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Optimal combination forecasts for

hierarchical time series

Abstract

In many applications, there are multiple time series that are hierarchically organized and can

be aggregated at several different levels in groups based on products, geography or some other

features. We call these “hierarchical time series”. They are commonly forecast using either a

“bottom-up” or a “top-down” method.

In this paper we propose a new approach to hierarchical forecasting which provides optimal

forecasts that are better than forecasts produced by either a top-down or a bottom-up approach.

Our method is based on independently forecasting all series at all levels of the hierarchy and

then using a regression model to optimally combine and reconcile these forecasts. The resulting

revised forecasts add up appropriately across the hierarchy, are unbiased and have minimum

variance amongst all combination forecasts under some simple assumptions.

We show in a simulation study that our method performs well compared to the top-down

approach and the bottom-up method. We demonstrate method by forecasting Australian

tourism demand where the data are disaggregated by purpose of visit and geographical region.

Keywords: bottom-up forecasting, combining forecasts, GLS regression, hierarchical forecasting,

reconciling forecasts, top-down forecasting.
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1 Introduction

In business and economics, there are often applications requiring forecasts of many related

time series organized in a hierarchical structure based on dimensions, such as product and

geography. This has led to the need for reconciling forecasts across the hierarchy (that is,

ensuring the forecasts sum appropriately across the levels). We propose a new statistical method

for forecasting hierarchical time series which (1) provides point forecasts that are reconciled

across the levels of the hierarchy; (2) allows for the correlations and interaction between the

series at each level of the hierarchy; (3) provides estimates of forecast uncertainty which are

reconciled across the levels of hierarchy; and (4) is sufficiently flexible that ad hoc adjustments

can be incorporated, information about individual series can be allowed for, and important

covariates can be included. Furthermore, our method provides optimal forecasts under some

simple assumptions.

The problem of forecasting hierarchical time series arises in many different contexts. For

example, forecasting manufacturing demand typically involves a hierarchy of time series. One

of us has worked for a disposable tableware manufacturer who wanted forecasts of all paper

plates, of each different type of paper plate, and of each type of plate at each distribution outlet.

Another of us has been involved in forecasting net labour turnover. Not only is it important

to forecast the rate of job turnover in the economy as a whole and across major occupational

groups, but it is also important to do so at the individual occupation level. The hierarchical

structure according to the Australian Standard Classification of Occupations (ASCO), starting

from the highest level, can be illustrated as follows:

• All employed persons

– Professionals (major group)

◦ Educational professionals (sub-major group)

· School teachers (minor group)

* Pre-primary teachers (unit group)

* Primary teachers (unit group); etc.

There are 340 unit groups in ASCO. Further divisions of the unit groups can be made by gender

and age variables. The series at the lowest level can be short in length with a high degree

of volatility but aggregate behavior may be relatively smooth. Thus the problem here is that

of forecasting a set of time series that are hierarchical in structure and clusters of which may
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be correlated. In Section 2, we introduce some notation to allow the problem of hierarchical

forecasting to be defined more precisely.

The various components of the hierarchy can interact in varying and complex ways. A change

in one series at one level, can have a consequential impact on other series at the same level,

as well as series at higher and lower levels. By modeling the entire hierarchy of time series

simultaneously, we will obtain better forecasts of the component series.

Existing approaches to hierarchical forecasting usually involve either a top-down or bottom-up

method, or a combination of the two. The top-down method entails forecasting the completely

aggregated series, and then disaggregating the forecasts based on historical proportions. Gross &

Sohl (1990) discuss several possible ways of choosing these proportions. The bottom-up method

involves forecasting each of the disaggregated series at the lowest level of the hierarchy, and

then using simple aggregation to obtain forecasts at higher levels of the hierarchy. In practice,

many businesses combine these methods (giving what is sometimes called the “middle-out”

method) where forecasts are obtained for each series at an intermediate level of the hierarchy,

and then aggregation is used to obtain forecasts at higher levels and disaggregation is used to

obtain forecasts at lower levels. None of these methods take account of the inherent correlation

structure of the hierarchy, and it is not easy to obtain prediction intervals for the forecasts from

any of these methods.

Of course, it is also possible to forecast all series at all levels independently, but this has the

undesirable consequence of the higher level forecasts not being equal to the sum of the lower

level forecasts. Consequently, if this method is used, some adjustment is then carried out to

ensure the forecasts add up appropriately. These adjustments are usually done in an ad hoc

manner.

In this paper, we present a framework for general hierarchical forecasting in Section 3, and

show that existing methods are special cases of this framework. We also show how to compute

prediction intervals for any of the methods that are special cases of our framework.

Most of the forecasting literature in this area has looked at the comparative performance of the

top-down and bottom-up methods. An early contribution was Grunfeld & Griliches (1960) who

argued that the disaggregated data are error-prone and that top-down forecasts may therefore

be more accurate. Similar conclusions were drawn by Fogarty et al. (1990) and Narasimhan

et al. (1995). Fliedner (1999) also argued that aggregate forecast performance is better with

aggregate level data. On the other hand, Orcutt et al. (1968) and Edwards & Orcutt (1969)
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argued that information loss is substantial in aggregation and therefore the bottom-up method

gives more accurate forecasts. Shlifer & Wolff (1979) compared the forecasting performance of

both methods and concluded that the bottom-up method is preferable under some conditions

on the structure of the hierarchy and the forecast horizon. Schwarzkopf et al. (1988) looked at

the bias and robustness of the two methods and concluded that the bottom-up method is better

except when there are missing or unreliable data at the lowest levels.

Empirical studies have supported the efficacy of bottom-up forecasting over top-down forecast-

ing. For example, Kinney (1971) found that disaggregated earnings data by market segments

resulted in more accurate forecasts than when firm-level data were used. Collins (1976) com-

pared segmented econometric models with aggregate models for a group of 96 firms, and found

the segmented models produced more accurate forecasts for both sales and profit. The study

of telephone demand by Dunn et al. (1976) shows that forecasts aggregated from lower-level

modeling are more accurate than the top-down method. Zellner & Tobias (2000) used annual

GDP growth rates from 18 countries and found that disaggregation provided better forecasts.

Dangerfield & Morris (1992) constructed artificial 2-level hierarchies using the M-competition

data with two series at the bottom level, and found that bottom-up forecasts were more accurate,

especially when the two bottom-level series were highly correlated.

In the econometric literature, there has also been some interest in the potential improvements

in forecast accuracy that are possible by aggregating component forecasts rather than simply

forecasting the aggregate itself (e.g., Fair & Shiller 1990, Zellner & Tobias 2000, Marcellino et al.

2003, Espasa et al. 2002, Hubrich 2005).

Tiao & Guttman (1980) and Kohn (1982) used more theoretical arguments to show that the

efficiency of aggregation depends on the covariance structure of the component series. Shing

(1993) discussed some time series models and demonstrated that there is no uniform superiority

of one method over the other. Fliedner & Lawrence (1995) concluded that current formal hierar-

chical forecasting techniques have no advantage over some informal strategies of hierarchical

forecasting. Kahn (1998) suggested that it is time to combine the existing methodologies so that

we can enjoy the good features of both methods, but no specific ideas were provided in that

discussion. Another very good discussion paper is Fliedner (2001), who summarizes the uses

and application guidelines for hierarchical forecasting. However, none of these papers provide

any new methods.

5



Optimal combination forecasts for hierarchical time series

In Section 4, we take up the call of Kahn (1998) by proposing a new methodology which takes the

best features of existing methods, and provides a sound statistical basis for optimal hierarchical

forecasting. We discuss computational issues associated with our method in Section 5.

The performance of our optimal hierarchical forecasts is evaluated using a simulation exercise

in Section 6, where we compare our method with the major existing methods. Then, in Sec-

tion 7, we apply the various methods to some real data, Australian domestic tourism demand,

disaggregated by geographical region and by purpose of travel. In both the simulations and the

real data application, we find that our method, on average, produces significantly more accurate

forecasts than existing approaches.

We conclude the paper by summarizing our findings and suggesting some possible extensions

in Section 8.

2 Notation for hierarchical forecasting

Consider a multi-level hierarchy, where level 0 denotes the completely aggregated series, level 1

the first level of disaggregation, down to level K containing the most disaggregated time series.

We use a sequence of letters to identify the individual series and the level of disaggregation. For

example: A denotes series A at level 1; AF denotes series F at level 2 within series A at level 1;

AFC denotes series C at level 3 within series AF at level 2; and so on.

To be specific, suppose we had three levels in the hierarchy with each group at each level

consisting of three series. In this case, K = 3 and the hierarchy has the tree structure shown in

Figure 1.

Total

A

AA

AAA AAB AAC

AB

ABA ABB ABC

AC

ACA ACB ACC

B

BA

BAA BAB BAC

BB

BBA BBB BBC

BC

BCA BCB BCC

C

CA

CAA CAB CAC

CB

CBA CBB CBC

CC

CCA CCB CCC

Figure 1: A three level hierarchical tree diagram.
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It is assumed that observations are recorded at times t = 1,2, . . . ,n, and that we are interested

in forecasting each series at each level at times t = n+ 1,n+ 2, . . . ,n+ h. It will sometimes be

convenient to use the notation X to refer to a generic series within the hierarchy. Observations

on series X are written as YX,t. Thus, YAF,t is the value of series AF at time t. We use Yt for the

aggregate of all series at time t. Therefore

Yt =
∑
i

Yi,t , Yi,t =
∑
j

Yij,t , Yij,t =
∑
k

Yijk,t , Yijk,t =
∑
`

Yijk`,t ,

and so on. Thus, observations at higher levels can be obtained by summing the series below.

Let mi denote the total number of series at level i, i = 0,1,2, . . . ,K . So mi > mi−1 and the total

number of series in the hierarchy is m =m0 +m1 +m2 + · · ·+mK . In the example above, mi = 3i

and m = 40.

It will be convenient to work with matrix and vector expressions. We let Yi,t denote the vector

of all observations at level i and time t and Yt =
[
Yt ,Y1,t , . . . ,YK,t

]′. Note that

Yt = SYK,t (1)

where S is a “summing” matrix of order m×mK used to aggregate the lowest level series. In

the above example, Yt =
[
Yt ,YA,t ,YB,t ,YC,t ,YAA,t ,YAB,t , . . . ,YCC,t ,YAAA,t ,YAAB,t , . . . ,YCCC,t

]′
and the

summation matrix is of order 40× 27 and is given by

S =



111111111111111111111111111

111111111000000000000000000

000000000111111111000000000

000000000000000000111111111

111000000000000000000000000

000011100000000000000000000
...

000000000000000000000000111

100000000000000000000000000

010000000000000000000000000
...

000000000000000000000000001



.

7



Optimal combination forecasts for hierarchical time series

The rank of S is mK . It is clear that the S matrix can be partitioned by the levels of the hierarchy.

The top row is a unit vector of length mK and the bottom section is an mK ×mK identity matrix.

The middle parts of S are vector diagonal rectangular matrices.

While aggregation is our main interest here, the results to follow are sufficiently general that S

can be a general linear operator, and need not be restricted to aggregation.

3 General hierarchical forecasting

Suppose we first compute forecasts for each series at each level giving m base forecasts for each

of the periods n+ 1, . . . ,n+ h, based on the information available up to and including time n.

We denote these base forecasts by ŶX,n(h), where X denotes the series being forecasted. Thus,

Ŷn(h) denotes the h-step-ahead base forecast of the total, ŶA,n(h) denotes the forecast of series A,

ŶAC,n(h) denotes the forecast of series AC, and so on. We let Ŷn(h) be the vector consisting of

these base forecasts, stacked in the same series order as for Yt.

All existing hierarchical forecasting methods can then be written as

Ỹn(h) = SP Ŷn(h) (2)

for some appropriately chosen matrix P of order mK ×m. That is, existing methods involve

linear combinations of the base forecasts. These linear combinations are “reconciled” in the

sense that lower level forecasts sum to give higher level forecasts. The effect of the P matrix is to

extract and combine the relevant elements of the base forecasts Ŷn(h), which are then summed

by S to give the final revised hierarchical forecasts, Ỹn(h).

For example, bottom-up forecasts are obtained using

P =
[
0mK×(m−mK ) | ImK

]
, (3)

where 0`×k is a null matrix of order ` × k and Ik is an identity matrix of order k × k. In this case,

the P matrix extracts only bottom-level forecasts from Ŷn(h), which are then summed by S to

give the bottom-up forecasts.

Top-down forecasts are obtained using

P =
[
p | 0mK×(m−1)

]
(4)
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where p = [p1,p2, . . . ,pmK
]′ is a vector of proportions that sum to one. The effect of the P matrix

here is to distribute the forecast of the aggregate to the lowest level series. Different methods of

top-down forecasting lead to different proportionality vectors p.

Variations such as middle-out forecasts are possible by defining the matrix P appropriately.

This suggests that other (new) hierarchical forecasting methods may be defined by choosing a

different matrix P provided we place some restrictions on P to give sensible forecasts.

If we assume that the base (independent) forecasts are unbiased (that is, E[Ŷn(h)] = E[Yn(h)]),

and that we want the revised hierarchical forecasts to also be unbiased, then we must require

E[Ỹn(h)] = E[Yn(h)] = SE[YK,n(h)]. Suppose βn(h) = E[YK,n+h | Y1, . . . ,Yn] is the mean of the future

values of the bottom level K . Then E[Ỹn(h)] = SP E[Ŷn(h)] = SP Sβn(h). So, the unbiasedness of

the revised forecast will hold provided

SP S = S. (5)

This condition is true for the bottom-up method with P given by (3). However, using the

top-down method with P given by (4), we find that SP S , S for any choice of p. So the top-down

method can never give unbiased forecasts even if the base forecasts are unbiased.

Let the variance of the base forecasts, Ŷn(h), be given by Σh. Then the variance of the revised

forecasts is given by

Var[Ỹn(h)] = SP ΣhP
′S′ . (6)

Thus, prediction intervals on the revised forecasts can be obtained provided Σh can be reliably

estimated. Note that result (6) applies to all the existing methods that can be expressed as (2)

including bottom-up, top-down and middle-out methods.

4 Optimal forecasts using regression

We can write the base forecasts as

Ŷn(h) = Sβn(h) + εh (7)

where βn(h) = E[YK,n+h | Y1, . . . ,Yn] is the unknown mean of the bottom level K , and εh has zero

mean and covariance matrix Var(εh) = Σh. This suggests that we can estimate βn(h) by treating

(7) as a regression equation, and thereby obtain forecasts for all levels of the hierarchy. If Σh
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was known, we could use generalized least squares estimation to obtain the minimum variance

unbiased estimate of βn(h) as

β̂n(h) = (S′Σ†hS)−1S′Σ†hŶn(h) (8)

where Σ†h is the Moore-Penrose generalized inverse of Σh. We use a generalized inverse because

Σh is often (near) singular due to the aggregation involved in Yn. This leads to the following

revised forecasts

Ỹn(h) = Sβ̂n(h) = SP Ŷn(h)

where P = (S′Σ†hS)−1S′Σ†h. Clearly, this satisfies the unbiasedness property (5). The variance of

these forecasts is given by

Var[Ỹn(h)] = S(S′Σ†hS)−1S′ .

The difficulty with this method is that it requires knowledge of Σh, or at least a good estimate of

it. In a large hierarchy, with thousands of series, this may not be possible.

However, we can greatly simplify the computations by expressing the error in (7) as εh ≈ SεK,h,

where εK,h is the forecast error in the bottom level. The result is not exact because the lower

level base forecasts do not necessarily add to give the upper level base forecasts. Nevertheless,

it will be approximately true for any reasonable set of base forecasts. The approximation leads

to the result Σh ≈ SΩhS′, where Ωh = Var(εK,h). We are now ready to state our main result.

Theorem 1 Let Y = Sβh + ε with Var(ε) = Σh = SΩhS′ and S a “summing” matrix. Then the

generalized least squares estimate of β obtained using the Moore-Penrose generalized inverse is

independent of Ωh:

β̂h = (S′Σ†hS)−1S′Σ†hY = (S′S)−1S′Y

with variance matrix Var(β̂) = Ωh. Moreover, this is the minimum variance linear unbiased estimate.

Proof: We write Σh = BC where B = SΩh and C = S′. Then, by Fact 6.4.8 of Bernstein (2005,

p.235), the Moore-Penrose generalized inverse of Σh is

Σ†h = C′(CC′)−1(B′B)−1B′ = S(S′S)−1(Ω′hS
′SΩh)−1Ω′hS

′ . (9)

Then (S′Σ†hS)−1S′Σ†h = (S′S)−1S′. The variance is obtained by substituting (9) into (S′Σ†hS)−1.
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Tian & Wiens (2006, Theorem 3) show that the GLS estimator will be the minimum variance

unbiased estimator if and only if

SS†Σ†hΣh(I − SS†) = 0,

where S† = (S′S)−1S′. Using (9), it is easy to show that this condition holds.

�

This remarkable result shows that we can use OLS rather than GLS when computing our revised

forecasts, without the need for an estimate of the underlying covariance matrix. Thus it eases

the computation especially for a large covariance matrix. That is, we use

Ỹn(h) = S(S′S)−1S′Ŷn(h); (10)

and P = (S′S)−1S′. The variance covariance matrix of the revised forecasts is Var[Ỹn(h)] = Σh.

Therefore, prediction intervals still require estimation of Σh. We leave the discussion of strategies

for estimating this matrix to a later paper.

Equation (10) shows that, under the assumption Σh = SΩhS′, the optimal combination of base

forecasts is independent of the data. For a simple hierarchy with only one level of disaggregation

(K = 1) and with m1 nodes at level 1, the weights are given by

S(S′S)−1S′ = (m1 + 1)−1



m1 1 1 . . . . . . 1

1 m1 −1 −1 . . . −1

1 −1 m1 −1 −1
...

...
. . .

. . .
. . .

...

1 −1 −1
. . . −1

1 −1 −1 . . . −1 m1


.

Similarly, sets of weights can be obtained for any particular hierarchy, independent of the

observed data.

Our proposed forecasting method shares some similarities to the approach proposed by Stone

et al. (1942), and further studied by Solomou & Weale (1991, 1993, 1996) and Weale (1985,

1988). These authors formulate the hierarchical problem using simultaneous linear equations

in the context of balancing the national economic account. The national economic account

is disaggregated into production, income and outlay, and capital transactions. Production
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is further classified into production in Britain and production in the rest of world; income

and outlay and capital transactions are each further classified into persons, companies, public

corporations, general government, and rest of world.

5 Computational pitfalls and remedies

The primary difficulty in implementing the forecasting method given by (10) is that the matrix

S can be very large, and so the computational effort required to find the inverse of S′S can be

prohibitive. Even the construction of the S matrix can be difficult for large hierarchies. We

discuss three solutions to this problem.

First, of the mK ∗m elements in the S matrix, there are only mK ∗K non-zero elements. Since

K is usually much smaller than m, S is a sparse matrix. We can use sparse matrix storage and

arithmetic (e.g., Duff et al. 2002) to save computer memory and computational time. Then we

can use the algorithm of Ng & Peyton (1993) as implemented in Koenker & Ng (2010) to solve

(10). This works well for moderately large hierarchies, but for some of the large hierarchies we

encounter in practice, even this method is unsuitable.

For very large hierarchies, an iterative approach can be used based on the method of Lanczos

(1950, 1952). This method was primarily developed for solving a system of linear equations but

was subsequently extended by Golub & Kahan (1965) to work with least squares problems with

lower bidiagonalization of the coefficient matrix. Based on these methods, Paige & Saunders

(1982) developed an iterative algorithm for solving sparse linear least squares problems. Due to

the iteration process, the results are an approximation to the direct solution, but in almost all

cases in which we have used the method, the difference is negligible.

The third approach relies on a reparameterization of the regression model (7). Rather than

each parameter representing a bottom level series, we use a parameter for every series in the

hierarchy, but impose some zero-sum constraints to avoid overparameterization. The new

parameter vector is denoted by φn(h) and has elements in the same order as Yt. Each parameter

measures the contribution of the associated level to the bottom level series below it. In the

example shown in Figure 1,

φn(h) =
[
µT,h,µA,h,µB,h,µC,h,µAA,h,µAB,h, . . . ,µCC,h,µAAA,h,µAAB,h, . . . ,µCCC,h

]′
,
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and βAAB,h = µT,h +µA,h +µAA,h +µAAB,h. Similarly, other β values are constructed by summing

the aggregate nodes that contribute to that bottom level node. Then we can write βn(h) = S′φn(h)

so that

Ŷn(h) = SS′φn(h) + εh. (11)

Because of the over-parameterization, we impose the constraints that, for every split, the sum of

the estimated parameters is equal to 0; that is,

∑
i

µ̂i,h = 0,
∑
j

µ̂ij,h = 0,
∑
k

µ̂ijk,h = 0, . . .

This formulation can be viewed as an ANOVA model and the parameters are estimated by

least squares. The advantage of this formulation is that the estimators can be re-expressed in

the usual ANOVA style, involving summations but no matrix inversion. The approach works

for any hierarchy, but the equations are quite complicated when the hierarchy is unbalanced.

Consequently, we only provide the estimation equations for balanced hierarchies (i.e., within a

given level, each node has an equal number of sub-series).

In order to present these estimators, we need to introduce some new notation. Let X be a node

in the hierarchical tree and let mX be the number of series in the sub-tree headed by node X

(including X itself). Also let jX be the row of Ŷn(h) containing ŶX,h and let `X be the level where

node X appears, i.e., `X ∈ {0,1, . . . ,K}. Finally, let X(j) be the node that is j levels above X, 1k be a

row vector of 0s with 1 in the kth column, and bX = diag[0, . . . ,0,1, . . . ,1] where the first jX − 1

diagonal elements are 0 and every element after that is 1. For example, in the hierarchy shown

in Figure 1, mBC = 4, jBC = 10, `BC = 2, and BC(1) = B.

Then for a balanced hierarchy, the ANOVA estimators for the parameters are

µ̂T,h =
1

(11SS)′(11SS′)′
{
11SS

′Ŷn(h)
}

(12)

µ̂X,h =
1

(1jXSS
′)(1jXSS

′bX)′

1jXSS′Ŷn(h)−
`X∑
i=1

(1jXSS
′)
(
1jX(i)SS

′bX(i)

)′
µ̂X(i),h

, (13)

where `X ≥ 1.

In practice, we would normally use the sparse matrix approach for small to moderate-size

hierarchies, the ANOVA approach for large balanced hierarchies, and the iterative approach

for large unbalanced hierarchies. While it is possible to derive the ANOVA equations for
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unbalanced hierarchies, it is difficult to do so completely generally, and it is easier to use the

iterative approach than derive the ANOVA equations for a specific case.

6 Numerical simulations

In order to evaluate the performance of our proposed methodology, we first perform a simulation

study. We consider a hierarchy with K = 3 levels and m = 15 series in total. The completely

aggregated series at the top level (level 0) is disaggregated into m1 = 2 component series at

level 1. Each of these series is further subdivided into two series at level 2; i.e., m2 = 4. Finally,

each one of the level 2 series is further disaggregated to two component series giving a total

of m3 = 8 series at the completely disaggregated bottom level. A diagram of the hierarchical

structure is given in Figure 2.

Total

A

AA

AAA AAB

AB

ABA ABB

B

BA

BAA BAB

BB

BBA BBB

Figure 2: A three level hierarchical tree diagram.

The data for each series were generated by an ARIMA(p,d,q) process with d taking values 1 or 2

with equal probability, and p and q each taking values 0, 1 and 2 with equal probability. For

each generated series, the parameters of each process were chosen randomly based on a uniform

distribution over the stationary and invertible regions.

We first generate the disaggregated data in the bottom level, which are summed to obtain the

aggregated data in the top level. To allow some relationships between series in the hierarchy, the

simulated ARIMA processes have contemporaneously correlated errors. We allow a positive error

correlation between bottom level series with the same grandparent, and stronger correlation

if they have the same parent, but no correlation with other bottom level series. The error
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covariance structure for the bottom level series is given by



7 3 2 1 0 0 0 0

3 7 2 1 0 0 0 0

2 2 6 3 0 0 0 0

1 1 3 6 0 0 0 0

0 0 0 0 7 3 2 1

0 0 0 0 3 7 2 1

0 0 0 0 2 2 6 3

0 0 0 0 1 1 3 6



.

We tried several other covariance structures, including negative correlations and a mixture of

positive and negative correlations, but these are not included as they gave very similar results.

Further details of the additional simulations can be obtained upon request from the authors.

For each series we generated 100 observations. We divided the data into two parts: the first 90

observations of each series was used as a training set for estimating parameters and the last

10 observations as a test set. Applying the statistical framework for exponential smoothing

methods developed by Hyndman et al. (2002), we fit a state space model to the training data

and obtain independent base forecasts for each of the 15 series for 1–10 steps ahead.

Final forecasts are produced using three different methods: (i) optimally combining the base

forecasts as advocated in Section 4; (ii) using the conventional bottom-up method (i.e., ag-

gregating the bottom level independent forecasts all the way to the top level); (iii) applying

the conventional top-down approach where the historical proportions of the data are used to

disaggregate the top level forecasts all the way down to the bottom level. This process was

repeated 1000 times.

In Table 1, we present the mean absolute error (MAE) and root mean squared error (RMSE)

for each series in the hierarchy. The optimal combination method consistently achieves the

best forecast accuracy, followed by the bottom-up method. The bottom-up method performs

significantly better than the conventional top-down method.

We also present for each method the MAE and RMSE averaged across all levels of the hierarchy.

The bottom-up approach yields 1.12 times the averaged MAE of our optimal combination

method, and the best of the top-down methods yields 1.25 times the averaged MAE of our

method.
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MAE RMSE
Top-down Buttom-up Combined Top-down Buttom-up Combined

Total 56.36 52.21 47.56 68.75 64.06 59.15
A 268.26 31.55 28.69 271.49 38.54 35.52
B 267.85 31.60 28.75 271.03 38.57 35.54
AA 216.99 19.40 17.44 218.65 23.64 21.48
AB 210.36 18.26 16.34 211.94 22.27 20.15
BA 220.80 19.53 17.64 222.48 23.81 21.73
BB 210.32 18.13 16.12 211.85 22.04 19.82
AAA 137.26 11.52 10.07 138.18 14.02 12.34
AAB 137.12 11.45 9.92 138.01 13.94 12.16
ABA 130.11 10.87 9.41 130.99 13.27 11.58
ABB 129.85 10.67 9.23 130.70 12.97 11.30
BAA 140.41 11.61 10.16 141.34 14.13 12.45
BAB 137.81 11.52 10.01 138.70 14.03 12.27
BBA 129.79 10.64 9.14 130.61 12.93 11.19
BBB 130.44 10.73 9.25 131.28 13.04 11.33

Table 1: MAE and RMSE for each level series.

Pairwise t-tests were used for each pair of methods applied to each series to check that these

results are statistically significant. The p-values in all cases were lower than 1.2× 10−6. Even

allowing for multiple comparisons, the results are highly statistically significant in all cases.

7 Australian domestic tourism forecasts

We now apply our optimal combination approach to forecasting Australian domestic tourism

data. A more detailed analysis of these data was provided in Athanasopoulos et al. (2009).

For each domestic tourism demand time series we have quarterly observations on the number

of visitor nights which we use as an indicator of tourism activity. The available data covers

1998–2006 and were obtained from the National Visitor Survey which is managed by Tourism

Research Australia. The data are collected by computer-assisted telephone interviews with

approximately 120,000 Australians aged 15 years and over on an annual basis (Tourism Reseach

Australia 2005).

We compare the forecasting performance of our method to the bottom-up and conventional

top-down approaches. The structure of the hierarchy is shown in Table 2. At the top level we

have aggregate domestic tourism demand for the whole of Australia. At level 1, we split this

demand by purpose of travel: Holiday, Visiting friends and relatives, Business, and Other. In the

next level the data are disaggregated by the states and territories of Australia: New South Wales,
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Queensland, Victoria, South Australia, Western Australia, Tasmania, and the Northern Territory.

At the bottom level we further disaggregate the data into tourism within the capital city of each

state or territory and tourism in other areas. The respective capital cities for the above states

and territories are: Sydney, Brisbane (including the Gold Coast), Melbourne, Adelaide, Perth,

Hobart and Darwin. The hierarchy is balanced, and so the ANOVA method of combination

given by (12) and (13) is applicable.

Level Number of series Total series per level
Australia 1 1
Purpose of Travel 4 4
States and Territories 7 28
“Capital city” versus “other” 2 56

Table 2: Hierarchy for Australian tourism.

For each series, we select an optimal ARIMA model using the automatic algorithm of Hyndman

& Koehler (2006). We then re-estimate the parameters of the model using a rolling window

beginning with the model fitted using the first 24 observations (1998:Q1–2003:Q4). Forecasts

from the fitted model are produced for up to 8 steps ahead. We iterate this process, increasing

the sample size by one observation until 2009:Q3. This process produces 24 one-step-ahead

forecasts, 23 two-step-ahead forecasts, and up to 17 eight-step-ahead forecasts. We use these

to evaluate the out-of-sample forecast performance of each of the hierarchical methods we

consider.

Table 3 contains the mean absolute percentage error (MAPE) for each forecast horizon yielded

by our proposed optimal combination approach and the conventional top-down and bottom up

approaches. The bold entries identify the approach that performs best for the corresponding

level and forecast horizon, based on the smallest MAPE. The last column contains the average

MAPE across all forecast horizons.

From this empirical study, we find that the only level for which the top-down approach is best

is the top level. As we move down the hierarchy our optimal combination approach and the

bottom-up approach clearly outperform the top-down method with our combined method

performing best at level 1 and the bottom-up approach performing best at levels 2 and 3. The

good performance of the bottom-up approach can be attributed to the fact that the data have

strong seasonality and trends, even at the bottom level. With more noisy data, it is not so easy

to detect the signal at the bottom level, and so the bottom-up approach would not do so well.
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Forecast horizon (h)
1 2 3 4 5 6 7 8 Average

Top level: Australia
Top-down 6.34 5.97 6.34 6.66 7.16 7.03 7.06 6.93 6.69
Bottom-up 5.69 6.00 6.39 6.60 7.70 7.77 7.45 7.42 6.88
Combined 5.99 5.81 6.23 6.63 7.23 7.26 7.27 7.23 6.71

Level 1: Purpose of travel
Top-down 16.07 15.14 15.56 16.18 16.76 16.09 16.66 17.19 16.21
Bottom-up 10.96 11.14 11.60 12.16 13.42 13.30 13.52 14.39 12.56
Combined 11.03 10.65 11.26 11.27 13.09 12.90 13.73 13.45 12.17

Level 2: States and Northern Territory
Top-down 40.16 39.41 40.50 40.68 41.68 41.10 42.38 43.22 41.14
Bottom-up 28.41 28.80 29.52 30.03 31.64 32.81 33.18 33.91 31.04
Combined 31.31 28.73 30.08 29.72 35.53 34.12 36.76 36.32 32.82

Bottom level: Capital city versus other
Top-down 49.44 48.94 50.33 50.27 51.41 49.80 51.25 52.35 50.48
Bottom-up 38.60 38.99 40.25 40.47 42.72 43.37 43.92 45.14 41.68
Combined 44.15 40.11 40.57 37.86 50.68 46.78 50.73 50.93 45.22

Table 3: MAPE for out-of-sample forecasting of the alternative hierarchical approaches applied to
Australian tourism data.

To formally test whether the forecasting performance of the alternative methods is different, we

perform pairwise t tests. The top-down method is significantly different from each of the other

two methods (p < 10−6 for each test); the bottom-up and optimal combination methods are not

significantly different (p = 0.655).

8 Conclusions and discussion

We have proposed a new statistical method for forecasting hierarchical time series, which allows

optimal point forecasts to be produced that are reconciled across the levels of a hierarchy.

One useful feature of our method is that the base forecasts can come from any model, or

can be judgemental forecasts. So ad hoc adjustments can be incorporated into the forecasts,

information about individual series can be allowed for, and important covariates can be included.

The method places no restrictions on how the original (base) forecasts are created. The procedure

simply provides a means of optimally reconciling the forecasts so they aggregate appropriately

across the hierarchy.
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A remarkable feature of our results is that the point forecasts are independent of the correlations

between the series. While this may initially seem counter-intuitive, it is a natural consequence

of assuming that the forecast errors across the hierarchy aggregate in the same way that the

observed data aggregate, which is a reasonable approximation to reality. Of course, the forecast

variances will depend crucially on the correlations among series, and so the covariance matrix is

still required in order to produce prediction intervals. We have not discussed the computation

of the covariance matrix in this paper, as we will address that in a future paper.

Another surprising result is that the optimal combination weights depend only on the hierarchi-

cal structure and not on the observed data. Again, this arises from the assumption concerning

the aggregation of forecast errors. Because of this result, it is possible to determine the combina-

tion weights once only, and then apply them as each new set of observations are available. This

saves a great deal of computational time.

Our simulations and empirical example demonstrate that the optimal combination method

proposed in this paper outperforms existing methods for forecasting hierarchical data. So we

recommend that it be adopted for routine use in business and industry, whenever hierarchical

time series data need to be forecast.
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