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Abstract This paper is concerned with risk-sensitive performance analysis for linear quantum stochastic systems
interacting with external bosonic fields. We consider a cost functional in the form of the exponential moment of
the integral of a quadratic polynomial of the system variables over a bounded time interval. Such functionals are
related to more conservative behaviour and robustness of systems with respect to statistical uncertainty, which makes
the challenging problems of their computation and minimization practically important. To this end, we obtain an
integro-differential equation for the time evolution of the quadratic-exponential functional, which is different from the
original quantum risk-sensitive performance criterion employed previously for measurement-based quantum control
and filtering problems. Using multi-point Gaussian quantum states for the past history of the system variables and
their first four moments, we discuss a quartic approximation of the cost functional and its infinite-horizon asymptotic
behaviour. The computation of the asymptotic growth rate of this approximation is reduced to solving two algebraic
Lyapunov equations. Further approximations of the cost functional, based on higher-order cumulants and their growth
rates, are applied to large deviations estimates in the form of upper bounds for tail distributions. We discuss an auxiliary
classical Gaussian Markov diffusion process in a complex Euclidean space which reproduces the quantum system
variables at the level of covariances but has different fourth-order cumulants, thus showing that the risk-sensitive
criteria are not reducible to quadratic-exponential moments of classical Gaussian processes. The results of the paper
are illustrated by a numerical example and may find applications to coherent quantum risk-sensitive control problems,
where the plant and controller form a fully quantum closed-loop system, and other settings with nonquadratic cost
functionals.
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1 Introduction

The main theme of the present paper is a class of risk-sensitive performance criteria for linear quantum stochastic
systems. Such systems, also referred to as open quantum harmonic oscillators (OQHOs) [17], play the role of building
blocks in linear quantum systems theory [60]. This paradigm is part of the broader area of quantum filtering and control
(see, for example, [4,5,8,9,15,31,32,34,51,75]) which is concerned with achieving certain dynamic properties for
open quantum systems interacting with surroundings such as classical measuring devices, other quantum systems or
external quantum fields. In particular, these properties may include stability, optimality and robustness. In contrast
to their classical counterparts, quantum systems are equipped with noncommuting operator-valued variables whose
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evolution obeys the laws of quantum mechanics [40,47,62] and statistical characteristics are described in terms of
quantum probability [27,48]. The applications include, for example, artificially engineered systems for influencing
the state of matter at atomic scales through its interaction with nonclassical light in quantum optics [72] and quantum
computing [50].

A unified language for the modelling of open quantum systems, interacting with the environment, is provided
by Hudson-Parthasarathy quantum stochastic differential equations (QSDEs) [26,53,57] (see, also, the review paper
[22] and references therein) which govern the system variables in the Heisenberg picture of quantum dynamics. The
QSDEs are driven by quantum Wiener processes on a symmetric Fock space [53,55] which represent external bosonic
fields (such as quantised electromagnetic radiation). The structure of these quantum stochastic dynamics depends on
the energetics of the system-field interaction and the self-energy of the system. These are captured by the system-
field coupling operators and the system Hamiltonian, with the latter specifying the internal dynamics of the system in
isolation from the environment. This approach to open quantum systems and their interconnections is widely used in
quantum control [4,15,32,34], where it is also combined with the theory of quantum feedback networks [20,33] (see
also [78] and references therein).

In the case of OQHOs, the system variables satisfy canonical commutation relations (similar to those for the
quantum-mechanical position and momentum operators [47]), the Hamiltonian is a quadratic function and the coupling
operators are linear functions of the variables. The linearity of the resulting QSDEs makes them tractable in many
respects including the dynamics of the first two moments of the system variables and preservation of the Gaussian
nature of system states (provided the fields are in the vacuum state). Due to the linear-Gaussian quantum dynamics,
such systems resemble Gaussian Markov diffusion processes generated by classical linear SDEs [18,37]. This analogy
is exploited in the quantum counterparts [15,43,51] of the classical linear quadratic Gaussian (LQG) control and
filtering problems [2,39] (and also H∞-control settings [34]). The optimality in these approaches is understood as
the minimization of mean square cost functionals which are concerned with second-order moments of the system
variables at one instant in time (or the integrals of such moments in finite-horizon formulations [68]). These quadratic
performance criteria aim to achieve moderate mean square values for the dynamic variables, which can be important
for the well-posedness of the system (from energy considerations or in order to keep the system in the range where its
linearised model is satisfactory). A more general class of cost functionals for quantum systems, which use one-point
averaging of nonquadratic functions of system variables, is considered in [59].

Qualitatively different are the quantum risk-sensitive performance criteria [31,32] (see also [12,76]) which were
used previously for measurement-based quantum control and filtering problems. They employ weighted mean square
values of time-ordered exponentials satisfying operator differential equations (where noncommutativity of quantum
variables plays a substantial role). Similarly to their classical predecessors [6,30,73] and in contrast to the mean square
values of the system variables themselves, the quantum risk-sensitive cost functionals involve multi-point quantum
states and higher-order moments for the system variables at different instants. In addition to being a challenge from a
purely theoretical point of view, the computation and minimization of such functionals is also of practical importan-
tance. In fact, this approach leads to controllers and filters which secure a more conservative behaviour of the system
not only in terms of the one-point second-order moments of the system variables but also their higher-order multi-
point moments. Also, there are connections between the risk-sensitive criteria and robustness with respect to statistical
uncertainty in the driving noise described in terms of relative entropy [14,58], and similar links (in a slightly more
limited form) hold for the quantum risk-sensitive costs [31,76].

A quadratic-exponential functional (QEF), considered in the present paper, is organised as the exponential moment
of the integral of a quadratic form of the system variables over a bounded time interval. It differs from the original
quantum risk-sensitive criterion [31,32], mentioned above, in that a weighted mean square value of the time-ordered
exponential is replaced with the mean value of the operator exponential of the integral. At the same time, the cost
functional studied here is, in fact, a more straightforward extension of its classical predecessors [6,30,73] to the
quantum case and also imposes penalty both on the second and higher-order (moreover, exponential) moments of the
system variables. As before, the shift towards the higher-order moments is controlled by a risk-sensitivity parameter.
The use of the QEF as a cost functional is similar to that of the original quantum risk-sensitive cost and its classical
predecessors (quantum controllers and filters are sought to minimize the QEF evaluated for a quantum process of
interest). Furthermore, it has been shown recently [71] that the QEF is related to robustness with respect to uncertain
quantum states of the system and its environment whose deviation from a nominal state is described in terms of
the quantum relative entropy [52]. These features motivate a systematic study of such cost functionals for quantum
systems, including the development of methods for their computation and minimization in performance analysis and
optimal control problems.

Towards the realization of the analysis part of this program, we obtain an integro-differential equation for the time
evolution of the QEF and compare it with the original quantum risk-sensitive performance criterion (a more detailed
comparison can be found in [71]). Assuming that the OQHO is driven by vacuum fields and using the multi-point
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Gaussian quantum states for the system variables at different instants and their first four moments, we study a quartic
approximation of the cost functional and its infinite-horizon asymptotic behaviour. The computation of the asymptotic
growth rate for this approximation is reduced to solving two algebraic Lyapunov equations. This is a quantum exten-
sion of similar results of [67] on classical linear stochastic systems. However, we also discuss an auxiliary classical
Gaussian Markov diffusion process in a complex Euclidean space which reproduces the quantum system variables
at the covariance function level but has different higher-order moments relevant to the risk-sensitive criteria. This
discrepancy, which manifests itself already for the fourth-order cumulants, shows that the QEF is not reducible to
quadratic-exponential moments of classical Gaussian random processes. In addition to the quartic approximation of
the QEF, we also outline its higher-order approximations and their asymptotic growth rates along with a large devia-
tions estimate of the Cramer type [13,64] in the form of upper bounds for the tail distributions of a quantum process
which is the integral of a quadratic form of the system variables.

Note that bilateral (that is, upper and lower) bounds or exact asymptotics for the tail distributions are well-known
in the large deviations theory for fairly canonical cases (such as sums of independent identically distributed random
variables or those forming a homogeneous Markov chain, or partly dependent random variables); see, for example, [36,
65]. However, those results pertain to classical probability and substantially employ the multiplicative structure of the
scalar-valued classical joint probability distributions in the above cases, whereas the noncommuting quantum variables
(which make up the quadratic and quadratic-exponential functionals in the present paper) do not have classical joint
probability distributions (even in the Gaussian case). Therefore, the relevant tail distributions for the operator-valued
integral quantities can be tackled only indirectly through their moments (or cumulants), which means that only upper
bounds are possible at this stage of the research on the large deviations for quantum processes. Nevertheless, these
results employ a promising combination of system theoretic, quantum probabilistic, Lie algebraic and combinatorial
techniques, which may be useful for subsequent developments on performance analysis and control synthesis for open
quantum systems using the QEF criteria.

The paper is organised as follows. Section 2 specifies the class of linear quantum stochastic systems being consid-
ered and provides background material. Section 3 discusses multi-point Gaussian quantum states associated with the
system variables at different instants. Section 4 defines the quadratic-exponential functional and establishes an integro-
differential equation for its time evolution. Section 5 discusses a quartic approximation of the QEF and its state-space
computation. Section 6 outlines further approximations of the QEF using higher-order cumulants. Section 7 establishes
an upper bound for the cumulants and provides a related large deviations estimate. Section 8 considers a correspon-
dence between vectors of self-adjoint quantum variables and classical random vectors at the level of covariances and
discusses its violation in regard to higher-order moments. Section 9 provides an illustrative numerical example on the
quartic approximation of the QEF and the upper bound for the tail distributions for a two-mode oscillator. Section 10
makes concluding remarks. Appendices A, B and C provide auxiliary lemmas on computing the commutator and co-
variance of quadratic functions of Gaussian quantum variables, and also on averaging in a class of convolution-like
integrals of matrix-valued functions.

2 Linear quantum stochastic systems

To set the scene, we consider a quantum system whose dynamic variables X1, . . . ,Xn are time-varying self-adjoint
operators on a dense domain in a complex separable Hilbert space H, satisfying the Weyl canonical commutation
relations (CCRs)

WuWv = eivTΘuWu+v, u,v ∈ Rn. (1)

Here, i :=
√
−1 is the imaginary unit, and Θ := (θ jk)16 j,k6n is a nonsingular real antisymmetric matrix of even order

n. Also,
Wu := eiuTX (2)

is the unitary Weyl operator [16] parameterised by a vector u := (uk)16k6n ∈ Rn whose entries specify the linear
combination uTX = ∑

n
k=1 ukXk of the system variables assembled into the vector

X :=

X1
...

Xn

 (3)

(vectors are organised as columns unless indicated otherwise). Due to self-adjointness of uTX , the adjoint of the Weyl
operator in (2) satisfies W †

u = W−u. Also, (1) implies that

[Wu,Wv] =−2isin(uT
Θv)Wu+v, (4)
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where [ξ ,η ] := ξ η −ηξ is the commutator of linear operators. In view of (4), the Heisenberg infinitesimal form of
the Weyl CCRs (1) is described by the commutator matrix

[X ,XT] := ([X j,Xk])16 j,k6n

= XXT− (XXT)T = 2iΘ ⊗IH (5)

(on a dense domain in H), where ⊗ is the tensor product, and IH is the identity operator on H. The transpose (·)T

acts on matrices with operator-valued entries as if the latter were scalars. By a standard convention on linear operators,
Θ ⊗IH in (5) is identified with the matrix Θ .

For example, if the system variables consist of the pairs of conjugate quantum mechanical position qk and momen-
tum pk :=−i∂qk operators (with the Planck constant being appropriately normalised) [47,62], with 16 k6 n

2 , they are
defined on the Schwartz space [66] of rapidly decaying complex-valued functions on Rn/2 which is dense in the Hilbert
space L2(Rn/2) of square integrable functions (and is invariant under those operators). In this case, [q j, pk] = iδ jk for
all j,k = 1, . . . , n

2 , with δ jk the Kronecker delta, and the system variables q1, . . . ,qn/2, p1, . . . , pn/2 have the CCR matrix

Θ =
1
2

[
0 In/2
−In/2 0

]
=

1
2

J⊗ In/2, (6)

where ⊗ is the Kronecker product of matrices, Ir denotes the identity matrix of order r, and the matrix

J :=
[

0 1
−1 0

]
(7)

spans the space of antisymmetric matrices of order 2. In fact, any CCR matrix can be brought to the form (6) by an
appropriate linear transformation of the system variables.

The linear quantum stochastic system under consideration models an open quantum harmonic oscillator (OQHO)
[15,17] with n

2 modes which interacts with an m-channel external bosonic field, where m is even. The energetics of
the system and its interaction with the fields is captured by the system Hamiltonian H and the system-field coupling
operators L1, . . . ,Lm:

H :=
1
2

n

∑
j,k=1

r jkX jXk =
1
2

XTRX , L :=

L1
...

Lm

= MX , (8)

which are, respectively, quadratic and linear functions of the system variables. These operators are specified by a
symmetric energy matrix R := (r jk)16 j,k6n ∈Rn×n and a coupling matrix M ∈Rm×n. The system variables are evolved
in time t > 0 by a linear Hudson-Parthasarathy QSDE [26,53]

dX = G (X)dt− i[X ,LT]dW = AXdt +BdW (9)

whose structure (including its linearity in the case being considered) is clarified below. This QSDE is driven by the
vector

W :=

W1
...

Wm


of quantum Wiener processes W1, . . . ,Wm which are time-varying self-adjoint operators on a symmetric Fock space F
[53,55]. These operators represent the external fields and have a complex positive semi-definite Hermitian Ito matrix
Ω := (ω jk)16 j,k6m:

dWdW T = Ωdt, Ω := Im + iJ. (10)

Here,

J :=
[

0 Im/2
−Im/2 0

]
= J⊗ Im/2 (11)

is an orthogonal real antisymmetric matrix of order m (so that J2 = −Im), which specifies CCRs for the quantum
Wiener processes as [dW,dW T] = 2iJdt, with the matrix J given by (7).

The Hilbert space H, which provides a common domain for the action of the system and external field variables,
has the tensor-product structure

H := H0⊗F, (12)
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with H0 the initial system space where the system variables X1(0), . . . ,Xn(0) are defined. The matrices A ∈ Rn×n and
B ∈ Rn×m in (9) are expressed as

A := 2Θ(R+MTJM) = 2ΘR− 1
2

BJBT
Θ
−1, B := 2ΘMT (13)

in terms of the energy and coupling matrices R and M from (8) and satisfy the physical realizability (PR) condition
[34,63]:

AΘ +ΘAT +BJBT = 0. (14)

Also, G in (9) is the Gorini-Kossakowski-Sudarshan-Lindblad generator [1,19,41], whose role is similar to that of the
infinitesimal generators of classical Markov diffusion processes [18,37]. More precisely, G is a linear superoperator
which specifies the drift in the evolution of a system operator ξ (a function of the system variables X1, . . . ,Xn) as

dξ = G (ξ )dt− i[ξ ,LT]dW. (15)

Furthermore, G takes into account both the internal dynamics of the system and its interaction with the external fields:

G (ξ ) := i[H,ξ ]+D(ξ ), (16)

where H is the system Hamiltonian in (8). The last term in (16) is the decoherence superoperator D associated with
the system-field interaction as

D(ξ ) :=
1
2

m

∑
j,k=1

ω jk (L j[ξ ,Lk]+ [L j,ξ ]Lk) , (17)

where ω jk are the entries of the quantum Ito matrix Ω in (10). In particular, by substituting the coupling operators
L1, . . . ,Lm from (8) into (17) and using the CCRs (5), the entrywise application of D to the vector X of the system
variables in (3) leads to

D(X) :=
1
2

m

∑
j,k=1

ω jk (L j[X ,Lk]+ [L j,X ]Lk)

= 2ΘMTJMX =−1
2

BJBT
Θ
−1X , (18)

which gives rise to the field-related term 2ΘMTJM = − 1
2 BJBTΘ−1 in the matrix A in (13). The other part i[H,X ] =

2ΘRX of the drift vector AX in the QSDE (9) comes from the quadratic nature of the Hamiltonian H in (8) in combi-
nation with the CCRs (5) and describes the internal dynamics which the system variables would have in isolation from
the environment. Also, the representation of the dispersion matrix B =−i[X ,LT] of the QSDE (9) in (13) follows from
the linear dependence of the coupling operators in (8) on the system variables and the CCRs (5).

In contrast to classical SDEs, the specific structure (16)–(18) of the drift and diffusion terms of the QSDE (15)
(and its particular case (9)) comes from the evolution

ξ (t) =U(t)†(ξ (0)⊗IF)U(t) (19)

of the system operator ξ , with ξ (0) acting on the initial system space H0. Here, U(t) is a time-varying unitary operator
on the system-field space H in (12) satisfying another QSDE

dU(t) =−U(t)
(

i(H(t)dt +L(t)TdW (t))+
1
2

L(t)T
ΩL(t)dt

)
, (20)

with U(0) = IH. The stochastic flow (19) preserves the quadratic-linear dependence (8) of the current Hamiltonian
and coupling operators H(t) =U(t)†(H(0)⊗IF)U(t) and L(t) =U(t)†(L(0)⊗IF)U(t) in (20) on the system vari-
ables X1(t), . . . ,Xn(t). This property follows from the map ζ 7→U(t)†ζU(t) being a unitary similarity transformation
of operators ζ on H (which applies entrywise to vectors of such operators).

In view of (20), the unitary operator U(t) reflects an accumulated effect from internal driving forces of the system
and its interaction with the external fields over the time interval [0, t] and is adapted in the sense that it acts effectively
on the subspace H0⊗Ft , where {Ft : t > 0} is the Fock space filtration. The QSDE (15) follows from (19) and (20)
due to the quantum Ito formula [26,53] combined with (10), unitarity of U and commutativity between the forward Ito
increments dW (t) and adapted processes (including U) considered at time s6 t. This commutativity is a consequence
of the continuous tensor-product structure [55] of the Fock space F.

The QSDEs (9), (15) and (20) correspond to a particular yet important scenario of quantum stochastic dynamics,
where there is no photon exchange between the fields, and the scattering matrix is an identity matrix, which effectively
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eliminates the gauge processes from consideration. The presence of these processes and more general scattering ma-
trices [26,53] affects the dynamics of the unitary operator U and is taken into account in QSDEs which are used in the
quantum feedback network theory [20,33].

Due to the linearity of the QSDE (9), the OQHO is employed extensively as a basic model in linear quantum
filtering and control [34,51,60] with quadratic performance criteria. If the initial system variables have finite second
moments, that is,

E(X(0)TX(0)) =
n

∑
k=1

E(Xk(0)2)<+∞, (21)

then, similarly to the classical case, this property is preserved in time by the linear dynamics (9) and leads to the finite
limit values of the first and second moments

lim
t→+∞

EX(t) = 0, lim
t→+∞

E(X(t)X(t)T) = P+ iΘ (22)

(involving the CCR matrix Θ from (5)), provided the matrix A in (13) is Hurwitz. Here, Eξ := Tr(ρξ ) is the expecta-
tion of a quantum variable ξ over the density operator1 (or quantum state)

ρ := ϖ ⊗υ , (23)

where ϖ is the initial system state on H0, and υ is the vacuum state of the input bosonic fields on the Fock space F.
The matrix P in (22) is the infinite-horizon controllability Gramian

P :=
∫ +∞

0
etABBTetAT

dt (24)

of the pair (A,B), which is a unique solution of the algebraic Lyapunov equation (ALE)

AP+PAT +BBT = 0 (25)

due to A being Hurwitz. The first two moments of the system variables above pertain to the averaged behaviour of the
system at a particular instant and do not provide information on multi-point quantum correlations at different moments
of time.

3 Multi-point Gaussian quantum states

Since, in view of (5), the system variables X1, . . . ,Xn do not commute with each other, their statistical properties do
not reduce to a classical joint probability distribution in Rn [24,27,48]. Such properties of the quantum variables
depend on the underlying density operator ρ and are represented indirectly in terms of their moments. We will first
revisit the statistical properties of X1(t), . . . ,Xn(t) at one point in time t > 0, which are encoded by the one-point
quasi-characteristic function (QCF) Φ : R+×Rn→ C defined by (see, for example, [11])

Φ(t,u) := EWu(t) (26)

in terms of the Weyl operator (2) associated with X(t), with the averaging over the system-field state (23). For any
t > 0, let

Σ(t) :=
∫ t

0
e(t−s)ABBTe(t−s)AT

ds =
∫ t

0
esABBTesAT

ds (27)

denote the finite-horizon (over the time interval [0, t]) controllability Gramian of the pair (A,B), satisfying the Lya-
punov ODE

Σ̇ = AΣ +ΣAT +BBT,

with Σ(0) = 0. Since the matrix A is assumed to be Hurwitz, the function Σ is related to the matrix P in (24) by

Σ(t) = P− etAPetAT → P, as t→+∞. (28)

The following lemma shows that the evolution of the QCF under the linear QSDE is identical to that for classical
Gaussian Markov diffusion processes (such as the Ornstein-Uhlenbeck process ) produced by linear SDEs [18,37].

1 ρ is a positive semi-definite self-adjoint operator with unit trace Trρ = 1 on the system-field space H in (12) which, together with a suitable
∗-algebra A of linear operators on H, forms a quantum probability space (H,A,ρ). Since H no longer plays the role of a sample space and can
be omitted, this yields the general quantum probability space as the pair (A,E) of a ∗-algebra A and a positive linear functional E normalised to
EI = 1 [27,48].
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Lemma 1 Suppose the OQHO, governed by the linear QSDE (9), is driven by the input fields in the vacuum state.
Then the QCF Φ for the system variables in (26) satisfies a linear functional equation

Φ(t,u) = Φ
(
s,e(t−s)AT

u
)
e−

1
2 ‖u‖

2
Σ(t−s) (29)

for any two moments of time t > s > 0 and all u ∈ Rn. Here, the function Σ is given by (27), and ‖v‖K :=
√

vTKv =
|
√

Kv| denotes a weighted Euclidean semi-norm of a vector v associated with a real positive semi-definite symmetric
matrix K. �

Proof The solution of the linear QSDE (9) admits the decomposition

X(t) = e(t−s)AX(s)+Y (s, t) (30)

for any t > s> 0, where Y (s, t) is an auxiliary vector of self-adjoint operators given by

Y (s, t) :=
∫ t

s
e(t−τ)ABdW (τ). (31)

Since the increments of the quantum Wiener process W commute with the current values of adapted processes, then

[X(s),Y (s, t)T] =
∫ t

s
[X(s),dW (τ)T]BTe(t−τ)AT

= 0 (32)

for all t > s > 0. In fact, the entries of X(s) and Y (s, t) act on orthogonal subspaces of the system-field Hilbert space
H in (12). Furthermore, since the system and fields are in the product state (23), with the fields being in the vacuum
state, then X(s) and Y (s, t) are statistically independent. In combination with (30) and (32), this independence implies
that

Φ(t,u) = EeiuT(e(t−s)AX(s)+Y (s,t))

= EeiuTe(t−s)AX(s)
Ψ(s, t,u)

= Φ
(
s,e(t−s)AT

u
)
Ψ(s, t,u), (33)

where
Ψ(s, t,u) := EeiuTY (s,t) (34)

is the QCF for the vector Y (s, t). Now, in the vacuum state, the input fields have the quasi-characteristic functional

Eei
∫ t

0 f (s)TdW (s) = e−
1
2
∫ t

0 | f (s)|2ds (35)

for any t > 0 and any locally square integrable function f : R+→Rm. By substituting Y from (30) into (34) and using
(35), it follows that

Ψ(s, t,u) := EeiuT ∫ t
s e(t−τ)ABdW (τ)

= e−
1
2
∫ t

s |BTe(t−τ)AT
u|2dτ

= e−
1
2 uT ∫ t−s

0 eτABBTeτAT
dτu = e−

1
2 ‖u‖

2
Σ(t−s) (36)

in view of (27). Substitution of (36) into (33) leads to (29). �
From (29), it follows that if the initial state ϖ of the system is Gaussian [54,56] (that is, lnΦ(0,u) is a quadratic

function of u ∈ Rn), then so is its reduced quantum state at subsequent moments of time t > 0. Furthermore, since
the matrix A is Hurwitz, the relations (28), (29) and the continuity limu→0 Φ(s,u) = Φ(s,0) = 1 imply the pointwise
convergence of the QCF:

lim
t→+∞

Φ(t,u) = lim
t→+∞

(
Φ
(
0,etAT

u
)
e−

1
2 ‖u‖

2
Σ(t)
)
= e−

1
2 ‖u‖

2
P , u ∈ Rn, (37)

which holds regardless of whether the initial state is Gaussian (or whether (21) is satisfied). The relation (37) is
equivalent to the weak convergence [7,11] of the reduced system state to a unique invariant Gaussian quantum state
with zero mean and the quantum covariance matrix P+ iΘ specified by the matrix P in (24).
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We will now turn to multi-point quantum states of the system variables. To this end, we note that an infinite-
dimensional extension of (29) is the quasi-characteristic functional of the quantum process X over the time interval
[0, t]:

Φ̃(t,u) := Eei
∫ t

0 X(s)Tdu(s)

= Eei
∫ t

0(e
sAX(0)+Y (0,s))Tdu(s)

= Φ

(
0,
∫ t

0
esAT

du(s)
)

e−
∫ t

0(
∫ s

0 C(s,τ)du(τ))Tdu(s), (38)

which is computed (similarly to that of a classical Gaussian random process) for any t > 0 and any function u : R+→
Rn of locally bounded variation. The integrals in (38) are operator and vector-matrix versions of the Riemann-Stieltjes
integral [77]. Also, use is made of the two-point covariance matrix

C(s,τ) := ReE(Y (0,s)Y (0,τ)T)

= e(s−τ)A
Σ(τ) =C(τ,s)T, s> τ > 0, (39)

for the quantum process Y (0,s) =
∫ s

0 e(s−τ)ABdW (τ) from (30) and (31), with the function Σ given by (27). The
covariance function C in (39) is the kernel function of the quadratic form

E
((∫ t

0
Y (0,s)Tdu(s)

)2)
=
∫
[0,t]2

du(s)TC(s,τ)du(τ)

= 2
∫ t

0

(∫ s

0
C(s,τ)du(τ)

)T
du(s).

In application to a piece-wise constant function u(t) = ∑16k6r: tk6t vk with increments v1, . . . ,vr ∈ Rn at an increasing
sequence of moments of time 06 t1 6 . . .6 tr (with an arbitrary r = 1,2,3, . . .), the quantity Φ̃(tr,u) in (38) becomes
the r-point QCF of the system variables:

Φr(t1, . . . , tr;v1, . . . ,vr) := Eei∑
r
k=1 vT

k X(tk)

= Φ

(
0,

r

∑
k=1

etkAT
vk

)
e−

1
2 ∑

r
j,k=1 vT

j C(t j ,tk)vk . (40)

Although (40) is a particular case of the quasi-characteristic functional (38), it is also possible to obtain (38) from
(40) by approximating the integrals with appropriate Riemann-Stieltjes sums. The multi-point QCFs Φr with different
values of r are related to each other by

Φr(t1, . . . , tr−1, tr−1;v1, . . . ,vr) = Φr−1(t1, . . . , tr−1;v1, . . . ,vr−1 + vr). (41)

Furthermore, a multi-point extension of (29) is the recurrence relation

Φr(t1, . . . , tr;v1, . . . ,vr) = Eei∑
r−1
k=1 vT

k X(tk)+ivT
r (e

(tr−tr−1)AX(tr−1)+Y (tr−1,tr))

= Eei∑
r−1
k=1 vT

k X(tk)+ivT
r e(tr−tr−1)AX(tr−1)EeivT

r Y (tr−1,tr)

= Φr−1
(
t1, . . . , tr−1;v1, . . . ,vr−1 + e(tr−tr−1)AT

vr
)
e
− 1

2 ‖vr‖2Σ(tr−tr−1) (42)

for all r = 2,3,4, . . ., where use is made of (27), (30) and (41). By induction, (42) implies that ln Φr(t1,...,tr ;v1,...,vr)

Φ

(
0,∑r

k=1 etkAT
vk

) is

a quadratic function of the vectors v1, . . . ,vr ∈ Rn whose coefficients depend on the time arguments t1, . . . , tr only
through their differences tk− tk−1. Therefore, since the matrix A is assumed to be Hurwitz, the limit

lim
t→+∞

Φr(t1 + t, . . . , tr + t;v1, . . . ,vr) = e−
1
2 ∑

r
j,k=1 vT

j V (t j−tk)vk (43)

is the QCF of a multi-point Gaussian quantum state with zero mean and quantum covariance matrix whose real part is
identical to the covariance matrix of a homogeneous Gaussian Markov diffusion process in Rn at the moments of time
0, t2− t1, . . . , tr− t1. The covariance function V of this auxiliary classical process in (43) is computed as

V (τ) =V (−τ)T = eτAP, τ > 0, (44)
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where P is the matrix from (24). Due to the quantum nature of the setting under consideration, the Cn×n-valued
function

S(τ) :=V (τ)+ iΛ(τ) = S(−τ)∗ (45)

is a positive semi-definite Hermitian kernel (in the sense that so is the matrix (S(τ j− τk))16 j,k6r for all τ1, . . . ,τr > 0
and r = 1,2,3, . . .). Here, (·)∗ := ((·))T is the complex conjugate transpose, and

Λ(τ) =−Λ(−τ)T = eτA
Θ , τ > 0, (46)

describes the two-point commutator matrix for the system variables:

[X(s),X(t)T] = 2iΛ(s− t), s, t > 0, (47)

where use is made of (30)–(32). At the same time, S in (45) describes the covariance function of a classical stationary
Gaussian Markov diffusion process in the complex Euclidean space Cn, which will be discussed in Section 8.

As in the one-point case (37), the convergence of the multi-point QCFs in (43) holds regardless of whether the
initial system state is Gaussian (or whether (21) is satisfied). However, a Gaussian (but not necessarily invariant)
initial state gives rise to a multi-point Gaussian state associated with X(t1), . . . ,X(tr) at any future moments of time
tr > . . .> t1 > 0 for any r = 1,2,3, . . .. The quantum covariance matrices for such states are specified by the two-point
quantum covariance function of the system variables:

cov(X(t),X(s)) := E(X(t)X(s)T)−EX(t)EX(s)T

= e(t−s)Acov(X(s)), (48)
cov(X(s)) := cov(X(s),X(s))

= esAcov(X(0))esAT
+Σ(s)+ iΘ . (49)

These relations follow from the decomposition (30) and the fact that the entries of X(s) commute with and are statis-
tically independent of (and hence, uncorrelated with) those of Y (s, t) in (31).

While the mean square performance criteria in the quantum LQG control and filtering problems [15,51,69,70]
are based on one-point second-order moments of the system variables, the multi-point Gaussian states involve the
covariance functions (48). These two-point moments are also involved in the risk-sensitive [12,31,32] cost functionals
which penalize higher-order moments of integral quantities.

4 Quadratic-exponential functional

As mentioned in the introduction, moderate mean square values of the quantum system variables can be advanta-
geous, for example, for maintaining the system in the regime where its linear model remains valid. Large values of
system variables can be penalised by using cost functionals (to be minimized) similarly to those in classical LQG and
risk-sensitive control [3,6,30,73]. However, the noncommutative nature of the quantum setting affects the quantum
counterparts of the conventional performance criteria. Consider an adapted quantum process ϕ defined for any time
t > 0 as the integral of a quadratic function ψ of the system variables over the time interval [0, t]:

ϕ(t) :=
∫ t

0
ψ(s)ds, ψ(s) := X(s)T

ΠX(s). (50)

Here, Π is a given real symmetric matrix of order n, so that ϕ(t) and ψ(t) are self-adjoint operators on the system-field
space H in (12). If Π < 0, then

ψ = ZTZ =
n

∑
k=1

Z2
k , Z :=

Z1
...

Zn

 :=
√

ΠX , (51)

and both ϕ(t) and ψ(t) are positive semi-definite. Now, consider the exponential moment of the operator ϕ(t) from
(50):

Ξθ (t) := Eeθϕ(t) = Eeθ
∫ t

0 X(s)TΠX(s)ds, (52)

where the parameter θ > 0 is assumed to be sufficiently small in order for Ξθ (t) to be finite, and the dependence
of Ξθ (t) on Π is omitted for brevity. The quadratic-exponential functional (QEF) in (52) provides an alternative to
the original quantum risk-sensitive performance criterion in [12,31,32]. The latter was defined as a weighted mean
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square value of a time-ordered exponential satisfying an operator differential equation (see [32, Eqs. (19)–(21)]). In
fact, the QEF is a straightforward quantum version of its classical predecessors [6,30,73]. For any given time t > 0,
the quantity Ξθ (t) is the moment-generating function for the quantum variable ϕ(t) in the usual sense:

E(ϕ(t)k) = ∂
k
θ Ξθ (t)

∣∣
θ=0 (53)

for any positive integer k (for which the moment exists). In particular, if the system variables have finite second
moments (21), then the asymptotic behaviour of the QEF for small values of θ is described by

Ξθ (t) = 1+θ

∫ t

0
〈Π ,P(s)〉ds+o(θ), θ → 0, (54)

where 〈K,N〉 := Tr(K∗N) denotes the Frobenius inner product [25] of real or complex matrices. Here, the real part

P(t) := ReE(X(t)X(t)T) (55)

of the matrix E(XXT) = P+ iΘ of second moments of the system variables is a real symmetric matrix governed by
the Lyapunov ODE

Ṗ = AP+PAT +BBT (56)

and satisfying the generalized Heisenberg uncertainty principle P(t)+ iΘ < 0 for all t > 0 (see, for example, [24]).
The CCR matrix Θ does not enter the integrand in (54) since the orthogonality of the subspaces of symmetric and
antisymmetric matrices implies that 〈Π ,Θ〉= 0 and hence, 〈Π ,P+ iΘ〉= 〈Π ,P〉. Moreover, the first two terms on the
right-hand side of (54) provide a lower bound for the QEF. Indeed, for any fixed but otherwise arbitrary time t > 0,
the self-adjoint operator ϕ(t) can be regarded as a classical real-valued random variable with a probability distribution
Et .2 Hence,

Ξθ (t) =
∫ +∞

−∞

eθxEt(dx)

>
∫ +∞

−∞

(1+θx)Et(dx) = 1+θEϕ(t)

= 1+θ

∫ t

0
Eψ(s)ds = 1+θ

∫ t

0
〈Π ,P(s)〉ds, (57)

where use is also made of the inequality ev > 1+ v on the real line, and P is the function given by (55) and (56).
Furthermore, in combination with the first equality in (57) and convexity of the exponential function, the Jensen
inequality leads to

lnΞθ (t) = ln
∫ +∞

−∞

eθxEt(dx)

> θ

∫ +∞

−∞

xEt(dx) = θEϕ(t)

= θ

∫ t

0
Eψ(s)ds = θ

∫ t

0
〈Π ,P(s)〉ds. (58)

In view of (57) and (58), the QEF Ξθ (t) in (52) and its logarithm provide upper bounds for the mean square cost
functional which is used in the quantum LQG control and filtering problems [15,34,51]. Therefore, minimizing (or
having an upper bound for) the QEF would also guarantee an upper bound for the quadratic cost. An appropriate
scaling represents the QEF as a convex combination of the moments from (53):

e−θ
Ξθ (t) = e−θ

+∞

∑
k=0

θ k

k!
E(ϕ(t)k). (59)

Its coefficients θ k

k! e−θ constitute the Poisson probability mass function [64] with intensity parameter θ > 0 and achieve
their maximum at k = bθc, where b·c is the floor function. Therefore, θ determines the order of the moment of ϕ(t),
which is endowed with the largest weight in (59) and hence, is penalized most by the QEF as a cost functional. In
comparison with the quadratic costs in LQG control and filtering problems, the QEF leads to minimizing not only
the one-point second-order moments of the system variables but also their multi-point higher-order moments, with

2 This distribution is related by Et(A) := EPt(A) to the spectral measure Pt of ϕ(t), which is a projection-valued measure on the σ -algebra B
of Borel subsets of the real line satisfying Pt(A)Pt(B) = Pt(A

⋂
B) for all A,B ∈B and the resolution of the identity property Pt(R) = I ; see, for

example, [24].
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the latter being subject to a stronger penalty for larger values of θ . A similar consideration applies to the cumulant-
generating function

lnΞθ (t) =
+∞

∑
r=1

θ r

r!
Kr(ϕ(t))

= θ

(
Eϕ(t)+

θ

2
var(ϕ(t))

)
+O(θ 3), as θ → 0, (60)

for the self-adjoint quantum variable ϕ(t) (as a classical random variable with the distribution Et at a given moment of
time t). Here, the variance var(φ) := E(φ 2)− (Eφ)2 = K2(φ) of a random variable φ is the second of the cumulants

Kr(φ) := ∂
r
v lnEevφ

∣∣
v=0 = Pr(Eφ , . . . ,E(φ r)). (61)

For any r = 1,2,3, . . ., the rth cumulant Kr(φ) is specified by the first r moments Eφ , . . . ,E(φ r) through the polynomial

Pr(µ1, . . . ,µr) =−r!
r

∑
k=1

(−1)k

k ∑
j1,..., jk>1: j1+...+ jk=r

k

∏
s=1

µ js

js!

= µr− r!
r

∑
k=2

(−1)k

k ∑
j1,..., jk>1: j1+...+ jk=r

k

∏
s=1

µ js

js!
, (62)

whose coefficients do not depend on the probability distribution of φ . In particular, the first three polynomials are

P1(µ1) = µ1, P2(µ1,µ2) = µ2−µ
2
1 , P3(µ1,µ2,µ3) = µ3−3µ1µ2 +2µ

3
1 .

In view of (50), the first two terms on the right-hand side of (60) involve the second and fourth moments of the system
variables over the time interval [0, t] and will be employed in Section 5 for approximating the QEF.

As mentioned above, the QEF (52) differs from its predecessor in [31] and [32, Eqs. (19)–(21)] which was used for
measurement-based risk-sensitive quantum control problems and defined in terms of an operator differential equation.
Nevertheless, the QEF satisfies an integro-differential equation with somewhat similar features, which is provided by
Theorem 1 below. Its formulation needs an auxiliary integral operator introduced by the following lemma. To this end,
for any time t > 0, let ft denote a linear map acting as

ft(α,β ) :=Re
(

X(t)T
∫ t

0
α(σ)X(σ)dσ

)
+
∫
[0,t]2

X(σ)T
β (σ ,τ)X(τ)dσdτ (63)

on a pair of locally integrable matrix-valued functions α : R+ → Rn×n and β : R2
+ → Rn×n, the second of which

satisfies
β (σ ,τ)T = β (τ,σ) (64)

for all σ ,τ > 0. Here, the real part Re(·) is extended to operators as Reξ := 1
2 (ξ + ξ †). In view of (64), the image

ft(α,β ) in (63) is a self-adjoint quantum variable on H which depends in a quadratic fashion on the past history of
the system variables of the OQHO over the time interval [0, t].

Lemma 2 For any given t > 0, the composition of the map ft in (63) with the commutator adϕ(t)(·) := [ϕ(t), ·],
associated with the process ϕ in (50), can be represented as

adϕ(t)ft = iftΓt . (65)

Here, Γt is a linear integral operator which maps the function pair (α,β ) in (63) and (64) to the pair (α̃, β̃ ) =Γt(α,β )
of such functions as

α̃(σ) :=−4
∫ t

0
α(s)Λ(s−σ)dsΠ , (66)

β̃ (σ ,τ) :=2(ΠΛ(σ − t)α(τ)−α(σ)T
Λ(t− τ)Π)

+4
∫ t

0

(
ΠΛ(σ − s)β (s,τ)−β (σ ,s)Λ(s− τ)Π

)
ds, (67)

where Λ is the two-point commutator function of the system variables from (46) and (47). �
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Proof Note that the following identity holds for any self-adjoint operator ξ and an arbitrary operator η :

[ξ ,Reη ] =
1
2
([ξ ,η ]+ [ξ ,η†]) =

1
2
([ξ ,η ]+ [η ,ξ †]†)

=
1
2
([ξ ,η ]− [ξ ,η ]†) = iIm[ξ ,η ], (68)

where Imζ := 1
2i (ζ −ζ †) is the operator extension of the imaginary part Im(·). A combination of (50), (63) and (68)

implies that

[ϕ(t),ft(α,β )] =
∫ t

0
[ψ(s),ft(α,β )]ds

=
∫ t

0

[
ψ(s),Re

(
X(t)T

∫ t

0
α(σ)X(σ)dσ

)]
ds

+
∫ t

0

[
ψ(s),

∫
[0,t]2

X(σ)T
β (σ ,τ)X(τ)dσdτ

]
ds

=iIm
∫
[0,t]2

[ψ(s),X(t)T
α(σ)X(σ)]dsdσ

+
∫
[0,t]3

[ψ(s),X(σ)T
β (σ ,τ)X(τ)]dsdσdτ. (69)

Due to the two-point CCRs (47), the quadratic polynomials ∑
r
j=1 ∑

s
k=1 X(σ j)

Tγ jkX(τk) of the system variables of the
OQHO at arbitrary moments of time σ1, . . . ,σr and τ1, . . . ,τs, with complex matrix coefficients γ jk (or integrals of such
polynomials), form a Lie algebra with respect to the commutator; see Appendix A and references therein. Furthermore,
(47) allows (A5) of Lemma 4 to be applied to the quadratic functions of the system variables on the right-hand side of
(69) as

[ψ(s),X(t)T
α(σ)X(σ)] = [X(s)T

ΠX(s),X(t)T
α(σ)X(σ)]

= 4i
[

X(s)
X(t)

]T [ 0 ΠΛ(s− t)α(σ)
α(σ)Λ(s−σ)TΠ 0

][
X(s)
X(σ)

]
= 4i

(
X(s)T

ΠΛ(s− t)α(σ)X(σ)−X(t)T
α(σ)Λ(σ − s)ΠX(s)

)
, (70)

[ψ(s),X(σ)T
β (σ ,τ)X(τ)] = [X(s)T

ΠX(s),X(σ)T
β (σ ,τ)X(τ)]

= 4i
[

X(s)
X(σ)

]T [ 0 ΠΛ(s−σ)β (σ ,τ)
β (σ ,τ)Λ(s− τ)TΠ 0

][
X(s)
X(τ)

]
= 4i

(
X(s)T

ΠΛ(s−σ)β (σ ,τ)X(τ)−X(σ)T
β (σ ,τ)Λ(τ− s)ΠX(s)

)
, (71)

where the first equality from (46) has also been taken into account. Substitution of (70) and (71) into (69) leads to

[ϕ(t),ft(α,β )] =4iRe
∫
[0,t]2

(
X(s)T

ΠΛ(s− t)α(σ)X(σ)−X(t)T
α(σ)Λ(σ − s)ΠX(s)

)
dsdσ

+4i
∫
[0,t]3

(
X(s)T

ΠΛ(s−σ)β (σ ,τ)X(τ)−X(σ)T
β (σ ,τ)Λ(τ− s)ΠX(s)

)
dsdσdτ

=−4iRe
(

X(t)T
∫
[0,t]2

α(s)Λ(s−σ)ΠX(σ)dsdσ

)
+4iRe

∫
[0,t]2

X(σ)T
ΠΛ(σ − t)α(τ)X(τ)dσdτ

+4i
∫
[0,t]3

X(σ)T(
ΠΛ(σ − s)β (s,τ)−β (σ ,s)Λ(s− τ)Π

)
X(τ)dsdσdτ, (72)

where use is also made of appropriate permutations of the integration variables. By grouping the terms on the right-
hand side of (72) and comparing the result with (63), it follows that

[ϕ(t),ft(α,β )] = ift(α̃, β̃ ) = ift(Γt(α,β )), (73)

where the functions α̃ and β̃ are related to α and β through the linear operator Γt specified by (66) and (67). The
function β̃ in (67) inherits the property (64) due to the symmetry of the matrix Π and the first equality in (46). The
fulfillment of (73) for arbitrary functions α and β , described above, establishes (65). �
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Lemma 2 shows that the class of quantum variables ft(α,β ), described by (63) for admissible functions α and β

is invariant under the action of iadϕ(t). Moreover, (65) extends as

f (iadϕ(t))ft = ft f (−Γt) (74)

to entire functions f of a complex variable evaluated at operators. The nature of the operator f (−Γt) in (74) is simpler
than that of f (iadϕ(t)). Indeed, Γt (for any fixed but otherwise arbitrary t > 0) in (66), (67) is a bounded operator on
the Banach space of pairs of integrable Rn×n-valued functions on the time interval [0, t], described above, and hence,
so also is f (−Γt). This boundedness follows from the uniform boundedness of the function Λ in (46) due to the matrix
A being Hurwitz.

Also, for the purposes of the following theorem, we will need a time-varying change of the density operator ρ in
(23):

ρθ ,t :=
1

Ξθ (t)
e

θ
2 ϕ(t)

ρe
θ
2 ϕ(t). (75)

The property that ρθ ,t is a density operator is ensured by its self-adjointness, positive semi-definiteness and the unit
trace

Trρθ ,t =
1

Ξθ (t)
Tr
(
e

θ
2 ϕ(t)

ρe
θ
2 ϕ(t))

=
1

Ξθ (t)
Tr
(
ρeθϕ(t))= 1

Ξθ (t)
Eeθϕ(t) = 1

in view of (52). The quantum expectation over the modified density operator ρθ ,t in (75) is denoted by Eθ ,t and
computed as

Eθ ,tξ := Tr(ρθ ,tξ )

=
1

Ξθ (t)
Tr
(
e

θ
2 ϕ(t)

ρe
θ
2 ϕ(t)

ξ
)

=
1

Ξθ (t)
E
(
e

θ
2 ϕ(t)

ξ e
θ
2 ϕ(t)). (76)

In the case θ = 0, the definitions (75) and (76) reproduce the original density operator ρ0,t = ρ and the original
expectation E0,t = E.

Theorem 1 As a function of time, the QEF Ξθ (t) in (52), associated with the OQHO (9), satisfies the integro-
differential equation

∂t lnΞθ (t) = θEθ ,t
(
ψ(t)+ϒθ (t)

)
, (77)

where Eθ ,t is the modified expectation (76), and the process ψ is given by (50). Here, ϒθ (t) is a time-varying self-
adjoint operator which depends in a quadratic fashion on the past history of the system variables according to (63)
as

ϒθ (t) :=
θ

2
ft(αθ ,t ,βθ ,t)

=
θ

2

(
Re
(

X(t)T
∫ t

0
αθ ,t(σ)X(σ)dσ

)
+
∫
[0,t]2

X(σ)T
βθ ,t(σ ,τ)X(τ)dσdτ

)
. (78)

Also, the pair of Rn×n-valued functions αθ ,t and βθ ,t (the second of which satisfies the symmetry property (64)) is
computed as the image

(αθ ,t ,βθ ,t) = f
(

θ

2
Γt

)
(α̂t ,0) (79)

of the pair (α̂t ,0) under the linear operator f
(

θ

2 Γt
)
, where the integral operator Γt is described in Lemma 2. Also, the

function α̂t is given by
α̂t(σ) :=−8ΠΛ(t−σ)Π (80)

in terms of the two-point commutator function Λ of the system variables from (46) and (47). Furthermore,

f (z) :=
{

0 if z = 0
sinz−z

z2 otherwise =
+∞

∑
k=1

(−1)k z2k−1

(2k+1)!
(81)

is an entire odd function of a complex variable which is evaluated in (79) at the bounded operator θ

2 Γt . �
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Proof Application of the Magnus lemma on the differentiation of operator exponentials [23,38,42,45,74] leads to

(eθϕ(t))
�
= θ

∫ 1

0
eλθϕ(t)

ϕ̇(t)e(1−λ )θϕ(t)dλ

= θe
θ
2 ϕ(t)

∫ 1
2

− 1
2

eλθϕ(t)
ψ(t)e−λθϕ(t)dλe

θ
2 ϕ(t)

= θe
θ
2 ϕ(t)

∫ 1
2

− 1
2

eλθadϕ(t)(ψ(t))dλe
θ
2 ϕ(t)

= θe
θ
2 ϕ(t)sinhc

(
θ

2
adϕ(t)

)
(ψ(t))e

θ
2 ϕ(t). (82)

Here, ϕ̇(t) = ψ(t) is the time derivative of the process ϕ in (50), and

eµϕ
ψe−µϕ = eµadϕ (ψ) =

+∞

∑
k=0

µk

k!
adk

ϕ(ψ),

where adk
ϕ(·) :=

k times︷ ︸︸ ︷
[ϕ, [ϕ, . . . [ϕ, · ] . . .] is the k-fold iterate of the commutator adϕ(t)(·) (with ad0

ϕ being the identity map
by the standard convention). Also,

sinhc(z) :=
1
2

∫ 1

−1
eλ zdλ =

{
1 if z = 0

sinhz
z otherwise

=
+∞

∑
k=0

z2k

(2k+1)!
(83)

is a hyperbolic version of the sinc function (in the sense that sinhc(iz) = sinc(z)). This is an entire even function of a
complex variable z, which is evaluated in (82) at the superoperator θ

2 adϕ . Since sinhc(0) = 1 in view of (83), then

sinhc
(

θ

2
adϕ(t)

)
(ψ(t)) = ψ(t)+ϒθ (t), (84)

where

ϒθ (t) :=
+∞

∑
k=1

(θ/2)2k

(2k+1)!
ad2k

ϕ(t)(ψ(t))

=
θ

2
g
(

θ

2
adϕ(t)

)
([ϕ(t),ψ(t)]). (85)

Here,

g(z) :=
{

0 if z = 0
sinhc(z)−1

z otherwise
=

+∞

∑
k=1

z2k−1

(2k+1)!
(86)

is an entire odd function on the complex plane, which is applied to the superoperator θ

2 adϕ(t) in (85), with the resulting
superoperator acting on the (skew-Hermitian) quantum variable [ϕ(t),ψ(t)]. The self-adjointness of the operator ϒθ (t)
follows directly from (85). Indeed, since adiξ (η) = i[ξ ,η ] is self-adjoint for any self-adjoint operators ξ and η , then
so also is ad2

ξ
(η) = −ad2

iξ (η), and, by induction, ad2k
ξ
(η) is self-adjoint for all k = 1,2,3, . . .. Therefore, the series

(85) consists of self-adjoint operators due to the self-adjointness of ϕ(t) and ψ(t) in (50). Now, substitution of (84)
into (82) yields

(eθϕ(t))
�
= θe

θ
2 ϕ(t)(ψ(t)+ϒθ (t))e

θ
2 ϕ(t). (87)

By taking the quantum expectation on both sides of (87) and using (52) together with the modified expectation from
(76), it follows that

∂tΞθ (t) = E
(
(eθϕ(t))

�)
= θE

(
e

θ
2 ϕ(t)(ψ(t)+ϒθ (t))e

θ
2 ϕ(t)

)
= θΞθ (t)Eθ ,t

(
ψ(t)+ϒθ (t)

)
. (88)
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Division of both parts of (88) by the QEF Ξθ (t) leads to its logarithmic derivative in (77). We will now compute the
process ϒθ in (85). To this end, use will be made of the Lie-algebraic property of quadratic polynomials of system
variables of the OQHO, which was already employed in the proof of Lemma 2. More precisely, in view of the two-
point CCRs (47), application of (A5) from Lemma 4 to the quadratic functions of the system variables in (50) leads
to

[ψ(s),ψ(t)] = [X(s)T
ΠX(s),X(t)T

ΠX(t)]

= 4i
[

X(s)
X(t)

]T [ 0 γ(s− t)
−γ(t− s) 0

][
X(s)
X(t)

]
= 4i

(
X(s)T

γ(s− t)X(t)−X(t)T
γ(t− s)X(s)

)
=−8iRe

(
X(t)T

γ(t− s)X(s)
)

(89)

for any s, t > 0. Here,
γ(τ) := ΠΛ(τ)Π =−γ(−τ)T, (90)

and use is also made of (46) in combination with the symmetry of the matrix Π and the identity (ξ TNη)† = ηNTξ for
vectors ξ and η of self-adjoint operators and an appropriately dimensioned real matrix N. In view of (50), it follows
from (89) that

[ϕ(t),ψ(t)] =
∫ t

0
[ψ(s),ψ(t)]ds

=−8iRe
(

X(t)T
∫ t

0
γ(t− s)X(s)ds

)
= ift(α̂t ,0), (91)

where the last equality is obtained by comparison with (63), with the function α̂t given by (80) in view of (90).
Substitution of (91) into (85) leads to

ϒθ (t) =
θ

2
g
(

θ

2
adϕ(t)

)
(ift(α̂t ,0))

= i
θ

2
ft

(
g
(

i
θ

2
Γt

)
(α̂t ,0)

)
=

θ

2
ft

(
f
(

θ

2
Γt

)
(α̂t ,0)

)
. (92)

Here, use is made of Lemma 2 (and its corollary (74)), with the function f in (81) being related to g in (86) by
f (z) := ig(iz). In view of the notation (79), the representation (92) establishes (78), thus completing the proof. �

In the classical case (obtained in the limit as Θ → 0 and J→ 0), the operators ϕ(t) and ψ(t) in (50) are real-valued
(and hence, commuting) functions of time, and the process ϒθ vanishes. In this case, (77) reduces to

∂t lnΞθ (t) = θEθ ,tψ(t) =
θ

Ξθ (t)
E
(
eθϕ(t)

ψ(t)
)

and corresponds to the derivative of the usual exponential function. Returning to the quantum setting, we note that
(87) resembles the operator differential equation [32, Eq. (19)]. However, unlike the latter, (87) produces a self-adjoint
solution, and its right-hand side involves an additional process ϒθ which depends on the past history of the system
variables. More precisely, the operator ϒθ (t) stores part of the quantum information on the past history of the system
variables that is relevant to the time derivative (eθϕ(t))

�
.

5 A quartic approximation of the quadratic-exponential functional

As mentioned in the previous section in regard to the Taylor series expansion (60), the QEF can be approximated by
the quantity

Fθ (t) := θ

(
Eϕ(t)+

θ

2
var(ϕ(t))

)
(93)

which takes into account only the first four moments of the system variables over the time interval [0, t]. In view of
(57) and (58), the term Eϕ(t) in (93) is organised as a mean square cost functional in the coherent quantum LQG
control problems [51]. This quadratic term is revisited for completeness in the following theorem whose main result
is the computation of the second term in (93).
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Theorem 2 Suppose the matrix A in (13) is Hurwitz, and the OQHO (9), driven by vacuum fields, is initialised at the
invariant Gaussian state. Then the mean value and variance of the quantum process ϕ in (50) can be computed as

Eϕ(t) = 〈Π ,P〉t, (94)

var(ϕ(t)) = 4
∫ t

0
(t− τ)

〈
Π ,eτA(PΠP+ΘΠΘ)eτAT

〉
dτ (95)

for any t > 0, where the matrix P is given by (24). The infinite-horizon asymptotic behavior of this variance is described
by

lim
t→+∞

(1
t

var(ϕ(t))
)
= 4〈Π ,T 〉= 4〈Q,PΠP+ΘΠΘ〉, (96)

where the matrices T and Q are the unique solutions of the ALEs

AT +TAT +PΠP+ΘΠΘ = 0, (97)

ATQ+QA+Π = 0. (98)

�

Proof Since the invariant Gaussian quantum state has zero mean and the covariance matrix P+ iΘ , the relation (94)
follows from (50) and the equality

Eψ(t) =
〈
Π ,E(X(t)X(t)T)

〉
= 〈Π ,P+ iΘ〉= 〈Π ,P〉 (99)

for any t > 0, which was also used in (54) since 〈Π ,Θ〉= 0. Also, (50) allows the variance of ϕ(t) to be expressed in
terms of the quantum covariance function of ψ as

var(ϕ(t)) =
∫
[0,t]2

cov(ψ(σ),ψ(τ))dσdτ. (100)

Application of Lemma 5 of Appendix B to the two-point Gaussian quantum state for the system variables at the
moments of time σ and τ leads to

cov(ψ(σ),ψ(τ)) = cov(X(σ)T
ΠX(σ),X(τ)T

ΠX(τ))

= 2
〈
Π ,S(σ − τ)ΠS(σ − τ)T〉 , (101)

where use is also made of the symmetry of the matrix Π . Here, in accordance with (44)–(49), the corresponding
quantum covariance matrix of the system variables

E(X(σ)X(τ)T) =

{
e(σ−τ)A(P+ iΘ) if σ > τ > 0
(P+ iΘ)e(τ−σ)AT

if τ > σ > 0

=V (σ − τ)+ iΛ(σ − τ) = S(σ − τ) (102)

depends on the difference σ − τ since the system is assumed to be initialised at the invariant state. A combination of
(101) with an appropriate transformation of the integration variables in (100) leads to

var(ϕ(t)) = 2
∫
[0,t]2

〈
Π ,S(σ − τ)ΠS(σ − τ)T〉dσdτ

= 2
∫ t

−t
(t−|τ|)

〈
Π ,S(τ)ΠS(τ)T〉dτ

= 2
∫ t

0
(t− τ)〈Π ,S(τ)ΠS(τ)T +S(−τ)ΠS(−τ)T〉dτ

= 4
∫ t

0
(t− τ)

〈
Π ,Re

(
S(τ)ΠS(τ)T)〉dτ. (103)

Here, the symmetry of the matrix Π has been used together with the property S(−τ) = S(τ)∗ (see also (44)–(46)),
whereby 〈

Π , S(−τ)ΠS(−τ)T〉= 〈Π , S(τ)∗ΠS(τ)
〉
=
〈

S(τ)Π , ΠS(τ)
〉

=
〈

ΠS(τ), S(τ)Π
〉
= 〈Π , S(τ)ΠS(τ)T〉
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for any τ ∈ R. By substituting (102) into (103) and using the relation (P+ iΘ)T = P− iΘ in view of the symmetry of
P and antisymmetry of Θ , it follows that

var(ϕ(t)) = 4
∫ t

0
(t− τ)〈Π ,eτARe

(
(P+ iΘ)Π(P− iΘ)

)
eτAT〉dτ

= 4
∫ t

0
(t− τ)

〈
Π ,eτA(PΠP+ΘΠΘ)eτAT

〉
dτ,

which establishes (95). It now remains to prove (96). To this end, the representation (103) implies that, for any t > 0,

1
t

var(ϕ(t)) = 4
∫ +∞

0
χt(τ)

〈
Π ,Re

(
S(τ)ΠS(τ)T)〉dτ, (104)

where

χt(τ) := max
(

0,1− τ

t

)
(105)

is a finite support function which is bounded by and converges to 1 as t → +∞ for any given τ > 0. Since (due to A
being Hurwitz) the covariance function S(τ) in (102) is square integrable over τ , application of Lebesgue’s dominated
convergence theorem to (104) leads to

lim
t→+∞

(1
t

var(ϕ(t))
)
= 4

∫ +∞

0

〈
Π ,Re

(
S(τ)ΠS(τ)T)〉dτ = 4〈Π ,T 〉 , (106)

thus proving the first equality in (96), where the matrix

T :=
∫ +∞

0
Re
(
S(τ)ΠS(τ)T)dτ =

∫ +∞

0
eτA(PΠP+ΘΠΘ)eτAT

dτ (107)

satisfies the ALE (97). On the other hand, application of a duality argument allows the integral in (106) to be evaluated
as ∫ +∞

0

〈
Π ,Re

(
S(τ)ΠS(τ)T)〉dτ =

∫ +∞

0

〈
Π ,eτA(PΠP+ΘΠΘ)eτAT

〉
dτ

=
∫ +∞

0

〈
eτAT

ΠeτA,PΠP+ΘΠΘ

〉
dτ

= 〈Q,PΠP+ΘΠΘ〉 ,

which establishes the second of the equalities in (96), with the matrix Q :=
∫ +∞

0 eτAT
ΠeτAdτ satisfying the ALE (98).

�
In the limiting case Θ = 0, when the system variables commute with each other, the relation (101) reduces to the

representation

cov(ξ T
Πξ ,ηT

Πη) = 2〈Π ,cov(ξ ,η)Πcov(η ,ξ )〉 (108)

for the covariance of quadratic forms of jointly Gaussian classical random vectors ξ and η with zero mean values (see,
for example, [46, Lemmas 2.3 and 6.2] and [67, Lemma 6]). The noncommutative quantum nature of the setting under
consideration with Θ 6= 0 manifests itself in (95)–(97) through the term ΘΠΘ .

Also, in application to the quartic approximation (93) of the QEF, Theorem 2 yields the following infinite-horizon
asymptotic behaviour:

1
θ

lim
t→+∞

(1
t

Fθ (t)
)
= 〈Π ,P+2θT 〉. (109)

Here, T is the matrix from (107) which takes into account the two-point quantum statistical correlations (102) between
the system variables. The relation (109) shows that, in the infinite-horizon limit, the quartic term θ

2 var(ϕ(t)) in (93)
can be neglected in comparison with the quadratic term Eϕ(t) only if the parameter θ is small enough in the sense
that

θ � θ0 :=
1
2
〈Π ,P〉
〈Π ,T 〉

. (110)
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6 Asymptotic growth rates of the higher-order cumulants

Similarly to the quadratic and quartic terms of the Taylor series expansion of the QEF in (60), the higher-order cumu-
lants Kr(ϕ(t)) also grow asymptotically linearly with time t. The following theorems employ an auxiliary transforma-
tion N 7→ N[k], which depends on a binary parameter k = 0,1 and acts on an arbitrary matrix-valued function N (of a
real variable) as

N[k](τ) :=
{

N(τ) if k = 0
N(−τ)T if k = 1 , (111)

so that N 7→ N[0] is the identity transformation. Also, we denote by

r−→
∏
k=1

Nk := N1× . . .×Nr (112)

the rightward-ordered product of operators or appropriately dimensioned matrices (with the order being essential
because of noncommutativity). Furthermore, let

I(a,b) :=
{

0 if a6 b
1 if a > b (113)

indicate an inversion in the pair of integers (a,b). The inversion indicator I extends to consecutive pairs in an r-tuple
of integers as

I(c1,c2, . . . ,cr) := (I(c1,c2),I(c2,c3), . . . ,I(cr−1,cr)). (114)

Also, for any binary (r−2)-index γ ∈ {0,1}r−2, we denote by ∆r,γ the number of permutations c := (c1, . . . ,cr−1) of
the set {1, . . . ,r−1} with the inversion indicator γ:

∆r,γ := #{c is a permutation of {1, . . . ,r−1} such that I(c) = γ}. (115)

Since such permutations, considered for all possible γ ∈ {0,1}r−1, form a partitioning of the set of (r−1)! permuta-
tions of {1, . . . ,r−1}, then

∑
γ∈{0,1}r−2

∆r,γ = (r−1)!. (116)

Theorem 3 Suppose the matrix A in (13) is Hurwitz, and the OQHO (9), driven by vacuum fields, is initialised at the
invariant Gaussian state. Then for any r > 2 and any time t > 0, the rth cumulant (61) of the process ϕ in (50), with
Π < 0, can be represented as

Kr(ϕ(t)) = 2r−1
∑

γ∈{0,1}r−2

∆r,γ

∫
[0,t]r

Tr
(

ΠS(t1− t2)
r−1−→
∏
j=2

(
ΠS[γ j ](t j− t j+1)

)
ΠS(t1− tr)T

)
dt1× . . .×dtr, (117)

where S is the steady-state quantum covariance function of the system variables in (102), and the notation (111) and
(112) is used. The sum in (117) is over binary (r− 2)-indices γ := (γ2, . . . ,γr−1) ∈ {0,1}r−2, and the corresponding
coefficients ∆r,γ are described by (113)–(116). �

Proof In what follows, for any given r = 1,2,3, . . ., a permutation

κ := (κ1, . . . ,κ2r) = ( j1,k1, . . . , jr,kr) (118)

of the integers 1, . . . ,2r is called regular if it satisfies

j1 < j2 < .. . < jr−1 < jr, j1 < k1, j2 < k2, . . . , jr < kr. (119)

The set of regular permutations consists of (2r)!
r!2r = (2r− 1)!! elements and is denoted by Pr. There is a one-to-one

correspondence between Pr and the set of all partitions of {1, . . . ,2r} into two-element subsets. Note that 1 is a fixed
point for every regular permutation since j1 = 1. For example, the set of regular permutations of {1,2,3,4} is given
by P2 = {(1,3,2,4), (1,4,2,3), (1,2,3,4)}. The Wick-Isserlis theorem3 [35, Theorem 1.28 on pp. 11–12] (see also

3 it is also used in Appendix B
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[28] and [44, p. 122]) allows the product moment of self-adjoint quantum variables ξ1, . . . ,ξ2r, which satisfy CCRs
and are in a zero-mean Gaussian state, to be expressed in terms of their covariances as

E
2r−→
∏
k=1

ξk = ∑
κ∈Pr

r

∏
s=1

E(ξ js ξks). (120)

By using (50) and (51) and applying (120) to the multi-point zero-mean Gaussian state of the entries of the process Z
at different moments of time, it follows that

E(ϕ(t)r) = E
((∫ t

0

n

∑
`=1

Z`(τ)
2dτ

)r)
=

n

∑
`1,...,`r=1

∫
[0,t]r

E
r−→

∏
k=1

(Z`k(tk)
2)dt1× . . .×dtr

=
n

∑
`1,...,`r=1

∫
[0,t]r

∑
κ∈Pr

r

∏
s=1

K`d( js)`d(ks)
(td( js)− td(ks))dt1× . . .×dtr

= ∑
κ∈Pr

∫
[0,t]r

n

∑
`1,...,`r=1

r

∏
s=1

K`d( js)`d(ks)
(td( js)− td(ks))dt1× . . .×dtr. (121)

Here, K denotes the steady-state quantum covariance function of Z in (51) which is related to that of the process X in
(102) by

E(Z(σ)Z(τ)T) =
√

ΠS(σ − τ)
√

Π

=: K(σ − τ) = (Kab(σ − τ))16a,b6n. (122)

Also, the function
d(k) := dk/2e (123)

in (121) maps the set {1, . . . ,2r} onto {1, . . . ,r}, where d·e denotes the ceiling function. For any j = 1, . . . ,r, the
inverse image of the singleton { j} under the map d is the two-element set d−1( j) = {2 j− 1,2 j}. For any κ ∈Pr
from (118), the 2r-tuple

ν := (ν1, . . . ,ν2r) := d(κ)

:= (d( j1),d(k1), . . . ,d( jr),d(kr)) (124)

describes a permutation of the multi-set {1,1,2,2, . . . ,r−1,r−1,r,r}. Since the function d in (123) is nondecreasing,
then ν inherits from κ the property (119) in a nonstrict form:

ν1 6 ν3 6 . . .6 ν2r−3 6 ν2r−1, ν1 6 ν2, ν3 6 ν4, . . . , ν2r−1 6 ν2r. (125)

Since d is not injective, it maps some elements κ ∈Pr to the same permutation ν in (124), so that the inverse image
d−1(ν) := {κ ∈Pr : d(κ) = ν} of ν ∈ d(Pr) consists, in general, of more than one regular permutation. In fact,
only the identity permutation has a unique preimage: d−1(1,1,2,2, . . . ,r,r) = (1,2, . . . ,2r− 1,2r). For example, the
case r = 3 is illustrated by Tabs. 1 and 2 which also provide the numbers #d−1(ν) of elements in the inverse images.
For any r > 1, the relation (121) can be represented in terms of the permutations ν in (124) (with their multiplicities

taken into account) as

E(ϕ(t)r) = ∑
ν∈d(Pr)

#d−1(ν)
∫
[0,t]r

n

∑
`1,...,`r=1

r

∏
s=1

K`ν2s−1 `ν2s
(tν2s−1 − tν2s)dt1× . . .×dtr. (126)

Now, any given permutation ν ∈ d(Pr) can be partitioned into cycles c which pass through elements of the set
{1, . . . ,r} twice. Every such cycle of period p can be represented as a p-tuple (c1,c2, . . . ,cp) of pairwise different
elements of the set {1, . . . ,r} (see, for example, the rightmost column of Tab. 2). In terms of these cycles (which
depend on a particular permutation ν ∈ d(Pr)), the product in (126) takes the form

r

∏
s=1

K`ν2s−1 `ν2s
(tν2s−1 − tν2s) = ∏

c

p

∏
j=1

K
[γ j ]

`c j `c j+1
(tc j − tc j+1). (127)
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Table 1 The set P3 of regular permutations κ of {1, . . . ,6} and their images ν := d(κ) under the map d in (123)

No. κ1 κ2 κ3 κ4 κ5 κ6 ν1 ν2 ν3 ν4 ν5 ν6

1 1 2 3 4 5 6 1 1 2 2 3 3
2 1 2 3 5 4 6 1 1 2 3 2 3
3 1 2 3 6 4 5 1 1 2 3 2 3
4 1 3 2 4 5 6 1 2 1 2 3 3
5 1 3 2 5 4 6 1 2 1 3 2 3
6 1 3 2 6 4 5 1 2 1 3 2 3
7 1 4 2 3 5 6 1 2 1 2 3 3
8 1 4 2 5 3 6 1 2 1 3 2 3
9 1 4 2 6 3 5 1 2 1 3 2 3
10 1 5 2 3 4 6 1 3 1 2 2 3
11 1 5 2 4 3 6 1 3 1 2 2 3
12 1 5 2 6 3 4 1 3 1 3 2 2
13 1 6 2 3 4 5 1 3 1 2 2 3
14 1 6 2 4 3 5 1 3 1 2 2 3
15 1 6 2 5 3 4 1 3 1 3 2 2

Table 2 The permutations ν ∈ d(P3) of the multi-set {1,1,2,2,3,3}, their multiplicities #d−1(ν) and cycle structures

No. ν1 ν2 ν3 ν4 ν5 ν6 #d−1(ν) cycles

1 1 1 2 2 3 3 1 (1), (2), (3)
2 1 1 2 3 2 3 2 (1), (2,3)
3 1 2 1 2 3 3 2 (1,2), (3)
4 1 2 1 3 2 3 4 (1,2,3)
5 1 3 1 2 2 3 4 (1,3,2)
6 1 3 1 3 2 2 2 (1,3), (2)

Here, for a given cycle c := (c1, . . . ,cp) of period p, the convention cp+1 := c1 is used, and γ1, . . . ,γp are auxiliary
variables

γ j := I(c j,c j+1) =

{
0 if c j < c j+1
1 if c j > c j+1

(128)

which, in accordance with (114), indicate inversions for consecutive elements of the cycle c (we let γ1 := 0 in the case
p = 1); see Fig. 1. Also, use is made of the notation

K
[γ j ]

`c j `c j+1
(tc j − tc j+1) :=

{
K`c j `c j+1

(tc j − tc j+1) if c j < c j+1

K`c j+1 `c j
(tc j+1 − tc j) if c j+1 < c j

. (129)

Since the cycles of a given permutation ν partition the set {1, . . . ,r}, then, in view of (128) and (129), the summation
of (127) over the independent indices `1, . . . , `r leads to

n

∑
`1,...,`r=1

r

∏
s=1

K`ν2s−1 `ν2s
(tν2s−1 − tν2s) =

n

∑
`1,...,`r=1

∏
c

p

∏
j=1

K
[γ j ]

`c j `c j+1
(tc j − tc j+1)

= ∏
c

Tr
p−→

∏
j=1

K[γ j ](tc j − tc j+1), (130)

where the last equality employs (111) and (112). By a similar reasoning, the integration of the right-hand side of (130)
over t1, . . . , tr yields

∫
[0,t]r

∏
c

Tr
p−→

∏
j=1

K[γ j ](tc j − tc j+1)dt1× . . .×dtr = ∏
c

∫
[0,t]p

Tr
p−→

∏
j=1

K[γ j ](t j− t j+1)dt1× . . .×dtp, (131)

where tp+1 := t1. Substitution of (131) into (126) leads to

E(ϕ(t)r) = ∑
ν∈d(Pr)

#d−1(ν)∏
c

∫
[0,t]p

Tr
p−→

∏
j=1

K[γ j ](t j− t j+1)dt1× . . .×dtp. (132)
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Fig. 1 These directed graphs represent the permutations ν of the multi-set {1,1,2,2,3,3} in Tab. 2 (for the case r = 3) and their cycle structure.
The straight edges in each of the graphs depict the pairs (c j,c j+1) in (128) and are oriented rightwards (γ j = 0) or leftwards (γ j = 1), with the latter
indicating the inversions in these pairs. Each of the curved edges represents a transition to the remaining occurrence of the current element of the
cycle in the permutation. The fourth and fifth permutations are monocyclic. According to the second last column of Tab. 2, their total multiplicity is
8.

A combination of (132) with (62) and tedious combinatorial considerations (omitted here for brevity) show that the
contributions to the rth cumulant Kr(ϕ(t)) from all those permutations ν , which consist of at least two cycles, cancel
out in the sense that

∑
ν∈d(Pr) with at least two cycles

#d−1(ν)∏
c

∫
[0,t]p

Tr
p−→

∏
j=1

K[γ j ](t j− t j+1)dt1× . . .×dtp

= r!
r

∑
k=2

(−1)k

k ∑
j1,..., jk>1: j1+...+ jk=r

k

∏
s=1

E(ϕ(t) js)

js!
.

Hence, only monocyclic permutations ν ∈ d(Pr), consisting of a single cycle of period r (the set of such permutations
is denoted by Mr), contribute to the cumulant:

Kr(ϕ(t)) = ∑
ν∈Mr

#d−1(ν)
∫
[0,t]r

Tr
r−→

∏
j=1

K[γ j ](t j− t j+1)dt1× . . .×dtr. (133)

The cycle, associated with a monocyclic permutation ν ∈Mr, has the form (1,c2, . . . ,cr), where (c2, . . . ,cr) is an
arbitrary permutation of the set {2, . . . ,r}. For any such (c2, . . . ,cr), all monocyclic permutations ν ∈Mr with the
cycle (1,c2, . . . ,cr) are described by

ν = (1,c2,1,cr, p1, . . . , pr−2), (134)

where p1, . . . , pr−2 are pairs of integers which are obtained by ordering the pairs

(a j,b j) := (min(c j,c j+1),max(c j,c j+1)) (135)

for all j = 2, . . . ,r− 1, so that their first entries a2, . . . ,ar−1 are ordered in ascending order according to (125). The
ordering is delivered by all those permutations f1, . . . , fr−2 of the set {2, . . . ,r−1} which satisfy

a f1 6 . . .6 a fr−2 (136)

and the trailing pairs in (134) are given in terms of (135) by

p j := (a f j ,b f j), j = 1, . . . ,r−2. (137)
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Such a permutation f1, . . . , fr−2 is unique only if a2, . . . ,ar−1 are pairwise different. If there are µ different pairs
of identical elements among a2, . . . ,ar−1, then the number of permutations f1, . . . , fr−2 which secure (136) is 2µ .
However, in both scenarios, there are 2r−1 permutations κ ∈Pr such that the corresponding ν in (124) is monocyclic
with the given cycle (1,c2, . . . ,cr). Now, since the matrix

−→
∏

r
j=1 K[γ j ](t j− t j+1) on the right-hand side of (133) depends

on a monocyclic permutation ν in (134)–(137) only through the inversion indicators γ1, . . . ,γr in (128), which are
completely specified by c2, . . . ,cr, then

Kr(ϕ(t)) = 2r−1
∑

(c2,...,cr)

∫
[0,t]r

Tr
r−→

∏
j=1

K[γ j ](t j− t j+1)dt1× . . .×dtr, (138)

where the sum is over all (r−1)! permutations (c2, . . . ,cr) of the set {2, . . . ,r}. The summation in (138) can be reduced
to that over the binary variables γ2, . . . ,γr−1 as

Kr(ϕ(t)) = 2r−1
∑

γ2,...,γr−1=0,1
∆r,γ2,...,γr−1

∫
[0,t]r

Tr
(

K(t1− t2)
r−1−→
∏
j=2

K[γ j ](t j− t j+1)K(t1− tr)T
)

dt1× . . .×dtr, (139)

since γ1 = 0 and γr = 1 in view of (128) and c1 = 1 < c2 and cr > cr+1 = 1. Here, in accordance with (115), the
coefficient ∆r,γ2,...,γr−1 is the number of those permutations (c2, . . . ,cr) of the set {2, . . . ,r} which have the inversion
indicators γ2, . . . ,γr−1. Therefore, the sum of these coefficients is given by (116). From (122) and the symmetry of the
matrix Π , it follows that

Tr
r−→

∏
j=1

K[γ j ](t j− t j+1) = Tr
r−→

∏
j=1

(√
ΠS[γ j ](t j− t j+1)

√
Π
)

= Tr
(

ΠS(t1− t2)
r−1−→
∏
j=2

(
ΠS[γ j ](t j− t j+1)

)
ΠS(t1− tr)T

)
. (140)

Substitution of (140) into (139) leads to (117), thus completing the proof. �
Although Theorem 3 is formulated and proved for the case Π < 0, the relation (117) remains valid irrespective of

the matrix Π being positive semi-definite.
In contrast to covariance functions of classical random processes, the quantum covariance function S in (102) is

not invariant under the transformation (111) since S[1](τ) = S(τ) 6= S(τ) in general. Therefore, the integral in (117)
has a more complicated structure than the r-fold convolution of the function ΠS with itself. For example, in the case
r = 3, the sum in (117) is over a binary index and consists of two terms. In view of (116) and the invariance of the
matrix trace with respect to the transpose and cyclic permutations, this leads to

K3(ϕ(t)) =4
(

∆3,0

∫
[0,t]3

Tr
(
ΠS(t1− t2)ΠS(t2− t3)ΠS(t1− t3)T)dt1dt2dt3

+∆3,1

∫
[0,t]3

Tr
(
ΠS(t1− t2)ΠS(t3− t2)T

ΠS(t1− t3)T)dt1dt2dt3
)

=4(∆3,0 +∆3,1)
∫
[0,t]3

Tr
(
ΠS(t1− t2)ΠS(t2− t3)ΠS(t1− t3)T)dt1dt2dt3

=8
∫
[0,t]3

〈
Π ,S(t1− t2)ΠS(t2− t3)ΠS(t1− t3)T〉dt1dt2dt3. (141)

For larger values of r, the dependence of the coefficient ∆r,γ in (117) on the multi-index γ ∈ {0,1}r−2 is fairly compli-
cated and manifests fractal-like fluctuations, as illustrated by Fig. 2.

The following corollary of Theorem 3 describes the infinite-horizon asymptotic behaviour of the cumulants of
arbitrary order, including its frequency-domain representation. To this end, we denote by D the spectral density of the
quantum covariance function (102):

D(λ ) :=
∫ +∞

−∞

S(τ)e−iλτ dτ. (142)

Due to the Bochner-Khinchin criterion of positive semi-definiteness of Hermitian kernels [18] and the standard prop-
erties of the Fourier transforms, D(λ ) = D(λ )∗ < 0 for all frequencies λ ∈R. Furthermore, D admits the factorization

D(λ ) = G(iλ )ΩG(iλ )∗ (143)
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Fig. 2 The dependence of the coefficient ∆r,γ in (117) on the binary (r− 2)-index γ in the case r = 11. The multi-index encodes the integers
0, . . . ,2r−2−1 over the horizontal axis of the graph.

in terms of the quantum Ito matrix Ω from (10) and the transfer function G from W to X in (9) associated with the
matrix pair (A,B) by

G(s) :=
∫ +∞

0
e−ste−tABdt = (sIn−A)−1B (144)

in the closed right half-plane Res> 0 (since A is Hurwitz). The transformation (111), applied to the covariance function
S, carries over to the spectral density D in (142) as

S[1](τ) = S(−τ)T

=
1

2π

∫ +∞

−∞

e−iλτ D(λ )Tdλ

=
1

2π

∫ +∞

−∞

eiλτ D(−λ )Tdλ =
1

2π

∫ +∞

−∞

eiλτ D[1](λ )dλ ,

with the latter being the inverse Fourier transform of D[1]. Also, similarly to (112), for appropriately dimensioned
matrix-valued functions f1, . . . , fr on the real line, their convolution is denoted by

r−→
~

k=1
fk := f1 ∗ . . .∗ fr. (145)

Theorem 4 Under the conditions of Theorem 3, for any r> 2, the asymptotic growth rate of the rth cumulant in (117)
can be computed as

lim
t→+∞

(1
t

Kr(ϕ(t))
)
= 2r−1

∑
γ∈{0,1}r−2

∆r,γ Tr
(

ΠS∗
r−1−→
~
j=2

(
ΠS[γ j ]

)
∗ΠS[1]

)
(0)

=
2r−2

π
∑

γ∈{0,1}r−2

∆r,γ

∫ +∞

−∞

Tr
(

ΠD(λ )

r−1−→
∏
j=2

(
ΠD[γ j ](λ )

)
ΠD[1](λ )

)
dλ , (146)
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where the notation (145) is used, and D is the spectral density of the steady-state quantum covariance function S in
(102) given by (142)–(144). �

Proof The relations (146) are obtained by applying Lemma 6 of Appendix C to the integrals in (117) with the functions
f1 := ΠS, fr := ΠS[1] and fk := ΠS[γk] for k = 2, . . . ,r− 1 whose Fourier transforms are ΠD, ΠD[1] and ΠD[γk],
respectively. �

Note that in the case r = 2, the first of the equalities (146) reproduces (106). In application to the third cumulant
in (141), Theorem 4 yields

lim
t→+∞

(1
t

K3(ϕ(t))
)
= 8Tr

(
ΠS∗ΠS∗ΠS[1]

)
(0)

= 8
∫
R2

〈
Π ,S(σ)ΠS(τ−σ)ΠS(τ)T〉dσdτ

=
4
π

∫ +∞

−∞

〈
Π ,(D(λ )Π)2D(−λ )T〉dλ .

In comparison with the classical case, the representation (146) involves the sum of terms whose number grows expo-
nentially with r. The complicated structure of these terms, which are controlled by successive inversions in permuta-
tions, and the combinatorial nature of the coefficients ∆r,γ give rise to the problem of developing a recurrence relation
for the cumulant rates.

7 Large deviations estimates

Theorems 3 and 4 of the previous section can be employed for obtaining large deviations estimates for the process
ϕ in (50) in the form of upper bounds for its tail distributions.4 Since ϕ is a function of the noncommuting quantum
system variables (which do not have a classical joint probability distribution), such bounds can be obtained only by
using the moments. More precisely, for any given time t > 0, application of the Cramer inequality [64,65] (see also
[13, Section 3.5]) to the probability distribution Et of ϕ(t) yields the inequality

1
t

lnEt([εt,+∞))6 inf
θ>0

(1
t

lnΞθ (t)−θε

)
(147)

in terms of the QEF (52) for any ε > 0. Similarly to the classical case, the function being minimised in (147) is convex
with respect to θ and vanishes at θ = 0. The following theorem leads to an upper bound for the right-hand side of
(147)5, uniform in time t. For its formulation, we need an auxiliary function N associated with the quantum covariance
function S in (102) by

N(τ) := ‖
√

ΠS(τ)
√

Π‖, (148)

where ‖ · ‖ is the `2-induced operator norm of a matrix. Note that N is an R+-valued integrable function which is
even in view of the second equality in (45) and the invariance of the matrix norm ‖ · ‖ under the complex conjugate
transpose:

N(−τ) = ‖(
√

ΠS(τ)
√

Π)∗‖= N(τ). (149)

Theorem 5 Suppose the conditions of Theorem 3 are satisfied. Also, let the risk-sensitivity parameter θ belong to the
interval

06 θ <
1

2‖F‖∞

, (150)

where ‖F‖∞ is the L∞-norm of the Fourier transform F of the function N from (148) given by F(λ ) :=
∫ +∞

−∞
N(τ)e−iλτ dτ .

Then the QEF (52) admits the upper bound

sup
t>0

(1
t

lnΞθ (t)
)
6− n

4π

∫ +∞

−∞

ln(1−2θF(λ ))dλ . (151)

�

4 Such estimates are physically meaningful in the case Π < 0 when the self-adjoint quantum variable ϕ(t) is a positive semi-definite operator.
5 which is the negative of the Legendre transform of 1

t lnΞθ (t) as a function of θ > 0
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Proof Similarly to (149), from the invariance of the operator norm ‖·‖ with respect to the transpose and the symmetry
of the function N, it follows that

‖
√

ΠS[1](τ)
√

Π‖= ‖(
√

ΠS(−τ)
√

Π)T‖= N(τ), (152)

where use is made of the transformation (111). A combination of (152) with the submultiplicativity of the operator
norm leads to∣∣∣∫

[0,t]r
Tr
(

ΠS(t1− t2)
r−1−→
∏
j=2

(
ΠS[γ j ](t j− t j+1)

)
ΠS(t1− tr)T

)
dt1× . . .×dtr

∣∣∣
6 n

∫
[0,t]r

∥∥∥√ΠS(t1− t2)
√

Π

r−1−→
∏
j=2

(√
ΠS[γ j ](t j− t j+1)

√
Π
)√

ΠS(t1− tr)T
√

Π

∥∥∥dt1× . . .×dtr

6 n
∫
[0,t]r

r

∏
j=1

N(t j− t j+1)dt1× . . .×dtr

6 ntN∗r(0) =
nt
2π

∫ +∞

−∞

F(λ )rdλ , (153)

where N∗r denotes the r-fold convolution of the function N with itself. The last inequality in (153) follows from the
nonnegativeness of N and the identity (C7) in the proof of Lemma 6, while the first equality uses the upper bound
|TrK| 6 n‖K‖ which holds for any matrix K ∈ Cn×n. In view of (153) and (116), the rth cumulant in (117) satisfies
the inequality

Kr(ϕ(t))6 2r−1
∑

γ∈{0,1}r−2

∆r,γ
nt
2π

∫ +∞

−∞

F(λ )rdλ

= (r−1)!2r−2 nt
π

∫ +∞

−∞

F(λ )rdλ (154)

for any r = 1,2,3, . . .. Assuming that θ is nonnegative and sufficiently small in the sense of (150), substitution of (154)
into (60) leads to

lnΞθ (t)6
+∞

∑
r=1

θ r

r!
(r−1)!2r−2 nt

π

∫ +∞

−∞

F(λ )rdλ

=
nt
4π

+∞

∑
r=1

1
r

∫ +∞

−∞

(2θF(λ ))rdλ

=− nt
4π

∫ +∞

−∞

ln(1−2θF(λ ))dλ . (155)

The inequality (151) can now be obtained by dividing both sides of (155) by t > 0 and using the fact that t is otherwise
arbitrary. �

A combination of (147) with (151) of Theorem 5 leads to

sup
t>0

(1
t

lnEt([εt,+∞))
)
6 inf

06θ< 1
2‖F‖∞

(
− n

4π

∫ +∞

−∞

ln(1−2θF(λ ))dλ −θε

)
. (156)

The function under minimization in (156) is strictly convex with respect to θ in the interval (150) and hence, has a
unique minimum. The optimal value of θ can be found from the equation

− n
4π

∂θ

∫ +∞

−∞

ln(1−2θF(λ ))dλ =
n

2π

∫ +∞

−∞

F(λ )

1−2θF(λ )
dλ = ε (157)

whose left-hand side is a strictly increasing function of θ . The solution θ > 0 exists and is unique if the “scale”
parameter ε is large enough in the sense that

ε

n
>

1
2π

∫ +∞

−∞

F(λ )dλ = N(0) = ‖
√

Π(P+ iΘ)
√

Π‖. (158)

Note that (151), (156) and (157) remain valid if the function N in (148) is replaced with its even upper estimate (with
the corresponding Fourier transform F). This follows from monotonicity of the quantities N∗r(0) in (153) with respect
to nonnegative functions N. Since the quantum covariance function S decays exponentially fast at infinity, an upper
bound for N can be found among functions with a rational Fourier transform F . In this case, the integral in (156) lends
itself to effective evaluation [49] as does the solution of (157).
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Theorem 6 Suppose the conditions of Theorem 3 are satisfied. Then the tail of the probability distribution Et of the
process ϕ(t) in (50) admits an upper bound

sup
t>0

(1
t

lnEt([εt,+∞))
)
6

nµ

4

(
2− nα

ε
− ε

nα

)
, ε > nα, (159)

where
α := ‖

√
Π
√

Γ ‖‖Γ−1/2(P+ iΘ)
√

Π‖. (160)

Here, (µ,Γ ) is any pair of a scalar µ > 0 and a real positive definite symmetric matrix Γ of order n satisfying the
algebraic Lyapunov inequality (ALI)

AΓ +Γ AT 4−2µΓ . (161)

Proof The pairs (µ,Γ ), satisfying (161), exist due to the matrix A being Hurwitz. Any such pair satisfies the differen-
tial matrix inequality

∂τ

(
e2µτ eτA

Γ eτAT)
= e2µτ eτA(AΓ +Γ AT +2µΓ )eτAT

4 0. (162)

As a matrix-valued version of the Gronwall-Bellman lemma [21], the integration of (162) over τ leads to eτAΓ eτAT
4

e−2µτΓ , which is equivalent to the contraction property

‖Γ−1/2eτA
√

Γ ‖6 e−µτ , τ > 0. (163)

A combination of (163) with (102) and the submultiplicativity of the operator norm allows the exponential decay of
the function (148) to be quantified as

N(τ) = ‖
√

Π
√

Γ Γ
−1/2eτA

√
Γ Γ

−1/2(P+ iΘ)
√

Π‖

6 ‖
√

Π
√

Γ ‖‖Γ−1/2eτA
√

Γ ‖‖Γ−1/2(P+ iΘ)
√

Π‖
6 αe−µτ (164)

for all τ > 0, where α is given by (160). Since the function N is even, the inequality (164) can be extended to all τ as

N(τ)6 αe−µ|τ| =: N̂(τ), τ ∈ R. (165)

The right-hand side of (165) has the Fourier transform

F̂(λ ) :=
∫ +∞

−∞

N̂(τ)e−iλτ dτ =
2αµ

λ 2 +µ2 , (166)

which is a rational function of λ with the L∞-norm

‖F̂‖∞ =
2α

µ
. (167)

The corresponding integral in (156) can be evaluated by using a contour integration or through the parametric differ-
entiation

−∂θ

∫ +∞

−∞

ln(1−2θ F̂(λ ))dλ = 2
∫ +∞

−∞

F̂(λ )

1−2θ F̂(λ )
dλ

= 4αµ

∫ +∞

−∞

1
λ 2 +µ2−4θαµ

dλ

=
4παµ√

µ2−4θαµ
. (168)

After integration over θ , this yields

−
∫ +∞

−∞

ln(1−2θ F̂(λ ))dλ = 2π
(
µ−

√
µ2−4θαµ

)
(169)

for any θ satisfying

06 θ <
1

2‖F̂‖∞

=
µ

4α
(170)
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in view of (150) and (167). By appropriately modifying (156)–(158) for the functions N̂ and F̂ in (165) and (166), and
using (168) and (169), it follows that

sup
t>0

(1
t

lnEt([εt,+∞))
)
6 inf

06θ< 1
2‖F̂‖∞

(
− n

4π

∫ +∞

−∞

ln(1−2θ F̂(λ ))dλ −θε

)
= inf

06θ< µ

4α

(n
2
(
µ−

√
µ2−4θαµ

)
−θε

)
=

nµ

2

(
1− nα

ε

)
− µε

4α

(
1−
(nα

ε

)2)
=

nµ

4

(
2− nα

ε
− ε

nα

)
,

where the minimum over the interval (170) is achieved at θ = µ

4α
(1−( nα

ε
)2), provided ε > nα , thus establishing (159).

Here, we have again used the monotonicity of the right-hand side of (156) with respect to the nonnegative function N
(with its corresponding Fourier transform F) mentioned above. �

Note that the ALI (161) has a positive definite solution Γ for any µ < −max{Reλ : λ ∈ S}, where S is the
spectrum of the Hurwitz matrix A. A particular choice of such a matrix Γ (which can be carried out, for example,
by using the eigenbasis of A in the case when A is diagonalizable) affects the constant α in (160) which enters (159)
together with µ .

8 Classical covariance correspondence

We will now discuss a correspondence between vectors of self-adjoint quantum variables and auxiliary classical ran-
dom vectors at the level of the second-order moments. More precisely, let ζ be a classical Cn-valued random vector
given by

ζ := ξ + iη , ξ := Reζ , η := Imζ . (171)

Here, ξ and η are classical random vectors with values in Rn, which are also assembled into the R2n-valued vector

ϑ :=
[

ξ

η

]
. (172)

Suppose ζ has zero mean and is square integrable, that is, Eζ = 0 and E(|ζ |2)<+∞, where |ζ |2 = |ξ |2 + |η |2. Then
its covariance matrix is given by

cov(ζ ) = E(ζ ζ
∗) = (

[
1 i
]
⊗ In)cov(ϑ)

([ 1
−i

]
⊗ In

)
= E(ξ ξ

T)+E(ηη
T)− i(E(ξ η

T)−E(ηξ
T))

= cov(ξ )+ cov(η)−2iA(cov(ξ ,η)), (173)

where A(M) := 1
2 (M −MT) denotes the antisymmetrizer of square matrices which is applied here to the cross-

covariance matrix cov(ξ ,η) = E(ξ ηT) of the zero-mean vectors ξ and η . Of particular interest for our purposes
is the case when ξ and η in (172) have identical covariance matrices and an antisymmetric cross-covariance matrix:

cov(ϑ) =

[
E(ξ ξ T) E(ξ ηT)
E(ηξ T) E(ηηT)

]
=

1
2

[
P −Θ

Θ P

]
. (174)

Here, P is a real positive semi-definite symmetric matrix of order n, and Θ is a real antisymmetric matrix of order n.
In this case, (173) takes the form

cov(ζ ) = P+ iΘ , (175)

where P+ iΘ is isospectral (up to multiplicity of eigenvalues) to the matrix
[

P −Θ

Θ P

]
on the right-hand side of (174),

with both matrices being positive semi-definite. Now, let ζ depend on time and form a Cn-valued Markov diffusion
process governed by a classical SDE

dζ = Aζ dt +
1√
2

BΩdω (176)
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driven by a standard Wiener process ω in Rm. Here, Ω is the matrix from (10), and the matrices A and B are given by
(13) as before. Since both A and B are real, then, due to the structure of Ω , the SDE (176) can be represented in terms
of the real and imaginary parts in (171) as

dξ = Aξ dt +
1√
2

Bdω, dη = Aηdt +
1√
2

BJdω. (177)

Equivalently, the augmented process ϑ in (172) satisfies the SDE

dϑ = (I2⊗A)ϑdt +
1√
2
(I2⊗B)

[
Im
J

]
dω. (178)

The following lemma establishes a correspondence between the classical Markov diffusion processes ξ , η , ζ , and the
linear quantum stochastic system considered in the previous sections.

Lemma 3 Suppose the matrices A and B are given by (13), with A being Hurwitz. Then the classical Markov diffusion
process ϑ in (172), governed by (178), has a unique invariant measure (the invariant joint distribution of ξ and η

in (177)) which is a Gaussian distribution in R2n with zero mean and covariance matrix (174), where P is given by
(24) and Θ is the CCR matrix from (5). The corresponding invariant measure of the process ζ in (171) and (176) is
a Gaussian distribution in Cn with zero mean and the covariance matrix (175). Furthermore, if ϑ and the quantum
process X are initialised at the corresponding invariant Gaussian states, then their two-point covariance functions
reproduce each other in the sense that

E(ζ (t)ζ (s)∗) = e(t−s)A(P+ iΘ) = E(X(t)X(s)T) (179)

for all t > s > 0, with the classical expectation on the left-hand side and the quantum expectation on the right-hand
side. �

Proof Due to A being Hurwitz, the existence, uniqueness and Gaussian nature of the invariant measure for the process
ϑ follows from (178), whereby the invariant distribution has zero mean and covariance matrix cov(ϑ) satisfying the
ALE

(I2⊗A)cov(ϑ)+ cov(ϑ)(I2⊗AT)+
1
2
(I2⊗B)

[
Im −J
J Im

]
(I2⊗BT) = 0, (180)

where use is made of the orthogonality of the real antisymmetric matrix J in (11). The ALE (180) splits into three
equations

Acov(ξ )+ cov(ξ )AT +
1
2

BBT = 0, (181)

Acov(η)+ cov(η)AT +
1
2

BBT = 0, (182)

Acov(ξ ,η)+ cov(ξ ,η)AT− 1
2

BJBT = 0. (183)

Since the ALEs (181) and (182) are identical to (25) up to a factor of 1
2 (and have unique solutions due to the matrix

A being Hurwitz), it follows that

cov(ξ ) = cov(η) =
1
2

P, (184)

with P given by (24). By a similar reasoning, a comparison of (183) with the PR condition (14) leads to

cov(ξ ,η) =−1
2

Θ , (185)

where Θ is the CCR matrix from (5). The relations (184) and (185) imply that the covariance matrix of the invariant
joint Gaussian distribution of the processes ξ and η is indeed given by (174), with (175) describing the corresponding
covariance matrix for ζ . Now, the linear SDE (176) implies that

ζ (t) = e(t−s)A
ζ (s)+

1√
2

∫ t

s
e(t−τ)ABΩdω(τ) (186)

for all t > s> 0. Due to ω being a standard Wiener process independent of the initial value ζ (0), it follows from (186)
that

E(ζ (t)ζ (s)∗) = e(t−s)AE(ζ (s)ζ (s)∗). (187)
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If the quantum system is initialised at the invariant Gaussian state and ϑ(0) has the corresponding invariant Gaussian
distribution, then

cov(ζ (s)) = P+ iΘ = cov(X(s)) (188)

for all s> 0. Substitution of (188) into (48) and (187) leads to (179). �
Note that Lemma 3 is concerned only with the correspondence between classical Gaussian Markov diffusion

processes and quantum system variables in Gaussian quantum states at the level of covariances. This correspondence
involves complex conjugation and does not extend, in general, from the second-order moments to arbitrary higher-
order moments. For example,

ζ
∗
Πζ = ξ

T
Πξ +η

T
Πη (189)

is a real-valued classical random process which has the same steady-state mean value as the quantum process ψ in
(99):

E(ζ ∗Πζ ) = 〈Π ,E(ζ ζ
∗)〉= 〈Π ,P+ iΘ〉= 〈Π ,P〉,

which follows from (179). At the same time, application of the classical covariance relation (108) to (189) leads to

var(ζ ∗Πζ ) = var(ξ T
Πξ )+var(ηT

Πη)+2cov(ξ T
Πξ ,ηT

Πη)

= 2〈Π ,cov(ξ )Πcov(ξ )+ cov(η)Πcov(η)+2cov(ξ ,η)Πcov(η ,ξ )〉
= 〈Π ,PΠP−ΘΠΘ〉 , (190)

where use is also made of (184) and (185). Note that the right-hand side of (190) is different from its quantum
counterpart

var(XT
ΠX) = 2〈Π ,PΠP+ΘΠΘ〉

which is obtained by letting σ = τ in (101) and (102). This discrepancy (which manifests itself already at the level
of the fourth-order moments) is closely related to the absence of classical joint probability distributions for noncom-
muting quantum variables and shows that the QEF (52) is not reducible to quadratic-exponential moments of classical
Gaussian random processes. Nevertheless, of interest is further comparison of the QEF with the corresponding risk-
sensitive cost functional for the SDE (176) whose asymptotic behaviour is described by

lim
t→+∞

(1
t

lnEeθ
∫ t

0 ζ (s)∗Πζ (s)ds
)
=− 1

4π

∫ +∞

−∞

lndet(In−θΠG(iλ )ΩG(iλ )∗)dλ

=
1

4π

+∞

∑
r=1

θ r

r

∫ +∞

−∞

Tr
(
(ΠD(λ ))r)dλ . (191)

Here, G is the transfer function in (144), so that 1
2 G(iλ )ΩG(iλ )∗ is the spectral density of the process ζ in (176)

which is expressed in terms of the spectral density D for the quantum covariance function S in (142) and (143). In the
case Π < 0, the right-hand side of (191) is well-defined if the risk sensitivity parameter θ > 0 is bounded in terms of
a weighted H∞-norm of the transfer function G as θ < 2

‖
√

ΠGΩ‖2∞
, where we have also used the property Ω 2 = 2Ω

of the matrix Ω from (10). Note that
∫ +∞

−∞
Tr
(
(ΠD(λ ))r

)
dλ in (191) is a classical counterpart of the weighted sum of

integrals on the right-hand side of (146).

9 An illustrative numerical example of the quartic approximation of the QEF and large deviations bounds

We will now provide a numerical illustration for the quartic approximation of the QEF from Section 5 (in the infinite-
horizon limit) for a stable two-mode OQHO with n = 4 system variables q1,q2, p1, p2 consisting of the conjugate
quantum mechanical positions and momenta driven by m = 4 external fields (see Section 2). Such models arise, for
example, in the context of quantum-optical experiments where a group of atoms is placed in an optical cavity resonator
and interacts with nonclassical light [72,75]. The resulting linear quantum stochastic system is a linearized model
of the quantum-mechanical motion about an equilibrium, which extends the isolated quantum harmonic oscillator
described traditionally by the Schrödinger equation [62]. The corresponding CCR matrix Θ in (5)–(7) takes the form

Θ =
1
2

J⊗ I2. (192)
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The energy and coupling matrices, which parameterize the Hamiltonian and coupling operators (8) of the OQHO, are
such that the matrix A in (13) is Hurwitz:

R =

−0.1027 1.3449 −0.2403 −1.3994
1.3449 1.5008 −0.1856 0.9212
−0.2403 −0.1856 −0.5704 −0.4146
−1.3994 0.9212 −0.4146 −0.3233

, M =

 0.8726 0.1632 2.1844 −1.9270
0.1179 −0.8147 −0.0938 0.5214
−1.5031 0.4037 −0.2942 −2.0544
0.9218 0.7562 −0.5048 −0.2698

 (193)

(the eigenvalues of A are−0.5532±2.5929i,−1.3302,−4.2068). The positive definite weighting matrix Π , specifying
the QEF through (50)–(52), is given by

Π =

 3.5050 −0.5447 0.0672 −2.3918
−0.5447 4.0758 −1.1876 0.0215
0.0672 −1.1876 5.1422 −1.4628
−2.3918 0.0215 −1.4628 4.5416

. (194)

The infinite-horizon controllability Gramian P in (24) and the matrix T in (107) were found by successively solving
the ALEs (25) and (97):

P =

 3.7981 −2.5143 −3.8716 −1.6214
−2.5143 4.9443 0.5356 0.4305
−3.8716 0.5356 6.7086 2.8509
−1.6214 0.4305 2.8509 1.4473

, T =

 131.5431 −108.9564 −138.4442 −58.4033
−108.9564 138.7545 60.4808 21.2105
−138.4442 60.4808 204.6153 91.4998
−58.4033 21.2105 91.4998 41.2158

.
The corresponding asymptotic growth rates for the first two cumulants of the quantum process ϕ are computed by
using (94) and (96) of Theorem 2:

lim
t→+∞

(1
t

Eϕ(t)
)
= 〈Π ,P〉= 74.9147, lim

t→+∞

(1
t

var(ϕ(t))
)
= 4〈Π ,T 〉= 8.9399×103. (195)

In this example, the threshold value for the risk-sensitivity parameter θ in (110), within which the quartic term in (93)
can be neglected, is

θ0 = 0.0168.

Since θ0 is small, the coefficients θ k

k! of the higher-order moments E(ϕ(t)k) and cumulants Kk(ϕ(t)) in (59) and
(60) (with k > 3) are negligible compared to θ 2 for such values of θ . This makes the quartic approximation (93) a
reasonable approximation of the QEF for the range of small values of θ in this example. Since the matrix A under
consideration is diagonalizable, the ALI (161) is satisfied with µ = 0.5532 (the negative of the largest real part of its
eigenvalues) and

Γ =UU∗ =

 1.4750 −0.4852 −1.4090 −0.2636
−0.4852 0.6271 0.2354 0.1475
−1.4090 0.2354 1.6303 0.3569
−0.2636 0.1475 0.3569 0.2676

,
where the matrix U is formed from the eigenvectors of A. The corresponding constant (160) is α = 69.6784, and the
large deviations bound (159) of Theorem 6 is shown in Fig. 3. This upper bound on the tail distribution of ϕ(t) (with
n = 4) can be represented as

Et([εt,+∞))6 e(2−
4α
ε
− ε

4α
)µt , ε > 4α, (196)

and holds for any time t > 0. Due to its exponentially fast decay, this bound outperforms (for all sufficiently large t)
the bound

Et([εt,+∞))6
var(ϕ(t))

(εt−Eϕ(t))2 ∼
4〈Π ,T 〉

(ε−〈Π ,P〉)2t
, as t→+∞, (197)

where the inequality follows from Chebyshev’s inequality [64] (and holds for any t > 0), while the asymptotic relation
employs (195). However, the time-horizon, beyond which this relative quality of the bounds manifests itself, depends
on the scale parameter ε . For example, at ε = 400, the right-hand side of (196) gives a stronger bound than (197) for
t > 96.418, with the common value of the tail probability bounds at the threshold time being 8.7743× 10−4. On the
other hand, for a larger value ε = 1200 of the scale parameter, (196) outperforms (197) much sooner, for t > 4.6133
(with the common value of the probability bounds at the threshold time being 0.0015). Therefore, a combination of
these upper bounds can be employed for estimating the probabilities of large excursions (over different time horizons)
for quantum processes relevant to cumulative mean square values of the system variables.
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Fig. 3 The large deviations probability bound (159) as a function of the scale parameter ε > 4α for the two-mode OQHO of the example specified
by (192)–(194).

10 Conclusion

For an open quantum harmonic oscillator, governed by a linear QSDE driven by vacuum bosonic fields, we have
considered a quadratic-exponential functional which penalizes the second and higher-order moments of the system
variables. We have obtained an integro-differential equation for the time evolution of the QEF and compared it with
the original quantum risk-sensitive performance criterion which was used previously in measurement-based quantum
control and filtering problems. We have discussed multi-point Gaussian quantum states for the system variables at dif-
ferent instants and employed their first four moments for a quartic approximation of the QEF whose infinite-horizon
asymptotic behaviour has also been investigated. A numerical example has been provided in order to demonstrate the
approximation. Higher-order cumulants, associated with the QEF, have been related to combinatorics of consecutive
inversions in permutations and gives rise to a nontrivial problem of their recursive computation. They have also been
used for a Cramer-type large deviations estimate in the form of upper bounds for the tail distributions of a quantum pro-
cess which is the integral of a quadratic function of the system variables. We have also considered an auxiliary classical
Gaussian Markov diffusion process in a complex Euclidean space, which reproduces the quantum system variables
at the level of covariance functions but has different higher-order moments relevant to the risk-sensitive criteria. The
results of the paper may find applications to coherent (measurement-free) quantum risk-sensitive control problems,
where the plant and controller form a fully quantum closed-loop system, and other settings with nonquadratic cost
functionals.

Acknowledgements The authors thank the anonymous reviewers for useful comments.
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A Commutator of quadratic polynomials of quantum variables satisfying CCRs

Since the commutator adξ , associated with a given operator ξ , is a derivation, then repeated application of this property leads to

[ab,cd] = [ab,c]d + c[ab,d]

= ([a,c]b+a[b,c])d + c([a,d]b+a[b,d])

= [a,c]bd +a[b,c]d + c[a,d]b+ ca[b,d] (A1)

for any operators a, b, c, d. Hence, if these operators satisfy CCRs (that is, their pairwise commutators are identity operators up to scalar factors),
then the right-hand side of (A1) is a quadratic polynomial of a, b, c, d. Therefore, quadratic polynomials of such operators form a Lie algebra with
respect to the commutator. For the purposes of Section 4, we will provide a version of (A1) for quadratic polynomials of operators satisfying the
CCRs.

Lemma 4 Suppose a := (a j), b := (bk), c := (c`), d := (dr) are vectors of self-adjoint operators which satisfy the CCRs[[
a
b

]
,
[
cT dT]] :=

[
[a,cT] [a,dT]
[b,cT] [b,dT]

]
= 2i

[
Θ11 Θ12
Θ21 Θ22

]
, (A2)

where Θ jk are real matrices. Also, let F := ( f jk) and G := (g`r) be appropriately dimensioned complex matrices which specify the bilinear forms

aTFb = ∑
j,k

f jka jbk, cTGd = ∑
`,r

g`rc`dr. (A3)

Then their commutator is also a quadratic polynomial of the operators which is computed as

[aTFb,cTGd] = 2i
[
aT bT cT] 0 0 FΘ21G

0 0 FTΘ11G
GΘ T

22FT GΘ T
12F 0

a
b
d

 . (A4)

In the case a = b (when the vectors a and b are identical), (A4) takes the form

[aTFa,cTGd] = 4i
[
aT cT][ 0 S(F)Θ11G

GΘ T
12S(F) 0

][
a
d

]
, (A5)

where S(F) := 1
2 (F +FT) denotes the symmetrizer of square matrices. �

Proof By recalling the bilinearity of the commutator, applying (A1) to the operators a j , bk , c`, dr in (A3) and using the CCRs (A2), it follows that

[aTFb,cTGd] = ∑
j,k,`,r

f jkg`r[a jbk,c`dr]

= ∑
j,k,`,r

f jkg`r
(
[a j,c`]bkdr +a j[bk,c`]dr + c`[a j,dr]bk + c`a j[bk,dr]

)
= 2i

(
bTFT

Θ11Gd +aTFΘ21Gd + cTGΘ
T
12Fb+ cTGΘ

T
22FTa

)
. (A6)

The right-hand side of (A6) is a quadratic function of the operators whose vector-matrix form is given by (A4). If a = b, then F in (A3) is a square
matrix, and the matrices in (A2) satisfy Θ1k =Θ2k for every k = 1,2. In this case, (A6) reduces to

[aTFa,cTGd] = 2i
(
aT(FT

Θ11 +FΘ21)Gd + cTG(Θ T
12F +Θ

T
22FT)a

)
= 2i

(
aT(FT +F)Θ11Gd + cTGΘ

T
12(F +FT)a

)
= 4i

(
aTS(F)Θ11Gd + cTGΘ

T
12S(F)a

)
,

which establishes (A5). �
Similar commutation relations hold for bilinear forms of annihilation and creation operators (see, for example, [29, Appendix B] and [61,

Lemma 4.2]) and are used in the context of Schwinger’s theorems on exponentials of such forms [10].
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B Covariance of quadratic functions of Gaussian quantum variables

For the purposes of Section 5, we will need the following lemma on the covariance of bilinear forms of Gaussian quantum variables.

Lemma 5 Suppose the self-adjoint quantum variables, constituting the vectors a, b, c, d in Lemma 4, are in a zero-mean Gaussian state. Then the
covariance of the bilinear forms in (A3), specified by complex matrices F and G, can be computed as

cov(aTFb,cTGd) =
〈

Fcov(b,d),cov(a,c)G
〉
+
〈

Fcov(b,c),cov(a,d)GT
〉
. (B1)

In the case when a = b and c = d, the relation (B1) reduces to

cov(aTFa,cTGc) = 2
〈

S(F),cov(a,c)S(G)cov(a,c)T
〉
, (B2)

where S is the symmetrizer. �

Proof The mean value of the first bilinear form in (A3) is computed as

E(aTFb) = ∑
j,k

f jkE(a jbk) = Tr(FTE(abT)) =
〈
F ,cov(a,b)

〉
, (B3)

where E(abT) = cov(a,b) since the underlying quantum variables are assumed to have zero mean values. By a similar reasoning, the second bilinear
form in (A3) has the mean value

E(cTGd) =
〈
G,cov(c,d)

〉
. (B4)

Application of the Wick-Isserlis theorem [35, Theorem 1.28 on pp. 11–12] (see also [28] and [44, p. 122]) to the fourth-order mixed moment of the
zero-mean Gaussian quantum variables a j , bk , c`, dr leads to

E(aTFbcTGd) = ∑
j,k,`,r

f jkg`rE(a jbkc`dr)

= ∑
j,k,`,r

f jkg`r
(
cov(a j,bk)cov(c`,dr)+ cov(a j,c`)cov(bk,dr)+ cov(a j,dr)cov(bk,c`)

)
= Tr(FTcov(a,b))Tr(GTcov(c,d))+Tr((Fcov(b,d))Tcov(a,c)G)+Tr((Fcov(b,c))Tcov(a,d)GT)

=
〈
F ,cov(a,b)

〉〈
G,cov(c,d)

〉
+
〈

Fcov(b,d),cov(a,c)G
〉
+
〈

Fcov(b,c),cov(a,d)GT
〉
. (B5)

The covariance of the bilinear forms (A3) can now be computed by combining (B3)–(B5) as

cov(aTFb,cTGd) = E(aTFbcTGd)−E(aTFb)E(cTGd)

=
〈

Fcov(b,d),cov(a,c)G
〉
+
〈

Fcov(b,c),cov(a,d)GT
〉
,

which establishes (B1). Application of (B1) to the particular case a = b and c = d leads to

cov(aTFa,cTGc) =
〈

Fcov(a,c),cov(a,c)G
〉
+
〈

Fcov(a,c),cov(a,c)GT
〉

= 2
〈

Fcov(a,c),cov(a,c)S(G)
〉

= 2
〈
F ,cov(a,c)S(G)cov(a,c)T〉

= 2
〈

S(F),cov(a,c)S(G)cov(a,c)T
〉
, (B6)

thus proving (B2). In (B6) use has also been made of the symmetry of the matrix cov(a,c)S(G)cov(a,c)T, the orthogonality of the subspaces of
symmetric and antisymmetric matrices, and the fact that the symmetrizer commutes with the complex conjugation: S(F) = S(F). �

C An averaging lemma with multifactor convolutions

For the purposes of the cumulant growth rate results of Theorem 4 in Section 6, we provide an averaging lemma which involves multifactor
convolutions (145).

Lemma 6 Suppose f1, . . . , fr are appropriately dimensioned complex matrix-valued functions on the real line which are bounded and absolutely
integrable, with r > 2. Then

lim
t→+∞

(1
t

∫
[0,t]r

r−→
∏
k=1

fk(tk− tk+1)dt1× . . .×dtr
)
= ( f1 ∗ . . .∗ fr)(0)

=
1

2π

∫ +∞

−∞

r−→
∏
k=1

Fk(λ )dλ , (C1)

where tr+1 := t1, and Fk(λ ) :=
∫+∞

−∞
fk(t)e−iλ t dt denotes the Fourier transform of fk . �
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Proof Since the integrand on the left-hand side of (C1) depends on the integration variables t1, . . . , tr only through their differences, they can be
translated so as to represent the integral in the form

∫
[0,t]r

r−→
∏
k=1

fk(tk− tk+1)dt1× . . .×dtr =
∫ t

0
gt(t1)dt1, (C2)

where

gt(t1) :=
∫
[0,t]r−1

r−→
∏
k=1

fk(tk− tk+1)dt2× . . .×dtr

=
∫
[−t1 ,t−t1 ]r−1

r−→
∏
k=1

fk(τk− τk+1)dτ2× . . .×dτr. (C3)

Here, use is made of the new integration variables τk := tk − t1 for all k = 2, . . . ,r together with the corresponding convention τ1 = τr+1 = 0.
The right-hand side of (C3) is organized as the convolution ( f1 ∗ . . . ∗ fr)(0) (evaluated at 0) except that the integration is restricted to the cube
[−t1, t− t1]r−1. Now, the fulfillment of the inclusions t1 ∈ [0, t] and (τ2, . . . ,τr)∈ [−t1, t− t1]r−1 is equivalent to t1 belonging to the (possibly empty)
interval

−min(0,τ2, . . . ,τr)6 t1 6 t−max(0,τ2, . . . ,τr) (C4)

of length
max

(
0, t−max(0,τ2, . . . ,τr)+min(0,τ2, . . . ,τr)

)
= tht(τ2, . . . ,τr). (C5)

Here,
ht(τ2, . . . ,τr) := χt

(
max(0,τ2, . . . ,τr)−min(0,τ2, . . . ,τr)

)
(C6)

inherits from the function χt in (105) the properties of being bounded by and convergent to 1 as t→+∞ for any given τ2, . . . ,τr ∈R. By combining
(C2)–(C6), it follows that

1
t

∫
[0,t]r

r−→
∏
k=1

fk(tk− tk+1)dt1× . . .×dtr =
∫
Rr−1

ht(τ2, . . . ,τr)

r−→
∏
k=1

fk(τk− τk+1)dτ2× . . .×dτr

→
∫
Rr−1

r−→
∏
k=1

fk(τk− τk+1)dτ2× . . .×dτr, as t→+∞, (C7)

where Lebesgue’s dominated convergence theorem is applicable since the functions f1, . . . , fr are bounded and absolutely integrable (and hence, so
are their convolutions). The limit in (C7) is ( f1 ∗ . . . ∗ fr)(0), which establishes the first of the equalities (C1), with the second of them following
from the convolution theorem. �


