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S U M M A R Y
Obtaining slip distributions for earthquakes results in an ill-posed inverse problem. While
this implies that only limited and uncertain information can be recovered from the data,
inferences are typically made based only on a single regularized model. Here, we develop an
inversion approach that can quantify uncertainties in a Bayesian probabilistic framework for
the finite fault inversion (FFI) problem. The approach is suitably efficient for rapid source
characterization and includes positivity constraints for model parameters, a common practice
in FFI, via coordinate transformation to logarithmic space. The resulting inverse problem is
nonlinear and the most probable solution can be obtained by iterative linearization. In addition,
model uncertainties are quantified by approximating the posterior probability distribution by a
Gaussian distribution in logarithmic space. This procedure is straightforward since an analytic
expression for the Hessian of the objective function is obtained. In addition to positivity,
we apply smoothness regularization to the model in logarithmic space. Simulations based on
surface wave data show that smoothing in logarithmic space penalizes abrupt slip changes
less than smoothing in linear space. Even so, the main slip features of models that are smooth
in linear space are recovered well with logarithmic smoothing. Our synthetic experiments
also show that, for the data set we consider, uncertainty is low at the shallow portion of the
fault and increases with depth. In addition, a simulation with a large station azimuthal gap of
180◦ significantly increases the slip uncertainties. Further, the marginal posterior probabilities
obtained from our approximate method are compared with numerical Markov Chain Monte
Carlo sampling. We conclude that the Gaussian approximation is reasonable and meaningful
inferences can be obtained from it. Finally, we apply the new approach to observed surface
wave records from the great Illapel earthquake (Chile, 2015, Mw = 8.3). The location and
amplitude of our inferred peak slip is consistent with other published solutions but the spatial
slip distribution is more compact, likely because of the logarithmic regularization. We also find
a minor slip patch downdip, mainly in an oblique direction, which is poorly resolved compared
to the main slip patch and may be an artefact. We conclude that quantifying uncertainties of
finite slip models is crucial for their meaningful interpretation, and therefore rapid uncertainty
quantification can be critical if such models are to be used for emergency response.

Key words: Inverse theory; Probability distributions; Earthquake source observations.

1 I N T RO D U C T I O N

Seismic source studies rely on incomplete spatial sampling and
noisy measurements of the displacement field at the Earth’s sur-
face. Nonetheless, by using these data, we can still study the spa-
tiotemporal evolution of earthquake rupture (Olson & Apsel 1982).
Similar to many other geophysical inverse problems, the incomplete

and noisy observations lead to uncertain knowledge about the in-
ferred model. This non-uniqueness of the solution means that many
models can fit the observed data reasonably well, although some of
those models may not be plausible. To avoid implausible models,
a common remedy is to include additional constraints on the solu-
tion. Typical examples in Finite Fault Inversion (FFI) are Tikhonov
regularization (e.g. Tikhonov & Arsenin 1977) and positivity
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constraints. The former involves the introduction of often subjective
prior information about the rupture pattern that needs to be adjusted
such that the final solution still fits the data. The latter limits the
possible slip directions on the fault. Once these conditions have
been adjusted to the particular problem of interest, a single optimal
solution can often be selected as the most plausible that explains
the data to a reasonable extent but that exhibits some bias due to
regularization. However, to better understand the information ob-
served data provide about rupture, it is desirable to consider not only
optimal models but all models that sufficiently explain the data, a
concept referred to as uncertainty estimation.

An approach that quantifies uncertainty is given by Bayesian
probability: Unknown parameters are considered random variables
and prior knowledge about these parameters is updated with infor-
mation from observations to gain insight into the range of solutions
that explain the data. Importantly, this approach explicitly acknowl-
edges that model inferences are limited by noise on the data and
probabilities express degrees of belief (Tarantola & Valette 1982).
The information is in terms of such probabilities and the solution to
the problem is given by a probability density function (PDF) known
as a posterior PDF: The state of information about the parameters
given prior and data information. From the posterior, we can extract
various parameter estimates such as the most probable parameter
values and parameter uncertainties. Early Bayesian inference stud-
ies focus on the linear regression problem, stressing the advantages
of the use of prior information and exploiting posterior PDF proper-
ties to obtain robust statistical solutions, compared with the standard
optimization approach (e.g. Lindley & El-Sayyad 1968; Lindley &
Smith 1972; Smith 1973; Box & Tiao 1968). Schwarz et al. (1978)
devised a method to estimate the number of model parameters by
using a specific class of priors. This technique, termed Bayesian In-
formation Criterion (BIC), is well known today and can be seen as
a Bayesian alternative to the maximum likelihood based technique
previously derived for the same purpose by Akaike (1974).

The Bayesian probabilistic framework has been employed previ-
ously in FFI, addressing different levels of complexity in the inverse
problem. Early applications (e.g. Yoshida 1989; Yabuki & Matsu’ura
1992; Ide et al. 1996) posed the inverse problem probabilistically
and solved for the maximum a posteriori (MAP) model using con-
ventional least-squares techniques. These works applied Akaike’s
BIC (ABIC; Akaike 1980) to objectively estimate optimal values
for the rupture complexity (e.g. regularization by smoothness) and
the noise level on the data (i.e. the noise standard deviation). How-
ever, even after several decades of application, the procedures to
select regularization and noise parameters are still poorly discussed
in many other FFI studies.

When the FFI is formulated as linear (no positivity constraints
and a linear source time function), it is possible to write an analytic
expression for the posterior PDF which, in this special case, is a
multivariate Gaussian (Fukuda & Johnson 2008), assuming Gaus-
sian likelihood and prior. In addition, the MAP model can be found
directly from linear least-squares inversion. These analytic solutions
can be exploited to efficiently explore, within a probabilistic frame-
work, dependence of the solution on nonlinear model assumptions
such as relative weights of different data sets and geometry of the
faulting plane (e.g. Fukuda & Johnson 2010; Minson et al. 2014a).
In these cases, the use of analytic expressions for the linearized part
of the problem results in a more computationally tractable problem
since direct sampling is only employed for some parameters.

Application of Bayesian methods to nonlinear inverse problems
typically involves Markov Chain Monte Carlo (MCMC) sampling,

that is, the posterior PDF is pointwise evaluated with large num-
bers of dependent samples of the parameter vector from a Markov
chain. Note that MCMC sampling methods provide a natural way to
estimate regularization parameters by including them as unknowns
in the problem (Fukuda & Johnson 2008). With increasing com-
puter power, MCMC sampling methods are increasingly utilized in
FFI (e.g. Fukuda & Johnson 2008; Monelli & Mai 2008; Dettmer
et al. 2014; Minson et al. 2014b; Duputel et al. 2015; Kubo et al.
2016). While MCMC sampling is general and does not rely on
linearization to estimate the posterior PDF, it is computationally
demanding due to the requirement to evaluate the forward problem
for extremely large numbers of candidate models.

Therefore, a common way of parametrizing FFI of waveform
data is to linearize the problem (e.g. Olson & Apsel 1982; Hartzell
& Heaton 1983; Hartzell et al. 1996; Ide 2007). The linearization
is achieved by fixing the fault geometry and discretizing the fault
surface as subfaults whose source time functions are approximated
by linear combinations of simple functions (e.g. triangles). Each
function represents a time window in which the subfault may exhibit
slip. The approach is referred to as the multiple time window method
(MTWM); it is linear and can account for some variability in rupture
velocity and shape of the source time function. A disadvantage
is the requirement for large numbers of parameters, since each
subfault requires slip parameters for each time window and many
time windows are often applied. On the other hand, explicitly solving
for the rupture velocity or subfault rise-time requires nonlinear
optimization (e.g. Ji et al. 2002).

Assuming that the linear approximation is reasonable, the pos-
terior PDF is given analytically by a Gaussian PDF (e.g. Tarantola
2005; Fukuda & Johnson 2008), assuming Gaussian likelihood and
prior, and can be estimated efficiently. However, positivity con-
straints are often employed as additional regularization to obtain
plausible inferences. Positivity constraints restrict the solution to
only allow slip in certain directions and avoid unlikely, opposing
slip directions across the fault. Consequently, under positivity con-
straints the prior cannot be reasonably represented by a Gaussian,
which has support over all real numbers. Fukuda & Johnson (2008)
show that, when a truncated Gaussian is employed as a prior, to
achieve positivity, the posterior is no longer Gaussian and employs
MCMC sampling to find it. For this case Nocquet (2018) shows that
the posterior is a truncated Gaussian; however, parameter marginals
are not Gaussian nor Truncated Gaussian (Cartinhour 1990).

Therefore, integrals of the posterior are not trivial and no an-
alytic expression exists for the posterior covariance matrix. Such
analytic expressions are required, for example, to apply the ABIC
and to infer slip uncertainties, even though the most probable solu-
tion can still be found by employing the non-negative least-squares
algorithm (NNLS; Lawson & Hanson 1974). In the absence of an-
alytic expressions for the ABIC, MCMC sampling can be applied
to objectively constrain noise and smoothing parameters when pos-
itivity constraints are applied (Fukuda & Johnson 2008; Kubo et al.
2016). In that MCMC sampling approach, positivity constraints are
implemented by bounded priors that restrict the parameter space
of the inversion. Moreover, integrals of the posterior PDF are eval-
uated numerically and do not require analytic solutions, account
for uncertainty of the smoothing parameters, and are less likely to
exhibit linearization error. However, computational cost is much
higher and such methods are therefore unsuitable for time-sensitive
application.

In recent work, Nocquet (2018) shows that a truncated Gaussian
prior can be applied and relevant posterior statistics (e.g. parameter
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marginals, mean and covariances) can be well approximated with-
out performing MCMC sampling. The approach employs recent
findings in truncated Gaussian statistics (Genz & Bretz 2009). The
multidimensional integral required to obtain parameter marginals
is efficiently evaluated by a numerical algorithm, after a coordi-
nate transformation to a more suitable integration domain. Nocquet
(2018) goes on to show that this approach can incorporate additional
upper bounds on fault slip and be extended to include a mixture of
parameters with and without positivity constraints. The method is
applied to the modelling of interseismic crustal deformation of cen-
tral Peru from GPS data.

In this work, we show an alternative approach to slip uncer-
tainty quantification under positivity constraints that does not rely
on MCMC sampling and is based on an untruncated prior, the log-
normal distribution. We apply a parameter transformation to the
scalar moment (or, equivalently, slip) of each subfault and invert for
the natural logarithm of the parameters. This procedure is equiva-
lent to assume a multivariate log-normal prior for scalar moment
and, therefore, differs from truncated Gaussian prior previously dis-
cussed. The transformation ensures positivity and the posterior can
be approximated by a Gaussian distribution in logarithmic space.
The solution in linear space around the MAP solution is given by a
log-normal PDF from which we can obtain analytic expressions for
marginal distributions to quantify uncertainties. In this article, we
first develop the appropriate Bayesian framework to be used in the
inversion scheme. Particular attention is given to the computation of
uncertainties from the posterior PDF. Next, we discuss the problem
of estimating the MAP solution, which is a nonlinear optimization
problem. Then, we apply our method to simulated surface wave
data that are modelled to mimic the Illapel event (Mw = 8.3, 2015,
Chile), studying the effects of the smoothing in logarithmic space
and the azimuthal station coverage. The simulation results are com-
pared to MCMC sampling estimates. This systematic comparison
provides some insight into the linearization errors due to the poste-
rior approximation. Finally, the method is applied to surface wave
observations from the Illapel earthquake. We compute uncertainties
for the cumulative slip distribution for 2-D marginals of each rake
component as well as the slip magnitude. Comparison to an MCMC
sampling is also offered.

2 B AY E S I A N I N V E R S I O N F R A M E W O R K

This section presents a Bayesian framework for MTWM FFI. We
begin with the formulations of Fukuda & Johnson (2008) and Kubo
et al. (2016), and then introduce a variable transformation to obtain
an approximated posterior that does not require an MCMC sam-
pling. In Bayesian inference, we seek the posterior PDF from the
Bayes’ theorem (e.g. Tarantola 2005; Sivia & Skilling 2006). For N
data d and M parameters m, the posterior PDF P(m|d) is given by

P(m|d) = C P(d|m)P(m), (1)

where C is a normalization constant and P(m) is the prior, express-
ing knowledge about the parameters that is independent from the
data. For observed data, the data error distribution P(d|m) is inter-
preted as a likelihood function (a function of m) that quantifies the
likelihood that the model parameters gave rise to the data.

2.1 Parametrization and positivity constraints

In FFI we seek to infer the spatial and temporal evolution of fault
rupture from ground motions detected at the surface. The problem

is parametrized by spatial and temporal discretization: The fault
surface is assumed to be known and discretized with subfaults. It is
common to represent slip by two orthogonal vectors of prescribed
rake angles with unknown magnitude to incorporate unknown rake
in the inversion. The temporal evolution can be parametrized as
nonlinear or linearized. A common linearized method is MTWM
that can account for some variability in the temporal evolution of
rupture while allowing linear methods to be applied (e.g. Ide 2007).
Here, we apply MTWM discretization to achieve computational
efficiency.

In MTWM, Ntw rupture fronts propagate with a prescribed rup-
ture velocity vmax

r , separated by time interval td. A particular subfault
can slip each time a rupture front reaches it and the temporal depen-
dence of each slip event follows the specified source time function,
typically a triangle function of half duration td. The parameter vector
m contains the slip of each spatiotemporal unit.

Assuming Gaussian distributed data noise, the likelihood func-
tion P(d|m) in eq. (1) can be written as

P(d|m) =(2π)−N/2|Cd|−1/2

exp

[
−1

2
(Gm − d)T Cd

−1(Gm − d)

]
,

(2)

where Cd is the data covariance matrix, | · | denotes the determi-
nant, ( · )T the matrix transpose and the data vector d includes the
concatenated seismograms. Matrix G is of size N × M and contains
Green’s functions for each parameter. The data covariance matrix
contains information about both measurement and modelling errors
(e.g. Dettmer et al. 2007) and its detailed estimation can be quite
complex. In this work we will assume only simple forms of the data
covariances. For more advanced treatments, the reader is referred
to Yagi & Fukahata (2011), Duputel et al. (2012, 2014), Hallo &
Gallovič (2016) and Dettmer et al. (2012, 2014).

The prior P(m) quantifies information about the parameters that
is independent of the data information (e.g. physical or geological
constraints). Thus, it is natural to incorporate positivity constraints
directly into the prior. In principle, this can be achieved by utilizing
any multivariate PDF with positive support. In practice, a truncated
multivariate Gaussian has been normally employed to this end (e.g.
Fukuda & Johnson 2008; Kubo et al. 2016; Nocquet 2018), probably
since the optimization problem that results from finding the MAP
can be addressed with the familiar NNLS. The truncated Gaussian
prior can be written, based on an untrucated Gaussian of zero mean,
as

P(m) =
⎧⎨
⎩

(π/2)−M/2|Cp|−1/2 exp
[− 1

2 mT C−1
p m

]
,

for mi ≥ 0, i = 1, . . . , M
0 otherwise.

(3)

The matrix Cp corresponds to the covariance matrix of the untrun-
cated Gaussian PDF that results from dropping the positivity con-
straints in eq. (3) and contains the prior information about parameter
correlations. A common approach is to enforce spatial slip corre-
lations through a linear Laplacian smoothing operator (e.g. Yabuki
& Matsu’ura 1992; Tarantola 2005; Fukuda & Johnson 2008; Kubo
et al. 2016) say L, of size M × M and set

C−1
p = LT L

α2
, (4)

where α is an adjustable parameter that controls how informative
the prior is. Other prior correlation conditions can also be imple-
mented by replacing L with alternative operators. For instance, L
= I results in a minimum norm prior with no correlations, equiv-
alent to minimum model regularization. Importantly, Cp must be a
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positive definite matrix so that P(m|α) is a proper PDF that ensures
that Cp possesses a Cholesky decomposition. Thus, for an arbitrary
Cp one can choose L as the Cholesky factorization of its inverse.
This property can be used, for instance, to realize more general
covariances such as Von Karman regularization, recently employed
by Amey et al. (2018).

The posterior PDF can then be computed from eqs (2) and (3)
using Bayes’ theorem (eq. 1) as

P(m|d, α) =

⎧⎪⎨
⎪⎩

C1 exp
(
−ψ(m)

2

)
,

for mi ≥ 0, i = 1, . . . , M
0 otherwise,

(5)

where C1 is the normalization constant given by

C1 =
[∫

m≥0
dm exp

(
−ψ(m)

2

)]−1

, (6)

and ψ(m) is the objective function that includes the Gaussian prior

ψ(m) = (Gm − d)T Cd
−1(Gm − d) + α−2mT C−1

p m. (7)

The integral in eq. (6) is known as the marginal likelihood or evi-
dence. Traditional inversion approaches estimate an optimal model,
subject to positivity constraints, that minimizes ψ for an optimal
value of α. Such a value is typically found by utilizing a grid search.
Since the optimal model maximizes the posterior PDF given by eq.
(5), it corresponds to the MAP solution of a Bayesian approach.
However, unless the full posterior PDF is examined, other infer-
ences cannot be obtained. Examples of quantities that require the
full posterior PDF are: the mean solution, parameter correlations
and parameter uncertainties.

A remaining issue is the dependence on the hyperparameter α.
Most commonly, optimal values are determined by grid search and
the application of some criterion that addresses the intrinsic trade-
off between fitting the data and model smoothness. These criteria
include the L-curve test (e.g. Hansen 1992), the discrepancy prin-
ciple (Constable et al. 1987; Aster et al. 2005) and generalized
cross-validation (e.g. Craven & Wahba 1978). From the Bayesian
point of view, α can be treated as an unknown nuisance variable to be
estimated from the data since Bayes’ theorem intrinsically and quan-
titatively addresses the smoothness and data fit trade-off (MacKay
2003). The ABIC method achieves this by estimating an optimal α

value based on an analytic expression for the evidence.
Fukuda & Johnson (2008) note that the ABIC should not be

applied in FFI with positivity constraints, and that it does not give
optimal results for smoothing. The main issue is that the ABIC
requires computation of the marginal likelihood (see eq. 6), which
is not available analytically when positivity constraints are applied.
Similarly, the computation of the posterior covariance matrix

Cm =
∫

dm (m − m̂)T (m − m̂)P(m|d), (8)

where m̂ is the posterior mean, cannot be obtained analytically
because P(m|d) is not analytic and model uncertainties require nu-
merical estimation due to the choice of a truncated Gaussian prior.
To overcome this difficulty, Fukuda & Johnson (2008) implement an
MCMC sampling method to estimate the posterior PDF by MCMC
sampling. This sampling has orders of magnitude higher compu-
tational cost since ψ needs to be computed for large numbers of
parameter vectors. Recently, Nocquet (2018) has proposed a more
efficient approach to work with the posterior given by eq. (5) that
does not require an MCMC sampling. In that work, the parameter
marginals and covariances are approximated by exploiting semi-
analytical results for the truncated Gaussian distribution (Genz &

Bretz 2009) and the MAP is obtained from the NNLS. As we discuss
below, instead of approximating directly the posterior in eq. (5), we
opt for performing a parameter transformation to logarithmic space
and approximating the resulting posterior PDF with a multivariate
Gaussian.

2.2 Positivity by variable transformation

The approach described in Section 2.1 provides robust estimates of
the posterior PDF but the only way to compute it is by the MCMC
sampling. However, under some circumstances the computational
infrastructure for the MCMC sampling may not be available and
some applications, such as disaster response, require rapid finite
fault solutions. In these situations, it is also important to under-
stand parameter uncertainties that can reduce the risk of basing
decisions on misleading solutions (e.g. misplacing shallow slip or
under/overestimating peak slip). Therefore, it is desirable to apply
Bayesian methods that provide uncertainties efficiently based on
approximations.

To avoid the MCMC sampling, we apply two changes in the
approach previously described (Section 2.1): First, positivity is im-
plemented by a variable transformation that considers the natural
logarithm of each parameter instead of the parameters themselves.
Second, the posterior in logarithmic space is approximated as a
Gaussian around the MAP solution. The first change is required
to provide positivity for which an analytic estimate of the poste-
rior PDF exists. This is particularly important for subfaults with
near-zero slip, where a Gaussian PDF approximation would lead to
erroneous results. In contrast, by working in logarithmic space, the
new parameters are defined for all real numbers and truncation is
not a problem. This idea has been previously proposed by Tarantola
(2005; section 3.2.1) and we preliminary apply it to W-phase FFI
(Benavente 2016 , Benavente et al 2015 ). To our knowledge, it has
not been applied elsewhere to FFI.

To formally state our algorithm, we define the parameter trans-
formation from slip to logarithmic slip as

s(m) = [ln m1, ln m2, . . . , ln mM ]T (9)

and

e(s) = [exp s1, exp s2, . . . , exp sM ]T . (10)

Solving for s intrinsically leads to non-negative parameter values in
m and we formulate the inversion in terms of parameters s. Impor-
tantly, both e(s) and m represent the same parameter vector, however
m is not intrinsically positive so positivity must be explicitly en-
forced as a separated condition when working in terms of m (see
eq. 3). The likelihood function is given by

P(d|s) =(2π)−N/2|Cd|−1/2

exp

[
−1

2
[Ge(s) − d]T Cd

−1[Ge(s) − d]

]
.

(11)

In contrast to the truncated Gaussian prior discussed below
(eq. 3), we employ a multivariate lognormal prior for the slip pa-
rameters m that naturally incorporates positivity constraints. Con-
sequently, the prior for the logarithmic slip parameters s is given by
a multivariate normal distribution:

P(s|α̃) = (2πα̃2)−M/2|LT L|1/2 exp

[
− 1

2α̃2
(Ls)T (Ls)

]
, (12)

whose covariance matrix is given by

C̃−1
p = LT L

α̃2
. (13)
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In our application, L is the linear Laplacian smoothing operator and,
thus, α̃ correspond to the smoothing parameter in logarithmic space.
Note that this smoothing prior is applied in logarithmic space and
not equivalent to that in eqs (3) and (4). This implies that slip models
obtained from the two approaches may exhibit different spatial slip
correlations. In particular, since the stress drop on the fault can be
related to such correlations, both approaches may yield dissimilar
stress drops for the same event. We note, however, that a priori
knowledge about the stress drop can be difficult to establish. In this
sense, smoothing in logarithmic space appears to be a reasonable
choice since it may allow abrupt spatial changes in slip, if data
support them, and in Section 3 we carry out a comparison of the
two smoothing approaches.

Using the Bayes’ theorem (eq. 1) and eqs (11) and (12), we obtain

P(s|d, α̃) = C2 exp

(
− ψ̃(s)

2

)
, (14)

where

C2 =
[∫

ds exp

(
− ψ̃(s)

2

)]−1

(15)

and

ψ̃(s) = (Ge(s) − d)T Cd
−1(Ge(s) − d) + α̃−2(Ls)T (Ls). (16)

The integral in eq. (15) is taken over all real numbers since s is an
unbounded quantity, in contrast to m. Note that the new objective
function is now nonlinear and requires iterative linearization for
efficient solving. The main assumption in our method is that the
posterior in eq. (14) can be approximated by a Gaussian as discussed
below.

2.3 Uncertainty estimation by linearization

Slip uncertainties can be inferred from the model covariance matrix
defined by eq. (8). In principle, this requires numerical integration
to evaluate eq. (8) using eq. (14). However, we can linearize the
problem by approximating the posterior by a Gaussian PDF locally
around the MAP solution of s, a procedure that is commonly applied
to weakly nonlinear inverse problems (e.g. Sivia & Skilling 2006).
In Section 3, we evaluate the accuracy of this approximation and in
the following we discuss its application to our problem.

For a PDF similar to eq. (14) to be reasonably approximated by
a Gaussian, a sufficient condition is that the objective function ψ̃

is a quadratic function of s (e.g. Tarantola 2005, section 6.21). For
linear forward problems this condition is satisfied exactly. When the
forward problem is nonlinear, the strategy is to expand the objective
function around the MAP and retain terms up to second order. For
highly nonlinear problems, higher-order terms may be significant
and a second-order approximation may be poor. A second-order
approximation is given by

ψ̃(s) = ψ̃(ŝ) + 1

2
(s − ŝ)T ∇∇ψ̃(ŝ)(s − ŝ), (17)

where ∇∇ψ̃ is the Hessian matrix of ψ̃ and ŝ is the MAP solution.
The first-order term is missing from eq. (17) because it includes the
factor ∇ψ̃(ŝ), which is the gradient of ψ̃ at the MAP, which must
vanish at a minimum in ψ(s).

Substituting eq. (17) in eq. (14) gives

P(s|d, α̃) ∝ exp

[
−1

2
(s − ŝ)T C−1

s (s − ŝ)

]
, (18)

where

C−1
s = 1

2
∇∇ψ̃(ŝ) (19)

is the covariance matrix of the Gaussian posterior PDF and omission
of the normalizing constant causes the proportionality in eq. (18).
These expressions can be evaluated analytically by computing the
Hessian matrix. From eq. (16), the gradient and Hessian of the
objective function are

∇ψ(s) = 2e ⊗ GT Cd
−1(Ge − d) + 2α−2LT Ls (20)

and

∇∇ψ(s) = 2eeT ⊗ GT Cd
−1G (21)

+2 diag[e ⊗ GT Cd
−1(Ge − d)]

+2α−2LT L,

respectively. For convenience we do not write explicitly the depen-
dence e(s). The symbol ⊗ denotes the element-wise product and
the operator diag creates a diagonal matrix whose elements are the
elements of the vector argument. Derivations for eqs (20) and (21)
are given in the Appendix A.

2.4 Inversion strategy

The goal of our work is to obtain an analytic approximation of the
posterior PDF so that uncertainties can be estimated. The procedure
can be summarized as follows: First, we parametrize the rupture pro-
cess following the MTWM. This involves prescribing the number
and geometry of subfaults, the number of time windows and the
maximum rupture velocity. In this study, we assume that a data
covariance matrix Cd and an optimal value for α have been pre-
viously estimated and are known. Since directly determining these
parameters as part of the inversion results in a nonlinear inverse
problem, iterative approaches to estimate them are used instead
(e.g. Benavente et al. 2016).

After parametrizing the problem, we proceed to find the MAP so-
lution. The optimization is carried out by minimizing the objective
function ψ̃ . Because of its nonlinearity (see eq. 16), an iterative ap-
proach is applied. Since analytic expressions exist for the linearized
gradient and Hessian (eqs 20 and 21, respectively), efficient meth-
ods can be applied to find the minimum (e.g. Press et al. 1992; Aster
et al. 2005). In this work, we use the Newton conjugate gradient
method (Newton-CG; Wright & Nocedal 1999) as implemented by
SciPy (Jones et al. 2001).

As for any other nonlinear inversion, some concern remains re-
garding the uniqueness of the solution. If ψ̃ is a convex function the
solution is guaranteed to be unique. While we do not provide a gen-
eral proof of convexity, the objective function appears empirically
well behaved near the MAP solution. We reach this conclusion since
a sufficient requirement for convexity is a positive definite Hessian.
Eq. (21) shows that the Hessian comprises three terms. The first and
third terms are positive definite as long as the rows of G and L are
linearly independent. However, the second term can contribute neg-
ative elements to the diagonal which may cause convexity issues.
Nevertheless, for solutions close to the MAP the predictions should
be comparable to the data and since the contribution of the second
term to the Hessian is modulated by the residual vector (Ge − d),
it should be small compared to the other two. Furthermore, all the
Hessian matrices we obtained for MAP solutions in this work were
positive definite.

After obtaining the MAP, we calculate the posterior covariance
matrix from eq. (19) employing the Hessian from eq. (21), and
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then we use this covariance matrix to estimate the uncertainties. At
this point, we have approximate expressions for the posterior PDF
in logarithmic space given by eq. (18). In principle, the diagonal
elements of the covariance matrix are sufficient to obtain marginal
distributions for single parameters since the marginals of a Gaussian
are also Gaussian (e.g. Tarantola 2005; section 6.5).

However, to interpret the solution in terms of slip in linear space, a
coordinate transformation to e is required. To consider the transfor-
mation of uncertainties, we note that normally distributed random
variables in logarithmic space have log-normal distribution in linear
space. That is to say if x = ln y is normally distributed with mean μ

and standard deviation σ , y has log-normal distribution as

P(y) = 1

yσ
√

2π
exp

[
− (ln y − μ)2

2σ 2

]
. (22)

Note the convention that μ and σ are the parameters of the normal
distribution in logarithmic space. The mean � and the standard
deviation � of P(y) are given by

� = eμ+σ 2/2 (23)

and

� =
√

(eσ 2+2μ)(eσ 2 − 1). (24)

As a measure of uncertainties in the log-normally distributed pa-
rameters we use the width of the 95 per cent credibility interval
(CI). Since the log-normal distribution is asymmetric (in contrast
to the normal distribution), the use of CIs to quantify uncertainties
is preferable to the use of the standard deviations. The CIs are com-
puted directly by sampling the approximated posterior as discussed
in Section 3.2.

3 I N V E R S I O N F O R S I M U L AT E D DATA

This section applies our method to simulated noisy data to study
whether it can provide meaningful slip uncertainties. Also, we study
the sensitivity of the observations to the model parameters by reduc-
ing the station azimuthal coverage. To this end, we employ synthetic
surface waves based on the target model in Fig. 1. Long period Love
and Rayleigh waves are computed by using the method of Kanamori
& Stewart (1976), accounting for phase velocity changes that are
caused by 3-D structure (Ekström et al. 1997). Synthetic waveforms
are bandpass filtered from 100 to 200 s. We first assess the effects
of our smoothing scheme in logarithmic space. Then, we consider
uncertainties for simulated data with different noise levels. Finally,
we compare the linearized uncertainty estimates from our method
to those obtained by the MCMC sampling.

3.1 Effects of smoothing in logarithmic space

An important consequence of the variable transform we apply is
that smoothing is applied in logarithmic space. Typical FFIs apply
smoothing directly to slip or scalar moment. While it is reasonable
to assume some form of smoothness for slip, the precise implemen-
tation is subjective. In this simulation, we study to which extent
log-space smoothing is different from non-logarithmic smoothing
which is widely applied. Here, we establish that logarithmic smooth-
ing can recover the main features of a slip model that satisfies the
traditional linear smoothing assumption.

The simulation geometry is based on the 2015 Illapel event
(Chile, Mw = 8.3) and consists of 16 subfaults along strike (4◦)
and 6 along dip (18◦). Only one time window of 10 s half duration

was employed resulting in constant rupture velocity. The model in-
cludes only positive slip values that are decomposed into two rake
components (45◦ and 135◦). This is a very simple parametriza-
tion intended only to produce a workable example for simulation
purposes. A more realistic parametrization was prepared for our
application with observed data and it is presented in Section 4. Im-
portantly, the model satisfies a traditional smoothing scheme (not in
log-space) expressed by the prior of eq. (3). Fig. 1 shows the target
slip distribution. The model is clearly smooth and exhibits a major
slip patch at the centre of the fault and much smaller variations in
slip outside this main slip patch.

We compute synthetic surface wave data based on the target
model and stations shown in Fig. 1. Then, we add correlated Gaus-
sian noise and invert the resulting simulated data using our algo-
rithm. To achieve a temporal correlation that is consistent with the
frequency content in the synthetics, an exponential correlation ma-
trix Csyn is introduced in the form of a block diagonal matrix. Each
block Ci

syn contains correlation information for a given station i and
its components are

[Ci
syn]kl = σ 2

i exp

(−|tk − t j |
τ

)
, (25)

where ti is the time of the ith sample of the waveform. The scaling
parameter σ 2

i controls the noise level and we compute it as σ 2
i =

γ Amax
i with Amax

i the maximum absolute value of the amplitude for
station i and γ a parameter controlling the absolute noise level of
the traces. The temporal correlation decay τ is fixed at 100 s, in
agreement with the minimum period content in the signals. Once
Csyn is computed, correlated noise is obtained by multiplying its
Cholesky decomposition with a vector of standard uncorrelated
Gaussian samples. Fig. 2 shows an example of the synthetic traces
generated by this procedure for γ = 5 per cent.

We consider two noise levels that are given by γ = 2 per cent and
γ = 5 per cent. Smoothness was adjusted following the discrepancy
principle (Constable et al. 1987; Aster et al. 2005) for the known
covariance matrix, that is, the logarithmic smoothness is such that
the χ 2 misfit equals the number of data points, with

χ 2 = [Ge(s) − d]T Cd
−1[Ge(s) − d]. (26)

The results are given in Fig. 3. While both results agree well with the
true model, both are less smooth and display more abrupt changes
in the slip distribution than the true model. Also, peak slip is larger
(∼3.2 m) for the noisiest model while the slip region is nearly the
same for the three models. However, these differences are small
compared to the slip uncertainties of the solution considered in
Section 3.2. We conclude that log-space smoothing achieves results
that are similar to smoothing in linear space.

3.2 Uncertainty estimation for different noise levels

In a Bayesian framework, results are given in terms of a posterior
PDF that includes information about the possible models that can
produce the data. For our application, the estimation of slip un-
certainties is straightforward once an MAP solution is obtained.
Eq. (19) is evaluated at the MAP solution to approximate the pos-
terior by a Gaussian PDF in the s variables. The single-parameter
marginals of this multivariate Gaussian are also Gaussian distribu-
tions with variance given by the appropriate diagonal elements of
the covariance matrix. Then, the marginals of each parameter in
linear space are given by log-norm distributions in e with mean and
standard deviation given by eqs (23) and (24), respectively. While
all the relevant statistics (e.g. CIs and mean) can be derived for
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Figure 1. Target model for the simulations. Left-hand side: Stations (blue), hypocentre (star) and fault geometry based on the 2015 Illapel earthquake. The
true slip distribution (right-hand side) is chosen to be representative for an event of this size while maintaining high degree of smoothness.

Figure 2. Example of a synthetic target (blue) and noisy (green) traces employed in the simulation for γ = 5 per cent. For each subplot, station name and
component (T: Transverse, Z: Up) are displayed at the top.

the parameters from these marginals, their physical interpretation is
difficult because of the parametrization scheme (i.e. MTWM).

In order to obtain uncertainties for the cumulative slip distribu-
tion, an additional step is required. This is because in the MTWM,
the parameters given by m correspond to the slip of each spatiotem-
poral unit that are also decomposed into rake directions. That is, the

cumulative slip (or scalar moment) Scum
i of a subfault i is

Scum
i =

√√√√√
⎛
⎝ Nt∑

j

S j1
i

⎞
⎠

2

+
⎛
⎝ Nt∑

j

S j2
i

⎞
⎠

2

, (27)
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Figure 3. Simulation results for the log-space smoothing approach in terms of the MAP model. Results for γ = 2 per cent (left-hand panel) and γ = 5 per cent
(right-hand panel) noise level are shown. Both results agree well with the true model (Fig. 1).

where S j1
i and S j2

i are the rake components for the jth time window
and Nt is the number of time windows. Thus, it is possible to propa-
gate the uncertainties from parameters marginals to cumulative slip
analytically. Here, however, we follow a rather simpler sampling ap-
proach. Since drawing samples from a multivariate Gaussian PDF
is an inexpensive procedure, we draw Nsamp samples directly from
P(s|d, α̃). For each of those samples we apply eq. (27) obtaining
the respective cumulative slip. We then compute the 95 per cent CIs
from the cumulative slip samples. Our tests show that Nsamp ≈ 105

provide stable CI to an accuracy of ∼1 cm, that is, results do not
change above this limit as more sampling is done.

The 95 per cent CIs of the cumulative slip distribution (Fig. 3)
are shown in Fig. 4. The uncertainty patterns are similar, but the
peak uncertainty for noise level γ = 2 per cent is ∼1.8 m and for
γ = 5 per cent uncertainty reaches ∼2.7 m. The results suggest that
surface waves tend to lose resolution at larger depths but constrain
shallow slip well. However, slip for the bottommost subfaults ap-
pears to be relatively well constrained and close to 0 m, suggesting
that the data are sensitive to the total rupture width. While these
uncertainty estimates appear reasonable, we carry out a quantitative
comparison with the MCMC sampling as an independent method in
Section 3.3. It should be noticed that slip uncertainties will not only
depend on the data noise level but also on the station distribution
and azimuthal coverage around the source. As an example, we re-
peat the simulation for γ = 5 per cent but filtering out all stations in
the eastern hemisphere with respect to the epicentre. Uncertainties
are shown in Fig. 5 and the mean model in Fig. 6. As expected,
uncertainties are significantly larger, with a peak 95 per cent CI
of 3.6 m. Again, uncertainties are larger downdip but data constrain
the shallowest portion of the fault well.

3.3 Comparison with the MCMC sampling

This section applies the MCMC sampling to obtain nonlinear uncer-
tainty estimates and compares these to the linearized results of the
previous section. The comparison is based on the simulated surface
wave data with γ = 5 per cent noise level. Noise correlations are not
introduced so that synthetic traces were generated from a covariance
given by Ci

syn = σ 2
i I(ni ), where ni is the number of data points of

the ith trace. The uncertainty estimates are considered separately
for each rake component. The resulting log-normal marginal distri-
butions are shown as the red curves in Fig. 7 for rake component 1
(45◦ ) and Fig. 8 for rake component 2 (135◦).

An MCMC sampling algorithm is applied to obtain independent
marginal distributions for the parameters. In this approach, ran-
dom samples are drawn directly from the nonlinear posterior PDF

(eq. 14). Here, we employ a fixed-dimension version of the transdi-
mensional sampling algorithm by Dettmer et al. (2014). To isolate
the effect of the linearization approximation, we fix the smooth-
ing parameter α to the same value we estimated in our linearized
method. The MCMC sampling results in a large ensemble of param-
eter vectors that numerically approximate the posterior. Marginal
distributions are straightforward to obtain as normalized histograms
for each parameter. These marginal PDFs are shown for the appro-
priate rake component in Figs 7 and 8 (blue histograms).

In general, we find very good agreement between the marginals
obtained by the two methods (Figs 7 and 8). The histograms re-
veal that most parameters do not exhibit features indicating strong
nonlinearity (such as multiple modes or other complicated shapes).
Rather, the log-normal approximation seems appropriate with sim-
ilar peak positions and uncertainties throughout. However, we note
that fixing α to an optimal value can impact both estimated slip
values and uncertainties. In practice, treating α as unknown in the
MCMC sampling provides a more general solution than possible
in a linearized approach. We conclude that the comparison indi-
cates that our approximation can recover meaningful uncertainty
estimates at a fraction of the computational expense required by
nonlinear methods. For this particular example the MCMC sam-
pling method converged to the posterior shown after 12 hr using
12 CPUs while our linearized approach only requires seconds on a
desktop computer.

4 A P P L I C AT I O N : I L L A P E L G R E AT
E A RT H Q UA K E ( 2 0 1 5 , M W = 8 . 3 ) , C H I L E

In this section, we apply our inversion approach to estimate the
slip distribution of the 2015 Illapel earthquake (Mw = 8.3) and its
uncertainty. Early finite fault models inferred peak slip of 5–10 m
(Ye et al. 2015; Benavente et al. 2016; Melgar et al. 2016; Tilmann
et al. 2016) and the maximum tsunami run-up was estimated to be
10.8 m (Aránguiz et al. 2016). As discussed in previous sections, to
utilize our inversion approach we parametrize the rupture process
with the MTWM. For the Illapel event, we prescribe a maximum
rupture velocity to be of 2.0 km s−1 and the source time function
is discretized into three isosceles triangles with an overlap and
half duration equal to 10 s, with a maximum rupture time of 40 s
per subfault. We employ surface waves from the station distribution
shown in Fig. 1 and Green functions are generated with the approach
described in Section 3. Since we correct for phase velocity changes,
manual phase shifting is not introduced. The fault geometry is the
same as in Section 3.1 but the number of subfaults along strike
and dip is doubled for increased resolution, so that we consider
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Figure 4. 95 per cent CIs of recovered models using log-space smoothing. Target model is shown in Fig. 1. CIs correspond to the models of Fig. 3 in the
same order, that is, γ = 2 per cent of noise contamination was applied to target model for the figure on the left-hand side and γ = 5 per cent for the one on the
right-hand side. Results for the 2.5 and 97.5 percentiles of the PDF are shown in Figs S1 (γ = 2 per cent) and S2 of the Supporting Information (γ = 5 per cent).

Figure 5. Station distribution and 95 per cent CIs of recovered model when stations with azimuths 0◦–180◦ are removed from the inversion. Noise contamination
is γ = 5 per cent. Corresponding models for percentiles 2.5 and 97.5 are shown in Fig. S3 of the Supporting Information.

Figure 6. Mean of the cumulative slip when stations with azimuths 0◦–180◦ are removed from the inversion. Noise contamination is γ = 5 per cent.

32 subfaults along strike and 12 along dip. Rake components are
taken as 45◦ and 135◦ so that rake angles can vary within that
range. Considering rake variations within a 90◦ range around a
reference rake value (90◦, in this case, as expected for a thrust

event) is a common practice in FFI as it naturally results from
taking two orthogonal rakes components in applying the NNLS.
While sometimes rake angles are allowed to vary over a wider range
of 180◦ (e.g. Minson et al. 2013), this is not currently possible in
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Figure 7. Marginal PDFs for parameters of rake component of 45◦. Each subplot shows the marginal PDF for the corresponding subfaults. The layout of the
subplots is the same as the slip distributions shown in Figs 1 and 4 so horizontal direction goes along strike and vertical direction along dip. The red curves
were obtained using the analytic expression we proposed here and the blue histograms were obtained using the MCMC sampling of the posterior PDF. The
vertical green dashed line indicate the slip of the target model (Fig. 1).

Figure 8. Marginal PDFs for parameters of rake component of 135◦. Legends are the same as in Fig. 7 .
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our algorithm since it would involve mixing unbounded and positive
parameters in the posterior, making the Gaussian approximation in
log-space non-trivial.

Fig. 9 (left-hand panel) shows the posterior mean model for the
cumulative slip distribution and rake angles following the sampling
approach presented in Section 3.2. We note that to compute this
posterior we draw 105 samples of the parameter vector, which only
requires ∼15 s in a standard desktop computer. In order to indepen-
dently test the reliability of our solution, we conducted a probabilis-
tic inversion for the posterior by the MCMC sampling following the
same procedure described in Section 3.3. The data fits are shown in
Figs S4–S6 and parameter marginals in Figs S7–S12 of the Support-
ing Information. As in the simulations, marginals for all parameters
are in excellent agreement with our approximated posterior. For
comparison, we have included two slip models derived from tele-
seismic data (Hayes 2015; Benavente et al. 2016). All slip models
exhibit a similar peak slip located ∼100 km north of the epicentre
in the shallow portion of the fault with nearly up-dip rake. This is
consistent with the moderate tsunami triggered by the event. Our
model displays an additional deeper slip patch with small slip and
significant uncertainty. In addition, our solution is more compact,
likely owing to the logarithmic smoothing. On the one hand, we
note that the level of spatial detail in our slip model appears to be
greater than that in Benavente et al. (2016)’s W-phase model, and
less than in Hayes (2015)’ combined surface and body wave model.
This might reflect the relative period ranges in the data sets: the
W-phase solution uses very long (200–1000 s) period waves, while
our data set uses waves of 100–200 s period, and Hayes (2015) data
set includes body waves of much shorter period. On the other hand,
our main slip zone is much more compact than either the Benavente
et al. (2016) or Hayes (2015) models. Since our data fits are gener-
ally good (see Figs S4–S6 in the Supporting Information), it is likely
that data are not very sensitive to such spatial correlation details.
Thus, we surmise that this difference may be due to differences in
regularization assumptions not data information.

We also compute slip uncertainties, expressed as the 95 per cent
CI, for the cumulative slip and 2-D marginals for the rake compo-
nents of a relevant fault section (enclosed by the black rectangle in
Fig. 10, left-hand panel). These results are shown by Figs 10 and 11,
respectively. As mentioned previously, there are two slip patches in
the mean slip distribution. The main slip feature is placed up dip
with a peak slip of ∼8.5 m with a correspondent 95 per cent CI of
∼6 m. The secondary slip feature, located downdip, has both peak
slip and 95 per cent CI of ∼3 m suggesting that it has been poorly
resolved by the data. In addition, this slip feature appears well pro-
nounced one rake component (135◦, see Fig. 11) that has a large
variability in the same region as shown by Fig. 11, suggested by the
elongated marginals along rake component 2. Since the other rake
component seems to better constrain the slip in the same region, we
expect that this secondary slip patch is an artefact, possibly caused
by the loss of resolution with depth implied by our synthetics tests
in Section 3). In any case, it would have little effect in the tsunami
generation due to the oblique slip direction.

5 S U M M A RY A N D D I S C U S S I O N

We developed an efficient method for slip uncertainty estimation
in FFI with positivity constraints. A Bayesian framework is em-
ployed that incorporates uncertainty estimation naturally as part of
the inversion. Positivity is ensured by a parameter transformation to

logarithmic space that formulates the inversion in terms of intrin-
sically positive slip. This procedure results in a nonlinear inverse
problem for which optimal parameters are estimated by applying
a linearized iterative approach. The posterior PDF is approximated
by a normal distribution in logarithmic space. Under this linearized
approximation, an analytic expression exists for the posterior co-
variance matrix that provides straightforward uncertainty estimates
in logarithmic space. These uncertainties correspond to log-normal
distributions for slip in linear space.

Simulation results and comparison with the MCMC sampling
show that our new method leads to meaningful uncertainties at
a fraction of the computational effort required for numerical es-
timation. This suggests that the linearized approximation for the
posterior PDF is sufficient for robust, rapid uncertainty estimation.
However, more general results would be obtained if smoothing was
treated as unknown, which moderately increases computational cost
since it requires additional solutions to the nonlinear inverse prob-
lem (see Benavente et al. 2016). Slip distributions obtained for the
Illapel event are consistent with previously published results but pro-
vide the additional benefit of uncertainty quantification. The Illapel
slip uncertainties we obtained are meaningful and do not exceed
MAP values in peak-slip areas (i.e. information is inferred from the
data) and correlate with slip. It should be noted, however, that un-
certainties are not negligible at all. While the peak slip we obtained
is around 8.5 m, the slip range in this area, estimated from the 95
per cent CI, is ∼6−12 m (see Fig. S13, Supporting Information).
Such large variability can have a tremendous impact in tsunami
intensities derived from the ensemble of slip models (Cienfuegos
et al. 2018). Thus, we stress the importance of model uncertainty
estimation in evaluating the impact of an event, particularly for
emergency response purposes.

An aspect that we have not considered in this work is that the
formulation for the Laplacian operator in eq. (13) is general and
can take on various forms. To date, we have only considered a
smoothing formulation but other cases are possible. In particular,
one can assume no parameter correlations via L = I. Uncertainties
inferred with the approach proposed here will depend on such choice
but this dependence has not been explored in this article. In addition,
the assumed prior covariance matrix can be a function of a number of
hyperparameters. In particular, our smoothing prior depends on α̃.
Strictly speaking, α̃ is given by a probability distribution that can be
inferred (Fukuda & Johnson 2008; Kubo et al. 2016). We use a point
estimate for α̃, based on the discrepancy principle, but note that this
is a simplification and that we have currently no information about
the linearization error made by using a point estimate. In the MCMC
sampling, we employ for comparison (Figs 7 and 8), we do not treat α̃
as an unknown and thus cannot quantify the linearization error due to
α̃. This requires further study since strong nonlinearities could cause
poor linearized uncertainty estimates in some cases. To illustrate
this point, we show in Fig. 12 slip distributions obtained with half
and twice the value of α̃ employed in the inversion. Although both
models provide reasonable χ 2 misfits, peak slips are considerably
different.

However, we note that many current FFI studies do not address
the issue of slip uncertainty and are typically based exclusively on
point estimates to infer rupture properties and sometimes do not
indicate how regularization is applied. We assert that this may be
one of the reasons that discrepancies of slip estimates exist in the
literature for the same event (e.g. Beresnev 2003; Minson et al.
2013). The Bayesian approach with uncertainty quantification is
convenient for FFI since it provides more robust solutions to the
ill-posed inverse problem. The efficiency of our method is such that
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Figure 9. Comparison of slip models for the Illapel event from different inversions. Left-hand panel: Model from this study that utilizes surface waves and a
log-smoothing regularization scheme. The estimated magnitude is Mw = 8.23. Centre: Solution by Benavente et al. (2016) that inverted only long period W
phases and considers a standard MTWM with linear smoothing. Right-hand panel: Solution by Hayes (2015) that performs joint inversion of body and surface
waves, standard linear smoothing and the nonlinear inversion method of Ji et al. (2002).

Figure 10. Mean of the cumulative slip distribution (left-hand panel) and associated 95 per cent CI (right-hand panel). Corresponding models for percentiles
2.5 and 97.5 are shown in Fig. S13 of the Supporting Information. The region enclosed by the black rectangle includes all the relevant slip features.

it can be carried out on personal computers, making it more broadly
applicable in comparison to the MCMC sampling which requires
high-performance computer infrastructure. This may be useful, for
instance, to quickly quantify the robustness of early finite fault
models that can be employed to assess the tsunamigenic potential
of an event (e.g. Benavente & Cummins 2013; Cienfuegos et al.
2018; Crowell et al. 2018). Nocquet (2018) has devised a similar
inversion method that also implements positivity constraints while

avoiding the MCMC sampling. Instead of using a log-normal prior
in slip, Nocquet (2018) relies on a truncated Gaussian prior to re-
alize slip positivity. As a result, while the MAP can be found using
the standard NNLS algorithm, evaluation of parameter marginals as
well as posterior mean and covariances require complex numerical
integration over an hyper-rectangle. In contrast, the approach out-
lined here relies on a standard nonlinear Newton conjugate gradient
algorithm, to find the MAP and then, an approximated posterior
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Figure 11. 2-D marginals for the two rake components of the subfaults within the region enclosed by the black rectangle in Fig. 10. Layout is the same as
Fig. 10, with the top subfaults located at the shallowest portion of the fault. The dashed yellow line indicates a rake of 90◦. For each marginal the colour
indicates the mean of the slip magnitude, which is the same as in Fig. 10.

Figure 12. Mean models for cumulative slip distribution using half (left-hand panel) and twice (right-hand panel) the optimal smoothness. The former gives a
χ2 of 84 per cent while the latter amounts to 119 per cent, both relative to the optimal χ2 used in the inversion.

parameter marginals, mean and covariance matrix can be evaluated
analytically. We note that both methods show excellent agreement
with equivalent MCMC sampling techniques.

While the algorithm was applied to surface waves records, the for-
mulation is general and applicable for various types of data. Other
teleseismic, geodetic, continuous GPS and strong motion data can
also be used in a similar scheme, since the forward problem is
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also linear (or linearizable via MTWM). Although we have only
focused on the use of a single data type, this approach can also be
employed in joint FFI. Since we utilize a Bayesian framework, this
would provide a quantitative means to evaluate the uncertainties.
Since, from a Bayesian point of view, data weights can be seen as
hyperparameters of the likelihood function, one could address the
problem of determining the relative data weights by direct MCMC
sampling of them. This approach is explored by Fukuda & Johnson
(2010) for a joint inversion of GPS, InSAR and EDM data. However,
in that study a multivariate Gaussian prior for slip (linear) param-
eters is employed for efficiency, so that positivity constraints are
not imposed. This is an interesting aspect to be explored since the
impact of combining several data sets on model uncertainties has
not been studied extensively, perhaps due to the high computational
cost associated with previous methods.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1. Models for percentiles 2.5 (left-hand panel) and 97.5
(right-hand panel) for the simulation described in Section 3. Noise
level is given by γ = 2 per cent.

Figure S2. Models for percentiles 2.5 (left-hand panel) and 97.5
(right-hand panel) for the simulation described in Section 3. Noise
level is given by γ = 5 per cent.
Figure S3. Models for percentiles 2.5 (left-hand panel) and 97.5
(right-hand panel) for the simulation described in Section 3 with a
large azimuthal gap. Noise level is given by γ = 5 per cent.
Figure S4. Data prediction from our approximated posterior for the
Illapel event. The blue lines are the measured data and the yellow
lines are predictions for 1000 samples drawn from the posterior
PDF. For each subplot, station name and component (T: Transverse,
Z: Up) are displayed in the top-right corner.
Figure S5. Data prediction from our approximated posterior for the
Illapel event. The blue lines are the measured data and the yellow
lines are predictions for 1000 samples drawn from the posterior
PDF. For each subplot, station name and component (T: Transverse,
Z: Up) are displayed in the top-right corner.
Figure S6. Data prediction from our approximated posterior for the
Illapel event. The blue lines are the measured data and the yellow
lines are predictions for 1000 samples drawn from the posterior
PDF. For each subplot, station name and component (T: Transverse,
Z: Up) are displayed in the top-right corner.
Figure S7. PDFs for each slip parameter in our inversion for the
Illapel event. Here we show the marginals for the rake component
of 45◦ and the first time window. Plots for the rest of the parameters
can be found in Figs S8–S12. The layout is the same as in Fig. 8 so
that the first row corresponds to the shallowest subfaults and first
column to the southernmost subfaults. The red lines indicate the
marginal obtained by our approximated analytic posterior and the
blue histograms show the results from an MCMC sampling of the
full posterior.
Figure S8. PDFs for each slip parameter in our inversion for the
Illapel event. Marginals are shown for the rake component of 45◦

and the second time window. Legends and layout are the same as in
Fig. S7.
Figure S9. PDFs for each slip parameter in our inversion for the
Illapel event. Marginals are shown for the rake component of 45◦

and the third time window. Legends and layout are the same as in
Fig. S7.
Figure S10. PDFs for each slip parameter in our inversion for the
Illapel event. Marginals are shown for the rake component of 135◦

and the first time window. Legends and layout are the same as in
Fig. S7.
Figure S11. PDFs for each slip parameter in our inversion for the
Illapel event. Marginals are shown for the rake component of 135◦

and the second time window. Legends and layout are the same as in
Fig. S7.
Figure S12. PDFs for each slip parameter in our inversion for the
Illapel event. Marginals are shown for the rake component of 135◦

and the third time window. Legends and layout are the same as in
Fig. S7.
Figure S13. Models for percentiles 2.5 (left-hand panel) and 97.5
(right-hand panel) for the inversion based on observed surface wave
data described in Section 4.
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A P P E N D I X A : H E S S I A N A N D
G R A D I E N T

In this appendix we derive the expressions for the gradient and
Hessian of the objective function eq. (16) which is expressed as

ψ̃(s) = (Ge(s) − d)T Cd
−1(Ge(s) − d) + α̃−2(Ls)T (Ls). (A1)

Introducing the Cholesky decomposition of Cd,

Cd
−1 = (KKT )−1 = K−T K−1, (A2)

where K is a lower triangular matrix and K−T = (K−1)T, we can
rewrite eq. (A1) as

ψ̃(s) = (G̃e(s) − d̃)T (G̃e(s) − d̃) + α̃−2(Ls)T (Ls), (A3)

where

G̃ = K−1G, d̃ = K−1d. (A4)

For convenience we name the first and second terms of eq. (A3)
ψ̃(s)(I ) and ψ̃(s)(I I ), respectively, so that

ψ̃(s) = ψ̃ (I )(s) + ψ̃ (I I )(s). (A5)

By applying index notation and rearranging, we find that

∂ψ̃ (I I )(s)

∂sl
= α−2 ∂

∂sl

∑
i

⎛
⎝∑

j

Li j s j

⎞
⎠

2

= 2α−2
∑

i

⎛
⎝∑

j

Li j s j

⎞
⎠(∑

m

Limδlm

)

= 2α−2
∑

i

⎛
⎝∑

j

Li j s j

⎞
⎠ Lil

= 2α−2
(
LT Ls

)
l
,

(A6)

where δij is the Kronecker delta. From this result, it can be seen
that

∂ψ̃ (I I )(s)

∂sk∂sl
= 2α−2

(
LT L

)
lk

. (A7)

The derivatives of ψ̃ (I )(s) can be obtained similarly:

∂ψ̃ (I )(s)

∂sl
= ∂

∂sl

∑
i

⎛
⎝∑

j

G̃i j e j − d̃i

⎞
⎠

2

= 2
∑

i

⎛
⎝∑

j

G̃i j e j − d̃i

⎞
⎠ ∂

∂sl

(∑
k

G̃ikek − d̃k

)

= 2
∑

i

⎛
⎝∑

j

G̃i j e j − d̃i

⎞
⎠

(∑
k

G̃ikekδkl

)

= 2el

∑
i

G̃il

∑
j

(
G̃i j e j − d̃i

)
= 2

[
e ⊗ GT Cd

−1(Ge − d)
]

l

(A8)

and

∂ψ̃ (I I )(s)

∂sk∂sl
= 2el

∂

∂sk

⎡
⎣∑

i

G̃il

∑
j

(
G̃i j e j − d̃i

)⎤⎦
+ 2

∂el

∂sk
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i

G̃il

∑
j

(
G̃i j e j − d̃i

)
= 2el

∑
i
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∑
j

G̃i j e jδ jk

+ 2elδkl

∑
i

G̃il

∑
j

(
G̃i j e j − d̃i

)
= 2elek
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i

G̃il G̃ik

+ 2elδkl

∑
i

G̃il

∑
j

(
G̃i j e j − d̃i

)
= 2

{
eeT ⊗ GT Cd

−1G

+ diag[e ⊗ GT Cd
−1(Ge − d)]

}
kl

.

(A9)

Taking the derivative of eq. (A5) and using eqs (A8) and (A6) we
obtain

∇ψ(s) = 2e ⊗ GT Cd
−1(Ge − d) + 2α−2LT Ls, (A10)

which is the same as eq. (20). Likewise, taking the second-order
derivatives of eq. (A5) and using eqs (A9) and (A7) yields

∇∇ψ(s) = 2eeT ⊗ GT Cd
−1G (A11)

+2 diag[e ⊗ GT Cd
−1(Ge − d)]

+2α−2LT L,

which is the same as eq. (21).
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