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Where don’t we find
crystals?

Crystals nets are used extensively in the material sciences as models for highly
symmetric atomic structures seen in nature. Such atomic structures were first
postulated by scientists studying crystal formations. These formations possessed
integer ratios in the angles between their faces and it was from these measure-
ments that chemists predicted the symmetries of their atomic structures [6].
In the time since, more sophisticated research methods have been developed for
determining these symmetries of crystals, such as x-ray crystallography, giving
rise to the field of crystallography. The modern concept for a crystal now refers
to material that produces sharp lines in diffraction experiment, which includes
a wide class of materials such as salts and metals [6].

There is in particular a strong link between the symmetries of a crystal net
and the emergent physical properties of the material [6]. Scientists determine
the crystal structure of a material by comparing the result of x-ray diffraction
to those expected from different hypothesised structures [6]. For this method
to work scientists must have an effective means of enumerating possible crystal
structures. There are any number of methods for enumerating crystal structures
all of which present their own challenges and rewards [5].

EPINET is one such method developed at the ANU. This process requires
the selection of a Triply Periodic Minimal Surfaces sitting in Euclidean 3-space,
which acts as a filter over the range of possible crystals [7]. This however leaves
an important open question as to how we quantify which crystals are left out
by such a filter [6].

Motivated by this problem we here set up the idea of a crystallographic
surface as a discrete model for TPMS. We then proceed to set up a theory for
the enumeration of crystallographic surfaces modelled closely on T. Sunada’s
theory for the enumeration of crystal structures. This framework serves as both
a two-dimensional extension of Sunada’s theory as well as a potential framework
within which the inverse problem of EPINET can be studied.

Theorems in Chapter 2 are from Sunada’s book topological crystallography
[8]. Theorems in Chapter 3 are from either Graphs on Surfaces [2], Dress’s
paper [1] or Olaf’s paper [4]. Chapter 4 is original work developed based on
all of the above sources with imput and guidence from Vanessa Robins.



Chapter 1

Motivation

In this chapter we lay out the basic ideas of crystallography, crystal enumer-
ation with particular focus on EPINET in order to motivate our algorithm.
We give no formal definitions or theorems in this chapter but instead focus on
examples; building up the broader intuition that will motivate us through the
mathematical work in later chapters.

1.1 The Adventures of Agnes, Barry and Clara,
Episode I

In a far off land...
Barry was feeling very stressed. For reasons best known only to himself and

Gauss he had many decades ago set up a farm in the hyperbolic plane. Farming
open balls had been all very well at the time but now Barry was starting to get
old, and in all this time a whole industry had grown out of his venture. Suddenly
there was increasing demand for a whole range of new shapes and hyperbolic
farming was starting to outpace Barry’s skill set. It became apparent that he
would need to divide his farm up into paddocks to separate the various shapes,
but what’s more he’d need a design that could grow with increasing demand.
After much thought he decided he would attempt to construct a periodic design,
something that could be repeated over and over as the size of the farm needed
to increase. Designing this however was no easy task for a two-dimension being
like Barry and so he decided to do what all smart people do and ask around for
some good ideas.

Barry had a sister, whose name was Agnes for reasons Barry found too
horrible to contemplate. She owned a farm in a hyperbolic surface of her own
and he appreciated the odd letter they’d often send each other musing the nature
of the hyperbolic farming industry. Barry decided in his next letter to write up
a description of the problem. A few days later he received a reply and it turned
out she was in exactly the same predicament but had been given some rather
useful advice by a friend of a friend of hers named Clara. Clara was apparently
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CHAPTER 1. MOTIVATION

an expert at this kind of reasoning and was always willing to offer out advice,
so Agnes strongly encouraged Barry to send her a letter.

Barry sent her back a letter thanking her profusely and set to write this
Clara a letter. Looking up her details in the directory he discovered something
quite astonishing; she lived in a graph! Barry couldn’t possibly imagine how a
1-dimensional creature could possibly solve a two-dimensional problem such as
his. But he decided to approach her without prejudice and he wrote the letter.
Despite his resolution while writing out the letter he couldn’t help but ask her
how she had been able to imagine his sister’s two dimensional problem. He
waited for about a good week before he got a reply and what he got was quite
astonishing...

To be continued...

1.2 What is a crystal?

To a material scientist a crystal is a three-dimensional arrangement of atoms
possessing three independent directions of translational symmetry forming a
lattice symmetry group [8]. There are actually any number of ways to imagine
a crystal [6]. One such method is using sphere packings [5]. (Picture of sphere
packing) Systematic enumeration of crystalline structures has been the focus of
a large body of mathematical work and for some time extensive work was done
attempting to determine the possible sphere-packings of R3 [5]. The approach
focused on here uses graphs.

(Picture demonstrating this)

In this vein, a crystal is not only a graph, but a graph embedding in E3. The
important features of this embedding are both the positions of the vertices and
the isometries of the graph embedding [8]. As stated above crystals are required
to have three independent directions of translational symmetry. This symmetry
group is referred to as the lattice group [8]. We can from this symmetry group
determine the fundamental domain, the smallest section of the graph embed-
ding from which the whole embedding can be reconstructed from the lattice
symmetries.

We should stop to take note here that the crystals we are studying are in
fact infinite continuations of real world crystal structures. We make this choice
in favour of preserving the symmetries of crystals.

Example 1.1. By far the simplest crystal to consider, and one that we will
return to frequently, is simple cubic [8]. (Picture of simple cubic.) This can be
described as the set of coordinates in R3 with at least two integer coordinates.
It’s lattice group is simply Z3 ⊂ R3. It’s fundamental domain is simply the unit
cube. When attempting to understand some crystallographic problem it is often
helpful to first consider the case of simple cubic in which results can usually be
easily visualised.

Simple cubic only has one vertex in its unit cell however which can present
a problem when attempting to visualise properties that are complicated by the
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crystal having more than one such vertex. In this case a simple example of a
crystal with two vertices in its unit cell is diamond. (Picture of diamond) As
it’s name suggests diamond is the crystal structure of real world diamonds [8].

1.3 How do we find crystals?

So far the description of crystal we have given is quite simple but surprisingly
we can ask some very complicated mathematical questions about them. T.
Sunada in his book Topological Crystallography outlines some such problems
such as random walks on crystals [8]. One problem of much importance in
material science is how to enumerate crystals [5]. Note that this can be broken
into two components.

First we have enumerating suitable graphs. These crystal graphs, referred
to as topological crystals, are infinite graphs with a symmetry group isomorphic
to Z3 identified . Secondly then we have the embedding of this graph. Note
that for some given topological crystal there are an infinite number of ways of
embedding this graph as a crystal. In some cases this has physical meaning
where we find certain crystallographic compounds with the same topological
crystal structure manifest different embeddings depending on the nature of the
atoms, or the circumstances of the compounds creation [8].

Example 1.2. A good example of this is diamond. Below we show two embed-
dings of the topological crystal diamond. (Pictures)

In other cases however some embeddings are simply physically unrealistic due
to features such as closest neighbours that don’t share an edge, or angles between
bonds that simply would never occur. This demonstrates the difference between
the purely combinatorial or graph properties of crystals and their geometric
properties.

T. Sunada in his book Topological Crystallography describes a method of
enumerating crystals using the mathematics of covering space theory. This
theory covers both aspects of crystal enumeration, the production of topological
crystals and the construction of a ‘maximally symmetric’ embedding for this
topological crystal. In particular this method is exhaustive over all topological
crystals [8]. This maximally symmetric embedding is however limited by the
topological symmetries of the topological crystals.

Mathematicians have explored a huge range of crystal enumeration methods
[5]. There have been many approaches to this, in particular a paper by A.
Dress gave rise to the idea that crystals could be enumerated through periodic
tilings. In his paper Dress outlines the basis of a theory for enumerating peri-
odic tilings of manifold known as Delaney-Dress symbol theory [1]. The basic
idea is that the 1-skeleton of a periodic tiling of R3 is a crystal. Enumerating



CHAPTER 1. MOTIVATION

three-dimensional tilings however has been found to suffer from signifcant com-
binatorial explosion as well as redundancies produced by multiple tilings having
the same 1-skeleton [3].

EPINET was an algorithm developed at ANU which uses two-dimensional
tilings to produce crystals. It was inspired by the fact that crystal nets were
known to sit on the p, d, and s surfaces. These surfaces are Triply-Periodic
Minimal Surfaces in R3 and the EPINET algorithm was developed to enumerate
through all periodic tilings of these surfaces that preserved the three translation
symmetries of the surfaces. [7]

(Pictures of these surfaces and the crystals)
By enumerating tilings over these surfaces we can produce any number of

crystals. These surfaces are not simply-connected which makes direct enumera-
tion using Delaney-Dress symbol theory complicated. Fortunately DDS theory
has the added bonus of providing a framework to lift tilings of a surface to a
covering space. The problem can be simplified then by making a choice of cov-
ering map from the universal cover of these surfaces, the hyperbolic plane. In
particular this covering map need to send isometries to isometries so that peri-
odic tilings get send to periodic tilings. Then with a choice of map, a subgroup
of the hyperbolic isometries are identified with the isometries of the surfaces
and enumerating tilings is straightforward from there [7].

1.4 Are all crystals surfaces?

So far however there are gaps in the theoretical foundations of EPINET [6]. The
gap we will be focusing on is which class of crystals does EPINET enumerate
over. To put it simply we want to understand what crystals fundamentally
cannot be produced from a TPMS.

We might wonder why it would be so difficult to prove that no embedding
of a crystal on a TPMS exists. For our purposes we will only consider 2-cell
embeddings, that is embeddings that can be described by ‘gluing’ faces to the
crystal. This problem can then be thought of in two separate components. The
first is a purely combinatorial question. If we imagine our crystal as a graph we
ask if we can glue faces on a subsection of this graph to form the fundamental
domain for a surface stretching over the entire graph.

The second question then is whether the surface formed has an embedding in
E3 that preserves the lattice symmetries of the graph. We could require that
this embedding be an extension of the graph embedding of the crystal. This
is, however perhaps a little too strict since such embedding have straight edges
which would likely get in the way of producing a minimal surface.

It is these two questions we shall focus on solving. The approach presented
here was inspired by T. Sunada’s method for crystal enumeration. In partic-
ular Chapter 2 provides an in depth explanation of Sunada’s method along
with examples. The idea for this method was that a crystal could be viewed
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as a Triply-Periodic Graph. Using this idea then we might attempt to extend
Sunada’s theory to two-dimensions to produce a theory for Triply-Periodic Sur-
faces. This theory will be developed in Chapter 3 partly based of J. Hopkins
book Graphs on Surfaces. Chapter 4 then is dedicated to the development of an
‘inverse algorithm’ for EPINET using the theory of TPS developed in Chapter
3.
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Chapter 2

Sunada’s Method

In this chapter we outline Sunada’s algorithm for enumeratin topological crystals
and producing maximally symmetric embeddings. This chapter is based off
Sunada’s book topological crystallography [8].

2.1 The Adventures of Agnes, Barry and Clara,
Episode II

In a far off land, Barry receives a letter from Clara, explaining how she sees
higher dimensions...

Clara grew up with her mother and siblings in the real line. It had been
a straightforward life, Clara had two directions to remember. Things changed
quite dramatically when she’d had to move to university. It turned out that
university folk were much fancier than the people in her home line and their
campus was arranged in something called a graph. It was much in many ways
like her home town except for these blasted junction points.

Each junction was connected to six corridors, organised into pairs by three
colours. Clara’s navigation skills were at first no match for this strange new
structure. She found that everything made perfect sense if she stuck to only red
corridors or only blue but once she mixed colours everything got very confusing.
Somehow, inexplicably certain sequences of colours would lead her back to where
she started, something she spend many nights contemplating at the university
pub.

Over time she noticed a pattern; for each of these looping paths she would
always travel along an even number of corridors of each colour. This led her to
develop a theory. She imagined three different versions of herself, red, blue and
green. Each version of her moved along her hometown in between a series of
bus stops. They moved independently of one another however only one could
move between bus stops at any time. The even pattern now made perfect sense.
Each version had to move forwards and backwards the same number of times
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for all three to arrive where they started. Suddenly she found navigating her
university was a piece of cake.

It was using this idea, she claimed that she began to understand the real
world was three dimensional.

To be continued...

2.2 Combinatorial Graphs

We begin by setting our the basics of combinatorial graph theory as layed out
in Sunada’s work. This is perhaps a little basic, but the set up and terminology
is useful for understanding Sunada’s algorithm. No proves are reproduced here
due to the simplicity of the content.

We begin by defining a graph.

Definition 2.1. A graph X is a pair (V, E) equipped with three maps, r : E →
E, o : E → V , and t : E → V , such that o ◦ r = t and r ◦ r gives the identity
map.

Elements of V are referred to as vertices and elements of E are directed edges.
Undirected edges are equivalence classes of edges under the relation e ∼ r(e).
For some edge e ∈ E, we say that o(e) is the origin of e, t(e) is the terminus of
e, and r(e) is the reflection of e. e is a looped edge if o(e) = t(e). e and e’ are
parallel edges if o(e) = o(e’) and t(e) = t(e’).

Definition 2.2. A combinatorial graph is a graph that has no parallel edges or
looped edges.

In particular the reader will note that the topological crystals we will be
dealing with will always be combinatorial, however this won’t always be true
for the quotient graphs we later introduce.

The following concepts are useful in defining certain topological properties
of graphs.

Definition 2.3. The neighbourhood Nv of a vertex v is the set of all e ∈ E such
that o(e) = v.

Definition 2.4. The degree of a vertex v, deg v, is equal to |Nv|.

Theorem 2.5. For a graph X = (V,E) the following holds true∑
v∈V
|Nv| = |E| (2.1)

Definition 2.6. A path in a graph X is a sequence of edges {en}n∈{0,...,N}, such
that o(ei) = t(ei−1) for all 0 < i ≤ N . By abuse of notation o({en}n∈{0,...,N}) =
o(e0) and t({en}{0,...,N}) = t(eN ). A path is said to connect its origin and
terminus.

We now introduce some topological concepts for graphs.
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Definition 2.7. A path-connected graph is a graph such that any two vertices
in a graph are connected via a path.

The reader should again note that all crystals considered here are path-
connected.

Definition 2.8. A graph morphism is a map between the vertices of two graphs
that also induces a map between the edges of the graph. A graph automorphism
is a bijective graph morphism.

Definition 2.9. An embedding of a graph X in R3 is a map f : X → R3, such
that every v ∈ V is mapped to a point x ∈ R3, and every e ∈ E is mapped to a
path in T from f ◦ o(e) to f ◦ t(e).

We now present one definition of a topological crystal we can already under-
stand.

Definition 2.10. A topological crystal is an infinite graph X, with a subgroup
G(X) ∼ Z3 of Aut(X) called the lattice group.

This infinite graph is difficult to do calculation on, and so we will introduce
the idea of quotient graphs.

Definition 2.11. A quotient graph X for a topological crystal T is X = T/H,
where H is a subgroup of G(X) called the generating subgroup. If H = G(X)
then we call X the smallest quotient graph and typically denote it Q.

Example 2.12. We might think back to our example of simple cubic. In this
case V = Z3 and E = V ×B, where B is set of standard Euclidean basis vectors
and their negatives. For (v, b) ∈ E we let o((v,b)) = v and t((v,b)) = v +
b. Finally r((v,b)) = (v+b,-b), and G(T) is the group of symmetries given by
sending v to v + a, and (v,b) to (v+a,b), where a ∈ Z3. Note then any two
vertices are related via a symmetry and so that T/G(T) is then given by V =
0, E = 0× B+, where B+ is the standard basis for Euclidean space, with o(e)
= t(e) = 0 and r(e) = e.

(Picture)
Consider now instead diamond.
(Picture of Diamond)
Diamond’s three translational basis vectors are as shown. This results in

two vertices in its quotient graph. The quotient graph is shown below.

Sunada’s method enumerates topological crystals using covering space theory
so it is now helpful to discuss these concepts using the terminology introduced.

First we build up the concept of a covering graph.

Definition 2.13. A covering graph over X is a pair (X̃, p) such that X̃ is a
graph and p is a surjective graph morphism from X̃ to X such that p restricted
to Nv is a bijection.
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The degree of a covering map is the cardinality of the preimage of any vertex
or edge under the covering map, which can be shown to not depend on the choice
of vertex or edge.

Definition 2.14. The deck transformation group G(X̃) of a covering graph is
the subgroup of Aut(X̃) that preserves the covering map. The deck transfor-
mation is then a faithful group action over X̃.

We might notice that we used the same notation for the deck transformation
group as the lattice symmetry group. We did this with good reason and now
we make clear the relationship between covering graph theory and topological
crystals.

Definition 2.15. A covering graph is said to be normal if the orbits under the
group action are identical to the fibres under the covering map.

Theorem 2.16. A graph with group action G is a normal covering space over
its quotient graph X/G with G(X) = G.

Hence we can now think of a topological crystal as a special kind of covering
graph.

Example 2.17. Joel remember here to go through examples for Simple Cubic
and Diamond.

We now seek to introduce the Galois Correspondence which is used in Sunada’s
method for topological crystal enumeration. We will first set this up using the
fundamental group, and then using graph homology which is used more in prac-
tice.

We start then by building up the fundamental group.

Definition 2.18. A geodesic is a path that does not backtrack over itself.

Definition 2.19. A deformation retraction over paths is an equivalence relation
where Aer(e)B ∼ AB Under this relation all paths are equivalent to a geodesic.

Definition 2.20. The fundamental group with base point x0, π1(X,x0) is the
group of deformation retraction classes of loops under concatenation, with the
empty path as the identity.

Note that for any x0, y0 ∈ X, there is an isomorphism between π1(X,x0)
produced simply by conjugating by a path between the two points so when
working from a purely algebraic standpoint we may refer to the fundamental
group of a graph.

We now build up the Galois correspondence.

Theorem 2.21. A path starting at x in X can be lifted up uniquely to a path
in X̃ provided a starting point x0 ∈ X̃ is chosen.

Theorem 2.22. The covering map induces an injective group homomorphism
between the fundamental groups. This also tells us that π1(X̃, x0) is isomorphic
to some subgroup in π1(X,x) which we call the generating subgroup H.
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Definition 2.23. For a graph X a universal cover of X is the covering graph
corresponding to the trivial subgroup. It follows then that this covering graph
is simply connected.

Theorem 2.24. Any two universal covers of X are isomorphic as graphs.

We may now state the Galois correspondence.

Theorem 2.25. There is a bijective correspondence between subgroups of π1(X,x)
and covering spaces of X up to graph isomorphism. Furthermore given a normal
covering space p : X̃ → X the following equation holds true

G(X̃) ∼=
π1(X)

p∗(π1(X̃))
. (2.2)

This theorem can be used to enumerate through all possible covering spaces
over a finite graph. This is achieved by first computing the universal cover
which is in practice quite easy to do. We can then quotient this universal by
the subgroup of the deck transformation group corresponding to the generating
subgroup of any covering graph to produce this covering graph.

Example 2.26. Joel remember to include examples here for simple cubic and
diamond.

In particular this leads us to a new defintion of a topological crystal.

Definition 2.27. A topological crystal is an infinite-fold covering space of a
graph such that the deck transformation group is a free abelian group of rank
3.

Note that since our covering spaces always have abelian deck transformations
it is actually often more useful to use graph homology. In particular homology
calculations are generally easier than calculations involving the fundamental
group.

We begin by setting up the basics of graph homology.

Definition 2.28. The zeroth-order chain group C0(X) is the free abelian group
of vertices. The first-order chain group C1(X) is the free abelian group of
directed edges with r(e) ∼ e−1.

Definition 2.29. The boundary map of a graph is a homomorphism C1(X)→
C0(X) that sends e to t(e)− o(e).

Definition 2.30. The homology group of a graph is the kernel of the first-order
boundary map.

We then note the following useful fact.

Theorem 2.31. The homology group is simply the abelianisation of the funda-
mental group.
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Furthermore the first-order homology group is a free abelian group and hence
we can define the betti number of a graph.

Definition 2.32. The betti number of a graph, b1(X), is the rank of its ho-
mology group.

Theorem 2.33. For a graph X = (V,E) the following relationship holds true,

|V | − |E|
2

= 1− b1(X) (2.3)

Definition 2.34. An abelian covering graph is a covering graph whose deck
transformation group is abelian.

Considering then the Galois correspondence for the fundamental group we
find the following definition useful.

Definition 2.35. For a graph X the universal abelian cover of X up to graph
isomorphism is the covering graph corresponding to the commutator subgroup
of π1(X,x0).

Furthermore we note that if X̃ is the universal abelian cover then G(X̃) ∼=
H1(X).

We now wish to state the Galois correspondence for homology but first we
will require the following two lemmas.

Theorem 2.36. The covering map p : X̃ → X induces a homomorphism p∗ :
H1(X̃)→ H1(X).

Theorem 2.37. Let p : X̃ → X be an abelian covering graph, and ν : π0(X,x0)→
G(X) be the homomorphism with kernel p∗π0(X̃, x̃0) from the Galois correspon-
dence. If c is a closed path in X, and c̃ is a lift over c to X̃, then t(c̃) = µ(c)o(c̃),
where µ is the homomorphism H1(X)→ G(X̃) induced by ν.

From these the following follows.

Theorem 2.38. Let p : X̃ → X be an abelian covering graph, and ν : π0(X,x0)→
G(X) be the homomorphism with kernel p∗π0(X̃, x̃0). Then kerµ = p ∗H1(X̃),
where µ is the homomorphism induced by ν.

We then refer to the image of this homomorphism as the vanishing subgroup,
H. Finally we obtain the Galois correspondence for abelian covering graphs.

Theorem 2.39. There exists a bijective correspondence between subgroups of
H1(X) and abelian covering spaces of X given by the generating subgroup. In
particular

G(X̃) ∼=
H1(X)

p∗(H1(X̃))
. (2.4)

And now we finally have enough theory to start crystal enumeration.
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2.3 Enumerating Crystals with Covering Space
Theory

We break the process of enumerating crystals into two distinct components.
First the enumeration of topological crystals and the construction of a graph
embedding. We first begin by enumerating possible starting quotient graphs,
X = (V,E). We only consider finite connected graphs due to physical relevance.
We start by fixing the betti number, b1(X). Note that to get a topological
crystal we will need to have b1(X) ≥ 3.

We claim that we need only enumerate graphs where every vertex is at least
degree 3. To justify this we note that we can delete a vertex of degree one
without changing the betti number. Additionally since b1(X) ≥ 3 and our
graph is path-connected we can delete a vertex of degree 2 and replace the two
adjoined edges with a single connecting edge without changing the betti number.
Hence any graph can be reduced to a graph with minimal degree 3.

Since
∑
v∈V |Nv| = |E|, we can deduce 3|V | ≤ |E|. Combining this with

|V | − |E|2 = 1 − b1(X) we obtain |V | ≤ 2b1(X) − 2, and |E| ≤ 3b1(X) − 3. So
given a fixed choice of b1(X) we have a finite number of possible vertices with
degree at least 3 we can enumerate through all possible graphs that satisfy the
above conditions.

The next step is once we have chosen a quotient graph we compute its first-
order homology group. A simple way to do this is to construct an adjacency
matrix. This is obtained by assigning each column in a matrix to a vertex and
every row an edge. For each edge e a 1 is placed in the column corresponding to
t(e) and -1 for o(e). This matrix represents the boundary map C1(X)→ C0(X).
We can then calculate the kernel for this boundary map using linear algebra
techniques.

Example 2.40. Given the following graph X we can compute the adjacency
matrix.

∂1 =

[
1 1 1 1
−1 −1 −1 −1

]
Now we need only compute the kernel.

Nul(∂1) = b


−1
1
0
0

+ c


−1
0
1
0

+ d


−1
0
0
1


From this we deduce that H1(X) is generated by the paths a−1b, a−1c and

a−1d.

Now that we have H1(X) we need to look for possible generating subgroups.

That is we want any subgroup H ⊂ H1(X) such that H1(X)
H
∼= Z3. There will

in general be infinitely many such groups but we can introduce a constrait to
enumerate over. If x =

∑
e∈E aee is an element of the first-order chain group

then let |x| =
∑
e∈E |ae|. Let S be a Z-basis of a generating subgroup. We

then define the height of S, h(S) = maxs∈S |s|, and the height of a subgroup H,
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h(H) = minS generates Hh(S). We note that if we fix h, then there are finitely
mainly S such that h(S) ≤ h. Since H is determined by a choice of S it then
follows that there are finitely many H such that h(H) ≤ h. We can then use h
as a constraint to enumerate over.

Example 2.41. In the case from above we observe that H1(X) ∼= Z3 so the
only option for H is the trivial subgroup. We then have that the only crystal
we can choose is the maximal abelian cover which is in fact diamond.

We could at this point attempt to construct an explicit representation for
the topological crystal corresponding to H. In fact we will show that Sunada’s
method enables us to skip this step.

We have now a method for enumerating topological crystals and so the final
step necessary is to construct an embedding. Before we defined an embedding
for a graph, but for a topological crystal we also want to require the embedding
to realise all lattice symmetries as isometries.

Definition 2.42. An embedding for a topological crystal T = (V,E) is a graph
embedding φ that sends all edges to straight line segments and which induces
a homomorphism ρ : G(X) → R3, such that if v ∈ V , σ ∈ G(X) then φ(σv) =
φ(v) + ρ(σ).

In the case of Sunada’s embedding we seek to construct an embedding that
is ‘maximally symmetric’. To make sense of this definition we first define the
symmetry group of a topological crystal.

Definition 2.43. The symmetry group of a topological crystal is given by
Aut(X̃/Q) = {f ∈ Aut(X̃|f ◦ p = p ◦ f ′, for some f ′ ∈ Aut(Q)}.

Intuitively we can think of this as the set of graph symmetries that perserves
the quotient graph. The definition of a maximally symmetrical embedding then
follows thusly.

Definition 2.44. A maximally symmetric embedding of a topological crystal
is an embedding, φ which induces a homomorphism ρ : Aut(T/Q) → R3 such
that if v ∈ V , σ ∈ Aut(T/Q) then φ(σv) = φ(v) + ρ(σ).

Sunada’s method allows us to construct a maximally symmetric embed-
ding, with a few pathological cases where the method fails. Before introducing
Sunada’s method we first wish to show that if we want to prove that an embed-
ding is maximally symmetric, it is sufficient to prove the following conditions.∑

e∈Nv

φ(e) = 0, for every x ∈ V (2.5)

∑
e∈E0

〈x, v0(e)〉v0(e) = cx, (2.6)

where E0 is a fundamental domain for the edges and c is a postive constant.
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If an embedding satisfies the first condition we call it a harmonic realisation.
If an embedding satisfies both conditions we call it a standard realisation. We
will first begin by proving that two harmonic embeddings are related via an affine
transformation. We will then use this to prove that two standard realisations
are related via a similitude. Finally we will show that if v ∈ V , σ ∈ Aut(T/Q),
and phi at standard realisation, then φ(σT ) is also standard realisation which
proves that φ is a maximally symmetric.

First we prove that harmonic realisations are unique up to affine transfor-
mation. For this we use the following Lemma.

Theorem 2.45. Two harmonic realisations that share the shame induced ho-
momorphism φ : G(X)→ R3 are related via a translation.

Proof To prove this we begin by showing that a harmonic realisation min-
imises the expression ∑

e∈E0

||φ(e)||2. (2.7)

Let φ be a harmonic realisation and φ’ another embedding of the same topolog-
ical crystal sharing the same induced homomorphism and let f = φ′ − φ.∑
e∈E′0

||φ′0(e)|| =
∑
e∈E0

(||φ0(e)||2 + 2〈φ(e), f(t(e))− f(o(e))〉+ ||f(t(e))− f(o(e))||2)

=
∑
e∈E0

(||φ(e)||2 + 2〈φ(e), f(t(e))〉 − 2〈φ(e), f(o(e))〉+ ||f(t(e))− f(o(e))||2)

=
∑
e∈E0

(||φ(e)||2 + 2〈φ(−e), f(t(−e))〉 − 2〈φ(e), f(o(e))〉+ ||f(t(e))− f(o(e))||2)

=
∑
e∈E0

(||φ(e)||2 − 4〈φ(e), f(o(e))〉+ ||f(t(e))− f(o(e))||2)

=
∑
e∈E0

||φ(e)||2 +
∑
v∈V0

∑
e∈Nv

〈φ(e), f(v)〉+
∑
e∈E0

||f(t(e))− f(o(e))||2

=
∑
e∈E0

||φ(e)||2 +
∑
e∈E0

||f(t(e))− f(o(e))||2

≥
∑
e∈E0

||φ(e)||2

(2.8)

Hence we have that a harmonic realisation minimises the above expression.
Consider that if the other embedding is also a harmonic realisation then we
must require ∑

e∈E0

||f(t(e))− f(o(e))||2 = 0

f(t(e)) = f(o(e))

(2.9)

Since this is true for all e, this tells us that f is constant and hence is a translation.
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Theorem 2.46. The harmonic realisations are unique up to affine transforma-
tions.

Consider two harmonic realisations φ and φ′ with induced homomorphisms,
ρ and ρ′. We can find a matrix A such that Aρ = ρ′. Consider then the
embedding Aφ. Note that

∑
e∈Nv

Aφ(e) = A
∑
e∈Nv

φ(e) = 0. Aφ is then a
harmonic realisation with the induced homomorphism ρ′. Using the previous
result then we have that φ′ = Aφ+ b.

We now prove that two standard realisations are related by a similitude.

Theorem 2.47. The standard realisations of a topological crystal are unique
up to similar transformations.

Proof We will prove this by first showing that a standard realisation minimises
the term vol(D)−

2
3

∑
e∈E0

||v0(e)||2, where D is the parallelopiped formed by

the generating set of ρ(G(X̃). Suppose φ is a standard realisation and φ′ is a
harmonic realisation of the same topological crystal. Since both are harmonic
realisations we know that φ′ = Aφ + b. We make a choice of coordinates to
obtain φ = (φ1, φ2, φ3),∑

e∈E′0

||φ′(e)||2 =
∑
e∈E0

||Aφ(e)||2

=
∑
e∈E0

3∑
i=1

3∑
j=1

Aijφj

3∑
k=1

Aikφk

=

3∑
i=1

3∑
j=1

3∑
k=1

cAijAikδjk

= ctrace(ATA)

(2.10)

We then consider the following inequality, the proof of which is given in Sunada’s
book,

tr(ATA) ≤ d(det(ATA)) (2.11)

And in particular the equality is realised if and only if A = λI. Applying this
we obtain ∑

e∈E′0

||φ′(e)||2 ≥ cddet(ATA)
1
3

= cddet(A)
2
3

(2.12)

We now consider the second requirement for φ being a standard realisation can
be written as ∑

e∈E0

φi(e)φj(e) = cδij (2.13)
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This then gives us ∑
e∈E0

φi(e)
2 = 3c

∑
e∈E′0

||φ′(e)||2 ≥
∑
e∈E0

(||φ(e)||2)
vol(D′)

2
3

vol(D)
2
3

vol(D′)−
2
3

∑
e∈E′0

||φ′(e)||2 ≥ vol(D)−
2
3

∑
e∈E0

||φ(e)||2

(2.14)

Hence we have that a standard realisation minimises this value. Suppose both
embeddings are standard realisations. Thus we require that ATA = λI which
gives us that A must be a scalar times an orthogonal matrix. Finally this tells
us that φ′ and φ are related via a similitude.

And now the final step is to prove that a standard realisation is indeed
maximally symmetric.

Theorem 2.48. A standard realisation is maximally symmetric.

Proof Suppose that φ is a standard realisation of a topological crystal with
covering map p : T → Q, with induced homomorphism ρ. Let g ∈ Aut(T/Q).
We want to show g ◦ φ is a standard realisation of the same topological crystal.
The first step is to prove that it is an embedding of the same topological crystal.
Let σ ∈ G(T ). First we consider that

(g ◦ φ)(σv) = φ(gσg−1gv)

= φ(gv) + ρ(gσg−1)

= (g ◦ φ)(v) + ρ(gσg−1)

(2.15)

We now wish to show that gG(T )g−1 = G(T ). Suppose σ ∈ G(T ).

(gσg−1) ◦ p = g−1 ◦ σ ◦ g ◦ p
= g−1 ◦ σ ◦ p ◦ g′

= g−1 ◦ p ◦ g′

= g−1 ◦ g ◦ p
= p

(2.16)

Hence gσg−1 ∈ G(T ) and gG(T )g−1 = G(T ) as required. This finally gives us
that g ◦ φ is an embedding of the same topological crystal. Lastly we need only
show that g ◦ φ is a standard realisation. First we observe∑

e∈Nv

φ(g(e)) =
∑

e∈Ng−1(v)

φ(e)

= 0

(2.17)
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and then we observe∑
e∈E0

〈x, φ(g(e))〉 =
∑

e∈g−1(E)

〈x, φ(g(e))〉

= cx

(2.18)

And so we see here that g◦φ is a standard realisation of the same topological
crystal as φ and hence g ◦ φ must be equal φ composed with a similitude. By
sending g to this similitude we obtain our induced homomorphism and hence φ
is maximally symmetric.

2.4 Sunada’s Algorithm

We will now describe Sunada’s algorithm for constructing standard realisations
of topological crystals. Given a topological crystal T with quotient graph X we
can construct C1(X,R). This is a vector space and we define on it the following
inner product.

〈e, e′〉 =


1, if e = e′

−1, if e = r(e′)

0, otherwise

(2.19)

In describing this algorithm we will abuse notation and image paths as directly
sitting in C1(X) which we in turn imagine sitting in C1(X,R). Using this
inner product we now let p0 be the orthogonal projection onto the subspace
perpendicular to the subspace generated by H, in H1(X,R).

We now make a choice of vertex, v in the topological crystal and let φ(v) = 0.
We now choose a path x′v originating at v for each vertex v’. We then assign
φ(v′) = p0(p∗(x′v)). We then let φ(e) be sent to the straight line segment joining
o(e) and t(e).

Theorem 2.49. Sunada’s method does not depend on the choice of path x′v.

Proof Let x and y both originate at v and terminate at v’. We then consider
the loop xy−1. Note that since this is a loop it is contained in H1(T ). We then
have that p∗(xy−1) ∈ H which tells us that xy−1 is perpendicular to the image
of the orthogonal projection and hence sent to 0.

p0(xy−1) = 0

p0(x)− p0(y) = 0

p0(x) = p0(y)

(2.20)

Hence we have proven that Sunada’s method does not depend on the choice of
path.

Theorem 2.50. If Sunada’s method produces an injective function then this
function is a standard realisation.
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Proof First we show that Sunada’s method produces an embedding of the
topological crystal. Suppose σ ∈ G(T ). Let y be a path between sigmav and v.

φ(σv′) = p0p
∗(xσv′)

= p0p
∗(y + xv′)

= p0(p∗y) + p0(p∗xv′)

(2.21)

Note that p∗(y) is a loop based at p(v). Hence either p0p
∗(x′v) = 0 or p∗(x′v) is

in the image of the orthogonal projection in which case since it gets send to a
the image of φ the induced homomorphism. Hence

φ(σv′) = φ(v′) + b (2.22)

where b is in the image of φ. Now we show that Sunada’s method is harmonic.
Let c ∈ H1(X,Z). First consider the case that c does not pass through the
vertex. Then

〈e, c〉 = 0, for all e ∈ E0

〈
∑
e∈E0

e, c〉 = 0 (2.23)

Now consider the case that c does pass through the vertex. Then it for every
edge component that terminates on the vertex we must have one that originates
on the vertex. Hence

〈
∑
e∈E0

e, c〉 = 0 (2.24)

Hence we have that

〈
∑
e∈E0

e, c〉 = 0, for all c ∈ H1(X,Z). (2.25)

Since H1(X,Z) spans H1(X,R) we then have that
∑
e∈E0

e is orthogonal to
H1(X,R) finally giving us that

p0(
∑
e∈E0

e) = 0 (2.26)

Finally we show that Sunada’s method is standard.

Example 2.51. Consider the nice example of diamond. The quotient graph is
shown below.

We can choose a basis for C1(X,R), {a, b, c, d}. We now wish to choose
a basis for H1(X,R) given by {a−b√

2
, b−c√

2
, a+b−c−d2 }. Note that this is an or-

thonormal basis. We then set atom 1 to the origin. We can then express every
other atom via a word in {a, b, c, d}. We then need simply to project each ele-

ment in {a, b, c, d} into H1(X,R). We then get the following a →
( 1√

2

0
1
2

)
, b →( −1√

2

0
1
2

)
, c→

( 0
1√
2
−1
2

)
, d→

(
0
−1√

2
−1
2

)
.
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So now we have that all atoms in diamond are realised as integer combina-
tions of these vectors. This is a particularly nice example as diamond in fact
does exhibit this maximally symmetric embedding in nature.

Note that Sunada’s method is harmonic and hence minimises the term∑
e∈E0

|φ(e)|2, which essentially minimises the lengths of edges given a fixed
choice of lattice translations. This minimisation can collaspe vertices with de-
gree 1, and also collide vertices that share all their neighbours.



Chapter 3

Crystallographic Surfaces

In this chapter we set up the theory of Crystallographic Surfaces closely following
Sunada’s theory of Topological Crystals. This serves as both a two-dimensional
extension of Sunada’s theory as well as a model for computing Triply-Periodic
Minimal Surfaces for our inverse EPINET algorithm. The algorithmic approach
and layout is based off Sunada’s book Topological Crystallography [8]. Some of
the theorems and defintions are based off B. Mohar and C. Thomassen’s book
Graphs on Surfaces [2]. Further definitions are based off A. W. M. Dress’s
paper [1] and O. D. Friedrichs paper [4].

3.1 The Adventures of Agatha, Barry and Clara,
Episode III

Barry was quite struck by Clara’s story and he wrote a letter explaining back
to her his paddock as a graph that sat inside a pairs of numbers which he
understood to be a coordinate system. He didn’t really feel that a coordinate
system was very useful however in designing a paddock structure in the first
place and he stressed this in his letter.

It was many days and nights before she replied but finally she did and the
answer to his problem was pleasantly simple. It said to imagine himself at
the centre of each paddock performing a Barry-centric subdivision. This would
break each paddock up into triangles, but as the letter pointed out each triangle
could be assigned an edge of exactly one of three colours based on a simple rule.

This in terms allowed Barry to simplify his picture so that each triangle was
the vertex of a graph which had three edges each one a different colour leading
to each of its three neighbours. It turned out that Barry could rotate around
either a corner in the fence, a length of fence or a paddock simply by choosing
two colours and alternating them repeatedly. If Barry could imagine a graph
that satisfied these simply conditions then it could be built up into a paddock
structure. Hence he now had a simple method of creating his paddock structure.

It turned out his sister had been given the same advice and sent him back

21
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some plans she had been drawing up for herself. Her plans were confusing to
Barry however, it seemed that certain loops in her graph didn’t correspond to
the alternating colour paths...

3.2 Crystallographic Surfaces

We start by defining the notion of a 2-cell complex as a purely combinatorial
object that we will use as the basis for our conception of a surface.

Definition 3.1. A 2-cell complex is a triplet (V, E, F) such that (V, E) is a
graph along with functions ∂f : Z/nfZ→ E, and ρ : F → F such that

∂f (i+ 1) ⊂ N(t(∂f (i)))

Im(∂f ) = Im(∂ρf )

If ∂f (i) = ∂ρf (j) then ∂f (i+ 1) = ∂ρf (j − 1)

(3.1)

We refer to S1 = (V, E) as the graph of the 2-cell complex. Elements of F are
called orientated faces. Imδf is referred to as the boundary of the orientated face
f. A non-orientated face is an equivalence class under the equivalence relation
f ∼ ρf .

Example 3.2. As a simple example consider the 2-boquet graph with two faces
with boundaries a and b.

Definition 3.3. The neighbourhood of an orientated edge Ne is the set of
orientated faces f such that e ∈ Imδf .

We now introduce an analogous concept to covering graph theory for 2-cell
complexes.

Definition 3.4. A 2-cell complex is a map p : S̃ → S which is a covering graph
when restricted to the graphs S̃1 and S1 and

ρp(f) = p(ρf)

Imδp(f) = p(Imδf )
(3.2)

p is a bijection on Ne.
The deck transformation group G(S̃) is the same as G(S̃1) for the covering

graph.

Definition 3.5. The fundamental group with basepoint v0 ∈ V for a 2-cell
complex (V, E, F) is given by

π1(S, x0) =
π1(S1, v0)

H
, (3.3)

where H is the normal subgroup generated by all δf conjugated by paths in
(V,E) joining δf to v0.
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Theorem 3.6. For a 2-cell complex S = (V,E,F) and basepoint v0 ∈ V , there
is a bijective correspondence between subgroups of π1(S, v0) and covering 2-cell
complexes of S. Furthermore for each covering 2-cell complex p : S̃ → S, with
basepoint ṽ0 ∈ p−1(v0), we have

G(X) ∼=
π1(S, v0)

p∗(π1(S̃, ṽ0))
(3.4)

Proof We already have the Galois correspondence for the covering graph
p : S̃1 → S1. Noting that by definition G(S̃) = G(S̃1). Hence letting H be
the normal subgroup generated by boundary cycles conjugated by appropriate
paths, and similarly for H̃ we obtain

G(X) ∼=
π(S1, v0)

p∗π(S̃1, ṽ0)

∼=
π(S1, v0)/H

p∗π(S̃1, ṽ0)/H

∼=
π(S1, v0)/H

p∗(π(S̃1, ṽ0)/H̃)

∼=
π(S, v0)

p∗π(S̃, ṽ0)

(3.5)

We now set up homology for 2-cell complexes.
The zeroth- and first-order chain groups of a 2-cell complex are simply be

the zeroth- and first-order chain groups of its graph. Similarly the first-order
boundary map of a 2-cell complex is the first-order boundary map of its graph.

Definition 3.7. The second-order chain group of a 2-cell complex, C2(X) is
the free abelian group over orientated faces with the identification ρf = −f .

Definition 3.8. The second-order boundary map of a 2-cell complex is given
by

∂2 =
∑
e∈Im(∂f )

e.

Definition 3.9. The first-order homology group of a 2-cell complex S is given
by

H1(S) = ker∂1/Im∂2. (3.6)

We then still obtain the Galois correspondence for abelian covering 2-cell
complexes.

Theorem 3.10. There exists a bijective correspondence between subgroups of
H1(S) and abelian covering 2-cell complexes of S, furthermore for an abelian
covering 2-cell complex p : S̃ → S we have the following

G(S̃) ∼=
H1(S)

p∗H1(S̃)
(3.7)
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Proof This proof follows from the case for graphs analogous to the case for
the fundamental group.

We now introduce a helpful concept called the characteristic.

Definition 3.11. For a finite 2-cell complex the characteristic χ is given by
χ = rankC0 − rankC1 + rankC2.

We now introduce our equivalent of a crystal for 2-cell complexes.

Definition 3.12. A crystallographic 2-cell complex is an abelian covering 2-cell
complex over a finite surface p : S̃ → S such that G(S̃) is a free abelian group
of rank 3.

We now note that for our purposes we want to focus on triply-periodic
surfaces and so we now define an orientable surface as a special kind of 2-cell
complex.

Definition 3.13. A 2-cell complex is an orientable surface when
|Ne| = 2, for all edges e.
For every vertex v, there exists a permutation σv on Nv such for each e ∈ Nv,

there is a face neighbouring both e and r(σve). Furthermore an orientated
surface is non-regular if there exists an edge e and an orientated face f such that
Ne = {f, ρf}.

Example 3.14. Consider again the 2-boquet graph with three faces with bound-
aries a, b and ab.

For a non-regular example consider the below graph with three faces attached
to a, c and abc.

Note that since an edge has exactly two neighbouring orientated faces it
follows that both faces can be recovered from the rotation scheme. We can use
this to produce a method of enumerating orientated surfaces over a finite graph.

Definition 3.15. A rotation scheme on a finite graph is a collection of permu-
tations σv on each Nv.

Theorem 3.16. A rotation scheme induces an orientated surface on a graph.

Proof Select a vertex v, and then select an orientated edge e in its neighbour-
hood. Let this be the first edge in our path. We can then select the vertex t(e)
and then the orientated edge σt(e)r(e). We then add this new edge to our path
and keep going. This is a finite graph so we must eventually reach our original
edge. At this point we have a cycle which we identify as the boundary of a new
face f. We can then repeat this procedure starting from a different vertex, edge
pair, remembering not to repeat the same cycle twice until we have all faces.

Definition 3.17. For a finite orientable surface the genus is given by g = 1− χ
2

Theorem 3.18. For a finite orientable surface rankH1(S) = 2g
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Proof

rankH1(S) = rankkerδ1 − rankImδ2
= rankC1(S)− Imδ1 − rankC2(S) + 1

= rankC1(S)− rankC0 − rankC2(S) + 2

= 2− χ
= 2g

(3.8)

Here will denote a finite surface of genus g by Mg.

3.3 Enumerating Crystallographic Surfaces

We now wish to construct a theory for enumerating crystallographic surfaces
analogous to Sunada’s method.

The first step is to enumerate over finite graphs X. For each graph X we
enumerate through all choices of rotation schemes to produce a finite surface
Mg.

Once we have a choice of surface Mg we can enumerate through all crystal-
lographic surfaces over this surface by calculating the homology group H1(Mg)
and enumerating through all subgroups to produce a covering surface.

This provides a complete process for enumerating crystallographic surfaces.
It now remains to develop a theory for embedding these surfaces.

Definition 3.19. An embedding of a crystallographic surface in R3 is a collec-
tion of injective functions fV : V → R3, fE → P (R3) and fF : F → P (R3) such
that, fe(e) is a line segment joining fv(o(e)) and fv(t(e)), and ff (f) is a disc
bounded by fe(δ(f)).

Note that this definition has a lot of degrees of freedom associated with how
we embed the vertices, edges and faces. We wish to have a more combinatorial
process and so we introduce the concept of flags.

Definition 3.20. A flag on a CW-complex is a triplet (v, e, f) such that

either v = o(e) or v = t(e)

e ∈ Imδf
(3.9)

We now introduce a more combinatorial notion of an embedding.

Definition 3.21. An barycentric embedding of a crystallographic surface is
collection of injective functions, f ′V : V → R3, f ′E : E → R3 f ′f : F → R3 such
that for any two flags c and c’, the triangles formed by f’(c) and f’(c’) only
intersect on at most a shared boundary edge.

We will now show that this concept indeed deserves the term embedding.

Theorem 3.22. A barycentric embedding of a crystallographic surface induces
a graph embedding of the same surface.
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Proof The induced function fV is simply f ′V . fE maps e to the union of the
straight line segment joining f ′V (o(e)) and f ′E(e) with the straight line segment
joining f ′E(e) and f ′V (t(e)). fF maps f to the union of the triangles formed by
f(c), where c is a flag.

Since this embedding is described in terms of ’flags’ we wish to derive a
combinatorial structure over these flags to make this process more combinatorial.
Our first step is to define what we will refer to as reflection.

Theorem 3.23. If we fix the edge of a flag and either the vertex or face, then
there is only one choice for the remaining element.

Proof We will consider both possible cases. First consider the case that the
vertex and edge are fixed. We then have two choices for the face from the
neighbourhood of the edge. Suppose instead we fix the edge and face. We then
have two choices for the vertex as either the origin or terminus of the edge.

We will now define reflections on our flags in terms of an action of the free
Coexter group with three generators.

Definition 3.24. The reflection group action on a surface is the action of 〈σi〉
on the set of flags on a surface where

σ0c switches the vertex,
σ1c switches to the adjacent edge with the same face in the rotation scheme

of the vertex.
σ2c switches the face.

We now show that these actions deserve the term reflection.

Theorem 3.25. For all i, σ2
i = 1.

Proof We claim that the case follows from the previous theorem for σ0 and σ2.
For σ1 we consider that this action switches to the adjacent edge with the same
face in the rotation scheme of the vertex. Note that there is a unique choice of
such edge since by the definition of a surface each oriented edge belongs to two
oriented faces, one shared with r(σe) and one shared with σ−1r(e).

Definition 3.26. For the set of flags on a surface the function mij : C → N,
i, j ∈ {0, 1, 2} is given by

mij(C) = min{m|(σiσj)mc = c}

Theorem 3.27. mij(C) = 2 when |i− j| > 1.

This object can now be used for

Definition 3.28. A standard barycentric embedding is an barycentric embed-
ding which is standard when interpreted as a graph embedding as defined by
Sunada.
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Note that there is a representation of this embedding using the Delaney-
Dress symbol.

Note however that a non-regular surface does not have a barycentric embed-
ding.

Example 3.29.

Note that we can form a representation of C1(X ′,R) using C × σ. However
there is no convenient way of determining H1(X,R).

Definition 3.30. For a surface, the Delaney-Dress graph, XD is formed by
assigning a vertex to each flag and an edge to each reflection between flags. We
note that the each edge has a number {0, 1, 2} which we refer to as the colour
of the edge.

Theorem 3.31. If p : S̃ → S is a covering surface, then there is a corresponding
covering graph p : X̃D → XD.

Proof This follows from the observation that a flag is a ordered triplet of
vertex, edge and face all of which are sent via covering map.

Definition 3.32. An orbit is a simple loop through the Delaney-Dress graph
made up of an alternating pair of colours.

Theorem 3.33. There is a one-to-one correspondence between orbits and the
elements of a surface.

Proof Note that a pair of colours corresponds to switching between a pair of
elements for a flag. The remaining element therefore is preserved. This defines
the forward correspondence. Work out details later.

Definition 3.34. The lattice group of the Delaney-Dress graph of a covering
surface is the deck transformation group of the induced covering graph.

Definition 3.35. A Delaney-Dress embedding is a function f : C → R3 such
that the lattice group is send to a group of lattice isometries.

Theorem 3.36. An embedding of a Delaney-Dress graph induces a barycentric
embedding on a crystallographic surface.

Proof First we consider a regular surface. In this case we simply embed each
surface element at the centre of its orbit.

Definition 3.37. The standard Delaney-Dress embedding of a regular crystal-
lographic surface is the embedding induced by the standard realisation of it’s
Delaney-Dress symbol.

This is the definition we shall use. Note that by minimising the gaps between
centres of faces we are essentially utilising a discrete variant of minimal surfaces.
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Chapter 4

Inverting EPINET

In this chapter we seek to apply the theory of crystallographic surfaces to the
inverse problem for EPINET.

4.1 The Adventures of Agatha, Barry and Clara,
Episode IV

Barry thought maybe he was simply confused. So he tried plotting out the
graph in two-dimensional coordinates only to find that the structure simply
didn’t work. Not anyway he tried it.

Barry wrote to Clara concerned for his sister’s sanity. Clara wrote back
explaining that Agatha’s hyperbolic surface was different to his and that he
could understand this if only he thought back to how Clara had been confused
by the unexpected loops in her space.

Barry pondered this. The alternating colour loops he expected. The others
were quite strange but he realised that she was right he could in fact find six
directions sorted into three pairs, that could be alternated to generate all of
these loops.

He realised then he could describe her space with three coordinates instead
of the standard two using these three paths and placing all other points con-
veniently around these three array. The resulting structure made perfect sense
and it seemed as if Clara was right and that their whole omniverse was in fact
three dimensional. This was too much for Barry and so he decided to go out
for a drink at the pub.

4.2 Surfaces from Crystals

With our theory set up we can now present the inverse problem from EPINET
as follows. For a crystal T, can we find an embedding for a crystallographic
surface S with T as it’s graph.
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T S R3

So we seek to amend our enumeration algorithm for crystallographic surfaces
to those with T as their graph.

The first step in our algorithm was to enumerate through finite graphs. In
this case however we desire that these finite graphs can be lifted to T. We note
then from covering graph theory that all such graphs cover Q, the quotient
graph of T.

T X Q

To do this we choose normal subgroups of G(T), generating subgroups H,
and quotient T by these groups. Once such a graph X is obtained the next stage
is to enumerate over rotation schemes of X. Note however that before we chose
the rotation schemes and this placed a restriction on the graphs we could lift
to. In this case we already have a chosen graph to lift to so clearly we will need
to restrict our choice of rotation scheme.

In particular a 2-cell complex lifts to a covering graph of its graph if and only
if C2(X) ⊂ H. Restricting to this condition we can then enumerate through
until we find a finite surface that lifts to a crystallographic surface with T as its
graph.

T X Q

S Mg

Our next step is to find an embedding for this surface.

S R3

Here we will use the standard Delaney-Dress embedding. This notion of
embedding can handle non-regular surfaces, is easily computable, and most
importantly the final embedding has a representation in terms of the Delaney-
Dress symbol which can be used to determine collisions.

We can now set up the precise details relevant for calculations.

Definition 4.1. Let the dual graph of 2-cell complex be given by XD = (V,E)
where V = C the set of chambers and E = C × σ.

Definition 4.2. Let C1(XD,R) be the free abelian group with real coefficients
generated by C × {σ0, σ1, σ2} with the identification (σiC, σi) = (C, σi)

−1.
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Following Sunada’s method we then need to define his inner product on
C1(XD,R). Our goal is to construct an orthogonal projection from C1(XD,R)
to the orthogonal subspace of H1(XD,R) to HD. Here we will break this into
two steps, the first projection onto H1(XD,R) and then the second orthogonal
to HD.

We begin first by describing how to project onto H1(XD,R). We want
to choose an orthonormal basis for our calculations and for this we make a
orientation for the edges in C1(XD,R) as well as an ordering for the purpose
of matrix computations. Note that for any homomorphism C1(XD)→ C0(XD)
there is a natural linear map C1(XD,R) → C0(XD,R). We then claim that
it is simple to construct a matrix representation of the induced boundary map
δ1 : C1(XD,R)→ C0(XD,R) using our orthonormal basis. This is given by the
fact that δ1(C × σi) = C.

Once we have computed a representation of δ1 we then compute a basis for
the kernal of this map to produce basis for H1(XD,R). Once we have this basis
it is a simple matter to apply Gram-Schimdt to construct an orthonormal basis
for H1(XD,R), eij . We can then representation the orthogonal projection map

C1(XD,R)→ H1(XD,R) by
∑b1(X

D)
j=1 eijejk.

We now describe a procedure to project orthogonal to HD. For this we will
define a natural way to extend the quotient map q : C1(X)→ C1(Q) to a linear
map qD : C1(XD,R)→ C1(Q,R).

First we define a homomorphism ψ : C1(XD)→ C1(X).

Definition 4.3. Let ψ : C1(XD)→ C1(X) be given by

ψ(c× σi) =

{
e i = 0

0 otherwise
(4.1)

where e is the shared edge between c and σic.

This homomorphism was motivated by imagining the Delaney-Dress graph
as made up of vertex orbits with σ0 edges connecting them. We note them that
we can obtain the original graph X simply by collapsing the vertex orbits to a
point and then the pairs of σ0 edges to a single edge joining the vertices. We
then obtain the following result.

Theorem 4.4. The following diagram is commutative.

C1(TD) C1(XD)

C1(T ) C1(D)

Proof We claim that this result follows from the fact that covering maps
preserve the colours of edges.

Theorem 4.5. The image of HD under ψ is equal to H.
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Proof This proof follows easily from the above diagram and the fact that HD

and H are the images of the homology groups under their respective covering
maps.

We now define the following homomorphism.

Definition 4.6. The homomorphism f : C1(XD)→ C1(Q) is given by f = q◦ψ.

Finally we can state the following crucial result.

Theorem 4.7. If T is the maximal abelian cover of Q then the kernal of qD

restricted to H1(XD) is precisely HD.

Proof This follows from the previous results easily by noting that since T is
the maximal abelian cover of Q, H1(T ) is mapped to 0 in H1(Q).

We now consider the linear map induced by the homomorphism f : H1(XD)→
H1(Q). The kernal of this map is the subspace generated by HD. Note then by
the universal quotient property the image of this map is isomorphic as a vector
space to the orthogonal projection we seek to compute. We might worry about
the fact that the image is not isomorphic as a inner product space however this
is not hugely important here since the image is related to our projection via a
affine transformation which is sufficient for our purposes.

For the final stage we first make a choice of vertex in XD to be our origin.
Delaney-Dress graphs typically come with a choice of vertex ordering which
increases with a breath first search through the graph so it is convenient to
choose the vertex 1 as the origin. We can then compute the set of orbits and for
each orbit determine the minimally numbered vertex. We can then easily find a
path from this vertex back to 1 simply by travelling backwards along vertexes
of decreasing number order. We can then easily compute the projection of a
path back to 1 in order to embed all cycles in single cell. We can then simply
shift this cell using translations to produce the entire embedding.

4.3 A Worked Example

This algorithm was implemented for simple cubic and a surface resembling the
p surface was produced. The code can be seen in the appendix and pictures
seen in figures 4.1 and 4.2.

4.4 Intersections

There is still another problem to consider here, namely, how would we go about
determining whether there are any intersections between triangles in our trian-
gulated surface.

Each triangle can be represented by {αx1 +βx2 +γx3|α+β+γ ≤ 1}, where
x1, x2, x3 are the embeddings for the barycentre points of the vertex, edge and
face of the flag corresponding to that triangle.
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Figure 4.1: The final surface computed for simple cubic.

Figure 4.2: A closed up view of a ’collar’.
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Our idea to make this easier is to represent our potential embedding as a
homomorphism acting on the Coexter group. First we introduce the following
notation.

Definition 4.8.

(c, (σik)k∈{0,...,n}) = (c, σi1)(σi1c, σi2)...(c, σin) (4.2)

Consider then that in our algorithm we fix a starting vertex on the Delaney-
Dress graph. Let our starting vertex be c. We then assign all vertices, c’ on the
Delaney-Dress graph a path xc′ . All of these paths start at c, and hence using
the above notation can be represented as (c, (σik)k∈{0,...,n}) or simply in the
form (σik)k∈{0,...,n}). We might then be tempted to identify this form directly
with the Coexter group, but we immediately have to be careful due to the fact
the that we created an abelian group over these (c, σi) elements.

To deal with this we note the following.

Theorem 4.9. Every simple path has a unique representation in the form
(c, σikk∈{0,...,n}), where ((c, σik))k∈{0,...,n} is a path.

Proof We first imagine a simple path as an element of the first-order chain
group of the Delaney-Dress graph. This is in an abelian group so we can order
the generators however we wish. This ordering is a path ordering if for ei =
(c′, σi) we have that o(ei) = t(ei−1). We then choose this ordering for the
generators. Note then that because this path is simple if o(ei) = o(ej), then i
= j and hence there is only one way to form this ordering and this gives us a
unique representation.

Since the algorithm is independent of choice of path we can then choose sim-
ple paths for all vertices. We can then represent the Delaney-Dress embedding
as a homomorphism on the Delaney-Dress graph to a collection of vectors in
R3.



A = {2, 25, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 44, 27, 29, 31,
33, 35, 37, 39, 41, 43, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64,
66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96};

B = {3, 96, 6, 78, 76, 10, 35, 32, 14, 86, 83, 18, 66, 64, 22, 46,
24, 26, 95, 30, 54, 51, 34, 38, 62, 59, 42, 90, 88, 45, 49, 74,
72, 53, 57, 82, 79, 61, 65, 69, 94, 92, 73, 77, 81, 85, 89, 93};

F = {4, 5, 22, 8, 9, 12, 13, 16, 17, 20, 21, 25, 43, 28, 29, 32,
33, 36, 37, 40, 41, 44, 47, 48, 51, 52, 55, 56, 59, 60, 63, 64,
67, 68, 71, 72, 75, 76, 79, 80, 83, 84, 87, 88, 91, 92, 95, 96}

This stores the compressed form of the Delaney - Dress symbol.    

G := {}; n := 1;
While[ n < 97, If[! MemberQ[A, n], AppendTo[G, n]]; n++]

H := {}; n := 1; While[n < 97, If[! MemberQ[B, n], AppendTo[H, n]];
n++]

J := {}; n := 1; While[n < 97, If[! MemberQ[F, n], AppendTo[J, n]]; n++]

These generate the missing numbers from the compressed form in the appropriate order.

K := {}; n := 1;
While[n < 97, If[MemberQ[A, n], AppendTo[K, G[[FirstPosition[A, n]]]],

AppendTo[K, A[[FirstPosition[G, n]]]]]; n++]; m := 1; While[m < 97,
If[MemberQ[B, m], AppendTo[K[[m]], First[H[[FirstPosition[B, m]]]]],
AppendTo[K[[m]], First[B[[FirstPosition[H, m]]]]]]; m++];

k := 1; While[k < 97, If[MemberQ[F, k],
AppendTo[K[[k]], First[J[[FirstPosition[F, k]]]]],
AppendTo[K[[k]], First[F[[FirstPosition[J, k]]]]]]; k++]

This determine the uncompressed form of the Delaney-Dress symbol by comparing elements from 

the previous two lists to determine adjacencies.

L := {}; n := 1; While[n < 97, AppendTo[L, 0]; n++]

M := {};
m := 1;
P := {};
While[m < 4, AppendTo[P, {}];
n := 1;
While[n < 97, If[K[[n]][[m]] > n,

AppendTo[M, ReplacePart[ReplacePart[L, n → -1 ], K[[n]][[m]] → 1]];
AppendTo[P[[m]], {n, K[[n]][[m]]}]];

n++];
m++];

Q := Transpose[M]

This generates a the first-order boundary map of the Delaney-Dress graph as well as an ordering on 

the edges as a reference for the choice of basis in all future matrix calculations.

R := NullSpace[Q]
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This calculates the homology group of the Delaney-Dress graph. 

S := {};
n := 1;
m := 1; While[n < 13, While[m < 97, If[! MemberQ[S, m, 2], k := 1;

AppendTo[S, {m}];
While[k < 8, AppendTo[S[[n]], P[[If[Mod[k, 2] ⩵ 1, 1, 2]]][[FirstPosition[

P[[If[Mod[k, 2] ⩵ 1, 1, 2]]], S[[n]][[k]]][[1]]]][[If[FirstPosition[
P[[If[Mod[k, 2] ⩵ 1, 1, 2]]], S[[n]][[k]]][[2]] ⩵ 1, 2, 1]]]];

k++] n++];
m++]]

T := {};
n := 1;
m := 1; While[n < 9, While[m < 97, If[! MemberQ[T, m, 2], k := 1;

AppendTo[T, {m}];
While[k < 12, AppendTo[T[[n]], P[[If[Mod[k, 2] ⩵ 1, 2, 3]]][[FirstPosition[

P[[If[Mod[k, 2] ⩵ 1, 2, 3]]], T[[n]][[k]]][[1]]]][[If[FirstPosition[
P[[If[Mod[k, 2] ⩵ 1, 2, 3]]], T[[n]][[k]]][[2]] ⩵ 1, 2, 1]]]];

k++] n++];
m++]]

U := {};
n := 1;
m := 1; While[n < 25, While[m < 97, If[! MemberQ[U, m, 2], k := 1;

AppendTo[U, {m}];
While[k < 4, AppendTo[U[[n]], P[[If[Mod[k, 2] ⩵ 1, 3, 1]]][[FirstPosition[

P[[If[Mod[k, 2] ⩵ 1, 3, 1]]], U[[n]][[k]]][[1]]]][[If[FirstPosition[
P[[If[Mod[k, 2] ⩵ 1, 3, 1]]], U[[n]][[k]]][[2]] ⩵ 1, 2, 1]]]];

k++] n++];
m++]]

These generate lists of vertex, edge and face orbits, in other words the alternating colour loops. For 
future reference.

L1 := {}; n := 1; While[n < 145, AppendTo[L1, 0]; n++]

V := {}; n := 1;

Whilen < 13, m := 1; AppendTo[V, {}]; Whilem < 9, AppendToV[[n]],

ReplacePartL1, FirstPosition[P[[If[Mod[m, 2] ⩵ 1, 1, 2]]], S[[n]][[m]]][[

1]] + If[Mod[m, 2] ⩵ 1, 0, 48] → If[FirstPosition[

P[[If[Mod[m, 2] ⩵ 1, 1, 2]]], S[[n]][[m]]][[2]] ⩵ 1, 1, -1];

m++;

n++

V1 := Total[V, {2}]
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W := {}; n := 1; Whilen < 9, m := 1;

AppendTo[W, {}];

Whilem < 13, AppendToW[[n]], ReplacePartL1, FirstPosition[P[[If[Mod[m, 2] ⩵

1, 2, 3]]], T[[n]][[m]]][[1]] + If[Mod[m, 2] ⩵ 1, 48, 96] → If[

FirstPosition[P[[If[Mod[m, 2] ⩵ 1, 2, 3]]], T[[n]][[m]]][[2]] ⩵ 1, 1, -1];

m++;

n++

W1 := Total[W, {2}]

X := {};
n := 1;

Whilen < 25, m := 1;

AppendTo[X, {}];

Whilem < 5, AppendToX[[n]], ReplacePartL1, FirstPosition[P[[If[Mod[m, 2] ⩵ 1,

3, 1]]], U[[n]][[m]]][[1]] + If[Mod[m, 2] ⩵ 1, 96, 0] → If[

FirstPosition[P[[If[Mod[m, 2] ⩵ 1, 3, 1]]], U[[n]][[m]]][[2]] ⩵ 1, 1, -1];

m++;

n++

X1 := Total[X, {2}]

These generate vectors in the first-order homology group with real coefficients corresponding to 

the alternating colour loops. These are used but were ultimately found to be redundant. 

Y = Join[V1, W1, X1, R]

This creates a list of vectors that span the first-order homology group, made up of, first the vectors 

computed in the last part, and then the basis vectors computed before from the boundary map. 

Z = Orthogonalize[Y]

AA := {};

n := 1; Whilen < 94, If! Z[[n]] ⩵ L1, AppendTo[AA, Z[[n]]];

n++

This applies Gram-Schidmt to the previous list of vectors and then removes the zero vectors pro-
duced. The benefit is that with this basis we know the first ‘x’ number of vectors correspond to the 

subspace spanned by the alternating coloured loops. So if we then select all of the other vectors we 

will have a basis for a space perpendicular to this coloured subspace. This is useful since the 

coloured subspace is contained in H and hence allows us not instead of projecting onto the first-
order homology group we can project onto a subspace that is closer to the final space we wish to 

project to. Unfortunately this turned out to not save any time whatsoever and was completely 

useless. But it didn’t hurt so oh well.

AB := {}; n := 1; While[n < 7, AppendTo[AB, AA[[50 - n]]]; n++]

AC = Transpose[AB].AB

These collect the vectors corresponding to the subspace we wish to project to and computes the 

projection map.
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AD := {};
n := 1;
While[n < 13, AppendTo[AD, {T[[1]][[Mod[2 - n - 1, 12] + 1]]}];
n++];

m := 1;

Whilem < 4, i := 1;

Whilei < 2^(m - 1) + 1, j = FirstPosition[T, K[[AD[[2 m - 1]][[i]]]][[1]]];

k = FirstPosition[T, AD[[2 m - 1]][[i]]];
l := 1;

Whilel < 4, x = FirstPositionAD, T[[k[[1]]]]

Modk[[2]] + If[Mod[k[[2]], 2] ⩵ 0, 1, -1] * l - 2 * 2 - 1, 12 + 1;

AppendToAD[[x[[1]]]], T[[j[[1]]]]Modj[[2]] +

If[Mod[j[[2]], 2] ⩵ 0, 1, -1] * If[l ⩵ 2, 7, 0] + l - 2 * 2 - 1, 12 + 1;

AppendToAD[[Mod[x[[1]] + If[Mod[x[[1]], 2] ⩵ 0, -1, 1] - 1, 12] + 1]],

T[[j[[1]]]]Modj[[2]] +

If[Mod[j[[2]], 2] ⩵ 0, 1, -1] * If[l ⩵ 2, 6, 1] + l - 2 * 2 - 1, 12 + 1;

AppendToAD[[Mod[x[[1]] + If[Mod[x[[1]], 2] ⩵ 0, -1, 1] * 7 - 1, 12] + 1]],

T[[j[[1]]]]Modj[[2]] +

If[Mod[j[[2]], 2] ⩵ 0, 1, -1] * If[l ⩵ 2, 0, 7] + l - 2 * 2 - 1, 12 + 1;

AppendToAD[[Mod[x[[1]] + If[Mod[x[[1]], 2] ⩵ 0, -1, 1] * 6 - 1, 12] + 1]],

T[[j[[1]]]]Modj[[2]] +

If[Mod[j[[2]], 2] ⩵ 0, 1, -1] * If[l ⩵ 2, 1, 6] + l - 2 * 2 - 1, 12 + 1;

l++;

i++;

m++

AD1 := {};
n := 1;
While[n < 7, AppendTo[AD1, Join[AD[[2 n - 1]], AD[[2 n]]]];
n++]

This rather horrible bit of code is the first part of computing the induced map from the Delaney-
Dress graph to the smallest quotient graph, the final part of calculating the projection. Note that 
this map sends all edges to zero except for the sigma_0 edges. We then need to figure out which 

edge in the smallest quotient graph, the sigma_0 edges get send to. The idea for this was that every 

vertex in the Delaney-Dress graph is the origin of a sigma_0 edge and so we can imagine a map that 
sends each vertex to the same place as the edge in the quotient graph. This code travels around the 

Delaney-Dress graph and at each stage focuses on a vertex orbit (alternating colour loop centring 

on a vertex in the original graph). It then determines which vertices get send to the same edge and 

gradually builds up lists of vertices getting send to the same place. This was the single most difficult 
part of this algorithm. This algorithm was desired visually with reference to the covering map and 

utilised specfic features. As such this part may actually prove too complicated in more general 
settings and so another approach may be desired. 

4 ���  Thesis.nb

Appendix: Mathematica Code



AE := {};
n := 1;
While[n < 145, AppendTo[AE, {FirstPosition[AD1,

P[[Quotient[n - 1, 48] + 1]][[Mod[n - 1, 48] + 1]][[1]]][[1]], FirstPosition[
AD1, P[[Quotient[n - 1, 48] + 1]][[Mod[n - 1, 48] + 1]][[2]]][[1]]}];

n++]

AE1 = Drop[AE, {49, 144}]

AF := {};
n := 1;
While[n < 49, If[! MemberQ[AF, AE1[[n]]] && ! MemberQ[AF, Reverse[AE1[[n]]]],

AppendTo[AF, AE1[[n]]]];
n++]

This code then determines a representation for the edges in terms in the lists determined previ-
ously. 

AG := {}; n := 1; While[n < 4, AppendTo[AG, 0] n++]

AH := {};
n := 1;
While[n < 145, If[MemberQ[AF, AE[[n]]],

AppendTo[AH, ReplacePart[AG, FirstPosition[AF, AE[[n]]][[1]] → 1]],
If[MemberQ[AF, Reverse[AE[[n]]]], AppendTo[AH, ReplacePart[AG,

FirstPosition[AF, Reverse[AE[[n]]]][[1]] → -1]], AppendTo[AH, AG]]];

AI := Transpose[AH]

This code uses the previous representation to compute the induced map. 

AJ := AI.AC

Here we compose the two maps.

AK = Transpose[AJ]

n := 1;
AL := {};
While[n < Length[S] + 1, AppendTo[AL, {Min[S[[n]]]}];
m := 1;
While[AL[[n]][[m]] ≠ 1, If[K[[AL[[n]][[m]]]][[1]] < AL[[n]][[m]],

AppendTo[AL[[n]], K[[AL[[n]][[m]]]][[1]]],
If[K[[AL[[n]][[m]]]][[2]] < AL[[n]][[m]], AppendTo[AL[[n]],

K[[AL[[n]][[m]]]][[2]]], AppendTo[AL[[n]], K[[AL[[n]][[m]]]][[3]]]]];
m++];

n++]
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n := 1;
AM := {};
While[n < Length[T] + 1, AppendTo[AM, {Min[T[[n]]]}];
m := 1;
While[AM[[n]][[m]] ≠ 1, If[K[[AM[[n]][[m]]]][[1]] < AM[[n]][[m]],

AppendTo[AM[[n]], K[[AM[[n]][[m]]]][[1]]],
If[K[[AM[[n]][[m]]]][[2]] < AM[[n]][[m]], AppendTo[AM[[n]],

K[[AM[[n]][[m]]]][[2]]], AppendTo[AM[[n]], K[[AM[[n]][[m]]]][[3]]]]];
m++];

n++]

n := 1;
AN := {};
While[n < Length[U] + 1, AppendTo[AN, {Min[U[[n]]]}];
m := 1;
While[AN[[n]][[m]] ≠ 1, If[K[[AN[[n]][[m]]]][[1]] < AN[[n]][[m]],

AppendTo[AN[[n]], K[[AN[[n]][[m]]]][[1]]],
If[K[[AN[[n]][[m]]]][[2]] < AN[[n]][[m]], AppendTo[AN[[n]],

K[[AN[[n]][[m]]]][[2]]], AppendTo[AN[[n]], K[[AN[[n]][[m]]]][[3]]]]];
m++];

n++]

This computes a takes each orbit (alternating colour loop) and find the smallest index, before 

computing a path back to the vertex numbered 1, along a decreasing path. 

n := 1;
AO := {};

Whilen < Length[AL] + 1, AppendTo[AO, {}];

m := Length[AL[[n]]];

Whilem > 1,

AppendToAO[[n]], AKFirstPosition[P, {AL[[n]][[m]], AL[[n]][[m - 1]]}][[2]] +

48 * FirstPosition[P, {AL[[n]][[m]], AL[[n]][[m - 1]]}][[1]] - 1;

m--;

n++

n := 1;
AP := {};

Whilen < Length[AM] + 1, AppendTo[AP, {}];

m := Length[AM[[n]]];

Whilem > 1,

AppendToAP[[n]], AKFirstPosition[P, {AM[[n]][[m]], AM[[n]][[m - 1]]}][[2]] +

48 * FirstPosition[P, {AM[[n]][[m]], AM[[n]][[m - 1]]}][[1]] - 1;

m--;

n++
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n := 1;
AQ := {};

Whilen < Length[AN] + 1, AppendTo[AQ, {}];

m := Length[AN[[n]]];

Whilem > 1,

AppendToAQ[[n]], AKFirstPosition[P, {AN[[n]][[m]], AN[[n]][[m - 1]]}][[2]] +

48 * FirstPosition[P, {AN[[n]][[m]], AN[[n]][[m - 1]]}][[1]] - 1;

m--;

n++

AO1 := Total[AO, {2}]

AP1 := Total[AP, {2}]

AQ1 := Total[AQ, {2}]

This computes the vector in the first-order chain group corresponding to each of the decreasing 

paths in the last step and then computes the projection, giving us a position vector for a single 

vertex in each orbit.

n := 1;
AR := {};

Whilen < Length[S] + 1, AppendTo[AR, {}];

m := 1;
i := FirstPosition[S[[n]], Min[S[[n]]]];

Whilem < Length[S[[n]]] + 1, x := {S[[n]][[Mod[i + m - 2, Length[S[[n]]]] + 1]],

S[[n]][[Mod[i + m - 1, Length[S[[n]]]] + 1]]};

AppendToAR[[n]], If[Min[x] ⩵ x[[1]][[1]], 1, -1] *

AKFirstPosition[P, {Min[x], Max[x]}][[2]] +

48 * FirstPosition[P, {Min[x], Max[x]}][[1]] - 1;

m++;

n++

n := 1;
AS := {};

Whilen < Length[T] + 1, AppendTo[AS, {}];

i := FirstPosition[T[[n]], Min[T[[n]]]];
m := 1;

Whilem < Length[T[[n]]] + 1, x := {T[[n]][[Mod[i + m - 2, Length[T[[n]]]] + 1]],

T[[n]][[Mod[i + m - 1, Length[T[[n]]]] + 1]]};

AppendToAS[[n]], If[Min[x] ⩵ x[[1]][[1]], 1, -1] *

AKFirstPosition[P, {Min[x], Max[x]}][[2]] +

48 * FirstPosition[P, {Min[x], Max[x]}][[1]] - 1;

m++;

n++
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n := 1;
AT := {};

Whilen < Length[U] + 1, AppendTo[AT, {}];

i := FirstPosition[U[[n]], Min[U[[n]]]];
m := 1;

Whilem < Length[U[[n]]] + 1, x := {U[[n]][[Mod[i + m - 2, Length[U[[n]]]] + 1]],

U[[n]][[Mod[i + m - 1, Length[U[[n]]]] + 1]]};

AppendToAT[[n]], If[Min[x] ⩵ x[[1]][[1]], 1, -1] *

AKFirstPosition[P, {Min[x], Max[x]}][[2]] +

48 * FirstPosition[P, {Min[x], Max[x]}][[1]] - 1;

m++;

n++

This code computes paths around edge orbit from the chosen point to every other point, computes 

their first-order chain group element and then the projection. 

n := 1;
AU := {};
While[n < Length[AR] + 1, AppendTo[AU, {}];
m := 1;
While[m < Length[AR[[n]]] + 1,
AppendTo[AU[[n]], AO1[[n]] + Sum[AR[[n]][[i]], {i, m}]];
m++];

n++]

n := 1;
AV := {};
While[n < Length[AS] + 1, AppendTo[AV, {}];
m := 1;
While[m < Length[AS[[n]]] + 1,
AppendTo[AV[[n]], AP1[[n]] + Sum[AS[[n]][[i]], {i, m}]];
m++];

n++]

n := 1;
AW := {};
While[n < Length[AT] + 1, AppendTo[AW, {}];
m := 1;
While[m < Length[AT[[n]]] + 1,
AppendTo[AW[[n]], AQ1[[n]] + Sum[AT[[n]][[i]], {i, m}]];
m++];

n++]

This computes the positions of all vertices in the Delaney-Dress graph.
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n := 1;
AX := {};

Whilen < Length[AU] + 1, AppendToAX, 1  Length[AU[[n]]] * Total[AU[[n]]];

n++;

m := 1;

Whilem < Length[AV] + 1, AppendToAX, 1  Length[AV[[m]]] * Total[AV[[m]]];

m++;

i := 1;

Whilei < Length[AW] + 1, AppendToAX, 1  Length[AW[[i]]] * Total[AW[[i]]];

i++

This code then computes the possibles of all barycentres of all vertices, edges and faces from the 

cycles described previously.

n := 1;
x := Length[AX];
AX1 := {};
While[n < 4, m := 1;
While[m < 4, i := 1;
While[i < 4, j := 1;
While[j < x + 1, AppendTo[AX1, AX[[j]] + {2 * n - 4, 2 * m - 4, 2 * i - 4}];
j++];

i++];
m++];

n++]

This code then shi�s these points around by lattice translations to produce a larger array of points. 

AY := Join[AU, AV, AW]

n := 1;
AY1 := {};
While[n < 4, m := 1;
AppendTo[AY1, {}];
While[m < 4, i := 1;
AppendTo[AY1[[n]], {}];
While[i < 4, j := 1;
AppendTo[AY1[[n]][[m]], {}];
While[j < Length[AY] + 1, k := 1;
AppendTo[AY1[[n]][[m]][[i]], {}];
While[k < Length[AY[[j]]] + 1,
AppendTo[AY1[[n]][[m]][[i]][[j]], AY[[j]][[k]] + {2 * n - 4, 2 * m - 4, 2 * i - 4}];
k++];

j++];
i++];

m++];
n++]

AY2 := Flatten[AY1, 3]

This code shi�s the orbits in the Delaney-Dress around the by the same lattice translations.
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n := 1;
AZ := {};
While[n < Length[AY2] + 1, m := n + 1;
While[m < Length[AY2] + 1,
If[Length[Intersection[AY2[[n]], AY2[[m]]]] ≠ 0, AppendTo[AZ, {n - 1, m - 1}]];
m++];

n++]

This code determine which orbits share points and hence which vertices have an edge in the 

triangulation.

str = OpenWrite[]

n := 1;
While[n < Length[AX1] + 1, WriteLine[str, StringRiffle[AX1[[n]]]];
n++]

n := 1;
While[n < Length[AZ] + 1, WriteLine[str, StringRiffle[AZ[[n]]]];
n++]

Close[str]

This last bit of code translates all this information into a PLY file. This ply file was then loaded in 

meshlab to produce the image seen here. 
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