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Abstract—In this paper, we propose a distance-based formation
control strategy for a group of mobile agents to achieve almost
global convergence to a target formation shape provided that
the formation is represented by a complete graph, and each
agent is governed by a single-integrator model. The fundamental
idea of achieving almost global convergence is to use a virtual
formation of which the dimension is augmented with some virtual
coordinates. We define a cost function associated with the virtual
formation and apply the gradient-descent algorithm to the cost
function so that the function has a global minimum at the target
formation shape. We show that all agents finally achieve the
target formation shape for almost all initial conditions under the
proposed control law.

Index Terms—Distance-based formation control, almost global
convergence, gradient control.

I. Introduction

Based on use of graph rigidity theory [1]–[4], various
techniques and convergence results have been developed on
distance-based formation control [5]–[18]. It is known that
for any undirected rigid formation, we can achieve local
asymptotic stability [12] and local exponential stability [17]
under the distance-based control algorithm proposed in [8] and
its generalizations. Although there are many other publications
dealing with distance-based formation stabilization problems,
most of them are focused on local stability analysis with a
few exceptions (e.g., [6], [9]–[11], [13], [15], [18]) handling
global stability issues for some special formation shapes.

To be more specific about those exceptions, undirected
polygonal formations in the plane are studied in [6] based
on a distance-based formation control strategy, but the au-
thors successfully show almost global convergence to only a
triangular target formation. Regarding four-agent formations,
there is a formation that is termed a K4 formation because it is
represented by the four-vertex complete graph. References [9],
[11] contribute to showing that any rectangular K4 formation
in R2 is achieved almost globally under the control law
proposed in [8]. Nevertheless, it is still not known whether a
general rather than rectangular K4 formation can be achieved
under the same control law almost globally; obviously, more
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complicated general rigid formations consisting of more than
four agents have not been studied well. A control law to
stabilize rigid formations in R2 almost globally was proposed
in [19], but it has been shown that there exists a counter
example formation which cannot be stabilized almost globally
under the same control law [20]. Only partial analyses of
particular classes of rigid formations are reported recently in
[15], [18]. Reference [15] provides a discontinuous control law
to achieve a universally rigid target formation, and [18] shows
that a triangulated formation can be stabilized almost glob-
ally.1 Consequently, the ultimate goal of providing a global
stability analysis for a general rigid formation is a challenging
task which still remains an open problem. Likewise, we cannot
provide a complete solution to the problem at this stage, but
we want to explore another branch related to the ultimate goal.

One of the aforementioned exceptions can be noted, as
it motivates much of this paper. It is known that, under
the control law proposed in [8] (with an extension of the
dimension), we can obtain almost global convergence for a
K4 formation in R3 [13]. However, whether the same control
law can be used for a K4 formation in R2 to achieve global
convergence has yet to be established for other than special
cases. In our previous works [16], we proposed an alternative
approach to treating the K4 formation in R2 by having it
mimic the K4 formation in R3, thereby taking advantages of
the global convergence results for the K4 formation in R3 in
solving the problem of K4 formation in R2. But, the work in
[16] is confined to K4 formation control in R2. In this paper,
we further generalize the works of [16] in both dimensions
and the size of graphs. Thus, as the main contribution of this
paper, we first generalize the results so that they could be
applied to general Kn formations in R2 with n ≥ 4. Then,
as the second contribution, we remove the restriction that the
realization space is R2. More precisely, we can seek to realize
a Kn formation in Rd, for any d ≤ n − 1, as opposed to the
case d = 2, n = 4 of [16].

The rest of the paper is organized as follows. In Section II,
we provide background knowledge on formation graphs and
the control law proposed in [8]. The notation used throughout
the paper is summarized at the beginning of the section. In
Section III, we explore Kn formations in Rn−1, which provides
some results generalized from [13] based on the results of
[14]. We establish the main results in Section IV by providing
a method to construct a virtual formation and analyzing the

1One can refer to [15] and [18] for the definitions of universal rigidity and
a triangulated formation, respectively.
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convergence of the virtual formation. Some examples and
related simulations are given in Section V. We summarize the
paper in Section VI.

II. Notations and motivation

We first introduce the notation used in the rest of the paper.
• Rd: d-dimensional Euclidean space.
• R≥a = {x ∈ R | x ≥ a}.
• |S |: the cardinality of a set S.
• ‖x‖: the Euclidean norm of a real vector x.
• For some real vectors v1, . . . , vn, (v1, . . . , vn) =

[v>1 . . . v>n ]>.
• 1k = (1, . . . , 1) ∈ Rk.
• 0k = (0, . . . , 0) ∈ Rk.
• RFd

m = Rm × {0d−m} ⊆ Rd for d > m, and RFd
d = Rd.2

• dist(x, y), x ∈ Rn, y ∈ Rm:

dist(x, y) =


‖(x, 0m−n) − y‖, (n < m),
‖x − (y, 0n−m)‖, (n > m),
‖x − y‖, (m = n).

• dist(x,S) = infy∈S dist(x, y), x ∈ Rn, S ⊆ Rm.

A. Formation graph

Let G denote a graph defined by G = (V , E), where
V = {1, . . . , n} is the set of all vertices representing the agents,
and E = {. . . , {i, j}, . . .} is the set of all edges representing
certain pairs of the vertices. Let pi ∈ Rd be a column vector
denoting the position vector of vertex i. The jth component of
pi is represented by p j

i , i.e., pi = (p1
i , . . . , p j

i , . . . , pd
i ). We call

p = (p1, . . . , pn) ∈ Rdn a realization of G in Rd. A framework
(formation) is defined by a pair of a graph G and its realization
p, and denoted by (G, p). Two realizations p and z are said
to be congruent if ‖pi − p j‖ = ‖zi − z j‖ for all i, j ∈ V , and
two frameworks (G, p) and (G, z) are said to be equivalent if
‖pi − p j‖ = ‖zi − z j‖ for all {i, j} ∈ E . We use Kn to denote
the complete graph of n vertices. A formation (G, p) such that
G = Kn is called a Kn formation.

B. Rigidity and infinitesimal rigidity

Since the notion of rigidity of a framework is essential for
understanding distance-based formation control, we provide a
brief introduction to rigidity and infinitesimal rigidity. One can
refer to [1], [2], [4], [7], [21] for more detailed explanations.
For a given framework (G, p) in Rd with G = (V , E), a function
rG : Rd|V | → R|E |,

rG(p) =
1
2

(. . . , ‖pi − p j‖2, . . .), {i, j} ∈ E ,
is called the rigidity function of (G, p). Thus for two frame-
works (G, p) and (G, z), they are equivalent if and only if
rG(p) = rG(z) by definition.

Definition 1 ([1],[21]). Consider a framework (G, p) in Rd

with G = (V , E) and the associated rigidity function rG .

2For instance, RF3
1 ⊆ R3 is a subspace spanned by (1, 0, 0), and RF3

2 ⊆ R3

is a subspace spanned by (1, 0, 0) and (0, 1, 0).

1

2

3

44′

Figure 1: Two non-congruent formations induced from the
same inter-agent distance set.

Then the framework (G, p) is rigid in Rd if there exists a
neighborhood U ⊆ Rd|V | of p such that

r−1
G

(
rG(p)

) ∩ U = r−1
K|V |

(
rK|V | (p)

) ∩ U . (1)

Furthermore, if (1) holds for U = Rd|V |, then (G, p) is said to
be globally rigid in Rd.

From Definition 1, we can notice that any framework (G, z)
which is equivalent to (G, p) with z ∈ U results in congruence
of p and z if (G, p) is rigid.

In addition to rigidity, there is a concept called infinitesimal
rigidity which is more conservative than rigidity. Although the
definition of infinitesimal rigidity is given in [2] rigorously,
we provide a theorem which can be taken as a definition of
infinitesimal rigidity instead.

Theorem 1 ([2]–[4]). With the same notation in Definition 1,
let

R(G, p) =
∂rG(p)
∂p

∈ R|E |×d|V |.

The framework (G, p) is infinitesimally rigid in Rd if and only
if

rank R =

d|V | − d(d + 1)/2 if |V | ≥ d,
|V |(|V | − 1)/2 otherwise.

The matrix R in Theorem 1 is called the rigidity matrix of
(G, p).

C. Steepest descent flow under the single-integrator model

Consider n agents evolving in Rd under the following single-
integrator model:

ṗi = ui, ∀i ∈ V , (2)

where ui = (u1
i , . . . , u

d
i ) ∈ Rd denotes the control input for

agent i. Let p̄ be a representative realization of the target
formation shape. The goal of distance-based formation control
is to achieve a formation which is congruent to (G, p̄) by
adjusting the inter-agent distances corresponding to the edges
of the underlying formation graph. Depending on the graph
structure and the characteristics of the target formation, we
may or may not achieve the target formation shape even if
all the desired inter-agent distances are satisfied. For example,
we can see two non-congruent formations having the same
inter-agent distance set in Fig. 1. The agent 4 can satisfy the
distance constraints to agents 2 and 3 at the both positions
denoted by 4 and 4′. In this particular case, if there were a
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distance constraint between agents 1 and 4, there would not
be such an ambiguity. From the definition of global rigidity
[21], a necessary and sufficient condition to guarantee that a
formation satisfying the desired inter-agent distances, which
are induced from a target formation, is congruent to the target
formation is that the target formation is globally rigid.

However, even if the target formation is globally rigid,
finding an effective control law for (2) to achieve a target
formation from almost all initial conditions is a different
and challenging task. For example, consider the control law
proposed by Krick et al. in [8], which is equivalent to a
steepest descent flow of a potential function defined by

v(p) =
1
4

∑
{i, j}∈E

(
‖pi − p j‖2 − d2

i j

)2
, (3)

where di j = ‖p̄i − p̄ j‖. The control law can be written as

u = −
[
∂v
∂p

]>
, (4)

where u = (u1, . . . , un). Since we are using a single-integrator
model, the overall closed-loop system with (4) is represented
by

ṗ = −
[
∂v
∂p

]>
. (5)

Under the control law in (4), we can find an example show-
ing the convergence (from selected initial conditions) to an
incorrect equilibrium formation (i.e. an equilibrium formation
which does not make v = 0), even if the target formation
is globally rigid. Let us consider a globally rigid five-agent
target formation in R2 where a representative realization is
given by p̄ = (p̄1, p̄2, p̄3, p̄4, p̄5) with p̄1 = (0, 1), p̄2 = (−3, 0),
p̄3 = (0,−1), p̄4 = (2, 0), and p̄5 = (1,−5). Fig. 2(a) shows a
simulation result representing the trajectories generated from
an initial condition 1.1 p̄ under (5). On the other hand, we
obtain Fig. 2(c), which shows convergence to an incorrect
equilibrium formation, if we use 1.1(p̄1, p̄2, p̄3,−p̄4, p̄5) as an
initial condition.

A different indication of the difficulties with the closed-
loop system is provided by a K4 formation in R2, which is
the simplest form of globally rigid formation with more than
three agents. It is still an open problem to determine whether
a general K4 formation in R2 can achieve the target formation
almost globally for (5). Some papers offer a partial analysis of
a K4 formation in R2 to show the almost global convergence
property [9], [11], but there are only limited results that
can be applied to some particular examples, e.g., rectangular
formations. On the other hand, it is shown in [13] that a K4
formation in R3 can achieve the target formation shape almost
globally by showing the instability of degenerate3 incorrect
equilibrium formations, and the results on instability of the
degenerate incorrect equilibrium formations are extended to
more general formation cases in [14].

In [16], the almost global convergence property of a K4
formation in R3 is used to achieve almost global convergence
of a K4 formation in R2 under a modified control law. In that

3Definitions and exact meaning will be provided in Section III-A.
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(d) Squared-distance errors

Figure 2: A 5-agent formation which is globally rigid in R2:
(a) and (b) show the convergence to the target formation
shape while (c) and (d) show the convergence to an incorrect
formation shape.

paper, the actual agents are considered as agents moving in
a 2-dimensional space, but one virtual variable is used as a
virtual additional coordinate of an agent, thereby allowing the
whole formation to be viewed as a pseudo or virtual formation
in 3-dimensional space with three agents locked on the original
2-dimensional plane. A conventional control law is constructed
for the virtual formation, and used to motivate a control law
for the real formation, which is of course restricted to the
2-dimensional plane. This strategy can be used to guarantee
almost global convergence of a K4 formation in R2. We seek
to generalize this approach in this paper.

Our starting point is that if we want to describe a Kn

formation in Rd, 1 ≤ d ≤ n − 2, we can usefully introduce
a virtual formation in Rn−1 and associated control problem
with a minimal number of virtual variables; the number of
required virtual variables is given by

(1 + 2 + · · · + n − 1 − d) =
(n − d)(n − 1 − d)

2
. (6)

To understand (6), let us consider a K4 formation in R1. Let the
position of each agent be represented by 1-vector, e.g., p1 =

(3), p2 = (0), p3 = (1), and p4 = (2) as shown in Fig. 3(a).
Suppose that we want to describe the K4 formation in R1 as
a virtual K4 formation in R3 as shown in Fig. 3(b). To obtain
the formation in Fig. 3(b) from the formation in Fig. 3(a), we
first need to augment one virtual coordinate variable for one
agent, e.g., agent 1, so that the agent virtually lives in the
x-y plane. Next, we need two virtual coordinate variables for
another agent, e.g., agent 2, so that the agent virtually lives in
the x-y-z space. The K4 formation in R3 is defined by agents
at 1′, 2′, 3 and 4. In general, if we want to describe a Kn
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(b) K4 formation in R1 and virtually
in R3.

Figure 3: In (b), the actual agents live in RF3
1 like (a), but they

are treated as if they live in R3 with the virtual coordinates
augmented to the position vectors of agent 1 and agent 2.

formation in Rd, 1 ≤ d ≤ n − 2, the total number of required
virtual variables is the sum of an arithmetic sequence as given
in (6). The projection of the virtual formation into the Rd space
together with a control law derived from that for the virtual
formation yields convergence to the Kn formation of interest.

In this paper, we extend and use the control strategy
proposed in [16] to enable a Kn formation in Rd, 1 ≤ d ≤ n−2,
to achieve a target formation shape with almost global con-
vergence. For this purpose, we first review the results in [14]
showing that any degenerate incorrect equilibrium formation
of (5) is unstable provided that the target formation is non-
degenerate (the definition of (non-)degenerate formation is
given in the next section).

III. Almost global convergence of a Kn formation in R
n−1

A. Degenerate formation
Let S be a set of k vectors in Rd such that S = {s1, . . . , sk}.

The affine hull of S is defined by

aff hullS =

w ∈ Rd

∣∣∣∣∣∣∣ w =

k∑
i=1

ai si, si ∈ S, ai ∈ R,
k∑

i=1

ai = 1

.
Consider a formation in Rd represented by p = (p1, . . . , pn) ∈
Rdn. The dimension of the formation is defined as the di-
mension of aff hull{p1, . . . , pn}. The formation is said to be
degenerate if the dimension of the formation is less than
min{d, n − 1}, i.e., the formation is degenerate if the number
of linearly independent vectors in {pi − p j | i ∈ V , i , j} is
less than min{d, n − 1} for some j ∈ V . For instance, if three
agents in R2 form a line formation, or four agents in R3 form
a planar formation, then those formations are degenerate. On
the other hand, if four agents in R2 form a planar formation,
the formation is non-degenerate.

Note that infinitesimal rigidity of a formation implies its
non-degeneracy by the following proposition.

Lemma 1 ([2, p. 174]). For a given framework (G, p) in Rd

with p = (p1, . . . , pn) ∈ Rdn, if (G, p) is infinitesimally rigid
in Rd, then the dimension of aff hull{p1, . . . , pn} is equal to
min{d, n − 1}.

B. Kn formation in Rn−1

Let us consider a Kn formation in Rn−1 represented by
P = (P1, . . . , Pn) ∈ Rn(n−1). Unlike Kn formations existing
in Rd with 1 ≤ d ≤ n − 2, a Kn formation in Rn−1 has

special properties so we use P instead of p to distinguish it.
Analogously to the potential function in (3), let us define a
potential function V : Rn(n−1) → R≥0 as follows.

V(P) =
1
4

∑
1≤i< j≤n

(
‖Pi − P j‖2 − D2

i j

)2
,

where Di j = ‖P̄i − P̄ j‖, and P̄ = (P̄1, . . . , P̄n) ∈ Rn(n−1) is a
representative of the target formation with desired inter-agent
distances. Then we can consider the gradient system given by

Ṗ = −
[
∂V
∂P

]>
= −R>e, (7)

where R is the rigidity matrix of the framework (Kn, P), e =

(e12, . . . , e1n, e23, . . . , e2n, . . . , e(n−1)n), and ei j = ‖Pi−P j‖2−D2
i j

for all {i, j} ∈ E . Note that we have ei j = e ji for all {i, j} ∈ E
by definition. Obviously, the target formation corresponds to a
correct equilibrium point of (7), i.e., an equilibrium point such
that V = 0. In general, there may exist an incorrect equilibrium
point at which we cannot achieve the target formation. Such an
incorrect equilibrium point is defined by an equilibrium point
of (7) with V , 0. Based on this understanding, we can state
the following proposition on the relation between an incorrect
equilibrium and degeneracy of the corresponding formation.

Lemma 2. For an arbitrary n ≥ 2, consider the Kn formation
in Rn−1 governed by (7). Suppose that the target formation is
infinitesimally rigid in Rn−1. Then, for any incorrect equilib-
rium point of (7), the corresponding formation is degenerate.

Proof. Consider an incorrect equilibrium point P∗ of (7) at
which V , 0 (equivalently e , 0 because V = 1

4 e>e). Since
we are considering a Kn formation, we have∑

j∈V\{i}
(P∗i − P∗j)ei j = 0, ∀i ∈ V .

From e , 0, we have ei j , 0 for some i, j ∈ V . For such i,
we know that (n − 1) vectors in {P∗i − P∗j | j ∈ V \ {i}} are
linearly dependent so the maximum number of the linearly
independent vectors is at most n−2. Therefore, the dimension
of aff hull{P∗1, . . . , P∗n} is at most n − 2, which means that the
formation corresponding to P∗ is degenerate. However, this
conclusion contradicts the assumption that the target formation
is infinitesimally rigid because infinitesimal rigidity of the
formation implies its non-degeneracy from Lemma 1. �

From Lemma 2, we can state the following proposition on
the Hessian matrix of V .

Lemma 3. Consider the Kn formation as in Lemma 2 with the
same assumption on the target formation. Then the Hessian
matrix of V has at least one negative eigenvalue at any incor-
rect equilibrium point of (7). Thus, each incorrect equilibrium
point is unstable and is not a local minimizer of V.

Proof. Let H(P) be the Hessian matrix of V at P and J(P)
the Jacobian matrix of the right side of (7) at P. Consider an
incorrect equilibrium point P∗ of (7) with the same assump-
tion on the target formation mentioned in Lemma 2. From
Lemma 2, we know that the formation corresponding to P∗ is
degenerate. Then, from Lemma 6 in [14], H(P∗) has at least
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one negative eigenvalue, which means that P∗ is not a local
minimizer of V . Moreover, since we have H(P∗) = −J(P∗), P∗

is an unstable equilibrium point of (7). �

IV. Kn formation with virtual variables

A. Introduction of virtual variables

Consider a Kn formation in Rd represented by p =

(p1, . . . , pn) ∈ Rdn with 1 ≤ d ≤ n − 2. For a given target
formation shape represented by p̄ = ( p̄1, . . . , p̄n) ∈ Rdn, the
goal of distance-based formation control can be interpreted as
achieving the following control goal:

lim
t→∞‖pi(t) − p j(t)‖ → di j, ∀{i, j} ∈ E ,

and p(t) converges to a fixed point, where di j = ‖p̄i − p̄ j‖.
It is not guaranteed that one can achieve the target formation
shape under (5) because there might exist a non-degenerate
incorrect equilibrium formation which is not guaranteed to be
unstable as shown in Fig. 2. Instead of the control law (4),
we are going to propose a modified control law using virtual
variables to imitate the Kn formation in Rn−1.

Let η = n−1−d and ω =
(n−d)(n−1−d)

2 , where ω is determined
from (6). We assign a total of ω scalar virtual variables denoted
wi

j, 1 ≤ i ≤ j ≤ η, to the first η agents so that

q1 = (p1,w1
1) ∈ Rd+1,

q2 = (p2,w1
2,w

2
2) ∈ Rd+2,

...

qη = (pη,w1
η, . . . ,w

η
η) ∈ Rd+η,

qη+1 = pη+1 ∈ Rd,

...

qn = pn ∈ Rd.

By doing so, we pretend that agent i lives in Rd+i for all
i ∈ {1, . . . , η}. For such augmented vectors, we now define the
target formation in terms of the augmented vectors by letting
q̄i = (p̄i, α1i) for all i ∈ {1, . . . , η} with arbitrary but fixed
α > 0, and q̄ j = p̄ j for all j ∈ {η + 1, . . . , n}. Thus, the q̄i

vectors represent a virtual target formation shape in terms of
the augmented vectors. Based on the augmented vectors, the
desired inter-agent distances in a virtual ambient space are
determined by

Di j = dist(q̄i, q̄ j), ∀{i, j} ∈ E .
Let q = (q1, . . . , qn). Then we can define a potential function
V̄ : Rdn+ω → R≥0 by

V̄(q) =
1
4

∑
1≤i< j≤n

([
dist(qi, q j)

]2 − (Di j)2
)2
,

and propose

q̇ = −
[
∂V̄
∂q

]>
, (8)

under the assumption that the virtual variables are governed
by

ẇ j
i = s j

i , ∀i ∈ {1, . . . , η},∀ j ∈ {1, . . . , i},

where s j
i are virtual control inputs. Note that since w j

i are not
physical states, and are updated in software, we can simply
assume that the values can be transmitted by wireless com-
munication, rather than being obtained with physical sensors.

B. Interpretation of Kn formation in Rn−1 space

We can view the Kn formation represented by q in Sec-
tion IV-A as a Kn formation in Rn−1 with some constraints.
Let

Qi =


(qi, 0n−1−d−i), ∀i ∈ {1, . . . , η − 1},
qi, i = η,

(qi, 0n−1−d), ∀i ∈ {η + 1, . . . , n},
Q = (Q1, . . . ,Qn) ∈ Rn(n−1).

From such constructions, we know that Qi ∈ RFn−1
d+i for all

i ∈ {1, . . . , η}, and Qi ∈ RFn−1
d for all i ∈ {η + 1, . . . , n}. Thus,

(d + 1) agents corresponding to the indices (η + 1) through
n are locked on RFn−1

d , and they cannot escape from RFn−1
d .

Similarly, agent (η+1) through agent n and agent 1 are locked
on RFn−1

d+1. Generally, agent (η + 1) through agent n together
with agent 1 through agent i are locked on RFn−1

d+i for each
i ∈ {1, . . . , η}. In terms of the target formation, we can also
define Q̄ as

Q̄i =


(q̄i, 0n−1−d−i), ∀i ∈ {1, . . . , η − 1},
q̄i, i = η,

(q̄i, 0n−1−d), ∀i ∈ {η + 1, . . . , n},
Q̄ = (Q̄1, . . . , Q̄n) ∈ Rn(n−1).

For example, consider the K4 formation in R1 illustrated in
Fig. 3. In terms of Qi vectors, agents 3 and 4 are locked on the
x-axis. Thus, Q3 and Q4 can evolve only in RF3

1. Since agent 1
has one virtual variable, Q1 can evolve in RF3

2, but cannot be
taken out of RF3

2. Thus, agents 3, 4, and 1 are considered
as being locked on RF3

2 in that aff hull{Q1,Q2,Q3} = RF3
2 in

general. On the other hand, agent 2 has two virtual variables
so agent 2 can evolve in R3. By doing so, we can view the
K4 formation in R1 as a virtual K4 formation in R3 with
constraints.

Lemma 4. Consider two realizations P ∈ Rn(n−1) and q ∈
Rdn+ω which are congruent4. Assume that P and q are critical
points of V and V̄, respectively, and V and V̄ are generated
by the same target distances. Then P is not a local minimizer
of V if and only if q is not a local minimizer of V̄.

Proof. Suppose that P is not a local minimizer of V . Then,
for any δ > 0, there exists P′ ∈ {X ∈ Rn(n−1) | ‖P − X‖ < δ}
such that V(P′) < V(P). Consider arbitrarily small δ̄ > 0. Then
there always exists q′ ∈ {x ∈ Rdn+ω | ‖q − x‖ < δ̄} such that
V̄(q′) < V̄(q) because we can choose q′ so that q′ and P′ are
congruent and that V(P′) < V(P) with arbitrarily small δ > 0.
Consequently, q is not a local minimizer of V̄ if P is not a
local minimizer of V .

4We use an extended notion of congruence of two realizations with different
dimensions. Two realizations P and q are said to be congruent if dist(Pi, P j) =
dist(qi, q j) for all i, j ∈ V .
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Conversely, suppose that q is not a local minimizer of V̄ .
Then, for any δ̄ > 0, there exists q′ ∈ {x ∈ Rdn+ω | ‖q− x‖ < δ̄}
such that V̄(q′) < V̄(q). Now, for arbitrarily small δ > 0, we
can always find P′ ∈ {X ∈ Rn(n−1) | ‖P − X‖ < δ} such that
V(P′) < V(P) from the fact that we can take P′ so that P′

and q′ are congruent and that V̄(q′) < V̄(q). Thus, we can
conclude that P is not a local minimizer of V if q is not a
local minimizer of V̄ . �

C. Convergence analysis

In this section, we are going to first show that the solution
of (8) converges to a point. Then we prove that for almost
all initial conditions, the agents achieve the target formation
shape under (8). For convergence analysis, let us invoke the
following proposition on the gradient flow of a real analytic
function.

Lemma 5 (Theorem 2.2 in [22]). Let φ : Rn → R be a real
analytic function and let x(t) be a continuously differentiable
curve in Rn. Assume that there exist a δ > 0 and a real τ such
that for t > τ, x(t) satisfies the angle condition

φ̇ =
∂φ

∂x
ẋ ≤ −δ

∥∥∥∥∥∂φ∂x

∥∥∥∥∥‖ẋ‖,
and a weak decrease condition

φ̇ = 0 implies ẋ = 0.

Then, either limt→+∞‖x(t)‖ = ∞ or there exists x∗ ∈ Rn such
that limt→+∞ x(t) = x∗.5

Theorem 2. The solution of (8) converges to a limit point.

Proof. For the real analytic function V̄ , we have

˙̄V =
∂V̄
∂q

q̇ = −
∥∥∥∥∥∥∂V̄
∂q

∥∥∥∥∥∥2

≤ 0. (9)

In light of Lemma 5, we can choose δ = 1, τ = 0; then and
˙̄V = 0 implies that ∂V̄

∂q = 0 which is equivalent to q̇ = 0. Thus,
we can conclude that either limt→+∞‖q(t)‖ = ∞ or there exists
q∗ such that limt→+∞ q(t) = q∗. Then, we can rule out the case
of diverging ‖q(t)‖ by showing that the solution is bounded.
Note that boundedness of q is implied by boundedness of Q
mentioned in Section IV-B. Let ei j = [dist(qi, q j)]2 − (Di j)2 =

‖Qi−Q j‖2−(Di j)2. We can show that ∂ei j

∂pi
= − ∂ei j

∂p j
for each edge,

which results in that
∑n

i=1 ṗi = −∑n
i=1

[
∂V̄
∂pi

]>
= 0. Therefore,

the centroid of Q1, . . . ,Qn projected onto RFn−1
d is stationary

under (8). Moreover, we know that ‖Qi − Q j‖ cannot diverge
for any i, j ∈ V from (9), and Qη, . . . ,Qn are locked on RFn−1

d .
Consequently, Q is bounded, which implies that q is bounded
so q converges to a limit point. �

In spite of Theorem 2, we cannot be assured that q(t) will
converge to the equilibrium set of (8) because convergence
of a function does not imply convergence of its derivative in
general. Convergence of q(t) to the equilibrium set can be
shown from the fact that ˙̄V is uniformly continuous6. Since

5We recovered x(t) omitted by mistake in Theorem 2.2 of [22].
6Uniform continuity of ˙̄V can be concluded from boundedness of the second

derivative of V̄ .

q(t) converges to a point, V̄(q(t)) also converges. Then, from
Barbalat’s lemma [23, Lemma 8.2], ˙̄V(q(t)) converges to 0,
which guarantees that q(t) converges to the equilibrium set.
Consequently, we can state that q(t) converges to either the
desired equilibrium set or the incorrect equilibrium set of (8).
Therefore, if we show that any incorrect equilibrium point
of (8) is unstable, then we can conclude that q(t) converges
to the desired equilibrium set, in which the target inter-agent
distances are achieved for almost all initial conditions. This
conclusion is formalized in the following theorem.

Theorem 3. Suppose that the target formation represented by
Q̄ is non-degenerate and infinitesimally rigid in Rn−1. Then,
any incorrect equilibrium point of (8) is unstable.

Proof. Let q∗ be an incorrect equilibrium point of (8). Sup-
pose, in order to show a contradiction, that q∗ is stable. Since
V̄ is real analytic, q∗ must be a local minimizer of V̄ [24].
Consider a realization P∗ representing a Kn formation in Rn−1

such that q∗ and P∗ are congruent. Then, from Lemma 4,
P∗ is a local minimizer of V . However, since P∗ is an
incorrect equilibrium point, it must be unstable, and it cannot
be a local minimizer of V from Lemma 3. Thus, we reach
a contradiction, which means that any incorrect equilibrium
point of (8) is unstable. �

From Theorem 3, we can finally conclude that q(t) con-
verges to the desired equilibrium set, and we can achieve the
target inter-agent distances for almost all initial conditions. We
summarize the final conclusion in the following theorem.

Theorem 4. Under the proposed control law (8), the agents
achieve the target formation shape in Rd for almost all initial
conditions if the target formation represented by Q̄ is non-
degenerate and infinitesimally rigid in Rn−1.

D. Ingredients of the control input

We emphasize that the modified control input for the actual
(as opposed to virtual) formation can be calculated based
on the relative position measurements and exchange of the
information of the virtual variables. To explain this, let us
consider the K4 formation in R1 shown in Fig. 3. The system
equations, which are spread out from (8), in terms of q are
given by

ṗ1 = (p2 − p1)e12 + (p3 − p1)e13 + (p4 − p1)e14,

ẇ1
1 = (w1

2 − w1
1)e12 + (0 − w1

1)e13 + (0 − w1
1)e14,

ṗ2 = (p1 − p2)e12 + (p3 − p2)e23 + (p4 − p2)e24,

ẇ1
2 = (w1

1 − w1
2)e12 + (0 − w1

2)e23 + (0 − w1
2)e24,

ẇ2
2 = (0 − w2

2)e12 + (0 − w2
2)e23 + (0 − w2

2)e24,

ṗ3 = (p1 − p3)e13 + (p2 − p3)e23 + (p4 − p3)e34,

ṗ4 = (p1 − p4)e14 + (p2 − p4)e24 + (p3 − p4)e34.

Note that pi − p j are relative position measurements and
w j

i are supposed to be transmitted among the neighboring
agents. Moreover, the ei j terms consist of relative position
measurements and/or the virtual variables. For example, we
have e34 = (p3 − p4)2 − ( p̄3 − p̄4)2, which means that the
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Figure 4: Simulation for a K4 formation in R.

calculation of e34 requires the relative position measurement
(p3−p4) only. On the other hand, e12 = (p1−p2)2+(w1

1−w1
2)2+

(w2
2)2−[(p̄1− p̄2)2+α2] so the calculation of e12 needs a relative

position measurement and exchange of virtual variables.

Remark. Since the underlying formation graph used in our
problem is a complete graph, one may consider the proposed
control strategy as a centralized formation control strategy.
However, the proposed control strategy does not require a
centralized coordinator which is supposed to collect the in-
formation of the whole system, calculate and distribute the
control inputs for local agents. In our problem formulation,
each agent is supposed to measure the relative positions to
its neighbor(s) using local sensors based on its independent
local reference frame, and communicate with its neighbors to
exchange the information of the virtual coordinate variables.
Thus, the control law proposed in this paper is a distributed
formation control law.

V. Examples with simulation

We introduce some examples to support our results. A
particular example of general Kn formations is a K4 formation
in R2. The analysis on the K4 formation under the control law
proposed in this paper can be found in [16]. In this section,
we introduce two more examples representing situations more
general than the K4 formation in R2 in terms of the number
of virtual variables.

A. K4 formation in R

Consider a K4 formation in R. Since the number of agents
of interest is 4, the virtual realization space should be R3, and
the number of required virtual variables is 3 from (6). Let
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Figure 5: Simulation for a K5 formation in R2.

p̄ = (3, 0, 1, 2), which represents the formation in Fig. 3(a).
Then with α = 1, we have

Q̄ =


310

 ,
011

 ,
100

 ,
200


 .

By applying the proposed control law, we can obtain the results
shown in Fig. 4. The virtual K4 formation in R3 achieves the
target shape represented by Q̄. As a result, we can obtain the
target formation shape in R as well. Note that the centroid of
the formation is stationary on the x–axis in Fig. 4(b), which
coincides with our analysis in the proof of Theorem 2.

B. K5 formation in R2

Consider a K5 formation in R2. In this case, the number of
required virtual variables is also 3 according to (6). Let

p̄ =

([
0
0

]
,

[
2
0

]
,

[
2
2

]
,

[
0
2

]
,

[
1
3

])
.

Then with α = 1, we have

Q̄ =



0
0
1
0

 ,

2
0
1
1

 ,

2
2
0
0

 ,

0
2
0
0

 ,

1
3
0
0


 .

By applying the proposed control law, we can obtain the
results shown in Fig. 5. Remark that we cannot illustrate the
trajectories of the agents in virtual R4 space. Thus, Fig. 5(a)
represents only the trajectories projected onto RF4

3. Fig. 5(b)
shows that we finally achieve the target formation shape in the
original space, and the centroid of the agents in the original
space is stationary.
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VI. Conclusions

In this paper, we showed that achieving (almost) global
convergence to a target formation shape under the distance-
based formation control law in [8] is impossible for a particular
example of a globally rigid formation. Formations represented
by complete graphs form a particular set of globally rigid
formations. For those formations, we proposed a new control
law motivated from the existing one in [8], and showed that
we can achieve almost global convergence under the proposed
control law.

However, whether the proposed control law can be applied
to general globally rigid formations, thereby achieving global
convergence has yet to be proved. Thus, achieving global
convergence for an arbitrary globally rigid formation will
be our ultimate goal. Of course, one obvious approach to
achieving this would be to determine a formation with a
complete graph in which the target formation was embedded.
There are potential difficulties with doing this however. First,
if it is necessary to compute those inter-agent distances not
given as part of the target formation with a globally rigid
graph, especially if it is the task of the agents themselves to
compute the missing inter-agent distances, the computation
may be constrained to be distributed and the computational
burden is simply unclear. However, it may well be that the
missing distances are readily available. There remains how-
ever a second potential difficulty. Operation of the algorithm
requires agents to sense relative positions. It may be that the
extra relative position sensing required for the complete graph
approach overloads agents (the sensed variables scale with the
size of the formation) or demands sensing outside the range
of the sensors through some agents.
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