Optimal and Cut-Free Tableaux for
Propositional Dynamic Logic with Converse

Rajeev Goré! and Florian Widmann'-2

!Logic and Computation Group
2* NICTA The Australian National University
Canberra, ACT 0200, Australia,
{Rajeev.Gore,Florian.Widmann}@anu.edu.au

Abstract. We give an optimal (EXPTIME), sound and complete tableau-
based algorithm for deciding satisfiability for propositional dynamic logic
with converse (CPDL) which does not require the use of analytic cut. Our
main contribution is a sound method to combine our previous optimal
method for tracking least fix-points in PDL with our previous optimal
method for handling converse in the description logic ALCI. The exten-
sion is non-trivial as the two methods cannot be combined naively. We
give sufficient details to enable an implementation by others. Our OCaml
implementation seems to be the first theorem prover for CPDL.

1 Introduction

Propositional dynamic logic (PDL) is an important logic for reasoning about pro-
grams. Its formulae consist of traditional Boolean formulae plus “action modali-
ties” built from a finite set of atomic programs using sequential composition (;),
non-deterministic choice (U), repetition (), and test (?). The logic CPDL is ob-
tained by adding converse (~), which allows us to reason about previous actions.
The satisfiability problem for CPDL is EXPTIME-complete [I].

De Giacomo and Massacci [2] give an NEXPTIME tableau algorithm for decid-
ing CPDL-satisfiability, and discuss ways to obtain optimality, but do not give an
actual EXPTIME algorithm. The tableau method of Nguyen and Szatas [3] is op-
timal. Neither method has been implemented, and since both require an explicit
analytic cut rule, it is not at all obvious that they can be implemented efficiently.
Optimal game-theoretic methods for fix-point logics [4] can be adapted to han-
dle CPDL [5] but involve significant non-determinism. Optimal automata-based
methods [6] for fix-point logics are still in their infancy because good optimisa-
tions are not known. We know of no resolution methods for CPDL.

We give an optimal tableau method for deciding CPDL-satisfiability which
does not rely on a cut rule. Our main contribution is a sound method to combine
our method for tracking and detecting unfulfilled eventualities as early as possible

* NICTA is funded by the Australian Government’s Department of Communications,
Information Technology and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Centre of Excellence program.

J. Giesl and R. Hihnle (Eds.): IJCAR 2010, LNAI 6173, pp. 225-239] 2010.
© Springer-Verlag Berlin Heidelberg 2010

226 R. Goré and F. Widmann

Table 1. Smullyan’s a- and S-notation to classify formulae

a oAy [YUdlp [yxle @Ne (1:0)e [vidle B oV (yUde (yxe [Te
ar @ e ® o (MNOe Mol B ¢ (Ve @ @
az P Bl Dllvsle ¥ B2 ¢ O)ye (MRe ~p

in PDL [7] with our method for handling converse for ALCT [§]. The extension
is non-trivial as the two methods cannot be combined naively.

We present a mixture of pseudo code and tableau rules rather than a set of
traditional tableau rules to enable easy implementation by others. Our unopti-
mised OCaml implementation appears to be the first automated theorem prover
for CPDL (http://rsise.anu.edu.au/~rpg/CPDLTabProver/). A longer ver-
sion with full proofs is available at http://arxiv.org/abs/1002.0172.

2 Syntactic Preliminaries

Definition 1. Let AFml and APrg be two disjoint and countably infinite sets
of propositional variables and atomic programs, respectively. The set LPrg of
literal programs is defined as LPrg := APrgU {a™ | a € APrg}. The set Fml of
all formulae and the set Prg of all programs are defined mutually inductively as
follows where p € AFml and | € LPrg:

Fml gu=pl-peAheleVelMelhle
Prg yu=1l]yy[yuy] v |7 .
A (Ip)-formula is a formula (v)p where v € LPrg is a literal program.

Implication (—) and equivalence (<) are not part of the core language but
can be defined as usual. In the rest of the paper, let p € AFml and [€ LPrg.

We omit the semantics as it is a straightforward extension of PDL [7] and
write M, w IF ¢ if ¢ € Fml holds in the world w € W of the model M.

Definition 2. For a literal program | € LPrg, we define I~ as a if | is of
the form a=, and as I~ otherwise. A formula ¢ € Fml is in negation normal
form if the symbol — appears only directly before propositional variables. For ev-
ery ¢ € Fml, we can obtain a formula nnf () in negation normal form by pushing
negations inward such that ¢ < nnf ¢ is valid. We define ~ ¢ := nnf(—¢).

We categorise formulae as a- or S-formulae as shown in Table [so that the
formulae of the form a <+ a3 Aas and 3 < (1 V (B2 are valid. An eventuality is a
formula of the form (1) ... (k) {7*)¢, and Ev is the set of all eventualities. Using
Table [the binary relation “~” relates a ()-formulae « (respectively (3), to its
reduction ay (respectively 31 and B2). See 7}, Def. 7] for their formal definitions.

3 An Overview of our Algorithm

Our algorithm builds an and-or graph G by repeatedly applying four rules (see
Table [2) to try to build a model for a given ¢ in negation normal form. Each

http://rsise.anu.edu.au/~rpg/CPDLTabProver/
http://arxiv.org/abs/1002.0172

Optimal and Cut-Free Tableaux for Propositional Dynamic Logic 227

node z carries a formula set I, a status sts,, and other fields to be described
shortly. Rule 1 applies the usual expansion rules to a node to create its children.
These expansion rules capture the semantics of CPDL. We use Smullyan’s «/3-
rule notation for classifying rules and nodes. As usual, a node z is a (“saturated”)
state if no a;/B-rule can be applied to it. If x is a state then for each ()€ in I,
we create a node y with I, = {£} U A, where A = {¢ | [l[]¢ € I}, and add an
edge from z to y labelled with (I)¢ to record that y is an I-successor of x.

If I, contains an obvious contradiction during expansion, its status becomes
“closed”, which is irrevocable. Else, at some later stage, Rule 2 determines its
status as either “closed” or “open”. “Open” nodes contain additional information
which depends on the status of other nodes. Hence, if a node changes its status,
it might affect the status of another (“open”) node. If the stored status of a node
does not match its current status, the node is no longer up-to-date. Rule 3, which
may be applied multiple times to the same node, ensures that “open” nodes are
kept up-to-date by recomputing their status if necessary. Finally, Rule 4 detects
eventualities which are impossible to fulfil and closes nodes which contain them.
We first describe the various important components of our algorithm separately.

Global State Caching. For optimality, the graph G never contains two state
nodes which carry the same set of formulae [§]. However, there may be multiple
non-states which carry the same set of formulae. That is, a non-state node x
carrying I" which appears while saturating a child y of a state z is unique to y.
If a node carrying I' is required in some other saturation phase, a new node
carrying I is created. Hence the nodes of two saturation phases are distinct.

Converse. Suppose state y is a descendant of an [-successor of a state x, with no
intervening states. Call x the parent state of y since all intervening nodes are not
states. We require that {¢ | [[7]¢ € I',} C I, since y is then compatible with
being a [-successor of z in the putative model under construction. If some [[~]¢) €
I'y has ¢ ¢ I'; then z is “too small”, and must be “restarted” as an alternative
node zT containing all such . If any such ¢ is a complex formula to which an
a/B-rule is applicable then 2T is not a state and may have to be “saturated”
further. The job of creating these alternatives is done by special nodes [§]. Each
special node monitors a state and creates the alternatives when needed.

Detecting Fulfilled and Unfulfilled Eventualities. Suppose the current node =z
contains an eventuality e,. There are three possibilities. The first is that e, can
be fulfilled in the part of the graph which is “older” than z. Else, it may be
possible to reach a node z in the parts of the graph “newer” than z such that z
contains a reduction e, of e,. Since this “newer” part of the graph is not fully
explored yet, future expansions may enable us to fulfil e, via z, so the pair (z, e,)
is a “potential rescuer” of e,. The only remaining case is that e, cannot be
fulfilled in the “older” part of the graph, and has no potential rescuers. Thus
future expansions of the graph cannot possibly help to fulfil e, since it cannot
reach these “newer” parts of the future graph. In this case x can be “closed”. The
technical machinery to maintain this information for PDL is from [7]. However,

228 R. Goré and F. Widmann

the presence of “converse” and the resulting need for alternative nodes requires
a more elaborate scheme for CPDL.

4 The Algorithm

Our algorithm builds a directed graph G consisting of nodes and directed edges.
We first explain the structure of G in more detail.

Definition 3. Let X andY be sets. We define X+ := XW{ L} where L indicates

the undefined value and W is the disjoint union. If f : X — Y is a function

and x € X and y € Y then the function flx — y] : X — Y is defined as
)

flo = y)@) ==y if &’ =2 and flo — y)@') == f(@') if 2’ # .

Definition 4. Let G = (V, E) be a graph where V is a set of nodes and E is
a set of directed edges. Each node x € V has siz attributes: I, C Fml, ann, :
Ev — lel, pst, € V4, ppr, € LPrg*, idx, € Natt, and sts, € & where & =
{unexp,undef} U {closed(alt) | alt C H(Fml)} U {open(prs,alt) | prs : Ev —
(P2(V x Ev))t & alt € Z2(Fml)}. Each directed edge e € E is labelled with a
label I, € (FmlU Z(Fml) U {cs})* where cs is just a constant.

All attributes of a node x € V are initially set at the creation of x, possibly with
the value L (if allowed). Only the attributes idx, and sts, are changed at a later
time. We use the function create-new-node(I, ann, pst, ppr, idx, sts) to create a
new node and initialise its attributes in the obvious way.

The finite set I, contains the formulae which are assigned to x. The at-
tribute ann, is defined for the eventualities in I, at most. If ann,(p) = ¢’
then ¢’ € I, and ¢ ~» ¢'. The intuitive meaning is that ¢ has already been
“reduced” to ¢’ in z. For a state (as defined below) we always have that ann,
is undefined everywhere since we do not need the attribute for states.

The node z is called a state iff both attributes pst, and ppr, are undefined.
For all other nodes, the attribute pst, identifies the, as we will ensure, unique
ancestor p € V of x such that p is a state and there is no other state between p
and z in G. We call p the parent state of x. The creation of the child of p which
lies on the path from p to z (it could be x) was caused by a (Ip)-formula (I)p
in I},. The literal program ! which we call the parent program of x is stored
in ppr,. Hence, for nodes which are not states, both pst, and ppr, are defined.

The attribute sts, describes the status of xz. Unlike the attributes described
so far, its value may be modified several times. The value unexp, which is the
initial value of each node, indicates that the node has not yet been expanded.
When a node is expanded, its status becomes either closed(-) if it contains an
immediate contradiction, or undef to indicate that the node has been expanded
but that its “real” status is to be determined. Eventually, the status of each
node is set to either closed(-) or open(,-). If the status is open(-, -), it might be
modified several times later on, either to closed(-) or to open(, -) (with different
arguments), but once it becomes closed(-), it will never change again.

We call a node undefined if its status is unexp or undef and defined oth-
erwise. Hence a node is undefined initially, becomes defined eventually, and

Optimal and Cut-Free Tableaux for Propositional Dynamic Logic 229

then never becomes undefined again. Furthermore, we call = closed iff its status
is closed(alt) for some alt C Z(Fml). In this case, we define alt, := alt. We
call z open iff its status is open(prs,alt) for some prs : Ev — (2(V x Ev))+
and some alt C &(Fml). In this case, we define prs, := prs and alt, := alt. To
avoid some clumsy case distinctions, we define alt, := () if z is undefined.

The value closed(alt) indicates that the node is “useless” for building an
interpretation because it is either unsatisfiable or “too small”. In the latter
case, the set alt of alternative sets contains information about missing formulae.
Finally, the value open(prs, alt) indicates that there is still hope that z is “useful”
and the function prs, contains information about each eventuality e, € I as
explained in the overview. Although x itself may be useful, we need its alternative
sets in case it becomes closed later on. Hence it also has a set of alternative sets.

The attribute idx, serves as a time stamp. It is set to L at creation time of x
and becomes defined when x becomes defined. When this happens, the value
of idx, is set such that idx, > idx, for all nodes y which became defined earlier
than z. We define y C z iff idx, # L and either idx, = L or idx, < idx,. Note
that y C = depends on the current state of the graph. However, once y C «
holds, it will do so for the rest of the time.

To track eventualities, we label an edge between a state and one of its chil-
dren by the (lp)-formula (I)¢ which creates this child. Additionally, we label
edges from special nodes (see overview) to their corresponding states with the
marker cs. We also label edges from special nodes to its alternative nodes with
the corresponding alternative set.

Definition 5. Let ann' : Ev — Fml™ and prs' : Ev — (2(V x Ev))* be the
functions which are undefined everywhere. For a node x € V and a label | €
FmlU Z(Fml) U {cs}, let getChild(z,1) be the node y € V such that there exists
an edge e € E from x to y with l. = 1. If y does not exists or is not unique, let
the result be L. For a function prs : Ev — (2(V xEv))*, a node x € V, and an
eventuality ¢ € Ev, we define the set reach(prs, x, ¢) of eventualities as follows:

reach(prs, z, p) 1= {w € Ev | 3k € INg. 3y, - - -, ok € Ev. (w = &
(z,00) € prs(p) &Vie {0,...,k—1}. (z,0i41) € prs(goi))} .

The function defer : V x Ev — Fml* is defined as follows:

¥ if 3k € No. Igo, . .., pp € Fml. (<p0 —p &=t &
Vie{0,....k—1}. (gpi € Ev & anng(p;) = api+1) &
(¢ ¢ Ev or anng(px) = L)

L otherwise.

defer(z,) :=

The function getChild(x,) retrieves a particular child of . It is easy to see that,
during the algorithm, the child is always unique if it exists.

Intuitively, the function reach(prs, z, ¢) computes all eventualities which can
be “reached” from ¢ inside z according to prs. If a potential rescuer (z,v) is

230 R. Goré and F. Widmann

Procedure is-sat(¢) for testing whether a formula ¢ is satisfiable

Input: a formula ¢ € Fml in negation normal form

Output: true iff ¢ is satisfiable

G := a new empty graph; idx:=1

let d € APrg be a dummy atomic program which does not occur in ¢
rt := create-new-node({(d)$},ann", L, 1, 1 unexp)

insert rt in G

while one of the rules in Table[2 is applicable do
apply any one of the applicable rules in Table

if sts;c = open(:,-) then return true else return false

Table 2. Rules used in the procedure is-sat

Rule 1: Some node z has not been expanded yet.
Condition: 3z € V. sts, = unexp
Action: expand(z)
Rule 2: The status of some node x is still undefined.
Condition: 3z € V. sts; = undef
Action: stsz := det-status(z) & idx, :=idx & idx:=idx+1
Rule 3: Some open node x is not up-to-date.
Condition: 3z € V. open(:,-) = sts, # det-status(z)
Action: stsy := det-status(z)
Rule 4: All nodes are up-to-date, and some = has an unfulfilled eventuality ¢.
Condition: Rule 3 is not applicable and
Jz € V. sts, = open(prs,,alty) & Jp € EvN I, prs,(¢) =0
Action: stsz := closed(alty)

contained in prs(y), the potential rescuers of ¢ are somehow relevant for ¢ at x.
Therefore 1 itself is relevant for ¢ at x. The function reach(prs, z, ¢) computes
exactly the transitive closure of this relevance relation.

Intuitively, the function defer(z,) follows the “ann,-chain”. That is, it com-
putes o1 := anng(p), @2 := ann,;(¢1), and so on. There are two possible out-
comes. The first outcome is that we eventually encounter a ¢ which is either not
an eventuality or has ann, (pr) = L. Consequently, we cannot follow the “ann,-
chain” any more. In this case we stop and return defer(x, ¢) := ¢k. The second
outcome is that we can follow the “anng-chain” indefinitely. Then, as I, is finite,
there must exist a cycle @, . . ., pn, @ of eventualities such that ann, (p;) = vit1
for all 0 < i < n, and ann,(¢,) = @o. In this case we say that x (or I';) contains
an “at a world” cycle and return defer(x,) := L.

Next we comment on all procedures given in pseudocode.

Procedure is-sat(¢) is invoked to determine whether a formula ¢ € Fml in
negation normal form is satisfiable. It creates a root node rt and initialises the
graph G to contain only rt. The dummy program d is used to make rt a state
so that each node in G which is not a state has a parent state. The global
variable idx is used to set the time stamps of the nodes accordingly.

Optimal and Cut-Free Tableaux for Propositional Dynamic Logic 231

Procedure expand(z) for expanding a node x

Input: a node x € V with sts; = unexp
if dpely. ~pely or(p € Ev& defer(z,) = L) then
idx, :=idx; idx:=idx+1; sts; := closed())
else (+ = does not contain a contradiction %)
sts; := undef
if pst, = L then (x z is a state %
let (I1)¢1,..., (lk)er be all of the (Ip)-formulae in I,
for i — 1 to k do
Fii={pi U{y | [}y € I}
y; := create-new-node(I;, ann~, x,l;, 1, unexp)
insert y;, and an edge from x to y; labelled with (l;)¢;, into G
else if 3o € I',. {au,...,ar} L I or (a € Ev & ann,(a) = 1) then
Ir=r,uf{a,...,ar}
ann := if o € Ev then ann,[a — «;] else ann,
y := create-new-node (I, ann, pst,, ppr,, L, unexp)
insert y, and an edge from x to y, into G
else if 3 € I,. {01,052} NIz =0 or (8 € Ev & ann,(8) = L) then
for i — 1 to 2 do
I, =I,U {ﬁz}
ann; := if § € Ev then ann,[3 — [;] else ann,
yi := create-new-node([5, ann;, pst,, ppr,, L, unexp)
insert y;, and an edge from x to y;, into G
else (x z is a special node %)
if 3y e V. Iy =TI, & pst, = L then (x state already exists in G ¥
insert an edge from z to y labelled with cs into G
else (x state does not exist in G yet %)
y := create-new-node(I;, ann™, 1, 1, | unexp)
insert y, and an edge from z to y labelled with cs, into G

While at least one of the rules in Table 2is applicable, that is its condition
is true, the algorithm applies any applicable rule. If no rules are applicable, the
algorithm returns satisfiable iff rt is open.

Rule 1 picks an unexpanded node and expands it. Rule 2 picks an expanded
but undefined node and computes its (initial) status. It also sets the correct time
stamp. Rule 3 picks an open node whose status has changed and recomputes its
status. Its meaning is, that if we compute det-status(z) on the current graph
then its result is different from the value in sts,, and consequently, we update sts,,
accordingly. Rule 4 is only applicable if all nodes are up-to-date. It picks an open
node containing an eventuality ¢ which is currently not fulfilled in the graph and
which does not have any potential rescuers either. As this indicates that ¢ can
never be fulfilled, the node is closed.

This description leaves several questions open, most notably: “How do we
check efficiently whether Rule 3 is applicable?” and “Which rule should be taken
if several rules are applicable?”. We address these issues in Section [l

232 R. Goré and F. Widmann

Procedure det-status(x) for determining the status of a node x
Input: a node € V with unexp # sts, # closed(-)
if z is an a-or a B-node then sts, := det-sts-G(x)
else if z is a state then sts, := det-sts-state(x)
else (x x is a special node, in particular pst, # L # ppr, %

Faw == {¢ | [ppry]p € Ie} \ Tpst,
if Iy = 0 then sts, := det-sts-spl(z) else sts, := closed({Iait})

Procedure expand(z) expands a node z. If I';, contains an immediate contradic-
tion or an “at a world” cycle then we close x and set the time stamp accordingly.
For the other cases, we assume implicitly that I, does not contain either of these.

If = is a state, that is pst, = L, then we do the following for each (lp)-
formula (I;);. We create a new node y; whose associated set contains ¢; and
all ¢ such that [[;]¢ € I';. As none of the eventualities in I, is reduced yet, there
are no annotations. The parent state of y; is obviously x and its parent program
is 1;. In order to relate y; to (l;)¢;, we label the edge from x to y; with (I;)p;.
We call y; the successor of (I;);.

If = is not a state and I, contains an a-formula o whose decompositions are
not in I}, or which is an unannotated eventuality, we call an a-node. In this
case, we create a new node y whose associated set is the result of adding all
decompositions of a to I,. If o is an eventuality then ann, extends ann, by
mapping « to «1. The parent state and the parent program of y are inherited
from z. Note that pst, and ppr, are defined as z is not a state. Also note
that Iy D I, or o is an eventuality which is annotated in ann, but not in ann,.

If z is neither a state nor an a-node and I, contains a O-formula 3 such that
neither of its immediate subformulae is in I, or such that § is an unannotated
eventuality, we call x a B-node. For each decomposition 3; we do the following.
We create a new node y; whose associated set is the result of adding 3; to I}.
If B is an eventuality then ann,, extends ann, by mapping o to 3;. The parent
state and the parent program of y are inherited from x. Note that pst, and ppr,,
are defined as x is not a state. Also note that Iy, D I, or B is an eventuality
which is annotated in ann,, but not in ann,.

If x is neither a state nor an a-node nor a G-node, it must be fully saturated
and we call it a special node. Intuitively, a special node sits between a saturation
phase and a state and is needed to handle the “special” issue arising from con-
verse programs, as explained in the overview. Like a- and S-nodes, special nodes
have a unique parent state and a unique parent program. In this case we check
whether there already exists a state y in G which has the same set of formulae
as the special node. If such a state y exists, we link x to y; else we create such a
state and link x to it. In both cases we label the edge with the marker cs since
a special node can have several children (see below) and we want to uniquely
identify the cs-child y of z. Note that there is only at most one state for each
set of formulae and that states are always fully saturated since special nodes
are.

Optimal and Cut-Free Tableaux for Propositional Dynamic Logic 233

Procedure det-sts-((z) for determining the status of an a- or a S-node

Input: an o- or a S-node x € V with unexp # sts, # closed(-)
Output: the new status of x

let y1,...,yx € V be all children of x
alt == |Jr_, alty,
if Vi € {1,...,k}. stsy, = closed(:) then return closed(alt)
else (x at least one child is not closed #)
prs := prs—
foreach ¢ € I'; NEv do
for i «—— 1 to k do A; := det-prs-child(z, yi, ¢)
A:=if Jie{1,...,k}. A = L then L else |J_, 4;
prs := prs[p — 4]
prs’ := filter(z, prs)
return open(prs’, alt)

Procedure det-status(x) determines the current status of a node z. Its result
will always be closed(-) or open(-, -). If x is an a/ 3-node or a state, the procedure
just calls the corresponding sub-procedure. If x is a special node, we determine
the set I, of all formulae ¢ such that [ppr};]y is in I'; but ¢ is not in the set of
the parent state of z. If there is no such formula, that is I is the empty set, we
say that x is compatible with its parent state pst,. Note that incompatibilities
can only arise because of converse programs.

If = is compatible with pst,, all is well, so we determine its status via the
corresponding sub-procedure. Else we cannot connect pst, to a state with I}
assigned to it in the putative model as explained in the overview, and, thus, we
can close z. That does not, however, mean that pst, is unsatisfiable; maybe it
is just missing some formulae. We cannot extend pst, directly as this may have
side-effects elsewhere; but to tell pst, what went wrong, we remember I7;. The
meaning is that if we create an alternative node for pst, by adding the formulae
in I,4, we might be more successful in building an interpretation.

Procedure det-sts-£(z) computes the status of an a- or a f-node = € V. For
this task, an a-node can be seen as a 3-node with exactly one child. The set of
alternative sets of x is the union of the sets of alternative sets of all children. If
all children of x are closed then x must also be closed. Otherwise we compute the
set of potential rescuers for each eventuality ¢ in I, as follows. For each child y;
of z we determine the potential rescuers of ¢ which result from following y; by
invoking det-prs-child. If the set of potential rescuers corresponding to some y;
is L then ¢ can currently be fulfilled via y; and prs, () is set to L. Else ¢ cannot
currently be fulfilled in G, but each child returned a set of potential rescuers, and
the set of potential rescuers for ¢ is their union. Finally, we deal with potential
rescuers in prs of the form (z, x) for some x € Ev by calling filter.

Procedure det-sts-state(z) computes the status of a state z € V. We obtain
the successors for all (Ip)-formulae in I',.. If any successor is closed then z is closed
with the same set of alternative sets. Else the set of alternative sets of x is the
union of the sets of alternative sets of all children and we compute the potential

234 R. Goré and F. Widmann

Procedure det-sts-state(x) for determining the status of a state

Input: a state € V with unexp # sts, # closed(:)
Output: the new status of x

let (l1)¢1,. .., {lk)er be all of the (Ip)-formulae in I,
for i «— 1 to k do y; := getChild(z, (I;)p;)
if 3i € {1,...,k}. stsy, = closed(alt) then return closed(alt)
else (x no child is closed %)
alt == |Jr_, alty,
pIS := pIS
for i — 1 to k do
if ¢; € Ev then
A := det-prs-child(z, yi, ¢i)
prs := prs[{l;)p; — A]

prs’ := filter(z, prs)
return open(prs’, alt)

rescuers for each eventuality (I;)¢; in I, by invoking det-prs-child. Finally,
we deal with potential rescuers in prs of the form (z,y) for some x € Ev by
calling filter. Note that we do not consider eventualities which are not (lp)-
formulae. The intuitive reason is that the potential rescuers of such eventualities
are determined by following the annotation chain (see below). However, different
special nodes which have the same set, and hence all link to z, might have
different annotations. Hence we cannot (and do not need to) fix the potential
rescuer sets for eventualities in z which are not (Ip)-formulae.

Procedure det-sts-spl(z) computes the status of a special node x € V. First,
we retrieve the state yy corresponding to x, namely the unique cs-child of x. For
all alternative sets I'; of yo we do the following. If there does not exist a child
of z such that the corresponding edge is labelled with I, we create a new
node y; whose associated set is the result of adding the formulae in I; to I,.
The annotations, the parent state, and the parent program of y; are inherited
from x. We label the new edge from x to y; with I';. In other words we unpack
the information stored in the alternative sets in alt,, into actual nodes which are
all children of z. Note that each I; # () by construction in det-status. Some
children of may not be referenced from alt,,, but we consider them anyway.

The set of alternative sets of x is the union of the sets of alternative sets of all
children; with the exception of yg since the alternative sets of yy are not related
to pst, but affect = directly as we have seen. If all children of x are closed then x
must also be closed. Otherwise we compute the set of potential rescuers for each
eventuality ¢ in I, as follows.

First, we determine ¢’ := defer(x,¢). Note that ¢’ is defined because the
special node x cannot contain an “at a world” cycle by definition. If ¢’ is not
an eventuality then ¢’ is fulfilled in = and prs(y) remains L. If ¢ is an even-
tuality, it must be a (Ip)-formula as z is a special node. We use ¢’ instead of ¢
since only (Ip)-formula have a meaningful interpretation in prs, (see above).
For each child y; of x we determine the potential rescuers of ¢’ by invoking

Optimal and Cut-Free Tableaux for Propositional Dynamic Logic 235

Procedure det-sts-spl(x) for determining the status of a special node

Input: a special node € V with unexp # sts, # closed(:)
Output: the new status of x
yo := getChild(z, cs)
let I',...,I} be all the sets in the set alty,
for i — 1 to j do
y; = getChild(z, I3)
if y; = L then (x child does not exist %)
y; := create-new-node(I; U I3, anng, pst,, ppr,, L, unexp)
insert y;, and an edge from x to y; labelled with I3, into G

let yj+1,...,yr be all the remaining children of x
alt == (J¥_, alty,
if Vi € {0,...,k}. stsy; = closed(:) then return closed(alt)
else (x at least one child is not closed #)
prs := prs®
foreach ¢ € I'; NEv do
@' = defer(z, @)
if ¢’ € Ev then
for i +—— 0 to k do A; := det-prs-child(z, yi, ¥’)
A:=if 3i € {0,...,k}. A = L then L else |J*_, 4;
prs := prs[p — 4]

prs’ := filter(z, prs)
return open(prs’, alt)

det-prs-child. If the set of potential rescuers corresponding to some y; is L
then ¢’ can currently be fulfilled via y; and so prs,(p) is set to L. Otherwise ¢’
cannot currently be fulfilled in G, but each child returned a set of potential res-
cuers, and the set of potential rescuers for ¢ is their union. Finally, we deal with
potential rescuers in prs of the form (z, x) for some x € Ev by calling filter.

Procedure det-prs-child(z,y, ¢) determines whether an eventuality ¢ € I,
which is not passed as an argument, can be fulfilled via y such that ¢ is part
of the corresponding fulfilling path; or else which potential rescuers v can reach
via y and . If y is closed, it cannot help to fulfil ¥ as indicated by the empty
set. If y is undefined or did not become defined before x then (y,) itself is a
potential rescuer of z. Else, if ¢ can be fulfilled, i.e. prsy(go) = 1, then 9 can be
fulfilled too, so we return L. Otherwise we invoke the procedure recursively on
all potential rescuers in prs, (¢). If at least one of these invocations returns L
then 1 can be fulfilled via y and ¢ and the corresponding rescuer in prsy(<p).
If all invocations return a set of potential rescuers, the set of potential rescuers
for ¢ is their union. The recursion is well-defined because if (2;,¢;) € prs,(p)
then either z; is still undefined or z; became defined later than y.

Each invocation of det-prs-child can be uniquely assigned to the invo-
cation of det-sts-(, det-sts-state, or det-sts-spl which (possibly indi-
rectly) invoked it. To meet our complexity bound, we require that under the
same invocation of det-sts-(3, det-sts-state, or det-sts-spl, the procedure

236 R. Goré and F. Widmann

det-prs-child is only executed at most once for each argument triple. Instead
of executing it a second time with the same arguments, it uses the cached re-
sult of the first invocation. Since det-prs-child does not modify the graph,
the second invocation would return the same result as the first one. An easy
implementation of the cache is to store the result of det-prs-child(z,y, ¥)
in the node y together with ¢ and a unique id number for each invocation of
det-sts-(, det-sts-state, or det-sts-spl.

Procedure filter(z, prs) deals with the potential rescuers for each eventuality
of a node x which are of the form (z,) for some 1 € Ev. The second argument of
filter is a provisional prs for x. If an eventuality ¢ € I, is currently fulfillable
in G there is nothing to be done, so let (x,v) € prs(p). If ©» = ¢ then (z,p)
cannot be a potential rescuer for ¢ in x and should not appear in prs(¢). But
what about potential rescuers of the form (z,v) with ¥ # ¢? Since we want
the nodes in the potential rescuers to become defined later than z, we cannot
keep (z,1) in prs(p); but we cannot just ignore the pair either.

Intuitively (z,v) € prs(y) means that ¢ € I, can “reach” ¢ € I, by following
a loop in G which starts at x and returns to x itself. Thus if ¢ can be fulfilled
in G, so can ; and all potential rescuers of ¥ are also potential rescuers of ¢. The
function reach(prs, x, @) computes all eventualities in which are “reachable”
from ¢ in the sense above, where transitivity is taken into account. That is, it
detects all self-loops from x to itself which are relevant for fulfilling . We add ¢
as it is not in reach(prs, x,). If any of these eventualities is fulfilled in G then ¢
can be fulfilled and is consequently undefined in the resulting prs’. Otherwise we
take all their potential rescuers whose nodes are not x.

Theorem 6 (Soundness, Completeness and Complexity). Let ¢ € Fml
be a formula in negation normal form of size n. The procedure is-sat(¢) ter-
minates, runs in EXPTIME in n, and ¢ is satisfiable iff 1s-sat(¢) returns true.

5 Implementation, Optimisations, and Strategy

It should be fairly straightforward to implement our algorithm. It remains to
show an efficient way to find nodes which are not up-to-date. It is not too hard
to see that the status of a node x can become outdated only if its children change
their status or det-prs-child(z,y,) was invoked when z’s previous status was
determined and y now changes its status. If we keep track of nodes of the second
kind by inserting additional “update”-edges as described in [7], we can use a
queue for all nodes that might need updating. When the status of a node is
modified, we queue all parents and all nodes linked by “update”-edges.

We have omitted several refinements from our description for clarity. The
most important is that if a state s is closed, all non-states which have s as a
parent state are ignorable since their status cannot influence any other node ¢
unless t also has s as a parent state. Moreover, if every special node parent x of a
state s’ is incompatible or itself has a closed parent state, then s’ and the nodes
having s’ as parent state are ignorable. This applies transitively, but if s’ gets a
new parent whose parent state is not closed then s’ becomes “active” again.

Optimal and Cut-Free Tableaux for Propositional Dynamic Logic 237

Another issue is which rule to choose if several are applicable. As we have
seen, it is advantageous to close nodes as early as possible. Apart from imme-
diate contradictions, we have Rule 4 which closes a node because it contains an
unfulfillable eventuality. If we can apply Rule 4 early while the graph is still
small, we might prevent big parts of the graph being built needlessly later. Try-
ing to apply Rule 4 has several consequences on the strategy of how to apply
rules.

First, it is important to keep all nodes up-to-date since Rule 4 is not applicable
otherwise. Second, it is preferable that a node x cannot reach open nodes which
became defined (or will be defined) after z did. Hence, we should try to use
Rule 2 on a node only if all children are already defined.

6 An Example

To demonstrate how the algorithm works, we invoke it on the satisfiable toy
formula (a)¢ where ¢ := (a*)[a”]p. To save space, Fig. [[l only shows the core
subgraph of the tableau. Remember that the order of rule applications is not
fixed but the example will follow some of the guidelines given in Section

The nodes in Fig. [l are numbered in order of creation. The annotation ann
is given using “~" in I'. For example, in node (3), we have I's = { ¢, [a"]p },
and anng maps the eventuality ¢ to [a~]p and is undefined elsewhere. The bottom
line of a node contains the parent state and the parent program on the left, and
the time stamp on the right. We do not show the status of a node since it changes
during the algorithm, but explain it in the text. If we write sts, = open(4,)
where A C V x Ev, we mean that prs, maps all eventualities in I;, with the
exception of non-(lp)-formulae if x is a state, to A and is undefined elsewhere.

We only consider the core subgraph of ¢ and start by expanding node (1)
which creates (2). Then we expand (2) and create (3) and (4) which are both spe-
cial nodes. Next we expand (3) and create the state (5). Expanding (5) creates no
new nodes since I'5 contains no (Ip)-formula. Now we define (5) and then (3). This
results in setting stss := open(prs=, () according to det-sts-state, and sts; :=
closed({p}) since (3) is not compatible with its parent state (1). Expanding (4)
inserts the edge from (4) to (1) and defining (4) sets stsy := open({(1, (a)®)},)
according to det-sts-spl. Note that (6) does not exist yet. Next we define (2)
and then (1) which results in setting stse := open({(1, (a)¢)}, {p}) according to
det-sts-03 and sts; := open((), {p}) thanks to filter.

Note that (a)¢ € I't has an empty set of potential rescuers. In PDL, we could
thus close (1), but converse programs complicate matters for CPDL as reflected
by the fact that Rule 4 is not applicable for (1) because (4) is not up-to-date.
Updating (4) creates (6) and sets stsy := open({(1, (a)¢), (6, {(a)¢)}, D). Updat-
ing (2) and then (1) sets stsp := open({(1, (a)¢), (6, (a)®)}, {p}) and sts; :=
open({(6, (a)®)}, {p}). Now all nodes are up-to-date, but Rule 4 is not applica-
ble for (1) because the set of potential rescuers for ¢ is no longer empty.

Next we expand (6), which creates (7), then (7), which creates (8), then (8),
which creates (9) and (10), and finally (9), which creates no new nodes. Node (9)

238 R. Goré and F. Widmann

Procedure det-prs-child(x,y, ¢) for passing a prs-entry of a child to a

parent

Input: two nodes z,y € V and a formula ¢ € Iy NEv

Output: L or a set of node-formula pairs

Remark: if det-prs-child(z, y, ¢) has been invoked before with exactly the
same arguments and under the same invocation of det-sts-03,
det-sts-state or det-sts-spl, the procedure is not executed a
second time but returns the cached result of the first invocation. We
do not model this behaviour explicitly in the pseudocode.

if stsy = closed(:) then return 0

else if sts, = unexp or stsy, = undef or not y C z then return {(y,)}

else (x stsy = open(+,-) & y C = %
if prs,(¢) = L then return |
else (x prs, () is defined *)

let (21,¢1),- .-, (2k, k) be all of the pairs in prs, ()
for i «—— 1 to k do A; := det-prs-child(z, z;, ;)

if 3j € {1,...,k}. A; = | then return | else return J*_ A;

(6) special node) (4) special node

{¢~(a)p, P} < {¢~ (a)p}
1,a 9 1,a 3
cs CSV
(7) state (@) (8) B-node
{¢, (a)¢, p} > {¢}
1, 7

8 7,a
A
L /
~
\ (10) special node) (11) special node
{¢~(a)o} > {¢~(a)¢, p}
a a

7, 10 7, 11

(3) special node

{¢~la7lp}
1,a 2
CSV
(5) state
{¢, [a7]p}
1, 1
A

(9) special node
{¢~la"lp}
7,a 6

Fig. 1. An example: The graph G just before setting the status of node (2)

Optimal and Cut-Free Tableaux for Propositional Dynamic Logic 239

Procedure filter(z,prs) for handling self-loops in prs chains in G

Input: a node z € V and a function prs : Ev — (Z(V x Ev))*
Output: prs where self-loops have been handled
prs’ ;= prs*
foreach ¢ € I'; N Ev such that prs(¢) # L do
A := {p} Ureach(prs, z, @)
if not Iy € A. prs(x) = L then
A=Ugea{(z9) €prs(x) | 2 # z}
prs’ := prs’[p — A]

return prs’

is similar to (3), but unlike (3), it is compatible with its parent state (7) which
results in stsg := open(_L,). Using our strategy from the last section, we would
now expand (10) so that (8) can become defined after both its children became
defined. Since (9) fulfils all its eventualities, we choose to define (8) instead
and set stsg := open(L,). Next we define (7) and then (6) which sets sts; :=
open(L, () and stsg := open(.L, (). The status of (4) is not affected since (6) was
defined after (4), giving “(6) Z (4)” in det-prs-child(4, 6, (a)¢).

We expand (10) which inserts the edge from (10) to (1). Then we define (10)
which creates (11) and sets stsig := open(L,0). Note that the invocation of
det-prs-child(10, 1, (a)¢) in the invocation det-sts-spl(10) leads to the
recursive invocation det-prs-child(10, 6, (a)¢). Expanding and defining (11)
yields stsi; := open(.L, (). Finally, no rule is applicable in the shown subgraph.

References

1. Vardi, M.Y.: The taming of converse: Reasoning about two-way computations. In:
Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 413-424. Springer,
Heidelberg (1985)

2. De Giacomo, G., Massacci, F.: Combining deduction and model checking into
tableaux and algorithms for Converse-PDL. Inf. and Comp. 162, 117-137 (2000)

3. Nguyen, L.A., Szalas, A.: An optimal tableau decision procedure for Converse-PDL.
In: Proc. KSE-09, pp. 207-214. IEEE Computer Society, Los Alamitos (2009)

4. Lange, M., Stirling, C.: Focus games for satisfiability and completeness of temporal
logic. In: Proc. LICS-01, pp. 357-365. IEEE Computer Society, Los Alamitos (2001)

5. Lange, M.: Satisfiability and completeness of Converse-PDL replayed. In: Giinter,
A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 79-92.
Springer, Heidelberg (2003)

6. Vardi, M., Wolper, P.: Automata theoretic techniques for modal logics of programs.
Journal of Computer and System Sciences 32(2), 183-221 (1986)

7. Goré, R., Widmann, F.: An optimal on-the-fly tableau-based decision procedure
for PDL-satisfiability. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp.
437-452. Springer, Heidelberg (2009)

8. Goré, R., Widmann, F.: Sound global state caching for ALC with inverse roles.
In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 205-219.
Springer, Heidelberg (2009)

	Optimal and Cut-Free Tableaux for Propositional Dynamic Logic with Converse
	Introduction
	Syntactic Preliminaries
	An Overview of our Algorithm
	The Algorithm
	Implementation, Optimisations, and Strategy
	An Example
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

