

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2015 Society for Industrial and Applied Mathematics
Vol. 37, No. 3, pp. C331–C353

FAULT TOLERANT COMPUTATION WITH THE SPARSE GRID
COMBINATION TECHNIQUE∗

BRENDAN HARDING† , MARKUS HEGLAND† , JAY LARSON† , AND JAMES SOUTHERN‡

Abstract. This paper continues to develop a fault tolerant extension of the sparse grid combi-
nation technique recently proposed in [B. Harding and M. Hegland, ANZIAM J. Electron. Suppl.,
54 (2013), pp. C394–C411]. This approach to fault tolerance is novel for two reasons: First, the
combination technique adds an additional level of parallelism, and second, it provides algorithm-
based fault tolerance so that solutions can still be recovered if failures occur during computation.
Previous work indicates how the combination technique may be adapted for a low number of faults.
In this paper we develop a generalization of the combination technique for which arbitrary collections
of coarse approximations may be combined to obtain an accurate approximation. A general fault
tolerant combination technique for large numbers of faults is a natural consequence of this work.
Using a renewal model for the time between faults on each node of a high performance computer,
we also provide bounds on the expected error for interpolation with this algorithm in the presence
of faults. Numerical experiments solving the scalar advection PDE demonstrate that the algorithm
is resilient to faults on a real application. It is observed that the time to solution is not significantly
affected by the presence of (simulated) faults. Additionally the expected error increases with the
number of faults but is relatively small even for high fault rates. A comparison with traditional
checkpoint-restart methods applied to the combination technique shows that our approach is highly
scalable with respect to the number of faults.

Key words. exascale computing, algorithm-based fault tolerance, sparse grid combination
technique, parallel algorithms

AMS subject classifications. 65Y05, 68W10

DOI. 10.1137/140964448

1. Introduction. Many recent survey articles on the challenges of achieving ex-
ascale computing identify three issues to be overcome: exploiting massive parallelism,
reducing energy usage, and, in particular, coping with run-time failures [2, 6, 3].
Faults are an issue at petascale/exascale due to the increasing number of components
in such systems. Traditional checkpoint-restart–based solutions become infeasible at
this scale as the decreasing mean time between failures approaches the time required
to checkpoint and restart an application. Algorithm-based fault tolerance has been
studied as a promising solution to this issue for many problems [14, 1].

Sparse grids were introduced in the study of high-dimensional problems to re-
duce the curse of dimensionality. They are based on the observation that when a
solution on a regular grid is decomposed into its hierarchical bases, the highest fre-
quency components have the most unknowns but contribute the least to sufficiently
smooth solutions. Thus removing some of these high frequency components has a

∗Submitted to the journal’s Software and High-Performance Computing section April 10, 2014;
accepted for publication (in revised form) March 3, 2015; published electronically May 12, 2015.
This research was supported by the Australian Research Council’s Linkage Projects funding scheme
(project LP110200410). We are grateful to Fujitsu Laboratories of Europe for providing funding as
the collaborative partner in this project.

http://www.siam.org/journals/sisc/37-3/96444.html
†Mathematical Sciences Institute, The Australian National University, Acton, Australian Capital

Territory, 2601, Australia (brendan.harding@anu.edu.au, markus.hegland@anu.edu.au, jay.larson@
anu.edu.au).

‡Fujitsu Laboratories of Europe, Hayes Park Central, Hayes, Middlesex, UB4 8FE, UK (james.
southern@gmail.com).

C331

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sisc/37-3/96444.html
mailto:brendan.harding@anu.edu.au
mailto:markus.hegland@anu.edu.au
mailto:jay.larson@anu.edu.au
mailto:jay.larson@anu.edu.au
mailto:james.southern@gmail.com
mailto:james.southern@gmail.com

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C332 B. HARDING, M. HEGLAND, J. LARSON, AND J. SOUTHERN

small impact on the accuracy of the solution but significantly reduces the computa-
tional complexity [8, 7]. The combination technique was introduced to approximate
sparse grid solutions without the complications of computing with a hierarchical basis.
In recent years these approaches have been applied to a wide variety of applications
from real-time visualization of complex datasets to solving high-dimensional problems
that were previously cumbersome [18, 8].

Previous works [9, 17, 10] have described how the combination technique can be
implemented within a MapReduce [4] framework. MapReduce is a functional pro-
gramming pattern by which an application is factored into successive “Map” and
“Reduce” stages; in the combination technique these correspond to the computation
of component grid solutions and their subsequent combination to arrive at a solution,
respectively. This approach endows an extra layer of parallelism at relatively low im-
plementation cost. Furthermore, fault tolerance is a natural outgrowth of MapReduce
and can be achieved by recomputing failed Map tasks. Also proposed was an alter-
native fault tolerant approach in which recomputation of failed tasks can be avoided
by computing a solution that excludes the failed component solutions with a small
trade-off in solution error. In [11] we demonstrated this approach for a simple two-
dimensional problem showing that the average solution error after simulated faults
was generally close to that without faults.

Here, we extend our previous work in the following ways: We generalize the com-
bination technique beyond the classic combination; we apply this generalized formu-
lation to define a procedure for computing alternative solutions in response to process
failures; we provide expected error bounds for sparse grid interpolation under scenar-
ios in which the classic combination suffers faults in one or more of its component
grids; and we apply this approach to a three-dimensional benchmark problem. This
generalized combination technique formulation is applicable to an arbitrary collection
of grids that belong to a lattice of nested grids. Motivated by inclusion/exclusion
principles and error bounds for sparse grid interpolation, we have formulated the
computation of combination coefficients as a constrained binary integer programming
problem (BIP), resulting in a general fault tolerant combination technique. This ap-
proach forms the core of a general framework for computations using the fault tolerant
combination technique (FTCT) and operates as follows: Consider an application that
at the outset aims to compute component solutions on a collection of grids for which
the combination formula is known. If one or more of these component solutions
are lost due to faults, a new set of coefficients is calculated for the combination by
solving the corresponding BIP. This new combination formula is applied to compute
an alternative approximation to the solution. We evaluate the accuracy, scalability
with respect to number of faults, and parallel performance of this strategy for the
three-dimensional scalar advection equation.

The remainder of the paper is organized as follows. In section 2 we review the
combination technique and some well-known results which are relevant to our analysis
of the FTCT. We then develop the notion of a general combination technique and
show that the derivation of combination coefficients can be framed as a BIP.

In section 3 we describe how the general combination technique gives rise to a
general fault tolerant combination technique able to handle large numbers of faults.
As the corresponding BIP may be cumbersome to solve, we discuss some specialized
scenarios for which combination coefficients may be found quickly. Using a simple
model for faults on each node of a supercomputer, we are able to model the failure
of component grids in the combination technique and apply this to the simulation of
faults in our code. We derive bounds on the expected error of sparse grid interpolation

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAULT TOLERANT COMBINATION TECHNIQUE C333

and briefly demonstrate how faults affect the scalability of the algorithm as a whole
for the specialized cases discussed.

In section 4 we describe the details of our implementation. In particular we discuss
the two layers of parallelism and how these interact throughout the computation.

Finally, in section 5 we present numerical results obtained by running our im-
plementation with simulated faults on a PDE solver. It is demonstrated that the
implementation is algorithmically scalable; that is, the time to solution is not signif-
icantly affected by large numbers of faults and has a relatively small impact on the
solution error.

2. The combination technique and a generalization. We introduce the
combination technique and a classical result which will be used in our analysis of the
FTCT. For a complete introduction of the combination technique one should refer to
[5, 8, 7]. We then extend this to a more general notion of a combination technique
building on existing work on adaptive sparse grids [12].

2.1. The combination technique. Let i ∈ N; then we define Ωi := {k2−i :
k = 0, . . . , 2i} to be a discretization of the unit interval. Similarly, for i ∈ Nd we
define Ωi := Ωi1 × · · · ×Ωid as a grid on the unit d-cube. Throughout the rest of this
paper we treat the variables i, j as multi-indices in Nd. We say i ≤ j iff ik ≤ jk for
all k ∈ {1, . . . , d}, and similarly, i < j iff i ≤ j and i �= j.

Now suppose we have a problem with solution u ∈ V ⊂ C([0, 1]d); then we use
Vi ⊂ V to denote the function space consisting of piecewise linear functions uniquely
determined by their values on the grid Ωi. Further, we denote an approximation of
u in the space Vi by ui. The sparse grid space of level n is defined to be V s

n :=∑
‖i‖1≤n Vi. A sparse grid solution is a us

n ∈ V s
n which closely approximates u ∈ V .

The combination technique approximates sparse grid solutions by taking the sum of
several solutions from many different anisotropic grids. The classical combination
technique with level n is given by the equation

(2.1) uc
n :=

d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
‖i‖1=n−k

ui .

Fundamentally, this is an application of the inclusion/exclusion principle. This can
be seen if the function spaces are viewed as a lattice [12]. For example, if one wishes
to add the functions ui ∈ Vi and uj ∈ Vj , then the result will have two contributions
from the intersection space Vi∧j = Vi ∩ Vj , with i∧ j = (min{i1, j1}, . . . ,min{id, jd}).
To avoid this we simply take ui+uj−ui∧j . This can be seen in Figure 1, which shows
a level 4 combination in two dimensions.

An important concept in the development of sparse grids is that of the hierarchical
surplus. A simple definition of the hierarchical surplus Wi is the space of all functions
fi ∈ Vi such that fi is zero when sampled on all grid points in the set

⋃
j<i Ωj .

Equivalently, we have Vi = Wi ⊕
∑

j<i Vj . Noting that Vi =
⊕

j≤i Wj , a hierarchical
decomposition of ui ∈ Vi is the computation of the unique components hj ∈ Wj for
j ≤ i such that ui =

∑
j≤i hj. The sparse grid space can also be written in terms of

hierarchical surpluses as V s
n =

⊕
‖i‖1≤n Wi.

Let H2
0,mix be the Sobolev space having zero boundaries and dominating mixed

derivatives with norm

‖u‖2H2
0,mix

=
∑

‖i‖∞≤2

∥∥∥∥∂‖i‖1

∂xi
u

∥∥∥∥
2

2

.

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C334 B. HARDING, M. HEGLAND, J. LARSON, AND J. SOUTHERN

Fig. 1. A level 4 combination in two dimensions. The nine component grids are arranged
according to the frequency of data points in each dimension. A plus or minus denotes a combination
coefficient of +1 or −1, respectively. In the top right is the (enlarged) sparse grid corresponding to
the union of the component grids.

If u ∈ H2
0,mix, then we have the estimate ‖hj‖2 ≤ 3−d2−2‖i‖1 |u|H2

0,mix
for each of the

hierarchical spaces where |u|H2
0,mix

:= ‖ ∂2d

∂x2
1···∂x2

d
u‖2 is a seminorm [5]. In the classical

theory of the combination technique this estimate is used to prove the error bound

‖u− uc
n‖2 ≤

∑
‖j‖1>n

‖hj‖2 ≤ 3−d|u|H2
0,mix

∞∑
k=n+1

2−2k

(
k + d− 1

d− 1

)
(2.2)

=
1

3
· 3−d2−2n|u|H2

0,mix

d−1∑
k=0

(
n+ d

k

)(
1

3

)d−1−k

(2.3)

=
1

3
· 3−d2−2n|u|H2

0,mix

(
nd−1

(d− 1)!
+O(nd−2)

)

for sparse grid interpolation. Similar bounds can be shown for the ∞ and energy
norms [7].

In practice, strongly anisotropic grids, i.e., those with ‖i‖∞ ≈ ‖i‖1, can be prob-
lematic. Not only are they difficult to compute in some circumstances, but one also
finds that they give poor approximations that do not cancel out in the combination
as expected. Therefore it is often beneficial to implement a truncated combination.
In this paper we define a truncated combination as

(2.4) uc
n,τ :=

d−1∑
k=0

(−1)k
(
d− 1

k

) ∑
‖i‖1=n−k
min(i)≥τ

ui ,

where τ is referred to as the truncation parameter. Such combinations will be used
for the numerical results presented in section 5.

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAULT TOLERANT COMBINATION TECHNIQUE C335

2.2. A general combination technique. The combination technique can be
generalized arbitrary sums of solutions computed on different grids. Given a (finite)
set of multi-indices I ⊂ Nd, one can write

(2.5) uc
I =

∑
i∈I

ciui ,

where the ci are referred to as the combination coefficients. It is straightforward to
show that uc

I ∈ V s
I :=

∑
i∈I Vi =

⊕
i∈I↓ Wi, where I ↓ = {i ∈ Nd : ∃j ∈ I with i ≤

j} is the smallest downset containing I. Not every choice of the ci will produce a
reasonable approximation to u. The question now is which combination coefficients
produce the best approximation to u? One could attempt to solve the optimization
problem of minimizing, for example, ‖u−∑i∈I ciui‖2 which is known as opticom [13].
However, this may be cumbersome to solve in a massively parallel implementation and
also requires an approximation of the residual. In this paper we consider combinations
which we know a priori will give a good approximation in some sense. We define a
sensible combination to be one in which each hierarchical space contributes either
once to the solution or not at all. In particular we would like the coefficients to
follow an inclusion/exclusion similar to that of the classical combination technique as
described in section 2.1. We observe that Wi ⊂ Vj for all j ≥ i; therefore one can
easily determine how many times a given Wi contributes to the solution by summing
all of the coefficients cj for which Wi ⊂ Vj . Further, it is also desirable that the i for
which Wi contributes to the solution forms a downset; see [12]. In light of this we
have the following definition.

Definition 2.1. A set of combination coefficients {ci}i∈I is said to be valid if
for each i ∈ I ↓ it satisfies the property∑

j∈I, j≥i

cj ∈ {0, 1} .

Further, if
∑

j∈I, j≥i cj = 1 for some i ∈ I ↓, then ∑j∈I, j≥i′ cj = 1 for all i′ ≤ i.
We refer to a combination (of solutions) as valid if the corresponding combination
coefficients are valid.

The motivation for this definition is that these properties are satisfied for dimen-
sion adaptive sparse grids [12]. Let Pi : V �→ Vi be a lattice of projection operators
associated with the tensor product space V which satisfy PiPj = Pi∧j , PiPj = PjPi,
and PiPi = Pi. Given a downset I and PI : V �→ V s

I , it follows from [12, p. C344]
that for i ∈ I

PiPI = Pi

(
1−

∏
j∈I

(1− Pj)

)
= Pi − Pi(1− Pi)

∏
j∈I\{i}

(1− Pj) = Pi .

Letting PI =
∑

i∈I ciPi it follows that
∑

{j∈I s.t. j∧i=i} ci =
∑

j∈I, j≥i ci = 1.
For a given I there are many sets of valid combination coefficients that one might

take. To determine which of these a priori will give the best approximation of u, we
use error estimates for sparse grid interpolation. It is reasonable to expect that such
combinations will work well in a more general setting given the underlying inclusion/
exclusion principle. The error estimate (2.2) for sparse grid interpolation is extended
to the general combination technique by

‖u− uc
I‖2 ≤ 3−d|u|H2

0,mix

∑
i∈Nd

⎛
⎝4−‖i‖1

∣∣∣∣∣∣1−
∑

j∈I, j≥i

cj

∣∣∣∣∣∣
⎞
⎠ .

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C336 B. HARDING, M. HEGLAND, J. LARSON, AND J. SOUTHERN

Rather than searching for coefficients which minimize ‖u−uc
I‖2 directly, we can search

for coefficients which minimize the bound; for valid coefficients this is equivalent to
maximizing

(2.6) Q({ci}i∈I) :=
∑
i∈I↓

4−‖i‖1

∑
j∈I, j≥i

cj .

Therefore, the general problem of finding the best combination of solutions ui for
i ∈ I can be formulated as an optimization problem, in particular the maximization
of Q({ci}i∈I) subject to the constraints

∑
j∈I, j≥i cj ∈ {0, 1} for each i ∈ I and∑

j∈I, j≥i′ cj ≥ ∑
j∈I, j≥i cj for all i′ ≤ i. Since the ci must be integers this would

be a simple integer linear programming problem if not for the nontrivial constraints.
(To see why the ci must be integers, we note that the nonzero ci for which cj = 0
for all j > i must be 1 in order for the set of coefficients to be valid. The remaining
coefficients are now obtained from the application of the inclusion/exclusion principle
which can only result in integer coefficients.) Fortunately we can simplify this by
introducing the hierarchical coefficient.

Definition 2.2. Let I be a set of multi-indices; then for i ∈ I ↓ we define the
hierarchical coefficients

(2.7) wi :=
∑

j∈I, j≥i

cj .

Suppose we expand our list of coefficients to the set {ci}i∈I↓ with the assumption
ci = 0 for i /∈ I. Now let c, w be vectors for the sets {ci}i∈I↓, {wi}i∈I↓, respectively
(both having the same ordering with respect to i ∈ I ↓). Using (2.7) we can write
w = Mc, where M is an |I ↓ | × |I ↓ | matrix. Further, we note that if the elements
of c, w are ordered according to ascending or descending values of ‖i‖1, then M is an
upper or lower triangular matrix, respectively, with 1’s on the diagonal. Therefore M
is invertible, and we can write c = M−1w. Additionally, the restriction that ci = 0
for i /∈ I can be written as (M−1w)i = 0.

Since wi ∈ {0, 1} for any set of valid coefficients we can formulate the general
coefficient problem (GCP) as the BIP

(2.8)

argmin
w

Q′(w) := −
∑
i∈I↓

4−‖i‖1wi

subject to (M−1w)i = 0 for i /∈ I,

wi ≥ wj for all i < j.

Many of the inequality constraints are redundant and as such can be reduced to wi ≥
wi+ek for all i and k = 1, . . . , d with ek being the multi-index with (ek)l = δk,l. This
is more manageable in practice and can be solved using a variety of algorithms that
are typically based on branch-and-bound and/or cutting plane techniques. However,
this formulation also reveals that the general coefficient problem is NP-complete [15].
If I is a downset, then we can solve this rather quickly, but in general there exist cases
which take an incredibly long time to solve. Another problem one runs into is that
there is often not a unique solution. In such circumstances we will simply pick any one
of the optimal solutions as they cannot be further distinguished without additional
information about u.

The only way to guarantee that a solution can be found quickly is to carefully
choose the index set I. One particular class of index sets of interest are those which

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAULT TOLERANT COMBINATION TECHNIQUE C337

are closed under the ∧ operator, that is, if i, j ∈ I, then i ∧ j ∈ I. In the theory of
partially ordered sets, (I,≤) with this property is referred to as a lower semilattice.
For such I there is a unique solution to the GCP, namely wi = 1 for all i ∈ I ↓, which
clearly minimizes Q′(w). The fact that the constraints are satisfied is readily checked.
Computationally the coefficients can be found quickly by first finding max I := {i ∈
I : �j ∈ I s.t. j > i}, setting ci = 1 for i ∈ max I, and then using the inclusion/
exclusion principle to find the remaining coefficients in the order of descending ‖i‖1.
This can also be viewed as an application of the lattice theory of projections on
function spaces [12].

While the GCP as developed here is based upon estimates for u ∈ H2
0,mix, we

anticipate that the resulting combinations will still yield reasonable results for larger
function spaces. This is based on the observation that the classical combination
technique has been successfully applied to a wide variety of problems with u /∈ H2

0,mix.

3. Fault tolerant combination technique and fault simulation.

3.1. Fault tolerant combination technique (FTCT). In [9, 10] a fault tol-
erant combination technique was introduced. The most difficult aspect of generalizing
this work is the updating of coefficients. While some theory and a few simple cases
have been investigated, no general algorithm has been presented. Given the develop-
ment of the general combination technique in section 2.2, we are now able to consider
a more complete theory of the FTCT.

Suppose we have a set I of multi-indices for which we intend to compute each
of the solutions ui and combine as in (2.5). As each of the ui can be computed
independently, the computation of these is easily distributed across different nodes of
a high performance computer. Suppose that one or more of these nodes experience
a fault, hardware or software in nature. As a result, the computation of some of the
ui may not complete. We denote J ⊂ I to be the set of indices for which the ui did
not complete. A lossless approach to fault tolerance would be to recompute ui for
i ∈ J . However, since recomputation is often costly, we propose a lossy approach to
fault tolerance in which the failed solutions are not recomputed. In this approach,
rather than solving the GCP for I, we instead solve it for I\J . As (I\J) ↓ ⊆ I ↓, we
expect this solution to have a larger error than the solution obtained if no faults had
occurred. However, if |J | is relatively small, we would also expect the loss of accuracy
to be small because of the redundancy within the coarse approximations {ui}i∈I .

It is important to note at this point that our main consideration is faults which
are fatal to a process/node and hence any computations on it. We suggest that our
algorithm may also be used in the context of silent errors if a suitable error detection
algorithm is implemented. Given the many coarse solutions, one might compare the
result between each and reject coarse solutions which are significantly different from
the others. The development and evaluation of such silent error detection schemes
will not be explored in this paper.

As discussed in section 2.2, the GCP can be costly to solve in its most general
form. While it can be solved rather quickly if the poset (I,≤) is a lower semilattice,
this is no longer any help in the FTCT since the random nature of faults means we
cannot guarantee that (I\J,≤) is always a lower semilattice. The only way we can
ensure this is to restrict which elements of I can be in J . A simple way to achieve
this is to recompute missing ui if (I\{i},≤) is not a lower semilattice. In particular,
this is achieved if all ui with i /∈ max I are recomputed upon failure. Since elements
in max I correspond to the solutions on the largest of the grids, we are avoiding
the recomputation of the solutions which take the longest to compute. As these are

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C338 B. HARDING, M. HEGLAND, J. LARSON, AND J. SOUTHERN

also the most prone to failure, one already has a significant impact on the expected
time spent on recomputations. Additionally, this also means only the largest of the
hierarchical spaces are ever omitted as a result of a failure. As these contribute the
least to the solution, we expect the resulting error to be relatively close to that of
the solution obtained if no faults had occurred. Finally, since (I\J,≤) is still a lower
semilattice, the resulting GCP for I\J has a unique maximal solution which is easily
computed.

We now illustrate this approach as it is applied to the classical combination tech-
nique. We define In = {i ∈ Nd : ‖i‖1 ≤ n}. It was shown in [9] that the proportion
of additional unknowns in computing the solutions ui for all i ∈ In compared to
n− d < ‖i‖1 ≤ n is at most 1

2d−1
. If no faults occur, then the combination is exactly

the classical combination technique with ci = (−1)n−‖i‖1
(

d−1
n−‖i‖1

)
if n − d < ‖i‖ ≤ n

and ci = 0 otherwise. If faults do occur, then we recompute any ui with ‖i‖1 < n that
was not successfully computed. If no faults occurred for any ui with ‖i‖ = n, then we
can again proceed with the classical combination. If faults affect any ui with ‖i‖1 = n,
then we add such i to the set J and then solve the GCP for In\J . The solution to
(2.8) is trivially obtained with hierarchical coefficients wi = 1 for all i ∈ In\J .

The largest solutions (in terms of unknowns) which may have to be recomputed
are those with ‖i‖1 = n− 1, which would be expected to take at most half the time
of those solutions with ‖i‖1 = n. Since they take less time to compute they are
also less likely to be lost due to failure. Additionally, there are

(
n−1+d−1

d−1

)
solutions

with ‖i‖1 = n − 1, which is less than the
(
n+d−1
d−1

)
with ‖i‖1 = n. Combining these

observations, we would expect to see far fewer disruptions caused by recomputations
when using this approach compared to a lossless approach where all failed solutions
are recomputed.

The worst-case scenario with this approach is that all ui with ‖i‖1 = n are
not successfully computed due to faults. In this case the resulting combination is
simply a classical combination of level n− 1. This requires only the solutions ui with
n − d ≤ ‖i‖ ≤ n − 1. Likewise, all solutions to the GCP in this approach result in
zero coefficients for all ci with i < n− d. We can therefore reduce the overhead of the
FTCT by computing only the solutions ui for n− d ≤ ‖i‖1 ≤ n. It is known that the
proportion of additional unknowns compared to the classical combination technique
in this case is at most 1

2(2d−1) [9].

The solutions ui with ‖i‖1 = n − 1 are only half the size of the largest ui, and
hence recomputation of these may still be somewhat disruptive and thus undesirable.
We could therefore consider recomputing only solutions with ‖i‖1 ≤ n− 2. By doing
this the recomputations are even more manageable, having at most one-quarter the
unknowns of the largest ui. The worst case now is that all solutions with i ≥ n − 1
fail, and one obtains a classical combination of level n − 2. Again it turns out one
does not require the entire downset In; in this case one requires solutions ui with
n− d− 1 ≤ ‖i‖1 ≤ n. Using arguments similar to those in [9], it is easily shown that
the overhead in this case is at most 3

4(2d−1)
. The trade-off now is that the update of

coefficients takes a little more work. We are back in the situation where we cannot
guarantee that (In\J,≤) is a lower semilattice.

To solve the GCP in this case we start with all wi equal to 1. If failures affected
any ui with ‖i‖1 = n, we set the corresponding constraints ci = wi = 0. For failures

occurring on ui with ‖i‖1 = n− 1 we have the constraints wi −
∑d

k=1 wi+ek = 0. We
note that (since the wi are binary variables) this can only be satisfied if at most one of

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAULT TOLERANT COMBINATION TECHNIQUE C339

the wi+ej is equal to 1. Further, if
∑d

k=1 wi+ek = 0, we must also have wi = 0. This
gives us a total of d+ 1 feasible solutions to check for each such constraint. Given g
failures on solutions with ‖i‖1 = n − 1, we have at most (d + 1)g feasible solutions
to the GCP to check. We note that typically all these need not be checked to find a
minimum. Where some of the failures on the second layer are sufficiently far apart
on the lattice, it is possible to significantly reduce the number of cases to check as
constraints can be optimized independently. Further, this can be kept manageable if
solutions are combined frequently enough that the number of failures g that are likely
occur between combinations is small.

We could continue and describe an algorithm for only recomputing the fourth layer
and below; however, the coefficient updates here become much more complex such that
one effectively solves the full GCP. Our experience indicates that the recomputation
of the third layer and below is a good trade-off between the need to recompute and
the complexity of updating the coefficients. Our numerical results in section 5 are
obtained using this approach.

3.2. Probability of failure for computations. To analyze the expected out-
come of the fault tolerant combination technique described in section 3.1, we need to
know the probability of each ui failing. In particular, the availability of ui will be
modelled as a simple Bernoulli process Ui which is 0 if ui was computed successfully
and is 1 otherwise. It is assumed that each ui is computed on a single computational
node. Therefore we are interested in the probability that a failure occurs on this
node before the computation of ui is complete, that is, Pr(Ui = 1). Suppose T is a
random variable denoting the time to failure on a given node and the time required
to compute ui is given by ti; then one has Pr(Ui = 1) = Pr(T ≤ ti). One therefore
needs to know something about the distribution of T .

Schroeder and Gibson analyzed the occurrence of faults on 22 high performance
machines at Los Alamos National Laboratory from 1996–2005 [19]. They found that
the distribution of time between failures for a typical node in the systems studied was
best fit by the Weibull distribution with a shape parameter of 0.7. Based upon this
study we will consider a model of faults on each node based upon the Weibull renewal
process, which is a renewal process where interarrival times are Weibull distributed,
with shape parameter 0 < κ ≤ 1.

There are several reasons for considering a renewal process for modelling faults.
First, renewal theory is commonly used in availability analysis, and there are many
extensions such as alternating renewal processes in which one can also consider repair
times. Second, we expect a fault tolerant implementation of message passing interface
(MPI) to enable the substitution of a failed node with another available node in
which case computation can continue from some recovered state. This will be further
discussed in section 3.3. We now derive the value of Pr(Ui = 1).

Let {Xk}∞k=1 be random variables for the successive times between failures on a
node. We assume that the Xk are positive and independent and identically distributed
with cumulative distribution

(3.1) F (t) := Pr(Xk ≤ t) = 1− e−(t/λ)κ

for some 0 < λ < ∞ and 0 < κ ≤ 1. Let Sk =
∑k

m=1 Xm (for k ≥ 1) be the waiting
time to the kth failure. Let N(t) count the number of failures that have occurred
up to (and including) time t, that is, N(t) = max{k : Sk ≤ t}). By the elementary

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C340 B. HARDING, M. HEGLAND, J. LARSON, AND J. SOUTHERN

renewal theorem one has

(3.2) lim
t→∞

1

t
E[N(t)] =

1

E[X1]
=

1

λΓ(1 + 1
κ)

.

We thus get an expression for the (long term) average rate of faults.

Now, while we have a distribution for the time between failures, when a compu-
tation starts it is generally unknown how much time has elapsed since the last failure
occurred. Hence our random variable T is what is referred to as the random incidence
(or residual lifetime). Noting that one is more likely to intercept longer intervals of
the renewal process than shorter ones and that the probability distribution of the
starting time is uniform over the interval, it is straightforward to show [20] that T
has density

g(t) =
1− F (t)

E[X1]
=

e−(t/λ)κ

λΓ(1 + 1
κ)

.

It follows that the cumulative probability distribution is given by

G(ti) := Pr(T ≤ ti) =
1

λΓ(1 + 1
κ)

∫ ti

0

e−(x/λ)κdx .

The resulting distribution has properties similar to those of the original Weibull dis-
tribution. In fact, when κ = 1 we note that Xk and T are identically distributed:
i.e., they are exponential with mean λ. Further, for 0 < κ ≤ 1 we have the following
bound.

Lemma 3.1. For 0 < κ ≤ 1 one has

(3.3) G(t) ≤ F (t).

Proof. We note that via a change of variables

Γ

(
1 +

1

κ

)
=

∫ ∞

0

y
1
κ e−ydy =

∫ ∞

0

κ

λ

(x
λ

)κ
e−(x/λ)κdx,

and therefore

Γ

(
1 +

1

κ

)
e−(t/λ)κ =

∫ ∞

0

κ

λ

(x
λ

)κ
e−(x/λ)κe−(t/λ)κdx

=

∫ ∞

0

x

λ

κ

λ

(x
λ

)κ−1

e−(x/λ)κe−(t/λ)κdx

=
[
−x

λ
e−(x/λ)κe−(t/λ)κ

]∞
0

−
∫ ∞

0

− 1

λ
e−(x/λ)κ−(t/λ)κdx

=

∫ ∞

0

1

λ
e−(x/λ)κ−(t/λ)κdx.

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAULT TOLERANT COMBINATION TECHNIQUE C341

Since 0 < κ ≤ 1 and t, x ≥ 0, one has xκ + tκ ≥ (x+ t)κ and hence

Γ

(
1 +

1

κ

)
e−(t/λ)κ ≤

∫ ∞

0

1

λ
e−((x+t)/λ)κdx

=

∫ ∞

t

1

λ
e−(x/λ)κdx

=

∫ ∞

0

1

λ
e−(x/λ)κdx−

∫ t

0

1

λ
e−(x/λ)κdx

= Γ

(
1 +

1

κ

)
− 1

λ

∫ t

0

e−(x/λ)κdx.

Rearranging gives

1

λΓ(1 + 1
κ)

∫ t

0

e−(x/λ)κdx ≤ 1− e−(t/λ)κ ,

which is the desired inequality.
As a result of Lemma 3.1 one has that the probability of ui failing to compute

successfully is bounded above by

Pr(Ui = 1) = G(ti) ≤ F (ti).

Remark 1. The result of Lemma 3.1 is essentially a consequence of the property

(3.4) Pr(X ≤ s+ t | X > s) ≤ Pr(X ≤ t),

where X is Weibull distributed with shape parameter 0 < κ ≤ 1 and s, t ≥ 0. This
property can be extended to the fact that if s2 ≥ s1 ≥ 0, then

Pr(X ≤ s2 + t | X ≥ s2) ≤ Pr(X ≤ s1 + t | X ≥ s1).

This has important implications for the order in which we compute successive solutions
on a single node. Solutions one is least concerned about not completing due to a fault
should be computed first, and solutions for which we would like to minimize the chance
of failure should be computed later.

Remark 2. We note that for κ ≥ 1 the inequalities of (3.3) and (3.4) are reversed;
thus G(t) ≥ F (t) and Pr(X ≤ s+ t | X > s) ≥ Pr(X ≤ t) for s, t ≥ 0.

Remark 3. We have considered here the computation of each ui restricted to a
node. If the ui are distributed across many nodes, say M , then ui will fail if a fault
occurs on any one of the M nodes during the computation. It follows that Pr(Ui =
1) = 1 − (1 − G(ti))

M . As a rough approximation one has Pr(Ui = 1) ≈ MG(ti)
for small G(ti). Another rough estimate is to simply divide the mean time between
failures (MTBF) by M , that is, to use G(ti) with λ = MTBF/(MΓ(1 + 1

κ)). This is
exact if κ = 1.

3.3. Fault simulation in the FTCT algorithm. We first describe the parallel
FTCT algorithm:

1. Given a (finite) set of multi-indices I, distribute the computation of compo-
nent solutions ui for i ∈ I among the available nodes such that each node has
a comparable amount of work.

2. Each node begins to compute the ui which have been assigned to it. For time
evolving PDEs, the solvers are evolved for some fixed simulation time ts.

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C342 B. HARDING, M. HEGLAND, J. LARSON, AND J. SOUTHERN

3. On each node, once a ui is computed a (local) checkpoint of the result is saved.
If the node experiences a fault during the computation of a ui, a fault tolerant
implementation of MPI is used to replace this node with another (or continue
once the interrupted node is rebooted). On the new node, checkpoints of
already computed ui are loaded, and we then assess whether the interrupted
computation should be recomputed or discarded. If it is to be recomputed,
this is done before computing any of the remaining ui allocated to the node.

4. Once all nodes have completed their computations they communicate which
ui have been successfully computed via an mpi allreduce. All nodes now
have a list of multi-indices I ′ ⊆ I and can solve the GCP to obtain combina-
tion coefficients.

5. All nodes compute a partial sum ciui for the ui that they have computed,
and then the sum is completed globally via mpi allreduce calls on process
subsets such that all nodes now have a copy of ugcp

I′ .
6. In the case of a time evolving PDE, the ui can be sampled from ugcp

I′ and the
computation further evolved by repeating from step 2.

This approach differs from traditional checkpoint restart in that interrupted com-
putations are typically not restarted. Further, rather than restart the entire appli-
cation, one need only restart the failed node. The optional step 6 for time evolution
problems has many advantages. First, by combining component solutions several
times throughout the computation one can improve the approximation to the true
solution. Second, each combination can act like a checkpoint such that when a ui

fails it can be easily restarted from the last combination (rather than from the very
beginning). Third, there are potential opportunities to reassess the load balancing
after each combination and potentially redistribute the ui to improve performance in
the next iteration.

For the numerical results in section 5 we do not currently use a fault tolerant
implementation of MPI and instead simulate faults by modifying the following steps:

2. Before each node begins computing the ui assigned to it, a process on the
node computes a (simulated) time of failure by sampling a distribution for
time to failure and adding it to the current time. In our results we sample
the Weibull distribution for some mean λ > 0 and shape 0 < κ ≤ 1.

3. Immediately after a ui has been computed on a node we check to see whether
the current time has exceeded the (simulated) time of failure. If this is the
case, the most recent computation is discarded. We then pretend that the
faulty node has been instantly replaced and continue with step 3 as described.

Note from section 3.2 that sampling the Weibull distribution produces faults at
least as often as the random incidence G(t). Thus, by sampling the Weibull distribu-
tion in our simulation, the number of faults in our simulation is slightly worse than
what might occur in reality.

The assumption in step 3 of replacing a failed node with another is based upon
what one might expect from a fault tolerant MPI. In fact, both Heterogeneous Adap-
tive Reconfigurable Networked SyStem FT-MPI1 and the relatively new User Level
Fault Mitigation (ULFM) specification2 allow this, although it certainly does not oc-
cur in an instant as is assumed in our simulation. Due to limited data at the current
time we are unable to predict what recovery times one might expect. We also note
that (simulated) failures are checked for at the completion of the computation of

1See http://icl.cs.utk.edu/ftmpi/.
2See http://fault-tolerance.org/.

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://icl.cs.utk.edu/ftmpi/
http://fault-tolerance.org/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAULT TOLERANT COMBINATION TECHNIQUE C343

each ui. Since a failure is most likely to occur some time before the computation
completes, time is wasted in the simulation from the sampled time of failure to the
completion of the affected computation. Improving these aspects of the simulation
and implementation with a fault tolerant mpi will be the subject of future work.

3.4. Expected error of the FTCT. In this section, we bound the expected
interpolation error for the FTCT as applied to the classical combination technique as
described in section 3.1. In particular we look at the case where all solutions with
‖i‖1 < n are recomputed, and the case where all solutions with ‖i‖1 < n − 1 are
recomputed as described in section 3.1.

Given u ∈ H2
mix, let

εn :=
1

3
· 3−d2−2n|u|H2

mix

d−1∑
k=0

(
n+ d

k

)(
1

3

)d−1−k

such that ‖u − uc
n‖2 ≤ εn; see (2.3). Now, given a (finite) set of multi-indices I, we

denote ugcp
I to be a combination

∑
i∈I ciui which is a solution to the GCP described

in section 2.2. When faults prevent successful computation of some of the ui we
must find ugcp

I′ for some I ′ ⊂ I. Consider the Bernoulli process {Ui}i∈I for which
each Ui = 0 if ui is computed successfully and is 1 otherwise as described in section
3.2. Additionally it is assumed that the computation of each ui is done within one
node; that is, many ui can be computed simultaneously on different nodes, but each
individual ui is computed within one hardware node. Let ti be the time required to
compute ui for each i ∈ I. We assume that the time between failures on each node is
Weibull distributed. As demonstrated in section 3.2, the probability of each ui being
lost as the result of a fault is given by the random incidence distribution

Pr(Ui = 1) = G(ti) ≤ F (ti).

Given that ui with the same ‖i‖1 have a similar number of unknowns, we assume
they will take roughly the same amount of time to compute. We therefore define
tk := max‖i‖1=k ti, that is, the maximal time to compute any ui with level k.

As a result, for each i ∈ I the probability of each ui not completing due to failures
is bounded by

Pr(Ui = 1) ≤ G(t‖i‖1
) ≤ F (t‖i‖1

).

With this we can now give the main result.
Proposition 3.2. Given d, n > 0 and In := {i ∈ Nd : ‖i‖1 ≤ n}, let ui be the

interpolant of u ∈ H2
mix for i ∈ In. Let each ui be computed on a different node of a

parallel computer for which the time between failures on every node is independent and
identically Weibull distributed with mean λ > 0 and shape parameter 0 < κ ≤ 1. Let ti
be the (wall) time required to compute each ui and let tn = max‖i‖1=n ti. Suppose we
recompute any ui with ‖i‖1 < n which is interrupted by a fault; then let I be the set of
all possible I ′ ⊆ In for which ui was successfully computed (eventually) iff i ∈ I ′. Let
ugcp
I be the function-valued random variable corresponding to the result of the FTCT

(i.e., ugcp
I′ for some random I ′ ∈ I); then the expected error is bounded above by

E [‖u− ugcp
I ‖2] ≤ εn

(
1 + 3

(
1− e−(tn/λ)

κ
))

.

Proof. Since ui with ‖i‖1 < n are recomputed, we have that Ui = 0 for all
‖i‖1 < n, and therefore Pr(I = I ′) = 0 for In−1 � I ′. Note that Ik is a downset for

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C344 B. HARDING, M. HEGLAND, J. LARSON, AND J. SOUTHERN

k ≥ 0, that is, Ik = Ik ↓. Since the i with ‖i‖1 = n are covering elements for In−1, it
follows that all of the I ′ for which Pr(I = I ′) > 0 are also downsets. It follows that
there is a unique solution to the GCP for such I ′, namely wi = 1 for all i ∈ I ′ and
wi = 0 otherwise. That is, wi = 0 iff Ui = 1, and hence wi = 1 − Ui. It follows that
the error is bounded by

‖u− ugcp
I′ ‖2 ≤ ‖u− uc

n‖2 +
∑

‖i‖1=n

|1− wi| ‖hi‖2 = ‖u− uc
n‖2 +

∑
‖i‖1=n

Ui‖hi‖2.

From Lemma 3.1, the probability of a fault occurring during the computation of any
ui with ‖i‖1 = n is bounded by G(tn), and therefore for ‖i‖1 = n one has

E[Ui] = 0 · Pr(Ui = 0) + 1 · Pr(Ui = 1) = Pr(Ui = 1) = G(ti) ≤ G(tn).

It follows that

E [‖u− ugcp
I ‖2] ≤ E

⎡
⎣‖u− uc

n‖2 +
∑

‖i‖1=n

Ui‖hi‖2
⎤
⎦

= ‖u− uc
n‖2 +

∑
‖i‖1=n

E[Ui]‖hi‖2

≤ ‖u− uc
n‖2 +

∑
‖i‖1=n

G(ti)‖hi‖2,(3.5)

and substituting the estimate ‖hi‖2 ≤ 3−d2−2‖i‖1 |u|H2
mix

yields

E [‖u− ugcp
I ‖2] ≤ εn +

∑
‖i‖1=n

G(tn)3
−d2−2n|u|H2

mix

≤ εn + F (tn)
∑

‖i‖1=n

3−d2−2n|u|H2
mix

= εn +
(
1− e−(tn/λ)

κ
)(n+ d− 1

d− 1

)
3−d2−2n|u|H2

mix
.

Now, noting that
(
n+d−1
d−1

) ≤∑d−1
k=0

(
n+d
k

)
(1/3)d−1−k, one has(

n+ d− 1

d− 1

)
3−d2−2n|u|H2

mix
≤ 3εn

and therefore,

(3.6) E [‖u− ugcp
I ‖2] ≤ εn

(
1 + 3

(
1− e−(tn/λ)

κ
))

.

Note that as tn/λ → ∞, we have E [‖u− ugcp
I ‖2] ≤ 4εn. However, the worst-case

scenario is when I ′ = In−1, resulting in a classical combination of level n− 1, which
has the error bound

‖u− uc
n−1‖2 ≤ εn−1 =

1

3
· 3−d2−2(n−1)|u|H2

mix

d−1∑
k=0

(
n− 1 + d

k

)(
1

3

)d−1−k

≤ 4

3
· 3−d2−2n|u|H2

mix

d−1∑
k=0

(
n+ d

k

)(
1

3

)d−1−k

= 4 · εn.

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAULT TOLERANT COMBINATION TECHNIQUE C345

This is consistent with the upper bound (3.6), which is the desired result.
Note the assumption that each ui is computed on a different node is not necessary

as we have bounded the probability of a failure during the computation of ui to be
independent of the starting time. As a result our bound is independent of the number
of nodes that are used during the computation and how the ui are distributed among
them as long as each individual ui is not distributed across multiple nodes.

The nice thing about this result is that the bound on the expected error is simply
a multiple of the error bound for uc

n, i.e., the result in the absence of faults. If the
bound on ‖u− uc

n‖2 were tight, then one might expect

E [‖u− ugcp
I ‖2] � ‖u− uc

n‖2
(
1 + 3

(
1− e−(tn/λ)

κ
))

.

Also note that (3.5) can be expressed as

E [‖u− ugcp
I ‖2] ≤ ‖u− uc

n‖2 + Pr(T ≤ tn)‖uc
n−1 − uc

n‖2 .
If the combination technique converges for u, then ‖uc

n−1 − uc
n‖2 → 0 as n → ∞.

Since Pr(T ≤ tn) ≤ 1, the error due to faults diminishes as n → ∞. We now prove an
analogous result for the case where only solutions with ‖i‖1 < n− 1 are recomputed.

Proposition 3.3. Given d, n > 0 and In := {i ∈ Nd : ‖i‖1 ≤ n}, let ui, ti,
and tn be as described in Proposition 3.2 with each ui computed on different nodes for
which time between failures is independent and identically distributed having Weibull
distribution with λ > 0 and 0 < κ ≤ 1. Additionally, let tn−1 = max‖i‖1=n−1 ti.
Suppose we recompute any ui with ‖i‖1 < n − 1 which is interrupted by a fault;
then let I be the set of all possible I ′ ⊆ In for which ui was successfully computed
(eventually) iff i ∈ I ′. Let ugcp

I be the function-valued random variable corresponding
to the result of the FTCT; then

E [‖u− ugcp
I ‖2] ≤ εn ·min

{
16, 1 + 3

(
d+ 5− e−(

tn
λ)

κ − (d+ 4)e
−
(

tn−1
λ

)κ
)}

.

Proof. This is much the same as the proof of Proposition 3.2. The solution to
the GCP for In satisfies the property that if wi = 0 for ‖i‖1 = n − 1, then ui was
not computed successfully; that is, Ui = 1. However, the converse does not hold in
general. Regardless, if Ui = 1 for ‖i‖1 = n− 1, then the worst case is that wi = 0 and
wj = 0 for the d possible ‖j‖1 = n satisfying j > i. We therefore note that the error
generated by faults affecting ui with ‖i‖1 = n− 1 is bounded by

(3.7)
∑

j∈In, j≥i

‖hj‖2 ≤ (d+ 4)3−d2−2n|u|H2
mix

.

Therefore we have

E [‖u− ugcp
I ‖2] ≤ ‖u− uc

n‖2 +
∑

‖i‖1=n

G(tn)‖hi‖2

+
∑

‖i‖1=n−1

G(tn−1)
∑

j∈I, j≥i

‖hj‖2

≤ εn

(
1 + 3

(
1− e−(tn/λ)

κ
))

+

(
n− 1 + d− 1

d− 1

)(
1− e−(tn−1/λ)

κ
)
(d+ 4)3−d2−2n|u|H2

mix

≤ εn

(
1 + 3

(
1− e−(tn/λ)

κ
)
+ 3(d+ 4)

(
1− e−(tn−1/λ)

κ
))

.

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C346 B. HARDING, M. HEGLAND, J. LARSON, AND J. SOUTHERN

Now the expected error should be no more than the worse case, which is I ′ = In−2,
for which we have ‖u − uc

n−2‖2 ≤ 16εn. Taking the minimum of the two estimates
yields the desired result.

To illustrate how this result may be used in practice, suppose we compute a level
12 interpolation in three dimensions on a machine whose mean time to failure can be
modelled by the Weibull distribution with a mean of 100 seconds and shape parameter
0.7. Further, suppose ui with ‖i‖1 > 10 are not recomputed if lost as a result of a
fault and that t12 is estimated to be 1.0 second and t11 is at most 0.5 second. The
expected error for our computation is bounded above by 1.63 times the error bound
if no faults were to occur.

While this provides some theoretical validation of our approach, in practice we can
numerically compute an improved estimate by enumerating all possible outcomes and
the probability of each occurring. The reason for this is that (3.7) is an overestimate in
general, particularly for relatively small d. In practice, a fault on ui with ‖i‖1 = n−1
will generally result in the loss of d − 1 of the largest hierarchical spaces, in which
case (3.7) overestimates by a factor of d+4

d−1 .

3.5. Expected computation time. We now repeat the above analysis, this
time focusing on the mean time required for recomputations. The first issue to con-
sider is that a failure may occur during a recomputation which will trigger another
recomputation. Given a solution ui with ‖i‖1 = m, the probability of having to re-
compute r times is bounded by G(tm)r ≤ F (tm)r. Hence the expected number of
recomputations for such a ui is bounded by

∞∑
r=1

rF (tm)r =
F (tm)

(1− F (tm))2
= e(tm/λ)κ(e(tm/λ)κ − 1).

Let the time required to compute each ui be bounded by ti ≤ c2‖i‖1 for some fixed
c > 0 and all ‖i‖1 ≤ n. For a given m ≤ n, suppose we intend to recompute all ui

with ‖i‖1 ≤ m upon failure; then the expected time required for recomputations is
bounded by

Rm ≤
∑

‖i‖1≤m

t‖i‖1

∞∑
r=1

rF (t‖i‖1
)r ≤

m∑
k=0

(
k + d− 1

d− 1

)
c2ke(c2

k/λ)κ
(
e(c2

k/λ)κ − 1
)
.

Further, by bounding components of the sum with the case k = m one obtains

Rm ≤
(
m+ d− 1

d− 1

)
e(c2

m/λ)κ
(
e(c2

m/λ)κ − 1
) m∑

k=0

c2k

≤
(
m+ d− 1

d− 1

)
e(c2

m/λ)κ
(
e(c2

m/λ)κ − 1
)
c2m+1.

The time required to compute all ui with ‖i‖1 ≤ n once is similarly bounded by

Cn =
∑

‖i‖1≤n

ti ≤
n∑

k=0

(
k + d− 1

d− 1

)
tk ≤

(
n+ d− 1

d− 1

)
c2n+1,

and hence Rm/Cn ≈ (m/n)d−12m−ne(c2
m/λ)κ(e(c2

m/λ)κ − 1) estimates the expected
proportion of extra time spent on recomputations. We would generally expect that

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAULT TOLERANT COMBINATION TECHNIQUE C347

c2m/λ � 1 (we assume the time to compute level m grids is much less than the mean
time to failure), and therefore this quantity is small. As an example, if we again
consider a level 12 computation in three dimensions for which tm ≤ 2−(m−12) and the
time to failure is Weibull distributed with mean 100 seconds with shape parameter
0.7, the expected proportion of time spent recomputing solutions level 10 or smaller

is (10/12)22−2e(0.25/100)
0.7

(e(0.25/100)
0.7 − 1) ≈ 2.68 × 10−3. In comparison, if any of

the ui which fail were to be recomputed, then a proportion of 4.23× 10−2 additional
time would be expected for recomputations, almost 16 times more. While this is a
somewhat crude estimate, it clearly demonstrates that our approach will scale better
than a traditional checkpoint restart when faults are relatively frequent.

4. Implementation details. At the heart of our implementation is a very sim-
ple procedure: Solve the problem on different grids, combine the solutions, and repeat.
We distinguish between two layers, the top layer responsible for general management
of the computation including global communications and coarse level parallelism, and
the bottom layer consisting of solvers and processing tools utilizing fine grain paral-
lelism.

4.1. Top layer: Load balancing and combination. The top layer is written
in Python. As in many other applications, we use Python to glue together the different
components of our implementation as well as provide some high level functions for
performing the combination. This layer can be further broken down into four main
parts. The first is the loading of all dependencies including various Python and
numpy modules as well as any shared libraries that will be used to solve the given
problem. In particular, bottom layer components which have been compiled into
shared libraries from various languages (primarily C++ with C wrappers in our case)
are loaded into Python using ctypes. The second part is the initialization of data
structures and construction/allocation of arrays which will hold the relevant data.
This is achieved using PyGraFT [16, 17], which is a general class of grids and fields
that allows us to handle data from the various components in a generic way. The third
part consists of solving the given problem. This is broken into several combination
steps. A combination step consists of a series of time steps of the underlying solver
for each component solution, followed by a combination of the component solutions
into a sparse grid solution, and finally a sampling of the component solutions from
the sparse grid solution before repeating the procedure. The fourth and final part of
the code involves checking the error of the computed solutions, reporting of various
log data, and finalizing/cleanup.

The top layer is primarily responsible for the coarsest grain parallelism, that
is, distributing the computation of different component solutions across different
processes and communication between them. This is achieved through MPI using
mpi4py.3 An appropriate load balancing of the different component solutions across
the MPI processes is determined on startup and used throughout the computation.
We found that simple models for load with respect to grid dimensions do not typi-
cally perform well with large numbers of grids. Therefore, after first making an initial
allocation using a simple model, we then time the solver over each grid for a few
iterations and then refine the allocation. In future work we intend to reassess this al-
location after each combination step to further improve the load balancing and adjust
for changes in system performance. Communication between MPI processes occurs
during the combination step. The first step is to perform an all reduce call to as-

3See http://mpi4py.scipy.org/.

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://mpi4py.scipy.org/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C348 B. HARDING, M. HEGLAND, J. LARSON, AND J. SOUTHERN

sess on which grids a solution was successfully computed. Following this all processes
are able to compute consistent combination coefficients that avoid solutions which
did not successfully compute. The second step is to perform communications so that
the combination may be computed on each process. Each grid is first processed from
a nodal basis representation to a hierarchical basis representation. For each hierar-
chical surplus, a list of processes containing this surplus is generated. Hierarchical
surpluses with common process groups are concatenated and then combined via an
all reduce call over the process subset. Once all hierarchical surpluses have been
combined, each component grid is processed back to a nodal representation.

4.2. Bottom layer: Solver and sparse grid algorithms. The bottom layer
is made up of several different components, many of which are specific to the problem
that is to be solved. When solving our advection problem we have two main com-
ponents: One is responsible for functions relating to the sparse grid (e.g., processing
of nodal basis to hierarchical basis and vice versa), and the other component is the
advection solver itself. Both the sparse grid and advection solver components use
OpenMP to achieve a fine grain level of parallelism. In future work we intend the
solver to be a hybrid MPI/OpenMP which is spawned from the top layer. This al-
lows additional parallelism over each grid via domain decompositions and enables us
to compute the solution for each grid across several nodes. However, the overheads
associated with repeatedly spawning processors will also need to be investigated.

5. Numerical results. In this section, we present some numerical results which
test our algorithm on solutions of the scalar advection equation

∂u

∂t
+∇ · (au) = 0

on the domain [0, 1]3 ⊂ R3 for a divergence-free velocity field a = a(x) ∈ R3 (and thus
∇ · (au) = a · ∇u). In particular, we set a(x) = (sin(πx) cos(πy),− cos(πx) sin(πy), 1)
for x ∈ [0, 1]3. Notice that the flow field is such that x and y boundary conditions are
not required. In the z direction we have the periodic boundary condition u(t, x, y, 1) =
u(t, x, y, 0). We start the solver from the Gaussian-like initial condition

u0(x) = exp

(
−π2

2

(
x− 3

8

)2

− 2π2

(
y − 3

8

)2

− 2(1 + cos(2πz))

)

centered around (38 ,
3
8 ,

1
2). This peak flows in a helix-like pattern around the line

x = y = 1/2. We evolve from t = 0 up to t = 0.25 in our experiments. The PDE is
solved using second order central difference discretization of spatial derivatives and
fourth order Runge–Kutta (RK4) time integration. We compare numerical solutions
against the exact solution obtained by the method of characteristics computed with
an RK4 solver.

Our experiments are performed with a truncated combination technique as in
(2.4). In order to apply the FTCT effectively we compute some additional grids. We
define

In,τ := {i ∈ Nd : min(i) ≥ τ and n− d− 1 ≤ ‖i‖1 ≤ n}
with n, τ denoting the level and truncation, respectively. For this choice of In,τ
the computation of coefficients is simplified when only the top two levels are not
recomputed in the event of faults as discussed in section 3.1.

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAULT TOLERANT COMBINATION TECHNIQUE C349

Table 1

Numerical results for r = 50 runs with a level n = 22 and truncation τ = 5 combination
which consists of 110 grids. Faults were simulated with different MTBF on each MPI process (in
seconds) to study the effect on the error and time to solution. The simulated faults were Weibull
distributed with shape parameter of 0.7 in each case. The component solutions were combined four
times throughout the computation. The computations were performed on 64 processors using eight
MPI processes with eight OpenMP threads each. The times reported are for the inner computation
loop and exclude overheads like the dynamic load balance calculation and error estimation.

MTBF fave εave εmin εmax wave wmin wmax

3600 1.22 1.132e-5 1.057e-5 1.815e-5 152.1 151.4 153.2
1800 1.78 1.159e-5 1.057e-5 1.848e-5 153.0 151.9 155.7
900 3.48 1.293e-5 1.057e-5 2.044e-5 150.9 149.0 153.5
450 5.66 1.412e-5 1.058e-5 2.048e-5 152.3 151.0 153.8
225 9.42 1.641e-5 1.059e-5 3.199e-5 153.0 151.4 155.0
112.5 16.00 1.803e-5 1.064e-5 3.452e-5 152.9 151.0 155.4
56.25 26.76 2.170e-5 1.159e-5 3.593e-5 154.2 152.0 157.9

Note that as the grid sizes vary between the ui so too does the maximum stable
time step size as determined by the CFL condition. We choose the same time step
size for all component solutions to avoid instability that may otherwise arise from the
extrapolation of time stepping errors during the combination. In particular, our time
steps are such that the CFL condition is satisfied for all component grids. All of our
computations were performed using the Raijin cluster at the National Computational
Infrastructure.4 Raijin is a Fujitsu PRIMERGY cluster consisting of 3592 compute
nodes, each with two Intel Xeon Sandy Bridge CPUs (8 core, 2.6GHz) with Infiniband
FDR interconnect.

5.1. Solution error. We first studied the effect of simulated faults on the er-
ror of the computed solution. Given level n and truncation parameter τ , the code
was executed for some number of runs r on a fixed number of nodes using the same
number of threads. Component solutions are combined four times in each run at
equally spaced intervals. For each run we recorded the number of faults fk that
occurred, the l1 error of the solution εk, and the elapsed wall time wk through-
out the main computation. Over r runs we then calculated the average number of
faults fave = 1

r

∑r
k=1 fk; the average, minimal, and maximal observed errors εave =

1
r

∑r
k=1 εk, εmin = min{ε1, . . . , εr}, εmax = max{ε1, . . . , εr}; and the average, mini-

mal, and maximal observed wall times wave = 1
r

∑r
k=1 wk, wmin = min{w1, . . . , wr},

wmax = max{w1, . . . , wr}.
Table 1 shows results for r = 50 runs of the FTCT with fault simulation on a

problem with n = 22, τ = 5 consisting of 110 grids and computed on eight MPI
processes with eight OpenMP threads each. Faults were simulated as described in
section 3.3 using the Weibull distribution with varying MTBF per MPI process and
shape parameter 0.7. Decreasing the MTBF leads to an increase in the average
number of faults that occur per run, as one would expect. The time to solution is not
significantly affected by the number of faults, as seen in tave, which varies relatively
little over a 10-fold increase in the average number of faults. It is clear that the
error εave increases with fave, and from εmin and εmax one has some indication that
the variance in error also increases. For MTBF of 450 or more seconds, the effect is
relatively small. For higher frequencies of failure, there is a noticeable effect, but even
at 27 faults per run the average error is approximately twice that without faults.

4See http://nci.org.au/.

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://nci.org.au/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C350 B. HARDING, M. HEGLAND, J. LARSON, AND J. SOUTHERN

Table 2

Numerical results for r = 50 runs with a level n = 22 and truncation τ = 6 combination which
consists of 35 grids. Faults were simulated with different MTBF on each MPI process (in seconds) to
study the effect on the error and time to solution. The simulated faults were Weibull distributed with
shape parameter of 0.7 in each case. The component solutions were combined four times throughout
the computation. The computations were performed on 32 processors using four MPI processes with
eight OpenMP threads each. The times reported are for the inner computation loop and exclude
overheads like the dynamic load balance calculation and error estimation.

MTBF fave εave εmin εmax wave wmin wmax

128 3.08 1.671e-4 1.305e-4 3.727e-4 32.99 32.56 33.43
64 4.32 1.693e-4 1.305e-4 2.938e-4 33.04 32.63 33.60
32 7.02 1.791e-4 1.305e-4 2.681e-4 33.07 32.63 33.77
16 12.02 2.191e-4 1.340e-4 5.722e-4 33.01 32.61 33.68
8 19.04 2.700e-4 1.393e-4 4.785e-4 33.22 32.64 33.79
4 31.58 3.382e-4 1.830e-4 6.305e-4 33.40 32.80 35.28

Table 2 again shows results for r = 50 runs of the FTCT with fault simulation,
this time with an n = 22, τ = 6 truncated combination consisting of only 35 grids.
Having fewer grids and therefore less redundancy, this problem is more sensitive to
faults. Faults were again simulated as Weibull distributed with varying means and
shape parameter 0.7. The MTBF values are significantly smaller here to investigate
what happens to this problem for a large number of faults. The same observations can
be made as in Table 1, namely, that the time to solution is not significantly affected
by the failure rate and that the mean and variance of the error increase with fave.
While growing faster for this problem at almost 32 faults on average, the error is less
than three times the error when no faults occur.

While not shown here, we have observed that if the number of grids is large
enough, then the expected error initially decreases as the number of faults increases.
We suspect this occurs because such a large number of grids becomes a suboptimal use
of resources and the solution error becomes dominated by terms which are additive
when the combination technique is applied. As more grids fail, there are fewer such
terms in the resulting solution, leading to smaller error. Eventually, with enough
failures, the error again increases as the dominating terms become those which cancel,
and similar trends as above are observed from this point. Determining the optimal
number of grids in terms of error versus time to solution is problem dependent but
can be estimated by careful study of error bounds based on error splittings [8].

5.2. Parallel and algorithmic scalability. In Figure 2 we demonstrate the
parallel scalability and efficiency of our implementation both with and without fault
simulation for a reasonably high failure rate. The advection problem was solved
using an n = 22, τ = 5 truncated combination having 110 grids and an n = 22, τ = 4
truncated combination having 230 grids. The component solutions were combined four
times throughout each computation. The times reported here include the timing of the
core of the code, which is the repeated computation, combination, and communication
of the solution. Start-up and completion overheads, including Python imports, the
dynamic load balancing procedure, and the error calculation, are excluded. It is
clear that the implementation scales very well as far as the distribution of grids to
nodes will allow. In particular, it is apparent that adding fault resilience has had
negligible impact on the speedup of the application. Therefore, for an application
that is otherwise capable of scaling to an exascale system, it is not anticipated that
adding fault resilience via this method would be a barrier to deployment on such a
system. In our test case, by further increasing the number of grids and computing

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAULT TOLERANT COMBINATION TECHNIQUE C351

16 32 64 128 256 512

1

2

4

8

16

32

total number of processors

sp
ee
d
u
p

no faults
faults
linear

32 64 128 256 512 1024

1

2

4

8

16

32

total number of processors

no faults

faults
linear

Fig. 2. The plots demonstrate the parallel scaling of our implementation with an l = 22, τ = 5
truncated combination on the left and an l = 22, τ = 4 truncated combination on the right. Each
problem has 110 and 230 coarse grids, respectively. Given a fixed number of grids, one observes
that the scalability eventually drops off, which is due to the distribution of grids to nodes. However,
also notice that additional grids lead to increased parallelism. By increasing the number of grids or
computing each grid over several nodes we would expect good scalability for many more processors.
The plots include scalability both with and without the fault simulation and recovery. It is clear that
our approach to fault recovery has no observable effect on the scalability. The MTBF per node used
for fault simulation on the τ = 5 problem was 128 seconds, which led to 9–36 faults occurring in
each of the computations. For the τ = 4 problem, the MTBF per node was 900 seconds, which led
to 12–41 faults occurring in each of the computations.

each grid across several nodes, we expect the implementation to scale much further.
We note, however, that increasing the number of grids does not necessarily lead to
improved error.

In Figure 3 we compare the computation time required for our approach to reach
a solution compared to more traditional checkpointing approaches, in particular, with
local and global checkpointing approaches. With global checkpointing we keep a copy
of the last combined solution. If a failure affects any of the component grids, it is
assumed that the entire application is killed, and computations must be restarted
from the most recent combined solution. We emulate this by checking for faults
at each combination step and restart from the last combination step if any faults
have occurred. With local checkpointing each MPI process saves a copy of each
component solution it computes. In this case when a fault affects a component solution
we recompute the affected component solution from its last saved state. In both
checkpointing methods the extra component solutions used in our approach are not
required and are hence not computed. As a result these approaches are slightly faster
when no faults occur. However, as the number of faults increases, it can be seen from
Figure 3 that the computation time for the local and global checkpointing methods
begins to grow. A line of best fit has been added to the figure which makes it clear
that the time for recovery with global checkpointing increases rapidly with the number
of faults. Local checkpointing is a significant improvement on this but still shows an
increase in recovery time. On the other hand, our approach is barely affected by the
number of faults and beats both the local and global checkpointing approaches after
only a few faults.

Conclusion. A generalization of the sparse grid combination technique has been
presented. From this a fault tolerant combination technique able to handle large
numbers of failures has been developed. Through some calculations and numerical
experiments it has been demonstrated that the approach reduces recovery time at

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C352 B. HARDING, M. HEGLAND, J. LARSON, AND J. SOUTHERN

0 5 10 15 20 25 30

150

175

200

225

250

275

300

total number of faults

to
ta
l
co
m
p
u
ta
ti
o
n
ti
m
e

time vs. faults for 3D advection

recombine
local checkpoint
global checkpoint

Fig. 3. We compare the time taken to compute the solution to the three-dimensional advection
problem using three different approaches to fault tolerance. The problem size is fixed at level 22
with truncation parameter 5. All computations used eight MPI processes with eight OpenMP threads
each. Component solutions are combined four times throughout the computation, and it is during the
combination that we check for faults. The recombine method is our approach described in section 3.1.
The local checkpoint method involves each MPI process checkpointing component solutions. The
global checkpoint method involves all MPI processes checkpointing the last combined solution. For
each method the problem was run several times with many different MTBF values per MPI process
to study the effect of the number of faults on the run time.

the expense of reduced solution accuracy. Theoretical bounds on the expected error
and numerical experiments show that the reduction in solution accuracy is typically
small. Comparison with traditional checkpoint-restart techniques shows that the run
time of our algorithm is not significantly affected by the number of faults. There are
many opportunities for further development. We intend to expand on error bounds
presented here and, in particular, extend the error splitting estimates used in the
analysis of the classical combination technique. Detailed investigation into the per-
formance where the ui are distributed on many nodes is also the subject of future
work; our implementation continues to develop as we seek to support this. As the
ULFM specification continues to develop, the validation of the FTCT on a system
with real faults is also being investigated.

Acknowledgment. The authors would like to thank the anonymous referees for
their valuable feedback which improved the quality of this paper.

REFERENCES

[1] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou, Algorithm-based fault tolerance ap-
plied to high performance computing, J. Parallel Distrib. Comput., 69 (2009), pp. 410–416.

[2] F. Cappello, Fault tolerance in petascale/exascale systems: Current knowledge, challenges
and research opportunities, Int. J. High Perform. Comput. Appl., 23 (2009), pp. 212–226.

[3] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir, Toward exascale
resilience, Int. J. High Perform. Comput. Appl., 23 (2009), pp. 374–388.

[4] J. Dean and S. Ghemawat, MapReduce: Simplified data processing on large clusters, Comm.
ACM, 51 (2008), pp. 107–113.

[5] J. Garcke, Sparse grids in a nutshell, in Sparse Grids and Applications, Lect. Notes Comput.
Sci. Eng. 88, J. Garcke and M. Griebel, eds., Springer-Verlag, Berlin, Heidelberg, 2013,
pp. 57–80.

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAULT TOLERANT COMBINATION TECHNIQUE C353

[6] G. Gibson, B. Schroeder, and J. Digney, Failure tolerance in petascale computers, CTWatch
Quart., 3 (2007), pp. 4–10.

[7] M. Griebel and H. J. Bungartz, Sparse grids, Acta Numer., 13 (2004), pp. 147–269.
[8] M. Griebel, M. Schneider, and C. Zenger, A combination technique for the solution of

sparse grid problems, in Iterative Methods in Linear Algebra (Brussels, 1991), North-
Holland, Amsterdam, 1992, pp. 263–281.

[9] B. Harding and M. Hegland, A robust combination technique, ANZIAM J. Electron. Suppl.,
54 (2013), pp. C394–C411.

[10] B. Harding and M. Hegland, Robust solutions to PDEs with multiple grids, in Sparse
Grids and Applications - Munich 2012, Lect. Notes Comput. Sci. Eng. 97, J. Garcke and
D. Pflüger, eds., 2014, Springer International, Cham, Switzerland, pp. 171–193.

[11] B. Harding and M. Hegland, A parallel fault tolerant combination technique, in Parallel
Computing: Accelerating Computational Science and Engineering (CSE), Adv. Parallel
Comput. 25, M. Bader, A. Bode, H.-J. Bungartz, M. Gerndt, G. R. Joubert, and F. Peters,
eds., IOS Press, Amsterdam, 2014, pp. 584–592.

[12] M. Hegland, Adaptive sparse grids, ANZIAM J., 44 (2003), pp. C335–C353.
[13] M. Hegland, J. Garcke, and V. Challis, The combination technique and some generalisa-

tions, Linear Algebra Appl., 420 (2007), pp. 249–275.
[14] K. Huang and J. Abraham, Algorithm-based fault tolerance for matrix operations, IEEE

Trans. Comput., 33 (1984), pp. 518–528.
[15] R. M. Karp, Reducibility among combinatorial problems, in Proceedings of a Symposium on

the Complexity of Computer Computations (Yorktown Heights, 1972), IMB Res. Symposia
Ser., R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85–103.

[16] J. Larson, M. Hegland, B. Harding, S. Roberts, L. Stals, A. Rendell, P. Strazdins,

M. Ali, C. Kowitz, R. Nobes, J. Southern, N. Wilson, M. Li, and Y. Oishi, Fault-
tolerant grid-based solvers: Combining concepts from sparse grids and MapReduce, Proce-
dia Comput. Sci., 18 (2013), pp. 130–139.

[17] J. Larson, M. Hegland, B. Harding, S. Roberts, L. Stals, A. Rendell, P. Strazdins,

M. Ali, and J. Southern, Managing complexity in the parallel sparse grid combina-
tion technique, in Parallel Computing: Accelerating Computational Science and Engineer-
ing (CSE), Adv. Parallel Comput. 25, M. Bader, A. Bode, H.-J. Bungartz, M. Gerndt,
G. R. Joubert, and F. Peters, eds., IOS Press, Amsterdam, 2014, pp. 593–602.

[18] A. Murarasu, J. Weidendorfer, G. Buse, D. Butnaru, and D. Pflüger, Compact data
structure and scalable algorithms for the sparse grid technique, ACM SIGPLAN Not., 46
(2011), pp. 25–34.

[19] B. Schroeder and G. Gibson, A large-scale study of failures in high-performance comput-
ing systems, in Proceedings of the International Conference on Dependable Systems and
Networks, IEEE Computer Society, Washington, DC, 2006, pp. 249–258.

[20] K. Trivedi, Probability and Statistics with Reliability Queuing and Computer Science Appli-
cations, John Wiley & Sons, New York, 2002.

D
ow

nl
oa

de
d

06
/2

1/
15

 to
 1

30
.5

6.
10

7.
13

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

