Multipolar second-harmonic generation by Mie-resonant dielectric nanoparticles

Daria Smirnova,1,2 Alexander I. Smirnov,1 and Yuri S. Kivshar2

1Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
2Nonlinear Physics Centre, Australian National University, Canberra, Australian Capital Territory 2601, Australia

(Received 26 August 2017; published 4 January 2018)

By combining analytical and numerical approaches, we study resonantly enhanced second-harmonic generation by individual high-index dielectric nanoparticles made of centrosymmetric materials. Considering both bulk and surface nonlinearities, we describe second-harmonic nonlinear scattering from a silicon nanoparticle optically excited in the vicinity of the magnetic and electric dipolar resonances. We discuss the contributions of different nonlinear sources and the effect of the low-order optical Mie modes on the characteristics of the generated far field. We demonstrate that the multipolar expansion of the radiated field is dominated by dipolar and quadrupolar modes (two axially symmetric electric quadrupoles, an electric dipole, and a magnetic quadrupole) and the interference of these modes can ensure directivity of the nonlinear scattering. The developed multipolar analysis can be instructive for interpreting the far-field measurements of the nonlinear scattering and it provides prospective insights into a design of complementary metal-oxide-semiconductor compatible nonlinear nanoantennas fully integrated with silicon-based photonic circuits, as well as methods of nonlinear diagnostics.

DOI: 10.1103/PhysRevA.97.013807

I. INTRODUCTION

Being stimulated by rapid progress in nanofabrication techniques, dielectric resonant nanostructures with high refractive index are currently employed in various applications of nanophotonics, offering a competitive alternative to plasmonic nanoparticles [1]. The advantageous optical properties of high-index dielectric nanoparticles, such as low dissipative losses, optical magnetic response, and multipolar resonances, imply unique capabilities for light manipulation at subwavelength scales, especially in the nonlinear regime [2].

Acting as optical nanoantennas, high-permittivity dielectric nanoparticles exhibit strong interaction with light due to the excitation of both electric and magnetic Mie resonances they support. Compared to plasmonic nanoscale structures, where the electric field is strongly confined to the surfaces, the electric field of the resonant modes in dielectric nanoparticles penetrates deep inside their volume, thus enhancing intracavity light-matter interactions in a bulk material. Such a strategy of utilizing the Mie resonances in the subwavelength dielectric geometries has been recently recognized as a promising route for improving the nonlinear conversion processes at the nanoscale [3–9].

Second-harmonic generation in plasmonic nanostructures is known to be governed mainly by the surface nonlinear response, which can be enhanced at the geometric plasmon resonances [10–20]. Primarily, the electric dipole response associated with the surface plasmon resonance is most widely exploited for deeply subwavelength metallic particles and their composites, and the nonlocal bulk contribution to second-harmonic generation (SHG) is largely ignored [21,22]. The excitation of multipolar resonances driven by displacement currents in dielectric nanostructures can significantly reshape the nonlinear scattering, in particular, due to the bulk nonlinear response altered by the field gradients distributed over the volume. One of the most promising materials for implementation of all-dielectric nanophotonics is silicon, due to its complementarity metal-oxide-semiconductor (CMOS) compatibility and strong optical nonlinearities [23,24]. In particular, silicon was employed in most of the works on the trapped magnetic dipole resonances [25,26] and the associated enhancement of third-order nonlinear processes [3,4,6,27,28]. Though silicon, both crystalline and amorphous, is a centrosymmetric material and thus similar to noble metals, its bulk second-order nonlinear response is inhibited [29], the light confinement and enhancement due to excitation of the resonant modes increases the efficiency of the frequency conversion, and the quite high yield of SHG from individual nanowires [30,31] and nanoparticles [32] can be achieved.

In this paper, we investigate the characteristic features of SHG from dielectric nanoparticles made of high-index centrosymmetric materials and optically excited in the vicinity of the pronounced low-order Mie resonances, with a particular focus on the magnetic dipole resonance. We take into account the contributions of both surface- and bulk-induced nonlinear sources described in the framework of the phenomenological model [30,31,33]. We reveal that the second-harmonic (SH) radiation is dominated by dipolar and quadrupolar contributions, specifically by two axially symmetric electric quadrupoles (oriented along the magnetic and electric fields, respectively, of the incident wave), an electric dipole (directed along the wave vector of the incident wave), and a magnetic quadrupole. We emphasize that the case we study is essentially distinct from the Rayleigh limit, small plasmonic particles, and the Rayleigh-Gans-Debye model, or the first Born approximation (assuming a low-refractive-index mismatch between the interior of the particle and the host medium) [11,34,35]. By contrast, in the small-particle limit the SH field is described by one electric quadrupole and one electric dipole [11]. In the experimental study of Ref. [34], it was further discussed that the octupolar contribution to SH scattering appears for the nonresonant polystyrene nanoparticle as corrections to the Rayleigh-limit SHG [11] when increasing the size parameter.
expansion of the SH field is confirmed by direct full-wave
the developed theory and analytically described multipolar
the approach previously reported in Ref. [5]. The validity of
driven by the pronounced magnetic dipole excitation with
a detailed analytical solution for the resonantly enhanced SHG
for nonlinear nanophotonics [9,37–39]. In addition, we provide
noncentrosymmetric high-index materials actively employed
nanoparticles made not only from centrosymmetric but also
[11,12,16,36]. Our approach can be applied to Mie-resonant
practical alternative to the nonlinear Mie theory analysis
the use of the Lorentz lemma. It can be regarded as a more
II. MULTIPOLAR ANALYSIS OF NONLINEAR
SCATTERING
We consider a high-permittivity spherical dielectric particle
radius a, excited by the linearly polarized plane wave $E(r) = \hat{\mathbf{x}}E_0 e^{i\omega t}$ propagating in the z direction, as illustrated schematically in Fig. 1. The analysis we perform also gives a qualitatively correct picture of the SH fields generated by an arbitrary single-scale nanoscale object (e.g., a finite-extent nanorod whose cross-sectional diameter is of the order of its length). The incident wave is characterized by the frequency-dependent dielectric constant $\varepsilon(\omega)$. The homogeneous host medium is air. The problem of linear light scattering by a sphere is solved using the multipole expansion in accord with Mie theory. The resultant scattering efficiency is plotted in Fig. 2 for a silicon nanoparticle excited at wavelength $\lambda_0 = 1050$ nm in the range of radii featuring magnetic dipolar (MD) and electric dipolar (ED) resonances.

In the frequency range between the MD and ED resonances, the electric field at the fundamental frequency inside the nanoparticle is well approximated by a superposition of only

where $k(\omega) = k_0 \sqrt{\varepsilon(\omega)}$ is the wave number in the medium, $k_0 = \omega/c$, $j_1(k(\omega)r)$ is the spherical Bessel function of order $l = 1$, $\mathbf{X}_{1,\pm 1}(\theta, \phi)$ are vector spherical harmonics (in the spherical coordinate system associated with z axis), and $A_{l,1,1}^{M}$ and $A_{l,1,1}^{E}$ are coefficients known from Mie theory [40]. The pronounced character of the low-order Mie resonances is essential for many applications of high-permittivity dielectric nanoparticles in a low-index environment [1,41] and for the analysis we develop below. We specifically focus on Mie-resonant dielectric nanoparticles, whose sizes correspond to the resonant excitation of the leading magnetic dipole and electric dipole modes at the laser fundamental wavelength, as shown in Fig. 2. The analysis of SHG from high-index dielectric nanoparticles exhibiting dipolar resonances is important for modern nanoscale optics, given the increasing interest in the rapidly expanding field of all-dielectric nanophotonics and growing number of nonlinear experiments currently being done by many research groups worldwide exactly under the conditions associated with resonant excitation of the low-order Mie modes [2].

The second-order polarization for the particles made of centrosymmetric homogeneous materials can be written as a superposition of dipolar surface (local) and quadrupolar bulk (nonlocal) contributions [30,31,33,42,43]

\begin{align}
\mathbf{P}^{(2)} = \mathbf{P}_{\text{surf}}^{(2)} + \mathbf{P}_{\text{bulk}}^{(2)},
\end{align}

\begin{align}
\mathbf{P}_{\text{surf}}^{(2)} = \delta(r - a + 0)\left(\hat{\mathbf{r}}_0 \left(\chi^{(2)}_{\perp \perp} |E_{\perp}^{(\omega)}|^2 + \chi^{(2)}_{\perp \|} |E_{\|}^{(\omega)}|^2 \right) + 2\hat{\mathbf{r}}_0 \chi^{(2)}_{\perp \perp} E_{\perp}^{(\omega)} E_{\perp}^{(\omega)} \right),
\end{align}

\begin{align}
\mathbf{P}_{\text{bulk}}^{(2)} = \beta \mathbf{E}^{(\omega)} \mathbf{E}^{(\omega)} + \gamma \nabla \mathbf{E}^{(\omega)} \cdot \mathbf{E}^{(\omega)} + \delta \left(\mathbf{E}^{(\omega)} \cdot \nabla\right) |\mathbf{E}^{(\omega)}|^2,
\end{align}

where $E_{\perp}^{(\omega)}$ and $E_{\|}^{(\omega)}$ are the radial and tangential components of the electric field on the spherical surface and $\hat{\mathbf{r}}_0$ and $\hat{\mathbf{r}}_0$ are
the corresponding unit vectors. The coefficients \(\gamma, \beta, \delta', \chi^{(2)}_{\perp \perp \perp}, \chi^{(2)}_{\perp \perp 1}, \text{and} \chi^{(2)}_{\parallel \parallel 1}\) are material parameters of the dielectric, the \(\beta\) term vanishes in the bulk, \(\mathbf{V} \cdot \mathbf{E}^{(0)} = 0\) due to the homogeneity of the material, \(\delta(\tilde{r})\) is the Dirac delta function, and the step function \(\Pi(\tilde{r})\) is defined by \(\Pi(\tilde{r}) = [0, \tilde{r} < 0; 1, \tilde{r} > 0]\).

Importantly, the \(\gamma\) term exhibits a surface-like behavior and it is often referred to as a nonseparable bulk contribution [16,31]. We assume that the phenomenological model (2) is qualitatively valid for amorphous and crystalline silicon nanoparticles, disregarding any anisotropy effects [30,31,33]. The specifics of SHG from nanocrystalline silicon nanoparticles were studied experimentally and numerically in Ref. [32].

According to Eq. (2b), the nonlinear surface sources \(\mathbf{P}^{(2)}_{\text{surf}}\) are defined by the field \(\mathbf{E}^{(0)}\) at the pump wavelength inside the nanoparticle. Introducing the functions \(\delta(r - a + 0)\) and \(\Pi(a - 0 - r)\) in Eqs. (2b) and (2c) allows us to formalize mathematical derivations.

Plugging Eqs. (2) into Maxwell’s equations, the SH electromagnetic field \(\mathbf{E}^{(2)}(r), \mathbf{H}^{(2)}(r)\) is the forced solution of a set of equations

\[
\nabla \times \mathbf{E}^{(2)} = 2i k_0 \mathbf{H}^{(2)}, \quad (3a)
\]

\[
\nabla \times \mathbf{H}^{(2)} = -2i k_0 \epsilon^{(2)}(r) \mathbf{E}^{(2)} + \frac{4\pi}{c} j^{(2)}, \quad (3b)
\]

\[
\mathbf{H}^{(2)}(r > a) \approx E_0 \left[\left(A^{M}_{1,1} \right)^2 q_1^E h^{(1)}(2k_0 r) \mathbf{X}_{2,0}(\theta_1) + \left(A^{E}_{1,1} \right)^2 q_2^E h^{(1)}(2k_0 r) \mathbf{X}_{2,0}(\theta_2) + A^{E}_{1,1} A^{M}_{1,1} q^M \mathbf{V} \times h^{(1)}(2k_0 r) [\mathbf{X}_{2,1}(\theta_1, \varphi_1) - \mathbf{X}_{2,1}(\theta_1, \varphi_1)] \right]. \quad (5)
\]

Here \(\mathbf{X}_{l,m}\) are spherical functions, \((\theta, \varphi), (\theta_1, \varphi_1)\), and \((\theta_2, \varphi_2)\) are polar and azimuthal angles of the spherical coordinate systems associated with the \(z, y,\) and \(x\) axes, respectively, and \(h^{(1)}(2k_0 r)\) is the spherical Hankel function of the first kind of order \(l\). In Eq. (5), the terms proportional to \(q_1^E\) and \(q_2^E\) describe the fields emitted by the electric quadrupoles which are axially symmetric to the \(y\) and \(x\) axes, the term proportional to \(d^E\) is the radiation field of the electric dipole oriented along the propagation direction \(z\) of the incident wave, and the term proportional to \(q^M\) is due to the presence of the magnetic quadrupolar component in the source. The far-field diagrams of the generated SH multipole

\[
\begin{align*}
F_{d^E}(\theta) & \propto \sin^2 \theta, \\
F_{q_1^E}(\theta_1) & \propto \sin^2 (2\theta_1), \\
F_{q_2^E}(\theta_2) & \propto \sin^2 (2\theta_2), \\
F_{q^M}(\theta_1, \varphi_1) & \propto \cos^2 (2\theta_1) \sin^2 \varphi_1 + \cos^2 \theta_1 \cos^2 \varphi_1
\end{align*}
\]

are visualized in Fig. 3.

The excitation coefficients of the multipolar modes, \(q_1^E, q_2^E, d^E,\) and \(q^M\), are linear functions of the phenomenological parameters \(\gamma, \beta, \delta', \chi^{(2)}_{\perp \perp \perp}, \chi^{(2)}_{\perp \perp 1}, \text{and} \chi^{(2)}_{\parallel \parallel 1}\). Analytical expressions for the multipolar amplitudes can be found using the Lorentz lemma [40,44]. The Lorentz lemma is widely applied in electrodynamics for calculation of amplitude coefficients of the guided modes excited by external sources and radiation diagrams of emitters. Here we show that the methodology based on the Lorentz lemma can be adopted for the analysis of the nonlinear scattering. This approach facilitates mathematical derivations, especially in the treatment of the bulk nonlinearity, and, more importantly, it allows for generalization to nanoparticles of nonspherical shapes. For our problem, it can be formulated as follows. We introduce the auxiliary electromagnetic field \(\mathbf{E}^{(2)}(\mathbf{H}^{(2)})\) satisfying Maxwell’s equations in the medium with the dielectric permittivity \(\epsilon^{(2)}(r)\) in the absence of the external sources,

\[
\nabla \times \mathbf{E}^{(2)} = 2i k_0 \mathbf{H}^{(2)}, \quad (6a)
\]

\[
\nabla \times \mathbf{H}^{(2)} = -2i k_0 \epsilon^{(2)}(r) \mathbf{E}^{(2)}. \quad (6b)
\]

We then apply scalar multiplication to Eqs. (3a) and (6b) by \(\mathbf{H}^{(2)}\) and \(\mathbf{E}^{(2)}\), respectively, and subtract one from the other

\[
\mathbf{H}^{(2)} \times \mathbf{E}^{(2)} - \mathbf{E}^{(2)} \times \mathbf{H}^{(2)} = 2i k_0 [\epsilon^{(2)}(r) \mathbf{E}^{(2)} + \mathbf{H}^{(2)}]. \quad (7)
\]
As an auxiliary solution \(\mathbf{E}^{(2\omega)}_i, \mathbf{H}^{(2\omega)}_i \), we choose the electromagnetic field, which at \(r > a \) coincides with the incident and reflected multipolar electric or magnetic mode. For the electric multipolar mode it acquires the form

\[
\mathbf{H}^{(2\omega)}_i (r > a) = [h_i^{(2)}(2k_0r) + \eta^F_i h_1^{(1)}(2k_0r)] \mathbf{X}_{i,m},
\]

\[
\mathbf{E}^{(2\omega)}_i (r > a) = \frac{i}{2k_0} \mathbf{V} \times \mathbf{H}^{(2\omega)}_i,
\]

(11)

and for the magnetic multipolar mode

\[
\mathbf{E}^{(2\omega)}_i (r > a) = \left[h_i^{(2)}(2k_0r) + \eta^M_i h_1^{(1)}(2k_0r) \right] \mathbf{X}_{i,m},
\]

\[
\mathbf{H}^{(2\omega)}_i (r > a) = -\frac{i}{2k_0} \mathbf{V} \times \mathbf{E}^{(2\omega)}_i.
\]

(12)

Here the Hankel function of the second kind \(h_i^{(2)}(2k_0r) \) corresponds to the incident spherical wave, while the Hankel function of the first kind \(h_1^{(1)}(2k_0r) \) describes the reflected outgoing mode. The spherical Bessel function \(j_i(2k_0\sqrt{\varepsilon(2\omega)r}) \) describes the auxiliary field inside the nanoparticle. Reflection (transmission) coefficients \(\eta^F, M (t_i^{F, M}) \) are derived from the condition of the continuity for the tangential component of the electric field and magnetic fields at the interface \(r = a \):

\[
\eta_i^F = \left. -\frac{h_i^{(2)}(2k_0r)\partial_r [j_i(2k_0\sqrt{\varepsilon(2\omega)r})] - j_i(2k_0\sqrt{\varepsilon(2\omega)r})\partial_r [r h_i^{(2)}(2k_0r)]}{h_i^{(1)}(2k_0r)\partial_r [j_i(2k_0\sqrt{\varepsilon(2\omega)r})] - j_i(2k_0\sqrt{\varepsilon(2\omega)r})\partial_r [r h_i^{(1)}(2k_0r)]} \right|_{r=a},
\]

\[
t_i^F = \frac{i}{k_0 a} \left. \left[j_i(2k_0\sqrt{\varepsilon(2\omega)r})\partial_r [r h_i^{(1)}(2k_0r)] - h_i^{(1)}(2k_0r)\partial_r [j_i(2k_0\sqrt{\varepsilon(2\omega)r})] \right] \right|_{r=a},
\]

\[
\eta_i^M = \left. \frac{[\varepsilon(2\omega)]^{-1} h_i^{(2)}(2k_0r)\partial_r [j_i(2k_0\sqrt{\varepsilon(2\omega)r})] - j_i(2k_0\sqrt{\varepsilon(2\omega)r})\partial_r [r h_i^{(2)}(2k_0r)]}{[\varepsilon(2\omega)]^{-1} h_i^{(1)}(2k_0r)\partial_r [j_i(2k_0\sqrt{\varepsilon(2\omega)r})] - j_i(2k_0\sqrt{\varepsilon(2\omega)r})\partial_r [r h_i^{(1)}(2k_0r)]} \right|_{r=a},
\]

\[
t_i^M = \frac{i}{k_0 a} \left. \left[j_i(2k_0\sqrt{\varepsilon(2\omega)r})\partial_r [r h_i^{(1)}(2k_0r)] - [\varepsilon(2\omega)]^{-1} h_i^{(1)}(2k_0r)\partial_r [j_i(2k_0\sqrt{\varepsilon(2\omega)r})] \right] \right|_{r=a}.
\]

(13)

Note that \(|\eta_i^{F, M}| = 1 \) in Eq. (13).

Substituting Eqs. (11) and (12) into Eq. (10) and taking into account the expansion (5) and the orthogonality condition for spherical harmonics, we get the excitation coefficients of the multipolar modes at the SH frequency:

\[
q_i^F = \frac{4\pi i k_0}{c E_0^2 (\mathbf{A}_{1i}^F)^2 \varepsilon(2\omega)} \iiint_{r < a} dV \mathbf{J}^{(2\omega)} \cdot \mathbf{V} \times (j_2(2k_0\sqrt{\varepsilon(2\omega)r})\mathbf{X}_{2,0}(\theta_1)),
\]

\[
q_i^M = \frac{4\pi i k_0}{c E_0^2 (\mathbf{A}_{2i}^M)^2 \varepsilon(2\omega)} \iiint_{r < a} dV \mathbf{J}^{(2\omega)} \cdot \mathbf{V} \times (j_2(2k_0\sqrt{\varepsilon(2\omega)r})\mathbf{X}_{2,0}(\theta_2)).
\]
The coefficients q^E_1, q^E_2, d^E, and q^M are in different ways related to the phenomenological parameters $\gamma, \delta', \chi_{\perp\perp}^{(2)}, \chi_{\parallel\parallel}^{(2)}$, and $\chi_{\parallel\perp}^{(2)}$. In particular, calculating the integrals on the right-hand side of Eqs. (14), one can show that

$$q^E_1 = a_1 \gamma + a_2 \delta' + a_3 \chi_{\parallel\perp}^{(2)},$$
$$q^E_2 = b_1 \gamma + b_2 \delta' + b_3 \chi_{\perp\perp}^{(2)} + b_4 \chi_{\parallel\perp}^{(2)} + b_5 \chi_{\parallel\parallel}^{(2)},$$
$$d^E = c_1 \gamma + c_2 \delta' + c_3 \chi_{\parallel\perp}^{(2)},$$
$$q^M = f \chi_{\parallel\parallel}^{(2)},$$

where the coefficients a_i, b_i, c_i, j, and f depend on the frequency, the particle size, and the dielectric permittivity. Remarkably, the magnetic quadrupolar component q^M depends only on one parameter $\chi_{\parallel\parallel}^{(2)}$ and hence it vanishes at $\chi_{\parallel\parallel}^{(2)} = 0$.

At long distances from the particle, where $2k_0r \gg 1$, the electric field emitted at the second harmonic takes the following form:

$$E^{(2\omega)}(r) \approx E_0 A^{E}_0 \left\{ -\frac{1}{4} \frac{15}{2\pi} (A^{M}_{1,1})^2 q^E_1 \sin 2\theta_1 - \frac{1}{4} \frac{15}{2\pi} (A^{E}_{1,1})^2 q^E_2 \sin 2\theta_2
+ A^{E}_{1,1} A^{M}_{1,1} \left\{ -\frac{i}{3} \frac{3}{2\pi} d^E \sin \theta \hat{\theta} - \sqrt{\frac{5}{4\pi}} (\cos 2\theta_1 \sin \varphi_1 \hat{\varphi}_1 - \cos \theta_1 \cos \varphi_1 q^M) \right\} \frac{\exp (2ik_0r)}{2k_0r}. \right\}$$

The exemplary radiation pattern in Fig. 2 is plotted, assuming that the contribution of the magnetic quadrupole is small and the amplitudes of the ED and EQ modes in the SH radiation field are of the same order of magnitude.

Our analytical considerations are confirmed by full-wave numerical modeling performed with the finite-element solver COMSOL Multiphysics, following the procedure described in Refs. [5,6,9,28,37]. These simulations allow for solving the full scattering problem at the SH frequency using the induced nonlinear polarization within the undepleted pump approximation in the presence of the dielectric environment. Then the multipolar amplitude coefficients dependent on the geometry and a refractive-index contrast are retrieved [46]. Because the values of the phenomenological nonlinear coefficients for silicon are yet not well established, we examined different
Direct numerical simulations performed with COMSOL reveal plane-wave excitation at the pump wavelength \(\lambda_0 = 1050 \text{ nm} \) and corresponding SH emission patterns for different nonlinear sources. Stacked bars visualize contributions of the dominating dipolar \((l = 1)\) and quadrupolar \((l = 2)\) orders normalized to the total SH radiated power.

FIG. 5. Numerically calculated multipolar decomposition of SHG from a spherical silicon nanoparticle of radius \(a = 145 \text{ nm} \) under plane-wave excitation at the pump wavelength \(\lambda_0 = 1050 \text{ nm} \) and corresponding SH emission patterns for different nonlinear sources. Stacked bars visualize contributions of the dominating dipolar \((l = 1)\) and quadrupolar \((l = 2)\) orders normalized to the total SH radiated power.

We expect the total conversion efficiency to be dispersive and size dependent. It is strongly affected by the hierarchy of Mie resonances and modal overlaps, as was shown experimentally for Mie-resonant nanoparticles in recent works \([9,32,37]\).

FIG. 6. Second-harmonic conversion efficiency calculated numerically from a spherical silicon nanoparticle at the incident intensity \(I_0 = 1 \text{ GW/cm}^2 \) and laser wavelength \(\lambda_0 = 1050 \text{ nm} \). The dependences of different source contributions on the nanoparticle radius were computed independently: \(\chi^{(2)}_{1\parallel\parallel} \) (thick solid gray curve), \(\chi^{(2)}_{1\perp\perp} \) (thick dashed gray curve), \(\gamma \) (thin dashed purple curve), and \(\delta' \) (thin solid purple curve). The inset shows \(\chi^{(2)}_{1\parallel\perp} \) SHG efficiency (dotted gray curve).

The COMSOL results additionally confirm that when defining the SH nonlinear source through the bulk and surface nonlinear contributions, one may, to a high degree of accuracy, restrict oneself to taking into account electric and magnetic dipolar modes only. This is reasonably explained by sufficiently high quality factors of the dipolar resonances exhibiting by the high-index nanoparticles of the corresponding sizes.

We expect the total conversion efficiency to be dispersive and size dependent. It is strongly affected by the hierarchy of Mie resonances and modal overlaps, as was shown experimentally for Mie-resonant nanoparticles in recent works \([9,32,37]\).

Direct numerical simulations performed with COMSOL reveal that with increasing the nanoparticle’s size (closer to \(a = 200 \text{ nm} \)), the higher orders (up to \(l = 4 \)) show up in the multipolar expansion of the SH field. Based on the data and discussions in Refs. \([31,33,47,48]\), we approximately estimate the SHG efficiency and bulk and surface relative contributions for a silicon nanoparticle under plane-wave illumination (Fig. 6). For calculations we take \(\chi^{(2)}_{1\parallel\parallel} = 65 \times 10^{-19} \text{ m}^2/\text{V} \) and set the other nonlinearity parameters to be roughly of the same order of magnitude, \(\chi^{(2)}_{1\perp\perp} = \chi^{(2)}_{1\parallel\perp} = \gamma = 3.5 \times 10^{-19} \text{ m}^2/\text{V} \). Using the polarizability model \([33]\), we estimate \(\delta' \approx \gamma (\varepsilon(\omega) - 4\varepsilon(2\omega) + 3)/[\varepsilon(2\omega) - 1] \). The pronounced enhancement in the SH scattering occurs near MD resonance at the pump wavelength. The dominant peaks are exhibited by \(\chi^{(2)}_{1\parallel\parallel} \) surface and \(\gamma \) and \(\delta' \) bulk sources, which we analyze in detail in Sec. III.

However, the volume response can be attributed exclusively to the separable bulk \(\delta' \) term. The above-mentioned quasisurface character of the bulk \(\gamma \) term \([16,31]\) can be inferred from Eqs. \((14)\). Since \(q^M \) depends only on \(\chi^{(2)}_{1\parallel\parallel} \), we inspect the amplitudes of electric modes \(q^E_{1,2} \) and \(d^E \). For the \(\gamma \) source, they can be transformed to the surface integrals as

\[
q^E_{1,2} d^E \propto \gamma \iint_{r < a} dV \left(E_{m}^{(\omega)} \right)^2 \left[V \times \{ j_{2\parallel\parallel}\} \chi_{2(1,0)}^{(1)} \right]
= \gamma \iint_{r < a} dV \left[V \times \{ (E_{m}^{(\omega)})^2 j_{2(1)} \chi_{2(1,0)}^{(1)} \} \right]
= \gamma \iint_{r = a} dS \left(E_{m}^{(\omega)} \right)^2 \left[V \times j_{2(1)} \chi_{2(1,0)} \right]. \tag{17}
\]

justifying that the bulk \(\gamma \) term contributes to the effective surface response.

III. SECOND-HARMONIC GENERATION DRIVEN BY THE MAGNETIC DIPOLE MODE

In this section, we consider in more detail and derive an analytical solution for SHG from a high-index dielectric particle driven by the MD mode. This particular case describes well the pronounced magnetic dipole resonance \([5]\). Alternatively, it may be realized in experiment by irradiating the nanoparticle with the azimuthally polarized beam whose structure imitates the MD mode polarization distribution. In this instance, a solution can be obtained from the analysis developed in Sec. II.
by setting $A_{E,1}^t = 0$. However, for the sake of methodological clarity, here we take a different way and solve this basic nonlinear problem not by involving the Lorentz lemma but following the approach outlined in Ref. [5], where the third-harmonic generation by resonant silicon nanoparticles was described.

We employ a single-mode approximation and assume that the fields inside the nanoparticle at $r < a$ are given by MD mode profile as

$$
E_{\text{in}}^{(\omega)} \approx A(\omega) j_1(k(\omega)r) \hat{\theta} \cos \varphi - \sin \varphi \cos \theta \hat{\phi},
$$

$$
H_{\text{in}}^{(\omega)} \approx \frac{A(\omega)}{ik_0} \nabla \times [j_1(k(\omega)r)(\hat{\theta} \cos \varphi - \sin \varphi \cos \theta \hat{\phi})],
$$

where $A(\omega) = E_0 A_{1,1}^t 1/2 \sqrt{\frac{\gamma}{2}}$. We rewrite expressions (18) in the spherical coordinate system associated with the y axis codirected with the induced magnetic dipole moment:

$$
E_{\text{in}}^{(\omega)} \approx A(\omega) j_1(k(\omega)r) \sin \theta_1 \hat{\phi},
$$

$$
H_{\text{in}}^{(\omega)} \approx \frac{A(\omega)}{ik_0} \left\{ \frac{2 \cos \theta_1}{r} j_1(k(\omega)r) - \hat{\theta} \frac{\sin \theta_1}{r} \partial_r [j_1(k(\omega)r)] \right\}.
$$

Substituting the fields (19) into Eqs. (2), the nonlinear polarizations are recast to the surface source caused solely by the tensor component $P_{L||L}$:

$$
P_{\text{surf}}^{(2\omega)} = \hat{r} \chi_{L||L} \left(E_{\text{in}}^{(\omega)}, E_{\text{in}}^{(\omega)} + \delta' (E_{\text{in}}^{(\omega)} \cdot \nabla) E_{\text{in}}^{(\omega)} \right) \Pi(a - r - 0)
$$

$$
= \hat{r} \chi_{L||L} \frac{j_1(k(\omega)r) \sin^2 \theta_1}{r^2}(r - a + 0),
$$

and the bulk source consisting of two regrouped contributions

$$
P_{\text{bulk}} = \{ (\gamma + \delta'/2) \nabla \cdot (E_{\text{in}}^{(\omega)})^2 - \delta' [E_{\text{in}}^{(\omega)} \times i k_0 H_{\text{in}}^{(\omega)}] \} \times \Pi(a - r - 0)
$$

$$
- \frac{1}{a} \chi_{L||L} \left(\gamma + \delta'/2 \right) j_1^2(k(\omega)a) \sin 2 \theta_1.
$$

(21)

For clarity, we consider the response of the structure driven by the nonlinear sources $P_{\text{surf}}^{(2\omega)}$, $P_{\text{bulk}1}$, and $P_{\text{bulk}2}$ sequentially.

The normal surface polarization (20) in the driven Maxwell equations is equivalent to the dipole layer. Alternatively, in electrolytic equations it may be formally replaced by the fictitious surface magnetic current whose density is defined by

$$
j_{\text{surf}}^{(2\omega)M} = \frac{c}{\epsilon(2\omega)} \left[\nabla \times \hat{r} P_{\text{surf}}^{(2\omega)} \right]_{r=a=0}.
$$

(22)

Thus, the tangential θ_1 component of the electric field at the spherical boundary $r = a$ undergoes a jump expressed through the derivative $\partial_{\theta_1} P_{\text{surf}}^{(2\omega)}$:

$$
E_{\theta_1}^{(2\omega)}(r=a) - E_{\theta_1}^{(2\omega)}(r=a=0)
$$

$$
= - \frac{4\pi}{\epsilon(2\omega)a} \frac{\partial P_{\text{surf}}^{(2\omega)}}{\partial \theta_1}
$$

$$
= -4\pi (\epsilon(2\omega)a)^{-1} \chi_{L||L} A^2(\omega) j_1^2(k(\omega)a) \sin 2 \theta_1.
$$

(23)

Considering the term $P_{\text{bulk}1}^{(2\omega)}$, which is a gradient of the scalar function, we represent the electric field as a sum of the vortex and potential vector fields

$$
E^{(2\omega)} = E_{\text{v}}^{(2\omega)} - \frac{4\pi}{\epsilon(2\omega)a} \nabla (E_{\text{in}}^{(\omega)})^2 \left(\gamma + \frac{\delta'}{2} \right) \times \begin{cases} 1, & r < a \\ 0, & r > a \end{cases}
$$

(24)

The vortex part $E_{\text{v}}^{(2\omega)}$ is therefore found by solving the Maxwell equations with the substitution (24) transformed to

$$
\nabla \times E_{\text{v}}^{(2\omega)} = 2ik_0 H_{\text{v}}^{(2\omega)},
$$

$$
\nabla \times H^{(2\omega)} = -2ik_0 E_{\text{v}}^{(2\omega)} \epsilon(2\omega)(r),
$$

with the boundary conditions at the nanoparticle surface

$$
H_{\text{v}}^{(2\omega)}(r=a) = H_{\text{v}}^{(2\omega)}(r=a=0),
$$

$$
E_{\text{v}}^{(2\omega)}(r=a) = E_{\text{v}}^{(2\omega)}(r=a=0) - \frac{4\pi}{\epsilon(2\omega)} \left[j_{\text{surf}}^{(2\omega)M}(2\omega) \right]_{r=a=0},
$$

(25)

(26a)

(26b)

where, to account for the electric field discontinuity at the interface $r = a$, we have again introduced the surface magnetic current given by

$$
j_{\text{surf}}^{(2\omega)M} = - \frac{c}{\epsilon(2\omega)} \left(\gamma + \frac{\delta'}{2} \right) \frac{1}{a} \hat{r} j_1^2(k(\omega)a) \sin 2 \theta_1.
$$

(27)

Noticeably, the boundary conditions (23) and (26b) can be additively combined to

$$
E_{\text{v}}^{(2\omega)}(r=a) - E_{\text{v}}^{(2\omega)}(r=a=0) = - \frac{4\pi}{a \epsilon(2\omega)} \chi_{L||L} \left(\gamma + \frac{\delta'}{2} \right) A^2(\omega) j_1^2(k(\omega)a) \sin 2 \theta_1.
$$

(28)

With the second part of the bulk source, being nonzero only if $\delta' \neq 0$,

$$
P_{\text{bulk}2}^{(2\omega)} = -\delta' A^2(\omega) \left\{ j_1(k(\omega)r) \frac{1}{\partial r} \frac{\partial j_1(k(\omega)r)}{\partial r} \right. \sin^2 \theta_1 \hat{r}
$$

$$
\left. + \frac{1}{r} j_1^2(k(\omega)r) \sin 2 \theta_1 \hat{\theta} \right\} \Pi(a - r - 0),
$$

(29)

inside the particle at $r < a$ we solve the inhomogeneous wave equation

$$
\nabla \times \nabla \times H^{(2\omega)} - 4k_0^2 \epsilon(2\omega) H^{(2\omega)} = 8\pi ik_0 \nabla \times P_{\text{bulk}2}^{(2\omega)}.
$$

(30)

The solution is sought in the form $H^{(2\omega)} = H(r) \sin 2 \theta_1 \hat{\phi}$, consistent with the angular structure of the source. Remarkably, this corresponds to the electric quadrupole SH radiation in the far field.

Thereby, for the radial function $H(r)$ at $r < a$ we have the equation

$$
\frac{d^2 H}{dr^2} + \frac{2 \frac{dH}{dr}}{r} - \frac{6}{r^2} H + 4k_0^2 \epsilon(2\omega) H = f(r),
$$

(31)
with the source function \(f(r) \) on the right-hand side:

\[
f(r) = -4\pi ik_0\delta A^2(\omega) \left\{ r \frac{\partial}{\partial r} \left(\frac{j_1^2(k(\omega)r)}{r^2} \right) \Pi(a - r - 0) - 2 \frac{j_1^2(k(\omega)r)}{r} \delta(r - a + 0) \right\}.
\]

The solution of the inhomogeneous second-order differential equation (31) is then found using the Wronskian

\[
H(r < a) = C_1 j_2(2k_0\sqrt{\varepsilon(2\omega)r}) + 2k_0\sqrt{\varepsilon(2\omega)} \int_0^r dr' r'^2 f(r') j_2(2k_0\sqrt{\varepsilon(2\omega)r'})
\]

\[
- j_2(2k_0\sqrt{\varepsilon(2\omega)r}) \int_a^r dr' r'^2 f(r') j_2(2k_0\sqrt{\varepsilon(2\omega)r'}) \right),
\]

where \(y_2(2k_0\sqrt{\varepsilon(2\omega)r}) \) is the spherical Neumann function.

Outside the nanoparticle at \(r > a \) the magnetic field \(H^{(2\omega)}(r > a) \) is continuous, while the \(\theta_1 \) component of the electric field experiences a jump caused by the fictitious surface magnetic current. Matching these boundary conditions, we find the coefficient \(C_2 \) to be of the form

\[
C_2 = -\frac{8\pi k_0^2a}{\varepsilon(2\omega)} t_E^2 A^2(\omega) \left\{ \chi_{\perp\|}^{(2)} + \frac{3}{2} \gamma' \right\}
\]

\[
\times j_1^2(k(\omega)a) j_2(2k_0\sqrt{\varepsilon(2\omega)a}) + \frac{\gamma'}{a} \int_0^a dr' \left(j_1^2(k(\omega)r') \right)
\]

\[
- \frac{r'}{2} \frac{\partial}{\partial r'} j_1^2(k(\omega)r') \right) j_2(2k_0\sqrt{\varepsilon(2\omega)r'}) \right\}.
\]

Substituting nonlinear sources (20) and (21) into Eqs. (14) and getting \(q_1^E \), it can be seen that the amplitude of the electric quadrupolar mode given by

\[
C_2 = E_0^2(A_{\perp\|}^M) \frac{i}{4} \sqrt{\frac{15}{2\pi}} q_1^E
\]

is consistent with Eq. (35). Thus, both methods, based on (i) the Lorentz lemma (Sec. II) and (ii) direct calculations of SH fields (Sec. III), yield the same result. However, in more involved situations, when SHG is governed by several multipoles excited at the fundamental frequency, approach (i) enables an easier way to recover analytical expressions for coefficients of multipolar expansion of nonlinear scattering.

Figures 7(a)–7(c) show numerically calculated SH field near-field profiles generated by different nonzero source polarizations, associated with \(\chi_{\perp\|}^{(2)} \), \(\delta' \), and \(\gamma \), for the case of pure MD mode excitation at the fundamental frequency. The \(\chi_{\perp\|}^{(2)} \) and \(\chi_{\perp\perp}^{(2)} \) SH sources vanish, given the absence of the electric-field component normal to the surface. The total powers radiated by the nonzero sources relate in proportions consistent with Eq. (35). In agreement with our analytical results, in all three cases the simulated far-field manifests an EQ structure, as depicted in Fig. 7(d).

IV. CONCLUSION

We have developed a theoretical model of the second-harmonic generation from high-index dielectric nanoparticles made of centrosymmetric materials (with a focus on silicon) excited by laser radiation in the frequency range covering the magnetic and electric dipolar Mie resonances at the fundamental frequency. We have shown that the multipolar decomposition of the generated second-harmonic field is dominated by the dipolar and quadrupolar modes. With the adjusted parameters, interference of these modes can ensure good directivity of the SHG radiation.

We specifically focused on the magnetic dipole resonance inherent to high-permittivity dielectric nanoparticles and its influence on the nonlinear scattering. It should be emphasized that magnetic modes bring different physics to simple dielectric geometries [1,2,5,37] that differs substantially from the fundamentals of nonlinear nanoplasmonics largely appealing for the electric dipole resonances and electric modes, associated with surface plasmons [10–12,14–16,18,20]. In particular, the multipolar nature of nonlinear scattering is concerned.

As was established, both theoretically and experimentally, for the Rayleigh limit of SHG from a spherical metal nanoparticle under \(x \)-polarized plane-wave illumination, the \(z \)-aligned electric dipole and \(x \)-axially symmetric electric quadrupole provide leading contributions to SH radiation, with zero SH signal in the forward direction. By contrast, the excitation of the magnetic dipole mode in dielectric nanoparticles may lead to generation of magnetic multipoles [5,37]. For instance, a silicon nanoparticle with cubic bulk nonlinearity excited in the vicinity of magnetic dipole resonance produces third-harmonic radiation composed of a magnetic dipole and octupole [5].

The predominant generation of SH magnetic multipoles was also demonstrated experimentally in noncentrosymmetric AlGaAs nanodisks by tuning polarization of the optical pump [37]. Here we have shown that while the SH radiated field in the centrosymmetric nanoparticle driven by the magnetic dipole mode alone solely consists of the \(q_1^E \) electric quadrupole spherical wave, the overlap of MD and ED modes under plane-wave excitation enriches the multipolar composition and includes the magnetic quadrupole \(q^M \) component. The distinctive feature attributed to the magnetic dipole mode excitation is that the axis of the generated SH electric quadrupole \(q_1^E \) is aligned with the magnetic moment at the pump wavelength, as illustrated in Fig. 1.

Our approach based on the Lorentz lemma is of a general nature and, in combination with numerical calculations, it can be applied to describe the harmonic generation (such as
FIG. 7. Second-harmonic generation in a Si nanoparticle driven by the MD mode. Simulated SH field distributions were generated by different SH nonlinear sources stemming from (a) $\chi^{(2)}_{\perp \parallel \parallel}$, (b) δ', and (c) γ. The nonlinear response is set to be driven by the MD mode associated with the y-polarized magnetic dipole moment at the fundamental frequency. The SH field magnitude $|E^{2\omega}(\xi,\zeta)|$ is shown in color, being normalized to the maximum value for each source. Labels ξ and ζ in the function’s parentheses correspond to the horizontal and vertical axes in images, respectively, as indicated for each column at the top of the figure. (d) The nanoparticle radiates SH light as EQ in all three cases, computed for the pump wavelength $\lambda_0 = 1050$ nm and nanoparticle radius $a = 145$ nm.

SHG and THG) by Mie-resonant dielectric nanoparticles of an arbitrary shape, including those made of noncentrosymmetric materials, e.g., AlGaAs [9,37] and BaTiO$_3$ [38,39], which possess large-volume quadratic susceptibility of a tensorial form. Our study and analytical approaches developed may therefore be instructive for the design of efficient nonlinear all-dielectric nanoantennas with controllable radiation characteristics.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (Grants No. 16-32-00635 and No. 16-02-00547) and the Australian Research Council. The numerical analysis was performed with the support of the Russian Science Foundation (Grant No. 17-12-01574).

C. Jagadish, Y. S. Kivshar, and D. N. Neshev, Nonlinear generation of vector beams from AlGaAs nanoantennas, Nano Lett. 16, 7191 (2016).

