)RBV⊤

B (z
−1)]Φ−1

BB(z)ΦBA(z) = VAB(z)RBV⊤

AB(z
−1) (A8)

or equivalently

ΦAA(z) = VAB(z)RBV⊤

AB(z
−1) + VA(z)RAV⊤

A (z
−1). (A9)

Now from equations (A9), (A6) and (A4), we have[ΦAA(z) ΦAB(z)
ΦBA(z) ΦBB(z)

]
=
[

VA(z) VAB(z)
0 VB(z)

] [
RA 0

0 RB

][
V⊤

A (z
−1) 0

V⊤

AB(z
−1) V⊤

B (z
−1)

]
. (A10)
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Now make the definitions

V(z) =
[

VAA(z) VAB(z)
0 VBB(z)

]
, R =

[
RA 0

0 RB

]
, (A11)

and observe that V(z) is stable, minimum phase and has V(0) = I. Accordingly, V(z) is the unique miniphase stable
spectral factor with V(0) = I, and condition 2 of Theorem 1 is evidently fulfilled.

The argument for Granger causality only is similar but not identical, and so we present the details. Assume then
there is an absence of Granger causality, which means that there is a spectral factorization with canonical spectral
factor W(z) and not necessarily block diagonal innovations covariance matrix of the form

ΦXX(z) =
[

W11(z) W12(z)
0 W22(z)

] [ Q11 Q12

Q⊤

12 Q22

][
W⊤

11(z
−1) 0

W⊤

12(z
−1) W⊤

22(z
−1)

]
. (A12)

It then follows that

ΦABΦ−1
BB = (W11Q12 + W12Q22)W−1

22 (A13)

and this is evidently stable.
For the converse, we follow the proof applying for the case where the aim was to conclude an absence of Granger

causality and instantaneous causality. The proof applies with the first change that VAB(z) is no longer guaranteed
to be zero at z = 0. Equation (A10) holds, including the fact that R is block diagonal, but V(∞) ≠ I, due to the
generally nonzero nature of VAB(0). Now by setting

W(z) =
[

I −VAB(0)
0 I

]
V(z) (A14)

equation (A12) arises, and Granger causality is then proved.

Proof of Theorem 4 For the first claim, let W11(z),W12(z),W22(z), Q11, Q12 and Q22 be the matrices of the canon-
ical spectral factor description of the joint spectrum of XA,XB. If W12 = 0, then it is evident that the two processes
are independent. So we must prove that if W12 ≠ 0, then XB Granger causes XA. This is equivalent to showing that

Var[XA(t) |XA(s), XB(s) ∶ s < t] ≤ Var[XA(t) |XA(s) ∶ s < t] (A15)

and the two conditional covariance matrices are unequal. Now observe that from the canonical factorization of
the joint process XA,XB, we have immediately

Var[XA(t) |XB(t), XA(s), XB(s) ∶ s < t] = Q11. (A16)

Further, we know that XA(t) = W11(L)𝜖A(t)+W12(L)𝜖B(t). This expresses XA as a sum of two independent processes
and the lemma above applies. Note that the variance of the one step ahead prediction for the process W11(L)𝜖A(t)
is precisely Q1, since W11(z) is a canonical spectral factor. Hence the claim (A15) is established.
For the second part, we are required to show that when XA does not cause XB, either the processes are independent or

Var[XA(t) |XB(t), XA(s), XB(s) ∶ s < t] ≤ Var[XA(t) |XA(s) ∶ s < t] (A17)

where equality does not hold. Let Q12 be the (1, 2) block of the matrix Q in the canonical spectral factorization;
in general, it is not zero. Then it is easily seen that

Var[XA(t) |XB(t), XA(s), XB(s) ∶ s < t] = Q11 − Q12Q−1
22 Q⊤

12. (A18)
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Next observe that

XA(t) = W11(L)[𝜖A(t) − Q12Q−1
22 𝜖B(t)] + [W11(L)Q12Q−1

22 + W12(L)]𝜖B(t). (A19)

This expresses XA as the sum of two independent processes, since 𝜖A(t) − Q12Q−1
22 𝜖B(t) and 𝜖B(t) are independent.

In the additive decomposition, the second process will evanesce if and only if W12(z) = 0,Q12 = 0, that is, the two
processes XA,XB are independent. The first process is in fact the process XA(t)−E[XA(t) |XB(t), XA(s),XB(s) ∶ s <
t], as is easily checked. Hence once again the lemma applies to yield the result (A17) as required.

Proof of Theorem 6 The fact that ΦX̄X̄ satisfies (26) implies that

ΦX̄X̄ = WQ1∕2[I + 𝜖Q−1∕2W−1ΦNNW−∗Q−1∕2]Q1∕2W∗. (A20)

Now identify M in Lemma 2 with Q−1∕2W−1ΦNNW−∗Q−1∕2 to conclude that a stable and miniphase spectral factor
of the noise perturbed spectrum ΦX̄X̄ is (to first order in 𝜖, corresponding to a low noise situation),

W̃ = WQ1∕2[I + 𝜖(Q−1∕2W−1ΦNNW−∗Q−1∕2)+] (A21)

in the sense that

ΦX̄X̄(z) = W̃(z)W̃⊤(z−1). (A22)

Note that W̃(z) is not canonical because the requirement W̃(0) = I is not fulfilled. Define J to be the value of

[I + 𝜖(Q−1∕2W−1ΦNNW−∗Q−1∕2)+] (A23)

at z = 0. Note that this is precisely I + 𝜖K, where 2K is necessarily nonnegative being (1∕2𝜋) times the integral
around the unit circle of Q−1∕2W−1ΦNNW−∗Q−1∕2 and note that J − I (which is 𝜖K) and thus J−1 − I are O(𝜖). Then
the canonical spectral factor will be

W̄(z) = W̃(z)J−1Q−1∕2 (A24)

since this assures that (27) will hold where we can identify

Q̄ =
[

Q̄11 Q̄12
Q̄⊤

12 Q̄22

]
= Q1∕2J2Q1∕2. (A25)

From the calculations immediately preceding the last two equations, it is easy to see that the difference W̄(z)−W(z)
will be O(𝜖), as will Q̄12 and Q − Q̄.

Next we consider the claim concerning the two-sided Wiener filter for estimating XA from X̄B. It is easily seen
using (A20) that ΦBA(z)Φ−1

BB(z) differs for each fixed z = exp(j𝜔) from ΦB̄A(z)Φ−1
B̄B̄
(z) by an amount bounded by

O(𝜖) as 𝜖 goes to zero, and hence the anticausal part will have the same property. Since the anticausal part of
ΦBA(z)Φ−1

BB(z) is actually zero, this means the anticausal part of ΦBA(z)Φ−1
BB(z) will have an L2 norm that is O(𝜖).

To prove the final claim, observe that because W(z) is block upper triangular and canonical, the submatrix W22(z)
is minimum phase. Now the right side of W−1

22 (z)W̄22(z) = I + W−1
22 (z)[W̄22(z) − W22(z)] represents a perturbation

of I by a stable matrix whose norm is bounded by O(𝜖) on the unit circle, and accordingly it is minimum phase.
Hence the product with W22(z) is also minimum phase, that is, W̄22(z) is minimum phase. This completes the proof
of the theorem.
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Proof of Theorem 7 We start by expressing X̄B as a sum of two independent processes. Thus observe that we
can express X̄B as

X̄B(t) = [W̄22(L)Q̄⊤

12Q̄−1
11 + W̄21(L)]𝜖A(t) + W̄22(L)[𝜖B(t) − Q̄⊤

12Q̄−1
11 𝜖A(t)] (A26)

in obvious notation. Note that the two processes 𝜖A(t) and 𝜖B(t) = 𝜖B(t) − Q̄⊤

12Q̄−1
11 𝜖A(t) are orthogonal, with

covariance matrix

E{
[
𝜖A(t)
𝜖B(t)

] [
𝜖⊤A (t) 𝜖

⊤

B (t)
]
} =

[
Q̄11 0
0 Q̄22 − Q̄⊤

12Q̄−1
11 Q̄12

]
. (A27)

Let R denotes the error variance in estimating the value at time t of [W̄22(L)Q̄⊤

12Q̄−1
11 + W̄21(L)]𝜖A(t) from values

for s < t. Recall also that W̄22(z) is minimum phase, and must satisfy W̄22(0) = I. Accordingly, it is a canonical
spectral factor of the spectrum of W̄22(L)[𝜖B(t) − W̄⊤

12Q̄−1
11 𝜖A(t)]. Hence the prediction error covariance associated

with estimating the value at time t of W̄22(L)𝜖B(t) from values for s < t is precisely Q̄22 − Q̄⊤

12Q̄−1
11 Q̄12. We can now

use Lemma 1 as we did in the proof of Theorem 4 to conclude that

Var
[
X̄B(t) − E[X̄B(t) | X̄B(s) ∶ s < t]

]
≥ R + Q̄22 − Q̄⊤

12Q̄−1
11 Q̄12. (A28)

From the canonical factorization forΦX̄X̄ we have that the second term on the right in the above equation is given by

Var
[
X̄B(t) − E[X̄B(t) |XA(t), XA(s), X̄B(s) ∶ s < t

]
= Q̄22 − Q̄⊤

12Q̄−1
11 Q̄12. (A29)

We now turn to establishing the bound on R. X̄B(t) from X̄A(s), s ≤ t, X̄B(s), s < t. This is, as is well known, pre-
cisely Q̄22 − Q̄⊤

12Q̄−1
11 Q̄12. That for predicting X̄B(t) from X̄B(s) is more complicated. To make progress observe that

Consider the transfer function acting on 𝜖A in (A26). From Theorem 6, Q̄12 and W̄21(z) are O(𝜖) and so the transfer
function multiplying 𝜖A is of order 𝜖. Hence we see that R, being the prediction error variance in estimating a vari-
able whose spectrum is proportional to 𝜖2 must itself be proportional to 𝜖2. Hence the increase in prediction error
covariance when X̄A ceases to be available for estimating X̄B is bounded from below by a quantity proportional to 𝜖2.
We now derive the overbound of the same order. Choose a constant R′ so that for all z = exp(j𝜔), there holds

R′W̄22(z)[Q̄22 − Q̄⊤

12Q̄−1
11 Q̄12]W̄⊤

22(z
−1) ≥ [W̄22(z)Q̄⊤

12Q̄−1
11 + W̄21(z)]Q̄11[Q̄−1

11 Q̄12W̄⊤

22(z
−1) + W̄⊤

21(z
−1)]. (A30)

This is possible since for all z = exp(j𝜔) the left side is positive definite. Since the right side is O(𝜖2), it is clear
that R′ can be taken also as O(𝜖2). Now X̄B is written in (A26) as the sum of two orthogonal processes. Hence the
spectrum of X̄B will be the sum of the spectra of these two processes, that is,

W̄22(z)[Q̄22 − Q̄⊤

12Q̄−1
11 Q̄12]W̄⊤

22(z
−1) + [W̄22(z)Q̄⊤

12Q̄−1
11 + W̄21(z)]Q̄11[Q̄−1

11 Q̄12W̄⊤

22(z
−1) + W̄⊤

21(z
−1)]

for z = exp(j𝜔) and this is overbounded by a spectrum, call it ΦCC(z), with

ΦCC(z) = (R′ + 1)W̄22(z)[Q̄22 − Q̄⊤

12Q̄−1
11 Q̄12]W̄⊤

22(z
−1) (A31)

again for z = exp(j𝜔). Hence there exists a process, call it XD , which is independent of X̄B, for which XC = X̄B+XD

and whose spectrum is ΦCC(z) − ΦX̄X̄(z). By Lemma 1, the variance of the one step prediction estimate using its
own past of the process XC with spectrum of ΦCC overbounds the sum of the variances of the one step prediction
estimates of each of X̄B and XD. A fortiori it overbounds the variance of the one step prediction estimate of X̄B : thus

(R′ + 1)[Q̄22 − Q̄⊤

12Q̄−1
11 Q̄12] ≥ Var

[
X̄B(t) − E[X̄B(t) | X̄B(s) ∶ s < t]

]
. (A32)
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Equivalently, we can write

Var
[
X̄B(t) − E[X̄B(t) | X̄B(s) ∶ s < t]

]
≤ (R′ + 1)Var

[
X̄B(t) − E[X̄B(t) |XA(t), XA(s), X̄B(s) ∶ s < t]

]
. (A33)

This completes the proof of the theorem.

Proof of Theorem 8 Since the process has an autoregressive representation, we can write :

Π(L)X(t) = Π(L)T(L)−1T(L)X(t) = Π̄(L)X̄(t) = 𝜖(t) (A34)

where

Π̄(L) =
[
Π̄11(L) Π̄12(L)
Π̄21(L) Π̄22(L)

]
=
[Π11(L) Π12(L)
Π21(L) Π22(L)

] [
TA(L) TAB(L)
TBA(L) TB(L)

]
, 𝜖(t) =

[
𝜖A(t)
𝜖B(t)

]
. (A35)

In particular,

Π̄21(L) = Π21(L)TA(L) + Π22(L)TBA(L). (A36)

Since 𝜖(t) is uncorrelated with the past X(t), hence also of the past of X̄(t), it follows from Proposition 1 in
Boudjellaba et al. (1992) that : X̄A does not Granger cause X̄B if and only if Π̄21(L) = 0.

Proof of Corollary 1 If TBA(L) = 0, it follows from standard results on the inversion of partitioned matrices that

T(L)−1 =
[

TA(L) TAB(L)
0 TB(L)

]−1

=
[

TA(L)−1 −TA(L)−1TAB(L)TB(L)−1

0 TB(L)−1

]
=
[

TA(L) TAB(L)
TBA(L) TB(L)

]
; (A37)

see (Harville, 2008, Chapter 8, Theorem 8.5.4). Then, the condition takes the form Π21(L)TA(L)−1 = 0, which in
view of the invertibility of TA(L) is equivalent to Π21(L) = 0. By Proposition 1 in Boudjellaba et al. (1992), XA

does not Granger cause XB if and only if Π21(L) = 0 , so that

X̄A does not Granger cause X̄B if and only if XA does not Granger cause XB. (A38)

If TAB(L) = 0, we have

T(L)−1 =
[

TA(L) 0
TBA(L) TB(L)

]−1

=
[

TA(L)−1 0
−TB(L)−1TBA(L)TA(L)−1 TB(L)−1

]
=
[

TA(L) TAB(L)
TBA(L) TB(L)

]
(A39)

so that TA(L) = TA(L)−1 and TBA(L) = −TB(L)−1TBA(L)TA(L)−1, and condition (31) takes the form

Π21(L)TA(L) + Π22(L)TBA(L) = Π21(L)TA(L)−1 − Π22(L)TB(L)−1TBA(L)TA(L)−1 = 0 (A40)

or, equivalently,

Π21(L) = Π22(L)TB(L)−1TBA(L). (A41)

Thus, X̄A does not Granger cause X̄B if and only if Π21(L) = Π22(L)TB(L)−1TBA(L).
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