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Abstract

Motivated by Wigner’s theorem, a canonical construction is described that produces an

Atiyah-Singer Dirac operator [63, §II.6] with both unitary and anti-unitary symmetries.

This Dirac operator includes the Dirac operator for KR-theory [2] as a special case, filling

a long-standing gap in the literature. The conditions under which this construction can

be made are investigated, and the obstruction is identified as a class within a generalisa-

tion of equivariant Čech cohomology. An associated geometric K-homology theory [16]

is constructed, along with a homomorphism into an appropriate generalisation of analytic

K-homology. More broadly, this thesis demonstrates that difficulties surrounding the in-

teraction of K-orientiation and anti-linear symmetry can be naturally resolved by building

on Wigner’s theory of corepresentations. Potential applications include the classification of

D-brane charges in orientifold string theories [87, §5.2], the construction of index invariants

for topological insulators [36], and the formulation of a Baum-Connes conjecture [13] for

discrete groups with a distinguished order-2 subgroup.
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Notations and Terminology

1. Rather than constantly introducing new names for the many group actions which oc-

cur throughout the text, group actions will often be denoted by apposition, so long

as this does not create ambiguity. For example, if X is a topological Γ -space for some

group Γ which also acts on C by conjugation, then an action of Γ on f ∈ C(X, C) may

be defined by writing

(γf)(x) := γf(γ−1x).

2. The symbol κwill be reused often. It represents standard conjugation actions on a vari-

ety of objects. For example: complex conjugation on C, conjugation on U(1) under the

embedding U(1) ⊂ C, elementwise conjugation on the standard matrix representation

of GL(n, C), and conjugation on the U(1) component of Spinc(n) = Spin(n)×Z2 U(1).

3. The symbol ι will be used to represent the negation action x 7→ −x in a number of

contexts.
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Introduction

The topic of this thesis is anti-linear symmetry in index theory. In its most basic form, an

index is an integer associated to an elliptic differential operator on a manifold by taking

the difference in dimension between its kernel and cokernel. The key property of the index

is that it is stable under continuous perturbation of the underlying operator. Index theory

studies the consequences of this property. The primary example of such a consequence is

the Atiyah-Singer index theorem [7, 8], which computes the index of an elliptic operator

topologically. Far-reaching results in geometry have been obtained by treating the indices

of canonical elliptic operators as topological invariants [63, §IV]. The most important of

these operators is the Atiyah-Singer Dirac operator [63, §II.6]. This first order differential

operator can be constructed on any manifold that satisfies a topological condition known

as spin-orientibility. The Dirac operator is at the heart of index theory, in the sense that all

classical index theoretic problems reduce to problems regarding Dirac operators [16, 15, 17].

One of the early generalisations of index theory was equivariant index theory [8, 22]. In

this setting, a compact Lie group acts on the underlying manifold, and vector bundles are

equipped with a linear lifting of the action. Elliptic operators between such vector bundles

are required to be equivariant with respect to the group action. This implies that the kernel

and cokernel of the operator are representations. The difference between the characters of

the resulting representations defines an element in the representation ring of the group. In

this way, equivariant index theory intertwines the global geometry of manifolds with the

representation theory of groups.

The motivation for investigating anti-linear symmetry is provided by Wigner’s Theorem

[83, pp. 233-236]. Wigner’s Theorem is derived from the basic postulates of quantum me-

chanics [82, pp. 91-96] . It states that the symmetries of a quantum mechanical system are

implemented by operators which are either unitary or anti-unitary. Both types of symmetry,

and various combinations of the two, arise in simple systems. In particular, time reversal

symmetry is implemented by anti-unitary operators [83, §26].

In view of Wigner’s Theorem, it is natural to define an equivariant index theory which
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accomodates both unitary and anti-unitary symmetries. This means that the action of a

group element on the base manifold lifts to either a unitary or an anti-unitary map on a

complex vector bundle. The kernel and cokernel of an equivariant elliptic operator are then

group representations consisting of both unitary and anti-unitary operators, and the index

is taken to be the formal difference of the equivalence classes of these representations. The

set of equivalence classes of unitary/anti-unitary representations may be viewed as a subset

of the classes of unitary representations for the subgroup of elements which act by unitary

operators. This subset is determined by its invariance under a conjugation map constructed

from the anti-unitary part of the action. Thus, an index theory with anti-unitary symmetries

intertwines the conjugate structure of unitary/anti-unitary representations with the global

geometry of manifolds.

Having defined such an index theory, a central task is to determine when a Dirac oper-

ator exists and how it can be constructed. At this point, one encounters a problem which

has remained unresolved for a some time: such a Dirac operator would include the Real

Dirac operator associated to KR-theory as a special case. Atiyah’s KR-theory considers Real

bundles1, which are complex vector bundles equipped with an anti-linear involution that

covers an involution on the base space [2]. In this context, the base space, equipped with

its involution, is refered to as a Real space. A Real Dirac operator on a Real space must act

between Real bundles and be equivariant with respect to their anti-linear involutions. Al-

though KR-theory was introduced in the 1960’s, the question of whether a given Real space

can be equipped with a Real Dirac operator has not been answered.

The main contribution of this thesis is to construct the Dirac operator for index theory

with both unitary and anti-unitary symmetries. This brings classical index theory into line

with Wigner’s Theorem, and fills the gap in the literature regarding the existence of a Dirac

operator for KR-theory. As in the equivariant setting, the geometric data used to construct

Dirac operators can be formed into classes for a geometric K-homology theory [18]. This

theory will be described, along with a map into an obvious generalisation of analytic K-

homology [46, 58]. Some initial steps toward the formulation of a Baum-Connes conjecture

for orientifold groups will also be taken.

To emphasise the connection with current research in theoretical physics, the language

of orientifolds will be used. The term orientifold originates in string theory. In the present

context, it will refer to a manifold equipped with an action of a group Γ which, in turn, is

equipped with a homomorphism ε : Γ → Z2. This small amount of extra structure is used

1Note that the R in “Real” is capitalised when used in this sense.
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to define unitary/anti-unitary actions of Γ on complex vector bundles over the orientifold.

An element γ ∈ Γ acts via a unitary map if γ ∈ Γ+ := ker(ε), or an anti-unitary map if

γ ∈ Γ− := Γ \ Γ+. These vector bundles will be described as orientifold bundles. Note that

the set of orientifold bundles over an orientifold depends on the embedding Γ+ ↪→ Γ . More

generally, the term orientifold will be used as an adjective to describe objects carrying, or

compatible with, unitary/anti-unitary actions. For example, the Dirac operator mentioned

above acts between orientifold bundles in an equivariant manner and will be described as

the orientifold Dirac operator.

The construction of the orientifold Dirac operator and geometric orientifold K-homology

depend on an understanding of the global topology of complex vector bundles with anti-

unitary symmetries. In the equivariant setting, the obstruction to the existence of a Dirac

operator can be identified as an equivariant cohomology class. The main obstacle to un-

derstanding the conditions under which an orientifold Dirac operator exists is the failure of

equivariant transition cocycles and cohomology to accomodate anti-linear symmetries. This

obstacle will be overcome by introducing a new type of transition cocycle which generalises

Wigner’s notion of a corepresentation [83, pp. 334-335] [51, pp. 169-172] in the same way

that an equivariant transition cocycle generalises a representation. In fact, this generalisa-

tion extends beyond what is neccesary for applications to orientifolds, yielding the notion of

a semi-equivariant transition cocycle. A compatible semi-equivariant Čech cohomology the-

ory will also be defined, and an analogue of a theorem due to Plymen [69, p. 312] will allow

the topological obstruction to the existence of an orientifold Dirac operator to be identified

as a semi-equivariant cohomology class.

Literature Review

When examining the relevant literature, it is helpful to divide the category of orientifolds in

two basic ways. First, the action of Γ on the base manifold X may be trivial or non-trivial.

Second, Γ− may or may not contain an involution. When the orientifold group id : Z2 → Z2

acts trivially on X, each orientifold bundle corresponds to a real vector bundle by taking

fixed points. Thus, the associated K-theory is KO-theory. In KO-theory there is an 8-fold

periodicity theorem: KOp(X) ' KOp(X×R8) [63, p. 63]. And, more generally, there is a

Thom isomorphism KOp(X) ' KOp(V) for rank 8k real vector bundles V → X, whenever V

carries a Spin-structure [63, p. 387]. The condition that V carries a Spin-structure is equiv-

alent to the vanishing of the second Stiefel-Whitney class in cohomology with Z2-valued

coefficients [63, p. 82]. A Spin-structure on TX can be used to construct a Dirac operator [63,
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p. 112]. Thus, in this special case, the conditions for the existence of an orientifold Dirac

operator are clearly understood.

The situation in which the orientifold group id : Z2 → Z2 acts by a non-trivial involution

σ on X corresponds to KR-theory [2]. Orientifold bundles are then Real vector bundles. An

initial motivation for the development of KR-theory was the observation that the symbol of

the complexification of a real elliptic operator defines a class in KR-theory, not KO-theory.

This fact was noticed by Atiyah and Singer, whose index theorem for families of real elliptic

operators [10, p. 142] is proved using KR-theory, and holds equally well for Real elliptic

operators [10, Remark p. 143]. Atiyah’s KR-theory is bigraded, but periodicity theorems

ultimately reduce the possible KR-groups KRp,q(X,σ) to one of the eight cases where 0 ≤

p ≤ 7 and q = 0. This reduction can be approached in two related ways. The first way is to

use the (1, 1)- and 8-fold periodicity theorems

KRp.q(X,σ) ' KRp,q(X×C,σ× κ) KRp.q(X) ' KRp,q(X×R8,σ× id),

where κ is conjugation. These theorems can be proved using elementary means [2, p. 373, 379],

or the elliptic operators method [4, p. 126, 130]. A second approach is to directly prove the

(p,q)-periodicity theorem,

KRp,q(X,σ) ' KRp,q(X×Rr,s,σ× ιr,s)

where Rr,s := Rr ⊕ Rs, ιr,s(x,y) := (x,−y) and r = smod 8, by combining observations

regarding Real Clifford modules [2, pp. 380-384] [6] with the elliptic operators method [4,

p. 131]. As in KO-theory, the above periodicity theorems have corresponding Thom iso-

morphisms which one expects to be closely related to the construction of Dirac operators.

The (1, 1)-Thom isomorphism, KRp.q(X) ' KRp,q(E) for a Real bundle E, holds for any Real

bundle with no additional assumptions [2, p. 374]. However, the (p,q)-Thom isomorphism

and the 8-fold Thom isomorphism each require an additional orientation hypothesis. It was

noted in [2, pp. 383-384] that the (p,q)-Thom isomorphism holds whenever a Spinc(p,q)-

structure exists. The existence of a Spinc(p,q)-structure is the hypothesis for Kasparov’s

(p,q)-Thom isomorphism in KKR-theory [58, pp. 549-550], and equivalent to the notion of

KR-orientation defined in [74, pp. 108-115]. While this condition is sufficient to state the

Thom isomorphism, it leaves open the question of whether a given Real space carries a

Spinc(p,q)-structure. Several authors have put forward approaches to this problem. These

approaches broadly follow the strategy of Plymen, who identified the obstruction to a Spinc-

structure as a Dixmier-Douady class [69, p. 312]. One formulation of the KR-orientiation

condition was given by Moutuou in the setting of twisted groupoid KR-theory [66, p. 219].
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His approach identifies the obstruction to the existence of a Spinc(p,q)-structure as a class in

a Čech cohomology theory for Real groupoids [66, Ch. 3] [67]. Another approach, by Hek-

mati et al., proposed that the obstruction to the existence of a Spinc(p,q)-structure should

be a class in a Real Z2-equivariant sheaf cohomology [45, p. 31].

There is an equivariant version of KR-theory which corresponds to an action of the orien-

tifold group Z2nθ G on X, where ε(z,g) := z and θ is an action of Z2 on G. Like KR-theory,

this theory also has (1, 1), 8-fold, and (p,q)-periodicity theorems. The proofs of these the-

orems use the elliptic operators method [4, p. 126, 130, 131]. This method will be adapted

to prove Thom isomorphisms for the K-theory of orientifold bundles in Chapter 4. The

framework of [66] covers equivariant KR-theory also.

When Γ− does not contain an involution, the set of orientifold bundles differs from the

set of Real equivariant bundles. In particular, if q : H→ Z2 is the orientifold group defined

by H = {±1,±i} and q(h) = h2, then the set of orientifold bundles contains several subsets

of bundles that are of independent interest. Each of these is determined by specifying the

manner in which the element −1 ∈ H should act on a bundle. When −1 ∈ H is specified

to act by −id, the resulting orientifold bundles are symplectic analogues of Real vector bun-

dles. The associated K-theory is sometimes denoted KH [35, 44]. Further examples can be

obtained by choosing a sign ±1 for each connected component of the fixed point set of an

orientifold. One can then consider orientifold bundles such that −1 ∈ H acts over each com-

ponent by either +id or −id, according its sign. These examples arise in orientifold string

theories, where the connected components of the fixed point set are known asO-planes. The

associated K-theory with sign choice, denoted K±, was studied in [34]. The full set of orien-

tifold bundles for the orientifold group (H,q) contains both the set of symplectic orientifold

bundles, and the set of orientifold bundles with sign-choice. Although these subsets will

not be considered specifically, some of the methods used here to study the larger class of

orientifold bundles apply to the study of these subsets after making suitable refinements.

Beyond the orientifold group (H,q), there are many other possible orientifold groups (Γ , ε)

such that Γ− does not contain an involution. Even for a fixed Γ , these can yield different

sets of orientifold bundles. This is demonstrated by the case of a point orientifold, over

which orientifold bundles are unitary/anti-unitary representations. In general, the set of

such representations depends on the specific embedding Γ+ ↪→ Γ defined by ε.

In this thesis, attention will be focused on obtaining an orientation condition for the 8-

fold Thom isomorphism in orientifold K-theory using an elementary method. Even when

restricted to the setting of KR-theory, this method differs from previous approaches. Al-
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though the general approach of Plymen is used, the obstruction class is identified in a new

semi-equivariant cohomology theory. This method gives a single notion of orientation for

the various cases of orientifold K-theory, including cases in which Γ− contains no involu-

tion. It is also conceptually clear, computable, and leads to a method for constructing Dirac

operators on orientifolds.

Part of the reason for the renewed interest in KR-theory and its variants lies in appli-

cations to physics. The two main areas of potential application are string theory and the

classification of topological insulators. The connection between the present investigation

and string theory begins with the classification of D-brane charges using K-theory, as de-

scribed in [65, 87]. Results in index theory allow one to pass from K-theory to an analytic

K-homology theory in which classes are represented by elliptic operators. Each class in this

K-homology theory may be represented by a Dirac operator. By replacing these Dirac oper-

ators with the geometric data used to construct them, it is possible to define a K-homology

theory in entirely geometric terms [16, 15, 17]. This characterisation of D-brane charge is of

interest, as the geometric data associated to such a K-homology class has physical interpreta-

tions [79, §4]. In order to generalise these ideas to orientifold string theories, it is first necce-

sary to identify an appropriate variant of K-theory, and then construct the corresponding

Dirac operator and geometric K-homology theory. Three types of orientifold string theories

are listed in [87, p. 26-27], along with the corresponding K-theories that classifying the as-

sociated D-brane charges. In the first of these, D-brane charges are classified by KR-theory.

The geometric orientifold K-homology defined in Chapter 6 applies to this situation. The

other two possibilities involve K-theory with sign choice, as has been studied by Doran et

al. [34] using methods from non-commutative geometry. As discussed above, K-theory with

sign choice forms a subgroup of the orientifold K-theory considered in this thesis. One fur-

ther generalisation that is important in string theory is twisted K-theory. Twisted K-theory is

closely related to K-theoretic orientiation conditions. The paper of Hekmati et al. proposes

the construction of a twisted geometric KR-homology theory, and discusses its applications

in string theory [45, §8]. Although twisted orientifold K-theory is not investigated here, the

identification of the obstruction to a (Spinc, κε)-structure in Section 3.1 provides the key el-

ement required to construct such a theory. Twisted geometric K-homology is a topic which

is under active development [12, 45].

In recent years, there there has been much interest in the classification of topological

insulators. These classification attempts lead naturally to the consideration of topological

invariants which respect anti-linear symmetries [54, 38, 39, 40, 71]. Contact with Clifford al-
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gebras andK-theory has been made through the work of Kitaev [61]. Another framework for

studying topological insulators, using twisted K-theories, has been described by Freed and

Moore [36]. Orientifold K-theory, as considered in this thesis, is a primary example within

their framework. Thus, it appears that there is potential for index invariants derived from

the orientifold Dirac operator to be applied to the classification of topological insulators.

To finish this review of the relevant literature, some general references will now be col-

lected. As mentioned, the motivation for this thesis comes from Wigner’s theorem. The

derivation of Wigner’s theorem can be found in [82, pp. 91-96]. The English translation of

Wigner’s book contains a discussion from which the theorem can be drawn [83, pp. 233-236].

It also contains a discussion of time reversal symmetry in quantum mechanics [83, Ch. 26],

and an analysis of unitary/anti-unitary representations using the theory of corepresenta-

tions [83, pp. 334-335]. Another useful exposition of corepresentations, which separates

their mathematical and physical aspects, can be found in [51, §II.7]. Two further papers by

Wigner that deal with anti-unitary operators are [84] and [85].

The results and constructions in this thesis draw on a large body of standard material

from index theory. As a general reference for the representation theory of Clifford algebras,

and other topics in index theory, [63] has been used. The results in Chapter 3 concerning de-

composition of (Spinc, κε)-structures and connections for (Spinc, κε)-structures generalise

standard results in the Spinc setting that can be found in [37, pp. 48-49, 57-60] and [63,

§D]. The analytic orientifold K-homology defined in this thesis is a straightforward gener-

alisation of Kasparovs KKR-theory [58]. General references for analytic K-homology and

KK-theory include [46, 21, 52]. Geometric orientifold K-homology is based on the geometric

K-homology defined by Baum and Douglas [16, p. 117] [15, p. 1]. An equivariant version

of this theory was described in [18], and the map from geometric to analytic orientifold K-

homology, defined in Section 6.3, is analogous that described in [18, 17]. The discussion of

assembly for orientifold groups in Chapter 7 is based around [11, p. 41] with modifications

to adapt it to the orientifold setting. This paper describes one variant of the Baum-Connes

conjecture [13], see also [14, pp. 241-291] [18, pp. 21-22].

Overview of Chapters

Chapter 1, develops tools that are used in later chapters to study Spinc-structures for orien-

tifolds, which will be refered to as (Spinc, κε)-structures. In particular, this chapter defines

semi-equivariant principal bundles, semi-equivariant transition cocycles, and semi-equivariant co-

homology theory. The essential difference between these objects and their analogues in the
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equivariant setting is that the structure group/coefficient group itself carries an action of

the equivariance group. In the case of a semi-equivariant principal bundle, this action

controls the commutation relation between the left and right actions on the total space.

After defining semi-equivariant principal bundles in Section 1.2, Section 1.3 defines semi-

equivariant transition cocycles and their equivalences. These cocycles can be thought of as a

cross between the corepresentations of Wigner and the usual notion of a transition cocycle.

Emulating proofs that apply in the non-equivariant setting, it is proved that isomorphism

classes of semi-equivariant principal bundles are in bijective correspondence with equiva-

lence classes of semi-equivariant transition cocycles. In particular, this means that the action

on a semi-equivariant principal bundle can be reconstructed from its semi-equivariant co-

cycle. A corresponding semi-equivariant Čech cohomology theory is developed in Section

1.4. The semi-equivariant cohomology can be used to classify semi-equivariant transition

cocycles with abelian structure groups. Then, viewing the set of transition cocycles as a

non-abelian cohomology group, Section 1.5 shows that a central short exact sequence of

structure groups induces a connecting map from the semi-equivariant transition cocycles

into the semi-equivariant cohomology. This is the main result of the chapter. Combined

with earlier results it identifies obstructions to certain liftings of structure groups for semi-

equivariant principal bundles. These obstructions can be considered as semi-equivariant

Dixmier-Douady invariants. The semi-equivariant associated bundle construction and some

related results are treated in Section 1.6. Finally, Section 1.7 defines semi-equivariant connec-

tion 1-forms, and an averaging result, which will be used in the construction of the orientifold

Dirac operator, is proved.

Chapter 2, defines the main objects of study and describes their basic properties. First, in

Section 2.1, orientifold groups are defined and some terminology for different types of actions

by an orientifold group is introduced. After this, Section 2.2 discusses unitary/anti-unitary

representations, which will be refered to as orientifold representations. The classification of

orientifold representations in terms of irreducible corepresentations is reviewed. This clas-

sification is due to Wigner [83, §26] [51, §II.7]. Next, in Section 2.4, orientifold bundles are

introduced. A semi-equivariant averaging procedure is used to produce equivariant Her-

mitian metrics on orientifold bundles, and the frame bundle of an orientifold bundle is then

shown to be a semi-equivariant principal bundle. These observations are key to the cor-

rect definition of a (Spinc, κε)-structure. Finally, Section 2.5 defines various operations on

orientifold bundles that will be required when considering orientifold K-theory.

Chapter 3, uses the results of the previous chapters to construct Dirac operators on orien-
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tifolds. In Section 3.1, (Spinc, κε)-structures are defined as a lifting of an equivariant SO(n)-

frame bundle to a Γ -semi-equivariant principal (Spinc(n), κε)-bundle, where κε is a Γ -action

induced by conjugation. These lifts are then classified using the results of Chapter 1. In

particular, a semi-equivariant third integral Stiefel-Whitney class W(Γ ,ε)
3 is identified as the ob-

struction to the existence of a (Spinc, κε)-structure. An important corollary is also proved

that reduces the problem of finding a (Spinc, κε)-structure to that of finding a certain semi-

equivariant principal (U(1), κε)-bundle. The subsection finishes with the construction of a

canonical orientifold Spinc-structure on the sphere. Next, in Section 3.2, orientifold-Spinc-

structures are used to define the orientifold spinor bundle and reduced orientifold spinor bundle

via the semi-equivariant associated bundle construction. The orientifold Clifford bundle is also

defined, and some relationships between the three bundles are examined. This requires the

introduction of complexified real Clifford algebras equipped with orientifold actions, and

a similar complexification of some relevant results from the representation theory of real

Clifford algebras. In Section 3.3, the results of Section 1.7 are used to equip the orientifold

spinor bundles with equivariant connections that are compatible with Clifford multiplica-

tion on sections. Finally, Section 3.4 defines the orientifold Dirac operator and examines its

basic properties. An existence theorem for Orientifold Dirac operators can then be stated.

The existence theorem for the Real Dirac operators is obtained as a special case. This com-

pletes the major aim of the thesis.

Chapter 4, deals with orientifold K-theory. Orientifold K-theory is defined in Section 4.1,

along with various Bott and Thom classes that are used later in the chapter. Similar to KR-

theory, orientifold K-theory is a bigraded cohomology theory. In Section 4.2, the principal

symbol of an elliptic orientifold operator is examined. It is shown to satisfy an equivariance

condition generalising that satisfied by the symbol of a complexified real operator. This con-

dition implies that the principal symbol of an elliptic orientifold operator defines a class in

K(Γ ,ε)(TX, ιεdσ), where ι is the Γ -action which acts by negation when ε(γ) = −1, and by id

when ε(γ) = 1. In Section 4.3, basic facts regarding the indicies of elliptic operators and

families of elliptic operators are reviewed. These are noted to generalise to the setting of ori-

entifolds. In particular, the index map associated to a family of elliptic orientifold operators

is defined. Such maps are the essential ingredient in the proofs of Bott Periodicity and the

Thom isomorphisms. Using the computations of [4], the index map associated to the orien-

tifold Doubeault operator on complex projective space is evaluated on the (1, 1)-Bott class.

The pairing between the reduced orientifold Dirac operator on an 8k-dimensional sphere

and the corresponding 8-fold Bott class is also computed. In Section 4.4, the strategy of [4]
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is used to prove a sufficient condition for equivariant Bott periodicity. Finally, in Section

4.5 equivariant Bott periodicity is proved for orientifold K-theory. The (1, 1) and 8-fold Bott

periodicity theorems are obtained as special cases of this result. Together (1, 1) and 8-fold

Bott periodicity imply that, up to isomorphism, there are only eight orientifold K-groups. By

combining equivariant periodicity with a semi-equivariant associated bundle construction,

the (1, 1) and 8-fold Thom isomorphisms are proved. In particular, equivariant periodic-

ity is combined with results on (Spinc, κε)-structures to prove the Thom isomorphism for

8k-dimensional (Spinc, κε)-oriented real equivariant vector bundles.

Chapter 5, defines orientifold KK-theory by introducing orientifold actions into Kas-

parov’s KK-theory. Kasparov’s KK-theory is based on the idea of considering C∗-algebras

as abstract topological spaces. From this point of view, a class in orientifold KK-theory can

be considered as an abstract family of elliptic operators which is equivariant with respect to

an orientifold action. In Section 5.1, the K-theory of orientifold C∗-algebras is defined and

the connection between commutative orientifold C∗-algebras and orientifolds is indicated.

Then, in Section 5.2, operators on orientifold Hilbert modules are introduced. With these

definitions in hand, Section 5.3 defines the orientifold KK-theory groups. Orientifold Dirac

operators are shown to define classes in orientifold KK-theory in Section 5.4.

Chapter 6, generalises the geometric K-homology of Baum and Douglas [16] to the ori-

entifold setting. The first step, made in Section 6.1, is to prove several small results dealing

with operations on (Spinc, κε)-structures. These depend, in an essential way, on the classi-

fication results for (Spinc, κε)-structures proved in Section 3.1. Each class in the geometric

K-homology of an orientifold X is represented by a continuous equivariant map f : M → X

from an orientifold M that is equipped with a (Spinc, κε)-structure and an orientifold bun-

dle. These structures are precisely the data required to form an orientifold Dirac operator

onMwith coefficients in an orientifold bundle. In Section 6.2, the operations defined in Sec-

tion 6.1 are used to define equivalence relations on the set of all such representatives, and

the resulting classes form the geometric orientifold K-homology. By constructing the Dirac

operator associated to a geometric K-homology class, it is possible to define a homomor-

phism from the geometric to the analytic orientifold K-homology. This is done in Section

6.3.

Chapter 7, constructs geometric K-homology groups and analytic K-theory groups as-

sociated to a finite orientifold group. A correspondence between them is defined based on

the assembly map in the equivariant setting. In Section 7.1, a group C∗-algebra with an

orientifold action is associated to an orientifold group (Γ , ε). The analytic K-theory of this

xvi



C∗-algebra is then defined by equipping Kasparov modules with an anti-linear operator as-

sociated to a choice of element ζ ∈ Γ−, and imposing an equivalence relation to eliminate

the ambiguity introduced by this choice. This definition is related to the notion of relative

conjugation, which is used to reduce the theory of unitary/anti-unitary representations to

that of unitary representations. In Section 7.2, the geometric K-homology of an orientifold

group is defined. In Section 7.3, a correspondence between the geometric K-homology and

analytic K-theory of an orientifold group is defined by constructing K-theory classes from

orientifold Dirac operators. The section finishes with some speculation on the possibility of

a Baum-Connes conjecture for infinite discrete orientifold groups.
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Chapter 1

Semi-equivariance

The main obstacle to the construction of a Real Dirac operator is that the frame bundle of a

Real vector bundle is not an equivariant principal bundle in the usual sense. This is due to

the fact that the action of Z2 on a Real vector bundle is anti-linear. Whereas the total space of

a Z2-equivariant principal GL(C,n)-bundle carries an action of Z2 ×GL(C,n), a Real bun-

dle has a frame bundle with a total space that carries an action of the semi-direct product

Z2 nκ GL(C,n), where κ is the automorphism of GL(C,n) given by elementwise conjuga-

tion on the standard matrix representation. This is the basic example of a semi-equivariant

principal bundle. More generally, a semi-equivariant principal bundle has a total space that

carries a smooth action of Γ nθ G, for some equivariance group Γ and some structure group

G equipped with an action θ of Γ by automorphisms.

The construction of a Z2-equivariant Dirac operator depends on the existence of a lift-

ing from the Z2-equivariant SO(n)-frame bundle of the tangent space to a Z2-equivariant

principal Spinc(n)-bundle. In an analogous manner, the construction of a Real Dirac oper-

ator depends on the existence of a lifting from the Z2-semi-equivariant (SO(n), id)-frame

bundle of the tangent space to a Z2-semi-equivariant principal (Spinc(n), κ)-bundle. Here

id is the trivial Z2-action on SO(n), and κ is the Z2-action induced by conjugation on the

U(1) component of Spinc(n) := Spin(n)×Z2 U(1). In order to find such liftings, the global

topology of the space and its interaction with the group action must be considered. In the

equivariant setting, this can be approached by encoding the global topology and action into

an equivariant transition cocycle. The lifting problem for these transition cocycles is then

connected to equivariant Čech cohomology via equivariant Dixmier-Douady theory. This

method classifies the possible equivariant liftings and shows how they can be constructed.

It also identifies the obstruction to the existence of liftings as a class in equivariant cohomol-

ogy.
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To apply this method to the classification of semi-equivariant liftings, it is necessary

to generalise the notions of transition cocycle, Čech cohomology and Dixmier-Douady in-

variant to the semi-equivaraint setting, where structure groups and coefficient groups are

equipped with an action of the equivariance group. As will be discussed in Section 2.4,

the frame bundle of an orientifold bundle is semi-equivariant. However, the frame bundles

of orientifold bundles form only a small subset of the possible semi-equivariant principal

bundles. Thus, most of the results that follow will be more general than is necessary for

applications to orientifolds. Although semi-equivariant principal bundles are occasionally

mentioned in the literature under various names, and it is well-known that the frame bundle

of a Real bundle is semi-equivariant [80, §I.8] [64], it appears that the semi-equivariant gen-

eralisations developed here have been somewhat overlooked. Some related constructions

can be found in the work of Freed and Moore on topological phases of matter [36, §7], and

the work of Karoubi and Weibel on twistings of K-theory [55].

1.1 Semi-direct Products

Before examining semi-equivariant principal bundles, the notion of a semi-direct product is

breifly reviewed. Semi-direct products are basic to the notion of semi-equivariance, and are

useful for working with orientifold groups, which will be introduced in Section 2.1.

Definition 1.1. Let Γ be a Lie group. A (smooth) Γ -group (G, θ) is a Lie group equipped with

a smooth action

θ : Γ → Aut(G).

A homomorphism ϕ : G → H of Γ -groups is a homomorphism of Lie groups such that, for

γ ∈ Γ and g ∈ G,

ϕ(γg) = γϕ(g). (1.1)

Definition 1.2. Let (G, θ) be a Γ -group. The (outer) semi-direct product Γ nθG is the Lie group

consisting of elements (γ,g) ∈ Γ ×Gwith multiplication defined, for γi ∈ Γ and gi ∈ G, by

(γ1,g1)(γ2,g2) := (γ1γ2,g1(γ1g2)).

One situation in which semi-direct product groups arise is when G and Γ both act on an

object X and satsify the relation γ(gx) = (γg)(γx), for some action θ of Γ on G. In this case,

the two actions combine to form a single action of the group Γ nθ G by (γ,g)x := g(γx).

Example 1.3. The standard U(1)-action on C and the Z2-action on C by conjugation, com-

bine into a Z2nκ U(1)-action on C, where κ is the Z2-action on U(1) by conjugation.
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1.2 Semi-equivariant Principal Bundles

The structure group of a semi-equivariant principal bundle is a Γ -group (G, θ). The action

θ determines the commutation relation between the left action of Γ and right action of G on

the total space of the principal bundle. These actions combine into an action of the semi-

direct product Γ nθ G. In the following definitions, let (G, θ) be a smooth Γ -group and X be

a manifold equipped with a smooth Γ -action.

Definition 1.4. A (smooth) Γ -semi-equivariant principal (G, θ)-bundle over X is a smooth prin-

cipal G-bundle π : P → X equipped with a smooth left action of Γ such that, for γ ∈ Γ , p ∈ P

and g ∈ G,

π(γp) = γπ(p) γ(pg) = (γp)(γg).

Definition 1.5. An isomorphism ϕ : P → Q of Γ -semi-equivariant principal (G, θ)-bundles is

a diffeomorphism such that, for γ ∈ Γ , p ∈ P and g ∈ G,

πP = πQ ◦ϕ ϕ(pg) = ϕ(p)g ϕ(γp) = γϕ(p).

Next, let λ : (G, θ) → (H, ϑ) be a homomorphism of Γ -groups, and Q be a Γ -semi-

equivariant principal (H, ϑ)-bundle.

Definition 1.6. A lifting of Q by λ is a pair (P,ϕ), where P is a Γ -semi-equivariant principal

(G, θ)-bundle and ϕ : P → Q is a smooth map such that, for γ ∈ Γ , p ∈ P and g ∈ G,

πP = πQ ◦ϕ ϕ(pg) = ϕ(p)λ(g) ϕ(γp) = γϕ(p).

Definition 1.7. Two liftings (P1,ϕ1) and (P2,ϕ2) of Q by λ are equivalent if there is an iso-

morphism ψ : P1 → P2 such that ϕ2 ◦ψ = ϕ1.

The set of smooth Γ -semi-equivariant principal (G, θ)-bundles will be denoted PBΓ (X, (G, θ)),

and the isomorphisms classes will be denoted PB'Γ (X, (G, θ)).

1.3 Semi-equivariant Transition Cocycles

Transition cocycles are used to extract global topological information from a principal bun-

dle into a form which is more easily analysed. A transition cocycle over an open cover

U := {Ua} with values in a Lie group G is a collection of smooth maps φa : Ua → G. Maps

on overlapping open sets are required to satisfy a cocycle condition. This condition ensures

that the cocycle can be used to glue together the patches Ua ×G into a principal G-bundle.
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In the equivariant setting, a transition cocycle consists of mapsφa(γ, ·) : Ua → G for each

Ua ∈ U and γ ∈ Γ . The equivariant cocycle condition then ensures that the elements φa(1, ·)

can be used construct the total space of a principal G-bundle, and that the elements φa(γ, ·)

can be used to construct a Γ -action. The derivation of the equivariant cocycle condition uses

the fact that the left and right actions on an equivariant principal bundle form an action of

Γ ×G, and thus commute.

Semi-equivariant transition cocycles can be defined in a similar fashion to equivariant

transition cocycles. However, the left and right actions on a Γ -semi-equivariant principal

(G, θ)-bundle form an action of Γ nθ G. Thus, the commutation relation between the left

and right actions is controlled by θ, and the action θ appears in the semi-equivariant cocycle

condition. When this cocycle condition is satisfied, the elements φa(1, ·) in a cocycle can be

used to construct the total space of a semi-equivariant principal bundle, and the elements

φa(γ, ·) can be used to construct a semi-equivariant Γ -action. The main result of this sec-

tion is that the set of isomorphism classes of smooth semi-equivariant principal bundles is

in bijective correspondence with the set of equivalence classes of smooth semi-equivariant

transition cocycles. Throughout this section, let X be a Γ -space, (G, θ) be a Γ -group and

U := {Ua} be an open cover of X. The cover U is not required to be invariant.

Definition 1.8. A (smooth) Γ -semi-equivariant (G, θ)-valued transition cocycle over U is a collec-

tion of smooth maps

φ :=
{
φba(γ, ·) : Ua ∩ γ−1Ub → G | Ua ∩ γ−1Ub 6= ∅

}
,

satisfying

φaa(1, x0) = 1 φca(γ
′γ, x) = φcb(γ ′,γx)(γ ′φba(γ, x)), (1.2)

for x0 ∈ Ua, γ ′,γ ∈ Γ and x ∈ Ua ∩ γ−1Ub ∩ (γ ′γ)−1Uc.

Note that the conditions (1.2) define a non-equivariant cocycle when restricted to γ = 1,

and an equivariant cocycle when θ = id.

Definition 1.9. An equivalence of Γ -semi-equivariant (G, θ)-valued transition cocyclesφ1 and

φ2 with cover U is a collection of smooth maps

µ := {µa : Ua → G}

such that

µb(γx)φ
1
ba(γ, x) = φ2ba(γ, x)(γµa(x)),

for γ ∈ Γ and x ∈ Ua ∩ γ−1Ub .
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Next, let λ : (G, θ) → (H, ϑ) be a homomorphism of Γ -groups, and φ be a Γ -semi-

equivariant (H, ϑ)-valued transition cocycle over U .

Definition 1.10. A lifting of φ by λ is a Γ -semi-equivariant (G, θ)-valued transition cocycle

ψ such that λ ◦ψba = φba.

Definition 1.11. Two liftingsψ1 andψ2 of φ by λ are equivalent if there exists an equivalence

µ between ψ1 and ψ2.

The set of smooth Γ -semi-equivariant (G, θ)-valued transition cocycles over U will be de-

noted TCΓ (U ,X, (G, θ)). The set of equivalence classes of smooth Γ -semi-equivariant (G, θ)-

valued transition cocycles over U will be denoted by TC'Γ (U ,X, (G, θ)).

The first step toward a correspondence between principal bundle and cocycles, is to

show how a semi-equivariant transition cocycle can be constructed from a semi-equivariant

principal bundle. Implicit in the proof of this result is the derivation of the semi-equivariant

cocycle property.

Proposition 1.12. Let P ∈ PBΓ (X, (G, θ)) and s := {sa : Ua → P|Ua} be a choice of smooth local

sections over the cover U . The collection of maps

φs :=
{
φba(γ, ·) : Ua ∩ γ−1Ub → G | Ua ∩ γ−1Ub 6= ∅

}
defined by

γsa(x) = sb(γx)φba(γ, x). (1.3)

is a smooth Γ -semi-equivariant (G, θ)-valued transition cocycle.

Proof. The given condition implies the following three identities

γ ′γsa(x) = sc(γ
′γx)φsca(γ

′γ, x) γ ′sb(γx) = sc(γ
′γx)φscb(γ

′,γx) γsa(x) = sb(γx)φ
s
ba(γ, x),

which, together, imply

sc(γ
′γx)φsca(γ

′γ, x) = γ ′γsa(x)

= γ ′(sb(γx)φ
s
ba(γ, x))

= (γ ′sb(γx))(γ
′φsba(γ, x))

= sc(γ
′γx)φscb(γ

′,γx)(γ ′φsba(γ, x)).

Thus φs satisfies the cocycle property φsca(γ ′γ, x) = φscb(γ
′,γx)(γ ′φsba(γ, x)).
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Note that (1.3) is the defining relation for a non-equivariant transition cocycle when re-

stricted to γ = 1. If θ = id, then (1.3) is the defining relation for an equivariant transition

cocycle.

The map from semi-equivariant principal bundles to semi-equivariant transition cocy-

cles, defined by Proposition 1.12, depends on a choice of local sections. However, if one

passes to isomorphism classes of principal bundles and equivalence classes of transition co-

cycles this dependence disappears. The next proposition shows that cocycles associated to

isomorphic principal bundles by Proposition 1.12 are always equivalent, regardless of which

sections are chosen.

Proposition 1.13. Let Pi ∈ PBΓ (X, (G, θ)), and φi ∈ TCΓ (U ,X, (G, θ)) be the cocycles associated

to local sections si :=
{
sia : Ua → Pi|Ua

}
as in Proposition 1.12. If ϕ : P1 → P2 is an isomorphism,

then the collection of maps

µ := {µa : Ua → G} (1.4)

defined by

ϕ(s1a(x)) := s
2
a(x)µa(x) (1.5)

is an equivalence between φ1 and φ2.

Proof. The properties of semi-equivariant principal bundle isomorphisms and the defining

property (1.5) imply that

ϕ(γs1a(x)) = γϕ(s
1
a(x))

ϕ(s1b(γx)φ
1
ba(γ, x)) = γ(s2a(x)µa(x))

ϕ(s1b(γx))φ
1
ba(γ, x) = (γs2a(x))(γµa(x))

s2b(γx)µb(γx)φ
1
ba(γ, x) = s2b(γx)φ

2
ba(γ, x)(γµa(x)).

Thus,

µb(γx)φ
1
ba(γ, x) = φ2ba(γ, x)(γµa(x)),

and µ is an equivalence between φ1 and φ2 for any choice of sections si.

Corollary 1.14. The map of Proposition 1.12 induces a well-defined map

PB'Γ (X, (G, θ))→ TC'Γ (U ,X, (G, θ))

[P] 7→ [φs],

where s is any collection of smooth local sections of P.
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The correspondence between semi-equivariant cocycles and principal bundles has now

been shown in one direction. Next, an inverse map reconstructing a semi-equivariant prin-

cipal bundle from a semi-equivariant transition cocycle is defined.

Proposition 1.15. Let φ ∈ TCΓ (U ,X, (G, θ)). The bundle Pφ defined by

π : (
⊔
a∈A

Ua ×G/ ∼)→ X,

where

1. (a, x,g) ∼ (b, x,φba(1, x)g) defines the equivalence relation ∼

2. π[a, x,g] := x is the projection map

3. [a, x,g]g ′ := [a, x,gg ′] defines the right-action of G

4. γ[a, x,g] := [b,γx,φba(γ, x)(γg)] defines the left action of Γ ,

is a smooth Γ -semi-equivariant principal (G, θ)-bundle.

Proof. The elements {φba(1, ·)} satisfy

φca(1, x) = φcb(1, x)φba(1, x)

and so form a G-valued cocycle in the usual sense. Therefore, the usual proof that Pφ is a

principal G-bundle applies. The Γ -action is well-defined on equivalence classes as

γ[b, x,φba(1, x)g] = [c,γx,φcb(γ, x)γ(φba(1, x)g)]

= [c,γx,φcb(γ, x)(γφba(1, x))(γg)]

= [c,γx,φca(γ, x)(γg)]

= ηγ[a, x,g].

The semi-equivariance property γ(pg) = (γp)(γg) is satisfied as

γ([a, x,g]g ′) = γ([a, x,gg ′])

= [b,γx,φba(γ, x)(γgg ′)]

= [b,γx,φba(γ, x)(γg)(γg ′)]

= (γ[a, x,g])(γg ′)

Thus, Pφ is a Γ -semi-equivariant principal (G, θ)-bundle.

This reconstruction map is also well-defined at the level of isomorphism and equivalence

classes.
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Proposition 1.16. Let φi ∈ TCΓ (U ,X, (G, θ)) and Pi ∈ PBΓ (X, (G, θ)) be the associated principal

bundles, constructed using Proposition 1.15. If µ := {µa : Ua → G} is an equivalence between φ1

and φ2 then

ϕ : P1 → P2

[a, x,g] 7→ [a, x,µa(x)g].

is an isomorphism.

Proof. That ϕ is a well-defined isomorphism of principal G-bundles follows immediately

from the proof in the non-equivarant case. Compatibility with the Γ -action is satisfied as

γϕ([a, x,g]) = γ[a, x,µa(x)g]

= [b,γx,φ ′ba(γ, x)γ(µa(x)g)]

= [b,γx,φ ′ba(γ, x)(γµa(x))(γg)]

= [b,γx,µb(γx)φba(γ, x)(γg)]

= ϕ([b,γx,φba(γ, x)(γg)])

= ϕ(γ[a, x,g]).

Thus, ϕ is an isomorphism of Γ -semi-equivariant principal (G, θ)-bundles.

Corollary 1.17. The map of Proposition 1.15 induces a well-defined map

TC'Γ (U ,X, (G, θ))→ PB'Γ (X, (G, θ)) (1.6)

[φ] 7→ [Pφ]. (1.7)

Finally, one shows that the two maps defined above are inverse to one another.

Proposition 1.18. The maps

TC'Γ (U ,X, (G, θ))→ PB'Γ (X, (G, θ))

[φ] 7→ [Pφ]
and

PB'Γ (X, (G, θ))→ TC'Γ (U ,X, (G, θ))

[P] 7→ [φs]

are inverse to one another.

Proof. Let P ∈ PBΓ (X, (G, θ)), φ := φs and P ′ := Pφ for some collection of local sections

s := {sa : Ua → P|Ua}. The sections {sa} define a trivialization {ta} of P by

ta : P|Ua → Ua ×G

sa(x) 7→ (a, x, 1)
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and a collection of maps {Ta : P|Ua → G} by ta(p) =: (a, x, Ta(p)) where x = πP(p). Note that

Ta(pg) = Ta(p)g. Define

ϕ : P → P ′

p 7→ [ta(p)].

That ϕ is a well-defined isomorphism of principal G-bundles follows from the proof in the

non-equivariant case. To check that ϕ is compatible with the Γ -actions first note that

tb ◦ ηγ ◦ t−1a (a, x,g) = tb(γ(sa(x)g))

= tb((γsa(x))(γg))

= tb(sb(γx)φba(γ, x)(γg))

= (b,γx,φba(γ, x)(γg))

where η is the Γ -action on P. Thus,

γϕ(p) = γ[ta(p)]

= γ[a, x, Ta(p)]

= [b,γx,φba(γ, x)Ta(p)]

= [tb ◦ ηγ ◦ t−1a (a, x, Ta(p))]

= [tb(γp)]

= ϕ(γp).

Therefore, ϕ is an isomorphism of Γ -semi-equivariant principal (G, θ)-bundles and

P 7→ φs 7→ Pφ
s

is the identity map at the level of isomorphism classes.

The main theorem of this section has now been proved.

Theorem 1.19. There is a bijective correspondence

PB'Γ (X, (G, θ))↔ TC'Γ (U ,X, (G, θ))

between semi-equivariant cocycles and principal bundles.

It will be shown, in Proposition 2.29, that the frame bundle of a complex vector bun-

dle with anti-linear symmetries is semi-equivariant. Together with Theorem 1.19, this al-

lows the global topology of bundles with anti-linear symmetries to be analysed using semi-

equivariant cocycles.
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clockwise

rotation
reflection

reflection
anti-clockwise

rotation

==

Figure 1.1: This figure corresponds to C equipped with conjugation as a Z2-action and U(1)

acting by rotations, as in Example 1.3. The blue line represents the conjugation automor-

phism on U(1). This conjugation is required in order to obtain the same final result when

the two actions are applied in reversed order.

Ua

x

sa

Ub

γx

sb

γsa

γ
φba(γ,x)

Uc

γ ′γx

sc

γ ′sb

γ ′
φcb(γ ′ ,γx)

γ ′γsc

γ ′
γ ′φba(γ,x)

φca(γ ′γ,x)
Semi-

equivariance

Cocycle

property

Figure 1.2: This diagram represents the derivation of the semi-equivariant cocycle property,

as in Proposition 1.12. Each node of the diagram represents a local section of a principal

bundle. The diagonal arrows represent applications of the Γ -action, while the vertical arrows

represent the action of a cocycle φ via the right action of the structure group. With the

exception of the dashed line, all of the arrows follow from the definitions. The dashed line

follows by the semi-equivariance property of the principal bundle, the blue γ ′ is acting on

the element φba(γ, x) of the structure group.
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Ua

x

s ′a

sa

Ub

γx

Ub

γx

s ′b

sbγsa
γ φba(γ,x)

ϕ(sa)

ϕ

µa

γs ′a
γ φ ′ba(γ,x)

ϕ(sb)

ϕ

µb

ϕ(γsa)

γµa

ϕ

γ φba(γ,x)

Γ -equivariance G-equivariance

Semi-

equivariance

Cocycle

equivalence

Figure 1.3: This diagram represents the derivation of the equivalence property for semi-

equivariant cocycles, see Definition 1.9. Here ϕ is a semi-equivariant principal bundle iso-

morphism. Each node of the diagram represents a local section of a principal bundle. The

arrows running downward are applications of a principal bundle isomorphism ϕ. The ar-

rows running left to right are applications of the Γ -action. The arrows running right to left

are right actions by the cocycle φ. Those running upward are right actions of the cocycle

equivalence µ. With the exception of the dashed arrow, all of the arrows follow from def-

initions. The commutation of the top two squares follows from the properties of principal

bundle isomorphisms. The dashed arrow is follows from the semi-equivariance property

of the principal bundle. This twists the equivalence µa by the action of Γ on the structure

group, which is marked in blue. The lower right square is the semi-equivariant cocycle

equivalence condition.
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1.4 Semi-equivariant Cohomology

In order to study liftings of semi-equivariant principal bundles, a cohomology theory is

needed. The existing notions of equivariant cohomology are inappropriate for this task, and

a new cohomology theory must be constructed. In this section, a Γ -semi-equivariant Čech

cohomology theory is developed with an abelian Γ -group (G, θ) as its coefficient group.

The theory makes use of a simplicial space which encodes the group structure of Γ , and

the action of Γ on the manifold X. In addition to these actions, the effect of the action θ

must be incorporated. This is achieved by twisting the coboundary map using θ. There

are a few details to check, but everything works as one would wish. This semi-equivariant

cohomology theory generalises an equivariant cohomology theory outlined by Brylinski

[26, §A]. Another helpful reference is [41, §3.3]. One feature of the presentation here is that

it avoids the use of hypercohomology. The second dimension of the bicomplex appearing

in [26, §A] is an artifact of the choice to separate the cocycle into two parts, one encoding

the transition functions for the total space and one encoding the action. Although this is

ultimately a notational matter, the reduced book-keeping is helpful when checking higher

cocycle conditions.

The construction of semi-equivariant Čech cohomology begins with the definition of a

simplicial space. The coboundary map on the underlying chain complex of the cohomology

theory will be constructed using the face maps of this space.

Definition 1.20. Let X be a manifold equipped with a smooth action of Γ . The simplicial space

associated to X is defined by

X• := {Γp × X}p≥0 .

The simplicial space carries face and degeneracy maps

d
p
i : X

p → Xp−1 e
p
i : X

p → Xp+1

defined by

d
p
i (γ1, . . . ,γp, x) :=


(γ2, . . . ,γp, x) for i = 0

(γ1, . . . ,γiγi+1, . . . ,γp, x) for 1 ≤ i ≤ p− 1

(γ1, . . . ,γp−1,γpx) for i = p

(1.8)

e
p
i (γ1, . . . ,γp, x) := (γ1, . . . ,γi, 1,γi+1, . . . ,γp, x) for 0 ≤ i ≤ p+ 1

Notice that in (1.8) the face map dp0 discards the element γ1, this element will be used to

define the simplicial twisting maps, in Definition 1.22.
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Proposition 1.21. The face and degeneracy maps satisfy the simplicial identities

di ◦ dj = dj−1 ◦ di for i < j

ei ◦ ej = ej+1 ◦ ei for i ≤ j
di ◦ ej =


ej−1 ◦ di for i < j

id for i = j, j+ 1

ej ◦ di−1 for i > j+ 1

(1.9)

Corresponding to the face maps dpi , twisting maps θi : Xp×G→ G can be defined. These

maps encode the action θ of Γ on G and will be used to twist the coboundary map. They are

the basic ingredient needed for generalisation to the semi-equivariant setting. Note that it is

only the twisting map θ0 that has any effect. The rest of the twisting maps are included for

notational convenience when dealing with simplical identities.

Definition 1.22. The simplicial twisting maps θi : Xp ×G→ G are given by

θ
(γ1,...,γp,x)
i :=


θγ1 for i = 0

id for 1 ≤ i ≤ p− 1

id for i = p

The twisting maps also satisfy simplicial identities which help to ensure that the cobound-

ary map in semi-equivariant cohomology squares to zero.

Proposition 1.23. The simplicial twisting maps satisfy the identities

θx
p+1

j ◦ θdj(x
p+1)

i = θx
p+1

i ◦ θdi(x
p+1)

j−1 for i < j

θ
ej(x

p)
i =


θx
p

i for i < j

id for i = j, j+ 1

θx
p

i−1 for i > j+ 1,

where xp ∈ Xp.

Proof. The identities are trivial for most combinations of i and j. The remaining cases can be

checked individually. In particular, the first identity reduces to

id ◦ θγ1γ2 = θγ1 ◦ θγ2

id ◦ θγ1 = θγ1 ◦ id

id = id

for i = 0, j = 1

for i = 0, j ≥ 2

otherwise.
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To construct a Čech-type theory, a simplicial cover U • of X• is needed. Such a cover can

be constructed from an appropriate cover U := {Ua | a ∈ A} of X. First, the indexing set of

the simplicial cover is defined. This indexing set has a simplicial structure defined by face

and degeneracy maps, which will again be denoted by dpi and epi .

Definition 1.24. Define the indexing set for U • by

A• := {Ap}p≥0

where Ap := {(a0, . . . ,ap) | ai ∈ A}. Elements of Ap will be denoted by ap. This set carries

face and degeneracy maps

d
p
i : A

p → Ap−1 e
p
i : A

p → Ap+1

defined by

d
p
i (a0, . . . ,ap) := (a0, . . . , âi, . . . ,ap)

e
p
i (a0, . . . ,ap) := (a0, . . . ,ai,ai,ai+1, . . . ,ap),

where âi denotes the removal of the element ai.

Proposition 1.25. The face and degeneracy maps of the indexing set A• satisfy

di ◦ dj = dj−1 ◦ di for i < j

ei ◦ ej = ej+1 ◦ ei for i ≤ j
di ◦ ej =


ej−1 ◦ di for i < j

id for i = j, j+ 1

ej ◦ di−1 for i > j+ 1.

Before defining the simplicial cover itself, observe that the elements of the simplicial

space define sequences of points in X.

Definition 1.26. Let xp = (γ1, . . . ,γp, x) ∈ Xp. The associated sequence
{

xpi
}

is defined by

xpi := γp−i · · ·γpx ∈ X.

Simplicial covers generalise the nerves of covers. The definition will be made using the

definitions of the sequences xpi and indexing set A•.

Definition 1.27. The simplicial cover

U • := {Up}p≥0

associated to U is a sequence of covers Up of Xp each indexed by Ap. A set

U(a0,...,ap) ∈ U
p

consists of all points in Xp such that xpi ∈ Uai for 0 ≤ i ≤ p.

14



For example, (γ1,γ2,γ3, x) ∈ U(a0,a1,a2,a3) can be visualised as a path

Ua0

x
Ua1

γ3x

γ3

Ua2

γ2γ3x

γ2

Ua3

γ1γ2γ3x

γ1

.

Note that a refinement of U induces a refinement of U •. Also, the face maps of the simplicial

cover are compatible with those of the simplicial space. This is necessary to ensure that the

coboundary map is well-defined.

Proposition 1.28. The pullback maps of the simplicial space are compatible with those on the index-

ing set of the cover in the sense that di(Uap) ⊆ Udi(ap).

Semi-equivariant Čech cohomology is based on a single cochain complex. A p-cochain

for this cohomology theory consists of a smooth function on each set in the pth level of the

simplicial cover.

Definition 1.29. The group of p-cochains is defined by

K
p
Γ (U ,X, (G, θ)) :=

∏
ap∈Ap

C∞(Uap ,G),

with the group operation (φ ′φ)ap := φ ′apφap .

These cochains can be pulled back by the face maps. In the semi-equivariant setting, the

pullback maps are composed with the twisting maps. This modifies the pullback by d0.

Definition 1.30. The twisted pullback maps

∂
p
i : K

p
Γ (U ,X, (G, θ))→ K

p+1
Γ (U ,X, (G, θ))

are defined by

(∂piφ)ap+1(x
p+1) := θx

p+1

i ◦φdpi (ap+1) ◦ d
p
i (x

p+1)

Note that the property di(Uap) ⊆ Udi(ap) of the cover ensures that ∂i(φ) is a well-defined

element of Kp+1Γ (U ,X, (G, θ)).

Proposition 1.31. The twisted pullback maps are group homomorphisms.
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Proof. Using the fact that θγ is an automorphism for all γ ∈ Γ ,

(∂i(φ
′φ))ap+1(x

p+1)

= θx
p+1

i ◦ (φ ′φ)di(ap+1) ◦ di(x
p+1)

= θx
p+1

i

(
(φ ′di(ap+1) ◦ di(x

p+1))(φdi(ap+1) ◦ di(x
p+1))

)
=
(
θx
p+1

i ◦φ ′di(ap+1) ◦ di(x
p+1)

)(
θx
p+1

i ◦φdi(ap+1) ◦ di(x
p+1)

)
=
(
(∂iφ

′)ap+1(x
p+1)

)(
(∂iφ)ap+1(x

p+1)
)

The simplicial identities of the face maps for the simplicial space, the simplicial cover

and the twisting maps combine to produce a simplicial identity for the twisted pullback

maps.

Proposition 1.32. For i < j the twisted pullback maps satisfy the identity

∂j ◦ ∂i = ∂i ◦ ∂j−1.

Proof. Using the corresponding simplicial identities between face maps on the simplicial

complex, those on the simplicial cover, and those between the simplical twisting maps one

can directly compute

(∂j(∂iφ))ap+2(x
p+2) = θx

p+2

j ◦ (∂iφ)dj(ap+2) ◦ dj(x
p+2)

= θx
p+2

j ◦ θdj(x
p+2)

i ◦φdi◦dj(ap+2) ◦ di ◦ dj(x
p+2)

= θx
p+2

i ◦ θdi(x
p+2)

j−1 ◦φdj−1◦di(ap+2) ◦ dj−1 ◦ di(x
p+2)

= θx
p+2

i ◦ (∂j−1φ)di(ap+2) ◦ di(x
p+2)

= (∂i(∂j−1φ))ap+2(x
p+2).

Finally, the coboundary maps are defined.

Definition 1.33. The coboundary maps

∂p : KpΓ (U ,X, (G, θ))→ K
p+1
Γ (U ,X, (G, θ))

are defined by

∂p :=
∑
0≤i≤p

(−1)i∂pi .

Using the simplicial identity for the twisted pullback maps, the square of the coboundary

map is shown to be zero.
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Proposition 1.34. The coboundary map satisfies ∂∂ = 0.

Proof. First note, using Proposition 1.32, that

∑
i<j,j≤p+2

(−1)i+j∂j∂i =
∑

i<j,j≤p+2
(−1)i+j∂i∂j−1 =

∑
i≤j,j≤p+1

(−1)i+j∂i∂j =
∑

j≤i,i≤p+1
(−1)i+j∂j∂i.

Therefore,

∂∂ =
∑

0≤j≤p+2
(−1)j∂j(

∑
0≤i≤p+1

(−1)i∂i)

=
∑

0≤j≤p+2

∑
0≤i≤p+1

(−1)i+j∂j∂i

=
∑

j≤i,i≤p+1
(−1)i+j∂j∂i +

∑
i<j,j≤p+2

(−1)i+j∂j∂i

= 0.

When (G, θ) is abelian, Proposition 1.34 allows the cohomology groups

H
p
Γ (U ,X, (G, θ))

of the complex (K•Γ (U ,X, (G, θ)),∂) to be defined. The restriction to abelian Γ -groups is necce-

sary to ensure that the coboundary maps ∂p are group homomorphisms. In order to obtain

a cohomology theory which is independent of the cover U , the direct limit of these coho-

mology groups will be taken with respect to refinements of the cover. A refinement of U

consists of another cover V indexed by some set B, and a refining map r : B → A such that

Vb ⊂ Ur(b) for all b ∈ B. Such a refinement induces a refinement of the associated simplicial

covers, and restriction homomorphisms r∗ : K
p
Γ (U ,X, (G, θ))→ K

p
Γ (V ,X, (G, θ)) defined by

(r∗φ)(b0,...,bp) := φ(r(b0),...,r(bp))|V(b0 ,...,bp)
.

These restriction homomorphisms, in turn, induce maps

H
p
Γ (U ,X, (G, θ))→ H

p
Γ (V ,X, (G, θ))

on the cohomology of the complexes. In order for the direct limit of cohomology groups

to be well-defined, the maps induced on cohomology by two different refining maps need

to be equal. This is true in the equivariant setting, and in the semi-equivariant setting it

just needs to be checked that the twisting of the coboundary map using θ doesn’t cause any

problems.
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Lemma 1.35. Let (V , r) and (V , s) be refinements of U with refining maps r, s : B→ A. The maps

induced on semi-equivariant cohomology by r and s are identical.

Proof. By analogy with the proof in the non-equivariant case (see for example [72, pp. 78-

79]), a cochain homotopy

K
p
Γ (U ,X, (G, θ))

hp

uu

r∗
��

s∗
��

∂p // K
p+1
Γ (U ,X, (G, θ))

hp+1

uu

K
p−1
Γ (V ,X, (G, θ)) ∂

p−1
// K
p
Γ (V ,X, (G, θ)).

is defined by

(hpφ)(b0,...,bp−1) =

p−1∑
k=0

(−1)kφ(r(b0),...,r(bk),s(bk),...,s(bp−1)) ◦ ek,

where ek is the kth degeneracy map. Just as in the non-equivariant case, expanding the

expression

(hp+1∂pφ)(b0,...,bp) − (∂p−1hpφ)(b0,...,bp) ∈ K
p
Γ (V ,X, (G, θ))

results in a large amount of cancelation. The remaining expression is

(∂p0φ)(r(b0),s(b0),...,s(bp)) ◦ e0 − (∂pp+1φ)(r(b0),...,r(bp),s(bp)) ◦ ep.

The twisted coboundary maps ∂00 and ∂pp+1 involve the Γ -actions θ on G and σ on X, respec-

tively. However, in the above expression, the degeneracy maps e0 and ep ensure that θ and

σ only ever act via the identity element of Γ . Thus, the above expression simplifies to

φ(s(b0),...,s(bp)) −φ(r(b0),...,r(bp)) = (s∗φ)(b0,...,bp) − (r∗φ)(b0,...,bp).

Therefore, if φ ∈ HpΓ (V ,X, (G, θ)) is a cocycle, then

(s∗φ) − (r∗φ) = h
p+1 ◦ ∂p(φ) − ∂p−1 ◦ hp(φ) = ∂p−1 ◦ hp(φ),

which is a coboundary. Thus, r∗ and s∗ induce the same cohomology groups.

It is now possible to define the semi-equivariant cohomology groups.

Definition 1.36. The (smooth) Γ -semi-equivariant Čech cohomology groups with coefficients in

an abelian Γ -group (G, θ) are defined by

H
p
Γ (X, (G, θ)) := lim→ H

p
Γ (U ,X, (G, θ)),

where HpΓ (U ,X, (G, θ)) are the cohomology groups of the complex (K•Γ (U ,X, (G, θ)),∂), and

the direct limit is taken with respect to refinements of U .

18



Remark 1. Semi-equivariant Čech cohomologyH•Γ (X, (G, θ)) is closely related to several other

cohomology theories:

1. If Γ is the trivial group, then H•Γ (X, (G, θ)) is Čech cohomology Ȟ•(X,G).

2. If θ is the trivial action, then H•Γ (X, (G, θ)) is equivariant Čech cohomology Ȟ•Γ (X,G).

When X is a compact manifold acted upon by a finite group, the equivariant Čech

cohomology can be related to Grothendieck’s equivariant sheaf cohomology [43, §5.5]

or Borel cohomology [26, §A], [41, §3.3].

Note that there is a restriction homomorphism

H
p
Γ (X, (G, θ))→ H

p
ΓG
(X, (G, θ)) ' ȞpΓG(X,G),

where ΓG ⊆ Γ is the stabiliser subgroup that acts trivially on G. In this way, the semi-

equivariant cohomology can be regarded as a restriction of equivariant cohomology.

3. If X is a point, then H•Γ (X, (G, θ)) is the group cohomology H•(Γ ,Gθ) of Γ with coef-

ficients in the Γ -module Gθ defined by G and θ [19, p. 35]. With this in mind, semi-

equivariant cohomology can be viewed as a cross between group cohomology and

equivariant cohomology. In applications to orientifolds, the group Γ is equipped with

a homomorphism into Gal(C/R) ' Z2. In this case,HpΓ (X, (G, θ)) incorporates aspects

of equivariant Čech cohomology and Galois cohomology for the field extension C/R.

Semi-equivariant cohomology is functorial with respect to homomorphisms of abelian

Γ -groups.

Proposition 1.37. A homomorphism α : A → B of abelian Γ -groups induces a morphism of com-

plexes

α• : (K•Γ (U ,X,A),∂)→ (K•Γ (U ,X,B),∂)

defined by (αpφ)ap := α ◦φap .

Proof. Let θ be the Γ -action on A and ϑ be the Γ -action on B. As α is a homomorphism of

Γ -groups αp ◦ θxpi = ϑx
p

i ◦ αp for all xp ∈ Xp and 0 ≤ i ≤ p. Thus,

(αp+1(∂iφ))ap+1(x
p+1) = α ◦ (∂iφ)ap+1(xp+1)

= α ◦ θxp+1i ◦φdi(ap+1) ◦ di(x
p+1)

= ϑx
p+1

i ◦ α ◦φdi(ap+1) ◦ di(x
p+1)

= ϑx
p+1

i ◦ (αpφ)di(ap+1) ◦ di(x
p+1)

= (∂i(α
pφ))ap+1(x

p+1).
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Therefore, αp+1 ◦ ∂ = ∂ ◦ αp and αp defines a morphism of complexes.

Given a short exact sequence of abelian Γ -groups, connecting maps for a long exact se-

quence can be constructed.

Theorem 1.38. A short exact sequence of abelian Γ -groups

1→ A
α→ B

β→ C→ 1

induces a long exact sequence

. . .
∆p−1→ H

p
Γ (X,A) α

p→ H
p
Γ (X,B)

βp→ H
p
Γ (X,C) ∆

p→ H
p+1
Γ (X,A) α

p+1→ . . .

where ∆p(φ) := [∂(ψ)] for any element ψ ∈ KpΓ (B) such that βp(ψ) = φ.

Proof. The proposition follows by standard diagram chasing arguments applied to the exact

sequence of complexes

1→ (K•Γ (X,A),∂) α
•→ (K•Γ (X,B),∂)

β•→ (K•Γ (X,C),∂)→ 1.

For an example, see the proof of [72, Theorem 4.30].

1.5 Semi-equivariant Dixmier-Douady Classes

In order to apply semi-equivariant cohomology to the classification of semi-equivariant lift-

ings, its relationship with semi-equivariant principal bundles must be clarified. By Theorem

1.19, this reduces to the problem of relating semi-equivariant transition cocycles and semi-

equivariant cohomology classes. In this section, semi-equivariant transition cocycles will be

interpreted as degree-1 cocycles which can take values in a non-abelian coefficient group.

An analogue of Theorem 1.38 will be proved that constructs a connecting map from the

transition cocycles into degree-2 cohomology. The theorem can be used to classify certain

liftings of semi-equivariant principal bundles between non-abelian structure groups. This

method has its origins in the work of Dixmier-Douady on continuous trace C∗-algebras [33].

See also [27, § 4] and [72, § 4.3].

To begin, note that the p-cochains of Definition 1.29 and the twisted pullback maps of

Definition 1.30 are well-defined for non-abelian Γ -groups. Thus, it is possible to make the

following definitions.

Definition 1.39.

TC0Γ (U ,X, (G, θ)) :=
{
µ ∈ K0Γ (U ,X, (G, θ)) | (∂1µ)−1(∂0µ) = 1

}
(1.10)

TC1Γ (U ,X, (G, θ)) :=
{
φ ∈ K1Γ (U ,X, (G, θ)) | (∂1φ)−1(∂2φ)(∂0φ) = 1

}
/ ∼ (1.11)
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where φ1 ∼ φ2 if and only if there exists a µ ∈ K0Γ (U ,X, (G, θ)) such that (∂1µ)φ1 = φ2(∂0µ).

The set TC1Γ (U ,X, (G, θ)) is just TC'Γ (U ,X, (G, θ)) with the transition cocycle condition

and equivalence condition expressed in terms of twisted pullback maps. Note that the par-

ticular order of the terms ∂iµ in (1.10) and ∂iφ in (1.11) is important as the elements µ and φ

take values inG, which is not necessarily abelian. WhenG is abelian, these terms may be re-

arranged to give the corresponding cocycle properties in semi-equivariant cohomology. An

abelian structure group also ensures that pointwise multiplication is a well-defined group

structure on TC0Γ and TC1Γ , which, in general, are only pointed sets.

Theorem 1.40. When G is abelian

TC0Γ (U ,X, (G, θ)) ' H0Γ (U ,X, (G, θ)) (1.12)

TC1Γ (U ,X, (G, θ)) ' H1Γ (U ,X, (G, θ)). (1.13)

Proof. When G is abelian, the defining condition on TC0Γ (U ,X, (G, θ)) and the 0-cocycle con-

dition on cohomology are equivalent as

0 = −(∂1µ) + (∂0µ) = (∂0µ) − (∂1µ) = ∂µ.

This proves (1.12). Similarly, the defining condition on TC1Γ (U ,X, (G, θ)) and the 1-cocycle

condition on cohomology are equivalent as

0 = −(∂1φ) + (∂2φ) + (∂0φ) = (∂0φ) − (∂1φ) + (∂2φ) = ∂φ,

and the equivalence relations on TC1Γ (U ,X, (G, θ)) and H0Γ (U ,X, (G, θ)) are the same as

(∂1µ) +φ
1 = φ2 + (∂0µ)

φ1 −φ2 = (∂0µ) − (∂1µ)

φ1 −φ2 = ∂µ.

These two facts imply (1.13).

Together, Theorem 1.38 and Theorem 1.40 enable liftings of semi-equivariant principal

bundles between abelian structure groups to be classified. However, the construction of a

Dirac operator involves the construction of liftings between non-abelian groups. The next

theorem is a generalisation of Theorem 1.38 that can be used to classify certain liftings be-

tween non-abelian structure groups.

Theorem 1.41. A short exact sequence of Γ -groups

1→ A
α→ B

β→ C→ 1,
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where α(A) is central in B, induces an exact sequence of pointed sets

0→ H0Γ (X,A) α
0→ TC0Γ (X,B)

β0→ TC0Γ (X,C) ∆
0→ H1Γ (X,A) α

1→ TC1Γ (X,B)
β1→ TC1Γ (X,C) ∆

1→ H2Γ (X,A),

where

1. ∆0([µ]) := [(∂1η)
−1(∂0η)] for any element η ∈ K0Γ (X,B) such that β0(η) = µ,

2. ∆1([φ]) := [(∂1ψ)
−1(∂2ψ)(∂0ψ)] for any element ψ ∈ K1Γ (X,B) such that β1(ψ) = φ.

Proof. The diagram chasing arguments used in the proof of Theorem 1.38 do not apply di-

rectly. However, they can be imitated while carefully working around any lack of commu-

tivity in the groups B and C. Note that Proposition 1.37 and Proposition 1.32 continue to

hold when the structure groups involved are non-abelian. Thus, the twisted pullback maps

∂i commute with the maps αi and βi induced by α and β, and also satisfy the simplicial

identity ∂j ◦ ∂i = ∂i ◦ ∂j−1 for i < j.

First, the map ∆0 will be considered. Let ν := (∂1η)
−1(∂0η) ∈ K1Γ (X,B). The cochain η is

a lifting by β of µ so β(ν) = 1. Thus, ν takes values in ker(β) ' A and defines an element of

K1Γ (X,A). The simplicial identity can be used to show that the cochain ν satisfies the cocycle

property,

(∂1ν)
−1(∂0ν) =

[
(∂1∂1ν)

−1(∂1∂0ν)
]−1[

(∂0∂1ν)
−1(∂0∂0ν)

]
= (∂1∂0ν)

−1(∂1∂1ν)(∂0∂1ν)
−1(∂0∂0ν)

= (∂1∂0ν)
−1(∂1∂1ν)(∂0∂1ν)

−1(∂0∂0ν)

= (∂0∂0ν)
−1(∂1∂1ν)(∂1∂1ν)

−1(∂0∂0ν)

= 1.

Therefore,∆0([µ]) := [ν] ∈ H1Γ (X,A). Next, it needs to be shown that∆0([µ]) := [(∂1η)
−1(∂0η)]

is independent of the choice of η. Let η ′ ∈ K0Γ (X,B) be another element such that β(η ′) = µ.

Set ω := η ′η−1 and ν ′ := (∂1η
′)−1(∂0η

′) ∈ K1Γ (X,B). Then β(ω) = β(η ′η−1) = µµ−1 = 1.

Thus, ω defines an element of K0Γ (X,A) and ∂ω ∈ K1Γ (X,A) is a coboundary. Using the fact

that ν and ∂ω take values in the abelian group A,

(∂ω)ν = (∂ω)(∂1η)
−1(∂0η)

= (∂1η)
−1(∂ω)(∂0η)

= (∂1η)
−1(∂1η)(∂1η

′)−1(∂0η
′)(∂0η)

−1(∂0η)

= (∂1η
′)−1(∂0η

′)

= ν ′.
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Therefore, [ν] = [ν ′] ∈ H1Γ (X,A).

In order to examine the map ∆1, let ν := (∂1ψ)
−1(∂2ψ)(∂0ψ) ∈ K2Γ (X,B). The cochain

ψ ∈ K1Γ (X,B) is a β-lifting of the cocycle φ ∈ TC1Γ (X,C) so β(ν) = 1. Therefore, ν defines

an element of K2Γ (X,A). Using the simplicial identity, and the fact that ν takes values in the

centre of B, it can be shown that ν satisfies the 2-cocycle propery. First, compute

(∂1ν)(∂3ν) = (∂1∂1ψ)
−1(∂1∂2ψ)(∂1∂0ψ)(∂3ν)

= (∂1∂1ψ)
−1(∂1∂2ψ)(∂3ν)(∂1∂0ψ)

= (∂1∂1ψ)
−1(∂1∂2ψ)

[
(∂3∂1ψ)

−1(∂3∂2ψ)(∂3∂0ψ)
]
(∂1∂0ψ)

= (∂1∂1ψ)
−1(∂1∂2ψ)

[
(∂1∂2ψ)

−1(∂3∂2ψ)(∂3∂0ψ)
]
(∂1∂0ψ)

= (∂1∂1ψ)
−1(∂3∂2ψ)(∂3∂0ψ)(∂1∂0ψ)

= (∂1∂1ψ)
−1(∂3∂2ψ)

[
(∂2∂0ψ)(∂2∂0ψ)

−1
]
(∂3∂0ψ)(∂1∂0ψ)

= (∂2∂1ψ)
−1(∂2∂2ψ)

[
(∂2∂0ψ)(∂0∂1ψ)

−1
]
(∂0∂2ψ)(∂0∂0ψ)

=
[
(∂2∂1ψ)

−1(∂2∂2ψ)(∂2∂0ψ)
][
(∂0∂1ψ)

−1(∂0∂2ψ)(∂0∂0ψ)
]

= (∂2ν)(∂0ν).

Then

(∂ν) = (∂0ν)(∂1ν)
−1(∂2ν)(∂3ν)

−1

= (∂0ν)(∂2ν)(∂3ν)
−1(∂1ν)

−1

= (∂0ν)(∂2ν)
[
(∂1ν)(∂3ν)

]−1
= (∂0ν)(∂2ν)

[
(∂0ν)(∂2ν)

]−1
= 1,

and so [ν] ∈ H2Γ (X,A).

Next, it needs to be shown that ∆1 is well-defined. Specifically, that

∆1([φ]) := [(∂1ψ)
−1(∂2ψ)(∂0ψ)]

is independent of the choice of ψ, and depends only on the class of φ in TC1Γ (X,C). To prove

the first statement, letψ ′ ∈ K1Γ (X,B) be anotherβ-lifting ofφ and ν ′ := (∂1ψ
′)−1(∂2ψ

′)(∂0ψ
′)

be the corresponding element of H2Γ (X,A). If ω := ψ ′ψ−1 then β(ω) = β(ψ ′ψ−1) = φφ−1 =

1. Thus,ω ∈ K1Γ (X,A) and ∂ω ∈ K2Γ (X,A) is a coboundary . Next, using the fact thatω takes
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values in the center of B,

(∂ω)ν = (∂0ω)(∂1ω)−1(∂2ω)(∂1ψ)
−1(∂2ψ)(∂0ψ)

= (∂1ψ)
−1(∂1ω)−1(∂2ω)(∂2ψ)(∂0ω)(∂0ψ)

= (∂1ψ)
−1(∂1ψ

′ψ−1)−1(∂2ψ
′ψ−1)(∂2ψ)(∂0ψ

′ψ−1)(∂0ψ)

= (∂1ψ)
−1(∂1ψ)(∂1ψ

′)−1(∂2ψ
′)(∂2ψ)

−1(∂2ψ)(∂0ψ
′)(∂0ψ)

−1(∂0ψ)

= (∂1ψ
′)−1(∂2ψ

′)(∂0ψ
′)

= ν ′.

Therefore, [ν] = [ν ′] ∈ H2Γ (X,A).

In order to prove that ∆1([φ]) depends only on the class of φ, suppose that φ is a

coboundary i.e. that φ = (∂1φ̃)
−1(∂0φ̃) for some φ̃ ∈ K0Γ (X,C). By surjectivity of β, there

exists an element ψ̃ such that β(ψ̃) = φ̃. Then ψ := (∂1ψ̃)
−1(∂0ψ̃) is a lifting by β of φ as

β(ψ) = β
[
(∂1ψ̃)

−1(∂0ψ̃)
]

= (β∂1ψ̃)
−1(β∂0ψ̃)

= (∂1βψ̃)
−1(∂0βψ̃)

= (∂1φ̃)
−1(∂0φ̃)

= φ.

So, again applying the simplicial identity,

∆1([φ]) = [(∂1ψ)
−1(∂2ψ)(∂0ψ)]

= [(∂1∂0ψ̃)
−1(∂1∂1ψ̃)(∂2∂1ψ̃)

−1(∂2∂0ψ̃)(∂0∂1ψ̃)
−1(∂0∂0ψ̃)]

= [(∂0∂0ψ̃)
−1(∂1∂1ψ̃)(∂1∂1ψ̃)

−1(∂0∂1ψ̃)(∂0∂1ψ̃)
−1(∂0∂0ψ̃)]

= 1.

Thus, ∆1([φ]) depends only on the class of φ in TC1Γ (X,C).

1.6 Semi-equivariance and Associated Bundles

This section collects results regarding vector bundles constructed from Γ -semi-equivariant

principal (G, θ)-bundles. The construction of these associated bundles differs slightly from

the corresponding equivariant construction. When forming an equivariant vector bundle

from an equivariant principal bundle, the only requirement on the model fibre is that it

carries carries an action of the structure group G. However, when forming a vector bundle
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from a semi-equivariant principal bundle, it is neccesary to use a model fibre that carries

both an action of the structure group G and an action of the equivariance group Γ . As on

the semi-equivariant principal bundle, these two actions are required to combine into an

action of the semi-direct product group Γ nθ G. Although the action of the equivariance

group G on the model fibre is required to be linear, the action of the equivariance group Γ is

not. This makes it possible to construct associated bundles with Γ -actions that are not linear.

In particular, it is possible to construct complex vector bundles equipped with linear/anti-

linear actions as semi-equivariant associated bundles.

Definition 1.42. Let P be a Γ -semi-equivariant principal (G, θ)-bundle. A semi-equivariant

fibre for P is a vector space V equipped with a linear action of G and an action of Γ by

diffeomorphisms, such that

γ(gv) = (γg)(γv).

Definition 1.43. Let P be a Γ -semi-equivariant principal (G, θ)-bundle, and V be a semi-

equivariant fibre for P. The semi-equivariant associated bundle is the vector bundle

P×(G,θ) V := P× V/ ∼

where (p, v) ∼ (pg−1,gv). This bundle carries an action of Γ defined by

γ(p, v) := (γp,γv).

Note that the Γ -action on P×(G,θ) V is well-defined because

γ[pg−1,gv] = [γ(pg−1),γ(gv)] = [(γp)(γg)−1, (γg)(γv)] = [γp,γv] = γ[p, v].

Sections of associated bundles are often represented as equivariant maps from the prin-

cipal bundle into the model fibre. It is sometimes useful to express the action of Γ on a

section in this way.

Lemma 1.44. Sections of P×(G,θ) V are in bijective correspondence with maps ψ : P → V such that

ψ(pg) = g−1ψ(p). The Γ -action on sections of P×(G,θ) V corresponds to the Γ -action

(γψ)(p) = γψ(γ−1p)

on these maps.

Proof. A map ψ : P → V with ψ(pg) = g−1ψ(p) corresponds to the section of P ×(G,θ) V

defined by s(p) := [p,ψ(p)]. The Γ -action on such a section is

(γs)(p) := γs(γ−1p) = γ[γ−1p,ψ(γ−1p)] = [γγ−1p,γψ(γ−1p)] = [p,γψ(γ−1p)].

Thus, the corresponding map on P is p 7→ γψ(γ−1p).
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Next, trivialisations of semi-equivariant associated bundles, and their interaction with

the Γ -action will be considered.

Definition 1.45. The trivialisation t : (P×(G,θ) V)→ V associated to a local section s : U→ P

is defined, for e ∈ (P×(G,θ) V)x, by

e = [s(x), t(e)].

In Section 4.2, it will be necessary to examine the symbols of pseudo-differential oper-

ators that have anti-linear symmetries. The symbol of an equivariant operator satisfies a

corresponding equivariance property. When the symmetries are anti-linear, the factor of i

in definition of the Fourier transform causes sign changes in the equivariance property for

the symbol. The remaining results of this section begin the calculations needed to explicitly

identify this phenomena. The results are stated in terms of a collection of data, which will

now be described.

For each semi-equivariant associated bundle

(B, τB) := (PB,ηB)×(GB,θB) (V
B, ρB),

over a Γ -space (X,σ), define the following collection of data,

1. U := {Ua}, an open cover of X

2. h := {ha : Ua → Rn}, a collection of smooth coordinate charts for U .

3. hba(γ, ·) := hb ◦ σγ ◦ h−1a : Rn → Rn, and hab := h−1ba

4. sB :=
{
sBa : Ua → PB|Ua

}
, collections of smooth local frames

5. tB :=
{
tBa : B|Ua → VB

}
, the local trivialisations associated to h and sB

6. φB, the semi-equivariant cocycles defined by sB.

Using this data, the Γ -actions τB can be expressed locally, resulting in the following lemma.

Lemma 1.46. For u ∈ Bx,

tBb ◦ τBγ(u) = φBba(γ, x)−1ρBγ ◦ tBa(u).
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Proof. This can be checked directly by using the definition of the trivialisation tB, the Γ -

action in the associated bundle, and the cocycle φB,

[sBb(γx), t
B
b(γu)] = γu

= γ[sBa(x), t
B
a(u)]

= [γsBa(x),γt
B
a(u)]

= [sBb(γx)φ
B
ba(γ, x),γtBa(u)]

= [sBb(γx),φ
B
ba(γ, x)−1(γtBa(u))].

Using Lemma 1.46, an equivariance condition for locally defined operators between

semi-equivariant associated bundles E and F can be computed. While doing this, it is neces-

sary to keep careful track of the way in which sections are trivialised, and the way in which

functions in a trivialisation are pulled back again to local sections.

Lemma 1.47. Let D : C∞(E)→ C∞(F) be an operator defined locally by operators

Da : C∞(ha(Ua),VE)→ C∞(ha(Ua),VF).

The operator D is equivariant if and only if

Daψa = θFγ−1 ◦φ
F
ba,γ ◦ h−1a · ρFγ−1 ◦Db(φ

E,−1
ba,γ ◦ h

−1
a ◦ hab · ρEγ ◦ψa ◦ hab) ◦ hba

for all γ ∈ Γ and Ub,Ua ∈ U such that Ua ∩ γ−1Ub 6= ∅.

Proof. Suppose that the function ψa : ha(Ua) ⊂ Rn → VE is the local representative of the

section ψ|Ua . Then, by Lemma 1.46, the local representative of γψ|Ub is

φE,−1
ba,γ ◦ h

−1
a ◦ hab · ρEγ ◦ψa ◦ hab : hb(Ub) ⊂ Rn → VE.

Next, if ψb : hb(Ub) ⊂ Rn → VF is the local representative of the section D(γψ)|Ub , then the

local representative of γ−1D(γψ)|Ua is

(φFab,γ−1 ◦ σ
−1
γ−1
◦ h−1a )−1 · ρFγ−1 ◦ψb ◦ hba : ha(Ua) ⊂ Rn → VF.

The semi-equivariant cocycle property implies that φba(γ, x)−1 = γφab(γ−1,γx). So the rep-

resentative function for γ−1D(γψ)|Ua becomes

θFγ−1 ◦φ
F
ba,γ ◦ h−1a · ρFγ−1 ◦ψb ◦ hba : ha(Ua) ⊂ Rn → VF.
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Putting these two together gives the local representation of γ(D(γψ))|Ua

θFγ−1 ◦φ
F
ba,γ ◦ h−1a · ρFγ−1 ◦Db(φ

E,−1
ba,γ ◦ σ

−1
γ ◦ h−1b · ρ

E
γ ◦ψa ◦ hab) ◦ hba : ha(Ua) ⊂ Rn → VF.

The equivariance condition (γD) = D is equivalent to the statment that the above function

is equal to Daψa.

1.7 Semi-equivariant Connections

In the smooth non-equivariant setting, a connection for a principal G-bundle P can be ex-

pressed as a g-valued 1-form on the tangent space TP, where g is the Lie algebra of the

structure group G [62, Chapter 2], [37, Appendix B]. A Γ -semi-equivariant (G, θ)-principal

bundle has a Γ -group (G, θ) as its structure group. The differentials (θγ)∗ of the Γ -action on

G form a Γ -action on the Lie algebra g. A connection in a semi-equivariant principal bundle

must be compatible with this action if it is to produce an equivariant connection in an asso-

ciated bundle. The definition of a semi-equivariant connection 1-form is given below, along

with an averaging proceedure that can be used to construct semi-equivariant connections.

In what follows, let Rg(p) = Rp(g) := pg denote the multiplication maps associated to the

right action on a principal G-bundle P. Also, let Rg(h) := hg denote the right action of G on

itself. Note that (Rp)∗(Ae) defines the vector field induced on P by an element A ∈ g, and

the adjoint map on g may be expressed as Adg−1 = (Rg)∗.

Definition 1.48. Let (P,η) be a smooth Γ -semi-equivariant principal (G, θ)-bundle with Γ -

action η, and let g be the Lie alegebra of G. A Γ -semi-equivariant connection 1-form on P is a

Lie algebra valued 1-form

ω : TP → g

such that for all γ ∈ Γ , g ∈ G, A ∈ g, and p ∈ P,

ω ◦ (Rp)∗(Ae) = A ω ◦ (Rg)∗ = (Rg)∗ ◦ω ω ◦ (ηγ)∗ = (θγ)∗ ◦ω.

When Γ is finite, a semi-equivariant connection can be constructed from a given connec-

tion by a twisted averaging procedure.

Proposition 1.49. Let Γ be a finite Lie group, and suppose that P is a smooth Γ -semi-equivariant

principal (G, θ)-bundle with Γ -action η. Ifω : TP → g is a connection form on P, then

ωΓ :=
∑
γ∈Γ

(θγ)∗ ◦ω ◦ (ηγ−1)∗

is a Γ -semi-equivariant connection on P.
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Proof. First note that, as θ is an automorphism and P is semi-equivariant, identities are in-

duced between the differentials of the various actions. For γ ∈ Γ , g,h ∈ G, and p ∈ P

γ(hg) = (γh)(γg) =⇒ (θγ)∗ ◦ (Rg)∗ = (Rγg)∗ ◦ (θγ)∗

γ(pg) = (γp)(γg) =⇒

(ηγ)∗ ◦ (Rg)∗ = (Rγg)∗ ◦ (ηγ)∗

(ηγ)∗ ◦ (Rp)∗ = (Rγp)∗ ◦ (θγ)∗.

To check thatωΓ is a connection, first observe that the conditionωΓ ◦ (Rp)∗(Ae) = A holds,

(θγ)∗ ◦ω ◦ (ηγ−1)∗ ◦ (Rp)∗(Ae) = (θγ)∗ ◦ω ◦ (Rγ
−1p)∗ ◦ (θγ−1)∗(Ae)

= (θγ) ◦ω ◦ (Rγ
−1p)∗((θγ−1)∗(A)e)

= (θγ)∗ ◦ (θγ−1)∗(A)

= A.

The conditionωΓ ◦ (Rg)∗ = (Rg)∗ ◦ωΓ also holds, as

(θγ)∗ ◦ω ◦ (ηγ−1)∗ ◦ (Rg)∗ = (θγ)∗ ◦ω ◦ (Rγ−1g)∗ ◦ (ηγ−1)∗

= (θγ)∗ ◦ (Rγ−1g)∗ ◦ω ◦ (ηγ−1)∗

= (Rg)∗ ◦ (θγ)∗ ◦ω ◦ (ηγ−1)∗.

Finally, semi-equivariance holds, as

ωΓ ◦ (ηγ)∗ = (
∑
γ1∈Γ

(θγ1)∗ ◦ω ◦ (ηγ−11 )∗) ◦ (ηγ)∗

=
∑
γ1∈Γ

(θγ1)∗ ◦ω ◦ (ηγ−11 γ)∗

=
∑
γ2∈Γ

(θγγ−12
)∗ ◦ω ◦ (ηγ2)∗

= (θγ)∗ ◦ (
∑
γ2∈Γ

(θγ−12
)∗ ◦ω ◦ (ηγ2)∗)

= (θγ)∗ ◦ωΓ .
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Chapter 2

Orientifolds

This chapter begins with a discussion of orientifold groups and a review of the theory of

linear/anti-linear representations, which will be refered to as orientifold representations. Ori-

entifold groups are topological groups equipped with a small amount of extra structure

that allows them to act in a linear/anti-linear manner. The representation theory of such

actions can be reduced to the theory of unitary representations that are invariant under a

conjugate structure on the space of equivalence classes of representations. This reduction is

achieved by using the notion of a corepresentation, which coincides precisely with that of a

semi-equivariant (U(n), κε)-valued transition cocycle over a point.

After briefly defining orientifolds, orientifold bundles will be introduced as complex vector

bundles equipped with linear/anti-linear actions. On any orientifold bundle, it is possible

to construct a Hermitian metric that is compatible with the linear/anti-linear action. More-

over, the frame bundle of an orientifold bundle is a Γ -semi-equivariant principal (U(n), κε)-

bundle. Thus, a neat generalisation is formed, in which an orientifold bundle over a point is

an orientifold representation, and the semi-equivariant (U(n), κε)-valued transition cocycle

of its frame bundle is the corresponding corepresentation. From this perspective, the results

of Chapter 1 are a part of a generalised theory of corepresentations.

As with equivariant bundles, orientifold bundles admit a number of natural operations

which will be used when considering orientifold K-theory and the symbols of orientifold

operators. Semi-equivariant cocycles again prove useful, in Section 2.5, for defining and

working with these operations.
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2.1 Orientifold Groups

Any group Γ which acts by a combination of linear and anti-linear operators must have an

index-2 subgroup of elements which act via linear operators, and a complementary subset

of elements which act via anti-linear operators. In general, if Γ contains more than one

subgroup of index 2, then the set of orientifold representations of Γ depends on which of

these groups is chosen as Γ+. These facts motivate the definition of an orientifold group.

Definition 2.1. An orientifold group (Γ , ε) is a Lie group equipped with a non-trivial homo-

morphism ε : Γ → Z2. For any orientifold group define Γ+ := ker(ε) and Γ− := Γ \ ker(ε).

Definition 2.2. A homomorphism ϕ : (Γ ′, ε ′) → (Γ , ε) of orientifold groups is a group homo-

morphism such that ε ◦ϕ = ε ′.

The next lemma collects some basic facts about orientifold groups.

Lemma 2.3. If (Γ , ε) is an orientifold group, then

1. Γ+ ⊂ Γ is a normal subgroup

2. Γ/Γ+ ' Z2

3. 1→ Γ+ → Γ
ε→ Z2 → 1 is an extension of topological groups

4. γ2 ∈ Γ+ for all γ ∈ Γ

5. Γ = Γ+ t Γ− = Γ+ t ζΓ+ for any ζ ∈ Γ−.

The simplest non-trivial example of an orientifold group is provided by id : Z2 → Z2.

Given an orientifold group, its semi-direct product with a Γ -group can yield another orien-

tifold group.

Lemma 2.4. Let ε : Γ → Z2 be an orientifold group and (G, θ) be a Γ -group. Then the group

extension

1 // Γ+ nθ G i // Γ nθ G
ε◦π1 // Z2

// 1

(γ,g) � // (γ,g) � // ε(γ)

makes Γ nθ G into an orientifold group. The notation (Γ , ε)nθ G will be used to denote orientifold

groups of this form.

The following example commonly arises when G is a group of linear operators and κ

represents conjugation with respect to a fixed basis.
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Example 2.5. Let (G, θ) be a Z2-group with unit e, then (Z2, id)nθG is an orientifold group

1 // G
i // Z2nθ G

id◦π1 // Z2
// 1

g � // (z,g) � // z.

Note that the element (−1, e) ∈ Γ− is an involution,

(−1, e)2 = ((−1)2, e(−1e)) = (−12, e2) = (+1, e).

It is also possible to construct examples in which Γ− does not contain an involution.

Example 2.6. The Weil group [1, §XV] of R is the subgroup C× t C×j ⊂ H× of the multi-

plicative group of quaternions. It fits into the non-split extension

1 // C× // C× tC×j // Gal(C/R) // 1

j � // −1

of C× by Gal(C/R) ' Z2, making it into an orientifold group. Note that there is no element

ζ ∈ C×j = Γ− such that ζ2 = 1.

Example 2.7. If H := {±1,±i} is the orientifold group equipped with the homomorphism

q(h) := h2, then Γ := (H,q)nθ G is the orientifold group

1 // {±1}nθ G i // {±1,±i}nθ G
q◦π1 // Z2

// 1

(h,g) � // (h,g) � // h2.

If (h,g) ∈ Γ−, then h = ±i and (h,g)2 = (h2,g(hg)) = (−1,g(hg)) ∈ Γ+. Thus, there is no

element γ ∈ Γ− such that γ2 = (1, e).

Given an orientifold group (Γ , ε), the parity information provided by ε can be used when

defining actions on various objects. Three different types of actions of an orientifold group

will be distinguished. The first type of action uses the parity information assigned to group

elements to dictate whether an element acts linearly or anti-linearly. It will be neccesary to

define these actions on a variety of C-modules from different categories, including complex

vector spaces, complex vector bundles, and algebras over C. Given objects X and Y in an

appropriate category, define

Hom+1(X, Y) := Hom(X, Y) Hom−1(X, Y) :=
{
aȲ ◦ϕ | ϕ ∈ Hom(X, Ȳ)

}
,

where aȲ : Ȳ → Y is the identity map on the underlying set for Y. The map aȲ is anti-

linear and the elements of Hom−1(X, Y) can be considered as anti-linear homomorphisms.

The conjugation map Y 7→ Ȳ changes the C-module structure of Y to its conjugate C-module
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structure, and, depending on the category, it may change other structures on Y. For example,

the conjugate of a Hilbert space carries a conjugate inner product. Denote the disjoint union

of Hom+ and Hom− by Hom±. The spaces End± and Aut± are defined similarly.

Definition 2.8. Let (Γ , ε) be an orientifold group. An orientifold action is a homomorphism

ρ : Γ → Aut±(W) such that

ρ(γ) ∈ Autε(γ)(W).

A second type of action uses an involution ρ to define an action of Γ . Typically, an

involution of this type represents the change of some structure to a conjugate structure,

occuring in parallel with the application of an orientifold action.

Definition 2.9. An involutive action of an orientifold group, is an action of the form

ρ ◦ ε : Γ → Z2 → Aut(Y), (2.1)

where ρ : Z2 → Aut(Y) is an involution.

Example 2.10. Some examples of involutive actions are

1. ιp,q
ε : Rp,q → Rp,q, where Rp,q := Rp ⊕Rq and ιp,q : (x,y) 7→ (x,−y).

2. κε : GL(n, C) → GL(n, C), where κε is elementwise conjugation on the standard ma-

trix representation of GL(n, C).

3. dθε : g→ g, where g is a Lie algebra and θ : G→ G is an involution on its Lie group.

Of course, the parity of the group elements can also be ignored. This type of action

occurs on an orientifold and its tangent bundle. In order to differentiate it from the other

types of action, it will be refered to as a basic action.

2.2 Orientifold Representations

In this section, the theory of unitary/anti-unitary representations is reviewed. These appear

under a variety of names in the literature. They will be refered to here as orientifold represen-

tations. This theory uses the notion of a corepresentation to show that equivalence classes

of orientifold representations for Γ correspond to equivalence classes of representations for

Γ+ which are invariant under relative conjugation by an element of Γ−. Most of the results

in this thesis are based on some combination of unitary/anti-unitary representation theory

and standard constructions from index theory. From this perspective, there are two main

things to observe. First, the index of an elliptic orientifold operator is a formal difference
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of orientifold representations. Thus, understanding the relationship between the orientifold

representations for Γ and the representations of Γ+ helps to identify the extra information

captured by the index of an orientifold operator, as compared with that of an operator which

only has linear symmetries. The second thing to observe is that the corepresentations of an

orientifold group are semi-equivariant transition cocycles over a point. Together with the

upcoming results of Section 2.4, this shows that the results of Chapter 1 form a natural ex-

tension of the theory of corepresentations.

Definition 2.11. An orientifold representation of an orientifold group ε : Γ → Z2 is a complex

vector space equipped with an orientifold action ρ : Γ → Aut±(V).

Definition 2.12. A homomorphismϕ : V → V ′ of orientifold representations is a linear map

satisfying ϕ(γv) = γϕ(v).

An action by finite dimensional linear operators may be encoded into a matrix represen-

tation by allowing it to act on a basis for the representation space. In this case, there is a

homomorphism from the original linear representation to the resulting matrix representa-

tion. For an orientifold action, the same procedure can be performed to associate a matrix to

each element of the group. However, in general, there is not a homomorphism between the

matrix group and the original group. The resulting collection of matrices is a corepresentation

of the group. The concept is due to Wigner [83, pp. 334-335] [51, pp. 169-172].

Definition 2.13. A corepresentation of an orientifold group (Γ , ε) is a map

φ : Γ → GL(n, C)

satisfying φ(1) = id and

φ(γ ′γ) = φ(γ ′)(γ ′φ(γ)).

There are a few points to note. If ε is non-trivial, then the map φ is not a homo-

morphism unless φ(γ) ∈ GL(n, R) for all γ. Also, φ depends on the homomorphism

ε : Γ → Z2. Finally, notice that these are exactly the defining properties of a Γ -semi-

equivariant (GL(n, C), κε)-valued transition cocycle over a point, see Definition 1.8. The

appropriate notion of equivalence is also slightly different for a corepresentation, as com-

pared to that of a representation.

Definition 2.14. Two corepresentations φ and φ ′ are equivalent if there exists a µ ∈ GL(n, C)

such that

φ ′(γ) = µ−1φ(γ)(γµ).
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An equivalence of two corepresentations corresponds precisely to an equivalence of

their associated Γ -semi-equivariant (GL(n, C), κε)-valued transition cocycles over a point,

see Definition 1.9.

Observe that if φ is a corepresentation of Γ then φ+ := φ|Γ+ is a representation. The

following result shows that there is a strong relationship between the corepresentations of Γ

and the representations of Γ+.

Theorem 2.15. Two corepresentations φ and ψ are equivalent if and only if the representations φ+

and ψ+ are equivalent.

Proof. See [51, pp. 174-175].

This theorem implies that the equivalence class of a corepresentation φ is determined by

the character of φ+. However, not every representation ϕ of Γ+ determines a corepresen-

tation of Γ . To understand which representations of Γ+ do extend to corepresentations, the

operation of relative conjugation is defined on representations of Γ+. The use of relative con-

jugation, rather than elementwise conjugation, is neccesary to deal with the case in which

Γ− does not contain an involution.

Definition 2.16. Let ε : Γ → Z2 be an orientifold group and fix an element ζ ∈ Γ−. If

φ : Γ+ → GL(n, C)

is a matrix representation of Γ+, then the conjugate of φ relative to ζ is the representation

(ζφ)(γ) := ζφ(ζ−1γζ).

Note that (ζ2φ)(γ) = φ(ζ2)−1φ(γ)φ(ζ2). This implies that conjugation relative to a fixed

ζ ∈ Γ− is not an involution on the set of representations unless ζ2 = 1. It is, however, an

involution on the set of equivalence classes of representations, as φ(ζ2) provides an equiva-

lence between ζ2φ and φ.

An irreducible representation ϕ of Γ+ can be classified into one of three types based on

its relationship to ζϕ for some fixed ζ ∈ Γ−. Suppose that an irreducible representation is

equivalent to its relative conjugate. Then, there exists a µ ∈ GL(n, C) such that ζϕ = µ−1ϕµ.

One can show, using Schur’s lemma, that µµ̄ = λϕ(ζ2) for some λ ∈ R \ {0}. The scalar λ is

then used to define the type of an irreducible representation relative to the element ζ.
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Definition 2.17. The type of an irreducible representation ϕ of Γ+ is said to be
real if λ > 0

complex if ϕ is not equivalent to ζϕ

quaternionic if λ < 0.

This definition turns out to be independent of the specific element ζ ∈ Γ− chosen. It is

also possible to determine the type of a representation in a more direct way from its character

[31] [51, pp. 168-169]. Because a corepresentation satisfies

(ζφ)(γ) = φ(ζ−1)φ(γ)φ(ζ),

the representations ζφ+ and φ+ of Γ+ must always be equivalent. Thus, a complex-type

representationϕ of Γ+ does not correspond toφ+ for any corepresentationφ of Γ . In general,

a complex-type representation must be paired with its conjugate to obtain a representation

ϕ⊕ (ζϕ) of Γ+ coming from a corepresentation of Γ .

By considering the types of representations, it is possible to reconstruct a complete set of

irreducible corepresentations for Γ from a complete set of representations for Γ+.

Theorem 2.18. Let ε : Γ → Z2 be a finite orientifold group and {ϕi} be a complete set of irreducible

representations for Γ+. Then the set of irreducible corepresentations of Γ is determined as follows:

1. Each ϕi of real-type determines an irreducible corepresentation by

φ(γ) = ϕi(γ) φ(ζ) = λ
− 12
i µi

2. Each pair (ϕi, ζϕi) of complex-type irreducible representations determines a single irreducible

corepresentation by

φ(γ) =

ϕi(γ) 0

0 (ζϕi)(γ)

 φ(ζ) =

 0 ϕi(ζ
2)

id 0


3. Each ϕi of quaternionic-type determines an irreducible corepresentation by

φ(γ) =

ϕi(γ) 0

0 ϕi(γ)

 φ(ζ) = |λi|
− 12

 0 µi

−µi 0


where µi ∈ GL(n, C) satisfies ζϕi = µ−1i ϕµi, and λi ∈ R \ {0} satisfies µiµ̄i = λiϕ(ζ2). The set of

equivalence classes of irreducible representations determined does not depend on the choice of ζ ∈ Γ−.

Proof. See [51, pp. 176-181].

Remark 2. The theory of orientifold representations shows that the index of an elliptic ori-

entifold operator can be considered as a difference of equivalence classes of representations

for Γ+ each of which is invariant under relative conjugation by elements of Γ−.
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2.3 Orientifolds

In order to maintain a clear focus on anti-linearity in index theory, only the simplest def-

inition of an orientifold will be treated. These orientifolds are essentially global quotient

orbifolds with a small amount of extra structure. Using the language of Section 2.1, they

could be described as manifolds equipped with a basic action of an orientifold group. The

origin of the term orientifold is in string theory, where orientifolds are often considered

to have a sign choice ±1 associated to the connected components of their fixed point sets.

However, these sign choice structures will not be considered here.

Definition 2.19. An orientifold is a compact manifold X equipped with a smooth action

ρ : Γ → Diff(X),

where Γ is a finite orientifold group. The category of orientifolds with orientifold group

ε : Γ → Z2 will be denoted Ori(Γ ,ε).

Example 2.20. Let Γ be any orientifold group. Then Rp,q := Rp ⊕Rq equipped with the

involutive action induced by (x,y) 7→ (x,−y) is an orientifold. This orientifold will be used

to form suspensions in orientifold K-theory.

Example 2.21. Let X ∈ Ori(Γ ,ε) with Γ -action σ. The tangent bundle TX equipped with the

basic Γ -action dσ is again an orientifold. The K-theory of this orientifold will be the target

space of the 8-fold Thom isomorphism for orientifold K-theory.

The category of real vector bundles equipped with a basic action of the orientifold group

(Γ , ε) will be denoted Vect(Γ ,ε)(X, R). The isomorphism classes of such bundles will be de-

noted Vect'(Γ ,ε)(X, R).

2.4 Orientifold Bundles

Orientifold bundles are the main object of interest in the study of orientifolds. In the lan-

guage of Section 2.1, they are complex vector bundles carrying orientifold actions that cover

the action on the base orientifold.

Definition 2.22. If π : E → X is a complex vector bundle, define AutDiff(E) to be the set of

maps ϕ : E→ E such that

1. π ◦ϕ(e) = f ◦ π(e), for some diffeomorphism f ∈ Diff(X) and all e ∈ E.

2. ϕ : Ex → Ef(x) is a linear bijection, for all x.
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Definition 2.23. An orientifold bundle π : E → X is a complex vector bundle equipped with

an orientifold action

τ : Γ → Aut±Diff(E)

such that π(γv) = γπ(v).

The category of orientifold bundles over X ∈ Ori(Γ ,ε) will be denoted Vect(Γ ,ε)(X, C). The

set of isomorphism classes of orientifold bundles will be denoted Vect'(Γ ,ε)(X, C).

Example 2.24. An orientifold representation (V , ρ) can be considered as an orientifold bun-

dle over a point. If (X,σ) is an orientifold then an orientifold bundle of the form

(X× V ,σ× ρ)

will be described as a trivial orientifold bundle.

Note that if ε is non-trivial, then every orientifold bundle for (Γ , ε) carries at least one

anti-linear map, and so there is no orientifold bundle (E, τ) such that τγ = id for all γ ∈ Γ .

Just as in the equivariant setting, it is possible to average an hermetian metric on an

orientifold bundle to make it compatible with the orientifold action. The averaging process

needs to be twisted with conjugation to account for the anti-linearity of the action, as does

the compatibility condition.

Definition 2.25. An orientifold metric on an orientifold bundle E is an hermitian metric h on

E such that, for all v1, v2 ∈ E and γ ∈ Γ ,

h(γv1,γv2)γx = γh(v1, v2)x.

Proposition 2.26. Every orientifold vector bundle E over a paracompact orientifold X carries an

orientifold metric.

Proof. It is a standard result that every complex vector bundle over a paracompact space

carries an hermitian metric [78, Lemma 2]. Given an hermitian metric h on an orientifold

bundle E, define

hΓ (u, v)x =
∑
γ∈Γ

γ−1h(γu,γv)γx.

This metric is an orientifold metric as

hΓ (γu,γv)γx =
∑
γ ′∈Γ

γ ′−1h(γ ′γu,γ ′γv)γ ′γx

=
∑

γ ′′ :=γ ′γ∈Γ
γγ ′′−1h(γ ′′u,γ ′′v)γ ′′x = γ

∑
γ ′′∈Γ

γ ′′−1h(γ ′′u,γ ′′v)γ ′′x = γhΓ (u, v)x.
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Using an orientifold metric it is possible to split sequences of orientifold bundles.

Corollary 2.27. Let X be a paracompact orientifold. If

0→ E ′
ϕ ′→ E

ϕ→ E ′′

is an exact sequence of orientifold bundles over X, then E ' E ′ ⊕ E ′′.

Proof. By Proposition 2.26, there exists an orientifold metric h on E. It is a standard result

[78, Proposition 2] that h determines a projection p : E→ E and a splitting of complex vector

bundles E = im(p)⊕ ker(p) ' E ′ ⊕ E ′′. The projection p is defined fibrewise by

px : Ex → Ex

v 7→∑
i

h(v,bi)x
h(bi,bi)x

bi,

where {bi} is any basis for ϕ ′(E ′)x. Therefore, if px(v) = 0, then h(v,bi)x = 0 for all i, and

pγx(γv) =
∑
i

h(γv,γbi)γx
h(γbi,γbi)γx

(γbi) =
∑
i

γh(v,bi)x
γh(bi,bi)x

(γbi) =
∑
i

γ0

γh(bi,bi)x
(γbi) = 0.

Thus, ker(p) is invariant under the action of Γ , as is the given splitting.

Next, the frame bundle of an orientifold bundle will be examined.

Definition 2.28. The frame bundle Fr(E) of an orientifold bundle E is the principal GL(n, C)-

bundle of frames for the total space of E, equipped with a left Γ -action defined on a frame

s = (s1, . . . , sn) ∈ Fr(E)x by (γs)i = γsi.

Although the frame bundle of an orientifold is defined in the same manner as that of

an equivariant bundle, the anti-linearity present in the Γ -action gives it different properties.

In particular, there is a mild noncommutivity between the left action of Γ and the right

action of the structure group GL(n, C). This non-commutivity makes the frame bundle of

an orientifold bundle into a semi-equivariant principal bundle.

Proposition 2.29. Let E be an orientifold bundle and consider GL(n, C) to be equipped with the

involutive action of (Γ , ε) induced by conjugation. Then,

Fr(E;GL(n, C)) ∈ PB(Γ ,ε)(X, (GL(n, C), κε)).

In particular, the left and right actions on the frame bundle satisfy

γ(sg) = (γs)(γg),

for γ ∈ Γ , s ∈ Fr(E) and g ∈ GL(n, C).
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Proof. The action of g on a frame s is given by (sg)j =
∑
1≤i≤n sigij. Thus,

γ(sg)j =
∑
1≤i≤n

γ(sigij) =
∑
1≤i≤n

(γsi)(γgij) =
∑
1≤i≤n

(γs)i(γg)ij = ((γs)(γg))j.

Note that, by using an orientifold metric, the structure group can always be reduced to

(U(n), κε), where κε is the action induced on U(n) by its inclusion into GL(n, C).

2.5 Operations on Orientifold Bundles

Some basic operations on orientifold bundles will now be defined. It will be useful to make

these definitions in terms of semi-equivariant cocycles. To start with, consider the following

operations on Γ -groups.

Definition 2.30. Let ak ∈ GL(Cmk), and denote by [aij] the matrix representation of an ele-

ment a ∈ GL(Cm) with respect to the standard basis of Cm. Define the following operations

1. The dual a∗ ∈ GL(Cm),

[(a∗)ij] := ([aij]
t)−1

2. The direct sum a1 ⊕ a2 ∈ GL(Cm1+m2),

[(a1 ⊕ a2)ij] :=

[a1ij] 0

0 [a2ij]

 .

3. The tensor product a1 ⊗ a2 ∈ GL(Cm1m2),

[(a1 ⊗ a2)ij] :=


a111[a

2
ij] . . . a11m[a

2
ij]

...
. . .

...

a1m1[a
2
ij] . . . a1mm[a

2
ij]

 .

Examining Definition 2.30, it is clear that the dual, direct sum and tensor product on the

groups GL(Cm) are compatible with involutive Γ -actions induced by conjugation.

Lemma 2.31. The dual, direct sum and tensor product operations are homomorphisms

∗ : (GL(Cm), κε)→ (GL(Cm), κε)

⊕ : (GL(Cm1), κε)× (GL(Cm2), κε)→ (GL(Cm1+m2), κε)

⊗ : (GL(Cm1), κε)× (GL(Cm2), κε)→ (GL(Cm1m2), κε)

of Γ -groups.
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Lemma 2.31, allows the dual, direct sum and tensor product of (GL(m, C), κε)-valued

cocycles to be defined in the obvious way. Pullbacks of cocycles can also be defined. It is

routine to prove that these satisfy the semi-equivariant cocycle condition.

Definition 2.32. Let φi ∈ TC(Γ ,ε)(U ,X, (GL(Cmi), κε)) and f : X → Y be a homomorphism

orientifolds. Define the following operations on cocycles

Pullback (f∗φ)ba(γ, x) := φba(γ, f(x)) ∈ TC(Γ ,ε)(f
∗U , Y, (GL(Cm), κε))

Dual (φ∗)ba(x,γ) := φba(x,γ)∗ ∈ TC(Γ ,ε)(U ,X, (GL(Cm), κε))

Direct sum (φ1 ⊕φ2)ba(x,γ) := φ1ba(x,γ)⊕φ2ba(x,γ) ∈ TC(Γ ,ε)(U ,X, (GL(Cm1+m2), κε))

Tensor product (φ1 ⊗φ2)ba(x,γ) := φ1ba(x,γ)⊗φ2ba(x,γ) ∈ TC(Γ ,ε)(U ,X, (GL(Cm1m2), κε)),

where f∗U :=
{
f−1(Ua) | a ∈ A

}
is the pullback of the cover U := {Ua | a ∈ A}.

The above operations on cocycles induce operations on orientifold bundles via the semi-

equivariant associated bundle construction, see Definition 1.43.

Definition 2.33. Let Ei ∈ Vectmi(Γ ,ε)(X, C). Letφi denote a semi-equivariant cocycle associated

Fr(Ei) by Proposition 1.12, and Pφ denote the semi-equivariant principal bundle constructed

from a cocycle φ via Proposition 1.15. Define the following operations on orientifold bun-

dles

Pullback f∗E := Pf
∗φ ×(GL(m,C),κε) (C

m, κε) ∈ Vectm(Γ ,ε)(X, C)

Dual E∗ := Pφ
∗ ×(GL(m,C),κε) ((C

m)∗, κε) ∈ Vectm(Γ ,ε)(X, C)

Direct sum E1 ⊕ E2 := Pφ1⊕φ2 ×(GL(m1+m2,C),κε) (C
m1+m2 , κε) ∈ Vectm1+m2(Γ ,ε) (X, C)

Tensor product E1 ⊗ E2 := Pφ1⊗φ2 ×(GL(m1m2,C),κε) (C
m1m2 , κε) ∈ Vectm1m2(Γ ,ε) (X, C),

where κε : (Cm)∗ → (Cm)∗ is the action defined by (γλ)(z) := γλ(γ−1z).

As in the non-equivariant setting, it is possible to construct the bundle of homomor-

phisms between two orientifold bundles using their tensor products and duals. This will be

of interest when investigating the symbols of orientifold operators.

Proposition 2.34. Let Ei ∈ Vectmi(Γ ,ε)(X, C). The homomorphismsϕ ∈ Hom(E1,E2) are in bijective

correspondence with equivariant sections of the orientifold bundle E2 ⊗ E∗1 .

In order to define the Thom homomorphism in Chapter 4, it is neccesary to define the

external tensor product for orientifold bundles. This is a notion of tensor product between

vector bundles over different base spaces.
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Definition 2.35. Let Ei ∈ Vectmi(Γ ,ε)(Xi, C), and πi : X1 × X2 → Xi be the coordinate projection

for i ∈ {1, 2}. The external tensor product is defined by

E1� E2 := π
∗
1E1 ⊗ π∗2E2 ∈ Vectm1m2(Γ ,ε) (X1 × X2, C).

The most important application of the external tensor product occurs when when X1

and X2 are vector bundles over a common orientifold X. More specifically, when Xi ∈

Vect(Γ ,ε)(X, Fi) for Fi ∈ {R, C}. In this case, a diagonal restriction map ∆∗ is defined, which,

when composed with the external tensor product, yields an action of Vect(Γ ,ε)(X, C) on

Vect(Γ ,ε)(V1, C).

Definition 2.36. Let Vi ∈ Vect(Γ ,ε)(X, Fi) with projections πi, and F ∈ Vectm(Γ ,ε)(V1 × V2, C).

The diagonal restriction of F is defined by

∆∗F :=
{
F(v,w) | π1(v) = π2(w)

}
∈ Vectm(Γ ,ε)(V1 ⊕ V2, C).

Definition 2.37. Let Ei ∈ Vectmi(Γ ,ε)(Vi, C). Then

E1E2 := ∆∗(E1� E2) ∈ Vectm1m2(Γ ,ε) (V1 ⊕ V2, C).

In particular, if V2 = X is the vector bundle with zero-dimensional fibres, then E1E2 ∈

Vectm1m2(Γ ,ε) (V1, C), and this action is a right action of Vectm2(Γ ,ε)(X, C) on the semi-group Vectm1(Γ ,ε)(V1, C).

A left action of Vect(Γ ,ε)(X, C) may be defined similarly.

Note that the two possibilities, Fi = R or C, correspond to an action on bundles defined

over an equivariant real bundle or an orientifold bundle, respectively. These actions induce

module structures on the orientifold K-theory groups, and the two different cases are used

to define the two different types of Bott periodicity which exist in orientifold K-theory.

Another construction which is imporant in K-theory is that of perpendicular bundles.

Definition 2.38. Let E be an orientifold bundle. A perpendicular bundle for E is an orientifold

bundle F such that E⊕ F is a trivial orientifold bundle.

In the case where Γ is finite and X is compact, the proof that perpendicular bundles al-

ways exist extends to orientifolds bundles. This result makes use of the standard orientifold

action on the vector space of sections s of an orientifold bundle, which is defined by

(γs)(x) := γs(γ−1x).

Lemma 2.39. Let X be a compact orientifold with a finite orientifold group (Γ , ε), and E → X be

an orientifold bundle. There is a finite dimensional orientifold representation (V , ρ) ⊂ C(X,E) such
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that the evaluation map

ϕ : X× V → E

(x, s) 7→ s(x)

is a surjective map of orientifold bundles.

Proof. A subspace of C(X,E) with surjective evaluation map is called an ample subspace. It

is a standard result [3, Lemma 1.4.12] that a finite dimensional ample subspace V ⊂ C(X,E)

may be constructed for any complex vector bundle E. The space

VΓ :=
⊕
γ∈Γ

γV ⊂ C(X,E)

is then finite dimensional, ample, and invariant under the action of Γ on sections. Thus, X×

V is an orientifold bundle when equipped with the action (x, s) → (γx,γs). The evaluation

map is equivariant with respect to this action as

ϕ(γx,γs) = (γs)(γx) = γs(γ−1γx) = γs(x) = γϕ(x, s).

Corollary 2.40. If X is a compact orientifold with a finite orientifold group (Γ , ε) and E → X is an

orientifold bundle, then there exists a perpendicular orientifold bundle for E

Proof. The required bundle is F = ker(ϕ), where ϕ is the evaluation map as in Lemma

2.39.
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Chapter 3

The Orientifold Dirac Operator

In this chapter, Dirac operators are constructed for orientifolds. First, (Spinc, κε)-structures

are defined. Using results from Chapter 1, these structures are classified, and shown to

decompose into Spin(n) and (U(1), κε) components. By applying the semi-equivariant as-

sociated bundle construction with a Clifford module as the model fibre, it is possible to

construct spinor bundles with orientifold actions. Both a total spinor bundle, with a right

action of (Cln, κε), and a reduced spinor bundle, with the complexification of an irreducible

Cl8k-module as a model fibre, are defined. As in the usual setting, the sections of orientifold

spinor bundles are acted on by sections of a Clifford bundle. This action is compatible with

the orientifold action on the spinor bundle and a canonical orientifold action on the complex

Clifford bundle. In order to construct a Dirac operator on an orientifold, it is neccesary to

have a connection which is compatible with Clifford multiplication on sections and the ori-

entifold action. Such a connection can be constructed using the results on semi-equivariant

connection forms from Section 1.4. After equipping the orientifold spinor bundles with

compatible connections, the orientifold Dirac operator and its reduced counterpart will be

defined.

3.1 Classification of Orientifold Spinc-structures

In order to define and classify Spinc-structures for orientifolds, it is neccesary to consider

the interaction of Clifford algebras and the Spin groups with orientifold actions. The idea

is to complexify results which apply to real Clifford algebras, whilst keeping track of the

associated conjugation maps. These maps can then be used to define involutive actions of

orientifold groups. To begin, the definitions of the real Clifford algebra, Spin group, and

adjoint map are recalled.
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Definition 3.1. The Clifford algebra Cln is the algebra generated by the standard basis {ei}

of Rn subject to the relations e2i = −1 and eiej + ejei = 0.

Note that the set {ei1 · · · eik ∈ Cln | i1 < · · · < ik} is a basis for Cln. The group Spin(n)

sits inside Cln. Elements of Spin(n) are products of an even number of unit vectors from

Rn.

Definition 3.2. The group Spin(n) is defined by

Spin(n) := {x1 · · · x2k | xi ∈ Rn, ‖xi‖ = 1} ⊂ Cln.

If g ∈ Spin(n) and x ∈ Rn one can show that gxg−1 ∈ Rn. The transformation x 7→
gxg−1 defines an element of SO(n), and the resulting assignment Spin(n) → SO(n) is a

double covering.

Definition 3.3. The adjoint map Ad : Spin(n) → SO(n) is defined, for g ∈ Spin(n), x ∈ Rn,

by

Adg(x) := gxg−1.

For applications to orientifolds, it is neccesary to work with the complexifications of Cln

and Spin(n). These complexifications are equipped with conjugation maps which induce

involutive actions of orientifold groups. The complexified adjoint map is a homomorphism

of Γ -groups.

Definition 3.4. Let (Γ , ε) be an orientifold group and define the following

1. (Cln, κε) := Cln ⊗C with the Γ -action κε(ϕ⊗ z) := ϕ⊗ κε(z)

2. (Spinc(n), κε) := (Spin(n)×U(1))/ {±(1, 1)} with the induced action κε[g, z] := [g, κε(z)]

3. Adc : (Spinc(n), κε)→ (SO(n), idε) defined by Adc[g, z] := Ad(g).

Note that Adc ◦ κε[g, z] = Adc[g, z]. The properties of Adc, and the decomposition of

Spinc(n), produce two central exact sequences of Γ -groups about Spinc(n). These sequences
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fit into the following diagram

1 (Spin(n), idε) (Spinc(n), κε) (U(1), κε) 1

1

(SO(n), idε)

Adc
Ad

(U(1), κε)
q

11

(Z2, idε)

1

1

(Z2, idε)

1

,

(3.1)

where q is the square map. The above sequences will be used to classify Spinc-structures for

orientifolds.

Having examined semi-equivariance, orientifolds, and orientifold actions on Spinc(n), it

is now possible to define a notion of Spinc-structure which is appropriate for orientifolds.

Definition 3.5. An (Spinc, κε)-structure for a real Γ -equivariant vector bundle V over an ori-

entifold is a semi-equivariant lifting ϕ : P → Fr(V) by Adc : (Spinc(n), κε)→ (SO(n), idε).

If V has a (Spinc, κε)-structure, then it is said to be (Spinc, κε)-oriented. If the tangent bun-

dle TM of an orientifoldM is (Spinc, κε)-oriented, thenM is said to be (Spinc, κε)-oriented.

The (Spinc, κε)-structures associated to a vector bundle V can be classified using the

result of Chapter 1. The following theorem is obtained by applying Theorem 1.41 to the

central exact sequence running vertically in (3.1).

Theorem 3.6. The central exact sequence

1→ (U(1), κε)→ (Spinc(n), κε)
Adc→ (SO(n), idε)→ 1,

induces an exact sequence

H1Γ (X, (U(1), κε))→ TC1Γ (X, (Spinc(n), κε))
Adc→ TC1Γ (X, (SO(n), idε))

∆sc→ H2Γ (X, (U(1), κε)).

Theorem 3.6 has the following corollaries, which classify (Spinc, κε)-structures in terms

of semi-equivariant cohomology with coefficients in (U(1), κε).

Corollary 3.7. A real Γ -equivariant vector bundle V over an orientifold has a (Spinc, κε)-structure

if and only if ∆sc(φV) = 1, where φV is the transition cocycle for V .
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Corollary 3.8. A given (Spinc, κε)-structure is unique up to tensoring by semi-equivariant princi-

pal (U(1), κε)-bundles.

To obtain an obstruction class with integer coefficients, involutive actions can be taken

on the groups in the exponential exact sequence. This results in the following proposition.

Lemma 3.9. The exponential exact sequence

0→ (Z, ιε)→ (R, ιε)
exp→ (U(1), κε)→ 1 (3.2)

induces isomorphisms

H
p
Γ (X, (U(1), κε))

∆
p
exp→ H

p+1
Γ (X, (Z, ιε)),

where ιε is the involutive orientifold action induced by the map t 7→ −t ∈ R.

Proof. By Theorem 1.38, the exact sequence (3.2) induces a long exact sequence

H
p
Γ (X, (Z, ιε))→ H

p
Γ (X, (R, ιε))

exp→ H
p
Γ (X, (U(1), κε))

∆
p
exp→ H

p+1
Γ (X, (Z, ιε)).

The existence of a smooth partition of unity on X implies that HpΓ (X, (R, ιε)) = 0 for all p.

Therefore, the maps ∆pexp are isomorphisms.

Using Proposition 3.2, it is possible to define an analogue of the third integral Stiefel-

Whiney class.

Definition 3.10. The third integral orientifold Stiefel-Whiney class is defined by

W
(Γ ,ε)
3 (V) := ∆exp ◦∆sc(φV) ∈ H3Γ (X, (Z, ιε)),

where φV is the transition cocycle associated to V .

Corollaries 3.7 and 3.8 can then be restated in terms of semi-equivariant cohomology

with coefficients in (Z, ιε).

Corollary 3.11. A real Γ -equivariant bundle V is (Spinc, κε)-oriented if and only ifW(Γ ,ε)
3 (V) = 0.

Corollary 3.12. The (Spinc, κε)-structures on a (Spinc, κε)-oriented real Γ -equivariant vector bun-

dle are in bijective correspondence with the elements of H2Γ (X, (Z, ιε)).

It is possible to further isolate the semi-equivariance in a (Spinc, κε)-structure by splitting

it via the decomposition

(Spinc(n), κ) ' (SO(n), id)×Z2 (U(1), κ).
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This decomposition immediately implies that, for any cochain φsc ∈ K1Γ (X, (Spinc(n), κε)),

there exist cochains φs ∈ K1Γ (X, (Spin(n), idε)) and φu ∈ K1Γ (X, (U(1), κε)) such that φsc =

[φs,φu]. It also allows the definition of the map

Ad× q : (Spinc(n), κε)→ (SO(n), idε)× (U(1), κε)

[s, z] 7→ (Ad(s),q(z)).

The next proposition shows that every (Spinc, κε)-structure extends to a lifting of a semi-

equivariant principal (SO(n), id)× (U(1), κ)-bundle by Ad× q.

Proposition 3.13. If ϕ0 : P → Q is a (Spinc, κε)-structure, then there exists a lifting

ϕ : P → Q×X L (3.3)

by Ad× q, where L is a Γ -semi-equivariant principal (U(1), κε)-bundle.

Proof. Let φ ∈ TC1Γ (X, (SO(n), idε)) be the cocycle for Q. If Q has a (Spinc, κε)-structure

there is a cocycle [φs,φu] ∈ TC1Γ (X, (Spinc(n), κε)) with Adc([φs,φu]) = Ad(φs) = φ. The

cocycle [φs,φu] is a lifting by Ad× q of (φ,φ2u). It remains to check that φ2u is a cocycle.

First, note that Ad(∂φs) = ∂ ◦Ad(φs) = ∂(φ) = 1. Thus, ∂φs takes values in ker(Ad) = Z2,

and

(∂φs)
−1(∂φu) ∈ K2Γ (X, (U(1), κε)) ⊂ K2Γ (X, (Spinc(n), κε)).

This cochain is a cocycle as

(∂φs)
−1(∂φu) = [1, (∂φs)−1(∂φu)] = [∂φs,∂φu] = ∂[φs,φu] = 1.

The cochain φ2u ∈ K1Γ (X, (U(1), κε)) is then a cocycle as

∂(φ2u) = (∂φu)
2 = (∂φs)

−2(∂φu)
2 =

(
(∂φs)

−1(∂φu)
)2

= 1.

Therefore, the required bundle L can be constructed from φ2u using Proposition 1.15.

Proposition 3.13 can be refined into a statement about cohomology classes. This refine-

ment uses the exact sequences in cohomology obtained by applying Theorem 1.41 to the two

exact sequences of Γ -groups running diagonally in diagram (3.1).

Lemma 3.14. The central exact sequences

1→ (Z2, idε)→ (Spin(n), idε)
Ad→ (SO(n), idε)→ 1,

1→ (Z2, idε)→ (U(1), κε)
q→ (U(1), κε)→ 1,
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induce the exact sequences

H1Γ (X, (Z2, idε))→ TC1Γ (X, (Spin(n), idε))
Ad→ TC1Γ (X, (SO(n), idε))

∆s→ H2Γ (X, (Z2, idε)),

H1Γ (X, (Z2, idε))→ H1Γ (X, (U(1), κε))
q→ H1Γ (X, (U(1), κε))

∆u→ H2Γ (X, (Z2, idε)).

Proposition 3.13 and Lemma 3.14 can now be combined to establish an alternative crite-

ria for the existence of a (Spinc, κε)-structure.

Theorem 3.15. A Γ -equivariant principal SO(n)-bundleQwith cocycleφ has a (Spinc, κε)-structure

if and only if there exists a cocycle ψ ∈ H1Γ (X, (U(1), κε)) such that

∆s(φ) = ∆u(ψ) ∈ H2Γ (X, (Z2, idε)).

Proof. Assume thatQ has a (Spinc, κε)-structure. By Proposition 3.13, there exists an cocycle

[φs,φu] ∈ TC1Γ (X, (Spinc(n), κε)) such that φ2u is a cocycle and

(Ad× q)[φs,φu] = (φs,φ2u).

As [φs,φu] is a cocycle, [∂φs,∂φu] = ∂[φs,φu] = 1. This implies that ∂φs = ∂φu. Therefore,

applying Lemma 3.14 to φ and φ2u,

∆s(φ) = [∂φs] = [∂φu] = ∆u(φ
2
u) ∈ H2Γ (X, (Z2, idε)).

Thus, ψ := φ2u is the required cocycle.

Conversely, suppose there exists a cocycle ψ ∈ H1Γ (X, (U(1), κε)) such that

∆s(φ) = ∆u(ψ) ∈ H2Γ (X, (Z2, idε)).

Then, there are a cochains φs with Ad(φs) = φ, and φu with φ2u = ψ such that

[∂φs] = [∂φu] ∈ K2Γ (X, (Z2, idε)).

This implies that ∂φs = ∂φ ′∂φu = ∂(φ ′φu) for someφ ′ ∈ K1Γ (X, (Z2, idε)). Then ∂[φs,φ ′φu] =

[∂φs,∂(φ ′φu)] = 1, and Adc[φs,φ ′φu] = Ad(φs) = φ. Thus, [φs,φ ′φu] defines a (Spinc, κε)-

structure on Q.

If X is a manifold acted on by a finite group H, and V → X is a real H-equivariant vector

bundle with cocycle φ ∈ TC1H(X, SO(n)), then the obstruction to the existence of an H-

equivariant Spin-structure on V is the second Z2-valued equivariant Stiefel-Whitney class,

which can be defined by wH2 (V) := ∆Spin(φ) ∈ H2H(X, Z2). Here ∆Spin(φ) is the connecting

map for the exact sequence

H1H(X, Z2) // TC1H(X, Spin(n)) Ad // TC1H(X, SO(n))
∆Spin

// H2H(X, Z2),
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induced by the central exact sequence 1→ Z2 → Spin(n) Ad→ SO(n)→ 1.

If (Γ , ε) is the orientifold group defined by Γ := Z2 × H and ε(z,h) := z, then X can

be made into an orientifold X̃ for (Γ , ε) by trivially extending its H-action to the Γ -action

(z,h)x := hx. Similarly, the H-equivariant vector bundle V can be made into a Γ -equivariant

vector bundle Ṽ by trivially extending its H-action to the Γ -action (z,h)v := hv. The cocycle

of Ṽ is an element φ̃ ∈ TC1Γ (X, (SO(n), idε)).

In this situation, the quotient map π : Γ → Γ/Z2 ' H induces a map π : X•Γ → X•H

between the simplicial spaces associated to the groups Γ and H. Because π is a homomor-

phism and satisfies π(γ)x = γx, it commutes with the face maps on these spaces, and defines

a pulback map π∗ on cochains. The map π∗ also commutes with the coboundary maps, and

provides well-defined extension maps

π∗ : TCpH(X,G)→ TCpΓ (X̃, (G, idε)) π∗ : HpH(X,G)→ H
p
Γ (X̃, (G, idε)).

One then has the following result.

Proposition 3.16. If Ṽ → X̃ is the trivial extension of a real H-equivariant vector bundle V → X,

as described above, then

1. the cocycle for Ṽ is the pullback of the cocycle for V by the quotient map π : Γ → H,

φ̃ = π∗φ ∈ H1Γ (X̃, (SO(n), idε)).

2. the second Z2-valued equivariant Stiefel-Whitney class for V satisfies

π∗wH2 (V) = ∆s(π
∗φ) ∈ H2Γ (X̃, (Z2, idε)).

3. Ṽ has a (Spinc, κε)-structure if and only if

π∗wH2 (V) = ∆u(ψ) ∈ H2Γ (X̃, (Z2, idε)),

for some cocycle ψ ∈ H1Γ (X̃, (U(1), κε)).

Here ∆s and ∆u are the connecting maps of Lemma 3.14.

Proof. If {sa} is a collection of local sections for V , then

π(z,h)x = hx = (z,h)x π(z,h)sa(x) = hsa(x) = (z,h)sa(x),

where (z,h) ∈ Γ = Z2 × H, x ∈ X. Together with the property (1.3), which defines the

cocycles φ and φ̃, this implies

sb(π(z,h)x)φba(π(z,h), x) = π(z,h)sa(x) = (z,h)sa(x) = sb((z,h)x)φ̃ba((z,h), x)

= sb(π(z,h)x)φ̃ba((z,h), x).
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Thus, π∗φ = φ̃, which proves the the first statement.

The second statement follows from the existence of the commutative diagram

H1H(X, Z2) //

π∗

��

TC1H(X, Spin(n)) Ad //

π∗

��

TC1H(X, SO(n))
∆Spin

//

π∗

��

H2H(X, Z2)

π∗

��

H1Γ (X̃, (Z2, idε)) // TC1Γ (X̃, (Spin(n), idε))
Ad // TC1Γ (X̃, (SO(n), idε))

∆s // H2Γ (X̃, (Z2, idε)).

To see that the right-most cell of this diagram commutes, note that if ψ is a lifting of φ, then

π∗ψ is a lifting of π∗φ. The commutation of π∗ with the coboundary maps then implies

π∗wH2 (V) := π
∗∆Spin(φ) = π

∗∂(ψ) = ∂(π∗ψ) = ∆s(π
∗φ).

The third statement follows from the first and second by applying Theorem 3.15.

To end this section, two canonical (Spinc, κε)-structures will be described. The first of

these is the canonical (Spinc, κε)-structure associated to a real representationV of (Z2, id)nκε
Spinc(n). When dim(V) = 8, this (Spinc, κε)-structure is used to construct a canonical re-

duced orientifold spinor bundle over the point orientifold for (Z2, id)nκε Spinc(n), which,

in turn, is used to construct the 8-fold Bott class over V . The second is a canonical (Spinc, κε)-

structure on the n-sphere. This (Spinc, κε)-structure is used to construct a canonical reduced

orientifold spinor bundle on S8k. The reduced orientifold spinor bundle on S8k will be used

in the next chapter when describing the compactification of the 8-fold Bott class over a real

representation of (Z2, id)nκε Spinc(n).

Lemma 3.17 (The canonical (Spinc, κε)-structure over a point). Let V be the representation of

(Z2, id)nκε Spinc(n) on Rn defined by (γ,g) · v := Adc(g)v. Then

Adc : Spinc(n)→ SO(n) ' Fr(V).

is a (Spinc, κε)-structure for the real equivariant vector bundle V → pt over the point orientifold for

(Z2, id)nκε Spinc(n).

Proof. The group Spinc(n) forms a principal bundle over a point with the trivial projection

π(p) = pt, and right Spinc(n) action defined by multiplication. The left action of (Z2, id)nκε
Spinc(n) is taken to be

(γ,g) · p := gκγ(p),

for γ ∈ Γ and g,p ∈ Spinc(n). The inclusion of the conjugation κ is the only difference from

the corresponding construction in the usual equivariant setting.
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Lemma 3.18 (The canonical (Spinc, κε)-structure on the sphere). The map

Adc : Spinc(n+ 1)→ SO(n+ 1)

forms a (Spinc, κε)-structure for the orientifold

Sn ⊂ Rn+1

equipped with the action of (Z2, id)nκε Spinc(n+ 1) defined by (γ,g) · v := Adc(g)v.

Proof. In what follows, let γ ∈ Z2, g,p ∈ Spinc(n + 1), h ∈ Spinc(n), q ∈ SO(n + 1),

f ∈ SO(n). Also, let α1 : SO(n) → SO(n+ 1) and β1 : Spinc(n) → Spinc(n+ 1) be the maps

induced by the inclusion Cln → Cln+1 defined on standard basis elements by ek 7→ ek+1.

Equip Spinc(n+ 1) with the projection, left action, and right Spinc(n)-action

πsc(p) := Adc(p)e1 (γ,g) · p := gκγ(p) p · h := pβ1(h),

respectively. Again, the presence of the conjugation action κ in the left action is the only

difference from the corresponding construction in the usual equivariant setting [18, p. 5].

Using the properties of κ, Adc and β1, it is straightforward to check that Spinc(n+ 1) forms

a (Γ , ε)nκε Spinc(n+ 1)-semi-equivariant principal (Spinc(n), κε)-bundle,

πsc((γ,g) · p) = π(g(γp))

= Adc(g(γp))e1 = Adc(g)Adc(γp)e1 = Adc(g)Adc(p)e1 = (γ,g)πsc(p),

(γ,g) · (p · h) = (γ,g) · (pβ1(h))

= g(γ(pβ1(h))) = g(γp)(γβ1(h)) = g(γp)β1(γh) = ((γ,g)p) · (γh).

Next, equip SO(n+ 1) with the projection, left action, and right SO(n)-action defined by

πso(q) := qe1 (γ,g) · q := Adc(g)q q · f := qα1(f),

respectively. It can then be checked that SO(n+1) forms a (Z2, id)nκε Spinc(n+1)-equivariant

principal SO(n)-bundle,

πso((γ,g) · q) = πso(Adc(g)q) = Adc(g)qe1 = (γ,g)π(q),

(γ,g) · (q · f) = (γ,g) · (qα1(f)) = Ad(g)qα1(f) = ((γ,g) · q) · f.

That Adc is a semi-equivariant lifting can be checked directly by verifying compatibility

with projections, right actions, and left actions,

πsc(p) = Adc(p)e1 = πso ◦Adc(p),

Adc(p · h) = Adc(pβ1(h)) = Adc(p)Adc(β1(h)) = Adc(p)α1(Adc(h)) = Adc(p) ·Adc(h),

Adc((γ,g) · p) = Adc(g(γp)) = Adc(g)Adc(γp) = Adc(g)Adc(p) = (γ,g) ·Adc(p).
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It remains to check that SO(n+ 1) with the given action of (Z2, id)nκε Spinc(n+ 1) is

isomorphic to the equivariant principal SO(n)-bundle Fr(Sn). First, identify the tangent

space of the n-sphere with a subbundle of the tangent space to Rn+1,

TSn '
{
(v1, v2) ∈ Rn+1 ×Rn+1 | ‖v1‖ = ‖v2‖ = 1, 〈v1, v2〉 = 0

}
⊂ TRn+1

The standard action of SO(n+ 1) on Rn+1 associates a matrix to each element q ∈ SO(n+ 1),

which will also be denoted q. The columns qi of this matrix determine an orthonormal frame

F(q) := {(q1,q2), . . . , (q1,qn+1)} ∈ Frq1(TS
n).

In this way, SO(n+ 1) can be identified with Fr(TSn). This identification is compatible with

projections as

πso(q) = qe1 = q1 = πTSn(F(q)).

Compatibility with right actions follows from the fact that

(q · f)j = (qα1(f))j =


q1 for j = 1∑
2≤i≤n+1 qif(i−1)(j−1) for j ≥ 2.

Finally, the left action on Fr(TSn) can be characterised by observing that a vector (v1, v) ∈

TSn is tangent to the curve (cos t)v1 + (sin t)v at t = 0. Acting on this curve by (γ,g) ∈

(Z2, id)nκε Spinc(n+ 1) produces a new curve (cos t)(Adc(g)v1) + (sin t)(Adc(g)v) which

has (Adc(g)v1, Adc(g)v) as its tangent vector at t = 0. Thus,

(γ,g)F(q) = F(Adc(g)q) = F((γ,g)q),

and the identification of SO(n+ 1) and Fr(TSn) is compatible with the left actions.

3.2 Orientifold Spinor Bundles

In this section, orientifold spinor bundles are constructed. This is done by applying the semi-

equivariant associated bundle construction, from Definition 1.43, with a Clifford module as

the model fibre. In order to do this, the Clifford modules used must be semi-equivariant

with respect to the action of (Spinc(n), κε). The principal bundle used in the construction

is the principal bundle P from a (Spinc, κε)-structure P → Fr(V). The central property of a

spinor bundle is that its sections are acted upon by sections of the Clifford bundle Cl(V).

This action is sometimes described as Clifford multiplication. Clifford multiplication on sec-

tions is defined in terms of the action of Cln on the model fibre. In order for Clifford mul-

tiplication on sections to be well-defined, this fibrewise definition of Clifford multiplication
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must be compatible with the global topology of the base space. In the orientifold setting,

Clifford multiplication is also required to be compatible with an orientifold action on the

spinor bundle, and a canonical orientifold action on Cl(V). The (Spinc, κε)-structure used

to construct an orientifold spinor bundle ensures that both of these requirements are ful-

filled. Thus, the benefit of working on semi-equivariance and (Spinc, κε)-orientiation in

earlier chapters is finally observed.

Before defining the orientifold spinor bundles, some results from the representation the-

ory of real Clifford algebas are reviewed. The main Cln-modules of interest are Cln, consid-

ered as a module over itself, and the irreducible Cl8k-modules. Up to equivalence, there is

only one irreducible Cl8k-module [63, p. 33]. A representative of this equivalence class will

be denoted by ∆. For applications in index theory, it is also important to consider graded

modules. The gradings on the orientifold spinor bundles will be derived from special grad-

ings on Cln and∆ that are connected with the representation theory of real Clifford algebras.

Graded Clifford modules are defined with respect to the standard grading on Cln.

Definition 3.19. The standard grading on the Clifford algebra Cln is the decomposition

Cln = Cl0n ⊕Cl1n,

defined by the grading operator α : ei 7→ −ei.

Definition 3.20. A graded Cln-module is a Cln-module V equipped with a decomposition

V = V0 ⊕ V1 such that

ϕivj ∈ V i+j

for i, j ∈ Z2,ϕ ∈ Clin, vj ∈ V j.

The following two graded Cln-modules exist for all n. Example 3.21, will be used to

construct the Clifford bundle. Example 3.22, will be used to relate the Clifford bundle to the

exterior algebra bundle.

Example 3.21. If Cln is considered as a Clifford module over itself, then the standard grading

provides Cln with a graded Cln-module structure.

Example 3.22. The exterior algebra Λ•(Rn) defines a graded Cln-module. To see this, first

observe that the map

Cl0n ⊕Cl1n → Λeven(Rn)⊕Λodd(Rn) (3.4)

ei1 · · · eik 7→ ei1 ∧ · · ·∧ eik .
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is an isomorphism of graded vector spaces. Exterior multiplication onΛ(Rn) is not the same

as Clifford multiplication on Cln. However, the above isomorphism can be used to express

Clifford multiplication in terms of the exterior and interior products on Λ(Rn) [63, p.25]. If

ϕ ∈ Cln andω ∈ Λ(Rn), then

ϕω := ϕ̃∧ω− ϕ̃
¬
ω, (3.5)

where ϕ̃ is the image of ϕ under the map of (3.4). With this multiplication, Λ•(Rn) is iso-

morphic to Cln as a graded Cln-module.

In dimensions 4k, the representation theory of real Clifford algebras provides another

natural method to grade Cl4k-modules.

Proposition 3.23. If V is a Cl4k-module then multiplication by the oriented volume element

ω := e1 · · · e4k ∈ Cl4k

is a grading operator, and the associated grading V+ ⊕ V− defines a graded Cl4k-module.

Proof. See [63, p. 23].

Example 3.24. Considering Cl8k as a right module over itself, Proposition 3.23 implies that

right multiplication by ω determines a graded Cl8k-module structure. The resulting graded

Cl8k-module will be denoted Cl±8k := Cl+8k ⊕Cl−8k.

Example 3.25. An irreducible left Cl8k-module ∆, can be graded using left multiplication

by ω. This results in a decomposition ∆ = ∆+ ⊕ ∆−, where ∆± are the two inequivalent

irreducible Cl8k−1-modules. See [63, p. 35-36].

The graded Cl8k-modules in Examples 3.25 and 3.24 will be used later in this section to

define the spinor bundles and their gradings. The two examples can be related using the

following proposition.

Proposition 3.26. For any irreducible Cl8k-module∆, there is an isomorphism of graded Cl8k⊗̂Cl8k-

modules,

∆⊗̂∆∗ ' Cl8k,

where the action on Cl8n is defined by (ϕ1,ϕ2)ϕ := ϕ1ϕϕ
∗
2 .

Proof. The proof of this proposition for complex Clifford algebras can be found in [63, p. 38].

The same argument applies, using facts from the representation theory of real Clifford alge-

bras. First, note that Cl8k⊗̂Cl8k = Cl16k [63, pp. 27-28] and that Cl16k has a single irreducible
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representation of dimension 28k [63, p. 33]. Therefore, all representations of Cl8k⊗̂Cl8k with

dimension 28k are equivalent. The algebra Cl8k has a single irreducible representation of

dimension 24k [63, p. 33]. Thus, dim(∆) = 24k and dim(∆⊗̂∆∗) = 28k. As dim(Cl8k) = 28k,

this proves that ∆⊗̂∆∗ and Cl8k are isomorphic as Cl8k⊗̂Cl8k modules.

Corollary 3.27. ∆⊗ (∆+)∗ ' Cl+8k.

Proof. The submodule Cl+8k is defined as the +1-eigenspace under muliplication by the ori-

entifold volume element ω for the right Cl+8k-module structure. By Proposition 3.26,

Cl8n ' ∆⊗̂∆∗ = (∆+ ⊗ (∆+)∗)⊕ (∆− ⊗ (∆−)∗)⊕ (∆+ ⊗ (∆−)∗)⊕ (∆− ⊗ (∆+)∗),

so the +1-eigenspace is (∆+ ⊗ (∆+)∗)⊕ (∆− ⊗ (∆+)∗) = ∆⊗ (∆+)∗.

In Section 3.1, results involving the groups Spinc(n) were complexified and equipped

with involutive orientifold actions. In a similar manner, it is neccesary to complexify the

above definitions and results involving real Clifford modules. In regards to this, it is im-

portant to note that the complexification ∆⊗ C is an irreducible module for Cl8k. This is a

non-trivial fact which depends on the representation theory of Clifford algberas. Also, in

dimensions 8k, the complexified volume element ω⊗ id is the same as the volume element

that is conventionally used to grade complex Clifford modules [63, p. 34].

Definition 3.28. Define the following

1. (Λc(R
n), κε) := (Λ(Rn)⊗C, id⊗ κε) with the even/odd grading.

2. (Cln, κε) := (Cln ⊗C, id⊗ κε) graded by α⊗ id

3. (Cl±8k, κε) := (Cl8k ⊗C, id⊗ κε) graded by ω⊗ id

4. (∆±c , κε) := (∆⊗C, id⊗ κε) graded by ω⊗ id.

Complexifying Example 3.22, Proposition 3.26, and Corollary 3.27 provides correspond-

ing results, in the setting of orientifolds.

Example 3.29. (Λc(R
n), κε) ' (Cln, κε) as graded Cln-modules.

Proposition 3.30. (∆c, κε)⊗̂(∆c, κε) ' (Cl8k, κε) as (Cl8k, κε)⊗̂(Cl8k, κε)-modules.

Corollary 3.31. (∆c, κε)⊗ (∆+
c , κε)∗ ' (Cl+8k, κε).

Having considered the Clifford modules that will form their model fibres, it is now pos-

sible to define the orientifold spinor bundles.
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Definition 3.32. Let P → Fr(V) be an orientifold-Spinc-structure, and define the following

orientifold bundles:

The orientifold spinor bundle /S := P×(Spinc(n),κε) (Cln, κε),

The reduced orientifold spinor bundle /S := P×(Spinc(n),κε) (∆c, κε).

Note that if one disregards the orientifold action, then an orientifold spinor bundle is

a complex spinor bundle in the usual sense. In the case of the reduced orientifold spinor

bundle, ∆c is an irreducible module for Cl8k, as mentioned above. This implies that, disre-

garding the orientifold action, the reduced orientifold spinor bundle is a reduced complex

spinor bundle.

Example 3.33 (The canonical reduced orientifold spinor bundle over a point). Using Lemma

3.17 it is possible to construct a (Spinc, κε)-structure P → Fr(V), for the adjoint representa-

tion V of (Z2, id)nκε Spinc(n). If dim(V) = 8k, then the irreducible Cln-module ∆ can be

used to construct a canonical reduced spinor bundle /S → pt over the point orientifold.

Example 3.34 (The canonical reduced orientifold spinor bundle over S8k). By Lemma 3.18,

each sphere Sn has a canonical (Z2, id) nκε Spinc(n)-equivariant (Spinc, κε)-structure. If

dim(V) = 8k, then the irreducible Cln-module ∆ can be used to construct a canonical re-

duced spinor bundle /S → S8k over the 8-dimensional sphere. This construction is an adap-

tation, to the orientifold setting, of the Real equviariant spinor bundle defined on S8k by

Atiyah [4, p. 128].

The space of sections of the orientifold spinor bundle carries an action by sections of an

orientifold Clifford bundle Cl(V). When a (Spinc, κε)-structure P → Fr(V) exists, the orientifold

Clifford bundle can be expressed as an associated bundle

Cl(V) := P×Adc
(Spinc(n),κε) (Cln, κε)

of P, and this characterisation can be used to define Clifford multiplication on sections of the

spinor bundle. In what follows, consider sections of associated bundles to be represented

by equivariant maps from the principal bundle P of an underlying (Spinc, κε)-structure P →
Fr(V) into the semi-equivariant fibre, as in Lemma 1.44.

Proposition 3.35. Sections ϕ ∈ Γ(Cl(V)) of the orientifold Clifford bundle act from the left on the

sections ψ ∈ Γ(/S) of the orientifold spinor bundle by

(ϕψ)(p) = ϕ(p)ψ(p).

This action is well-defined and satisfies γ(ϕψ) = (γϕ)(γψ).
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Proof. Multiplication is well-defined, as

(ϕψ)(pg) = ϕ(pg)ψ(pg) = (g−1ϕ(p)g)(g−1ψ(p)) = g−1ϕ(p)ψ(p) = g−1(ϕψ)(p).

Compatibility with the orientifold actions is verified using Lemma 1.44,

(γ(ϕψ))(p) = γ(ϕψ)(γ−1p)

= γ(ϕ(γ−1p)ψ(γ−1p))

= (γϕ(γ−1p))(γψ(γ−1p))

= (γϕ)(p)(γψ)(p)

= ((γϕ)(γψ))(p).

Sections of the orientifold Clifford bundle act on sections of the reduced orientifold

spinor bundle in the same way. One can also check that the Clifford multiplication be-

tween sections of the orientifold Clifford bundle is well-defined and compatible with the

orientifold action.

Because the orientifold spinor bundle has (Cln, κε) as its model fibre, it carries a right

action by elements of Cln. This right action is sometimes described as a multigrading [46,

pp. 379-380].

Proposition 3.36. An element ϕ ∈ Cln acts from the right on sections ψ ∈ Γ(/S) by

(ψϕ)(p) = ψ(p)ϕ.

For γ ∈ Γ , this action satisfies γ(ψϕ) = (γψ)(γϕ).

Proof. Consider ϕ as a constant section of the trivial orientifold bundle P ×id
(G,θ) (Cln, κε).

The right action is well-defined,

(ψϕ)(pg) = ψ(pg)ϕ(pg) = g−1ψ(p)ϕ(p) = g−1(ψϕ)(p).

It is also compatible with the orientifold actions,

(γ(ψϕ))(p) = γ(ψϕ)(γ−1p)

= γ(ψ(γ−1p)ϕ(γ−1p))

= (γψ(γ−1p))(γϕ(γ−1p))

= (γψ)(p)(γϕ)(p)

= ((γψ)(γϕ))(p).
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Similar considerations show that there is also a right action of Cln on Cl(V) which is

compatible with their orientifold actions.

The relationships between Clifford modules determined by Example 3.22 and Proposi-

tion 3.26 induce relationships between the corresponding orientifold spinor bundles.

Lemma 3.37. Let V → X be a real equivariant vector bundle over an orientifold X. The complexifi-

cation of the exterior algebra bundle for V forms an orientifold bundle

Λc(V) := Fr(V)×(SO(n),id) (Λc(R
n), κε).

The isomorphism of graded Clifford modules Λ(Rn) ' Cln, of Example 3.22, induces an isomor-

phism Λc(V) ' Cl(V) compatible with orientifold actions on Λc(V) and Cl(V).

Proposition 3.38. Let V → X be an 8k-dimensional real equivariant vector bundle over an orien-

tifold X, and P → Fr(V) be a (Spinc, κε)-structure for V . The following relationships exist between

the associated bundles Cl(V), /S and /S,

Cl(V) ' /S ⊗ /S∗ /S(V) ' /S� (∆∗c , κε).

Proof. Using Proposition 3.26, the Clifford bundle decomposes,

Cl(V) = P×Adc
(Spinc(n),κε) (Cl8k, κε) = P×Adc

(Spinc(n),κε) ((∆c, κε)⊗ (∆∗c , κε)) = /S ⊗ /S∗,

Similarly, the spinor bundle decomposes,

/S = P×(Spinc(n),κε) (Cl8k, κε) = P×(Spinc(n),κε) ((∆c, κε)⊗ (∆∗c , κε)) = /S� (∆∗c , κε).

Corollary 3.39. /S ⊗ (/S+)∗ ' Cl+(V).

3.3 Connections in Orientifold Spinor Bundles

In order to define an orientifold Dirac operator, a semi-equivariant connection 1-form is

needed for the semi-equivariant principal (Spinc(n), κε)-bundle P of the (Spinc, κε)-structure

P → Q underlying the orientifold spinor bundle. Such a form can be obtained by using

Proposition 3.13 to extend the lifting ϕ : P → Q to a lifting P → Q×X L, where L is a semi-

equivariant principal (U(1), κε)-bundle. A semi-equivariant connection form can then be

constructed onQ×X L using Proposition 1.49, and lifted to P using the relationship between

the Lie algebras spinc(n) and so(n)⊕ u(1). In the next proposition, q denotes the square map

of Diagram (3.1).
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Proposition 3.40. The map

(Adc × q)∗ : spinc(n) = spin(n)⊕ u(1)→ so(n)⊕ u(1)

is an isomorphism, and satisfies

(Adc × q)∗ ◦ (id× κε)∗ = (id× κε)∗ ◦ (Adc × q)∗.

Proof. That (Adc × q)∗ is an isomorphism is a standard result [37, p. 18-20,29]. The isomor-

phism can be written down explicitly by making the following identifications

1. so(n) can be identified with the real n × n skew-symmetric matricies. A basis for

the skew-symmetric matricies is defined by {Eij | 1 ≤ i < j ≤ n} where Eij is the n× n

matrix with all entries equal to 0 except for the (i, j)th and (j, i)th entry, which are

equal to 1 and −1 respectively.

2. spin(n) can be identified with the linear subspace Λ2 ⊂ Cln spanned by the elements

{eiej | 1 ≤ i < j ≤ n}, see [37, p. 18].

3. u(1) can be identified with R.

With these identifications, (Adc × q)∗ is the map

(Adc × q)∗ : spin(n)⊕ u(1)→ so(n)⊕ u(1)

(eiej, t) 7→ (2Eij, 2t),

see [37, pp. 19-20,29]. Also, the Γ -actions on spin(n)⊕ u(1) and so(n)⊕ u(1) are

(id⊕ κε)∗ : spin(n)⊕ u(1)→ spin(n)⊕ u(1) (id⊕ κε)∗ : so(n)⊕ u(1)→ so(n)⊕ u(1)

(eiej, t) 7→ (eiej, ιε(t)) (Eij, t) 7→ (Eij, ιε(t)),

where ιε : R → R is the involutive action induced by ι : t 7→ −t ∈ R. Examining these

maps, it is clear that (Adc × q)∗ ◦ (id× κε)∗ = (id× κε)∗ ◦ (Adc × q)∗.

Proposition 3.41. Let ϕQ : P → Q be a (Spinc, κε)-structure. The semi-equivariant principal

bundle P carries a Γ -semi-equivariant connection 1-form.

Proof. By Proposition 3.13, there exists a lifting

ϕQ ×ϕL : P → Q×X L

by Adc×q, where L is a semi-equivariant principal (U(1), κε)-bundle. The equivariant prin-

cipal bundle Q has an equivariant connection 1-form ωQ : TQ → so(n) determined by an
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equivariant metric. The semi-equivariant principal bundle L has a semi-equivariant con-

nection 1-form ωL : TL → u(1) constructed by applying Proposition 1.49 to any choice of

connection 1-form for L. Together, these two connection 1-forms define a semi-equivariant

connection 1-form

ωQ ⊕ωL : T(Q×X L)→ so(n)⊕ u(1).

Using the (Spinc, κε)-structure ϕ and Proposition 3.40, the connection 1-form ωQ ⊕ωL can

be lifted to a connection 1-form

ω : TP → spinc(n)

v 7→ (Adc × q)−1∗ ◦ (ωQ ⊕ωL) ◦ (ϕQ ×ϕL)∗(v).

The semi-equivariance ofω follows from the semi-equivariance ofωQ⊕ωL, and the equiv-

ariance of (ϕQ ×ϕL)∗ and (Adc × q)∗.

The next proposition shows that the connection 1-form constructed by Proposition 3.41

defines a covariant derivative on the orientifold spinor bundle that is equivariant with re-

spect to the action of Γ . In this proposition, sections will be considered as maps ψ : P → Cln

satisfying ψ(gp) = g−1ψ(p), and will be acted on by the Γ -action defined in Lemma 1.44.

From the point of view of the exterior covariant derivative, these maps are order zero ten-

sorial forms ψ ∈ Λ0(P, Cln). For the details of tensorial forms and exterior covariant deriva-

tives, see [37, §B.3-4] [62, §II.5].

Proposition 3.42. Let ϕ : P → Q be a (Spinc, κε)-structure. The semi-equivariant connection

1-formω, defined on P by Proposition 3.41, determines an exterior covariant derivative

dω : Λ0(P, Cln)→ Λ1(P, Cln)

that satisfies the condition

dω(κε(γ) ◦ψ ◦ ηγ−1) = κε(γ) ◦ dωψ ◦ (ηγ−1)∗,

where ψ ∈ Λ0(P, Cln), η is the Γ -action on P, and κε is the conjugation action on Cln.

Proof. The vertical projection associated to the connection formω is defined by

πV |p := (Rp)∗ ◦ω : TPp → TPp.

Therefore, the exterior covariant derivative can be written as

dωψ(v) = dψ ◦ πH(v) = dψ(v) − dψ ◦ πV(v) = dψ(v) − dψ ◦ (Rp)∗ ◦ω(v), (3.6)
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where v ∈ TPp, ψ ∈ Λ0(P, Cln), and πH is the horizontal projection. The first term of the

decomposition (3.6) is equivariant, as the properties of the exterior derivative imply that

d(κε(γ) ◦ψ ◦ ηγ−1) = κε(γ) ◦ dψ ◦ (ηγ−1)∗.

The semi-equivariance of P implies the identity (ηγ)∗ ◦ (Rp)∗ = (Rγp)∗ ◦ (θγ)∗. Together with

the the semi-equivariance ofω, this implies that

d(κε(γ) ◦ψ ◦ ηγ−1) ◦ (Rp)∗ ◦ω = κε(γ) ◦ dψ ◦ (ηγ−1)∗ ◦ (Rp)∗ ◦ω

= κε(γ) ◦ dψ ◦ (Rγ
−1p)∗ ◦ (θγ−1)∗ ◦ω

= κε(γ) ◦ dψ ◦ (Rγ
−1p)∗ ◦ω ◦ (ηγ−1)∗.

Therefore, the second term of the decomposition (3.6) is also equivariant.

Proposition 3.42 applies equally well to the reduced orientifold spinor bundle if Cln is

replaced with ∆c.

As in the non-equivariant case, the exterior covariant derivative is also equivariant with

respect to the right action of Cln on the orientifold spinor bundle.

Proposition 3.43. Let ϕ : P → Q be a (Spinc, κε)-structure. The semi-equivariant connection

1-formω, defined on P by Proposition 3.41, determines an exterior covariant derivative

dω : Λ0(P, Cln)→ Λ1(P, Cln)

that satisfies

dω(ψϕ) = dω(ψ)ϕ,

for ψ ∈ Λ0(P, Cln) and ϕ ∈ Cln.

3.4 Dirac Operators on Orientifolds

At this stage, all of the preliminary constructions have been completed. It is now possible to

construct the orientifold Dirac operator and reduced orientifold Dirac operator.

Definition 3.44. Let ∇L denote the connection associated to a (Spinc, κε)-structure P →
Fr(TM) by Proposition 3.41, and µ denote Clifford multiplication by sections of T ∗M '

TM ⊂ Cl(TM). Define the following orientifold operators:

The orientifold Dirac operator /D := µ ◦ ∇L : Γ(/S)→ Γ(T ∗M⊗ /S)→ Γ(/S),

The reduced orientifold Dirac operator /D := µ ◦ ∇L : Γ(/S)→ Γ(T ∗M⊗ /S)→ Γ(/S).
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The orientifold Dirac operator and reduced orientifold Dirac operator are complex Dirac

operators, in the usual sense. However, they are equivariant with respect to the orientifold

actions on their spinor bundles. Thus, when ε : Γ → Z2 is non-trivial, they have anti-linear

symmetries.

Proposition 3.45. The orientifold Dirac operator is equivariant with respect to the left action of Γ

on sections of /S,

/D(γψ) = γ/D(ψ).

Proof. This follows from Propositions 3.35 and 3.42.

The same arguments show that the reduced orientifold spinor bundle is also Γ -equivariant.

In addition to Γ -equivariance, the orientifold Dirac operator is equivariant with respect to

the right action of (Cln, κε) on the orientifold spinor bundle.

Proposition 3.46. The orientifold Dirac operator is equivariant with respect to the right action of

Cln on sections of /S,

/D(ψϕ) = /D(ψ)ϕ.

Proof. This follows from Propositions 3.36 and 3.43.

Note, in particular, that left and right equivariance together imply that the index of /D

consists of vector spaces which are both Clifford modules and orientifold representations of

(Γ , ε).

The main aim of this thesis is now complete, and the following theorem has been proved.

Theorem 3.47. Any orientifold (X,σ) with W(Γ ,ε)
3 (X,σ) = 0 carries an orientifold Dirac operator.

If dim(X) = 8, then X also carries a reduced orientifold Dirac operator. In particular, a reduced Real

Dirac operator exists on any 8-dimensional Real manifold (X,σ) such thatW(Z2,id)
3 (X,σ) = 0.
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Chapter 4

The K-theory of Orientifold Bundles

The aim of this chapter is to prove the Bott periodicity and Thom isomorphism theorems in

orientifold K-theory, and to provide context for the investigation of orientifold K-homology

in later chapters. Orientifold K-theory is a bigraded cohomology theory. Like KR-theory, it

has two periodicity theorems. These can be proved by adapting Atiyah’s proofs of period-

icity for equivariant KR-theory to the setting of orientifolds [4]. Atiyah’s proofs construct

an inverse to the periodicity homomorphism using index maps associated to families of

elliptic operators. In doing so, they tie together many ideas from index theory, and fore-

shadow constructions that will be described in Chapters 5 and 6 on K-homology. Together,

the periodicity theorems imply that, up to isomorphism, an orientifold has eight orientifold

K-theory groups. Combining 8-fold periodicity with results on (Spinc, κε)-orientibility from

Section 3.1 produces an 8-fold Thom isomorphism in orientifold K-theory.

4.1 Orientifold K-theory

As with equivariant K-theory [75, §3], orientifold K-theory can be defined in terms of com-

plexes of bundles. Using this definition, it is possible to deal more directly with locally

compact orientifolds and to characterise the symbol of an elliptic orientifold operator as a

class in orientifold K-theory. The set of representative complexes can be reduced so that

each class is represented by a length-1 complex [6, §II]. Rather than describing this reduc-

tion, the definition of orientifold K-theory below will be made directly in terms of length-1

complexes.

Definition 4.1. Let X be a locally compact Hausdorff orientifold. A length-1 complex is a

homomorphism E0
σ→ E1 of orientifold bundles over X. The support supp(σ) of such a

complex is the set of x ∈ X such that the restriction σ|x : E0|x → E1|x is not an isomorphism.
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Definition 4.2. Two complexes E0 σ→ E1 and F0
ρ→ F1 over an orientifold X are isomorphic if

there exist isomorphisms ϕ0 : E0 → F0 and ϕ1 : E1 → F1 such that the diagram

E0
σ //

ϕ0

��

E1

ϕ1

��

F0
ρ
// F1

commutes.

Definition 4.3. A pair (X,A) of orientifolds consists of a locally compact orientifold X and a

closed Γ -invariant subspace A ⊆ X. A homomorphism f : (Y,B) → (X,A) between two pairs

of orientifolds is a proper homomorphism of orientifolds f : Y → X such that f(B) ⊆ A.

Definition 4.4. Let (X,A) be a pair of orientifolds. The set L(Γ ,ε)(X,A) consists of isomor-

phism classes of complexes E0 σ→ E1 such that supp(σ) is a compact subset of X \A.

The operations on orientifold bundles, defined in Section 2.5, induce operations on com-

plexes.

Definition 4.5. Let (E0i
σi→ E1i ) ∈ L(Γ ,ε)(X,A), (F0i

ρi→ F1i ) ∈ L(Γ ,ε)(Y,B) and f : (Y,B) → (X,A)

be a homomorphism. In addition, let (G0i
ϑi→ G1i ) ∈ L(Γ ,ε)(Vi,Ci), where πi : Vi → Z is

either an orientifold bundle or a real equivariant vector bundle over a compact orientifold

Z. Define the following operations.

1. pullback

f∗(E0
σ→ E1) := (f∗σ : f∗E0 → f∗E1) ∈ L(Γ ,ε)(Y,B)

2. direct sum

(E00
σ0→ E10)⊕ (E01

σ1→ E11) := (σ0 ⊕ σ1 : E00 ⊕ E01 → E10 ⊕ E11) ∈ L(Γ ,ε)(X,A)

3. external tensor product

(E0
σ→ E1)� (F0

ρ→ F1)

:= (

σ� 1 −1� ρ∗

1� ρ σ∗ � 1

 : (E0� F0)⊕ (E1� F1)→ (E1� F0)⊕ (E0� F1))

∈ L(Γ ,ε)(X× Y, (A× Y)∪ (X× B)).

4. multiplication

(G00
ϑ0→ G10) · (G01

ϑ1→ G11) := ∆∗((G
0
0
ϑ0→ G10)� (G01

ϑ1→ G11))

∈ L(Γ ,ε)(V0 ⊕ V1, (C0 × V1)∪ (C1 × V0)|Z⊂Z×Z),

where ∆∗ is restriction to the diagonal Z ⊂ Z× Z.
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The orientifold K-groups can be defined by introducing an equivalence relation on the

semi-group (L(Γ ,ε)(X,A),⊕).

Definition 4.6. Two complexes (E00
σ0→ E10), (E

0
1

σ1→ E11) ∈ L(Γ ,ε)(X,A) are

1. homotopic (E00
σ0→ E10) ≈ (E01

σ1→ E11) if there exists an element

(E0
σ→ E1) ∈ L(Γ ,ε)(X× [0, 1],A× [0, 1])

such that σ0 ' σ|X×{0} and σ1 ' σ|X×{1}.

2. equivalent (E00
σ0→ E10) ∼ (E01

σ1→ E11) if there exist isomorphisms F00
ρ0→ F10 and F01

ρ1→ F11 of

orientifold bundles over X such that

(E00
σ0→ E10)⊕ (F00

ρ0→ F10) ≈ (E01
σ1→ E11)⊕ (F01

ρ1→ F11).

Definition 4.7. The orientifold K-theory groups are defined by

K(Γ ,ε)(X,A) := L(Γ ,ε)(X,A)/ ∼ K
p,q
(Γ ,ε)(X,A) := K(Γ ,ε)(X×Rp,q,A),

where Rp,q := Rp ⊕Rq is equipped with the involutive action ιp,q : (x,y)→ (x,−y).

For convenience, set the notation

K
p,q
(Γ ,ε)(X) :=


K
p,q
(Γ ,ε)(X, ∅) when X is compact

K
p,q
(Γ ,ε)(X

+, {∞}) when X is locally compact,

where∞ is the point at infinity in the one-point compactification X+. Note that when X is

compact, any pair of vector bundles E0 and E1 defines a class

[E0] − [E1] := [E0
z→ E1] ∈ Kp,q

(Γ ,ε)(X),

where z is the zero map.

The operations on complexes, defined in Definition 4.5, induce corresponding opera-

tions on classes in orientifold K-theory. In particular, multiplication of complexes induces a

K(Γ ,ε)(X)-module structure

K(Γ ,ε)(X)× K(Γ ,ε)(B)→ K(Γ ,ε)(B)

on the orientifold K-theory group of a Γ -equivariant vector bundle B → X, which may be

real or complex. The different types of Bott periodicity and Thom isomorphisms are all of

the form

K(Γ ,ε)(X)→ K(Γ ,ε)(B)

x 7→ bx,
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where bx is module multiplication of x with a special class in b ∈ K(Γ ,ε)(B). Each Bott

or Thom map corresponds to a different choice of bundle B and class b. The following

examples define various classes corresponding to Bott and Thom maps. These classes are

described using characterisations that will be useful later in this chapter, when it is proved

that the Bott and Thom maps are isomorphisms.

Example 4.8. Let W be an orientifold representation. Then W and its exterior algebra Λ•W

can be considered as orientifold bundles over a point, and Λ•W can be pulled back overW,

π∗Λ•W

��

Λ•W

��

W
π // pt.

From this starting point, associated Bott and Thom classes can be defined.

1. the equivariant Bott class λWpt ∈ K(Γ ,ε)(W) associated to the orientifold representationW

is the class of the complex

σ|ξ : π
∗ΛevenW|ξ → π∗ΛoddW|ξ

ω 7→ ξ∧ω− ξ∗
¬
ω,

where ξ ∈ W and ω ∈ π∗ΛevenW|ξ. Note that although W is not compact, σ is an

isomorphism away from the zero-section pt ⊂W, which is compact.

2. the equivariant Bott class of a trivial orientifold bundle X ×W → X over a compact

orientifold X is defined by

λWX := (f× id)∗(λWpt ) ∈ K(Γ ,ε)(X×W),

where f : X→ pt is the map to the point orientifold.

3. the (1, 1)-Bott class is the equivariant Bott class

λ
(Cn,κε)
X ∈ K(Γ ,ε)(X× (Cn, κε)) =: Kn,n

(Γ ,ε)(X),

associated to the orientifold representation (Ck, κε).

4. the (1, 1)-Thom class of an orientifold bundle E→ X is

λ := q(λ
(Cn,κε)
Fr(E) ) ∈ K(Γ ,ε)(E),

where q is the canonical map

q : K(Γ ,ε)n(U(n),κε)(Fr(E)× (Cn, κε))→ K(Γ ,ε)(Fr(E)×(U(n),κε) (C
n, κε)) = K(Γ ,ε)(E).
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Example 4.9. Let V be a real 8k-dimensional representation of (Γ , ε) that factors through the

group Z2nκε Spinc(8k). Then V can be considered as a real equivariant vector bundle over

a point, and the reduced orientifold spinor bundle /S over a point can be constructed, see

Example 3.33. The spinor bundle /S can be pulled back over V

π∗/S

��

/S

��

V
π // pt

and used to define Bott and Thom classes.

1. the equivariant Bott class βV
pt
∈ K(Γ ,ε)(V) associated to the real representation V is the

class of the complex

σ|ξ : π
∗/S+|ξ → π∗/S−|ξ

ψ 7→ ξ ·ψ,

where ξ ∈ V andψ ∈ π∗/S+|ξ. As in the previous example, this map is an isomorphism

away from the compact zero-section pt ⊂ V .

2. the equivariant Bott class of a trivial real equivariant vector bundle X× V → X over a

compact orientifold X is defined by

βV
X
:= (f× id)∗(βV

pt
) ∈ K(Γ ,ε)(X× V),

where f : X→ pt is the map to the point orientifold.

3. the 8-fold Bott class is the equivariant Bott class

β(R8k,idε)
X

∈ K(Γ ,ε)(X× (R8k, idε)) =: K8k,0
(Γ ,ε)(X)

associated to the trivial real representation (R8k, idε).

4. the 8-fold Thom class of a real equivariant vector bundle V → X with dim(V) = 8k and

W
(Γ ,ε)
3 (V) = 0 is

β := q(β(R8k,idε)
P

) ∈ K(Γ ,ε)(V),

where P → Fr(V) is a (Spinc, κε)-structure for V , and q is the canonical map

q : K(Γ ,ε)n(Spinc(n),κε)(P× (R8k, idε))→ K(Γ ,ε)(P×(Spinc(n),κε) (R
8k, idε)) = K(Γ ,ε)(V).

In order to prove that the Bott and Thom maps are isomorphisms, it will also be necce-

sary to consider the images of some of the classes from Examples 4.8 and 4.9 under maps on

orientifold K-theory induced by compactification.
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Example 4.10. There is an inclusion

K(Γ ,ε)(W) ' K(Γ ,ε)(P(W ⊕C), P(W)) ⊂ K(Γ ,ε)(P(W ⊕C)),

where P(W) denotes the projective space ofW. The image of λWpt under this inclusion is the

class

λpt :=
⊕
i even

[H]i[π∗ΛiE] −
⊕
i odd

[H]i[π∗ΛiE],

where H is the dual of the tautological line bundle on P(W) [3, p. 100].

Example 4.11. The one point compactification of V defines an inclusion

K(Γ ,ε)(V) = K(Γ ,ε)(S
8k,∞) ⊂ K(Γ ,ε)(S

8k),

and the image of βV
pt

under this inclusion is the class

[(/S+)∗] + [(/S+)∗∞],

where /S is the canonical reduced orientifold spinor bundle on S8k that was defined in Ex-

ample 3.34,∞ ∈ S8k is the fixed point at infinity, and (/S+)∗∞ is the trivial bundle with fibre

(/S+)∗∞. These two classes will be denoted by β := [(/S+)∗] and β∞ := [(/S+)∗∞].

4.2 The Symbol Class of an Elliptic Orientifold Operator

Using the characterisation of K-theory in terms of complexes allows K-theory classes to be

associated to elliptic operators via their principal symbol. For simplicity, attention will be

restricted to first order differential operators D : Γ(E) → Γ(F) on an manifold X. Over an

open subset Ua ⊂ X, such an operator has the form

(Dψ)(x) =

n∑
j

Aja(x)(
∂

∂xj
ψ)(x) +Ba(x)ψ(x),

where the Aja and Ba are matrix valued functions on Ua. Using the Fourier transform, dif-

ferentiation may be replaced by multiplication, resulting in the pseudodifferential operator

Dψ(x) =

∫
ei(x−y)·ξpa(x, ξ)ψ(y)dydξ+Ba(x)ψ(x),

where

pa(x, ξ) = i
∑
j

Aja(x)ξ
j. (4.1)

The maps pa transform consistently under coordinate changes, producing a well-defined

section

σ(D) ∈ Γ(E∗ ⊗ F⊗ T ∗X) ' Γ(End(E, F)⊗ T ∗X).
69



The section σ(D) is called the principal symbol of D. If σ(D)x(v) ∈ End(Ex, Fx) is an isomor-

phism, for all x ∈ X and non-zero v ∈ TxX, then D is said to be elliptic.

In the case that D is a G-equivariant operator D : (E,ηE)→ (F,ηF) over a G-space (X,σ),

the principal symbol defines an equivariant section

σ(D) ∈ Γ
(
(F,ηF)⊗ (E,ηE)∗ ⊗ (T ∗X,dσ)

)
.

However, due to the factor of i in (4.1), the principal symbols of operators with anti-linear

symmetries satisfy a slightly different equivariance condition. This fact was noticed by

Atiyah and Singer, and lead to the development of KR-theory [2, §5] [10]. The next re-

sult identifies the principal symbol of an orientifold operator as an equivariant section of an

orientifold bundle.

Proposition 4.12. The principal symbol σ(D) of an equivariant first-order pseudodifferential oper-

ator D : E→ F between orientifold bundles defines an equivariant section of the orientifold bundle

(F,ηF)⊗ (E,ηE)∗ ⊗ (T ∗X, ιεdσ),

where ιε is the involutive action induced by negation.

Proof. The equivariance condition for the symbol of a locally defined equivariant operator

between E and F can be computed using Lemma 1.47. First the orientifold bundles E and F

are expressed as semi-equivariant associated bundles

E := Fr(E)×(GL(m1,C),κε) (C
m1 , κε) F := Fr(F)×(GL(m1,C),κε) (C

m2 , κε).

Then, taking trivialisations and cocycles as in Lemma 1.47, the equivariance condition is

n∑
j

Aja(x)
( ∂
∂xj
ψa

)
(x) +Ba(x)ψa(x)

= κε(γ−1) ◦φFba,γ ◦ h−1a (x)

· κε(γ−1)
(∑

j

A
j
b ◦ hba(x) ·

∂

∂yj

(
φE,−1
ba,γ ◦ h

−1
a ◦ hab · κε(γ) ◦ψa ◦ hab

)
◦ hba(x)

)
+ κε(γ−1) ◦φFba,γ ◦ h−1a (x)

· κε(γ−1)
(
B
j
b ◦ hba(x) ·φ

E,−1
ba,γ ◦ h

−1
a ◦ hab(x) · κε(γ) ◦ψa(x)

)
.
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Applying the Leibniz Rule and discarding lower-order terms produces the expression

n∑
j

Aja(x)
( ∂
∂xj
ψa

)
(x)

= κε(γ−1) ◦φFba,γ ◦ h−1a (x)

· κε(γ−1)
(∑

j

A
j
b ◦ hba(x) ·φ

E,−1
ba,γ ◦ h

−1
a (x) · κε(γ) ◦

( ∂
∂yj

ψa ◦ hab
)
◦ hba(x)

)
=
∑
j

κε(γ−1)

(
φFba,γ ◦ h−1a (x) ·Ajb ◦ hba(x) ·φ

E,−1
ba,γ ◦ h

−1
a (x)

)
·
( ∂
∂yj

ψa ◦ hab
)
◦ hba(x).

If Hba is the Jacobian of hba this becomes

∑
j

κε(γ−1)

(
φFba,γ ◦ h−1a (x) ·Ajb ◦ hba(x) ·φ

E,−1
ba,γ ◦ h

−1
a (x)

)
·Hba(x) ·

( ∂
∂xj
ψa

)
(x).

Thus, the the matrix coefficients Aj satisfy

∑
j

Aja(x) =
∑
j

κε(γ−1)

(
φFba,γ ◦ h−1a (x) ·Ajb ◦ hba(x) ·φ

E,−1
ba,γ ◦ h

−1
a (x)

)
·Hba(x).

However, the principal symbol of the operator consists of the maps iAja(x), which satisfy

∑
j

iAja(x) =
∑
j

iκε(γ−1)

(
φFba,γ ◦ h−1a (x) ·Ajb ◦ hba(x) ·φ

E,−1
ba,γ ◦ h

−1
a (x)

)
·Hba(x)

=
∑
j

κε(γ−1)

(
φFba,γ ◦ h−1a (x) · iAjb ◦ hba(x) ·φ

E,−1
ba,γ ◦ h

−1
a (x)

)
· ιε(γ−1)Hba(x).

In view of Lemma 1.46, a collection of matrix valued maps satisfying this condition defines

an equivariant section of the orientifold bundle (F,ηF)⊗ (E,ηE)∗ ⊗ (TX, ιεdσ)∗.

Proposition 4.12 implies that the principal symbol of an elliptic operator defines an ori-

entifold K-theory class.

Proposition 4.13. The principal symbol of a first order elliptic orientifold operator defines an element

[σ(D)] ∈ K(Γ ,ε)(TX, ιεdσ).

Proof. By Proposition 4.12, σ(D) defines a homomorphism Ex → Fx for each ξ ∈ TXx. As

D is elliptic, this map is an isomorphism for all non-zero ξ. The zero section of TX is dif-

feomorphic to X, which is compact. Thus, σ(D) is a complex and represents a class in

K(Γ ,ε)(TX, ιεdσ).

Conversely, each class in K(Γ ,ε)(TX, ιεdσ) is of the form [σ(D)] for some elliptic orientifold

operator D. This operator is clearly not unique. However, the index of any such operator
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will define the same class in the orientifold K-theory of a point. This will be discussed

further in the next section.

Proposition 4.13 generalises the observation that lead to the development of KR-theory.

The complexification of a real elliptic operator D : E→ F defines a Real elliptic operator

D⊗ id : (E⊗C, id⊗ κ)→ (F⊗C, id⊗ κ).

By Proposition 4.13, the symbol of this operator forms a class

[σ(D)] ∈ K(Z2,id)(TX, ιε) = KR(TX, ι).

Thus, if one wishes to retain information about the reality of the operator whilst considering

the symbol of its complexification, it is neccesary to deal with KR-theory. This is significant

when constructing topological indicies of the type used in the index theorem for families

of real elliptic operators [10]. It is important to note that although the index theorem for

families of real operators is stated in terms of KO-theory, the proof is given in terms of KR-

theory. Thus, the theorem can also be applied to Real operators [10, Remark p. 5]. Similarly,

the method is described in [63, III.16] for computing the Clifford index of a real Clifford

linear operator, using the families index theorem for real operators, also applies to Real

Clifford linear operators. Using this method, it is possible to compute the Clifford index

of the orientifold Dirac operator when (Γ , ε) = (Z2, id). When applied to the real Clifford

linear Dirac operator, this Clifford index provides the Atiyah-Milnor-Singer invariant of a

Spin-manifold. Thus, applying this method to the orientifold Dirac operator for the orien-

tifold group (Z2, id) yields an Atiyah-Milnor-Singer invariant for Real spaces X satisfying

W
(Z2,id)
3 (X) = 0.

4.3 Index Maps in Orientifold K-theory

Recall the following basic facts about bounded linear operators T : H1 → H2 between Hilbert

spaces. Each operator T has a kernel, image, and cokernel defined respectively by

ker(T) := {h ∈ H1 | T(h) = 0} , im(T) := {T(h1) ∈ H2 | h1 ∈ H1} , coker(T) := H2 \ im(T).

If the kernel and cokernel of T are finite dimensional, then it is said to be a Fredholm operator.

Each Fredholm operator has a well-defined index,

ind(F) := dim(ker(F)) − dim(coker(F)).

By Atkinson’s theorem, this is equivalent to the criteria that F be invertible modulo com-

pact operators [63, p.192]. If F : H1 → H2 is a Fredholm operator which is equivariant with
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respect to orientifold actions on H1 and H2, then its kernel and cokernel are finite dimen-

sional orientifold representations. The formal difference of these orientifold representations

defines a class in the orientifold K-theory of a point. This class is taken to be the orientifold

index.

Definition 4.14. The orientifold index of a Fredholm orientifold operator F : H → H is the

class

ind(F) := [ker(F)] − [coker(F)] ∈ K(Γ ,ε)(pt).

Standard results from the theory of elliptic operators show that every elliptic pseudodif-

ferential operator extends to a bounded operator between Hilbert spaces, and has an inverse

modulo compact operators called a parametrix. There are many such extensions, however

the index does not depend on which extension is chosen [63, III.5,III.7]. Thus, an elliptic op-

erator has a well-defined index. Given an elliptic orientifold operator D : Γ(E) → Γ(F), the

orientifold actions on E and F can be extended to unitary/anti-unitary orientifold actions on

the associated Hilbert spaces. Any extension of D is equivariant with respect to the corre-

sponding unitary/anti-unitary orientifold actions. The orientifold index of D is defined as

the orientifold index of any extension.

The key property of the usual index map is stability under continuous deformation.

This result is proved for operators which are equivariant with respect to linear actions in

[63, III.7, III.9]. The same arguments made there hold for orientifold operators and result in

the following theorem for the index of an elliptic orientifold operator.

Theorem 4.15. The orientifold index ind(D) ∈ K(Γ ,ε)(pt) of an elliptic orientifold operator D de-

pends only on the orientifold K-theory class [σ(D)] ∈ K(Γ ,ε)(TX, ιεdσ) of its principal symbol.

Because the index map is well-defined at the level of the symbol class in K-theory, its

interaction with operations in K-theory can be examined. Given an elliptic operator D on X

and an orientifold bundle B on X, let DB be an elliptic operator with principal symbol

σ(DB) = σ(D)⊗ idB ∈ Γ
((

(F,ηF)⊗ B
)
⊗
(
(E,ηE)⊗ B

)∗ ⊗ (TX, ιεdσ)∗
)

.

Such an operator will be refered to as an operator with coefficients in B. By Theorem 4.15, the

index class ind(DB) ∈ K(Γ ,ε)(pt) depends only on [σ(DB)], and not on the specific operator

DB chosen. Using this construction, one can define a map from the orientifold K-theory of X

into the orientifold K-theory of a point.
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Definition 4.16. Let D : E → F be an elliptic orientifold operator over X. The index map

associated to D is the K(Γ ,ε)(pt)-module homomorphism defined by

indD : K(Γ ,ε)(X)→ K(Γ ,ε)(pt)

[B] 7→ ind(DB).

Two computations of the index map, related to the elements λ and β, are particularly

important for the proofs of the Thom isomorphisms. The first of these is the evaluation of

the index map associated to the Dolbeault operator over (CPn, κε) on the class λ. This com-

putation is connected with the (1, 1)-Thom isomorphism because (CPn, κε) is the projective

compacification of the model fibre (Cn, κε) for an orientifold bundle.

Lemma 4.17. The index map associated to the Dolbeault operator

∂̄+ ∂̄∗ : Ω(0,even)(CPn, κε)→ Ω(0,odd)(CPn, κε)

applied to the compactification of the (1, 1)-Bott class λpt is equal to the class of the trivial one-

dimensional orientifold representation,

ind∂̄+∂̄∗(λ) = [C, κε] ∈ K(Z2,id)n(U(n),κε)(pt).

Proof. The orientifold action on the bundlesΩ(0,even)(CPn, κε)⊗ λ andΩ(0,odd)(CPn, κε)⊗ λ

is an involutive action obtained from their Real structure. Thus, it is only neccesary to carry

out the calculation in the Real case, and this was done in [4, pp. 122-123, 126-127]. The proof

proceeds by using the Hodge decomposition for Kähler manifolds [20, Thm. 7.2, §I.7] to

relate ker((∂̄+ ∂̄∗)λ) to cohomology with coefficients in λ. These cohomology groups are

then computed using vanishing theorems due to Kodaira [47, Ch. 18].

Another important index computation is associated to the element β, and the reduced

orientifold Dirac operator on a sphere of dimension 8k. A canonical reduced orientifold

spinor bundle, and orientifold Dirac operator, always exist on the spheres of dimension 8k,

due to Lemma 3.18. The spheres S8k are relevant to the 8-fold Thom isomorphism as S8k can

be regarded as the one-point compactification of the model fibre R8k for a real equivariant

vector bundle of dimension 8k. As noted in Section 3.2, the restriction to dimension 8k is

necessary in order to construct the reduced spinor bundle, and is related to the representa-

tion theory of real Clifford algebras.

Lemma 4.18. The index map associated to the positive part

/D+ : Γ(/S+)→ Γ(/S−)
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of the orientifold Dirac operator over S8k applied to the compactification of the 8-fold Bott class β
pt

is

equal to the class of the trivial one-dimensional orientifold representation,

ind/D+(β + β∞) = (C, κε) ∈ K(Z2,id)nκεSpinc(n)(pt).

Proof. Several reductions can be made. First note that ind/D+(β∞) = 0 because β∞ is trivial

and /D+ is self-adjoint. Next, the decomposition /S(V) ' /S ⊗ (∆c, κε) provided by Proposi-

tion 3.38 implies that, in dimension 8k, /D = /D(∆c,κε). Because (∆c, κε) is trivial this implies

that ind/D+ = ind /D+ . Furthermore, Corollary 3.39 and Lemma 3.37 imply

/S ⊗ (/S+)∗ ' Cl+(V) ' Λ+(V)⊗C,

so that ind(/D+
β ) can be identified with the index of

(d+ d∗)+ ⊗ id : Λ+(TS8k)⊗C→ Λ−(TS8k)⊗C,

where Λ± denotes grading by ω. A section in the kernel or cokernel of (d+ d∗)+ ⊗ id is the

complexification of section in the kernel of

(d+ d∗) : Λ(TS8k)→ Λ(TS8k)

that is invariant under ω. The kernel of d+d∗ can be computed using the self-adjointness of

d+ d∗ followed by the Hodge isomorphism theorem for Riemannian manifolds [20, p. 20]

[53, Thm 3.41],

ker(d+ d∗) = ker(d+ d∗)2 ' H•dR(S8k) '


R for p = 0, 8k

0 otherwise ,

where H•dR(S
8k) is the de Rham cohomology of S8k. Thus, ker(d+ d∗) is the span of two sec-

tions,ψ0 ∈ Λ0(TS8k) andψ8k ∈ Λ8k(TS8k). The grading operator interchangesΛ8k(TS8k) and

Λ0(TS8k). Without loss of generality, assume that ψ8k = ωψ0. The subspace of ker(d+ d∗)

that is invariant under ω is then spanned by the single section ψ = 1
2(ψ

0 + ωψ0). Complex-

ifying this section and taking into account the anti-linear action on /S+ ⊗ β proves that

ind/D+(β + β∞) = [C, κε] ∈ K(Z2,id)nκεSpinc(n)(pt)

as required.

In order to prove Bott periodicity, it will be neccesary to extend the preceeding discussion

of the index map to equivariant families of elliptic operators. In the orientifold setting, a

family of operators acts between orientifold bundles E and F over an orientifold Y . The
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orientifold Y is required to be a fibre bundle π : Y → X with an equivariant projection map.

This makes the bundles E and F into fibre bundles over X, where each fibre Ex := E|π−1(x) is

a vector bundle over Yx := π−1(x). Similarly, a section ψ of E or F decomposes into a family

of sections ψx := ψ|Yx ∈ Γ(Ex). A family of operators D is then an assignment of operators

Dx : Γ(Ex)→ Γ(Fx)

to each x ∈ X in a continuous manner. Such a family of operators acts on a family of sections

by (Dψ)x := Dxψx. The orientifold actions on E and F induce actions on sections in the

usual manner, (γψ)(y) := γψ(γ−1y) for y ∈ Y . Equivariance of the family of operators D is

then interpreted to mean that D(γψ) = γ(Dψ).

Taking further advantage of the stability properties of the index, it is possible to define

an index

ind(D) ∈ K(Γ ,ε)(X)

associated to an equivariant family D of elliptic operators parameterised by an orientifold X.

Naı̈vely, one can understand the index of a family D by noting that, for each x ∈ X, the kernel

ker(Dx) defines a vector space over the point x ∈ X. The idea is then that, because the family

of operators varies continuously, the vector spaces ker(Dx) might combine to form a vector

bundle over X. If the same were true for coker(Dx), then the resulting pair of vector bundles

would define a class in K(X). Equivariance of D would imply that these vector bundles are

orientifold bundles, and so define a class ind(D) ∈ K(Γ ,ε)(X). This idea cannot be applied

directly because, even when varying x continuously, the dimension of the vector spaces

ker(Dx) and coker(Dx) can change. However, the K-theory class [ker(Dx)] − [coker(Dx)] of

the index is more stable than the kernel or cokernel alone. Thus, a procedure exists for

modifying the family of operators D to give another equivariant family of operators D̃ such

that the dimensions of ker(D̃x) and coker(D̃x) are constant in x. There are some choices

involved in the construction of D̃, however it can be shown that the index is independent

of these. Thus, a well-defined index ind(D̃) can be associated to any equivariant family

D parameterised by a compact orientifold. In the non-equivariant setting, the following

lemma holds [63, Lemma III.8.4, pp. 206-207].

Lemma 4.19. Let D be a continuous family of elliptic operators parameterised by a compact Haus-

dorff space X. There exists a finite set of sections {ϕi ∈ Γ(F) | 1 ≤ i ≤ N} such that the map

D̃x : Γ(Ex)⊕CN → Γ(Fx)

(ψ, z1, · · · , zN) 7→ Dx(ψ) +
∑

zjϕj|x
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is surjective for all x ∈ X. The vector spaces ker(D̃x) have constant dimension and combine to form

the fibres of a vector bundle ker(D̃) over X. The class

[ker(D̃)] − [CN] ∈ K(X)

depends only on the original operator D.

An equivariant version of this result is proved in [76]. The corresponding result for ori-

entifold operators asserts the existence of finite set of sections {ϕi ∈ Γ(F) | 1 ≤ i ≤ N} which

are equivariant with respect to the orientifold action on F, and that make the operators

D̃x : Γ(Ex)⊕ (CN, κε)→ Γ(Fx)

(ψ, z1, · · · , zN) 7→ Dx(ψ) +
∑

zjϕj|x

surjective. The family D̃ is then equivariant and its index [ker(D̃)] − [(CN, κε)] ∈ K(Γ ,ε)(X) is

well-defined. As in the non-equivariant case, it can be shown that this class is independent

of the sections ϕi chosen.

Definition 4.20. Let E and F be orientifold bundles over a family of orientifolds Y → X,

where X is a compact. The index of an equivariant family of elliptic operators D : E → F is

defined by

ind(D) := [kerD̃] − [(CN, κε)] ∈ K(Γ ,ε)(X).

Using this index, an index map can be defined by analogy with Definition 4.16. A family

of elliptic operators D defines a family of principal symbols σ(Dx). If B→ Y is an orientifold

bundle, then the restrictions Bx := B|Yx form a family of vector bundles parameterised by

X. The corresponding symbols and bundles can be twisted together to form a new family of

symbols σ(Dx)⊗ idBx . These symbols define a new family DB of elliptic operators param-

eterised by X. If D is equivariant, then DB is also equivariant. This leads to the following

definition, which generalises Definition 4.16.

Definition 4.21. The index map associated to an equivariant family D of elliptic operators

between orientifold bundles parameterised by X is defined by

indD : K(Γ ,ε)(Y)→ K(Γ ,ε)(X)

B 7→ ind(DB).

It can be shown that indD is a K(Γ ,ε)(X)-module homomorphism so that

indD(yx) = indD(y)x,
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for all D, x ∈ K(Γ ,ε)(Y) y ∈ K(Γ ,ε)(X).

Index maps associated to families of operators will be used to construct inverses to the

Bott periodicity maps. In order to do this, it will be neccesary to construct equivariant fami-

lies of operators parameterised by a given orientifold X. This can be done by taking a prod-

uct family of operators as follows. Suppose that D : Γ(E) → Γ(F) is an elliptic orientifold

operator over an orientifold M. Let Y := X×M be the product orientifold, and denote the

component projections by πX : X×M→ X and πM : X×M→M. The map πX makes Y into

a family of orientifolds. The orientifold bundles E and F can be pulled back to orientifold

bundles E = π∗ME and F = π∗MF over Y . A family of operators Dx : Γ(Ex) → Γ(Fx) can then

be defined by identifying Ex with E, Fx with F, and setting Dx := D for all x. Such a family

is always equivariant, regardless of the action on X.

By constructing a product family of operators and taking its index map, it is possible to

associate an index map

indDX : K(Γ ,ε)(X×M)→ K(Γ ,ε)(X)

to any orientifold operator D over M, and any compact orientifold X. These maps are func-

torial in X, in the sense that if f : Y → X is a map of orientifolds then

f∗ ◦ indDX = indDY ◦(f× id)∗.

Applying this construction to the operators ∂̄+ ∂̄∗ and /D+ on complex projective space

and the sphere of dimension 8k produces maps

ind∂̄+∂̄
∗

X : K(Z2,id)n(U(n),κε)(X×CPn)→ K(Z2,id)n(U(n),κε)(X) (4.2)

ind/D+

X : K(Z2,id)n(Spinc(n),κε)(X× S
8k)→ K(Z2,id)n(Spinc(n),κε)(X). (4.3)

The orientifold groups for these index maps are fixed. However, further flexibility can be

introduced by noting that a homomorphismϕ : (Γ ′, ε ′)→ (Γ , ε) of orientifold groups makes

an orientifold (M, τ) for (Γ , ε) into an orientifold (M, τ ◦ ϕ) for (Γ ′, ε ′), and that if D is an

(Γ , ε)-equivariant orientifold operator over M, then it is also (Γ ′, ε ′)-equivariant orientifold

operator over (M, τ ◦ϕ). Thus, given a single (Γ , ε)-equivariant orientifold operatorD over

(M, τ), it is possible to construct index maps

indDX : K(Γ ′,ε ′)(X× (M, τ ◦ϕ))→ K(Γ ′,ε ′)(X),

for all homomorphisms ϕ : (Γ ′, ε ′)→ (Γ , ε) and compact orientifolds X acted on by (Γ ′, ε ′).

Applying this construction to ∂̄+ ∂̄∗ and /D+ produces maps

ind∂̄+∂̄
∗

X : K(Γ1,ε1)(X×CPn)→ K(Γ1,ε1)(X) (4.4)

ind/D+

X : K(Γ2,ε2)(X× S
8k)→ K(Γ2,ε2)(X), (4.5)
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for any action of (Γ1, ε1) on CPn that acts through a homomorphism to (Z2, id)nκε U(n),

and any action of (Γ2, ε2) on S8k that acts through a homomorphism to (Z2, id)nκε Spinc(n).

The index maps (4.4) and (4.5) will be used to construct inverses to the Bott and Thom

maps. The next proposition collects together the results and observations from this section

that will be required for the proof of equivariant Bott periodicity.

Proposition 4.22. The homomorphisms

indDX : K(Γ ,ε)(X×M)→ K(Γ ,ε)(X)

satisfy

f∗ ◦ indX = indY ◦(f× id)∗ indX(yx) = indX(y)x,

for all elliptic orientifold operatorsD on compact orientifoldsM, compact orientifolds X, continuous

maps f : Y → X, and orientifold K-theory classes y ∈ K(Γ ,ε)(X×M) and x ∈ K(Γ ,ε)(X). Further-

more, the maps (4.4) and (4.5) satisfy

ind∂̄+∂̄
∗

pt (λ) = [C, κε] ∈ K(Γ1,ε1)(pt),

ind/D+

pt (β + β∞) = [C, κε] ∈ K(Γ2,ε2)(pt),

where [C, ε] is the class of the trivial one-dimensional orientifold bundle.

4.4 Functoriality and Index Pairings in Orientifold K-theory

In this section, it will be shown that the various properties collected in Proposition 4.22 are

enough to prove that the index maps (4.4) and (4.5) provide two-sided inverses to the Bott

periodicity maps. The method used closely follows [4]. To deal with the two separate cases

at once, it is helpful to abstract the discussion. To this end, define the following objects

which will be used throughout this section:

1. A representation V of (Γ , ε). This may be either an orientifold representation or a real

representation.

2. A distinguished class bpt ∈ K(Γ ,ε)(pt× V).

3. For each compact orientifold X, a class defined by

bX := (f× id)∗(bpt) ∈ K(Γ ,ε)(X× V),

where f : X→ pt.
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4. Multiplication maps

BX : K(Γ ,ε)(X)→ K(Γ ,ε)(X× V)

x 7→ bXx,

associated to the classes bX.

5. Homomorphisms

AX : K(Γ ,ε)(X× V)→ K(Γ ,ε)(X)

which satisfy

f∗ ◦AX = AY ◦ (f× id)∗ AX(yx) = AX(y)x Apt(bpt) = [C, κε] ∈ K(Γ ,ε)(pt),

for all continuous maps f : Y → X, y ∈ K(Γ ,ε)(X× V) and x ∈ K(Γ ,ε)(X).

A short series of results will be used to shown that the maps BX and AX are two-sided

inverses to one another. First, the maps AX are extended.

Lemma 4.23 (cf. [4, Lemma 1.2]). Let W be an orientifold representation or a real representation

of (Γ , ε). The homomorphisms AX extend to homomorphisms

AX×W : K(Γ ,ε)(X×W × V)→ K(Γ ,ε)(X×W)

satisfying

1. for all continuous maps f : Y → X

f∗ ◦AX×W = AY×W ◦ (f× id)∗

2. for all y ∈ K(Γ ,ε)(X×W × V), x ∈ K(Γ ,ε)(X× Z),

AX×W×Z(yx) = AX×W(y)x ∈ K(X×W × Z),

where Z is either an orientifold representation or a real representation of (Γ , ε).

Proof. Suppose that X is locally compact. For non-compact X, K(Γ ,ε)(X) := ker(i∗) where

i : pt → X+ is the inclusion of the point at infinity. The maps A can then be extended to

include maps AX : K(Γ ,ε)(X× V) → K(Γ ,ε)(X) by observing that the square on the right side

of the following diagram commutes due to the functoriality property of A.

0 // K(Γ ,ε)(X× V) //

AX

��

K(Γ ,ε)(X
+ × V) (i×id)∗

//

AX+

��

K(Γ ,ε)(V) //

Apt

��

0

0 // K(Γ ,ε)(X) // K(Γ ,ε)(X
+)

i∗ // K(Γ ,ε)(pt) // 0
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Replacing X by X×W in the above diagram defines the extension

AX×W : K(Γ ,ε)(X× V ×W)→ K(Γ ,ε)(X×W).

of AX. This extension of A inherits the functoriality property. It remains to check that the

extension of A satisfies the stated module homomorphism property.

LetX and Y be compact, and πX : X×Y → X πY : X×Y → Y be the coordinate projections.

Consider the following diagram of orientifold K-theory groups1

K(X× V)⊗ K(Y)
(πX×id)∗⊗π∗Y//

AX⊗id
��

K(X× Y × V)⊗ K(X× Y) �//

AX×Y⊗id
��

K((X× Y × V)× (X× Y))∆∗// K(X× Y × V)

AX×Y
��

K(X)⊗ K(Y)
π∗X⊗π∗Y // K(X× Y)⊗ K(X× Y) � // K((X× Y)× (X× Y)) ∆∗ // K(X× Y).

The square on the left commutes by the functoriality property of A. The module homomor-

phism property implies that the square on the right commutes. Simplifying the composition

of horizontal maps in the above diagram results in the commutative diagram

K(Γ ,ε)(X× V)⊗ K(Γ ,ε)(Y)
� //

AX⊗id
��

K(Γ ,ε)(X× Y × V)

AX×Y
��

K(Γ ,ε)(X)⊗ K(Γ ,ε)(Y)
� // K(Γ ,ε)(X× Y).

This diagram induces a corresponding diagram for locally compact X and Y. Then, replacing

Xwith X×W and Y with X× Z produces a diagram

K(Γ ,ε)(X× V ×W)⊗ K(Γ ,ε)(X× Z)
� //

AX×W⊗id
��

K(Γ ,ε)(X× X× V ×W × Z)
∆∗ //

AX×X×W×Z
��

K(Γ ,ε)(X× V ×W × Z)

AX×W×Z
��

K(Γ ,ε)(X×W)⊗ K(Γ ,ε)(X× Z)
� // K(Γ ,ε)(X× X×W × Z)

∆∗ // K(Γ ,ε)(X×W × Z),

where ∆ is restriction to the diagonal in X. The commutivity of this diagram proves the

required module homomorphism property.

The next lemma will help to show that if A is a one-sided inverse to B, then it is a

two-sided inverse.

Lemma 4.24 (cf. [4, Remark p. 116]). If x,y ∈ K(Γ ,ε)(X× V) then

xy = yx̃ = ỹx ∈ K(Γ ,ε)(X× V × V),

where u 7→ ũ is the automorphism of K(Γ ,ε)(X× V) induced by (x, v) 7→ (x,−v).

Proof. Define the maps

1in this diagram K denotes K(Γ ,ε). The subscript (Γ , ε) has been suppressed to save space.
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θ : X× V × V → X× V × V

(x, v,w) 7→ (x,w, v),

ϑ : X× V × V → X× V × V

(x, v,w) 7→ (x, v,−w).

The map θ satisfies θ∗(xy) = yx ∈ K(Γ ,ε)(X× V × V). Thus,

ỹx = θ∗ ◦ ϑ∗(xy) xy = id(xy) yx̃ = ϑ∗ ◦ θ∗(xy).

The family of maps

rt : X× V × V → X× V × V

(x,u, v) 7→ (x,u cos t− v sin t, v cos t+ u sin t).

is an equivariant homotopy between the maps

r−π2 = θ∗ ◦ ϑ∗ r0 = id rπ
2
= ϑ∗ ◦ θ∗.

Note that this homotopy is still equivariant when V is an orientifold representation because

the coefficients cos t and sin t are real. The existence of a homotopy implies that the above

maps induce the same map on K-theory, proving the lemma.

Lemmas 4.23 and 4.24 can be now be used to show that A and B are two-sided inverses

to one another.

Theorem 4.25 (c.f. [4, Prop. 1.5]). The maps

BX : K(Γ ,ε)(X)→ K(Γ ,ε)(X× V) AX : K(Γ ,ε)(X× V)→ K(Γ ,ε)(X)

are tw-sided inverses to one another for all X.

Proof. First, note that

AX(bX) = AX ◦ (f× id)∗(bpt) = f
∗ ◦Apt(bpt) = f

∗ ◦ [C, κε]

where f : X→ pt. Then, as AX is a K(X)-module homomorphism,

AX ◦BX(x) = AX(bXx) = AX(bX)x = [C, κε]x = x,

for x ∈ K(X). Therefore, by Lemmas 4.23 and 4.24,

BX ◦AX(y) = AX(y)bX = AX×V(ybX) = AX×V(bXỹ) = AX(bX)ỹ = [C, κε]ỹ = ỹ,

for y ∈ K(X× V). As y 7→ ỹ is an automorphism, BX and AX are isomorphisms that are

inverse to one another.
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4.5 Bott Periodicity and Thom isomorphisms

The development in Sections 4.3 and 4.4 followed the methods of [4] very closely. In [4] the

elliptic operators method was applied in the Real equivariant setting. However, the small

change in perspective, from the Real equivariant setting to the orientifold setting, means

that the next theorem can accomodate the case in which Γ− does not contain an involution,

cf. [4, Theorems 5.1, 6.2]. The various Bott periodicity and Thom isomorphism theorems

will be proved as consequences of this theorem.

Theorem 4.26 (Equivariant Bott Periodicity for Orientifolds.). The maps

K(Γ ,ε)(X)→ K(Γ ,ε)(X×W) K(Γ ,ε)(X)→ K(Γ ,ε)(X× Z)

x 7→ λWX x x 7→ βZ
X
x,

are isomorphisms, for any orientifold representation W, and real representation Z of dimension 8k

that acts through a homomorphism to Z2nκ Spinc(8k).

Proof. To prove the first result, Theorem 4.25 is applied with V =W, and b = λ. The map A

is taken to be

ind∂̄+∂̄
∗

X ◦i : K(Γ ,ε)(X×W)→ K(Γ ,ε)(X×P(W ⊕ (C, κε)))→ K(Γ ,ε)(X),

where i is the map induced by the fibrewise projective compactification of the trivial orien-

tifold bundle X× (W ⊕ (C, κε)) → X. Because (Γ , ε) acts on W by unitary and anti-unitary

operators, ∂̄+ ∂̄∗ is equivariant with respect to the induced (Γ , ε)-action on P(W ⊕ (C, κε)).

Thus, the index maps ind∂̄+∂̄
∗

X can be constructed. By Proposition 4.22, the map ind∂̄+∂̄
∗

X ◦i

has all of the properties required of A. Thus, by Theorem 4.25 it is a two-sided inverse to

the map x 7→ λx, proving that it is an isomorphism.

Similarly, to prove the second result, Theorem 4.25 is applied with V = Z, and b = β.

The map A is taken to be

ind/D+

X ◦j : K(Γ ,ε)(X× V)→ K(Γ ,ε)(X× S(V ⊕R))→ K(Γ ,ε)(X),

where j is the map induced by the fibrewise one-point compactification of the trivial real

equivariant bundle X × V → X. If (Γ , ε)-acts on V via Z2 nκ Spinc, then the operator /D

on S(V ⊕R) is equivariant, and so the index map can be constructed. When dimV = 8,

Proposition 4.22, shows that the map ind/D+

X ◦i has all of the properties required of A. Thus,

by Theorem 4.25 it is a two-sided inverse to the map x 7→ βx, proving that it is an isomor-

phism.
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The (1, 1) and 8-fold periodicity theorems can now be proved as special cases of equiv-

ariant periodicity, by applying Theorem 4.26 to the appropriate representations.

Theorem 4.27 ((1, 1)- and 8-fold Bott Periodicity for Orientifolds). The maps

K(Γ ,ε)(X)→ Kn,n
(Γ ,ε)(X) K(Γ ,ε)(X)→ K8k,0

(Γ ,ε)(X)

x 7→ λ
(Cn,κε)
X x x 7→ β(R8k,idε)

X
x,

are isomorphisms.

Proof. Apply Theorem 4.26 withW = (Cn, κε) and Z = (R, idε).

Bott periodicity shows that all of the information in orientifold K-theory is captured by

eight orientifold K-theory groups.

Corollary 4.28. If p− q = nmod 8, then Kp,q
(Γ ,ε)(X) ' K

n,0
(Γ ,ε)(X).

Combining Theorem 4.26 with the semi-equivariant associated bundle construction pro-

duces a (1, 1)-Thom isomorphism.

Theorem 4.29 (The (1, 1)-Thom Isomorphism). If π : E→ X is an orientifold bundle, then

BE : K(Γ ,ε)(X)→ K(Γ ,ε)(E)

x 7→ λx,

is an isomorphism.

Proof. Apply Theorem 4.26 with the Bott element λ
(Cn,κε)
Fr(E) ,

K(Γ ,ε)(X) ' K(Γ ,ε)n(U(n),κε)(Fr(E))

' K(Γ ,ε)n(U(n),κε)(Fr(E)× (Cn, κε)) ' K(Γ ,ε)(Fr(E)×(U(n),κε) (C
n, κε)) ' K(Γ ,ε)(E).

The final theorem of this chapter is the 8-fold Thom isomorphism in orientifold K-theory

for a real equivariant vector bundle V . Once again, the idea is to combine a semi-equivariant

associated bundle construction with Theorem 4.26. Given any orientifold group (Γ , ε), the

homomorphism

(Γ , ε)nκε Spinc(8k)→ Z2nκ Spinc(8k)

(γ,ϕ) 7→ (ε(γ),ϕ),
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defines the correct representation on the model fibre (R8k, idε). This means that the total

space of the principal bundle carries an action of (Γ , ε)nκε Spinc(8k), making it a Γ -semi-

equivariant principal (Spinc(8k), κε)-bundle. Thus, in order to prove the 8-fold Thom iso-

morphism V must have a (Spinc, κε)-structure. In this way, Theorem 4.26, which adapts

Atiyah’s 8-fold Real equivariant periodicity theorem [4, p. 130] to the orientifold setting, is

complemented by the work done earlier on semi-equivariance and (Spinc, κε)-structures. It

is now possible to prove the 8-fold Thom isomorphism.

Theorem 4.30 (The 8-fold Thom Isomorphism). If V → X is an 8-dimensional real equivariant

vector bundle over an orientifold X andW(Γ ,ε)
3 (V) = 0, then the map

BE : K(Γ ,ε)(X)→ K(Γ ,ε)(V)

x 7→ βx

is an isomorphism.

Proof. Corollary 3.11 implies that V has a (Spinc, κε)-structure P → Fr(V). The isomorphism

is then proved by applying Theorem 4.26 with the equivariant Bott element β(R8k,idε)
P

,

K(Γ ,ε)(X) ' K(Γ ,ε)n(Spinc(8k),κε)(P)

' K(Γ ,ε)n(Spinc(8k),κε)(P× (R8k, idε)) ' K(Γ ,ε)(P×(Spinc(8k),κε) (R
8k, idε)) ' K(Γ ,ε)(V).
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Chapter 5

Analytic K-homology for Orientifolds

Before defining the KK-theory of orientifolds, it is helpful to start with a short discussion

of KK-theory in the non-equivariant setting. In the previous chapter, the proof of the Thom

isomorphism was based around the observation that elliptic operators are closely related to

K-theory via their principal symbols and index maps. On the one hand, elliptic operators

are dual to K-theory classes in the sense that an elliptic operator D on X defines an index

map from K(X) to the integers

indD : K0(X)→ K0(pt) ' Z.

This point of view leads to the construction of an analytic K-homology theory, dual to K-

theory, in which classes are represented by elliptic operators. On the other hand, it is possi-

ble to represent a K-theory class as the index

ind(D) ∈ K0(X)

of a family D of elliptic operators parameterised by X. This is a manifestation of the Atiyah-

Jänich theorem, which states that the space of Fredholm operators is a classifying space for

K-theory [3, §A] [50]. These characterisations of K-homology and K-theory can be gener-

alised, from functors on the category of topological spaces to functors from the category of

C∗-algebras, by using an abstracted notion of elliptic operator. Abstract elliptic operators

were first introduced by Atiyah [5], and were used to define the analytic K-homology of

C∗-algebras1 by Kasparov [56, 57]. Kasparov then combined the C∗-algebraic definitions of

K-theory and K-homology into groups KK(A,B) that depend on a pair of C∗-algebras A,B

[57, 58, 59] [60, p. 101]. Classes in KK(A,B) are represented by Kasparov modules, which

1the K-homology groups of a C∗-algebra can also be defined via extensions of C∗-algebras. This viewpoint is

due to Brown, Douglas, and Fillmore [25, 23, 24].

86



can be regarded as abstract families of elliptic operators. The analytic K-homology and the

topological K-theory of a compact topological space X can be recovered from the KK-functor

as

KK(C(X), Clj) = Kj(X) KK(Clj,C(X)) ' Kj(X),

where Kj(X) is the analytic K-homology of X, and the isomorphism KK(Clj,C(X)) → Kj(X)

is a families index map related to the Atiyah-Jänich theorem for the space of Clifford linear

Fredholm operators [9] [63, p. 222]. An important feature of KK-theory is the presence of a

product structure

KK(A,B)⊗̂KK(B,C)→ KK(A,C),

known as the Kasparov product. This operation is closely related to the tensor product of

families of principal symbols that was used in Section 4.3 to define the index map associated

to a family of operators. The proof of the Thom isomorphism and other important theorems

from classical index theory can be formulated in terms of this product, and generalised to

new contexts.

In this chapter, the aim is to set down the definition of an orientifoldKK-theoryKK(Γ ,ε)(A,B)

which can accomodate the anti-linear symmetries possessed by the orientifold Dirac oper-

ator. Even in the early papers on KK-theory, the equivariant Real case was treated. Given

this generalisation, the appropriate definition of KK(Γ ,ε) is relatively clear. For the present

purposes, it will not be neccesary to define a Kasparov product for KK(Γ ,ε). Aside from Kas-

parov’s original papers, mentioned above, further references on KK-theory include [21, 52,

74]

5.1 The K-theory of Orientifold C∗-algebras

In Section 4.1, the K-theory of an orientifold was defined in terms of orientifold bundles. In

the C∗-algebraic setting, orientifolds and orientifold bundles are generalised by orientifold

C∗-algebras and finitely generated projective orientifold modules, respectively. The K-theory of

orientifold C∗-algebras can be defined using isomorphism classes of finitely generated pro-

jective orientifold modules, in place of isomorphism classes of orientifold bundles. This

section begins by defining these generalisations. Afterward, the connection to orientifolds,

orientifold bundles, and orientifold K-theory will be described. A general reference for C∗-

algebras is [32].

Definition 5.1. A graded (Γ , ε)-orientifold C∗-algebra (A, ‖ · ‖, ∗,α,χ) is a complex Banach
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∗-algebra which satisfies the C∗-identity

‖a∗a‖ = ‖a‖2, (5.1)

and is equipped with

1. an orientifold action2 α such that, for all γ ∈ Γ and a ∈ A,

γ(ab) = (γa)(γb) γ(a∗) = (γa)∗,

2. an algebra automorphism χ of A such that, for all γ ∈ Γ and a ∈ A,

χ2 = id χ(a∗) = χ(a)∗ χ(γa) = γχ(a). (5.2)

Together with the properties of the norm, the C∗-identity (5.1) implies that ‖a∗‖ = ‖a‖.

The ±1-eigenspaces of the grading automorphism χ provide a decomposition A = A0⊕A1.

An element a ∈ Ai is called homogeneous, and its degree is defined as deg(a) := i. Any

ungraded orientifold C∗-algebra (A,α) can be made into a graded orientifold C∗-algebra

(A⊕A,α⊕ α, id⊕−id), where (id⊕−id) is the grading automorphism.

Definition 5.2. A homomorphism ϕ : (A1,α1,χ1) → (A2,α2,χ2) of graded (Γ , ε)-orientifold

C∗-algebras is an algebra homomorphism satisfying

ϕ(a∗) = ϕ(a)∗ ϕ ◦ χ1 = χ2 ◦ϕ ϕ(γa) = γϕ(a).

The C∗-identity (5.1) implies that any homomorphism ϕ : A1 → A2 between C∗-algebras

satisfies ‖ϕ(a)‖ ≤ ‖a‖, making it continuous.

Graded algebras carry a graded commutator, which will be needed later to define Kas-

parov modules.

Definition 5.3. The graded commutator [·, ·] on a graded C∗-algebra A is defined on homoge-

neous elements ak ∈ A by

[a1,a2] := a1a2 − (−1)dega1 dega2a2a1.

Several of the objects examined in previous chapters give rise to orientifold C∗-algebras.

Example 5.4. Each compact orientifold (X,σ), has an associated orientifold C∗-algebra de-

fined by (C(X), κε ◦ (σ−1)∗), where

f∗ := f̄ ‖f‖ := sup
x∈X

|f(x)|.

2a linear/anti-linear action, in the sense of Definition 2.8
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Example 5.5. Each Clifford algebra Cln is a C∗-algebra when equipped with the norm and

inner product

x∗ := xt, ‖x‖ := tr(x∗x),

where tr(x) is the scalar part of x and x 7→ xt is the canonical anti-involution on Cln, see [70,

pp. 12-13]. The involutive orientifold action κε makes Cln into an orientifold C∗-algebra.

The grading automorphisms α and ω, defined in Section 3.3, produce graded orientifold

C∗-algebras (Cln, ‖ · ‖, ∗, κε, α) and (Cl8k, ‖ · ‖, ∗, κε, ω).

Example 5.6. An orientifold group (Γ , ε) defines an orientifold C∗-algebra (CΓ+, ‖ · ‖, ∗, ρ),

where CΓ+ is the group algebra of Γ+ := ker(ε), ‖ · ‖ is the operator norm associated to the

regular representation of CΓ+ on `2(Γ+), f∗(γ) = f(γ−1), and

(ρζf)(γ) := ζf(ζ
−1γζ),

for all ζ ∈ Γ . The action ρ is related to relative conjugation, see Definition 2.16. This algebra

will be used in Chapter 7.

The K-theory of a C∗-algebraA is defined in terms of finitely generated projective (f.g.p.)

modules over A. When A is an orientifold C∗-algebra, the appropriate generalisation of

an orientifold bundle is an f.g.p. module equipped with a compatible orientifold action.

The definition of an f.g.p. orientifold module is based on the definition of an equivariant

f.g.p. module [68, § 2] [21, § 11.2].

Definition 5.7. An f.g.p. orientifold module (E, λ) over an orientifold C∗-algebra (A,α) is an

A-module which can be expressed as a direct summand

E⊕ F = AN

in some free A-module AN, equipped with an action λ : Γ → L±(E) such that

λ(γ) ∈ Lε(γ)(E) γ(xa) = (γx)(γa),

for x ∈ E and a ∈ A. Here L±(E) denotes the space of bounded linear/anti-linear Banach

space operators. The topology on E is induced from its embedding as a subspace of AN.

This topology is independent of the particular embedding chosen.

Definition 5.8. A homomorphism ϕ : E → F of f.g.p. orientifold modules over (A,α) is an

A-linear map satisfying ϕ(γe) = γϕ(e).
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The set of f.g.p. orientifold modules over (A,α) will be denoted Mod(Γ ,ε)
fgp (A,α). The main

example of an f.g.p. orientifold module is provided by the space of sections of an orientifold

bundle.

Example 5.9. If E → X is an orientifold bundle, then Γ(E) with its standard action is an

f.g.p. orientifold module over (C(X), κε ◦ (σ−1)∗). To see this, note that multiplication by

functions f ∈ C(X) makes the space of sections Γ(E) of an orientifold bundle E → X into a

module over C(X). The existence of a perpendicular bundle, see Proposition 2.40, ensures

that Γ(E) is finitely generated and projective. The standard action (γs)(x) := γs(γ−1x) on

Γ(E) and the action κε ◦ (σ−1)∗ on C(X) together satisfy

(γ(sf))(x) = γ(sf)(γ−1x) = γ(s(γ−1x)f(γ−1x)) = γs(γ−1x)γf(γ−1x) = ((γs)(γf))(x).

Some basic operations on f.g.p. orientifold modules can be defined as follows.

Definition 5.10. Let (Ei, λi) ∈ Mod(Γ ,ε)
fgp (A,α), V be a orientifold representation, and ϕ :

(A,α)→ (B,β) be a homomorphism of orientifold C∗-algebras. Define,

1. the direct sum of (E1, λ1) and (E2, λ2) by

(E1, λ1)⊕ (E2, λ2) := (E1 ⊕ E2, λ1 ⊕ λ2).

2. the tensor product of V and E to be the f.g.p. orientifold module

V ⊗ E ∈ Mod(Γ ,ε)
fgp (A,α)

with the left Γ -action and right A-action

γ(v⊗ e) := (γv)⊗ (γe) (v⊗ e)a := v⊗ (ea).

3. the pushforward of E by ϕ to be the f.g.p. B-module

ϕ∗(E) := E⊗ϕ B := E⊗ B/ ∼ ∈ Mod(Γ ,ε)
fgp (B,α)

where (ea)⊗ b ∼ e⊗ (ϕ(a)b), with the left Γ -action and right B-action defined by

γ(e⊗ b) := (γe)⊗ (γb) (e⊗ b)b ′ := e⊗ (bb ′).

Direct sum makes Mod(Γ ,ε)
fgp (A,α) into a semi-group. The K-theory of (A,α) is obtained

by taking the group completion of this semi-group.

Definition 5.11. The K-theory of an orientifold C∗-algebra K(Γ ,ε)(A,α) is defined as the

group completion of the semi-group (Mod(Γ ,ε)
fgp (A,α),⊕) of isomorphism classes of finitely

generated projective orientifold modules over (A,α).
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The operations of Definition 5.10 induce maps on orientifoldK-theory, these makeK(Γ ,ε)(A,α)

into a functor from the category of C∗-algebras to the category of K(Γ ,ε)(pt)-modules.

The theory of f.g.p. modules over C∗-algebras can be viewed as a generalisation of the

theory of vector bundles over topological spaces. This interpretation is justified by the

Gelfand-Naimark and Serre-Swan theorems, see [42, p. 7, p. 59]. Using these theorems, it is

a straightforward matter to reconstruct orientifolds and orientifold bundles from orientifold

C∗-algebras and f.g.p. orientifold modules. This correspondence justifies the interpretation

of orientifold C∗-algebras and f.g.p. orientifold modules as generalised orientifolds and ori-

entifold bundles. Note that the discussion here is simplified considerably by the restriction

to finite orientifold groups, though more general cases could be treated as in the equivariant

setting, see [68, § 2]. First, consider the Gelfand-Naimark theorem.

Theorem 5.12 (Gelfand-Naimark). Let A be a commutative C∗-algebra, andM ⊆ A∗ be its space

of characters3. IfM is equipped with the restriction of the weak-∗ topology onA∗, thenM is a locally

compact topological space and the map

A→ C0(M)

a 7→ (
â : m 7→ m(a)

)
is an isometric ∗-isomorphism.

Given an arbitrary commutative orientifold C∗-algebra (A,α), its space M of characters

forms a locally compact Hausdorff space and can be equipped with the Γ -action

σγ(m) := κε(γ) ◦m ◦ αγ−1 .

This, in turn, defines a corresponding orientifold action κε ◦ (σ−1)∗ on the space of contin-

uous functions C0(M). The Gelfand-Naimark isomorphism is compatible with these orien-

tifold actions,

(κε(γ) ◦ σ∗γ−1(â))(m) = κε(γ) ◦ â ◦ σγ−1(m)

= κε(γ) ◦ (σγ−1(m))(a)

= κε(γ) ◦ κε(γ−1) ◦m ◦ αγ(a)

= m ◦ αγ(a)

= ̂(αγ(a))(m),

for γ ∈ Γ ,a ∈ A,m ∈ M. Similarly, the Serre-Swan theorem expresses a correspondence

between vector bundles and f.g.p. modules, which can be extended to a correspondence

between orientifold bundles and f.g.p. orientifold modules.
3A character of A is a homomorphism from A to C.
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Theorem 5.13 (Serre-Swan). Let X be a compact topological space. The section functor

Γ : Vect(X)→Modfgp(C(X))

from the the category of vector bundles over X to the category of finitely generated projective modules

over C(X) is an equivalence of categories.

Given an f.g.p. orientifold module (M, λ) over (C(X), κε ◦ (σ−1)∗), the Serre-Swan the-

orem implies that M = Γ(E) for some complex vector bundle E. The fibres of E can be

identified with equivalence classes of sections using the maps

αx : Ex → Γ(E)/IxΓ(E)

e 7→ [s]

where s ∈ Γ(E) is any section such that s(x) = e, and Ix = {f ∈ C(X) | f(x) = 0}. Compatibil-

ity with the module action implies that the map

λγ : Γ(E)/IxΓ(E)→ Γ(E)/IγxΓ(E)

[s] 7→ [λγ(s)]

is well-defined. Thus, the action defined by

α−1
γx ◦ λγ ◦ αx : Ex → Eγx,

makes E into an orientifold bundle.

5.2 Orientifold Hilbert modules and Hilbert Module Operators

In Section 4.3, the index of a family of elliptic operators parameterised by a compact topo-

logical space X was defined. Part of the definition involved extending each operator in the

family to a Fredholm operator between Hilbert spaces. Taken together these Hilbert spaces

form a continuous field of Hilbert spaces H parameterised by X. Such a field of Hilbert

spaces can be considered as a right module over the commutative C∗-algebra C(X), with a

multiplication defined on a family of sections ψ by

(ψf)x = f(x)ψx,

for ψx ∈ Hx. The inner products 〈·, ·〉x of the Hilbert spaces Hx combine to form a C(X)-

valued inner product, defined on families of sections by

〈ψ, ψ ′〉(x) = 〈ψx, ψ ′x〉x.
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A family of Hilbert spaces such as this, equipped with its C(X)-valued inner product, is one

of the prototypical examples of a Hilbert module. The notion of a Hilbert module formalises

the definition of a family of Hilbert spaces, and extends it to the non-commutative setting

by allowing the algebra C(X) to be replaced by a more general C∗-algebra B. By equipping

Hilbert modules with group actions, the definition of an equivariant family of operators can

also be formalised and generalised. In the orientifold setting, C∗-algebras B are replaced

with orientifold C∗-algebras (B,β), and Hilbert (B,β)-modules are equipped orientifold ac-

tions satisfying appropriate compatibility conditions.

Definition 5.14. Let B be a C∗-algebra. A pre-Hilbert B-module is a complex vector space E

equipped with a right-action of B, and a continuous B-valued inner product

〈·, ·〉 : E× E→ B,

such that

〈x, λy〉 = λ〈x,y〉 〈x,y1 + y2〉 = 〈x,y1〉+ 〈x,y2〉 〈x,yb〉 = 〈x,y〉b

〈x,y〉 = 〈y, x〉∗ 〈x, x〉 = 0 ⇐⇒ x = 0 〈x, x〉 ≥ 0,

where the condition 〈x, x〉 ≥ 0 denotes positivity in the sense of C∗-algebras, meaning that

x = yy∗ for some element y ∈ B. The additive structures on E, as a complex vector space

and as a B-module, are assumed to coincide. A pre-Hilbert module E carries both a B-valued

norm and a scalar-valued norm, defined respectively by

|x| := 〈x, x〉 12 ‖x‖ := ‖〈x, x〉‖
1
2

B .

If, in addition to the conditions above, E is complete with respect to its scalar-valued norm,

then it is refered to as a Hilbert B-module.

Definition 5.15. A homomorphism ϕ : E1 → E2 of Hilbert B-modules, is a B-linear map such

that 〈ϕ(x),ϕ(y)〉2 = 〈x,y〉1, for all x,y ∈ E1.

An orientifold Hilbert module is a Hilbert module, over an orientifold C∗-algebra (B,β),

that is equipped with an orientifold action λ. The action λ is required to be compatible with

the B-valued inner product and the orientifold action β on B.

Definition 5.16. A graded orientifold Hilbert module (E, λ,χE) over a graded orientifold C∗-

algebra (B,β,χB) is an orientifold Hilbert module E equipped with

1. an orientifold action λ : Γ → L±(E) such that

γ(xb) = (γx)(γb) 〈γx1,γx2〉 = γ〈x1, x2〉,
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2. a grading operator χE such that

χE(xb) = χE(x)χB(b) 〈χE(x),χE(y)〉 = χB(〈x,y〉) γχE(x) = χE(γx),

The ±1-eigenspaces of χE provide a decomposition E = E0⊕ E1. An element x ∈ Ei is called

homogeneous, and its degree is defined as deg(x) := i.

Definition 5.17. A homomorphism ϕ : (E1, λ1,χ1)→ (E2, λ2,χ2) of graded orientifold Hilbert-

B-modules, is a homomorphism of Hilbert-Bmodules such that, for all γ ∈ Γ , x ∈ E1,

ϕ(γx) = γϕ(x) ϕ ◦ χ1 = χ2 ◦ϕ.

Example 5.18. Let (X,σ) be an orientifold of dimension 8k with W(Γ ,ε)
3 (X,σ) = 0. Then

the L2-sections of the orientifold spinor bundle form a graded orientifold Hilbert module

(L2(X, /S), 〈·, ·〉Cl, λ, ω) over the graded orientifold C∗-algebra (Cl8k, κε, ω) where

1. the right Cl8k-action on L2(X, /S) is induced from the right action of Cl8k on /S,

2. the Cl8k-valued inner product on L2(X, /S) is defined by

〈ψ1,ψ2〉Cl :=

∫
X

tr(ψ1ψ∗2)dx.

3. the orientifold action λ is induced by the orientifold action on /S,

4. the grading operator on L2(X, /S), which will again be denoted ω, is induced from the

grading operator ω on /S.

One can easily check that the various compatibility conditions between the above actions

and maps are satisfied. If (E, τ) is an orientifold bundle, then a graded orientifold Hilbert

module (L2(X, /S⊗ E), 〈·, ·〉Cl〈·, ·〉E, λ⊗ λτ,ω⊗ id) can be defined similarly.

In the next section, it will be neccesary to consider the pushout of a Hilbert module.

Definition 5.19. Let (E, λ,χ) be a graded orientifold Hilbert module, ϕ : B→ C be a surjec-

tive homomorphism of graded orientifold C∗-algebras, Iϕ := {x ∈ E : ϕ(< x, x >) = 0} and

q : E → E/Iϕ be the quotient map. The pushout Eϕ of E is the completion of the orientifold

Hilbert C-module

E ′ϕ := E/Iϕ,

where E ′ϕ is equipped with the C-module structure and C-valued inner product defined

respectively by

q(x)ϕ(b) := q(xb) 〈q(x),q(y)〉 := ϕ(〈x,y〉).
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To illustrate the basic idea behind Hilbert module operators, consider a continuous fam-

ily F of Hilbert space operators parameterised by a compact topological space X. Given any

function f ∈ C(X) such a family satisfies

(F(ψf))x = Fx(f(x)ψx) = f(x)(Fxψx) = ((Fψ)f)x,

making F C(X)-linear. Thus, a family of operators can be considered as a C(X)-linear op-

erator between Hilbert C(X)-modules. Generalising this construction, a Hilbert B-module

operator is a B-linear operator between Hilbert B-modules. The theory of Hilbert module

operators is based on the theory of Hilbert space operators. However, the generalisation

to families of operators and then further, to B-linear operators, introduces extra subtleties.

The first step in developing the theory of Hilbert module operators is to address the issue of

adjointable operators. On a Hilbert space every bounded operator has an adjont operator.

However, this is not the case for Hilbert module operators.

Definition 5.20. Let E1 and E2 be Hilbert B-modules. The space of adjointable operators

LB(E1,E2) is the set of maps T : E1 → E2 for which there exists a map T ∗ : E2 → E1 such that

〈Tx,y〉2 = 〈x, T ∗y〉1.

One can show that every adjointable operator is a bounded B-module map, that the

adjoint T ∗ of an adjointable operator is unique, and that T ∗∗ = T . The adjoint map and

operator norm make LB(E) into a C∗-algebra [81, pp. 240-241].

Proposition 5.21. If (E, λ,χE) is a graded orientifold Hilbert module over a graded orientifold C∗-

algebra (B,β,χB). Then LB(E, λ,χE) is a graded orientifold C∗-algebra with

1. norm given by the operator norm ‖ · ‖,

2. ∗-structure given by the adjoint operation T 7→ T ∗,

3. orientifold action defined by (γT) := λγTλγ−1 ,

4. grading operator defined by χ(T) := χETχ−1E .

A homogeneous element T ∈ LjB(E) is called even if j = 0, odd if j = 1, and satisfies T(Ei) ⊆ Ei+j

for i, j ∈ Z2.

Kasparov’s KK-theory is concerned with the indicies of Hilbert module operators. Thus,

it is important to determine the set of Hilbert module operators which have a well-defined

index. On a Hilbert space, this is the set of Fredholm operators. Recall that the Fredholm op-

erators on a Hilbert space can be characterised, using Atkinson’s theorem, as those operators
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that are invertible modulo compact operators [63, p.192]. Once an appropriate generalisa-

tion of compact Hilbert module operator has been made, a similar characterisation can be

used to define Fredholm operators between Hilbert modules.

Definition 5.22. The space of compact operatorsKB(E1,E2) is the subspace ofLB(E1,E2) spanned

by operators of the form

θx,y(z) := x〈y, z〉,

where x ∈ E2 and y, z ∈ E1.

The compact operators form a two-sided ideal in LB(E1,E2) [81, pp. 242].

Definition 5.23. An operator F ∈ LB(E1,E2) is said to be Fredholm if there exists an operator

G ∈ LB(E2,E1) such that

id −GF ∈ KB(E1,E1) id − FG ∈ KB(E2,E2).

Each Fredholm operator F ∈ LB(E1,E2) has well-defined index. However, it cannot

always be taken directly. This is already the case for a family of Hilbert space Fredholm

operators, as was discussed in Section 4.3. The solution to this problem is to perturb F by a

compact operator K ∈ KB(E1,E2) to another Fredholm operator F̃ := F+ K which is regular.

Regularity ensures that the index F̃ can be taken directly. Such perturbations always exist,

and it is possible to show that any two have the same index. Thus, a Fredholm operator F has

a well-defined index given by the index of any compact perturbation to a regular operator.

Definition 5.24. An operator T ∈ LB(E1,E2) is said to be regular if there exists an operator

S ∈ LB(E2,E1) such that TST = T and STS = S.

Definition 5.25. The index of F is defined by

ind(F) := [ker(F̃)] − [ker(F̃∗)] ∈ K(Γ ,ε)(B),

where F̃ is any regular operator such that F̃ = F+K ∈ LB(E1,E2) for some K ∈ KB(E1,E2).

Further details regarding the indicies of Fredholm operators on Hilbert modules can be

found in [42, §4.3] and [81, §17].

5.3 KK-theory for Orientifold C∗-algebras

Using the definitions of the previous section, it is possible to define orientifold Kasparov

modules. As mentioned, Hilbert module operators generalise families of Hilbert space oper-

ators. Each Kasparov module is a Hilbert module equipped with a Hilbert module operator
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satisfying certain properties. These properties are analogous to those satisfied by the oper-

atorwise extension of a family of order-zero elliptic operators to a family of Hilbert space

operators. Rather than considering operators between a pair of separate Hilbert modules, a

Kasparov module organises the pair into a single graded Hilbert module. The operator for

the module is then required to be odd, so that it maps between the components of the grad-

ing. An orientifold Kasparov module is equipped with an orientifold action, and its operator

is required to satisfy an additional equivariance property. Aside from the anti-linearity of

the orientifold action, the definition is identical to that used in the usual equivariant setting

[21, §20].

Definition 5.26. Let A and B be graded orientifold C∗-algebras. An orientifold Kasparov

(A,B)-module is a triple E := ((E, λ),φ, F) such that

1. (E, λ) is a countably generated graded orientifold Hilbert B-module

2. φ : A→ LB(E) is a homomorphism of graded orientifold C∗-algebras

3. F ∈ LB(E) is an odd operator such that the operators

[F,φ(a)] (F2 − 1)φ(a) (F∗ − F)φ(a) ((γF) − F)φ(a)

are in KB(E) for all a ∈ A and γ ∈ Γ . Here [·, ·] denotes the graded commutator.

The set of orientifold Kasparov (A,B)-modules will be denoted by E(Γ ,ε)(A,B).

The conditions imposed on the operator of a Kasparov module have their origin in

Atiyah’s definition of an abstract elliptic operator [5, §2]. The property [F,φ(a)] ∈ KB(E)

generalises a property satisfied by order-zero pseudodifferential operators. The property

(F2 − 1)φ(a) ∈ KB(E) ensures that F is Fredholm, and thus has a well-defined index in

the K-theory of (B,β). This can be regarded as an abstraction of ellipticity. The proper-

ties (F∗ − F)φ(a) ∈ KB(E) and ((γF) − F)φ(a) ∈ KB(E) correspond to self-adjointness and

equivariance of the operator. These properties need only hold up to a compact operator be-

cause KK-theory is concerned with the indicies of the operators, which are invariant under

compact perturbation.

In order to define the orientifold KK-groups, some operations on orientifold Kasparov

modules are needed. These are straightforward generalisations of the operations used in

non-equivariant KK-theory, see [52, §2.1] [21, §20].

Definition 5.27. Let Ei = ((Ei, λi,χi),φi, Fi) ∈ E(Γ ,ε)(A,B), ψ : A ′ → A be a homomorphism

of graded orientifold C∗-algebras, ϕ : B → B ′ be a surjective homomorphism of graded
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orientifold C∗-algebras, Iϕ be {x ∈ E : ϕ(< x, x >) = 0}, and q : E → E/Iϕ be the quotient

map. Define the following operations on graded orientifold Kasparov modules

1. The direct sum E1 ⊕ E2 ∈ E(Γ ,ε)(A,B) is defined by

(E1,φ1, F1)⊕ (E2,φ2, F2) := (E1 ⊕ E2,φ1 ⊕φ2, F1 ⊕ F2).

2. The pullback of E by ψ is defined by

ψ∗E := ((E, λ,χ),φ ◦ψ, F) ∈ E(Γ ,ε)(A
′,B).

3. The pushout of E by ϕ is defined by

Eϕ := ((Eϕ, λϕ,χϕ),φϕ, Fϕ) ∈ E(Γ ,ε)(A,B ′),

where (Eϕ, λϕ,χϕ) is the pushout of (E, λ,χ) and

φϕ(x) := q(φ(x)) Fϕ(x) := q(F(x)).

The definition of the KK-groups is based on the realisation of K-homology and K-theory

classes via the index. For this reason, it is neccesary to identify Kasparov modules with

related indicies. This is achieved by placing equivalence relations on E(Γ ,ε)(A,B). In partic-

ular, due to the homotopy invariance of the index, Kasparov modules which are homotopic

in an appropriate sense should belong to the same class. The following equivalence relations

are a straightforward generalisation of the equivalence relations used in the non-equivariant

setting [52, §2.1] [21, §20].

Definition 5.28. Orientifold Kasparov modules Ei = ((Ei, λi,χi),φi, Fi) ∈ E(Γ ,ε)(A,B) are

1. isomorphic E1 ' E2, if there exists an isomorphism ϕ : E1 → E2 of graded orientifold

Hilbert B-modules, such that

λ2 ◦ϕ = ϕ ◦ λ1 χ2 ◦ϕ = ϕ ◦ χ2 (φ2(a)) ◦ϕ = ϕ ◦ (φ1(a)) F2 ◦ϕ = ϕ ◦ F1

2. homotopic E1 ∼h E2, if there exists a triple

W := (E,φ, F) ∈ E(Γ ,ε)(A,B⊗ (C[0, 1], κε)),

such that π0W ' E1 and π1W ' E2 where πt : B⊗ (C[0, 1], κε) → B is the evaluation

homomorphism at t, and πtW are the associated pushout modules.
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Definition 5.29. The orientifold Kasparov groups are defined by

KK(Γ ,ε)(A,B) := E(Γ ,ε)(A,B)/ ∼h

with addition given by [E1] + [E2] = [E1 ⊕ E2].

Definition 5.30. Define the analytic K-homology groups of an orientifold C∗-algebra (A,α),

and an orientifold (X,σ) by

K
j
(Γ ,ε)(A,α) := KK(Γ ,ε)((A,α), (Clj, κε))

K
(Γ ,ε)
j (X,σ) := KK(Γ ,ε)((C(X), κε ◦ (σ−1)∗), (Clj, κε)).

It is often useful to consider a form of homotopy called operator homotopy. Operator ho-

motopy varies the operator F continuously, and introduces stabilisation by degenerate Kas-

parov modules, which represent the zero class in KK(Γ ,ε)(A,B) [21, p. 148]. Operator homo-

topy implies homotopy in the sense of Definition 5.28.

Definition 5.31. An orientifold Kasparov module (E,φ, F) ∈ E(Γ ,ε)(A,B) is degenerate if

[F,φ(a)] = (F2 − 1)φ(a) = (F∗ − F)φ(a) = (γF− F)φ(a) = 0, (5.3)

for all γ ∈ Γ ,a ∈ A. The set of degenerate Kasparov modules will be denoted by D(Γ ,ε)(A,B).

Proposition 5.32. Every D ∈ D(Γ ,ε)(A,B) is homotopic to 0.

Definition 5.33. Define an equivalence relation on E(Γ ,ε)(A,B) by letting E1 ∼ E2 if there

exists a triple Ft := (E,φ, Ft), where

1. E is a graded orientifold Hilbert B-module

2. φ : A→ LB(E) is a graded homomorphism of orientifold C∗-algebras

3. Ft is a norm continuous path in LB(E) for t ∈ [0, 1],

such that F0 ' E1, F1 ' E2, and Ft ∈ E(Γ ,ε)(A,B) for all t ∈ [0, 1]. Two Kasparov mod-

ules E1, E2 ∈ E(Γ ,ε)(A,B) are said to be operator homtopic E1 ∼oh E2 if there exist degenerate

modules D1,D2 ∈ D(Γ ,ε)(A,B) such that

E1 ⊕D1 ∼ E2 ⊕D2.

Because degenerate modules are homotopic to 0, operator homotopy can be considered

as form of homotopy in which only the operator varies.

Proposition 5.34. If E1, E2 ∈ E(Γ ,ε)(A,B) are operator homotopic then they are homotopic.
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5.4 The K-homology Class of an Orientifold Dirac Operator

As discussed in the previous section, the KK-groups are modelled on order-zero elliptic

pseudo-differential operators. It is always possible to normalise a self-adjoint elliptic opera-

tor to an order-zero pseudodifferential operator in such a way that its index is preserved [46,

§10.6]. This makes it possible to associate an orientifold Kasparov module to the orientifold

Dirac operator.

Proposition 5.35. Let (X,σ) be a compact orientifold of dimension n such that W(Γ ,ε)
3 (X,σ) = 0.

An orientifold Dirac operator

/DE : Γ(/S⊗ E)→ Γ(/S⊗ E),

with coefficients in an orientifold bundle E, defines an orientifold Kasparov module

[/DE] := [F,φ,SE] ∈ KK(Γ ,ε)((C(X), κε ◦ (σ−1)∗), (Cln, κε)),

where

1. SE := (L2(X, /S⊗ E), 〈·, ·〉Cl〈·, ·〉E, λ, ω) is the Hilbert (Cln, κε, ω)-module associated to the

orientifold spinor bundle with coefficients in E, as in Example 5.18.

2. φ is the representation of (C(X), κε ◦ (σ−1)∗) on SE by multiplication operators

3. F is the normalisation of the Dirac operator /DE defined by

F := /DE(1+ /D2
E)
1
2 ∈ L(Cln,κε)(SE).

Proof. It is a standard result that the normalisation of a Dirac operator defines a class in

the analytic K-homology, see [46, Theorem 10.6.5, pg. 288]. The result applies to the orien-

tifold Dirac operator to produce a non-equivariant Kasparov module. In addition to this,

compatibility with an orientifold action is required. As mentioned in Example 5.18, SE is

an orientifold Hilbert (Cln, κε)-module with the orientifold action inhertited from /SE. In

particular, the actions of Γ and (Cln, κε) are compatible,

γ(ψϕ) = (γψ)(γϕ),

for γ ∈ Γ , ψ ∈ SE and ϕ ∈ (Cln, κε). The Γ -equivariance of /D was proved in Proposition

3.45. It is inhertied by /DE and the normalisations F, making [/DE] an orientifold Kasparov

module.
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Chapter 6

Geometric K-homology for

Orientifolds

The previous chapter described a realisation of orientifold K-homology in terms of elliptic

orientifold operators. In this chapter, a realisation Kgeo
(Γ ,ε),j(X) of orientifold K-homology will

be described in which each class is represented by a continuous equivariant map f :M→ X

from an orientifold M equipped with a (Spinc, κε)-structure and an orientifold bundle E.

The groups Kgeo
(Γ ,ε),j(X) are formed by introducing a direct sum operation, and appropriate

equivalence relations, on the set of all such maps. After applying these relations, Kgeo
(Γ ,ε),j(X)

resembles a cross between a bordism theory and K-theory, modulo an extra equivalence re-

lation that captures the structure of the 8-fold Thom isomorphism. Although the definition

of geometric orientifold K-homology makes no mention of elliptic operators, its interpre-

tation depends on the realisation of K-homology in terms of elliptic operators, and on the

proof of the 8-fold Thom isomorphism in terms of families of elliptic operators, see Chapter

4. This interpretation can be formalised by defining a map from the geometric orientifold K-

homology to the analytic orientifold K-homology. Such a map is constructed in Section 6.3.

In the usual equivariant setting, this map is an isomorphism [18], though the corresponding

proof for orientifolds will not be presented here. Geometric K-homology was first defined

by Baum and Douglas [16, 15], see also [17]. An equivariant generalisation is treated in [18].

It should be noted that, rather than being bigraded, the geometric orientifoldK-homology

groups Kgeo
(Γ ,ε),j(X) defined here are graded with respect to a single integer 0 ≤ j ≤ 7. This

simplification is justified by Corollary 4.28, which reduces the number of distinct K-groups

to eight. A bigraded approach, using Spinc(p,q)-structures, has been proposed in the Real

setting by Hekmati et al. [45]. Bigraded groups could also be defined using suspension.

However, this chapter focuses on capturing the information present at the level of K-theory,
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and then using the orientifold Dirac operator constructed in Section 3.4 to define a map into

analytic K-homology.

6.1 Operations on (Spinc, κε)-structures

Several operations on (Spinc, κε)-structures will need to be understood in order to define

the geometric K-homology of orientifolds. The first step is to prove a Two-of-Three Lemma

for (Spinc, κε)-structures. This lemma induces a (Spinc, κε)-structure on any real equivari-

ant bundle that fits into a short exact sequence with two other real equivariant bundles that

have (Spinc, κε)-structures. The Two-of-Three Lemma will be used to define further opera-

tions on (Spinc, κε)-structures. Its proof relies on basic facts regarding the groups Spinc(n)

and SO(n), and on results from Section 1.5 regarding the semi-equivariant Dixmier-Douady

class.

Lemma 6.1. There is a commutative diagram of Γ -groups

1 //

��

1

��

(U(1)×U(1), κε × κε) ν //

��

(U(1), κε)

��

(Spinc(p)× Spinc(q), κε × κε)
β
//

Adc

��

(Spinc(p+ q), κε)

Adc

��

SO(p)× SO(q)
α //

��

SO(p+ q)

��

1 // 1

where

1. ν(z, z ′) := zz ′ for z, z ′ ∈ U(1).

2. β(h,h ′) := β1(h)β2(h ′) for h ∈ Spinc(p) and h ′ ∈ Spinc(q), where β1 and β2 are the maps

defined on the standard basis elements of Rp ⊂ Clp and Rq ⊂ Clq by

β1 : Clp → Clp+q β2 : Clq → Clp+q

ei 7→ ei ei 7→ ep+i,
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3. α(g,g ′) := α1(g)α2(g ′) for g ∈ SO(p) and g ′ ∈ SO(q), where

α1 : SO(p)→ SO(p+ q) α2 : SO(q)→ SO(p+ q)

[gij] 7→
[gij] 0

0 1

 [g ′ij] 7→
1 0

0 [g ′ij]

 .

Here [aij] denotes the standard matrix representations of an element a ∈ SO(n).

Proof. The only non-trivial part of the lemma is to show that β is a homomorphism, which

amounts to showing that β1(h)β2(h ′) = β2(h
′)β1(h). Each element of β1(Spin(p)) is the

product of an even number of unit vectors (x, 0) ∈ Rp ⊕Rq ⊂ Clp+q and each element of

β2(Spin(q)) is the product of an even number of unit vectors (0,y) ∈ Rp⊕Rq ⊂ Clp+q. Due

to the relation eiej = −ejei ∈ Clp+q for i 6= j, such elements satisfy (x, 0)(0,y) = −(0,y)(x, 0).

Thus, every element of β1(Spin(p)) commutes with every element of β2(Spin(q)).

Proposition 6.2. The diagram of Lemma 6.1 induces a commutative diagram

H1(Γ ,ε)(X, (U(1), κε)× (U(1), κε))
ν1 //

��

H1(Γ ,ε)(X, (U(1), κε))

��

TC1(Γ ,ε)(X, (Spinc(p), κε)× (Spinc(q), κε))
β1
//

Adc×Adc

��

TC1(Γ ,ε)(X, (Spinc(p+ q), κε))

Adc

��

TC1(Γ ,ε)(X, (SO(p), idε)× (SO(q), idε))
α1 //

∆sc×∆sc
��

TC1(Γ ,ε)(X, (SO(p+ q), idε))

∆sc
��

H2(Γ ,ε)(X, (U(1), κε)× (U(1), κε))
ν2 // H2(Γ ,ε)(X, (U(1), κε)).

Proof. The above diagram is produced by applying Theorem 1.41 to the two central exact

sequences running vertically in the diagram of Lemma 6.1. The commutivity of the diagram

in Lemma 6.1 implies the commutivity of the top two cells in the above diagram. To see that

the bottom cell commutes, note that if

(ψ1,ψ2) ∈ TC1(Γ ,ε)(X, (Spinc(p), κε)× (Spinc(q), κε))

is a lifting by Adc ×Adc of

(φ1,φ2) ∈ TC1(Γ ,ε)(X, (SO(p), idε)× (SO(q), idε)),

then the commutivity of the middle cell implies that

β1(ψ1,ψ2) ∈ TC1(Γ ,ε)(X, (Spinc(p+ q), κε))
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is a lifting by Adc of

α1(φ1,φ2) ∈ TC1(Γ ,ε)(X, (SO(p+ q), idε)).

Together with the definition of ∆sc, and the fact that β is a homomorphism of Γ -groups, this

implies that

∆sc ◦ α1[φ1,φ2] = [∂β1(ψ1,ψ2)]

= [β2∂(ψ1,ψ2)]

= ν2 ◦ (∆sc ×∆sc)(φ1,φ2).

The last line of the calculation follows from the definition of ∆sc × ∆sc, and the fact that

β2 = ν2 as a map from1

H2(Γ ,ε)(X, (U(1), κε)× (U(1), κε)) ⊂ K2(Γ ,ε)(X, (Spinc(p), κε)× (Spinc(q), κε)).

to

H2(Γ ,ε)(X, (U(1), κε)) ⊂ K2(Γ ,ε)(X, (Spinc(p+ q), κε)).

Lemma 6.3 (Two-of-Three Lemma). Let (Γ , ε) be finite and

0→ V1 → V → V2 → 0

be an exact sequence of Γ -equivariant real vector bundles. Specifying (Spinc, κε)-structures on two

of the bundles in the sequence determines a specific (Spinc, κε)-structure on the remaining bundle.

Proof. By taking an equivariant metric on V , the sequence of bundles can be split so that

V1 ⊕ V2 ' V . The existence of a (Spinc, κε)-structure on implies orientibility, and an orien-

tation on any two of the vector bundles induces an orientation on the third. Thus, it can be

assumed that all three bundles are oriented. In this situation, there exist transition cocycles

φ1 ∈ TC1(Γ ,ε)(X, (SO(p), idε)) φ2 ∈ TC1(Γ ,ε)(X, (SO(q), idε)) φ ∈ TC1(Γ ,ε)(X, (SO(p+ q), idε)),

for V1, V2 and V respectively, such that φ1 ⊕ φ2 is equivalent to φ. Suppose that two of

the vector bundles in the sequence are equipped with specific (Spinc, κε)-structures. This

is equivalent to specifying a lifting to (Spinc, κε) for two of the three cocycles φ1,φ2 and φ.

The commutivity of the bottom cell in the diagram from Proposition 6.2 implies that

∆sc(φ) = ∆sc(φ
1)∆sc(φ

2).

1Here K2(Γ ,ε) indicates the space of 2-cochains, rather than K-theory.
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Thus, by Corollary 3.7, the remaining transition cocycle must also lift to (Spinc, κε). Corol-

lary 3.8, and the commutivity of the top cell in the diagram from Proposition 6.2, then imply

that the two initial (Spinc, κε)-liftings determine a specific (Spinc, κε)-lifting for the remain-

ing transition cocycle. This lifting determines a (Spinc, κε)-structure on the remaining vector

bundle.

Lemma 6.3, will allow the vector bundle modification and boundary induction operations

to be defined on (Spinc, κε)-structures. Vector bundle modification is defined by the next

proposition, which has two parts. The first part constructs a family of (Spinc, κε)-structures,

each one lying over a fibre in the fibrewise compactification

S(V ⊕R) := P×(Spinc(n),κε) S
n

of a (Spinc, κε)-vector bundle V := P ×(Spinc(n),κε) Rn → M. Here Spinc(n) is considered

to act on Sn via its inclusion into Spinc(n+ 1), see Lemma 3.18. Considered together, this

family of (Spinc, κε)-structures forms a (Spinc, κε)-structure for the vertical tangent bundle

P×(Spinc(n),κε) TS
n.

The significance of this construction is that a family of vertical (Spinc, κε)-structures can be

used to define a family of vertical orientifold Dirac operators. When the vector bundle V

underlying the (Spinc, κε)-structure is trivial, this family of operators is precisely the prod-

uct family of operators used to construct the inverse to the 8-fold Bott periodicity map, as

in Theorem 4.27. When the vector bundle underlying the (Spinc, κε)-structure is non-trivial,

this family of vertical Dirac operators can be used to construct an inverse for the corre-

sponding 8-fold Thom isomorphism, see Theorem 4.30. The second part of the proposition

uses the Two-of-Three Lemma to show that a (Spinc, κε)-structure on the base orientifoldM

can be combined with the vertical (Spinc, κε)-structure to form a (Spinc, κε)-structure for the

tanget space

TS(V ⊕R) = T(P×(Spinc(n),κε) S
n)

of the sphere bundle associated to V .

Proposition 6.4 (Vector bundle modification). Let M be an orientifold, and V → M be a real

equivariant vector bundle with a (Spinc, κε)-structure ϕ : P → Fr(V). Then

1. there is a (Spinc, κε)-structure

id×Adc : P×(Spinc(n),κ) Spinc(n+ 1)→ P×(Spinc(n),κ) SO(n+ 1) (6.1)

for the vertical tangent bundle P×Spinc(n) TS
n of S(V ⊕R).
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2. a (Spinc, κε)-structure on TM determines a (Spinc, κε)-structure for TS(V ⊕R).

Proof. The bundle P×(Spinc(n),κ) Spinc(n+ 1) is equipped with the left and right actions

γ(p,g) = (γp,γg) (p,g)h = (p,gh),

This should be compared with the semi-equivariant associated bundle construction of Def-

inition 1.43. That (6.1) is a (Spinc, κε)-structure for the vertical tangent bundle of S(V ⊕R)

can be be checked directly, making use of Lemma 3.18.

When TM has a (Spinc, κε)-structure, the Two-of-Three Lemma can be applied to the

decomposition

T(P×Spinc(n+1) S
n) = π∗TM⊕ (P×Spinc(n+1) TS

n),

where π is the projection for the bundle S(V ⊕ R). This determines a unique (Spinc, κε)-

structure for TS(V ⊕R).

The next two operations are used to define bordism relations betweenK-cycles. The Two-

of-Three Lemma induces (Spinc, κε)-structures on the boundary of any Spinc-orientifold

with boundary.

Proposition 6.5 (Boundary Induction). The boundary ∂W of a (Spinc, κε)-orientifold W with

boundary has a unique (Spinc, κε)-structure.

Proof. There is an exact sequence of equivariant vector bundles

0→ T(∂W)→ TW|∂W → N∂W → 0,

where N∂W is the inward pointing normal bundle of ∂W. As W is (Spinc, κε)-oriented, it

is oriented. Therefore, N∂W is trivial. As N∂W is trivial, it can be equipped with a canon-

ical (Spinc, κε)-structure. A (Spinc, κε)-structure for TW|∂W is produced by restricting the

(Spinc, κε)-structure for TW. The Two-of-Three Lemma 6.3 then implies that T(∂W) also has

a (Spinc, κε)-structure.

The notion of a (Spinc, κε) structure involves a choice of orientation on the frame bundle.

This determines the bundle of positively oriented orthonormal frames. Given a (Spinc, κε)-

structure ϕ : P → Fr(V) for a real equivariant vector bundle V equipped with a choice of

orientation, there is a corresponding (Spinc, κε)-structure ϕ− : P− → Fr−(V) where Fr−(V)

is the bundle of oppositely oriented orthonormal frames. The next proposition defines the

operation which takes a (Spinc, κε)-structure to this opposite (Spinc, κε)-structure. To state the
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proposition a few basic facts are needed. First note that the bundle of oppositely oriented

frames can be written as

Fr−(V) := Fr(V)×SO(n) O−(n),

where O−(n) is the space of orientiation reversing isometries, represented by the orthogonal

matricies with determinant −1. Next, note that Spin(n) sits inside the larger group

Pin(n) := {x1 · · · xk | xi ∈ Rn, ‖xi‖ = 1} ⊂ Cln.

The adjoint map extends to a double covering Ad : Pin(n) → O(n). Complexifying pro-

duces a map

Adc : Pinc(n) = Pin(n)×Z2 U(1)→ O(n)

which extends the adjoint map from Spinc(n) [6, p. 9]. Using this extension, it is possible to

lift O−(n) to Pinc(n). Define

Õ−
c (n) :=

{
r ∈ Pinc(n) | Adc(r) ∈ O−(n)

}
.

With these preliminaries in place, the opposite (Spinc, κε)-structure can be defined.

Proposition 6.6 (Opposite (Spinc, κε)-structure). Let V →M be a real equivariant vector bundle

equipped with a (Spinc, κε)-structure ϕ : P → Fr(V). Then

ϕ×Adc : P×(Spinc(n),κε) (Õ
−
c (n), κε)→ Fr(V)×SO(n) O−(n)

defines a (Spinc, κε)-structure on the oppositely oriented bundle of frames.

Proof. Let γ ∈ Γ , p ∈ P, r ∈ Õ−
c (n), and h ∈ Spinc(n). Well-definedness of the various

actions is straightforward to check. The bundle P− := P ×(Spinc(n),κε) (Õ
−
c (n), κε) is semi-

equivariant as

γ([p, r]h) = γ[p, rh] = [γp,γ(rh)] = [γp, (γr)(γh)] = [γp,γr](γh) = (γ[p, r])(γh).

The fact that ϕ− := ϕ×Adc is a semi-equivariant lifting can also be checked directly

ϕ−(γ[p, r]) = [ϕ(γp), Adc(γr)] = [γϕ(p),γAdc(r)] = γ[ϕ(p), Adc(r)] = γ(ϕ−[p, r])

ϕ−([p, r]h) = [ϕ(p), Adc(rh)] = [ϕ(p), Adc(r)Adc(h)] = (ϕ−[p, r])Adc(h).

Thus, ϕ− : P− → Fr−(V) forms a (Spinc, κε)-structure for V , under the opposite choice of

orientation.

If M is an orientifold equipped with a (Spinc, κε)-structure, the same manifold with the

opposite (Spinc, κε)-structure will be denoted by −M.
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6.2 The Geometric Orientifold K-homology Groups

Geometric K-homology shares characteristics of bordism and K-theory. Classes in the ge-

ometric K-homology of a topological space X are represented by K-cycles. The definition

of a K-cycle starts with a manifold M mapped into X. The manifold M is equipped with

all of the data needed to construct a spinor bundle with coefficients in a vector bundle E.

A similar definition of K-cycle is used in geometric orientifold K-homology, except that the

manifolds are replaced with orientifolds and each orientifoldM is equipped with the struc-

tures needed to construct an orientifold Dirac operator with coefficients in an orientifold

bundle. As in bordism, K-cycles can be added using a disjoint union operation.

Definition 6.7. A K-cycle for an orientifold X is a triple (M,E, f), where M is a smooth ori-

entifold without boundary equipped with a specific (Spinc, κε)-structure, E is an orientifold

bundle overM, and f :M→ X is a continuous equivariant map.

Definition 6.8. The disjoint union of two K-cycles is defined by

(M1,E1, f1)t (M2,E2, f2) := (M1 tM2,E1 t E2, f1 t f2).

A bordism-type equivalence relation will be defined between those cycles that arise as

the boundary of a K-cycle with boundary, in the sense of the following definition.

Definition 6.9. AK-cycle with boundary is a triple (W,E, f), whereW is a (Spinc, κε)-orientifold

with boundary, E→W is an orientifold bundle, and f :W → X is a continuous Γ -equivariant

map. A boundary K-cycle is a K-cycle of the form (∂W,E|∂W , f|∂W), where (W,E, f) is a K-cycle

with boundary.

Three equivalence relations on the set of K-cycles will now be introduced. The first of

these relations relates the bordism-type disjoint union operation with the K-theoretic rela-

tion of vector bundle direct sum. The second relation uses boundary K-cycles to specify

a notion of bordism which respects the structures carried by a K-cycle. The third relation

expresses the 8-fold Thom isomorphism in terms of K-cycles.

Definition 6.10. Define the following equivalence relations on the set of triples {(M,E, f)},

disjoint union/direct sum (MtM,E1 t E2, ft f) ∼u (M,E1 ⊕ E2, f)

bordism (M1, F1, f1) ∼b (M2, F2, f2)

vector bundle modification (M,E, f) ∼v (S(V ⊕R), β⊗ π∗E, f ◦ π)

for (M1t−M2, F1t F2, f1t f2) a boundaryK-cycle, π : V →M an equivariant 8k-dimensional

real vector bundle equipped with a (Spinc, κε)-structure, and β the 8-fold Thom class of V .
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The three equivalence relations of Definition 6.10 combine into a single equivalence re-

lation which is used to define the the geometric orientifold K-homology groups.

Definition 6.11. Two K-cycles are said to be equivalent (M1,E1, f1) ∼ (M2,E2, f2) if they can

be connected by any finite sequence of the equivalence relations ∼u, ∼b, and ∼v.

Definition 6.12. The geometric orientifold K-homology groups are defined by

K
geo
(Γ ,ε),j(X) := K̃

geo
(Γ ,ε),j(X)/ ∼,

where 0 ≤ j ≤ 7 and K̃geo
(Γ ,ε),j(X) is the set of K-cycles (M,E, f) such that the dimension of each

connected component ofM is equal to jmodulo 8.

6.3 Relationship to Analytic Orientifold K-homology

As discussed in the introduction to this chapter, geometric orientifold K-homology can

be interpreted by constructing orientifold Dirac operators from K-cycles. In Section 3.4,

(Spinc, κε)-structures were used to construct orientifold Dirac operators. In Section 4.3,

an elliptic orientifold operator and an orientifold bundle E were used to construct orien-

tifold operators with coefficients in E. Applying these constructions using the (Spinc, κε)-

orientifold M and the orientifold bundle E from a K-cycle (M,E, f), results in a Dirac op-

erator /DE on M with coefficients in E. Proposition 5.35 shows that the normalisation of

such an operator defines a class in the analytic orientifold K-homology of the C∗-algebra

(C(M), κε ◦ (σ−1M )∗). Using the map f, this class can be pushed forward to a class in the

analytic orientifold K-homology of (C(X), κε ◦ (σ−1X )∗).

Theorem 6.13. The map

µ : K
geo
(Γ ,ε),j(X,σ)→ KK(Γ ,ε)((C(X), κε ◦ (σ−1X )∗), (Clj, κε))

[M,E, f] 7→ f∗[/DE]

from geometric to analytic orientifold K-homology is a well-defined homomorphism.

Proof. As discussed above, the results of previous chapters show that if (M,E, f) is a specific

K-cycle representing a class in K(Γ ,ε)
j (X,σ), then µ(M,E, f) := f∗[/DE] represents a class in

KK(Γ ,ε)((C(X), κε ◦ (σ−1)∗), (Clj, κε)). However, it remains to check that µ is well-defined

with respect to the equivalence relations on geometric orientifold K-homology. These will

be considered one at a time.
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It is straightforward to show that µ is well-defined with respect to the disjoint union/direct

sum relation,

µ(MtM,E1 t E2, ft f) ∼ µ(M,E1 ⊕ E2, f) ∈ KK(Γ ,ε)((C(X), κε ◦ (σ−1)∗), (Clj, κε)).

Next, suppose that (M1,E1, f1) and (M2,E2, f2) are K-cycles, and (W,E, f) is a K-cycle

with boundary such that

(M1,E1, f1)t (−M2,E2, f2) ' (∂W,E|∂W , f|∂W).

Define E1 := µ(M1,E1, f1), E2 := µ(−M2,E2, f2) ∈ KK(Γ ,ε)((C(X), κε ◦ (σ−1)∗), (Clj, κε)). Be-

cause W is a perfectly normal topological space, and M1 and M2 are closed subsets, it is

always possible to find a continuous map θ ′ : W → [0, 1] such that θ ′−1(0) = M1 and

θ ′−1(0) = M2, [86, p. 103,105]. Averaging this map over the group action produces an

equivariant map

θ(w) := |Γ |−1
∑
ξ∈Γ

θ ′(ξw)

such that θ−1(0) =M1 and θ−1(1) =M2. The K-cycle (W,E, f) then determines a class

W := [F,φ ◦ f∗,L2(W, /SE)] ∈ KK(Γ ,ε)((C(X), κε ◦ (σ−1)∗), (Clj, κε)⊗ (C[0, 1], κε)),

where the action of Clj ⊗C[0, 1] on L2(W, /SE) is defined by

(ψ(ϕ⊗ f))(w) := f ◦ θ(w)ψ(w)ϕ,

and the Clj ⊗C[0, 1]-valued inner product on L2(W, /SE) is

〈ψ1,ψ2〉(t) =
∫
θ−1(t)

tr(ψ∗1ψ2)dx.

The evaluation map πt : Clj ⊗ C[0, 1] → Clj is surjective, allowing the pushout modules

π0W and π1W to be formed. Because the (Spinc, κε)-structures on M1 and M2 are induced

from the boundary of W, the Dirac operator for W restricts to the Dirac operators for M1

and M2. This implies that the pushout operators for π0W and π1W are the same as those

for E1, E2 respectively. Thus, π0W ' E1, π1W ' E2, andW defines a homotopy equivalence

E1 ∼h E2 ∈ KK(Γ ,ε)((C(X), κε ◦ (σ−1)∗), (Clj, κε)).

To prove that µ is well-defined with respect to vector bundle modification, the method

described in [17, Prop. 3.6] can be applied. The equivalence

µ(M,E, f) ∼ µ(S(V ⊕R), β⊗ π∗E, f ◦ π) ∈ KK(Γ ,ε)((C(X), κε ◦ (σ−1)∗), (Clj, κε))
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can be shown by decomposing the Kasparov module µ(S(V ⊕R), β ⊗ π∗E, f ◦ π) into two

components, one trivial component and one isomorphic to µ(M,E, f). This depends on

the calculation of the index pairing between β and the canonical Dirac operator on the 8k-

dimensional sphere, see Lemma 4.18.

LetV →M be an equivariant 8k-dimensional real vector bundle equipped with a (Spinc, κε)-

structure P → Fr(V), πP : P →M be the projection associated to P, and π : S(V ⊕R)→M be

the sphere bundle of V . As discussed in the proof of Propostion 6.4, the (Spinc, κε)-structures

on π∗TM and Sn induce a (Spinc, κε)-structure on S(V ⊕R) via the decomposition

TS(V ⊕R) = π∗TM⊕ (P×Spinc(n+1) TS
n).

The orientifold spinor bundle associated to this (Spinc, κε)-structure is

/SS(V⊕R) = π∗/SM⊗̂(P×Spinc(n+1) /SS),

where /SM is the orientifold spinor bundle on M and /SS is the canonical orientifold spinor

bundle on S8k. After twisting by β⊗ π∗E this becomes

/SS(V⊕R)
β⊗π∗E = π∗/SM

E ⊗̂(P×Spinc(n+1) /SS
β),

The Hilbert module of the corresponding class in analytic K-homology is therefore

L2(P×Spinc(n+1) S
8k,π∗/SM

E ⊗̂(P×Spinc(n+1) /SS
β)).

Rather than forming associated bundles as a quotient by Spinc(n+ 1), the above space can

be considered as a space of Spinc(n+ 1)-equivariant sections and decomposed as the graded

Hilbert space tensor product[
L2(P× S8k,π∗/SM

E ⊗̂(P× /SS
β))
]Spinc(n+1)

=
[
L2(P× S8k,π∗1π

∗
P/SM

E ⊗̂π∗2 /SS
β)
]Spinc(n+1)

=
[
L2(P,π∗P/SM

E )⊗̂L2(S8k, /SS
β)
]Spinc(n+1)

,

where π1 : P×S8k → P and π2 : P×S8k → S8k are the component projections. The associated

Dirac operator has a corresponding decomposition of the form

D := /DP
E⊗̂id + id⊗̂/DS

β,

where /DS
β is the Spinc(n+ 1)-equivariant orientifold Dirac operator on S8k with coefficients

in β, /DM
E is the orientifold Dirac operator onMwith coefficients in E, and /DP

E is a Spinc(n+

1)-equivariant lifting of /DM
E to P. Such liftings can be constructed by patching together local

liftings using a partition of unity and then averaging the resulting operator over the action

of Spinc(n+ 1) to obtain an equivariant operator, see [17, p. 8].
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The decomposition L2(S8k, /SS
β) = ker/DS

β ⊕ (ker/DS
β)
⊥ can be used to further decompose

the Hilbert module,[
L2(P,π∗P/SM

E )⊗̂L2(S8k, /SS
β)
]Spinc(n+1)

=
[
L2(P,π∗P/SM

E )⊗̂ker/DS
β

]Spinc(n+1)
⊕
[
L2(P,π∗P/SM

E )⊗̂(ker/DS
β)
⊥
]Spinc(n+1)

.

This results in a corresponding decomposition of the Kasparov module into two Kasparov

modules for the operatorD := /DP
E⊗̂id + id⊗̂/DS

β. However, by Lemma 4.18, ker/DS
β = (C, κε)

and the index of /DS
β on ker(/DS

β)
⊥ is {0}. Thus, the Kasparov module simplifies to[
FP,φP,L2(P,π∗P/SM

E )
]Spinc(n+1)

.

where FP is the normalisation of /DP
E. Pushing forward the associated Kasparov module via

πP recovers the Kasparov module µ(M,E, f).

In the usual equivariant setting, the homomorphism corresponding to µ is an isomor-

phism. The proof proceeds by showing that the map is a natural transformation between

generalised cohomology theories and is an isomorphism on the one-point space. A gen-

eral result from algebraic topology then ensures that the map is an isomorphism [77, §4.6].

The main difficulty is to show that geometric K-homology satisfies the Eilenberg-Steenrod

axioms for a generalised cohomology theory. In [18, 17] the isomorphism was proved by

constructing an intermediate generalised homology theory based on framed bordism. An-

other approach is to replace the bordism and vector bundle modification relations with a

single normal bordism relation. A result due to Jakob [49, 48] then shows that the geomet-

ric K-homology is a generalised homology theory. Variations on this technique have been

applied to prove isomorphisms between geometric and analytic K-homology in a variety

of settings [73, §4.5] [28, §3.3.2] [29, 30] [12, §5]. It seems likely that this normal bordism

approach could also be adapted to prove that the map µ of Theorem 6.13 is an isomorphism.
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Chapter 7

The K-homology of Orientifold

Groups

This chapter makes some notes regarding the possibility of an assembly map for orientifold

groups. Using the orientifold Dirac operator, a correspondence

µ : K
geo
j (Γ , ε)→ KKρ(Clj,C∗r Γ

+)

is sketched between a geometric K-homology group associated to a finite orientifold group

and an analytic K-theory group which is modelled after KK(Clj,C∗rG). This construction

is based on the description of the assembly map in [11, pp. 41-44] and on the theory of

unitary/anti-unitary representations, which was reviewed in Section 2.2. See also [51, II.7].

Because representations of orientifold groups involve anti-linear operators, it is not pos-

sible to directly define an analogue of C∗rG for orientifold groups. However, the theory of

unitary/anti-unitary representations, outlined in Section 2.2, indicates a way around this

problem. Rather than trying to define an algebra C∗r Γ , one considers the group algebra C∗r Γ+

of those elements which act linearly, and equips it with an orientifold action ρ of Γ that cor-

responds to relative conjugation, see Definition 2.16. The analytic K-theory of this algebra

is then defined by requiring each Kasparov module over C∗r Γ+ to carry a specific choice of

ζ ∈ Γ−, and an operator Rwhich satisfies the two conditions

R2x = xδζ2 R(xf) = R(x)ρζ(f).

If ζ2 = 1, R corresponds to the anti-linear map carried by a Kasparov module in KKR-theory

[58, p. 518]. However, in general there may be no element ζ with this property. For this

reason, any choice of ζ ∈ Γ− is permitted. The resulting ambiguity can then be removed

by introducing an equivalence relation ∼ρ on the set of Kasparov modules. The groups
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KKρ(Clj,C∗r Γ+) are formed as the set of Kasparov modules (E,φ, F, ζ,R) modulo ∼ρ and the

appropriate homotopy equivalence relation.

The geometric K-homology groups Kgeo
j (Γ , ε) of an orientifold group are defined in al-

most exactly the same way as the groups Kgeo
(Γ ,ε),j(X,σ), except that all reference to the orien-

tifold X is removed. Thus, instead of considering K-cycles (M,E, f) where f : M → X is a

continuous equivariant map, K-cycles for Kgeo
j (Γ , ε) are just pairs (M,E).

Once the groupsKgeo
j (Γ , ε) have been defined, it can be shown thatK-cycles (M,E) define

elements of [/DE] ∈ KKρ(Clj,C∗r Γ+) via the orientifold Dirac operators /DE. The linear sym-

metries of the orientifold spinor bundle /S make its L2-sections into a Kasparov module over

C∗r Γ
+, and the anti-linear symmetries of /S provide an anti-linear operator R for any choice

of ζ ∈ Γ−. The equivariance of the orientifold Dirac operator ensures that it is compatible

with any possible R.

There are two motivations for making these construction. The first, is to highlight the

extra information, appearing as the anti-linear operator R, that is captured by the orientifold

Dirac operator. The second motivation is to suggest a generalisation which could be used

to investigate infinite discrete orientifold groups. Although only finite orientifold groups

have been treated in this thesis, it seems likely that the constructions described here could

be generalised along the same lines as in the usual equivariant case.

7.1 Analytic K-theory for Orientifold Groups

Recall from Example 5.6 that a finite orientifold group (Γ , ε) defines an orientifold C∗-

algebra.

Definition 7.1. If (Γ , ε) is a finite orientifold group, define the orientifold C∗-algebra

(C∗r Γ
+, ρ) := (CΓ+, ∗, ‖ · ‖, ρ)

where

1. CΓ+ is the algebra of complex valued functions on Γ+ with product, ∗-structure, and

norm defined respectively by

(f ∗ g)(γ) :=
∑
ξ∈Γ+

f(ξ)g(ξ−1γ) f∗(γ) := f(γ−1) ‖f‖ := ‖π(f)‖2,

where ‖ · ‖2 is the `2-norm, and π is the regular representation of CΓ+ on `2 defined by

(π(f)v)(γ) :=
∑
ξ∈Γ+

f(ξ)v(ξ−1γ)

for f ∈ CΓ+ and v ∈ `2(Γ+).
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2. ρ is the orientifold action on CΓ+ defined by

(ρζf)(γ) := ζf(ζ
−1γζ),

for all f ∈ CΓ+ and ζ ∈ Γ .

The appropriate type of Kasparov module to take over this algebra is one equipped with

a choice of ζ ∈ Γ−, and an anti-linear map R. The map Rmust be compatible with the action

of ρζ and interrelated with the right C∗r Γ+-module action.

Definition 7.2. Let Eρ(Clj,C∗r Γ+) be the set of all tuples ((E, ζ,R,χ),φ, F) where

1. (E, ζ,R,χ) is a countably generated graded Hilbert C∗r Γ+-module equipped with a

choice of element ζ ∈ Γ−, and an anti-linear map R : E→ Ewhich satisfies

R2x = xδζ2 R(xf) = (Rx)(ρζf) 〈Rx,Ry〉 = ρζ〈x,y〉 Rχ = χR

for x,y ∈ E, f ∈ C∗r (Γ+).

2. φ : Clj → LC∗rΓ+(E) is a homomorphism of graded C∗-algebras such that

φ ◦ κ(a) = Rφ(a)R−1,

for a ∈ Clj.

3. F ∈ LC∗rΓ+(E) is an odd operator such that the operators

[F,φ(a)] (F2 − 1)φ(a) (F∗ − F)φ(a) (RFR−1 − F)φ(a)

are in KC∗rΓ+(E) for all a ∈ A and γ ∈ Γ , where [·, ·] denotes the graded commutator.

For each element ((E, ζ,R),φ, F) ∈ Eρ(Clj,C∗r Γ+) and each ξ ∈ Γ+, there exists another

element ((E, ξζ,SR),φ, F) ∈ Eρ(Clj,C∗r Γ+) which should correspond to the same Kasparov

module. Deeming these to be equivalent eliminates dependence on the choice of ζ ∈ Γ−.

Proposition 7.3. If ((E, ζ,R),φ, F) ∈ Eρ(Clj,C∗r Γ+), ξ ∈ Γ+ and Sx = xδξ, then

((E, ξζ,SR),φ, F) ∈ Eρ(Clj,C∗r Γ
+).

This operation determines an equivalence relation

((E,R, ζ),φ, F) ∼ρ ((E, ξζ,SR),φ, F).
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Proof. First, note that the right action of C∗r Γ+ is defined by the action of the elements δγ ∈

C∗r Γ
+. Let λγ denote the operator corresponding to the action of δγ, but acting from the left

on E. The condition R(ψf) = (Rψ)(ρζf) can be rewritten as

R(
∑
γ∈Γ+

f(γ)λγ)ψ = (
∑
γ∈Γ+

f̄(ζ−1γζ)λγ)Rψ.

This implies the corresponding condition for SR,

(SR)(ψf) = SR(
∑
γ∈Γ+

f(γ)λγψ)

= S
∑
γ∈Γ+

f̄(ζ−1γζ)λγRψ

= S
∑
γ∈Γ+

f̄(ζ−1ξ−1γξζ)λξ−1γξRψ

= S
∑
γ∈Γ+

f̄(ζ−1ξ−1γξζ)λξ−1λγλξRψ

= SS−1
∑
γ∈Γ+

f̄((ξζ)−1γξζ)λγSRψ

= (SRψ)ρξζ(f).

The condition R2ψ = ψδζ2 can be used to prove (SR)2ψ = ψδ(ξζ)2 . First, note that

RS = R
∑
γ∈Γ+

δξ(γ)λγ =
∑
γ∈Γ+

δ̄ξ(ζ
−1γζ)λγR =

∑
γ∈Γ+

δ̄ξ(γ)λζγζ−1R = λζξζ−1R.

Then,

SRSRψ = Sλζξζ−1RRψ = λξζξζ−1R
2ψ = λξζξζ−1λζ2ψ = λξζξζψ = λ(ξζ)2ψ = ψδ(ξζ)2 .

Because the inner product and operator F are compatible with R and are C∗r Γ+-linear,

they are both compatible with the action of SR. The group properties of Γ+ ensure that ∼ρ is

an equivalence relation.

Definition 7.4. Define two elements of Eρ(Clj,C∗r Γ+) to be equivalent x ∼ y if they can be

connected by any finite sequence of the equivalence relations ∼ρ and homotopy equivalence

within Eρ(Clj,C∗r Γ+), see Definition 5.28.

Definition 7.5. Define the analytic K-theory of an orientifold group (Γ , ε) by

KKρ(Clj,C∗r Γ
+) := Eρ(Clj,C∗r Γ

+)/ ∼ (7.1)

with addition given by [E1] + [E2] = [E1 ⊕ E2].
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7.2 Geometric K-homology for Orientifold Groups

The geometric K-homology Kgeo
j (Γ , ε) of an orientifold group is defined in the same way

as the geometric K-homology Kgeo
(Γ ,ε),j(X) of an orientifold, except that the orientifold X is

disregarded. Thus, rather than considering triples (M,E, f) as in Definition 6.7, a K-cycle for

K
geo
j (Γ , ε) is a pair (M,E). The set of K-cycles for Kgeo

j (Γ , ε) is equipped with the equivalence

relations disjoint union/direct sum, bordism and vector bundle modification. These relations are

defined in the same manner as the corresponding equivalence relations on K-cycles (M,E, f)

for Kgeo
(Γ ,ε),j(X) except that the maps f are omitted, see Definition 6.10.

Definition 7.6. A K-cycle for an orientifold X is a triple (M,E), whereM is a smooth compact

orientifold equipped with a specific (Spinc, κε)-structure and an orientifold bundle E.

Definition 7.7. The disjoint union of two K-cycles is defined by

(M1,E1)t (M2,E2) := (M1 tM2,E1 t E2) (7.2)

Definition 7.8. A K-cycle with boundary is a triple (W,E), whereW is a (Spinc, κε)-orientifold

with boundary, and E → W is an orientifold bundle. A boundary K-cycle is a K-cycle of the

form (∂W,E|∂W), where (W,E) is a K-cycle with boundary.

Definition 7.9. Define the following equivalence relations on the set of triples {(M,E)}:

disjoint union/direct sum (MtM,E1 t E2) ∼u (M,E1 ⊕ E2).

bordism (M1, F1) ∼b (M2, F2),

vector bundle modification (M,E) ∼v (S(V ⊕R), β⊗ π∗E),

where (M1 t −M2, F1 t F2) is a boundary K-cycle, and π : V → M is an equivariant 8k-

dimensional real vector bundle equipped with a (Spinc, κε)-structure.

Definition 7.10. Two K-cycles are said to be equivalent (M1,E1) ∼ (M2,E2) if they can be

connected by any finite sequence of the equivalence relations ∼u, ∼b, and ∼v.

Definition 7.11. The geometric K-homology of an orientifold group (Γ , ε) is defined by

K
geo
j (Γ , ε) := K̃geo

j (Γ , ε)/ ∼,

where 0 ≤ j ≤ 7 and K̃geo
j (Γ , ε) is the set of K-cycles (M,E) such that the dimension of each

connected component ofM is equal to jmodulo 8.
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7.3 Assembly and Orientifold Groups

In Section 6.3, a map was defined from the geometricK-homology to the analyticK-homology

of an orientifold, using orientifold Dirac operators. The next proposition also uses the ori-

entifold Dirac operator to define an analytic class. However, the perspective is changed

and the orientifold Dirac operator is viewed as a family of operators over a group algebra

rather than a single equivariant operator. In this way, a class in the analytic K-theory group

KKρ(Clj,C∗r Γ+) is associated to each K-cycle. Note that in the following proposition only

finite orientifold groups are considered. See [11, p. 41-44] for the case of an infinite discrete

group in the equivariant setting.

Proposition 7.12. Each K-cycle (M,E) representing a class in Kgeo
j (Γ , ε) defines class

µ(M,E) := [(SE, ζ,R, ω),φ, F] ∈ KKρ(Clj,C∗r Γ
+)

where

1. SE := L2(M, /SE) is the underlying Hilbert module equipped with the right C∗r Γ+-action

(ψf) :=
∑
ξ∈Γ+

f(ξ)(λξψ),

where λ is the orientifold action on the orientfold spinor bundle and f ∈ C∗r Γ+. The C∗r Γ+-

valued inner product on SE is defined by

〈ψ1,ψ2〉(γ) :=
∫
M

〈ψ1(m), (λγψ2)(m)〉dm,

2. ζ is an arbitrary element of Γ− and R : SE → SE is the anti-linear operator

Rψ := λζψ,

3. φ is the representation of Cln on SE by right multiplication operators,

4. F is the normalisation of /DE is defined by

F := /DE(I+ /D2
E)
1
2 ∈ LCln(SE).

This class is independent of the choice of ζ.

Proof. The condition R2x = xδ2 follows immediately, as the right action of δ2 is defined in

terms of the left action on /SE.
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The invariance of property of the orientifold metric makes the C∗r Γ+-valued inner prod-

uct compatible with R and the action of C∗r Γ+,

(ζ〈ψ1,ψ2〉)(γ) = ζ〈ψ1,ψ2〉(ζ−1γζ) = ζ
∫
M

〈ψ1(x), (λζ−1γζψ2)(x)〉dm

=

∫
M

ζ〈ψ1(x), ζ−1γζψ2(ζ−1γ−1ζx)〉dm

=

∫
M

ζ〈ψ1(ζ−1x), ζ−1γζψ2(ζ−1γ−1x)〉dm

=

∫
M

〈ζψ1(ζ−1x),γζψ2(ζ−1γ−1x)〉dm

= 〈λζψ1, λζψ2〉(γ).

= 〈Rψ1,Rψ2〉(γ).

The property R(ψf) = (Rψ)(ζf) holds as

R(ψf) = λζ(ψf) = λζ
∑
γ∈Γ

f(γ)λγψ =
∑
γ∈Γ

(ζf(γ))λζγψ

=
∑
γ∈Γ

(ζf(γ))λζγζ−1ζψ =
∑
γ∈Γ

ζf(ζ−1γζ)λγζψ =
∑
γ∈Γ

(ζf)(γ)λγλζψ = (Rψ)(ζf).

The properties [F,φ(a)] ∈ KC∗rΓ+ , (F2 − id)φ(a) ∈ KC∗rΓ+ , (F∗ − F)φ(a) ∈ KC∗rΓ+ follow

from the properties of /DE as usual. The property (RFR−1, F)φ(a) ∈ KC∗rΓ+ follows from the

Γ -equivariance of F for any choice of ζ.

If µ(M,E) is defined using a different element ζ ′ ∈ Γ−, then ζ ′ = ξζ for some ξ ∈ Γ+

and the resulting class is [(SE, ξζ,SR, ω),φ, F], where S = λξ. This class is equivalent to

[(SE, ζ,R, ω),φ, F] under ∼ρ.

The above correspondence for finite orientifold groups is inspired by the assembly map

of the Baum-Connes conjecture. It would be interesting to know if the correspondence could

be generalised to provide an assembly map for infinite orientifold groups. To do so, it would

be neccesary to extend the constructions of this thesis to deal with infinite discrete orien-

tifold groups and open orientifolds. An assembly map would then be obtained by compos-

ing µwith the index map

ind(Γ ,ε) : K
geo
j (Γ , ε)

µ→ KKρ(Clj,C∗r Γ
+)

ind→ K
ρ
j (C

∗
r Γ

+),

where Kρ
j (C

∗
r Γ

+) is the K-theory group formed from f.g.p. projective modules equipped with

an anti-linear operator R associated to an element ζ ∈ Γ−, and quotient by an equivalence

relation similar to the relation ∼ρ on KKρ(Clj,C∗r Γ+).
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Conclusion

The aim of this thesis has been to solidify the understanding of anti-linear symmetry in in-

dex theory. In particular, to identify the conditions under which an orientifold Dirac opera-

tor can be constructed. In order to do this, the notion of a semi-equivariant transition cocycle

was introduced. Semi-equivariant transition cocycles generalise both equivariant transition

cocycles and Wigner’s corepresentations. A corresponding semi-equivariant cohomology

theory was constructed, and analogs of standard results allowed the obstruction to the ex-

istence of an orientifold Dirac operator to be identified as a semi-equivariant cohomology

class W(Γ ,ε)
3 . This class generalises the third integral Stiefel-Whitney class that obstructs

Spinc-structures. Using the decomposition Spinc(n) = Spinc(n)×Z2 U(1), it was possible

to show that the existence of complementary semi-equivariant cochains for the structure

groups (Spin(n), idε) and (U(1), κε) is equivalent to the existence of a (Spinc, κε)-structure.

A twisted averaging procedure over the U(1)-component of this splitting allowed the con-

struction of semi-equivariant connections for (Spinc, κε)-structures. The orientifold spinor

bundles were then constructed as semi-equivariant associated bundles, using a (Spinc, κε)-

structure and a semi-equivariant fibre. The total spinor bundle was constructed using the

fibre (Cln, κε), and, in dimensions 8k, the complexification (∆ ⊗ C, id ⊗ κε) of the irre-

ducible Spin-representation ∆ was used to construct the reduced spinor bundle. Sections

of these spinor bundles carry a multiplication by 1-forms that is compatible with the orien-

tifold action. The total and reduced orientifold Dirac operators were obtained by composing

multiplication by 1-forms with the connections induced from the semi-equivariant connec-

tion on the (Spinc, κε)-structure. The total and reduced orientifold Dirac operators were

shown to be equivariant with respect to the linear/anti-linear actions on the spinor bundles.

The construction of the orientifold Dirac operator, and the identification of the condition

W
(Γ ,ε)
3 (X) = 0 for its existence, completed the main aim of the thesis. In particular, the Real

Dirac operator was found to exist on all Real spaces X such thatW(Z2,id)
3 (X) = 0.

Having constructed the orientifold Dirac operator, attention turned to investigating its

place inK-theory andK-homology. Atiyah’s proof of equivariant Bott periodicity was adapted
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to the setting of orientifold K-theory. The (1, 1) and 8-fold Bott periodicity theorems for

orientifold K-theory were obtained as a special cases of an equivariant periodicity theo-

rem. Together, these showed that every orientifold K-group Kp,q
(Γ ,ε)(X) is isomorphic to one

of the 8 groups Kp,0
(Γ ,ε)(X) for 0 ≤ p ≤ 7. By combining equivariant periodicity with re-

sults on (Spinc, κε)-structures, it was possible to prove an 8-fold Thom isomorphism the-

orem K(Γ ,ε)(X) ' K(Γ ,ε)(V) for real equivariant vector bundles V such that W(Γ ,ε)
3 (V) = 0.

A straightforward generalisation of analytic K-homology was made, based on Kasparovs

KK-theory. The orientifold Dirac operator was shown to define a class in the resulting an-

alytic orientifold K-homology theory. A geometric orientifold K-homology theory was also

defined. In this theory, cycles are represented by orientifolds equipped with (Spinc, κε)-

structures and orientifold bundles. A two-of-three lemma was proved using earlier re-

sults on semi-equivariant cocycles and cohomology. This allowed operations on (Spinc, κε)-

structures and equivalence relations for geometric K-homology to be defined. The interpre-

tation of geometric orientifold K-cycles via orientifold Dirac operators was formalised by

constructing a map from geometric to analytic orientifold K-homology. Finally, some specu-

lations were made regarding the possibility of using orientifold Dirac operators to construct

assembly maps.
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