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ABSTRACT

Green’s functions for magnetoelectroelastic medium with an arbitrarily
oriented half-plane or bimaterial interface are presented in this paper. The
derivation is based on an extended Stroh’s formalism and coordinate-transform
technique. In particular, a new coordinate variable is introduced to handle
vertical or other boundary problems. These Green’s functions satisfy related
boundary or interface conditions. The Green’s functions obtained can be used
to establish boundary-element formulation and to analyse fracture behaviour
involving half-plane boundaries or bimaterial interfaces.

§ 1. INTRODUCTION

Green’s functions play an important role in the solution of numerous problems
in the mechanics and physics of solids. It is the heart of many analytical and numer-
ical techniques such as singular-integral-equation methods, boundary-element meth-
ods, eigenstrain approaches, and dislocation methods (Mura 1987, Qin 2001, Qin
and Mai 2002). Pan (2002) derived three-dimensional (3D) Green’s functions for
anisotropic magnetoelectroelastic materials with a horizontal boundary or bimate-
rial interface based on an extended Stroh’s formalism and two-dimensional Fourier
transforms. Soh et al. (2003) also presented 3D explicit Green’s functions for an
infinite 3D transversely isotropic magnetoelectroelastic solid based on the potential
theory. Huang er al. (1998) obtained magnetoelectroelastic Eshelby tensors in an
inclusion resulting from the constraint of the surrounding matrix of piezoelectric—
piezomagnetic composites. Li and Dunn (1998) and Li (2000) studied coupled mag-
netoelectroelastic behaviour arising from an inclusion or an inhomogeneity using
Eshelby’s tensor approach. Based on Stroh’s formalism, conformal mapping, and
Laurent series expansion, Liu et al. (2001) obtained Green’s functions for an infinite
2D anisotropic magnetoelectroelastic medium containing an elliptical cavity or a
crack. The aforementioned studies concerned half-plane boundaries or bimaterial
interfaces in the horizontal direction only. When the boundaries or interfaces
are vertical (or even arbitrarily oriented), the approaches reported in the literature
are not applicable. In the present paper, Green’s functions for 2D anisotropic
magnetoelectroelastic solids with a vertical (or arbitrarily oriented) half-plane
boundary or bimaterial interface are presented, using the coordinate technique.
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The Green’s functions presented here are suitable for implementing into
standard boundary-element formulation and computer programming for numerical
analysis.

§ 2. BASIC FORMULATIONS

The governing equations and general solutions of 2D magnetoelectroelastic
solids where all fields are functions of x; and x, only, are summarized briefly here.
Throughout this paper the shorthand notation introduced by Barnett and Lothe
(1975) and the fixed Cartesian coordinate system (xi,x,,x3) are adopted. Lower-
case Latin subscripts always range from 1 to 3, upper-case Latin subscripts range
from 1 to 5, and the summation convention is used for repeating subscripts unless
otherwise indicated. In the stationary case when no free electric charge, electric
current, and body force are assumed to exist, the complete set of governing equations
for uncoupled electromagnetoelastic problems is (Chung and Ting 1995, Li 2000,
Liu et al. 2001):

Xy =0, ()
together with
Xis = EippnUnmt ns (2)
in which
o5 J =<3, U, M <3,
Yy=14D; J=4, Uy=13 ¢, M=4, 3)
B, J=5, @, M=S5,
Cijmns  J, M <3,
e J <3, M=4,

nij>
Gnij» J <3, M=35,
s J =4 M <3,
Egyn =1 —kin, J=4,M =4, “)
—a,, J=4M=35,
Gim»  J =5M <3,
—a;,, J=5M=4,
—Wy S =5 M =5,

where oj;, D;, and B; are elastic stress tensors, electric displacement vectors, and
magnetic induction vectors respectively; u,,, ¢, and @ denote elastic displacement
vector, electric potential, and magnetic potential; Cj,, are elastic moduli, e,;
are piezoelectric coefficients, ¢,; are piezomagnetic coefficients, a;, are magnetoelec-
tric coefficients, «;, are diclectric constants, and u;, are magnetic permeabilities.
A general solution to equation (1) can be expressed as (Liu ez al. 2001):

U = 2Re[Af(z)q], Q)
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with
A=A, Ay A; Ay A4
f(z) = (/(z,)) = diaglf (z1) f (22) f (z3) f (z4) [ (z5)]

a=1{q1 ¢ 43 91 g5}"
Zi = X| +pixy,

in which “Re” stands for the real part of the complex number, the prime (') denotes
differentiation with respect to the argument, q denotes unknown constants to be
found by boundary conditions, f is an arbitrary function to be determined, and p;
and A are constants determined by

[Q+ (R+R")p, +Tpi]A, =0, (6)

in which the superscript “7” denotes the transpose, and Q, R and T are 5x 5
matrices defined by

Q)ix = Eiki, R)x = Eyigas (Dx = Eygo- (7

The stress—clectric displacement—magnetic induction (SEDMI), 2, obtained from
equation (2) can be written as

2iy==9,,5 2y=0;, (®)
where ¢ is the SEDMI function given as
¢ =2 Re[Bf(z)q], 9
with
B =R7A + TAP = —(QA + RAP)P!
P = (p,) = diag[p| p> p3 pa psl. (10)

§ 3. GREEN’S FUNCTION FOR HALF-PLANE AND BIMATERIAL PROBLEMS

The half-plane or bimaterial interface considered in this section is different from
those reported in the literature (Gao and Fan 1998, Qin and Mai 1998, Qin 1999,
Qin 2001, Pan 2002). The half-plane boundary (or bimaterial) is in the vertical
(x; =0 on the boundary in our analysis) rather than the horizontal direction (see
figure 2). It is obvious that z; = x| + prx, becomes a real number on the horizontal
boundary x,=0. However, z, is, in general, neither a real number nor a pure
imaginary number on the vertical boundary x; =0, which complicates the related
mathematical derivation. To bypass this problem, a new coordinate variable is
introduced:

=2k (11)
Pk
In this case zj is a real number on the vertical boundary x; =0. This coordinate
transformation is used for both the half-plane and bimaterial problem below.
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3.1. Green’s function for full space
For an infinite magnetoelectroelastic solid subjected to a line force qq and a line
dislocation b both located at zy(xy9, X20) (see figure 1), the solution in the form of
equations (5) and (9) is (Qin 1999, 2001):

U = Lim[Afin(; — =o))a]. @ = Im[B{in(z; — Zio))a] (12)

where q is a complex vector to be determined. Since In(z}, — z}) is a multivalued
function we introduce a cut along the line defined by x, = x»y and x; < x;¢. Using the
polar coordinate system (r,6) with its origin at zo(xig, X»9) and with 6=0 being
parallel to the x;-axis, the solution (12) applies to

—n<f<m, r>0. (13)
Therefore
In(zj —zy) =Inr+in, at0=+nfora=1-3. (14)
Owing to this relation, equation (12) must satisfy the conditions
U(m) —U(=m) =b, ¢(1) — ¢(—7) = qq; (15)
which lead to
2Re(Aq) =b, 2Re(Bq) = qq. (16)
This can be written as
5 allal-a) @
B B]lq 9
It follows from the relation
ERd R <

Figure 1. Magnetoelectroelastic half-plane.
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HE M ®

q=A"q, +B"b. (20)

that

Hence

3.2. Green’s function for half-space
Let the material occupy the region x; > 0, and a line force-charge qq and a line
dislocation b apply at zg(x1g, X20). To satisfy the boundary conditions on the infinite
straight boundary of the half-plane, the solution should be modified as follows

1 21
U = —Im{A(in(z; — zZo)la} + D —Im[A{In(zZ — Zjo))a, ). @n
B=1
1 1
0= EIm{B(ln(zZ —Za} + ZEIm{B(ln(zzo — Zho))ag) (22)
p=1

where q is given in equation (20) and qg are unknown constants to be determined.
Consider first the case in which the surface x;=0 is traction-free, so that
(Qin 2001)

=0 atx; =0. (23)
Substituting equation (22) into equation (23) yields
o= %Im{B(ln(xz — Zo))a} + ﬁi;%lm{B(ln(xz — Zi))ag) = 0. (24)
Noting that Im(f) = —Im(f_), we have
Im{B(In(x; — z))q} = —Im{B(In(x, — Z))a}. (25)
and
5
(In(x; — Z)) = ; In(x; — 25, (26)
where
Iy = (85,) = diag[8s1. 842, 843, 8pa. Ops]- 27
Equation (24) now yields
qs =B 'BI;q =B 'BI4(A"q, + B'b). (28)

If the boundary x; =0 is a rigid surface, then
U=0, at x; = 0. (29)
The same procedure shows that the solution is given by equations (21) and (22) with

qs=A'Al;(A"q, +B'b). (30)
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Therefore the final version of the Green’s function can be written in terms of z; as

1 3.1

U = Im{A{In(z, — z00)/pea} + D —I{A(InGa/pa = Zp0/p)lash  B1)
p=1
1 1

¢ = _Im{B{In(z, — z0)/poJa} + Y Im{B{InCz./po = Z/Bp)lag}.  (32)
B=1

3.3. Green’s function for a bimaterial problem
We now consider a bimaterial solid whose interface is on x,-axis (x; =0).
It is assumed that the left half-plane (x; <0) is occupied by material 1, and the
right half-plane (x; > 0) by material 2 (figure 2). They are rigidly bonded together
so that

UD— U2, o0 =@, atx =0, (33)

where the superscripts (1) and (2) label the quantities relating to materials 1 and 2
respectively. The equality of traction continuity comes from the relations t = 0¢/0s.
When points along the interface are considered, integration of t’=t® provides
equations (33), since the integration constants corresponding to rigid motion can
be neglected.

For a magnetoelectroelastic bimaterial plate subjected to a line force-charge qq
and a line dislocation b both located in the left half-plane at zo(x;¢, o) (figure 1),
the solution may be assumed, in a similar treatment to that in the half-plane
problem, in the form

1 . 21 W) =
U = tm{AO(n( - 20" )a) + ;Elm{A(l)(ln(za(l) 7 0)  EX)

(p(l):%l [ (”<ln(z*“) *8))>q}+i%lm{B(l)<ln(zz(])—5;(01))>qg)}, (35)

p=1

2o (X195 X59)

Material 1

Material 2
T~ Interface

Figure 2. Magnetoelectroelastic bimaterial plate.
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for material 1 in x; < 0 and

5

U = ;%lm{A(z)On(zZ@ — ) )a ) (36)
4

0® = ;%Im{B(2)<ln<zz(2) — "))} (37)

for material 2 in x; > 0, where z:;g)zzgo)/pg) 220 = 0 /p0 (1=1,2). The

value of q is again given in equation (20) and qg), qg) are unknown constants
which are determined by substituting equations (34)-(37) into equation (33).

Following the derivation in section 3.2, we obtain
A(l)qg) + A(Z)(_l,(f}z) — A(I)Iﬂ(_la B(')q,(g]) + ]:)'(2)(—1/(32) — B(I)Iﬂ(_l- (38)

Solving equation (38) yields

_ -1 -
q/(g]) _ B(1)71 |:I _ 2(M(1)71 + M(Z)*l) L(l)li|B(1)Iﬂ('l’ (39)
B -1
q/(gz) _ HR®-1 (M(l)—l + M(2)—1) L(l)_lB(l)Ilgq, (40)
where MY = — iBYAY) =1 is the surface impedance matrix.

§ 4. GREEN’S FUNCTION FOR A SOLID WITH AN ARBITRARILY ORIENTED
HALF-BOUNDARY OR BIOMATERIAL INTERFACE
If the half-boundary is in an angle 6, (6,7 0) with positive x-axis, the corre-
sponding Green’s function can be obtained by introducing a new mapping function

2= (6 #0), (41)

which maps the boundary 6 =06, in the z-plane onto the real axis in the ¢-plane
(E+1n) (figure 3).

€ —plane

/‘ €0 (Epomp)

0|/ :

Figure 3. Magnetoelectroelastic solid with arbitrarily oriented half-plane.
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Following the procedure in sections 3.2 and 3.3 it can be shown that the resulting
Green’s functions can be expressed as

U= gim{afn( -]+ 3 {afn( -5 o

1

|
o= L[ o} + 3w (2 -5}

for the half-plane problem, and

1 2.1
U = EIm{A(l)<ln(zfxl)"/00 — ZSO)"/HO»q} + Z#m{&”(ln(z&”n/g" — 25310)75/90)>qg)},

B=1
(44)
1 1
o) = ~Im {B<1><1n(zg}>n/90 _ Z&lgn/eo»q] + > _Im [B<1><1n(zgnn/eo _ Z;l())n/e)(,))qg)},
(43
for material 1 in x; <0 and
1
U = 3" im{A(In (7% — ") )g ], (46)
B=1
5
1
0% =3 tm{B(In (=0 — ) )g? . 47)
p=1

for material 2 in a biomaterial problem, where qp, q(ﬁl), and ql(gz) have, respectively,
the same forms as those given in equations (30), (39), and (40).

§ 5. CONCLUSIONS
Green’s functions in closed form for magnetoelectroelastic solids with a vertical
or arbitrarily oriented boundary or interface have been derived through the use of
Stroh’s formalism, conforming mapping and a coordinate-transform technique.
These Green’s functions satisfy the related boundary or interface conditions.
Introduction of a new coordinate variable simplifies the mathematical calculations.
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