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Abstract 

Amino acids are increasingly recognised as modulators of nutrient disposal, including their 

role in regulating blood glucose through interactions with insulin signalling. More recently, 

cellular membrane transporters of amino acids have been shown to form a pivotal part of this 

regulation as they are primarily responsible for controlling cellular and circulating amino acid 

concentrations. The availability of amino acids regulated by transporters can amplify insulin 

secretion and modulate insulin signalling in various tissues. In addition, insulin itself can 

regulate the expression of numerous amino acid transporters. This review focuses on amino 

acid transporters linked to the regulation of insulin secretion and signalling with a focus on 

those of the small intestine, pancreatic β-islet cells and insulin responsive tissues, liver and 

skeletal muscle. We summarise the role of the amino acid transporter B
0
AT1 (SLC6A19) and 

peptide transporter PEPT1 (SLC15A1) in the modulation of global insulin signaling via the 

liver secreted hormone Fibroblast Growth Factor 21 (FGF21). The role of vesicular vGLUT 

(SLC17) and mitochondrial SLC25 transporters in providing glutamate for the potentiation of 

insulin secretion is covered. We also survey the roles SNAT (SLC38) family and LAT1 

(SLC7A5) the amino acid transporters play in the regulation of and by insulin in numerous 

affective tissues. We hypothesize the small intestine amino acid transporter B
0
AT1 represents 

a crucial nexus between insulin, FGF21, and incretin hormone signalling pathways. The aim 

is to give an integrated overview of the important role amino acid transporters have been 

found to play in insulin-regulated nutrient signalling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

Introduction 

Amino acids are vital nutrients for sustaining human life and are utilized by many essential 

biochemical pathways. These pathways depend on amino acid concentrations established 

using various inputs and outputs: dietary intake, protein synthesis, protein degradation, the 

synthesis of bioactive molecules, and the catabolism and anabolism of amino acids in 

different tissues (1). The pools of 20 canonical amino acids also serve as essential mediators 

of various intracellular and global signalling pathways. Nowhere has interest in amino acids 

been more apparent than in their emergence as modulators of insulin secretion and as targets 

of insulin signalling, the latter phenomenon being first recognized several decades ago in 

rodents and humans (2, 3). More recently, specific roles for amino acids have been elucidated 

in the regulation and reduction of glucose disposal (4-6), as co-activators of the major 

nutrient signalling pathway mTORC1 (7-11) and in the potentiation of insulin secretion (12-

14). Furthermore, a rise in plasma amino acids, especially branched chain amino acids 

(BCAAs, i.e. leucine, isoleucine, valine) and aromatic amino acids, have also been tightly 

associated with insulin resistance (5, 6, 15, 16) and type 2 diabetes (17-20).  

The movement of amino acids across the biological membranes of cells is controlled by 

integral membrane transporter proteins, also known as carriers. As a consequence amino acid 

transporters are responsible for the modulation of cellular and circulating amino acids 

concentrations and also, therefore, any amino acids regulating insulin secretion and 

signalling. Simply stated, anywhere amino acids play an important role in regulating insulin; 

amino acid transporters will also play a vital role. That said, specific roles for amino acid 

transporters in insulin regulation is a more recently recognised phenomenon, the elucidation 

of which was previously hampered by the incomplete catalogue of characterized human 

amino acid transporters (21-23) and one requiring the increased convergence of two research 

fields: nutrient signalling and transporter physiology. The amino acid transporters covered 

here are all solute carriers, utilising the electro-chemical energy of ion gradients to drive 

metabolite transport in either the same (symporter) or opposite (antiporter/exchanger) 

direction across a membrane. They can also be facilitated diffusers, using their own substrate 

electro-chemical gradient to drive transmembrane translocation. The human genome encodes 

65 amino acid and peptide solute carriers (1), classified throughout this review by their Solute 

Carrier (SLC) designation in brackets following the introduction of their common protein 

name (22, 24). Advances in the characterization of amino acid transporters highlighting their 

role in the regulation of insulin signalling are summarised in Fig. 1 and Table 1 (25). We 

begin with the emerging role of small intestine neutral amino acid/peptide transporters 

B
0
AT1 (SLC6A19) and PEPT1 (SLC15A1) in helping to uncover the role of insulin and the 

hormone Fibroblast Growth Factor 21 (FGF21) in the initiation of dietary amino acid sensing. 

We then detail the role of vesicular glutamate transporters vGLUTs (SLC17), mitochondrial 

exchangers (SLC25) and glutamate transporter EAAT2 (SLC1A2) in the amplification of 

insulin secretion from pancreatic β-cells. Lastly, we examine evidence from amino acid 

transporters of the SLC38 family and the neutral amino acid exchanger LAT1-4F2hc 

(SLC7A5-SLC3A2) in regulating liver, skeletal muscle and pancreas insulin responses. We 

focus on research where a direct link between the regulation of insulin signalling and an 

amino acid transporter has been made. The purpose is to provide an up to date summary of 

the role of amino acid transporters in insulin regulated metabolism and, where relevant, their 

potential as future treatment targets for metabolic disorders such as type II diabetes mellitus 

(TIIDM).  
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Epithelial amino acid transporters B
0
AT1 (SLC6A19) and PEPT1 (SLC15A1) 

Dietary protein restriction has gained increasing interest due to its significant beneficial 

impact on metabolic health, including improved glucose tolerance, energy expenditure, and 

reduced body weight (26-28). Conversely, long-term high protein diets have been associated 

with the onset of insulin resistance (29, 30). Dietary protein restriction curtails the 

development of insulin resistance and hypertriglyceridemia in mice by instigating the release 

of the hormone FGF21 in response to reduced hepatic amino acid supply (31, 32). FGF21 is 

an important metabolic regulator that improves insulin sensitivity, induces ketogenesis and 

inhibits gluconeogenesis (33-35). Recently, dietary intervention studies in mice highlighted 

the role of BCAAs in mediating the beneficial effects of protein restriction (36, 37). 

However, it was later shown that total amino acid restriction, not only BCAA restriction, 

from the diet was equally important for the beneficial effects of protein restriction. Maida et 

al. showed that BCAA repletion in protein restricted obese and wild type mice restored liver 

mTORC1 levels but that FGF21 levels remained elevated (37, 38). These results suggested 

the dietary loss of multiple amino acids, and not just BCAAs, are required to induce FGF21 

and its beneficial metabolic effects.  mTORC1 is a serine/threonine kinase that plays an 

important role in amino acid sensing and growth regulation [reviewed in detail (25, 39, 40)]. 

mTORC1 is considered a negative regulator of insulin signalling in overfed subjects where 

over-expression of mTORC1 eventually leads to insulin desensitization; mainly due to 

increase in BCAA supply (41). Dietary restriction by single amino acids, particularly 

methionine and leucine, also lead to various degrees of upregulated circulating FGF21 (31, 

37, 38, 42-44).  

Dietary protein is broken down into amino acids and peptides on the apical side of small 

intestine from where they are absorbed into the blood. The main BCAA transporter of the 

small intestine is the Broad neutral (
0
) Amino acid Transporter (B

0
AT1) (45, 46) (Fig. 1A). It 

mediates the uptake of all neutral amino acids
1
 at the apical membrane of intestinal epithelial 

cells with transport driven by the symport of one sodium ion per amino acid (47-51) (Table 

1). It transports all neutral amino acids with similar Vmax
2
 values but variable Km values that 

range from 1mM to11mM for neutral amino acids (48, 49). BCAAs and methionine show the 

highest affinity whereas tryptophan is the least preferred substrate. The transporter is 

trafficked to the intestinal apical membrane by the ancillary proteins Angiotensin Converting 

Enzyme (ACE2) and, to a lesser extent, Aminopeptidase N (APN) (46, 52, 53). B
0
AT1 is also 

expressed in kidney epithelial cells where it is activated by the ACE2 homolog collectrin 

(TMEM27) (54-56). B
0
AT1 mRNA is also marginally expressed in pancreas, stomach, liver 

and colon (57-59).  

It was not until research beginning in 2011 that B
0
AT1 was recognised as the missing 

component linking dietary neutral amino acid to the beneficial health effects of protein 

                                                            
1 Neutral amino acids are the 15 of 20 proteinogenic amino acids which have no net elemental charge at 

physiological pH (7.2-7.4) and include: Leu, Ile, Met, Phe, Val, Trp, Tyr, Ala, Gly, Ser, Thr, Gln, Asn, Cys, Pro.   
2 At various points we use the technical measures of transport kinetics Vmax and Km: the former refers to the 

maximal rate of transport activity (capacity) the latter is the Michaelis constant, the substrate concentration 

required to induce the half maximal rate measure. Given certain assumptions, the Michaelis constant is a 

measure of relative transport affinity, with the lower the number the higher the transport affinity. 



4 
 

restriction which are mediated by increased insulin sensitivity and circulating FGF21 levels 

(60, 61). A global B
0
AT1 KO mouse showed reduced weight gain on a high fat diet and 

reduced expression of downstream mTORC1 targets in the intestine, liver, muscle and 

adipose tissue, indicative of lost BCAA activation (60, 61). B
0
AT1 (-/-) mice exhibited 

enhanced insulin sensitivity as measured by lower postprandial glucose levels in the absence 

of insulin secretion. These mice also replicated the effects of protein restriction by inducing 

the upregulation of FGF21 in liver and serum (60), with FGF21 levels comparable or higher 

to those observed in protein-restricted mice and rats (62). Induction of FGF21 in mice liver 

also occurs during dietary methionine and leucine restriction but to lesser extent than the 

B
0
AT1 (-/-) mouse [(63-66) reviewed in (67-69)]. Increased energy expenditure due to 

methionine restriction has been shown to occur only in male mice (66) but the sex-specific 

effects of FGF21-mediated protein and AA restriction in humans remain largely unstudied. 

Both methionine and leucine are major substrates of B
0
AT1 and the requirement of multiple 

neutral amino acids for effective and cumulative FGF21 induction is consistent with the 

transporter’s role as the primary uptake pathway for multiple neutral amino acids. The 

reduced plasma glucose recorded in these B
0
AT1 KO mice seemed to be a result of a 50% 

reduction in intestinal uptake (61) but without any downregulation of known sugar 

transporters (70). However, the plasma glucose lowering effect of FGF21 has also been 

attributed to activation of brown adipose tissue (BAT), the browning of white adipose tissue 

(WAT), and increased hepatic energy consumption, particularly in obese and male rodents 

(35, 71-74). The cause of blunted insulin secretion in B
0
AT1 (-/-) mice was unknown but 

possibly due to reduced postprandial glucose levels as a result of FGF21 upregulation or 

delayed absorption of glucose or a combination of both (see perspectives). As all studies 

involving B
0
AT1-mediated neutral AA restriction have been conducted in mice models 

caution is warranted when translating these results to human, especially as many of the 

metabolic effects of FGF21 observed in rodents has not been replicated in primates [reviewed 

in (75, 76)]. The other significant phenotype of the B
0
AT1 (-/-) mouse is the stimulated 

secretion of the incretin hormones glucagon like peptide (GLP-1) and gastric inhibitory 

polypeptide (GIP) (60, 77), the role of which in potentiating insulin release is discussed in the 

next section. 

Our lab and others have proposed the effects of dietary protein restriction in the B
0
AT1 KO 

mouse could be replicated by inhibiting B
0
AT1, making it a potential target for the alleviation 

of metabolic disorders that would benefit from dietary restriction of neutral amino acids, such 

as TIIDM (78) and phenylketonuria (79). Several inhibitors of B
0
AT1 have been identified 

but none yet with clinical significance (78-81). B
0
AT1 (-/-) mice displayed hyper-excretion 

of neutral amino acids in urine and both major substrates of B
0
AT1 but plasma levels 

remained normal, perhaps as a result of decreased oxidation of amino acids (1, 61). Mutations 

in human B
0
AT1 result in Hartnup disorder, which is characterized by malabsorption of 

amino acids (57-59). Other than the hyper-excretion of neutral amino acids, Hartnup disorder 

patients are mostly asymptomatic (82), possibly due to modern dietary protein intake being 

many times the daily requirements of 80-100 g (83). Compensatory uptake is probably 

mediated by the peptide transporter PEPT1.  
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As the major small peptide transporter of the small intestine PEPT1 (SLC15A1) provides 

additional intestinal absorption capacity for neutral amino acids in the form of di- and tri-

peptides (84) (Fig. 1A). PEPT1 is a high capacity, low affinity transporter (Km of 0.2 -10mM) 

also expressed at limited levels in the colon, kidney, pancreas and bile duct epithelial cells 

(85-88) (Table 1). It uses the H
+
 electrochemical gradient to cotransport peptides (84, 89). 

Recently, peptide uptake by  PEPT1 was shown to stimulate GLP-1 secretion (90) and 

improved glucose homeostasis in healthy, obese and hyperglycemic mice (91). PEPT1 (-/-) 

mice also displayed reduced weight gain and fat deposits on a high fat diet (92). In contrast to 

the phenotype of B
0
AT1 (-/-) mice, where increased GLP-1 levels were observed (60), the 

release of GLP-1 was blunted in PEPT1 (-/-) organoids (90). This discrepancy of GLP-1 

levels between PEPT1 (-/-) and B
0
AT1 (-/-) mice is most likely explained by the expression 

of PEPT1 in intestinal L cells and B
0
AT1 in intestinal K cells (93). Intestinal L cells are 

located in distal part of the intestine and are usually referred to as GLP-1 producing cells 

(94). The absence of PEPT1 in the KO mouse probably ablates the ability of L cells to sense 

an increased gut protein load and secrete GLP-1 in response. On the other hand, the absence 

of B
0
AT1 would lead to an increase in protein load on the luminal side of the intestine, 

leading to GLP-1 release from L cells.    

β-islet cell glutamate transporters vGLUT (SLC17 family) 

Both cytosolic glutamate and leucine can potentiate insulin secretion from pancreatic β-islet 

cells (95-101). The availability and effect of glutamate is determined by the complex 

intersection between glucose and amino acid metabolism, including the control of glutamate 

flux by various intracellular membrane transporters (102, 103). Although its role was 

previously questioned (104-107), intracellular glutamate is now thought to provide a crucial 

intersection between glucose- and incretin-stimulated insulin secretion (100). Critical players 

in this mechanism are the human vesicular glutamate (GLUT) transporters vGLUT1 

(SLC17A7) and vGLUT2 (SLC17A6), which are responsible for loading glutamate into 

intracellular vesicles – a necessary event in the potentiation of insulin secretion (108, 109) 

(Fig. 1E). vGLUT1 and 2 are highly selective L-glutamate transporters (110, 111) with a Km 

of 1-5 mM or slightly lower (112-121) and they require Cl− for transport activity (110-114, 

119-123) (Table 1). First identified as neuronal transporters, vGLUT2 has also been located 

outside the CNS in primary afferent neurons of the intestine and in pancreatic β-cell (109, 

120, 124-126). In β-islet cells, it is vGLUT1 and 2-mediated loading of insulin granular 

vesicles that is essential for the potentiation of insulin secretion (100, 108, 109).  

The primary stimulus for insulin release is the uptake of glucose into β-cells by the facilitated 

diffuser GLUT2. This stimulus sets off a regulatory cascade terminating in insulin release at 

the plasma membrane. Potentiation of this process by glutamate begins with the release of the 

incretin hormones GLP-1 and GIP from enteroendocrine L and K cells following a meal 

(127-130). Circulating GLP-1 and GIP bind the β-cells plasma membrane incretin receptor, 

leading to the cyclisation of AMP (cAMP) and instigating a PKA signalling cascade (131, 

132) (Fig. 1E). PKA has numerous targets involved in recruitment and fusion of insulin 

granules to the membrane (133, 134). Gheni et al. identified cytosolic β-cells glutamate as an 

essential signal mediating incretin-induced potentiation of insulin secretion in rodents models 
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of diabetes, obesity and in insulin-producing cell lines (109, 135). Incretin signalling induced 

the loading of glutamate into secretory granules, which was subsequently necessary for 

enhanced insulin release. Furthermore, vGLUT1 was required for elevating glutamate 

concentrations in insulin-containing granules; an event that also preceded insulin release 

(108, 109, 135). This amplification of insulin secretion did not occur when vGLUT1 is absent 

from β-cells as demonstrated by using a SLC17A7 (-/-) mouse (109); vGLUT2, however, can 

compensate for the loss of vGLUT1 (108). Interestingly, the source of cytosolic glutamate 

required for potentiation was provided by the mitochondrial malate-aspartate shuttle, which 

indicated the important role of mitochondrial-cytosol glutamate flux in the process (see 

following section).  Membrane permeable analogues of glutamate were shown to be 

sufficient to enhanced insulin secretion, demonstrating the presence of the amino acid as 

necessary and sufficient in the pathway (109). Glutamate-mediated potentiation of insulin 

secretion is impaired very early in the development of TIIDM in humans and rodent models 

(109, 136-140).  

How glutamate uptake into secretory granules amplifies insulin secretion remains unresolved 

and is hampered by a lack of understanding of the transport mode vGLUT1 uses to load 

vesicles. Under most experimental conditions the membrane potential (∆𝜓) is the major 

driving force (111-113, 121, 123, 141), suggesting the uniport of anionic glutamate. 

However, the proton gradient established by the V-ATPase can also drive vGLUT function, 

consistent with a glutamate:H
+
 antiport mechanism (114, 121-123, 141). However, no testing 

of how the extent of glutamate loading or the physical properties of vesicles themselves effect 

insulin secretion has been conducted. The elevation of cytosolic glutamate required for 

secretory granule loading establishes the source of glutamate as an important question and 

highlights the roles of other β-cells amino acid transporters that will now be addressed. 

Mitochondrial exchangers (SLC25 family): role in β-cells glutamate availability  

Despite earlier evidence for direct glutamate uptake by plasma membrane transporters (142, 

143), substantial research now suggests synthesis from glucose as the major source of 

cytosolic glutamate in β-cells (109, 144, 145). Intracellular β-cell glutamate can be 

synthesised from D-glucose via TCA cycle α-ketoglutarate by utilising 

cytosolic/mitochondria aspartate aminotransferase 1 (AST1) or mitochondrial glutamate 

dehydrogenase (GDH) (Fig. 1E). Glutamine has also been proposed as a significant 

alternative source of cytosolic glutamate (103, 108, 146). Both glutamate and glutamine 

provide reducing equivalents for NADH production in the TCA cycle and ultimately the 

synthesis of ATP to facilitate glucose-stimulated insulin secretion via closure of the KATP 

channels [reviewed in (147)]. As a result, mitochondrial inner membrane carriers play a 

pivotal role in the maintenance of cytosolic and mitochondrial glutamate concentrations in β-

cells required for potentiation of insulin secretion. 

Glutamate transport across the mitochondrial inner membrane occurs via the malate-aspartate 

shuttle and the mitochondrial Glutamate Carrier (SLC25A22, GC1) (100, 108, 109, 147-154) 

(Fig. 1E). The malate-aspartate shuttle involves two mitochondrial transporters: the malate-α-

ketoglutarate antiporter (OGC, SLC25A11) and Aspartate Glutamate Carrier 1 (AGC1, 
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SLC25A12). Both exchangers are widely expressed, AGC1 more heavily in electrically 

excitable tissue but absent from liver, while GC1 is prominent in the liver and pancreas but 

only weakly expressed in the brain (155) (Table 1). The physiological role of GC1 is to 

import cytosolic glutamate into the mitochondria along with H
+
 symport or OH

-
 antiport. 

Hence, GC1-mediated transport it is electroneutral and exhibits a relatively high Km of ~4-5 

mM (154). AGC1 exchanges an aspartate from the mitochondrial matrix with a glutamate and 

a proton from the cytosol (156). The exported aspartate is converted by an aminotransferase 

GOT1 into oxaloacetate. Oxaloacetate in turn is converted into malate which serves as an 

exchange substrate of OGC. Upon transport back into the mitochondrial matrix, malate 

provides the reducing equivalent to produce NADH for oxidative phosphorylation. Glutamate 

is co-transported with a proton by AGC1, meaning each transport cycle is electrogenic if 

aspartate-glutamate are exchanged but is electroneutral if identical substrates are exchanged. 

When mitochondria are respiring glutamate uptake is heavily favoured by AGC1 and GC1, 

due to strong negative potential and pH chemical gradient components of the proton motive 

force across the mitochondrial inner membrane (157).  

Both GC1 and AGC1 play substantial roles in glutamate-induced insulin secretion (145, 153, 

158-161). Although the increase in cytosolic glutamate from mitochondrial glucose oxidation 

has been demonstrated by several labs (99, 100, 109, 148, 158, 162), the idea remained 

controversial for some time [(see (104, 163)]. Several lines of evidence have now confirmed 

mitochondrial glutamate synthesis as vital for the potentiation of β-cell insulin secretion. 

These are, 1) the appearance of cytosolic [
13

C]labelled glutamate isotopomers from [U-
13

C] 

glucose in metabolic flux experiments (160, 164); 2) inhibition or genetic silencing of AGC1 

and malate-aspartate shuttle enzymes (108, 148, 159, 165); 3) GC1 ablation (158); 4) 

demonstration of glutamate dehydrogenase (GDH) as a key enzyme in mitochondrial 

glutamate synthesis for the potentiation of insulin secretion (151, 166, 167). The 

physiological functioning of GC1 and AGC1 in respiring mitochondria leads to a net entry of 

glutamate into the mitochondrial matrix for GC1 and the recycling of glutamate as part of the 

malate-aspartate shuttle for AGC1. Glutamate production in the mitochondrial matrix by 

GDH could potentially provide an increase in cytosolic glutamate by increasing the overall 

rate of the shuttle and increasing the apparent steady-state concentration of all intermediates, 

including glutamate. Indeed, the evidence demonstrating a net accumulation of cytosolic 

glutamate from the malate-aspartate shuttle seems convincing (108, 109). However, an 

alternative mechanism for net glutamate production hypothesized mitochondria-exported 

isocitrate is oxidized in the cytosol to form α-ketoglutarate, which then undergoes 

transamination probably by utilising aspartate. This reactions series would provide an 

additional input into the malate-aspartate shuttle which would explain the simultaneous 

decrease of aspartate and increase of cytosolic glutamate following glucose stimulation of 

islet β-cells (168). The importance of GDH for glucose-stimulated glutamate synthesis as a 

singular source for enhanced insulin secretion is also contradicted by several studies (168-

170). For example, Li et al. (168) found in human GDH transgenic mice that both glutamine 

and oxidative deamination of glutamate by leucine-stimulated GDH was associated with 

enhanced insulin secretion, a process inhibited by high glucose. These results suggested 
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alternative pathways for enhanced insulin secretion besides glucose-derived glutamate (see 

SLC38 and LAT1 sections). 

It is important to emphasize these mitochondrial carriers are vital for potentiation of insulin 

secretion but only indirectly through their role in balancing cytosolic to mitochondrial 

glutamate concentrations. Insulin secretion can be enhanced simply by the elevation of 

cytosolic glutamate independently of the source of that glutamate (104, 151, 163). For 

example, supplementation of cytosolic glutamate using a membrane-permeable analogue 

enhances insulin secretion independently of glutamate supplied by the mitochondria (98, 99, 

101, 151).  

Other β-islet cell glutamate transporters: EAAT2 (SLC1A2)  

mRNA transcripts and protein of the glutamate transporter EAAT2 (SLC1A2) have been 

detected in the plasma and secretory granular membranes of β-cells (124, 125, 171, 172). The 

transporter is part of the SLC1 family of excitatory amino acid and small neutral amino acid 

transporters (173). Primarily expressed in neuronal glial cells, it is responsible for the 

reuptake of glutamate from excitatory synapses and accounts >90% of total glutamate uptake 

in the brain (174) (Table 1). EAAT2 accumulates glutamate using the symport of 3 Na
+
 

molecules and one proton in exchange for one K
+
 molecule. It can transport both Cα 

enantiomers of aspartate in addition to glutamate and also mediates an anion conductance, 

which is thermodynamically uncoupled from glutamate transport (175-179).  

EAAT2 has been hypothesised to play two roles in the mechanism of incretin-dependent 

insulin secretion (180) (Fig. 1E). Feldmann et al. showed potentiation of insulin release 

resulted from inhibition of EAAT2, which implied the transporter was effluxing glutamate at 

the plasma membrane (148). This reversal of the transporter from its normal role 

accumulating glutamate is difficult to reconcile with the known thermodynamic drivers of 

EAAT2 [see (173)]. A second potential role of EAAT2 was proposed by Gammelsaeter et al. 

who showed that EAAT2 was co-expressed with vGLUT3 (SLC17A8) in secretory granules 

(172). An EAAT2 KO mouse displayed increased granular glutamate concentration but 

decreased rate of insulin exocytosis. The authors hypothesised a co-ordinated role of EAAT2 

and vGLUT3 in recycling glutamate through secretory granules to mediate insulin secretion 

(181). Any role for EAAT2 in insulin secretion is, however, strongly disputed (145). A 

pancreatic-specific knockout of EAAT2 revealed no effect on β-cell viability or glucose-

stimulated insulin secretion (145). Furthermore, no EAAT2 protein or mRNA was detected in 

β-cells.  

SLC38 family of neutral amino acid symporters 

SLC38 family transporters mediate sodium dependent influx and efflux of small neutral 

amino acids in all human tissues (182). Three SLC38 members, SNAT2 (SLC38A2), SNAT3 

(SLC38A3) and SNAT5 (SLC38A5) play direct roles in the regulation and mediation of 

insulin signalling. SNAT2 is a ubiquitously expressed sodium-dependent symporter of, 

predominately, small neutral amino acids alanine, serine, glycine, and cysteine but can also 

transport glutamine, asparagine, methionine, proline, and histidine (183, 184) (Table 1). 

SNAT2 is regulated by various metabolic signals such as amino acid availability, amino acid 
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starvation, hypertonic stress, and insulin (185-190). The increase of amino acid uptake by 

insulin was first identified in rat skeletal muscle (185, 191) but was subsequently shown to 

stimulate plasma clearance of leucine in humans (3). Both increased glutamine uptake and 

SNAT2 plasma membrane expression occurred via rapid trafficking of transporter-containing 

endosomal pools to the plasma membrane following exposure to insulin in rat myocytes (185, 

186, 192) (Fig. 1D). Essential amino acids also increased SNAT2 mRNA expression in 

humans in an mTORC1-dependent manner (193). Due to the co-stimulatory effects of insulin 

and leucine on mTOR signalling (9), these results suggest a common activation pathway for 

increased SNAT2 expression. Despite the evidence for insulin-induced increase of glutamine 

uptake (185, 186) earlier insulin-induced increases in plasma clearance for non-SNAT2 

substrates [e.g. leucine (3)] have not been explained. The upregulation of other amino acid 

transporter mRNA such as LAT1 (SLC7A5) which could transport leucine has been noted in 

myocytes (193). For an extensive overview into the role of SNAT2 and amino acids in 

skeletal muscle metabolism the reader is directed to several excellent reviews (194, 195). 

SNAT2 also plays a potential role in the development of ER stress response in pancreatic β-

islets during the progression of TIIDM in mice (196) (Fig. 1E). Peripheral tissue insulin 

resistance increases β-cell synthesis of insulin and cell proliferation, thereby inducing the ER 

stress. The unfolded protein response (UPR) is also induced as a direct result of increased 

insulin synthesis (197). Prolonged UPR activation leads to apoptosis, which limits circulating 

insulin levels and leads to TIIDM (5). To overcome the translational repression associated 

with ER stress, an anabolic transcriptional pathway upregulates the expression and activity of 

SNAT2 and other transporters. The upregulation of SNAT2 was termed ‘self-defeating’ as 

the response leads to increased protein synthesis, thereby aggravating the ER stress, 

subsequent apoptosis of β-cells and exacerbating TIIDM progression (196).  

SNAT3 is a Na
+
-dependent symporter and H

+
 antiporter, transporting glutamine, asparagine 

and histidine with high expression in liver, kidney, rat brain, adipose tissue, eye and muscle 

(182, 198) (Table 1). In the liver, SNAT3 is involved in the glutamine uptake from periportal 

hepatocytes and release from the perivenous hepatocytes into the circulation (199) (Fig. 1B). 

Glutamine plays an important role in energy metabolism in the liver as one of the major 

sources for gluconeogenesis via α-ketoglutarate and the TCA cycle (200). Ablation of 

SNAT3 in mice reduced the amount of intracellular glutamine and spared glutamine from 

gluconeogenesis due to the reduction in liver glutaminase 2 protein levels; the first step in the 

conversion pathway (201). Reduction in gluconeogenesis is the probable cause of reduced 

plasma glucose (< 2.8mM) and subsequent decreased insulin levels. Unexpectedly, plasma 

glutamine levels in these mice seem to be unaltered whereas intracellular leucine levels were 

reduced (201). One explanation for these results is that in WT animals, intracellular 

glutamine accumulation through SNAT3 is utilized as a efflux substrate by LAT1 in 

exchange for the uptake of leucine (202). Hence the loss of glutamine uptake in SNAT3 (-/-) 

mice resulted in a lost capacity for leucine accumulation. The decreased levels of intracellular 

leucine and plasma insulin also explain the reduced expression of downstream mTORC1 

pathway targets in SNAT3 (-/-) mice, which could not be expected from glutamine alone as it 

is not a known activator of mTORC signalling (201). Consistent with a significant role for 

SNAT3 in insulin-mediated gluconeogenesis, direct insulin application onto WT mouse 

hepatocytes displayed decreased SNAT3 mRNA (203). This downregulation would reduce 
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the pool of glutamine available for hepatic glucose production. However, such a link may be 

tissue specific as insulin perfusion does not affect SNAT3 function in muscle (204). SNAT3 

has also been reported as playing a role in β-cell glutamine acquisition (205). In this context, 

SNAT3 may provide an additional extracellular source of glutamate for β-islet cells as a 

consequence of the intra-cellular conversion of glutamine to glutamate (see β-cell sections) 

(102, 206, 207). 

SNAT5 has similar properties to SNAT3, also co-transporting 1 Na
+ 

ion in exchange for a 

proton. It accepts glutamine, asparagine, histidine and alanine as major substrates and is 

expressed in intestine, kidney, retina, lung, pancreas and cervix (208). It also has been shown 

to be responsible for the uptake of glutamine in hepatocytes (208, 209). SNAT5 has raised 

recent interest due to a role in the regulation of amino acid homeostasis by α-cell-liver 

glucagon signalling. We include this topic here because glucagon and insulin actions are 

intricately linked in the regulation of global metabolism. Elevated serum glucagon is also 

symptomatic of TIIDM progression (210, 211). SNAT5 was shown to be upregulated at the 

plasma membrane of α-cells in an mTORC1-dependent manner (212, 213). This upregulation 

was caused predominately by elevated circulating levels of glutamine and alanine, which 

induces increased glucagon secretion and expansion (hyperplasia) of α-cell numbers (212, 

214). The more general elevation of circulating amino acids was induced by inhibition of the 

G-protein Coupled Glucagon Receptor (GCGR) in the liver. The normal activation of the 

GCGR in hepatocytes controls liver gluconeogenesis utilising amino acid catabolism in the 

process. Therefore, inhibition of the GCGR leads to a downregulation of amino acid uptake 

and catabolism, and the concurrent elevation of plasma amino acid levels (212, 214, 215). 

The process is hypothesised to work as a feedback loop for glucagon, linking amino acid 

utilisation in the liver to the sensing of certain elevated amino acids by α-cells in order to kick 

start further glucagon release. This was confirmed by demonstrating that both GCGR (-/-) 

and SNAT5 (-/-) mice independently caused hyperplasia of pancreatic α-cells as the SNAT5-

dependent uptake of amino acids activates mTORC1 leading to cell proliferation and 

compensatory additional glucagon release (212, 215). Unexplained by current understanding 

of this mechanism is how the SNAT5 substrates alanine and glutamine stimulate α-cells 

proliferation when they are not known activators of mTORC1. It is unknown if inhibiting 

SNAT5 may represent a potential treatment to alleviate hyperglycaemia as knocking out the 

transport in mice reduces α-cell mass and glucagon secretion (212, 216) and the interference 

with long-term glucagon signalling may entail adverse consequences [see (210)]. One 

publication has also implicated SNAT5 in β-cells as playing a substantial role in increasing 

intracellular glutamate and incretin-enhanced insulin release –potentially another alternative 

pathway for β-cells acquisition of glutamate (146) (see β-cell sections).  Intracellular 

glutamine may also serve as an efflux substrate for the neutral amino acid exchanger LAT1 in 

exchange for leucine.  

The neutral amino acid exchanger LAT1-4F2hc (SLC7A5-SLC3A1) 

LAT1 (SLC7A5) is a major transporter of BCAAs in many non-epithelial cells and is 

involved in insulin signalling, including insulin secretion directly through its cytosolic 

accumulation of leucine (217) (Fig. 1E). LAT1 is a heteromeric amino acid transporter 
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requiring the ancillary subunit 4F2hc (SLC3A2) (218). It exchanges neutral amino acids 

more rapidly than accumulative Na
+
-dependent amino acid transporters and is best viewed as 

a ‘harmoniser’ of cytosolic BCAA concentrations (1, 45, 219) (Table 1). The apparent 

affinity for large neutral amino acid such as leucine, isoleucine and methionine in vitro is 

100-fold higher on the cytosolic side compared to the extracellular side (220). LAT1 

expression is ubiquitous but specifically noted in the brain, spleen, placenta, testis, colon, 

pancreas, adipocytes, and skeletal muscle (221-223).  

It has been recently proposed that elevated levels of circulating BCAAs in TIIDM patients 

could be due to downregulation of BCAAs catabolism in visceral adipose tissue and liver 

(224, 225). The increased levels of BCAAs act as anaplerotic substrates and cause an 

overload of mitochondrial substrates, which in turn could downregulate oxidation of fatty 

acids in muscle (226, 227). Since LAT1 is the major transporter controlling intracellular 

BCAA concentrations in adipocytes, it is likely to play an important role in the efflux of 

BCAAs resulting from any downregulated catabolism (Fig. 1C). One study also highlighted 

the role of LAT-1 in muscle tissue by showing that glucose can reduce the mRNA levels of 

LAT1 in myocytes after inactivating the regulator of cellular energetics, 5’ adenosine 

monophosphate-activated protein kinase (AMPK) (228). Downregulation of LAT-1 could 

reduce the uptake of BCAAs in skeletal muscle and increase BCAA levels in plasma. This 

hypothesis requires testing in vivo to confirm its physiological significance. 

Expression of LAT1 in β-cells facilitates leucine uptake, which acts as an allosteric activator 

of Glutamate Dehydrogenase (GDH) (229, 230), enhancing insulin secretion via increased 

glutamate mitochondrial production and islet cell proliferation (151, 217, 231). Activation of 

mTORC1 signalling is also promoted by LAT1-mediated leucine uptake into β-cells (217). 

The originally identified activator of GDH was the leucine analogue, and LAT1 

substrate/inhibitor, BCH (2-Aminobicyclo[2.2.1]heptane-2-carboxylic acid) (229, 232-235). 

The importance of leucine-mediated GDH activation to insulin secretion is confirmed by 

children with Hyperinsulinemia Hypoglycaemia Familial 6 (HHF6) syndrome (102, 167, 236, 

237) (OMIM 606762). Patients exhibit abnormal insulin secretion caused by dominant 

activating mutations in GDH, which replicates leucine-induced GDH potentiation of insulin 

secretion and can be exacerbated by leucine-induced hypersecretion of insulin. A likely 

candidate of obligatory efflux via LAT1 is glutamine, which is present at high cytosolic 

concentrations (238) (Fig. 1E). LAT1 and other SLC7 heteromeric amino acid transporters 

may also be directly responsible for mTORC1 activation due to their ability to be re-directed 

from the plasma membrane to lysosomes by the proteins LAPTM4b and girdin (239, 240). 

The activation of GDH by leucine is well correlated with an increase in β-cell glutaminolysis, 

suggesting glutamine availability is being increased (229, 232, 241).  

Perspectives and future directions 

Several lines of research over the past 20 years have demonstrated amino acid transport plays 

a significant role in modulating the stimulation and sensitivity of insulin in numerous tissues. 

One unresolved question is why incretin hormone release in the B
0
AT1 KO mouse does not 

lead to a stimulation of insulin release from the pancreas, as would be expected by our 
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understanding of the canonical mechanism of the incretin-insulin axis? We hypothesize this 

could be due to the actions of increased circulating FGF21 in B
0
AT1 KO mice (Fig. 2). 

Although direct administration of FGF21 was shown to stimulate insulin secretion in diabetic 

mice (242), no mechanism directly linking protein-restricted FGF21 levels and β-cell 

signalling has been established to our knowledge. Any such mechanism could form part of a 

wider adaptive response to protein restriction orchestrated by FGF21-insulin signalling cross-

talk (243, 244). The insulin sensitization effect of FGF21 results from enhanced glucose 

utilisation by white adipose (WAT) and cardiac tissue without any increase in plasma insulin 

concentration (43, 66). A very similar phenotype is observed in B
0
AT1 KO mice (60, 61). 

Increased insulin sensitivity thus requires secretion of FGF21 due to upstream restriction of 

neutral AAs, or a caloric:protein imbalance sensed by the liver. This mechanism is supported 

by the unique endocrine role of FGF21 being induced by both protein restriction (28, 31, 37, 

43, 44, 60, 245, 246) and carbohydrate overload (247, 248) but not caloric variation per se, 

suggesting the imbalance in caloric:protein dietary ratio as the underlying stimulus (27, 68, 

249). It appears likely that most of the beneficial and anti-type II diabetic effects observed in 

B
0
AT1 KO mice are mediated by FGF21 and these effects are also missing from FGF21-

deficient mice (28).  

Due to its established signalling roles in adipose tissue and the hypothalamus (67, 68), it is 

also possible FGF21 suppression of insulin secretion is mediated through indirect autonomic 

nervous system or endocrinal signals, with FGF21 binding to a tissue-specific Fibroblast 

Growth Factor Receptor (FGFR)-β-Klotho receptor sub-type (250). Alternatively, the lack of 

incretin effect could be caused by reduced leucine uptake in B
0
AT1 KO mice, or reduced β-

cell mTORC1 signalling, and subsequent lack of allosteric GDH activation. The increase 

insulin sensitivity observed in the absence of B
0
AT1 may be partially caused by a reduction 

of serum glucagon levels and resulting reduction in liver gluconeogenesis.   

The integrated regulation of insulin signalling and potential existence of an unexplored 

FGF21-amino acid-insulin pathway is interesting but hardly the only unresolved research 

problem raised by this review. The exploration of the role of various amino acid transporters 

in insulin-affected tissues such as skeletal muscle, adipose and liver, has barely begun and 

many novel areas of research connecting amino acid transporters to insulin controlled 

metabolism remain to be investigated. The necessity of mTORC1 signalling in conjunction 

with insulin response pathways in many cells makes amino acid transporters such as LAT1 

and SNATs obvious focus for future research. The liver itself could represent the site for 

integration of amino acid endocrine signalling networks that signal energy balance and 

restriction of protein independent of dietary caloric content. As amino acid transporters 

represent the primary entry pathway into most tissues and are often metabolic bottlenecks, 

they represent many of the missing links in signalling networks that respond to protein 

restriction or modulate the downstream effect of insulin, FGF21 and other global endocrine 

hormones. Many of the important transporter-mediated effects outlined in this review have 

not yet been verified as biologically relevant in humans, for example, the research findings on 

B
0
AT1, vGLUTs and SNAT5 in α-cells are so far confined to rodent models. As a result the 

important roles several amino acid transporters play in global insulin signalling and the 
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significant role of amino acids in global metabolism mean this field is likely to become 

increasingly significant for human medical research in coming years. 



14 
 

Table 1.  Amino acid transporters involved in the regulation of insulin secretion and signaling.  

Transporter Gene 

Accession 

number 

(UniProt) 

Location Substrates Tissue Expression Mechanism 
KO Phenotype Relevant to 

Insulin Signalling 
Ref 

B0AT1 SLC6A19 Q695T7 PM All neutral 
intestine, stomach, kidney, liver, 

prostate 
S: 1Na+ 

Upregulated FGF21, GLP-1, 

GIP-1 

Reduced body weight, 

postprandial glucose levels, 

insulin secretion, Altered gut 

microbiota 

(60, 61) 

PEPT1 SLC15A1 P46059 PM di, tri peptides 
small intestine, kidney, pancreas, 

bile duct, liver 
S:H+ 

Reduced body weight gain on 

HFD, blunted GLP-1 secretion, 

reduced fat stores 

(92, 251) 

vGLUT1 SLC17A7 Q9P2U7 V E brain (neurons only), endocrine 
U or 

A: H+ (Cl-)* 

Reduced incretin-mediated 

insulin secretion in global KO 

of vGLUT1. β-cell specific 

KOs shown vGLUT1 and 2 are 

redundant and can both 

compensate for incretin –

induced insulin secretion in a 

triple KO of all 3 vGLUTs 

 

(108, 109) 

vGLUT2 SLC17A6 Q9P2U8 V E brain (neurons only), endocrine 
U or 

A: H+ (Cl-)* 

EAAT2± SLC1A2 P43004 PM D,E 
Brain (astrocytes, Bergmann glia, 

neurons), liver, pancreas 

S: 3Na+/1H+ 

A:1K+ 

Contradictory results. 

Glutamate content in secretory 

granules is higher than in WT 

mice. β-cell specific KO mice 

show no effect. 

(145, 172) 

GC1 SLC25A22 Q9H936 
Mitochon

dria IM 
E,D Ubiquitous S: 1H+† No KO phenotype (158) 

AGC1 SLC25A12 O75746 
Mitochon

dria IM 
E,D 

Heart, skeletal muscle, brain, 

kidney, pancreasⱵ 
A:H+ (Ca2+)‡ 

Deficiency in humans and mice 

leads to severe neurological 

symptoms; no pancreas-specific 

KO reported 

(153, 156, 

159) 

SNAT2 SLC38A2 Q96QD8 PM 
A,S,G,C,Q,N,

H,P 
Ubiquitous S:1Na+ 

Sub-lethal due to cyanotic 

dyspnea 
(252) 
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SNAT3 SLC38A3 Q99624 PM Q,N,H 
Eye, liver, kidney, brain, 

pancreas, adipose, skeletal muscle 

S:Na+ A:H+ 
 

Stunted growth, 

hypoglycaemia, reduced hepatic 

amino acids, urea cycle 

dysregulation, death at 20 days 

(201, 205) 

SNAT5 SLC38A5 Q8WUX1 PM Q,N,H,A 
stomach, brain, liver, lung, small 

intestine, spleen, colon, kidney 
S:Na+ A:H+ 

Minimal abnormal phenotype, 

pancreatic α-cells proliferation 

inhibited during glucagon 

stimulation   

(146, 212, 

214) 

LAT1-4F2hc 
SLC7A5-

SLC3A2 
Q01650 PM 

H,M,L,I,V,F,

Y,W 

pancreatic β cells, brain, ovary, 

testis, placenta, spleen, colon, 

blood-brain barrier, foetal liver, 

activated lymphocytes, tumour 

cells 

A Lethal phenotype (217, 253) 

Abbreviations: PM = Plasma membrane, V = Vesicular (membranes), IM = Inner Membrane; S = symport, A = antiport, U = uniport 

* Whether the transport mechanism involves proton antiport is suggested but unproven [see (254, 255)]. The stoichiometry and exact role of 

chloride as a substrate remains unclear. 

± Role in β-islet cells is disputed.  

† Also displays glutamate: glutamate exchange which limits the maximal rate of proton-equivalent transport. 

Ⱶ Pancreas expression is low despite its functional importance; AGC2 (SLC25A13) has higher pancreatic expression, see (155). 

‡ Exchanges cytosolic glutamate and a proton for mitochondrial aspartate under respiring conditions; depends of Ca
2+

 for substrate release.
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Figure 1. Amino acid transporters in the regulation of insulin signalling.  

A: Dietary intake gives rise to neutral amino acids (AA) and peptides that are first taken up by B0AT1 and 

PEPT1, respectively from the lumen of the intestine. Intestinal L cells secrete GLP-1 & GIP due to increase in 

neutral AA or nutrients in general. Neutral AAs are then released into the circulation through LAT-1. B&C: 

BCAAs and other AAs can activate mTOR/S6K pathway that results in insulin desensitization under nutrient 

stress. Glutamine can serve as substrates of GNG and contribute to EGP in the liver. On the other hand, low 

levels of AA can decrease mTOR/S6 signalling and upregulate FGF21 that can subsequently increase Glc 

uptake and browning of WAT in adipose tissue after binding to FGFR1-4/β-Klotho. D: In muscle, Insulin 

upregulates SNAT2 expression through endosomal pools. LAT1 and SNAT3 may also regulate intracellular AA 

levels that could regulate the uptake of glucose for storage. E: In pancreas, SNAT3/5 mediates the uptake of 

glutamine which could provide a potential source of glutamate and finally loaded into vesicles by vGLUT1/2. 

The efflux of glutamate by EAAT2 is controversial (see text). SNAT2 is upregulated during ER stress in 

response to hyper-production of insulin. Leucine entering pancreas through LAT1 allosterically regulates the 

production of glutamate in mitochondria. Glutamate is pumped out in the cytosol through AGC1 and can 

stimulate the secretion of insulin by glucose and hormonal mediated pathways. Black lines indicate the route 

and pathways. Broken lines indicate an as yet unknown mechanism; upward arrow indicates upregulation or 

increased levels. Abbrev. αKG, alpha ketoglutarate; AA, amino acid; BCAA, branched-chain amino acid; 

cAMP, cyclic adenosine monophosphate; Cl, chloride ion; EGP, endogenous glucose production; FGF21, 

fibroblast growth factor 21; FGFR, fibroblast growth factor receptor; Glc, glucose; GDH, glutamate 

dehydrogenase; GIP, gastric inhibitory peptide; GLP-1, glucagon like peptide 1; Gln, glutamine; Glu, glutamate; 

GNG, gluconeogenesis; g6p, glucose- 6-phosphate; H, hydrogen ion; mTOR, mammalian target of rapamycin; 

Na, sodium ion; pKA, protein kinase A; TCA, tricarboxylic acid cycle; WAT, White adipose tissue 

  

Figure 2. Global integration of dietary amino acid transport and FGF21-insulin networks. 

Reduced uptake of neutral amino acids in the lumen of the intestine by B0AT1 causes protein restriction and 

secretion of FGF21 in the liver. FGF21 is the major mediator behind the global effects of protein restriction 

resulting in increased glucose uptake in heart and white adipose tissue (WAT) and browning of WAT. We 

hypothesize (?) that FGF21 acts directly at the pancreatic β-cells or indirectly through neuronal-endocrinal 

mechanisms to suppress insulin secretion at the same time as increasing insulin sensitivity through its known 

actions in cardiac and adipose tissue.  
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