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Abstract—In micro-tomography, variants of helical X-ray
source trajectories, e.g., double-helix (DH) and space-filling (SF),
are attractive alternatives to the conventional circular trajectory,
as they satisfy data-sufficiency conditions; this enables exact
reconstruction, and large cone-angle (or high flux) imaging.
Geometric alignment of micro-tomography experimental data,
i.e., radiographs or projection data, to the required micron
precision is a difficult problem. Here we consider criteria based
on differences in attenuation along opposing rays as a post-
acquisition software alignment technique. These opposing rays
are called PI-lines and lie on lines that intersect two points of
the scanning trajectory and pass through the region of support.
The PI-line difference method is particularly appealing due to
its low computational cost and small set of inherent assumptions,
however, previous studies have exposed some limitations in
precision. The number and distribution of PI-lines is highly
dependent on the trajectory and thus so is the robustness of
PI-line difference; here we show that DH and SF trajectories are
particularly amenable to this technique. For these trajectories,
we observe that the technique is applicable to both static and
per-projection alignment estimation. We present results where
PI-line difference alignment estimates are of equivalent accuracy
as alignment estimates obtained from existing state-of-the-art
methods: a tomogram sharpness method for static alignment and
a re-projection-alignment method for per-projection alignment.
In both cases, the computational expense of PI-line difference
alignment estimation is a fraction of the tomogram-based meth-
ods.

I. INTRODUCTION

COMPUTED tomography (CT) generates non-destructive
volumetric images of specimens in order to understand

and quantify the internal structure and composition, enabling
modeling of mechanical and transport properties. Many appli-
cations require high-resolution, high-fidelity CT microscopy
(micro-CT) and even ultra-microscopy; for example: measur-
ing porosity and pore-size distribution down to the sub-micron
scale in oil-bearing rocks [1]; or identifying precise grain
contacts in a granular material to create a force network to
model mechanical compression and visualise stress and strain
[2].

1 Dept. of Applied Mathematics, Research School of Physics and Engi-
neering, The Australian National University, Canberra, ACT 2601, Australia.

2 CTLab: National Laboratory for Micro Computed-Tomography, Ad-
vanced Imaging Precinct, The Australian National University, Canberra, ACT
2601, Australia.

∗ Corresponding authors, email: Olaf.Delgado-Friedrichs@anu.edu.au, an-
drew.kingston@anu.edu.au

Manuscript received Month Day, 2017; revised Month Day, 2017.

CTLab, at the Australian National University, achieves high
flux (and therefore high signal-to-noise ratio [SNR]) imaging
with lab-based micro-focus X-ray sources by employing vari-
ants of helical trajectories [3], [4], [5]. Helical trajectories sat-
isfy data sufficiency conditions [6] allowing theoretically exact
reconstruction [7], and enable imaging with extremely large X-
ray cone-angles to maximise detected X-ray flux. Similar to
low-pitch helices, the double-helix (DH) trajectory provides
more uniform resolution [4]. The recently developed space-
filling (SF) trajectory is optimised for iterative reconstruction
enabling more physics to be incorporated and accounted
for in order to produce a more physically meaningful and
quantitative tomogram [8]. The DH and SF trajectories enable
high SNR imaging, however, applications also require precise
morphological information about shape and structure. In mi-
cron and sub-micron resolution lab-based CT, this information
can be severely compromised by poor geometric alignment of
the instrument components (namely the X-ray source, sample
manipulator, and detector) and/or by the relative motion of
these components or the specimen during data acquisition
(e.g., due to thermal effects). Hardware alignment to the re-
quired accuracy is extremely challenging and can be achieved
by imaging calibration phantoms specifically designed to
simplify identification of misalignment [9], [10], [11], [12].
However, physical alignment can be a very time consuming
procedure, particularly if the instrument has many degrees of
freedom. Even if such alignment were achieved (or misalign-
ment estimated through a phantom pre-scan), the motion of the
specimen or system components during data acquisition can
cause the instrument to drift out of alignment. This problem
is often overcome in electron tomography with the use of
fiducial markers attached to the specimen. These markers are
identified in the projection images and tracked throughout the
acquisition process to determine both global misalignment and
the dynamic motion effects [13], [14], [15]. These surface
markers can’t be used for region-of-interest (ROI) tomography
where the surface lies outside the field of view, and they are
unsuitable for lab-based polychromatic X-ray imaging since
the highly-attenuating markers cause beam-hardening artifacts.
Therefore, to correct dynamic motion errors, post-acquisition
determination of misalignment by software is preferable.

Software methods for reference-less post-acquisition align-
ment of projection data have been applied successfully for
many years, in most cases eliminating the need for precise
geometric alignment of instrument components. For example,
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software alignment can be achieved in tomogram space by
searching for alignment parameter values that optimise some
fitness function such as: minimising specimen support [16],
minimising artefacts outside specimen support [17], minimis-
ing entropy [18], or maximising sharpness [19]. Tomogram-
based methods are compuationally costly, an O(N3) voxel
tomogram requires O(N ) measured projection images of
O(N2) pixels and tomographic reconstruction is performed
in O(N4) operations. While the computational cost can be
amelioriated through multi-resolution methods it invariably
adds a significant overhead to the overall reconstruction time.

Faster alternative methods exist, in projection space, which
have O(N3) complexity, e.g., tracking the center-of-mass (if
the entire object is in the field-of-view) or minimising the
difference in transmission/attenuation of the specimen along
lines from opposing directions [20], [21], [22] or planes
from various directions (epipolar consistency [23]). Lines that
intersect the trajectory and pass through the region of specimen
support are known as PI-lines [24]. Of course, the number and
distribution of PI-lines (and thus the misalignment accuracy
achievable using PI-line difference) is heavily dependent on
the scanning trajectory. Panetta et al. [20] demonstrated that
PI-line difference, given a circular scan, can be used to esti-
mate detector offset and in-plane detector rotation. Kingston et
al. [21] showed, for helical scanning, all alignment parameters
can be estimated to within one optimal unit of accuracy. In
a helical trajectory, each point in the tomogram lies on a
unique PI-line [24], [25], thus PI-line difference is potentially
more accurate than tomogram methods (where typically only
tomogram subsets are reconstructed due to computational
complexity). However, since the PI-line method uses integrated
data (along lines or ray paths through the object/tomogram),
PI-line difference was found to be less precise in [21].

Here, we illustrate the use of PI-line difference minimisation
to estimate both static and time-varying mis-alignment param-
eters for the double-helix [4] and space-filling [8] trajectories.
The positions of PI-line measurement pairs within projection
images, for these variants of the helical trajectory, are par-
ticularly well dispersed which is the key point for reliable
application of the method.

Artifacts can arise in tomography due to different types of
motion: i) motion that can be modeled (e.g., repeatable or
predictable motion), and ii) unpredictable or “random” motion.
The first category can be accounted for by characterising the
motion and correcting its effects (such as described by Sasov
et al [26] for correcting source motion as it reaches thermal
equilibrium). The second category of motion is far more
challenging, particularly in the absence of pre-placed fiducial
markers. Here, we will assume motion of instrument com-
ponents or the specimen are possible, but that the specimen
itself remains rigid (i.e., is not distorted or deformed) during
scanning. In this case, motion can be compensated for exactly
by specifying the correct geometry per-projection image. It is
often sufficient to approximate the effect of a subset of the
motion parameters by remapping the projection image to be
closer to the assumed geometry. For example, center-of-mass
can again be used here to correct for translation errors. This
method is fast since it works on projection images directly. It

is, however, restricted to cases where the entire specimen is in
the field-of-view (FOV) at all times - rendering it unsuitable
for all forms of helical scanning and can be compromised
by even a slightly off-axis sample mount. The centre-of-mass
method is also not robust to beam-hardening artifacts. Epipolar
consistency can be used on a per-projection basis [27], and
although this is applicable for long objects, it is limited
by FOV constraints in region-of-interest (ROI) scanning. A
more general solution exists that uses re-projection alignment
or projection matching [28], [29], [30], [31] (and variations
thereof e.g., [32], [33]). This technique is effective and not
limited by FOV, however, it is a computationally expensive
iterative method that requires tomographic reconstruction and
re-projection at every step.

In what follows, we first define the geometry of a fine-focus
cone-beam CT instrument in Sect. II. In Sect. III we describe
the double-helix and space-filling trajectories compared with
conventional circular and helical trajectories. PI-lines are de-
fined in Sect. IV and in Sect. V we describe how they can
be used for alignment by minimising ray-difference. In Sect.
VI we validate global (static/geometric) alignment by ray-
difference with both simulated data, by comparison to a known
misalignment, and with experimental data by comparison with
results from a sharpness-metric method [19]. The extension
of the technique to identify and correct for time-varying
motion is presented in Sect. VII; again using simulated data to
demonstrate the technique and experimental data to validate
the method against results from re-projection alignment [34].
The paper then makes some concluding remarks following a
brief discussion.

II. CONE-BEAM MICRO-TOMOGRAPHY SYSTEM
GEOMETRY

Here we consider a lens-less fine-focus geometry where
magnification is achieved through the expanding spherical
wave-front of X-rays emitted from a micro- or nano-focus
X-ray source (S) that is a distance Sl from the rotation
axis. A flat-panel detector (D) is located a distance Dl from
the rotation axis (in the opposite direction). The relative
orientation of the system co-ordinates (w, h, l) with respect to
the specimen co-ordinates (x, y, z) is specified by an elevation
z and a horizontal angle θ, as depticted in Fig. 1.

Fig. 1. A depiction of the system geometry with co-ordinates (w, h, l)
including the source (S), rotation axis (R), translation axis (T ), and detector
(D). The three rotations, (ψ, θ, φ) ,and sample co-ordinates, (x, y, z), are
also shown.
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There are 11 alignment parameters in total, defined here rel-
ative to the rotation-axis; three to describe the position of the
detector, (Dw, Dh, Dl), three to describe the orientation of the
detector, (Dψ, Dθ, Dφ), another three to describe the source
position, (Sw, Sh, Sl), and two to describe the orientation of
the sample manipulator translation axis, (Tψ, Tφ). These have
been depicted in Fig. 1.

In what follows, we have used a reduced seven-parameter
model to define alignment (as proposed in [19]), so that results
can be more easily compared with existing implementations
of alignment [19], [3], [21]. This reduced set assumes the
translation-axis is aligned with the rotation-axis, i.e., Tψ =
Tφ = 0, and that in practice small lateral deviations of the
source position are nearly indistinguishable from the analo-
gous detector deviations, e.g., Dw ≈ −SwSl/Dl. Alignment
is then parameterised by the vector

p = (Dw, Dh, Dl, Dψ, Dθ, Dφ, Sl). (1)

There is no reason to believe that the ray-difference method
would be unable to treat the full parameter set, however there
is little value for current hardware configurations.

III. CONE-BEAM MICRO-TOMOGRAPHY
SOURCE/DETECTOR TRAJECTORIES

Tomography requires input data of projection images (or
radiographs) acquired from many different orientations about
the sample. We define the path taken by the X-ray source
about the sample as the trajectory. A conventional trajectory
is circular (see Fig. 2a). This trajectory can be described as
a height, z, along with a sequence of angles θi = i ·∆θ for
i ∈ ZΩ with Ω the total number of measured radiographs (or
X-ray source positions) and ∆θ giving the angular translation.

For 3D volumetric imaging, the circular trajectory does
not satisfy data sufficiency conditions [6] and an approximate
tomographic reconstruction results. A simple modification that
can produce a trajectory sufficient for exact reconstruction
is a vertical translation of ∆z between each source point.
This results in a single-helix (SH) trajectory, (as depicted in
Fig. 2b), which in this setting becomes a sequence of pairs
(zi, θi) = (i ·∆z, i ·∆θ).

A double-helix trajectory typically uses fewer source points
(or radiographs) per revolution than a helix, but incorporates
an additional set of helical data with all angles, θ, offset by
π (see Fig. 2c). For details on the definition, properties and
advantages of the DH trajectory, we refer to [4]. It may be
simpler to consider a very similar trajectory produced as a
strided helix as follows: (zi, θi) = (i · ∆z, i[π + ∆θ]) for
i ∈ ZΩ.

A space-filling trajectory can be defined simply as a low-
pitch helix with a large angular stride (scaled by α in the
following), in which the corresponding pairs (zi, θi) = (i ·
∆z, iα ·∆θ) source points form an approximately hexagonal
pattern (see Fig. 2d) in the (z, θ) plane. For details on the
definition, properties and advantages of the SF trajectory, we
refer to [8].

We note here that the SH, DH and SF trajectories all use
an almost identical number of projections (source positions).

Also, DH and SF trajectories are highly efficient in terms
of dose and particularly efficient in a flux-limited micro-CT
context because they allow high cone angles.

(a) (b) (c) (d)

Fig. 2. Schematic illustration of (a) circular, (b) helical, (c) double-helical
and (d) space-filling trajectories. In the latter, the line represents the source
motion profile and the points are positions of radiograph capture.

IV. EXPLICATION OF PI-LINES

A PI-line is simply a line between two source positions
which intersects the detector located at the corresponding
source positions. Thus, there are a pair of detector measure-
ments for X-rays attenuated along the same path (traversing the
path in opposite directions) and ideally the two measurements
should be consistent (equal). It is this pairwise consistency
which we use as a measure of alignment. When the physical
system geometry departs from the assumed geometry there
will be inconsistency between the PI-line measurement pairs.
We define PI-lines and associated measurement pairs more
formally in the remainder of this section.

The center position of the source and detector at the ith

radiographic measurement are found as si = (−Sl·cos θi,−Sl·
sin θi, zi) and di = (Dl · cos θi, Dl · sin θi, zi), respectively.
It is straightforward to compute the straight line (PI-line)
between si and sj for any index pair i, j, and thus obtain the
detector value ri,j (if it exists) corresponding to the ray from si
going through sj in the ith radiograph. Pairs of source/detector
positions that are too close in θ or too far in z lead to PI-lines
that do not intersect the detector, in which case the associated
value ri,j will be undefined.

Fig. 3 shows example distributions PI-line detector positions
corresponding to each of the trajectories depicted in Fig. 2.
For a fixed source position si and the corresponding fixed
detector position, the Fig. 3 points are the source positions
sj (j = 1, . . . ,Ω) projected (from si) to the detector. These
are the relevant detector positions used in the ray-difference
computation that quantifies alignment, as described in the
following section. Note that in Fig. 3, the number of points is
approximately equal in each of 3(b), 3(c) and 3(d).

V. DESCRIPTION OF RAY-DIFFERENCE

We define two matrices, M = (mi,j) and A = (ai,j)
for i, j ∈ ZΩ. Set mi,j = 1 if both ri,j and rj,i are
defined, mi,j = 0 otherwise. Elements of A are then found as
ai,j = mi,j · ri,j . The accumulated ray difference along PI-
lines is then computed as e =

∑
i,j(ai,j − aj,i)2/

∑
i,jmi,j .

Repeating the computation based on a hypothetical misalign-
ment of the system S − D, we derive an analogous value
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(a) (b) (c) (d)

Fig. 3. The distribution of PI-lines for the (a) circular (b) helical, (c) double-
helical, (d) space-filling (or low-pitch large stride helical) trajectories as seen
from a single fixed system position. For the circular trajectory PI-lines only
exist in the sample mid-plane, meaning they provide more limited information;
they are more uniformly dispersed for the double-helical and space-filling
trajectories.

e(p) for p ∈ P the parameter vector describing misalignment
(1). Note that any alignment variation can change which PI-
lines hit or miss the detector, thus the normalization via the
matrix M is crucial. Our task is to find a vector pmin ∈ P
that minimizes e; it is assumed that pmin best describes the
current system geometry. More generally, this method can, at
least in principle, be applied to the post-acquisition estimation
of any form of deviation from the idealized experiment that
would result in a non-zero ray difference value e, such as
irregularities in source flux, detector response, or changes to
the sample itself.

The time complexity of computing e(p) for a given pa-
rameter p is clearly O(Ω2). The evaluation of each ri,j
consists of a straightforward geometric computation followed
by interpolating (sampling) a single value from the appropriate
projection image, both of which are constant-time operations.
The values mi,j and ai,j for given i, j depend only on ri,j
and rj,i. Finally, the evaluation of the matrix norms requires
summing the elements of two Ω× Ω matrices.

We note in particular that (ignoring memory access times)
the execution time for ray-differencing does not depend on
the resolution of the radiographs, but only on the num-
ber of projections taken into account. Tomogram sharpness
methods, by contrast, require a filtered back-projection with
time-complexity O(Ω · N3) for each evaluation, making its
execution times highly sensitive to resolution and significantly
more computationally demanding than ray-differencing in all
practical scenarios.

Like any marker-free post-acquisition scheme, such as
sharpness metrics [19] and epipolar consistency [23], the
success of ray-difference minimisation depends on the speci-
men having sufficient contrast at appropriate length scales. A
sample with insufficient structure, or insufficient variation in
one direction, cannot be accurately aligned in that direction.
Aside from this essential limitation, the ray difference method
works directly with experimental projection data and does not
require any further assumptions. It is also fully tolerant of X-
ray beam hardening since the degree of beam hardening is
equal for both traversals of the PI-line.

VI. RAY-DIFFERENCE MINIMISATION FOR CORRECTING
GLOBAL (OR STATIC) MISALIGNMENT

The parameter space defining a per-projection geometry has
7Ω dimensions. This is far too large to search exhaustively. It is

customary and convenient to first estimate a global (or static)
alignment vector to account for unavoidable inaccuracies in
the calibration of the instrument, i.e., assigning a single value
to each parameter across all projections, in effect averaging
out any time-dependent variations (or motion). Per-projection
deviations from this global alignment due to thermal motion,
sample manipulator inaccuracies, and other physical effects
can be dealt with in a subsequent step.

A. Simulating global misalignment

A collection of simulated global misalignment datasets were
computed from a digital phantom of size 512 × 512 × 1024
voxels (with a voxel size of 3.2µm) by forward projecting with
a number of prescribed misalignment vectors. A cross section
of the phantom is shown in Fig. 4. The geometry was such
that Sl = 1.6384mm and Dl = 80.2816mm, corresponding
to a magnification factor of 50 and a detector pixel size of
0.16mm. The simulated detector size was 592 pixels along
each axis, resulting in a cone angle of 60 degrees.

Each simulated experiment consisted of Ω = 1950 radio-
graphs taken along a total vertical extent of 5.4012mm, with
a vertical increment of ∆z = 2.771µm and a radial increment
of α∆θ = 6.36◦ between successive radiographs. The result
from a single iteration of the multi-grid reconstruction [35]
assuming a perfectly aligned projection set is shown in Fig.
4.

B. Alignment procedure

In the results presented below, we estimate global alignment
using the accumulated ray-difference as its cost function. We
define the alignment parameter values that minimise this cost
function as those that most accurately describe the instrument
geometry.

The sensitivity of parameters varies: some can be optimised
regardless of the value of the remaining parameters, while
others require all parameters to be close to optimal first [19].
A sequence of 1D scans of each parameter in order from
least sensitive to most sensitive (as described below) is a fast
and effective technique to approach the correct instrument
geometry. We have practically observed that the 7D cost
function is smooth and well behaved in the vicinity of the
correct instrument geometry. Local descent-based optimisation
methods, such as the Powell method [36], can be used to refine
the solution.

As in the case of the sharpness-based alignment correction
in Kingston et al [19], a multi-resolution approach improves
the robustness of convergence for larger misalignments since
it broadens the peaks shown in Figure 6. Alignment in the
7D parameter space is determined in a multiscale iterative
fashion with three-pass sequence of 1D scans, i.e., varying
only a single parameter; an appropriate parameter scan order
was demonstrated in [19]. In the first pass, a linear scan
was performed for each parameter in order with a fixed step
size and a fixed maximum distance below and above the
previous parameter value. The step size was chosen as one
optimal unit (OU, as defined in [19]) for that parameter, with
a maximum scan range of 20 OU. After each individual scan, a
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(a) (b)

(c) (d)

Fig. 4. (a) A cross-section of the digital phantom used. (c) Single iteration of
the multi-grid reconstruction from correctly aligned projections. (b,d) central
region of (a,c) with 4x magnification.

new parameter value was calculated via a parabolic fit around
the best measured value, and all subsequent scans proceeded
using that new value. In the second pass, we applied Powell’s
method to identify a local optimum with the parameter vector
determined by the first pass as a starting point. These first
two passes were performed on a reduced dataset with each
projection scaled down (binned) by a factor of 4 as well as
a stride of 4, i.e. only taking every fourth projection into
account. Finally in the third pass, we performed another series
of linear scans, this time with a bin factor of 2, a stride
of 1, and a scan range of 4 optimal units. These particular
combinations of down-sampling and striding were chosen
based on practical experience with sharpness-based alignment
of real CT data at our facility.

C. Performance on simulated space-filling trajectory data
with known misalignment

Figure 5 shows the uncorrected and corrected reconstruc-
tions for a projection set taken with a SF trajectory and with
simulated misalignments in all of the 7 parameters used in
our simplified model. Here the magnitudes of the deviations
resemble those we routinely experience in practice, in this

case between approximately 3 and 15 optimal units, depending
on the parameter. For the corrected reconstruction, we have
applied an affine transformation to each projection based on
the estimated parameters and reconstructed the result normally.
Correction by detector transformation is an approximation
only; for correcting larger errors it is more accurate to modify
the trajectory itself, as discussed in section VIII.

(a) (b)

(c) (d)

Fig. 5. Reconstructions of a projection set taken with SF trajectory and
simulated realistic misalignment in all 7 parameters. (a) uncorrected (c) ray
difference alignment corrected. (b,d) 4x magnifications (from centers) of (a,c).

In Fig. 6 we illustrate the first and third (last) estimation
phase as performed on this projection set. All parameters
were correctly estimated within fractions of the respective
optimal units. Some of the parameters, particularly Dθ, are
not estimated very well in the first pass, but the second pass
is then able to compensate.

D. Validation on experimental double-helix trajectory data

Figure 7 shows the uncorrected and corrected reconstruc-
tions for a cylindrical sample of white beech wood, 3mm in
diameter, acquired with a double-helix trajectory using a total
of 14136 projections (7068 per helix). The data was taken
with Sl = 3mm and Dl = 312.5mm, ∆z = 1.344µm and
α∆θ = 0.125◦. A 3040 × 3040 pixel detector with a pixel
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(a)

(b)

Fig. 6. Parameter scans for a projection set taken with SF trajectory and one example of simulated realistic misalignment in all 7 parameters: (a) initial
coarse 1D scans of each parameter in sequence, (b) final refinement scans, again of each parameter in sequence. The y-axis is metric value (inverse of average
squared ray-difference) and the x-axis is the respective parameter value. The dots mark individual evaluations of the quality function, spaced at intervals of
one optimal unit.

size of 0.139mm was used. The effective cone angle was again
60◦, and the magnification factor was 105.2.

In this case misalignments are not known. Instead we com-
pare ray-differencing generated alignment correction parame-
ters with those generated using minimization of a tomogram
sharpness metric. Sharpness is calculated as the L2 norm of a
representative sub-volume of the high-pass filtered tomogram.
The tomogram is produced by ramp-filtered back-projection
(FBP); ramp filtering is not technically the correct filter here,
however, degradation of sharpness estimates are negligible
since the resulting artifacts are low-frequency and edges are
faithfully reconstructed. The seven alignment parameters are
determined in a multiscale iterative fashion with a three-pass
sequence of 1D scans. This particular strategy was chosen to
give both methods an equal chance of convergence to a good
estimate, while keeping the execution times for the sharpness
method relatively low. Specifically, all evaluations were per-
formed on down-sampled data, which significantly reduces
time requirements for the sharpness metric calculations, but
has no relevant efficiency implications for ray-differencing.

In Fig. 8 we illustrate the first estimation phase as performed
on this projection set and compare with an equivalent sequence
of parameter scans using a sharpness criterion. In both cases,
we have used a binning factor of 4 and a stride of 4,
with a maximum scan range of 20 OU. Following standard
approaches, to reduce computational cost the sharpness calcu-
lations were performed on only the central set of ≈1000 out of
a total of ≈3500 projections after striding. The ray difference
calculations were performed on the full set. The execution time
per evaluation was 5 seconds for sharpness and 0.1 seconds
for ray difference.

The resulting estimates differed by slightly over 1 OU for
Dl and fractions of an OU for all other parameters. Thus all
parameters are presumably within 1 OU of the actual geometry
and are therefore equivalent (for the specified tomogram voxel
size). A small difference in the result is not unexpected since
the sharpness-alignment-parameters are calculated only over
the central (≈1000) projections of the data set (as a compu-
tational saving) and the ray-difference-alignment parameters
are calculated over the entire (≈3500 projection) data-set.
The quality of the two tomograms, reconstructed from the

sharpness and ray-difference parameter alignment corrections,
was visually indistinguishable.

(a) (b)

(c) (d)

Fig. 7. Reconstruction of a white beech DH trajectory dataset. (a) uncorrected
(c) ray difference. (b,e) 8x magnifications (from centers) of (a,c).
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(a)

(b)

Fig. 8. Coarse-resolution parameter scans for white beech sample DH projection set: (a) inverse ray-difference and (b) sharpness. The y-axis is metric value
and x-axis is the respective parameter value.

VII. RAY-DIFFERENCE MINIMISATION FOR CORRECTING
TIME-VARYING MISALIGNMENT (OR MOTION)

We demonstrate the ability of the ray-difference method
to accurately detect per-projection deviations from an ideal-
ized trajectory using the simple iterative optimization process
detailed below. In this case, deviations from an idealized
trajectory will be caused by unplanned relative movement of
the source, sample and/or detector, such as by inaccuracies in
the sample stage or motion of the source or sample caused by
thermal expansion. We have restricted our attention to a subset
of the relevant geometry parameters, in this case the horizontal
and vertical detector shift, in order to make our results more
easily comparable with existing implementations, specifically
the re-projection alignment method described in [34], [31].

A detector shift or rotation for the ith projection corresponds
to a change in the ith row (ai,j)

Ω
j=1 of the matrix A, but

leaves the ith column unchanged, whereas a deviation in the
position of the x-ray source would change both the row and
column. In either case, in order to evaluate the corresponding
change in the accumulated ray difference e, we only need to
recompute the normalized differences between the ith row and
ith column.

Our optimization scheme attempts to find the best detector
shift for each projection in turn relative to all the others by a
sequence of two linear scans, one horizontal and one vertical,
with a fixed step-size of one pixel and a distance of 10 pixels.
As in Sect. VI, a sub-pixel optimum was then estimated via a
parabolic fit. As a dampening measure, the new shift estimate
was taken mid-way between the old one and the new optimum.
After all projections were processed in this way, the previous
shift estimates were replaced with the new ones and a new
iteration started. We ran 10 iterations in our experiments, using
the complete set of radiographs at full resolution.

A. Simulating time-varying misalignment

The same simulation phantom and setup were used as in
Section VI-A to evaluate our ray-difference based motion
estimation procedure. Here, a simulated projection set was
computed with a pre-determined sequence of detector shifts
based on appropriately re-sampled motion data from a real

experiment. In our implementation, individual per-projection
shifts were applied by manipulating the positions of the
detector center when calculating the forward projection, rather
than transforming the projection image after the fact.

B. Performance on simulated double-helix trajectory data with
known motion

Figure 9 shows a comparison of estimated and true shifts for
the ray-differencing method. We can see that the estimation
error remains well below a pixel (or 1 OU) except in the
regions that correspond to the top and bottom ends of the
helices, where there is insufficient data for a meaningful
estimation. In our implementation, we have set the estimates
to zero whenever fewer than 10 PI-lines were available for a
given projection.

(a)

Fig. 9. Motion estimation versus ground truth using the inverse ray difference
metric (x-axis is projection number and y-axis is pixel shift).

Figure 10 shows two reconstruction results for this projec-
tion set, one uncorrected and the other using motion correction
via ray-differencing. One can observe that the double-edge
artifacts due to motion errors have been removed by this
motion correction process.
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(a) (b)

(c) (d)

Fig. 10. Reconstructions of a DH projection set with simulated detector
motion. (a) uncorrected (c) motion correction via ray-difference. (b,d) 2x
magnifications (from bottom centers) of (a,c).

C. Validation on experimental space-filling trajectory data

Figure 11 shows two reconstructions of 5mm Edwards
limestone core, one with only global alignment, the other with
additional motion correction. The data was acquired with a
space-filling trajectory using 4858 projections, at Sl = 7.1mm,
Dl = 335.6mm, ∆z = 4.529µm and α∆θ = 3.285◦. A
2272× 2272 pixel detector with a pixel size of 0.139mm was
used. The effective cone angle was 45◦, and the magnification
factor was 47.3. In the magnified detail pictures, one can see
a subtle but important increase in detail and sharpness.

For this experimental data, the per-projection misalign-
ments are not known a-priori. Instead, we compare PI-line
difference optimization estimates with estimates produced by
the multi-resolution re-projection alignment method [31]. The
re-projection method generates simulated projections from a
reconstructed tomogram and estimates per-projection motion
parameters by image-registration of corresponding pairs of
simulated and experiment projections. Multiple iterations are
performed before obtaining the final per-projection motion
estimates.

Figure 12 shows a comparison of the estimated shifts using
the ray-difference method and the re-projection method. Both

methods agree to within a fraction of a detector pixel (or 1
OU), which is particularly obvious for the horizontal shifts,
but also true for the generally smaller vertical ones. We ran
both methods on six computation cores. The re-projection
method execution time was approximately an hour for a total
of six iterations (four iterations at a quarter and two at half
resolution), using a highly optimized GPU implementation
for forward- and back-projection implementation, and ray-
difference execution time was approximately ten minutes for
50 iterations (at full resolution), without optimisation. Please
see section VIII for further discussion of these results.

(a) (b)

(c) (d)

Fig. 11. Reconstruction of a combined sandstone/limestone SF dataset
(horizontal slice showing limestone) (a) without (c) with motion correction.
(b,e) 8x magnifications (from centers) of (a,c).

VIII. DISCUSSION

The ray-difference metric relies on the idea that in a
sufficiently small neighborhood of the true PI-line connecting
two source positions, the difference between the corresponding
(interpolated) projection values is also small and depends
monotonically on the amount of displacement. This is not
necessarily true in reality, due to noise, intensity fluctuations,
low-detail regions in the projections and other factors. By
taking a large number of source position pairs into account,
however, these irregularities tend to average out, depending on
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(a)

Fig. 12. Motion estimation in sandstone/limestone dataset using the inverse
ray difference metric versus the re-projection method (x-axis is projection
number, y-axis is pixel shift).

the nature of the data set and in particular the type of trajectory
used. We would expect the most robust behavior from a
trajectory in which projected source positions are evenly
distributed over most of the detector surface, as is the case
for the space-filling trajectory, and indeed our observations so
far seem to validate this. We acknowledge that there are likely
to be degenerate cases (objects) which potentially produce a
flat cost function (ray-difference sum), particularly in some
of the alignment parameter directions. However, these cases
(such as low contrast and low-feature objects) are challenging
for all a-posteriori alignment methods.

Work with experimental data has shown that the ray-
difference metric is more sensitive to intensity fluctuations
between projections than for example the sharpness metric,
especially in the case of DH trajectory datasets. In the ex-
ample shown in Fig. 7, global alignment using ray-difference
originally failed due to insufficient intensity correction in the
preprocessing stage. We were able to compensate for this
by subtracting from each projection frame the mean ray-
difference along all its PI-lines and repeating this procedure
20 times, after which the performance of the global alignment
procedure was comparable to that for SF trajectory data (c.f.
Figures 7 and 8). This compensation strategy worked well in
this case due to the homogeneity of the sample along the z-
axis, but is of course far too simplistic in general. It leads
us to believe, however, that in principle one could apply ray-
difference methods successfully to the problem of a-posteriori
intensity correction, leading to higher quality images.

Note that we have corrected for misalignment and mo-
tion by affine transformation of projection images. This is a
reasonable approximation for systems with a low cone-angle
geometry and for small misalignments in high cone-angle
systems. However, for large misalignments (or large motion)
in high cone-angle systems the angles of ray paths through the
specimen can change significantly. In this case correction by
allowing the X-ray source to translate will provide a better
approximation to these correct ray paths. A per-projection
change in source position yields a change in geometry, which

is more complicated to implement, and possibly a change in
filtering (for FBP type reconstruction schemes). This is a topic
for future work.

The global alignment examples shown demonstrate that
the ray-difference metric works just as well with binned and
strided data as does the tomogram sharpness metric. We expect
similar results when correcting time-dependent misalignment,
but have not yet verified this. Ray-difference based alignment
methods could thus potentially be integrated within iterative
multi-grid reconstruction schemes.

IX. CONCLUSION

We have presented the concept of PI-lines and a method
to quantify misalignment by defining the accumulated ray-
difference between measured PI-line attenuation. We demon-
strated that the misalignment of a CT instrument can be
determined for both static and time-varying mis-alignments by
minimising this metric (cost function). This PI-line difference
metric is evaluated directly in projection space which is
O(N ) times faster than methods which require N3 voxel
tomograms to be calculated such as the sharpness metric
for global alignment, and the re-projection-alignment method
for per-projection alignment. The PI-line difference method
produced alignment estimates on real experimental data to
within 1OU of the estimates produced by sharpness for static
alignment and by re-projection for time-varying alignment.
Additionally, the ray difference cost function was practically
observed (Fig. 8) to have a larger radius of convergence and
to be more amenable to local descent-based optimisation tech-
niques (improved smoothness and convexity) when compared
to sharpness for static alignment estimation. Full support of
the specimen is not required for PI-line difference, thus region-
of-interest data can be aligned using this technique.

Reliability/robustness of the PI-line difference method is
directly related to spatial distribution of the projected source
points (Fig. 3). The more uniform the spatial sampling across
the detector the greater the likelihood of a well-behaved
cost function (smooth, large global minimum capture radius).
All helical trajectories, except very high-pitch single helices
(namely Katsevich one-PI trajectories) should provide suffi-
ciently dispersed PI-lines for the method to work effectively.
To our knowledge, no reliable a-posteriori methods exist
for high-pitch single-helices, since these trajectories don’t
provide opposing viewing angles and therefore mis-alignments
manifest in the reconstruction as high-frequency artefacts,
rather than as blur. While it is conceivable that there exist
degenerate cases (objects) for which the PI-line difference
optimisation fails to accurately estimate alignment parameters,
it is also likely that PI-line difference optimisation is capable
of accurately estimating alignment parameters in cases where
methods such as sharpness-optimization and re-projection-
alignment fail and therefore provides a computationally cheap
and robust alternative to these tomogram-based methods.
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