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We propose and demonstrate a novel type of optical 
integrated structure consisting of three adiabatically 
coupled waveguides arranged in an N-shaped 
geometry. Unlike conventional adiabatic three-
waveguide couplers mimicking the stimulated Raman 
adiabatic passage (STIRAP) process which utilize 
solely the counter-intuitive coupling and thus operate 
only in one direction, our structure achieves complete 
bidirectional light transfer between two waveguides 
through the counter-intuitive and intuitive coupling 
in either direction, over a wide wavelength range. 
Moreover, the light transfer through the intuitive 
coupling is more efficient and robust than through the 
counter-intuitive coupling. © 2015 Optical Society of 
America 
OCIS codes: (230.7370) Waveguides; (080.1238) Array waveguide 
devices.  
http://dx.doi.org/10.1364/OL.99.099999 

 
The analogy between quantum systems and optical 

waveguide structures make the latter not only a favorable tool 
for emulating quantum phenomena, but also a powerful 
platform for the development of novel photonic devices [1-3]. 
One of such quantum-inspired photonic devices is the 
adiabatic three-waveguide coupler, which is reminiscent of the 
celebrated Stimulated Raman Adiabatic Passage (STIRAP) 
technique [4]. This adiabatic process is inherently tolerant to 
variations of the structure parameters and exhibits a 
broadband operation [5]. Owing to these advantages, the 
spatial analog of STIRAP has been employed to achieve robust 
and multi-wavelength light transfer [6-8], achromatic beam 
splitting [9,10], multi-wavelength spectral filtering [11,12], and 
two-photon quantum gate operations [13].  

The success of STIRAP technique relies on the adiabatic 
evolution of a specific dark state of the involved three-level 
atomic system. To exploit this dark state, the acting laser pulses 
are arranged in a “counter-intuitive” sequence (the Stokes 
pulse ahead of the pump pulse). In such a counter-intuitive 

scheme, the population of atoms is adiabatically transferred 
from the initial state to the final state via the assistance of an 
intermediate auxiliary state which is not populated during the 
entire adiabatic passage [14]. The STIRAP in optical waveguide 
structures is implemented by appropriate engineering of the 
coupling strength between adjacent waveguides along 
propagation. Similar to the three-level atomic system, in 
adiabatic three-waveguide couplers, light can be completely 
transferred from one to the other outer waveguide via 
counter-intuitive coupling [15-19].  

Besides the dark state, the bright state of a three-level 
atomic system can also be used for adiabatic population 
transfer. Such adiabatic passage scheme enabled by a pulse 
sequence acting in the intuitive order is termed ‘bright-state 
STIRAP’ or ‘b-STIRAP’ [20-22]. The b-STIRAP scheme was 
demonstrated experimentally in solid-state systems [20,21] 
and then studied theoretically in other systems under different 
settings [22-26]. In optics, while the basic STIRAP based on 
counter-intuitive coupling is well explored [17,18], there is no 
experimental demonstration of such intuitive-coupling-based 
b-STIRAP scheme, which will allow for bidirectional light 
transport in adiabatic waveguide structures. 

In this Letter, we implement the intuitive coupling scheme 
in optical waveguides and demonstrate experimentally 
bidirectional adiabatic light transfer by employing an N-
shaped waveguide structure with three supermodes. One of 
the supermodes is equivalent to a dark state of the adiabatic 
system, while the other two supermodes correspond to bright 
states. Either the dark state or one of the bright states can be 
used as a channel for adiabatic passage. Therefore, one can 
employ the counter-intuitive and intuitive coupling schemes to 
achieve adiabatic light transfer in two opposite directions, 
respectively. Importantly, the schemes containing three 
waveguides are theoretically more robust and allow flexible 
mode shaping compared to two-waveguide schemes with 
adiabatic coupling [26]. 

The schematic diagrams of the N-type adiabatic waveguide 
coupler and its working principle are shown in Fig. 1. The 
structure is a variant of the conventional STIRAP waveguide 
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the intuitive case, however, the coupling ratios are always 
relatively high (0.985-0.997) and the crosstalk is below -18 dB 
for all the wavelengths we have tested.  This somewhat 
unexpected result suggests that the intuitive coupling scheme 
based on the adiabatic bright state could be a better choice for 
design of efficient and robust waveguide devices under specific 
conditions. Furthermore, the measured output mode profiles 
also confirm the high coupling efficiency of adiabatic processes, 
as shown in Fig. 5. It is evident that the light is cross-coupled 
from one to the other waveguide with negligible residual light 
in the original waveguide.  

 

 
Fig. 5. Measured coupling ratio of the N-type waveguide coupler 
versus the wavelength of light, in the counter-intuitive and 
intuitive coupling schemes. The insets represent the 
corresponding output mode profiles at the wavelength of 1550 nm 
in the counter-intuitive and intuitive cases as indicated.  

 
In conclusion, we have proposed and demonstrated 

experimentally an N-type adiabatic waveguide coupler that 
employs the evolution of both the dark and bright states in 
adiabatic transfer of light. This is an extension of conventional 
counter-intuitive STIRAP process to bidirectional adiabatic 
passage in optical waveguide structures. We also show that, 
compared to the counter-intuitive coupling, the intuitive 
coupling via the bright state is more efficient and more robust 
against the variation of the operating wavelength in our 
structure. The results presented here reveal the potential of 
adiabatic bright states in design of novel photonic devices and 
may stimulate further research and practical applications in 
integrated circuitry for classical [29,30] and quantum [31,32] 
optics. Other fields such as adiabatic frequency conversion [33] 
could also benefit from the application of bright state based 
schemes. 
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