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Notation

In the following, X,Y,A are topological spaces with A ⊂ X having the subspace topol-

ogy.

Notation

* The space consisting of a single point.

I The closed unit interval [0, 1].

X
∐
Y The disjoint union of X and Y .

X+ The disjoint union of X and a point ∗.

Sn The n-dimensional sphere, Sn = {v ∈ Rn+1 | ||v|| = 1}.

X/A The quotient space of X
∐
{∗} by the equivalence relation x ∼ y if

either x, y ∈ A
∐
{∗} or x = y. So X/∅ = X+.

X ∨ Y The wedge sum of based spaces X and Y , defined by the quotient

of X
∐
Y where we have identified the basepoints of X and Y .

N {0,1,2,3,...}.

N>0 {1,2,3,...}.

Z The infinite cyclic group.

Zn The cyclic group of order n.

F Denotes the real numbers R or the complex numbers C.

H Denotes the quaternions.

F(n) The algebra of n× n matrices over F.

FPn The n-dimensional F-projective space, consisting of the lines pass-

ing through the origin in Fn+1.

{e1, ..., en} The standard basis vectors of Fn.

ix



x NOTATION

Top The category of topological spaces.

Top∗ The category of pointed topological spaces.

CW The category of CW complexes.

CW∗ The category of based CW complexes.

Ab The category of abelian groups.

W ∼= Z Objects W and Z are isomorphic in the appropriate category. Usu-

ally denotes a homeomorphism between spaces, or weak equiva-

lence of spectra.

X ' Y Spaces X and Y are homotopy equivalent.

[X,Y ] The set of homotopy classes of maps X → Y .

K(G,n) The Eilenberg-MacLane space with πiK(G,n) ∼= G if i = n and

trivial otherwise.



Chapter 1

Preliminaries

1.1 Introduction

We are concerned with determining the number of non-vanishing, linearly independent,

tangent vector fields of Sn. In this thesis, we solve this problem largely by using tools

of algebraic topology.

Figure 1.1: A hairy ball: a vector field on S2 [26].

Definition 1.1. A vector field on Sn−1 is a continuous map v : Sn−1 → Sn−1 such

that v(x) is tangent to x.

So we will require all vector fields herein to be non-vanishing, normalised and tan-

gent.

Suppose n = 2k for some integer k. Then Sn−1 embeds in Ck and v(x) = ix is a

vector field. So we have at least one vector field on odd dimensional spheres. On the

other, we can show easily that there are no vector fields on even dimensional spheres.

If v(x) was a vector field, then we would have a homotopy between the identity and

the antipodal map:

ht(x) = x cosπt+ v(x) sinπt.

1
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This contradicts the fact that the antipodal map has degree −1 on even dimensional

spheres. This result is called the hairy ball theorem and was first proven by Brouwer

[5]. In the case S2, we can imagine the vector field as hairs on a ball. The theorem

then states that it is not possible to comb a hairy ball without a cowlick.

Definition 1.2. For n ∈ N>0, write n = (2a+ 1)2b and b = c+ 4d for a, b, c, d integers

and 0 ≤ c ≤ 3. Define the Radon-Hurwitz number ρ(n) = 2c + 8d.

n 1 2 3 4 5 6 7 8

ρ(n) 1 2 1 4 1 2 1 8

b 0 1 2 3 4 5 6 7

2b 1 2 4 8 16 32 64 128

ρ(n) 1 2 4 8 9 10 12 16

The main result of this thesis is the following:

Theorem 1.3 [1, Theorem 1.1]. The maximum number of linearly independent vector

fields on Sn−1 is exactly ρ(n)− 1.

Interestingly, ρ(n) only depends on the factors of two in n and therefore, grows

surprisingly slowly.

The construction of ρ(n) − 1 vector fields on Sn−1 was solved by Hurwitz, Radon

and Eckmann, using real Clifford algebras [6]. The Radon-Hurwitz number arose from

earlier work and has a number of applications in linear algebra [19]. Adams showed in

1962 that it was not possible to construct ρ(n) vector fields [1].

Previous results proved the impossibility for b ≤ 3 (Steenrod and Whitehead [21])

and b ≤ 10 (Toda [22]). Adams’ proof was the one of the first major use of a new

powerful tool in algebraic topology at that time, called topological K theory. (The

other being a greatly simplified proof of the Hopf invariant one theorem.) He utilised

a reduction of the problem to one concerning real projective spaces, due to James:

Theorem 1.4 [13, Theorem 8.2]. Suppose that n − 1 ≤ 2(n − k). There are k

linearly independent vector fields on Sn−1 if and only if the stunted projective space

RPn−1/RPn−k−1 is reducible: that is, there is a map

f : Sn−1 → RPn−1/RPn−k−1

such that composition with the quotient map q

Sn−1 f−→ RPn−1/RPn−k−1 q−→ RPn−1/RPn−2 = Sn−1

has degree 1.

The major work of [1] was Adams’ computation of the K-theory of projective spaces

along with the resulting corollary:

Theorem 1.5 [1, Theorem 1.2]. The stunted projective space RPn+ρ(n)/RPn−1 is not

coreducible, at least when n is a multiple of 16: that is, there is no map

f : RPn+ρ(n)/RPn−1 → Sn
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such that composition with the inclusion map i

Sn = RPn/RPn−1 i−→ RPn+ρ(n)/RPn−1 f−→ Sn

has degree 1.

Theorem 1.3 had already been proven by Steenrod and Whitehead in [21] for the

special case when n is not a multiple of 16. (We prove this special case in chapter 3.)

Adams was then able to prove theorem 1.3 for n a multiple of 16 using theorem 1.5

and some stable homotopy theory.

In this thesis, we will provide the background to prove this result, assuming only

some basic algebraic topology and category theory. To avoid pathologies, we assume

that all spaces are compactly generated weak Hausdorff.

We begin in chapter 1 by outlining the necessary background. In chapter 2, we

construct the ρ(n) − 1 vector fields on Sn−1. In chapter 3, we prove the special case

of the main theorem (1.3), when n is not a multiple of 16. In chapter 4, we introduce

spectra and define the stable homotopy category. In chapter 5, we present a number of

results on duality which are needed to solve our vector field problem. In chapter 6, we

develop spectral sequences and prove the existence of the Atiyah Hirzebruch spectral

sequence. In chapter 7, we apply this spectral sequence to compute the K theory of

stunted projective spaces. Finally, in chapter 8, we achieve our goal, by proving the

two main theorems (1.5 and 1.3).

1.2 Some Basic Algebraic Topology

1.2.1 Join

Definition 1.6. The join of two spaces X and Y is

X ∗ Y = X × Y × I/R,

where R is the relation defined by (x, y, 0) ∼ (x, y′, 0) and (x, y, 1) ∼ (x′, y, 1) for all

x, x′ ∈ X and y, y′ ∈ Y .

Intuitively, the join of X and Y is the space of lines connecting each point of X to

each point of Y .

1.2.2 Smash Product

Definition 1.7. The smash product of two based spaces X and Y is the quotient of

their cartesian product by their wedge sum:

X ∧ Y = (X × Y )/(X ∨ Y ).

The sphere Sn+m is homeomorphic to the smash product Sn ∧ Sm.

Given based maps f1 : X1 → Y1, f2 : X2 → Y2, we have a map

f1 ∧ f2 : X1 ∧X2 → Y1 ∧ Y2

(x1, x2) 7→ (f1(x1), f2(x2)).
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The reduced suspension

Definition 1.8. The reduced suspension Σ is a functor from Top∗ to Top∗ defined on

objects by

ΣX = S1 ∧X

and on maps f : X → Y by

ΣX → ΣY

Σf(s, x) 7→
(
s, f(x)

)
.

The k-th fold reduced suspension is homeomorphic to the smash product with Sk:

ΣkX ∼= Sk ∧X.

The smash product gives a symmetric monoidal structure on the category of locally

compact Hausdorff spaces. In this category, the internel hom exists and so we have an

adjunction

Hom(X ∧A, Y ) ∼= Hom
(
X,Hom(A, Y )

)
.

In particular, taking A = S1, we recover the suspension-loopspace adjunction

Hom(ΣX,Y ) ∼= Hom(X,ΩY ).

1.3 Bundles and K-Theory

1.3.1 Bundles

Vector Bundles

Intuitively, vector bundles are spaces that locally look like the cartesian product of a

base space B and a vector space.

Definition 1.9. A (real) vector bundle consists of

1. topological spaces B and E,

2. a continuous surjection p : E → B,

3. and a (real) finite vector space structure on p−1(b), for each b ∈ B,

satisfying the local trivialisation condition: there is an open covering {Uα} of B such

that for each Uα there exists a positive integer n and a homeomorphism hα : p−1(Uα)→
Uα × Rn taking p−1(b) to {b} × Rn by linear isomorphism for all b ∈ Uα.

We call B the base space, E the total space, p−1(b) the fibre at b ∈ B and hα a local

trivialisation.



1.3. BUNDLES AND K-THEORY 5

A complex vector bundle is define analogously. Often only the total space E is given

and the rest of the structure is left implicit.

Note that the dimension of the vector space structure on each fibre p−1(b) is constant

in each Uα. It follows that the dimension is constant in each connected component of B.

If the dimension n of p−1(b) is constant for all b ∈ B, then we call E an n-dimensional

vector bundle.

A bundle that is 1-dimensional is called line bundle.

Definition 1.10. A map of vector bundles E1
p1−→ B1 and E2

p2−→ B2 is a continuous

function f : E1 → E2 which sends fibres to fibres by a linear transformation.

A vector bundle map f : E1 → E2 is an isomorphism if it is a homeomorphism and

a linear isomorphism on fibres.

Examples

Let F = C or R. The n-dimensional trivial bundle εn → X is the cartesian product

Fn ×X with the projection map p : (v, x) 7→ x.

The quotient space of
I × R

/
(0, v) ∼ (1,−v)

is a real 1-dimensional bundle over S1. It is called the Möbius bundle since it is

homeomorphic to the Möbius strip with its boundary removed.

Real projective spaces has a canonical line bundle

E = {(l, v) ∈ RPn × Rn+1 | v ∈ l}

where the fibre of each line l consists of vectors in l. These line bundles will play a

major part in this thesis, as we will show they generate the K theory of RPn. Complex

projective spaces CPn also have canonical line bundles, defined in an analogous way.

Transition Functions

Given two local trivialisations hα : p−1(Uα) → Uα × Rn and hβ : p−1(Uβ) → Uβ ×
Rn with non-empty intersection, the homeomorphism hβ ◦ h−1

α :
(
Uα ∩ Uβ

)
× Rn →(

Uα ∩ Uβ
)
× Rn describes how the two local trivialisations are glued together. Since

hα, hβ send p−1(b) to {b} × Rn, the gluing map hβ ◦ h−1
α sends (b, v) to

(
b, gαβ(b)v

)
,

where gαβ : Uα ∩ Uβ → GL(n).

Definition 1.11. The maps gαβ are called the transition functions of the bundle E.

The transitions functions satisfy gαβ(b) = gβα(b)−1 and the cocycle condition:

gγα(b) ◦ gβγ(b) ◦ gαβ(b) = In

for all b ∈ Uα ∩ Uβ ∩ Uγ .

As demonstrated by the following example, the transition functions completely

describe a vector bundle.
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Example 1.12. Given an open cover {Uα} and functions gαβ : Uα ∩ Uβ → GL(n)

defined on the intersections satisfying gαβ(b) = gβα(b)−1 and the cocycle condition, we

can build a vector bundle by forming the pieces {Uα×Rn} and gluing them together on

the overlaps via gαβ.

We can easily extend this example to define a vector bundle with non-constant

dimension.

Sections

Definition 1.13. A section of a vector bundle p : E → B is a continuous map s : B →
E such that p ◦ s = idB.

There is always a canonical section, the zero section, which sends b ∈ B to the zero

vector in the fibre p−1(b).

Example 1.14. Given a (real) differentiable manifold M of dimension n, denote the

tangent at x by TxM . Then the tangent bundle TM = {(x, v) | x ∈ M,v ∈ TxM} is a

vector bundle of dimension n.

Fibre Bundles

Fibre bundles are generalisations of vector bundles, in the sense that locally a fibre

bundle looks like the cartesian product of the base space and the fibre, but the fibre do

not need to have a vector space structure.

Definition 1.15. A fibre bundle consists of

1. topological spaces E,B and F ,

2. a continuous surjection p : E → B,

satisfying the local trivialisation condition: there is an open covering {Uα} of B such

that for each Uα there exists a homeomorphism hα : p−1(Uα)→ Uα × F taking p−1(b)

to {b} × F for all b ∈ Uα.

We denote a fibre bundle by F → E
p−→ B.

We also have the notion of transition functions which must satisfy gαβ = g−1
βα and

the cocycle condition. However now gαβ maps into the group of homeomorphism of F .

As is the case for vector bundles, the transition functions contain all the information

of the fibre bundle.

Fibrations

Definition 1.16. A map p : E → B has the homotopy lifting property with respect

to a space X if the following condition is satisfied: Suppose there is a homotopy f :
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X × I → B and a map f̃0 : X → E lifting f0. That is, f0 = p ◦ f̃0. Then there exists a

homotopy f̃ : X × I → E lifting f . That is, there exists f̃ making the diagram

X E

X × I B

f̃0

X×{0} p
f̃

f

commute.

Definition 1.17. A map p : E → B is a (Hurewicz) fibration if it has the homotopy

lifting property with respect to any space. It is a Serre fibration if it has the homotopy

lifting property with respect to any disc Dn (or equivalently, any finite CW complex).

Any fibre bundle is a Serre fibration. If the base space is paracompact, then it

is also a Hurewicz fibration. For proof of these statements, see [9, Proposition 4.48]

[20, §2.7] respectively. The fibres p−1(b) of a path-connected (Serre) fibration are

(weakly) homotopy equivalent [9, Proposition 4.61]. So we can think of fibrations as the

homotopy versions of fibre bundles. Like fibre bundles, we can write a path-connected

fibration as F → E
p−→ B, where F is ‘the’ fibre.

1.3.2 K-Theory

Let VectF(X) be the set of isomorphism classes of F-vector bundles over a fixed base

space X. Since E1
∼= E′1 and E2

∼= E′2 implies E1 ⊕ E2
∼= E′1 ⊕ E′2, the direct sum is

well defined on VectF(X). Moreover, we have that E ⊕ ε0 = E for all vector bundles

E. Thus, the direct sum gives a commutative monoid structure on VectF(X).

Operations on Vector Bundles

Basically any vector space operation can also be done on vector bundles, by un-gluing

the fibres, applying the operation to each fibre and then re-gluing the fibres back

together.

Definition 1.18. Given two vector bundles p1 : E1 → X and p2 : E2 → X over a base

space X, define their direct sum

E1 ⊕ E2 = {(e1, e2) ∈ E1 × E2 | p1(e1) = p2(e2)}.

Definition 1.19. Given two vector bundles p1 : E1 → X and p2 : E2 → X over a base

space X, define their tensor product E1⊗E2 be the disjoint union of the vector spaces

p−1
1 (x)⊗ p−1

2 (x).

Proposition 1.20. A continuous map f : E1 → E2 between two vector bundles over

the same base space is an isomorphism if it takes each fibre p−1
1 (b) to the corresponding

fibre p−1
2 (b) by linear isomorphism.

This is Lemma 1.1 in [10]. We omit the proof.
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Definition 1.21. Given a map f : A→ B and a vector bundle p : E → B, the pullback

of E by f is the vector bundle

f∗(E) = {(v, a) ∈ E ×A | p(v) = f(a)}.

The pullback f∗(E) fits into the commutative square

f∗(E) E

A B,

pr1

pr2 p

f

where pr1(v, a) = v and pr2(v, a) = a.

Note that f∗(E) only depends on the isomorphism type of E.

The construction of the pullback defines a map

f∗ : VectF(B)→ VectF(A)

E 7→ f∗(E)

for any map f : A→ B. This is well defined since f∗(E1) ∼= f∗(E2) if E1
∼= E2.

The Functor K

We are now in a position to define K-theory.

Definition 1.22. Given a topological space X, define the F K theory KF(X) to be the

Grothendieck completion of the commutative monoid (VectF(X),⊕). That is, KF(X)

consists of formal differences E1 − E2 of vector bundles E1, E2, with the equivalence

relation E1 − E2 ∼ E′1 − E′2 if there exists E3 such that

E1 ⊕ E′2 ⊕ E3 = E′1 ⊕ E2 ⊕ E3,

and addition given in the obvious way:

(E1 − E2) + (E′1 − E′2) = (E1 ⊕ E2)− (E′1 ⊕ E′2).

We generally only consider compact Hausdorff X. This simplifies KF(X), by the

following proposition:

Proposition 1.23. If X is compact Hausdorff, then for every vector bundle E → X,

there is a vector bundle E′ → X such that E ⊕ E′ is the trivial bundle.

We will omit the proof of this proposition. It can be found in [10, Proposition 1.4].

Using this proposition, we see that E1 − E2 = E′1 − E′2 in KF(X) if and only if

E1 ⊕ E′2 ⊕ εn = E′1 ⊕ E2 ⊕ εn,

for some n. Moreover, every class in KF(X) can be represented by a difference E − εn

since given E1 − E2, there is a bundle E3 with E2 ⊕ E3 = εn. So we get

E1 − E2 = E1 ⊕ E3 − E2 ⊕ E3 = E − εn.

The function f : X → Y induces a map on K-theory f∗ : KF(Y ) → KF(X) by

sending E1−E2 to f∗(E1)− f∗(E2). This is well defined and a group homomorphism.
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Definition 1.24. The contravariant functor KF from the category of compact spaces

to Ab sends objects X to K(X) and sends a map f : X → Y to its pullback f∗ :

KF(Y )→ KF(X).

We can define a commutative multiplication on KF(X) by the formula

(E1 − E2)(E′1 − E′2) = (E1 ⊗ E′1 − E1 ⊗ E′2) + (E2 ⊗ E′1 − E2 ⊗ E′2).

It is straightforward to check that this is indeed well defined and ε1− ε0 is the identity.

Moreover, f∗ : KF(Y ) → KF(X) commutes with this multiplication, so it is a ring

homomorphism.

Let X have basepoint x0. Define the reduced K-theory K̃F(X) as the kernel of the

map induced by the inclusion i : ∗ ↪→ X. Elements of K̃F(X) are E − εn where the

fibre of E has dimension n at i∗(∗). Since K̃F(X) is an ideal, we can think of it as a

non-unital ring.

The dimension of a vector bundle remains constant under any induced map f∗. So

if E1 − E2 is in the kernel of i∗, then f∗(E1)− f∗(E2) will as well. We therefore get a

contravariant functor K̃F from based compact spaces to Ab.

Notation

We write E ∈ KF(X) for the class represented by E− ε0. Given a non-negative integer

k, write kE ∈ KF(X) for the k-fold sum of E and Ek for the k-fold product of E. For

negative k, take the k-fold sum or product of the additive or multiplicative inverse of

E (assuming a multiplicative inverse of E exists).

Universal Property of K Theory

Since we constructed KF(X) as the Grothendieck completion of the commutative

monoid (VectF(X),⊕), we have the following universal property:

KF(X) is the unique abelian group such that for all abelian groups A and homomor-

phisms (of monoids) f : VectF(X)→ A, there exists a unique map (of abelian groups)

f : KF(X)→ A such that

M A

KF(X)

f

i
f

So, if we can construct a map from VectF(X) to an abelian group A, then we get

a group homomorphism from K(X) to A for free. A could be a ring, however, in this

case, this map is not necessarily a ring homomorphism.

The Complexification Map

Given an n-dimensional real vector bundle p : E → B, we can construct an n-

dimensional complex vector bundle c(E) as follows. Take each fibre and tensor with C



10 CHAPTER 1. PRELIMINARIES

over R. The local trivialisations remain the same since p−1(Uα)→ Uα × Rn becomes

C⊗ p−1(Uα)→ Uα × (C⊗R Rn)
∼=−→ Uα × Cn.

Equivalently, c(E) is constructed from E ⊕E by defining scalar multiplication by i

in each fibre Rn ⊕ Rn via the rule i(x, y) = (−y, x).

Note that c(E1 ⊕E2) ∼= c(E1)⊕ c(E2). Then E1 −E2 = E′1 −E′2 in KR(X) implies

c(E1)−c(E2) = c(E′1)−c(E′2). Also, c distributes across addition in KR(X). Therefore,

we get a group homomorphism c : KR(X)→ KC(X) sending E1−E2 to c(E1)− c(E2).

We claim that additionally c is a ring homomorphism. Why? Suppose that E1 and

E2 are n and m dimensional vector bundles. Since multiplication in KR(X) is defined

using the tensor product, it is sufficient to show that c(E1 ⊗R E2) ∼= c(E1)⊗C c(E2).

Now, it is easy to see that

(Rn ⊗R Rm)⊕ (Rn ⊗R Rm) ∼= (Rn ⊕ Rn)⊗C (Rm ⊕ Rm),

where the direct sums have complex vector space structures given by i(x, y) = (−y, x).

Note that the left hand side is a fibre of c(E1 ⊗ E2) and the right hand side is a fibre

of c(E1)⊗ c(E2). We can easily extend this vector space isomorphism to a continuous

map c(E1 ⊗R E2)→ c(E1)⊗C c(E2). Then by Proposition 1.20, we have that this map

is a vector bundle isomorphism.

Going in the opposite direction, we can construct a 2n-dimensional real vector

bundle r(E) from an n-dimensional complex vector bundle E by forgetting about the

complex structure on the fibres. This gives a group homomorphism r : KC(X) →
KR(X) sending E1−E2 to r(E1)−r(E2). However, it does not preserve multiplication.

1.4 Thom Spaces

Suppose we want to define an inner product on a vector bundle. This is not simply a

matter of choosing an inner product for each fibre, since these choices may not agree

when we glue the fibres together. Fortunately, when X is compact Hausdorff, there is

an inner product on any vector bundle p : E → B [10, Proposition 1.2].

Now suppose we have an inner product on a vector bundle p : E → B. (If B is

paracompact, it is always possible to have a metric on E.) Define the sphere bundle

S(E) to be the space of vectors with norm equal to 1. Similarly define the disk bundle.

These are fibre bundles, provided E has constant dimension. There are also definitions

of S(E) and D(E) which do not use a metric but we will not concern ourselves with

this.

Definition 1.25. The Thom space of a vector bundle E is the quotient

Th(E) = D(E)/S(E).

Sometimes we will write Th(B,E) to emphasis that E is a vector bundle over the

base space B. Isomorphic bundles give homeomorphic Thom spaces.
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Proposition 1.26. If X is a compact, then Th(E) is homeomorphic to E+ the one

point compactification of E.

Proof. The bundle E is homotopy equivalent to D(E) − S(E) by using a homotopy

equivalence between Fn and the open ball. But D(E) − S(E) is a subspace of Th(E)

whose complement is a point.

Therefore, we have a continuous bijective map Th(E)→ E+. Since E+ is Hausdorff

and Th(E) is compact, this map must be a homeomorphism.

Proposition 1.27. For a vector bundle p : E → B, we have a homeomorphism

Th(E ⊕ εn) ∼=

ΣnTh(E) for E real,

Σ2nTh(E) for E complex.

Proof. We only consider the case for real vector bundles, since this will suffice for our

needs. Moreover, we need only prove the proposition for n = 1, since larger n will

follow by induction:

Th(E ⊕ εn) = Th(E ⊕ εn−1 ⊕ ε1) ∼= ΣTh(E ⊕ εn−1).

For n = 1, define a norm on E ⊕ ε1 = E × R by |(v, w)| = max{|v|E , |w|εn}. Then

D(E ⊕ ε1) ∼= D(E)× [0, 1]

and

S(E ⊕ ε1) ∼= ∂D(E ⊕ ε1) = {0, 1} ×D(E) ∪ [0, 1]× S(E).

Therefore,

Th(E ⊕ ε1) ∼=
[0, 1]×D(E)

{0, 1} ×D(E) ∪ [0, 1]× S(E)

∼=
S1 ×D(E)

∗ ×D(E) ∪ S1 × S(E)

∼=
S1 × Th(E)

∗ × Th(E) ∪ S1 × ∗
= ΣTh(E).

1.5 Cohomology Theories

Recall that a CW pair (X,A) is a CW complex X with a sub-complex inclusion A ↪→ X.

Every CW pair (X,A), for A non-empty, is a good pair, in the sense that A is a non-

empty closed subspace that is a deformation retract of some open neighbourhood in

X.

Definition 1.28. A reduced cohomology theory is a sequence of contravariant func-

tors Ẽn (for n ∈ Z) from CW∗ to Ab, with natural transformations δ : Ẽn(A) →
Ẽn+1(X/A) for CW pairs (X,A) satisfying the following axioms:
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1. Homotopy: if f, g : X → Y are homotopic then the induced maps f∗, g∗ :

Ẽn(Y )→ Ẽn(X) are equal.

2. Exactness: for each CW pair (X,A) there is a long exact sequence

...
δ−→ Ẽn(X/A)

q∗−→ Ẽn(X)
i∗−→ Ẽn(A)

δ−→ Ẽn+1(X/A)
q∗−→ ...

where i is the inclusion map A→ X and q is the quotient map X → X/A.

3. Additivity: For a wedge sum X = ∨αXα with inclusions iα : Xα ↪→ X, the

product map ∏
α

i∗α : Ẽn(X)
∼=−→
∏
α

Ẽn(Xα)†

is an isomorphism for all n.

Definition 1.29. An unreduced cohomology theory is a sequence of contravariant func-

tors En (for n ∈ Z) from pairs of CW complexes (X,A) (with X non-empty) to abelian

groups, with En(X,A) = Ẽn(X/A) for some reduced cohomology theory Ẽ.

In the other direction, one gets a reduced theory Ẽ from an unreduced theory E by

setting Ẽn(X) to be the kernel of the map En(X)→ En(x0) induced by the inclusion

x0 → X.

1.6 Degree

In the introduction, we saw that the degree of a map f : Sn → Sn will play an important

role in the proof of the main theorem.

Definition 1.30. Let f : Sn → Sn. The degree of f is the integer [f ] ∈ πn(Sn) ∼= Z.

(See [9, Corollary 4.25] for a proof that πn(Sn) ∼= Z.)

Using this non-standard definition, we get Hopf’s fundamental result for free: the

degree of two maps f, g : Sn → Sn are equal if and only if f ' g.

The following proposition tells us that this definition agrees with the usual def-

inition, where the degree of f : Sn → Sn is the integer d in the induced map on

cohomology f∗ : Hn(Sn) ∼= Z→ Hn(Sn) ∼= Z : α 7→ dα.

Proposition 1.31. If f : Sn → Sn has degree d, then the induced map f∗ on any

reduced cohomology theory is multiplication by d.

This result is important for our purposes as it describes how a degree d map behaves

on K theory.

Proof. For d ≥ 1, f is homotopic to

gd : Sn
pinch−−−→ ∨dSn

∨id−−→ Sn
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since we know gd has degree d. Thus, we need only prove that g∗d is multiplication by

d.

If Ẽ is any reduced cohomology theory, then g∗d is the composite

Ẽk(Sn) Ẽk (∨dSn) ∼=
∏
d Ẽ

k(Sn) Ẽk(Sn)

x (x, ..., x)

(x1, ..., xd)
∑

i xi.

(∨id)∗ (pinch)∗

(Why is (pinch)∗(x1, ..., xd) =
∑

i xi? When d = 1, we know that the pinch map is

homotopic to the identity. It follows that (pinch)∗(0, ..., 0, xi, 0, ..., 0) = xi. There is

only one homomorphism that satisfies this property for all i, so (pinch)∗(x1, ..., xd) must

be
∑

i xi.) Thus, the composition is multiplication by d.

For d = 0, f is null-homotopic, so f∗ must be multiplication by 0†.

For d ≤ −1, f is homotopic to a reflection r composed with g−d, since we know

that r has degree −1. (By a reflection, we mean a map that fixes a great circle Sn−1

and interchanges the corresponding hemispheres.)

We claim that r∗ is multiplication by −1. The composition

h : Sn
pinch−−−→ Sn ∨ Sn r∨id−−→ Sn

is null-homotopic, since [r] is inverse to [idSn ] in πn(Sn). Thus, the induced map

h∗ is multiplication by 0, which implies (r ∨ id)∗ sends x ∈ Ẽk(Sn) to (−x, x) ∈
Ẽk(Sn)× Ek(Sn).

1.7 Stunted Projective Spaces

Real stunted projective spaces also plays an important role in the proof of the main

theorem.

Recall that we construct RPn from RPn−1 by attaching a single n-cell with a two-

to-one attaching map. Why? Define the relation x ∼ y if x, y are antipodal points

on Sn−1. The inclusion of the boundary i : Sn−1 → Dn respects this relation. Thus,

i induces a map Sn−1/ ∼= RPn−1 → Dn/ ∼= RPn. It is then possible to see that

attaching Dn via the quotient map Sn−1 → Sn−1/ = RPn−1 gives RPn and this map

is two-to-one.

Therefore, we can view RPk as a subcomplex of RPn+k consisting of all the cells of

dimension at most k.

Definition 1.32. Given n and k positive, the real stunted projective space RPn+k
k is

the quotient of RPn+k by RPk−1

RPn+k
k = RPn+k/RPk−1.

†Why is the constant map multiplication by 0? It factors through the space consisting of a single

point ∗, which has cohomology groups all 0, for all reduced (ordinary) cohomology theories.
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An analogous definition can be made for complex projective spaces.

As a CW complex, RPn+k
k consists of one cell in dimensions 0 and k, k+ 1,...,k+n.

This justifies our notation. Moreover, we can include RPmk in RPnk as a CW complex,

for m ≤ n.

It is well known that the cohomology ring H∗(RPn;Z2) ∼= Z2[α]/(αn+1), where

|α| = 1. By viewing RPn+k
k as a subcomplex of RPn+k, it follows easily that

H̃p(RPn+k
k ;Z2) ∼=

Z2 if k ≤ p ≤ n+ k,

0 otherwise.

A more general definition of stunted projective space:

Sometimes it will be convenient to have a more general definition of real stunted pro-

jective space.

Definition 1.33. Let n be non-negative and let ξ be the canonical line bundle on RPn.

Define RPn+k
k to be the Thom space of kξ:

RPn+k
k = Th(RPn, kξ).

The next proposition shows that this new definition is indeed a generalisation of

the previous definition.

Proposition 1.34. For n and k positive, we have a homeomorphism RPn+k
k
∼= RPn+k/RPk−1,

stunted projective space. For n non-negative and k = 0, RPn0 = RPn+.

Proof. The second statement is straightforward:

RPn0 = Th(RPn, ε0) = D(ε0)/S(ε0) = RPn/∅ = RPn+.

(This statement holds in general: Th(X, ε0) = X+.)

To prove the first statement, recall that

kξ =
{

(l, v1, ..., vk) ∈ RPn−1 × Rn × ...× Rn | v1, ..., vk ∈ l
}
.

Specifying a point (l, v1, ..., vk) ∈ kξ is equivalent to giving a linear function f : l→
Rk. Why? Let bl ∈ l ⊂ Rn+1 be the point in l whose first non-zero co-ordinate (using

the standard basis on Rn+1) is 1. Then we can write each v1, ..., vk as a scalar multiple

of bl. Denote these scalars by [v1]βl , ..., [vk]βl . We can completely define f by

f(bl) = ([v1]βl , ..., [vk]βl) ∈ Rk.

Conversely, given f : l → Rk, with f(bl) = (c1, ..., ck) we get a point (l, c1bl, ..., ckbl) in

kξ.

Now, any linear function f : l ⊂ Rn+1 → Rk determines a graph in Rn+1 × Rk.
Consider the quotient space of Rn+1 × Rk − {0} where we identify v ∼ cv for all non-

zero c ∈ R. This quotient space is RPn+k. Furthermore, every point in the graph of f
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in Rn+1×Rk is a scalar multiple of (bl, f(bl)). Thus, the graph of f determines a point

in RPn+k. The only elements of RPn+k that are not equal to such a graph are the lines

in Rk.
Therefore, kξ is isomorphic to a vector bundle RPn+k −RPk−1 → RPn. Since RPn

is compact, Th(RPn+k −RPk−1) is the one point compactification RPn+k/RPk−1.

1.8 Reducibility and Coreducibility

We have seen the definition of (co)reducibility of RPnn−k in the introduction. In this

section, we will make these definitions more precise and we will state some equivalent

definitions. Intuitively, an n-dimensional CW complex is reducible if its top cell splits

off and it is coreducible if its bottom cell splits off.

1.8.1 Reducibility

Definition 1.35. Let X be a (n − 1)-dimensional CW complex and suppose Y is

constructed from X by attaching an n-cell via f : Sn−1 → X. (That is, Y = X ∪f en).

Let q : Y → Sn be the map collapsing X to a point. We call this n-cell the top

cell of Y and we say that Y is reducible if there exists a map g : Sn → Y such that

post-composition with q

Sn
g−→ Y

q−→ Sn

has degree 1.

Lemma 1.36. The space Y = X ∪f en is reducible if and only if f is null-homotopic.

Proof. The composite Sn
g−→ Y

q−→ Sn has degree 1 if and only if the boundary of the

n-cell deformation retracts to a point. But the boundary of the n-cell is exactly the

attaching map f , so this is equivalent to saying that f is null-homotopic.

There are a number of equivalent definitions, which will prove useful throughout

this thesis. We take Y to be RPnn−k, for n > k ≥ 0, but these results hold generally as

well:

1. There is a map Sn → RPnn−k such that the composition Sn → RPnn−k
q−→

RPnn−k/RPn−1
n−k
∼= Sn has degree 1, or equivalently, is homotopic to the identity.

2. There is a homotopy equivalence RPnn−k ' RPn−1
n−k ∨ S

n which is the identity on

the subcomplex RPn−1
n−k.

3. The top cell of RPnn−k has a trivial attaching map.

4. The top cell of RPn has an attaching map factoring through the (n − k − 1)-

skeleton.
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1.8.2 Coreducibility

Definition 1.37. Let Y be a CW complex such that there is a single cell in dimension

n, and all cells (except perhaps the base point 0-cell) have dimension greater than n.

We call this n-cell the bottom cell and define i : Sn ↪→ Y to be the inclusion map of this

cell. Then Y is coreducible if there exists a map f : Y → Sn such that pre-composition

with i

Sn
i−→ Y

f−→ Sn

has degree 1.

Analogous to reducibility, there are a number of equivalent definitions of coreducibil-

ity, stated in terms of RPn+k
k , for n, k positive, but easily generalisable:

1. There is a map f : RPn+k
k → Sk such that the composition Sk

i−→ RPn+k
k

f−→ Sk

has degree 1, or equivalently, is homotopic to the identity.

2. There is a homotopy equivalence RPn+k
k ' RPn+k

k+1 ∨ S
k which is the identity on

the subcomplex RPn+k
k+1 .

3. For k < m ≤ n + k, the attaching map of the m-cell of RPn+k
k factors through

RPn+k
k+1 . (It follows that the (k+1)-dimension cell of RPn+k

k has a trivial attaching

map.)

1.9 Stiefel Manifolds

Let O(n) be the orthogonal group of degree n:

O(n) =
{
M ∈ R(n) |M invertible with M−1 = MT

}
,

where R(n) is the algebra of n× n real matrices. There are fibre bundles

O(n− 1)→ O(n)
p−→ Sn−1

A 7→ Ae1,

where e1 is the first standard basis vector of Rn.

The fibres of these bundles are

p−1(e1) =


1 0 . . . 0

0
... B

0


where B ∈ O(n− 1). By induction, O(n) looks like a twisted version of S0 × S1 × ...×
Sn−1. We can generalise this construction to get twisted versions of Sk×Sk+1×...×Sn−1

for any k < n.
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Definition 1.38. The Stiefel manifold Vn,k is the space of orthonormal k-frames in

Rn. In other words, it is the space of k-tuples of orthonormal vectors in Rn.

The Stiefel manifold Vn,k is a subspace of the product of k copies of the sphere

Sn−1. It is given the subspace topology. Therefore, it is compact, since the product of

spheres is compact.

Example 1.39. 1. Vn,1 = Sn−1,

2. Vn,n ∼= O(n), where the homeomorphism is given by

(v1, ..., vn) 7→ [v1...vn] ∈ R(n).

We know that [v1...vn] ∈ O(n) since a matrix M is orthogonal if MTM =

MMT = I, or in other words, the rows and columns are orthonormal vectors.

There are fibre bundles

Vn−1,k−1 −→ Vn,k → Sn−1

(v1, ..., vk) 7→ v1

Then, by induction, Vn,k looks like a twisted version of Sn−k × ...× Sn−1.

Lemma 1.40. Projection of the first vector of the k-tuple gives a fibre bundle ε1 :

Vn,k → Sn−1. Then Sn−1 has k − 1 vector fields if and only if ε1 : Vn,k → Sn−1 admits

a section.

Proof. If we have k − 1 vector fields v1, ..., vk−1 then

S : Sn−1 → Vn,k

x 7→
(
x, v1(x), ..., sk−1(x)

)
is a section of ε1. Alternatively, from a section s(x) = (x, s1(x), ..., sk−1(x)), we get

k − 1 vector fields s1, ..., sk−1.

This lemma shows the importance of Stiefel manifolds to our problem of vector

fields. We care about the cases when k = ρ(n) and k = ρ(n) + 1. Moreover, James’

reduction of the problem (Theorem 1.4) follows by embedding a stunted projective

space within a Stiefel manifold as a sub-CW complex. To do this, we must study the

CW structure of Stiefel manifolds.

A CW Structure on the Stiefel Manifolds

This CW structure was first described in [24]. A good reference is [9, pages 294-302].

Recall that the special orthogonal group SO(n) is the subgroup of O(n) consisting

of matrices with determinant one. We will determine a CW structure on SO(n) and

then use this to induce a CW structure on Vn,k.
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First, define the map ρ : RPn−1 → SO(n) as follows. To each non-zero vector

v ∈ Rn, write r(v) ∈ O(n) for the reflection across the subspace orthogonal to v.

Since r(v) is a reflection, it has determinant −1. Composing with r(en) gives an

element of SO(n). Since r(v)r(en) only depends on the line spanned by v, the map

ρ([v]) = r(v)r(en) is well defined.

We claim that ρ embeds RPn−1 as a subspace of SO(n). The map [v]→ r(v) is an

injection of RPn−1 into O(n)−SO(n), and composition with r(en) is a homeomorphism

O(n)−SO(n)→ SO(n). Thus, ρ is injective and since RPn−1 is compact Hausdorff, ρ

is an embedding.

We can generalise ρ to a map from a product of projective spaces RPi1 × ... ×
RPim to SO(n) where each ij < n. Let I = (i1, ..., im). Given [vj ] ∈ RPij , consider

it as an element of RPn−1 and apply ρ. Then let ρI(v1, ..., vm) be the composition

ρ(v1) · · · ρ(vm).

Now the cells of RPI = RPi1 × ...×RPim are simply the product of cells in each of

RPij . Moreover, if φi : Di → RPi is the standard characteristic map of the top cell of

RPi, the product φI : DI = Di1 × ... ×Dim → RPI is a characteristic map of the top

cell of RPI . (Note Di1 × ...×Dim is a disk of dimension i1 + ...+ im.)

Let a (possibly empty) sequence I = (i1, ..., im) be admissable if n > i1 > ... >

im > 0. Hatcher shows that the set of maps ρIφI : DI → SO(n), with I admissable,

are the characteristic maps of a CW structure on SO(n) [9, Proposition 3D.1]. For

non-empty I, the cells eI = ei1 · · · eim are products (via the group operation in SO(n))

of the cells ei ⊂ RPi ⊂ RPn−1 embedded in SO(n) by ρ. Thus, SO(n) consists of a

single 0-cell, corresponding to the empty sequence, and one cell for each admissable

sequence I = (i1, ..., im) of dimension i1 + ... + im. Finally, Hatcher also shows that

ρ(n−1,n−2,...,1) : RPn−1× ...×RP1 → SO(n) is cellular — a fact that will be useful later

in the following subsection.

We can understand this result in the following way. Since there is a fibre bundle

SO(n − 1) → SO(n)
p−→ Sn−1 with p(A) = Ae1, we know SO(n) can be considered as

a twisted product Sn−1 × Sn−2 × ...× S1.

Then for each admissable sequence n > i1 > ... > im > 0, we choose the top cells of

Si1 , ..., Sim and the 0-cell of the other spheres. We combine these cells to get a cell of

Sn−1 × Sn−2 × ... × S1. By ranging over all admissable sequences, we get all the cells

of Sn−1 × Sn−2 × ... × S1. Given that SO(n) is a twisted product of these spheres, it

is intuitive that it has the same cells.

Now we will use this result to determine a CW structure on the Stiefel manifold.

There is a natural projection p : O(n)→ Vn,k, sending α ∈ O(n) to the last k columns

of α. Similarly, there is a projection p′ : SO(n) → Vn,k. If k < n, then given an

orthonormal k-frame (v1, ..., vk), we can always find vectors w1, ..., wn−k such that the

matrix with columns w1, ..., wn−k, v1, ..., vk is special orthogonal. Thus, p′ is surjective

if k < n. In this case, Vn,k can be viewed as the coset space SO(n)/SO(n − k), with

the quotient topology from SO(n). This is the same as the topology previously defined

on Vn,k, since p′ is a surjection between compact Hausdorff spaces.

We claim that the cells of Vn,k are the sets of the form eISO(n−k) = ei1 · · · eimSO(n−
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k) for n > i1 > ... > im ≥ n− k, along with the coset SO(n− k) as the 0-cell of Vn,k.

These sets are the unions of cells in SO(n) and moreover, every cell in SO(n) is con-

tained in exactly one of these sets. This implies that Vn,k is the disjoint union of these

sets. The dimension of a cell of the form eISO(n − k) is i1 + ... + im. Then if a cell

in SO(n) is contained in eISO(n − k), its boundary is contained in cells of lower di-

mensions. This implies that the boundary of our proposed cells of Vn,k are contained

in some proposed cells of lower dimension. Thus, we have a CW structure on Vn,k.

The takeaway here is that there is a CW structure on Vn,k which consists of one

zero cell, and a cell eI for every tuple I = (i1, ..., im) with n > i1 > ... > im ≥ n− k of

dimension i1 + ...+ im.

1.9.1 James’ Results on Stiefel Manifolds

We are now in a position to prove the results on Stiefel manifolds necessary for our

vector fields problem. These results are due to James, proved in further generality in

section 3 of [14] and section 8 of [13].

Proposition 1.41. The CW structure on Vn,k given above admits RPn−1
n−k as the 2(n−

k)-skeleton. Hence, RPn−1
n−k is the (n− 1)-skeleton if 2k − 1 ≤ n.

Proof. Suppose eI is a cell with I = (i1) of length 1. We showed in the previous

subsection that eI is homeomorphic to the image of the i1-cell of RPn−1 under the map

RPn−1 ρ−→ S(n)
q−→ S(n)/SO(n− k) ∼= Vn,k.

This map collapses RPn−k−1 to a point, while every cell of RPn−1
n−k is mapped homeo-

morphically onto some eI with I length 1. Thus, RPn−1
n−k is a subcomplex of Vn,k.

If eI is a cell of Vn,k with I of length at least 2, then eI has dimension at least

2n − 2k + 1. Thus, the cells eI with I length 1, along with the zero cell, account for

all of the (2n− 2k)-skeleton. But each eI with I = (i1) of length 1 is the image under

ρ(n−1) of the i1 cell of RPn−1
n−k. Thus, RPn−1

n−k is the 2(n− k)-skeleton.

If 2k − 1 ≤ n, then n − 1 ≤ 2(n − k). In this case, there are no cells in Vn,k of

dimension d for n ≤ d ≤ 2(n− k). Thus, RPn−1
n−k is the (n− 1)-skeleton of Vn,k.

Let ι : RPn−1
n−k ↪→ Vn,k be the map including RPn−1

n−k as a subcomplex. Note that

ρ(l) fixes the hyperplane perpendicular to the plane spanned by l and en, while ρ(l) is

a rotation of the plane spanned by l and en. Let ε1 : SO(n) → Sn−1 be evaluation at

e1. Then ε1ρ(l) = e1 for any line l perpendicular to e1. Thus the diagram

SO(n)

RPn−1 RPn−1/RPn−2 ∼= Sn−1

ε1
ρ

q
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is commutative. It follows that

Vn,k

RPn−1
n−k RPn−1

n−k/RPn−2
n−k
∼= Sn−1

ε1
ι

q

also commutes.

Corollary 1.42. Suppose that n− 1 ≤ 2(n− k). There is a section of Vn,k → Sn−1 if

and only if RPn−1
n−k is reducible.

Proof. “⇐”: Suppose there is a map f : Sn−1 → RPn−1
n−k as in the definition of re-

ducibility. Then there is a homotopy F : I × Sn−1 → Sn−1 between the identity and

qf = ε1ιf :

F0 = ε1ιf and F1 = idSn−1 .

Therefore, we have a commutative square

Sn−1 Vn,k

I × Sn−1 Sn−1.

{0}×Sn−1

ιf

ε1

F

So we are in a position to apply the homotopy lifting property for ε1. This property

guarantees a homotopy F̃ : I × Sn−1 → Vn,k lifting F . By restricting to Sn−1 × {1},
we get

Vn,k

Sn−1 Sn−1.

ε1
F̃1

id

So F̃1 is the desired section.

“⇒”: Suppose there is a map s : Sn−1 → Vn,k such that ε1s = idSn−1 . We can

always find a homotopic map f which maps into the (n − 1)-skeleton of Vn,k. So

ε1f ' idSn−1 . But the (n− 1)-skeleton is RPn−1
n−k by the previous proposition. Thus we

can consider f as a map Sn−1 → RPn−1
n−k such that

fq = fιε1 ' idSn−1 .

This corollary makes the connection between the existence of vector fields and

reducibility of stunted projective spaces.
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1.10 K Theory as a Cohomology Theory

In this section, we will define functors K̃n
F : CW∗ → Ab that form a reduced cohomol-

ogy theory. We set the 0-th functor to be the reduced K theory already defined. Then,

we will show that complex K theory is two periodic and real K theory eight periodic.

This will lead to the natural definitions

K̃n
C(X) =

K̃C(X) if n is even,

K̃C(ΣX) if n is odd,

and

K̃n
R(X) = K̃R(ΣrX),

where r is the remainder of −n divided by 8.

1.10.1 Bott Periodicity

Theorem 1.43 [10, Theorem 2.11]. Complex K theory is 2-periodic:

K̃C(Σ2X) ∼= K̃C(X),

for all compact Hausdorff spaces X.

This is a deep result and we will omit its proof. A corollary, also found in [10], is

the case when X = Sn:

Corollary 1.44. The complex K theory of spheres is

K̃C(Sn) =

Z if n even,

0 if n odd.

Also, K̃C(S2) is generated by η − ε1, where η be that canonical line bunlde on

CP1 = S2.

Theorem 1.45 [4]. Real K theory is 8-periodic:

K̃R(Σ8X) ∼= K̃R(X),

for all compact Hausdorff spaces X.

Again, we omit the proof of this result.

Proposition 1.46. There is an isomorphism between the homotopy classes of the in-

finite orthogonal group O and the real K theory of spheres:

πnO ∼= K̃R(Sn+1).

Thus,
n ≡ 0 1 2 3 4 5 6 7 mod 8

K̃R(Sn) ∼= Z Z/2 Z/2 0 Z 0 0 0

πnO ∼= Z/2 Z/2 0 Z 0 0 0 Z
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Proof sketch. We know that πnO ∼= πnO(i) for i sufficiently large by examining the long

exact sequence associated with the fibre bundle. Moreover, πnGLi(R) is in bijection

with VectiR(Sn+1) [10, Proposition 1.11]. Since GLi(R) deformation retracts to O(i)

via the Gram-Schmidt orthogonalisation process, we have that πnGLi(R) ∼= πnO(i).

On the other hand, a class α ∈ K̃R(Sn+1) is represented by [E] − [εi] where E ∈
VectiR(Sn+1). This gives a bijection between K̃R(Sn+1) and VectiR(Sn+1). So there is

a bijection πnO(i)→ K̃R(Sn+1). It turns out that it is in fact an isomorphism.

1.11 Adams Operations

Theorem 1.47. There exist ring homomorphism Ψk
F : KF(X) → KF(X) defined for

all compact Hausdorff spaces X and integers k, which satisfy

1. naturality: Ψk
Ff
∗ = f∗Ψk

F,

2. Ψk
F(L) = Lk, for L a line bundle†,

3. Ψk
F ◦Ψl

F = Ψkl
F ,

4. Ψp
F(α) ≡ αp mod p, for p prime, and

5. commutativity of the square

KR(X) KR(X)

KC(X) KC(X).

ΨkR

c c

ΨkC

The ring homomorphisms Ψk
F are called Adams operations. Their existence is a well

known result, so we will omit the proof. See for example [10, Theorem 2.20] for the

complex Adams operations and [1, Theorem 5.1] for the general case.

Corollary 1.48. The Adams operations on even dimension spheres

Ψk
C : K̃C(S2q)→ K̃C(S2q), (for arbitrary q)

Ψk
R : K̃R(S2q)→ K̃R(S2q), (for q even)

are given by

Ψk
F(κ) = kqκ.

Proof. We first prove the complex case by induction on q. The real case will then

follow. In the case q = 1, we know that

K̃C(S2) ∼= Z{η − ε1}
†Since line bundles are invertible, this also makes sense for k < 0.
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where η is the canonical line bundle on CP1 = S2, and moreover (η − ε1)2 = 0. Write

1 for ε1, the multiplicative identity in KF(X). Then

Ψk
C(η − 1) = Ψk

C(η)−Ψk
C(1) = ηk − 1

by property 2 of Theorem 1.47. But

ηk − 1 = (η − 1 + 1)k − 1 = 1 + k(η − 1)− 1 = k(η − 1).

since (η − 1)2 = 0.

In the step case, we use Bott periodicity K̃C(S2q+2) ∼= K̃C(S2)⊗ K̃C(S2q). Suppose

x ∈ K̃C(S2q) ∼= Z is a generator. Then (η − 1)⊗ x generates K̃C(S2q+2) ∼= Z and

Ψk
C
(
(η − 1)⊗ x

)
= k(η − 1)⊗ kqx

by the induction hypothesis. Since k(η−1)⊗kqx = kq+1(η−1)⊗x, we have the result.

Recall the complexification map c and the injection r from subsection 1.3.2. To

prove the real case, we first observe that rc sends a vector bundle E to E ⊕ E, so

Z ∼= KR(S2q)
c−→ KC(S2q)

r−→ KR(S2q) ∼= Z

is multiplication by 2. Then the complexification map c is non-zero and therefore it is

multiplication by some non-zero integer. Since c commutes with the Adam’s operations

(property 5 of Theorem 1.47), the real case follows.
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Chapter 2

Constructing Vector Fields

In this chapter, we will determine a lower bound on the number of (non-vanishing,

linearly independent tangent) vector fields on the (n− 1)-sphere Sn−1.

Definition 2.1. A k-field is an ordered set of k point-wise orthonormal vector fields.

A k-frame is an orthonormal set of k vectors.

Using the Gram-Schmidt process, we can construct a k-field from an ordered set

of k point-wise linearly independent vector fields. Therefore, our problem of finding k

linearly independent vector fields is equivalent to finding a k-field.

Let K(n) be the maximal k such that there exists a k-field on Sn−1. We will

construct a lower bound on K(n).

2.1 Clifford Algebras

Definition 2.2. Define C+
k to be the free, associative R-algebra with generators e1, ..., ek

and relations

e2
i = −1 for all i, eiej + ejei = 0 for all i 6= j.

Define C−k to be the free, associative R-algebra with generators e1, ..., ek and rela-

tions

e2
i = 1 for all i, eiej + ejei = 0 for all i 6= j.

Proposition 2.3. We have the following R-algebra isomorphisms:

1. C+
1
∼= C,

2. C+
2
∼= H,

3. C−1
∼= R⊕ R,†

†The direct sum of algebras X and Y over a field F is their direct sum as vector spaces, with

multiplication defined by

(x1, y1)(x2, y2) = (x1x2, y1y2).

Thus, R⊕ R is an algebra over R.

25
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4. C−2
∼= R(2),

where F (n) is the algebra of n× n matrices over F .

Proof. 1. C+
1 is 2-dimensional with e2

1 = −1. An arbitrary element of C+
1 can be

written in the form a+ be1 for a, b ∈ R. Thus, we have an isomorphism

C+
1 C,

a+ be1 a+ bi.

∼=

2. C+
2 is 4-dimensional with basis {1, e1, e2, e1e2}. Define φ : C+

2 → H on this basis

φ(1) = 1, φ(e1) = i, φ(e2) = j, φ(e1e2) = k,

and extend linearly. To check that this is an algebra homomorphism, we compute:

φ(e2
1) = φ(−1) = −1 = i2 = φ(e1)φ(e1), φ(e2

2) = φ(−1) = −1 = j2 = φ(e2)φ(e2),

φ(e1e2) = k = ij = φ(e1)φ(e2), φ(e2e1) = φ(−e1e2) = −k = −ij = ji = φ(e2)φ(e1).

Note that all of the relations in H are satisfied in C+
2 and φ is bijective.

3. Again, we can write an arbitrary element of C−1 of the form a+be1 where a, b ∈ R
and e2

1 = 1. Define

C+
1 R⊕ R

a+ be1 (a+ b, a− b)

∼=

It is straightforward to check that this is an algebra isomorphism.

4. C−2 is 4-dimensional with basis {1, e1, e2, e1e2}. Define φ : C−2 → R(2) on this

basis

φ(1) =

[
1 0

0 1

]
φ(e1) =

[
1 0

0 −1

]
φ(e2) =

[
0 1

1 0

]
φ(e1e2) =

[
0 1

−1 0

]

and extend linearly. To check that this is an algebra homomorphism, we compute:

φ(e2
1) = φ(1) =

[
1 0

0 1

]
=

[
1 0

0 −1

][
1 0

0 −1

]
= φ(e1)φ(e1),

φ(e2
2) = φ(1) =

[
1 0

0 1

]
=

[
0 1

1 0

][
0 1

1 0

]
= φ(e2)φ(e2),

φ(e1e2) =

[
0 1

−1 0

]
=

[
1 0

0 −1

][
0 1

1 0

]
= φ(e1)φ(e2),

φ(e2e1) = φ(−e1e2) =

[
0 −1

1 0

]
=

[
0 1

1 0

][
1 0

0 −1

]
= φ(e2)φ(e1).
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The homomorphism φ has trivial kernel. Also, φ is surjective since[
a b

c d

]
= φ

(
a+ (d− a)e1 + be2 + (c− b)e1e2

)
.

Theorem 2.4. For all k ≥ 0,

1. C+
k+2
∼= C−k ⊗ C

+
2 ,
†

2. C−k+2
∼= C+

k ⊗ C
−
2 .

Proof. Let {ei}k+2
i=1 be a basis for C+

k+2. Let {e′i}ki=1 be the generators of C−k and {e′′1, e′′2}
the generators of C+

2 . Define an R-module homomorphism u : C+
k+2 → C−k ⊗ C

+
2 by

u(ei) =

1⊗ e′′i if i = 1, 2,

e′i−2 ⊗ e′′1e′′2 otherwise,

and extend linearly. It is straightforward to check that u obeys the relations of C+
k+2:

u(ei)
2 = −1 and u(ei)u

′(ej) = −u(ej)u(ei) for i 6= j.

So u is well defined. This also shows that u is an algebra homomorphism.

We will show that u is an isomorphism. Notice that u sends distinct basis elements

to distinct basis elements. It follows that u is injective. The dimensions of C+
k+2 and

C−k ⊗ C
+
2 are equal. Thus, u is an isomorphism.

The second half of the theorem follows similarly: define v : Rk+2 → C+
k ⊗ C

−
2 by

v(ei) =

1⊗ e′′i if i = 1, 2,

e′i−2 ⊗ e′′1e′′2 otherwise,

where {ei}k+2
i=1 is a basis for Rk+2, {e′i}ki=1 are the generators of C+

k and {e′′1, e′′2} the

generators of C−2 . By analogous working to the first half, we can show v extends to an

isomorphism from C−k+2.

Corollary 2.5. For all k ≥ 0,

1. C+
k+4
∼= C+

k ⊗ C
+
4 ,

2. C−k+4
∼= C−k ⊗ C

−
4 .

Proof. Apply Theorem 2.4 twice:

C+
k+4
∼= C−k+2 ⊗ C

+
2
∼= C+

k ⊗ C
−
2 ⊗ C

+
2
∼= C+

k ⊗ C
+
4 .

The second case follows analogously.

†If X and Y are F -algebras then X ⊗ Y is the tensor product of X and Y as vector spaces with

multiplication defined by

(x1 ⊗ y1)(x2 ⊗ y2) = x1x2 ⊗ y1y2,

and then extended linearly to all elements of X ⊗ Y .
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By inspection, we can determine

1. C+
1
∼= C and C−1

∼= R⊕ R,

2. C+
2
∼= H and C−2

∼= R(2).

Then the following corollary is immediate.

Corollary 2.6. C±4 = H⊗ R(2) ∼= H(2).

Corollary 2.7. For all k ≥ 0,

1. C+
k+8
∼= C+

k ⊗ R(16),

2. C−k+8
∼= C−k ⊗ R(16).

Proof. Apply corollary 2.5 twice:

C+
k+8
∼= C+

k+4 ⊗ C
+
4
∼= C+

k ⊗ C
+
4 ⊗ C

+
4 .

Now use corollary 2.6:

C+
k ⊗ C

+
4 ⊗ C

+
4
∼= C+

k ⊗H⊗ R(2)⊗H⊗ R(2) ∼= C+
k ⊗ R(16).

The second case follows analogously.

From these results we obtain the following table of Clifford algebras:

k C+
k C−k

1 C R⊕ R
2 H R(2)

3 H⊗ (R⊕ R) ∼= H⊕H C⊗ R(2) ∼= C(2)

4 H⊗ R(2) ∼= H(2) H⊗ R(2) ∼= H(2)

5 H(2)⊗ C ∼= C(4) H(2)⊗ (R⊕ R) ∼= H(2)⊕H(2)

6 H(2)⊗H ∼= R(8) H(2)⊗ R(2) ∼= H(4)

7 H(2)⊗ (H⊕H) ∼= R(8)⊕ R(8) H(2)⊗ C(2) ∼= C(8)

8 R(16) R(16)

2.2 Constructing Vector Fields

Recall that given n ∈ N>0, we write n = (2a + 1)2b and b = c + 4d and define

ρ(n) = 8d+ 2c. In this section, we will construct ρ(n)− 1 vector fields on Sn−1.

Proposition 2.8. For an n-dimensional representation V of C+
k ,

S(V ) ' Sn−1†

admits a k-field. A (k + 1)-frame for x ∈ S(V ) is {x, e1x, ..., ekx}.
†Given an arbitrary (non-metrisable) real vector space V , the sphere of V is the quotient subspace

S(V ) :=
(
V − {0}

)/
(x ∼ λx for all λ > 0) .
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Proof. Firstly, redefine the inner product 〈−|−〉 on V so it is invariant under the C+
k

action by averaging over the action. Now, verify that x is perpendicular to eix:

〈x|eix〉 = 〈eix|eieix〉 = 〈eix| − x〉 = −〈x|eix〉,

which implies 〈x|eix〉 = 0.

Next, verify that eix is perpendicular to ejx for i 6= j:

〈eix|ejx〉 = 〈eiejeix|eiejejx〉 = 〈−eje2
ix, eie

2
jx〉 = 〈ejx| − eix〉 = −〈eix|ejx〉,

and so 〈eix|ejx〉 = 0 as required. This shows that {x, e1x, ..., ekx} is a (k + 1)-frame.

From this we build the the k-field easily.

Proposition 2.9 (Periodicity). If C+
k has an n-dimensional representation then C+

k+8

has a 16n-dimensional representation. Moreover, if ak is the minimum dimension of a

representation of C+
k , then ak+8 = 16ak.

Proof. Notice that C+
k is a matrix algebra. C+

k+8 is an algebra with matrices a factor

of 16 larger than the size of the matrices in C+
k . Thus, any module of C+

k+8 must have

dimension equal to the product of 16 and the dimension of a module of C+
k .

Proposition 2.10. The minimum dimension of a representation of C+
k for k = 0, ..., 8

are given in the table below.

k 0 1 2 3 4 5 6 7 8

C+
k R C H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16)

ak 1 2 4 4 8 8 8 8 16

Corollary 2.11. The minimum dimension ak is a power of 2 for all k. Moreover,

{ak}k∈N are all the powers of 2.

Proof. Using Proposition 2.10, we can verify the first half for k = 0, ..., 7. Then, use

the periodicity ak+8 = 16ak to prove for all k.

For the second half, note that

a0 = 1, a1 = 2, a2 = 4, a4 = 8.

Thus, 24a+b = a8a+b for a, b ∈ N, with 0 ≤ b ≤ 3.

Lemma 2.12. If Sn−1 admits a k-field then Snq−1 admits a k-field.

Proof. Let v1, ..., vk : Sn−1 → Sn−1 be pointwise orthonormal vector fields. Consider

Snq−1 as the join of q spheres Sn−1: choose some α1, ..., αq ≥ 0 such that
∑q

j=1 α
2
j = 1.

For x ∈ Snq−1, write

x = (α1x1, ..., αqxq),

where xj ∈ Sn−1.

Define v∗i : Snq−1 → Rnq−1 by

v∗i (α1x1, ..., αqxq) = (α1vi(x1), ..., αqvi(xq)).
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Compute

〈x|v∗i (x)〉 =

q∑
j=1

α2
j 〈xj |vi(xj)〉 = 0.

〈v∗h(x)|v∗i (x)〉 =

q∑
j=1

α2
j 〈vh(xj)|vi(xj)〉 =


∑q

j=1 α
2
j = 1 if h = i,

0 otherwise.

Thus, v∗1, ..., v
∗
k is a k-field on Snq−1.

Theorem 2.13. We have the following lower bound on the number of vector fields of

Sn−1:

K(n) ≥ ρ(n)− 1.

Proof. Fix n. Write n = (2a+ 1)2b = (2a+ 1)2c16d for 0 ≤ c ≤ 3. By Lemma 2.12, it

suffices to show that S2b − 1 admits ρ(n) − 1 vector fields. Since ρ(n) = ρ(2b), this is

equivalent to proving K(2b) ≥ ρ(2b)− 1.

By Corollary 2.11, there exists some k such that 2b = ak. Choose the maximal such

k. Then K(2b) ≥ k. We will show that k = ρ(2b)− 1.

Write k = 8q + r where 0 ≤ r ≤ 7. Then ak = 16qar by Proposition 2.9. It follows

q = d and ar = 2c since ar ≤ 8 by inspection of Proposition 2.10. Thus, k = 8d + r.

Since we chose k maximal such that ak = 2b, we know that r is maximal such that

ar = 2c. Again using Proposition 2.10, we get the following table which shows that

r = 2c − 1.

c 2c r

0 1 0

1 2 1

2 4 3

3 8 7

Thus, k = 8d+ 2c − 1 = ρ(2b)− 1.



Chapter 3

Steenrod Squares and the Proof

of a Special Case

In this chapter, we prove the upper bound on vector fields for the special case where

n 6≡ 0 mod 16:

Theorem 3.1. Write n = (2a + 1)2b and b = c + 4d. The sphere Sn−1 cannot have

ρ(n) vector fields when d = 0.

This was first done in [21] by Steenrod and Whitehead. To prove this case, they

used properties of the Steenrod squares.

3.1 Steenrod Algebras and Squares

Steenrod squares are cohomology operations Sqi : Hn(X;Z2) → Hn+i(X;Z2), defined

as the generators of a certain algebra, the mod 2 Steenrod algebra.

Definition 3.2. A cohomology operation is a natural transformation:

Φ : H i(−;A)→ Hj(−;B).

Theorem 3.3. The cohomology operations Φ : H i(−;A)→ Hj(−;B) are parametrised

by

Hj(K(A, i);B),

where K(A, i) is the Eilenberg-MacLane space. (That is, there is a one to one corre-

spondence between the cohomology operations and elements of Hj(K(A, i);B).)

Proof sketch. We can define cohomology as Hj(X;B) = [X,K(B, j)]. So we can think

of α ∈ Hj(K(A, i);B) as a map K(A, i)→ K(B, j). Then define

α∗ : H i(X;A)→ Hj(X;B)

f 7→ α ◦ f

31
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by postcomposition with α. We omit the proof that this is well defined (that is, it

doesn’t depend on the choice of representative for α) and that it is natural.

Conversely, given Φ : H i(−;A)→ Hj(−;B), we get

ΦK(A,i) : H i(K(A, i);A)→ Hj(K(A, i);B),

id 7→ α.

These two functions are inverses.

Example 3.4. The cup square is a cohomology operation.

Example 3.5. The only cohomology operations H i(−;Q) → Hj(−;Q) come from it-

erated cup product. Why? It is possible to calculate H∗(K(Q, i);Q), using spectral

sequences, as the free graded-commutative algebra over Q with one generator. Then

Theorem 3.3 tells us that all cohomology operations come from this algebra.

Definition 3.6. A stable sequence of cohomology operations of degree d is a set of

cohomology operations {Φi : H i(−;A) → H i+d(−;B)}i∈Z that commutes with the

suspension isomorphism: i.e. the square

H i(X;A) H i+d(X;B)

H i+1(ΣX;A) H i+d+1(ΣX;B)

∼=

Φi

∼=
Φi+1

commutes.

Note that {Φi}i∈Z is often called, confusingly, a stable cohomology operation. We

use the name ‘sequence’ to make apparent that it is a sequence of cohomology opera-

tions.

Example 3.7. Given the short exact sequence 0 → Zp
p−→ Zp2 → Zp → 0 where the

map p is multiplication by p, we get a short exact sequence of chain complexes and

therefore a long exact sequence of cohomology

...→ H i(X;Zp)→ H i(X;Zp2)→ H i(X;Zp)
β−→ H i+1(X;Zp)→ ...

The boundary maps, called Bockstein homomorphisms,

βp : H i(−;Z/p)→ H i+1(−;Z/p)

form a stable sequence of cohomology operations.

Example 3.8. Using Example 3.5, we see that the only stable sequence of operations

between cohomologies with rational coefficients is the zero sequence, since the cup square

is not stable.

Definition 3.9. The mod p Steenrod algebra Ap is the Z/p-algebra of stable cohomol-

ogy operations from H∗(−;Z/p) to itself.
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Multiplication of the algebra is defined to be function composition of the two se-

quences’ components. Addition and scalar multiplication of the algebra are defined in

the obvious way.

We will focus on the p = 2 case from here on.

Theorem 3.10. For p = 2, Ap is generated by

Sqi : H∗(−;Z/2)→ H∗+i(−;Z/2),

for i ≥ 1, subject to the Adém relations:

Sqa Sqb =
∑
j

(
b− j − 1

a− 2j

)
Sqa+b−j Sqj

for a < 2b.

Proof idea. Use the Serre spectral sequence to compute H∗(K(Z/2, n);Z/2) by induc-

tion on n.

Example 3.11. 1. Sq0 = id,

2. Sq1 Sq1 = 0,

3. Sq1 Sq2 = Sq3,

4. Sq2 Sq2 = Sq3 Sq1,

5. Sq2 Sq3 = Sq5 + Sq4 Sq1.

Proposition 3.12. The Steenrod squares Sqi : Hn(X;Z/2) → Hn+i(X;Z/2), i ≥ 0,

satisfy the following list of properties:

1. naturality: Sqi
(
f∗(α)

)
= f∗

(
Sqi(α)

)
for f : X → Y ,

2. additivity: Sqi(α+ β) = Sqi α+ Sqi β,

3. the Cartan formula: Sqi(α ^ β) =
∑

j Sqj α ^ Sqi−j β,

4. Sqi (Σα) = Σ
(

Sqi α
)

where Σ : Hn(X;Z/2) → Hn+1(X;Z/2) is the suspension

isomorphism,

5. Sqi α = α2 if i = |α| and Sqi α = 0 if i > |α|,

6. Sq1 is the Z/2 Bockstein homomorphism β associated with the coefficient sequence

0→ Z/2→ Z/4→ Z/2→ 0.

We omit the proof. See section 4.L of [9].
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3.2 Steenrod Squares in Projective Spaces

This results in this section is from [21]. In this section, we examine the behaviour

of the Steenrod squares on projective spaces. In the next section, we will show these

properties imply that Sn−1 cannot have ρ(n) vector fields when d = 0, thus proving

Theorem 3.1.

We know that the cohomology ring H∗(RPn;Z2) ∼= Z2[α]/(αn+1), where |α| = 1

and αj is the generator of Hj(RPn;Z2).

Theorem 3.13. If 0 ≤ i ≤ j and i+ j ≤ n, then Sqiαj =
(
j
i

)
αi+j ∈ Z2[α]/(αn+1).

Proof. The case j = 1 is straightforward: Sq0 α = α and Sq1 α = α ^ α, since |α| = 1.

Proceed by induction on j. Using the Cartan formula,

Sqi αj = Sqi(α ^ αj−1) =

i∑
k=0

Sqk α ^ Sqi−k αj−1 = Sq0 α ^ Sqi αj−1+Sq1 α ^ Sqi−1 αj−1,

since Sqk u = 0 if k > |u|. Then the induction hypothesis gives us that

Sq0 α ^ Sqi αj−1 + Sq1 α ^ Sqi−1 αj−1 =

(
1

0

)
α ^

(
j − 1

i

)
αi+j−1 +

(
1

1

)
α2 ^

(
j − 1

i− 1

)
αi+j−2

=

((
j − 1

i

)
+

(
j − 1

i− 1

))
αi+j =

(
j

i

)
αi+j .

Lemma 3.14. Let i =
∑m

k=0 ak2
k and j =

∑m
k=0 bk2

k be the binary expansions of i

and j. (So ak and bk are all 0 or 1.) The binomial coefficient
(
j
i

)
≡ 1 mod 2 if and

only if ak = 1 implies bk = 1 for all k.

Proof. Note that
(
j
i

)
is the coefficient of ui in the expansion of (1 + u)j . Calculation

mod 2, (1 + u)2 = 1 + u2 and consequently (1 + u)2k = 1 + u2k . Therefore,

(1 + u)j =
m∏
k=0

(1 + u)bk2k =
m∏
k=0

(1 + bku
2k). (3.1)

Let k1, ..., kp be those values of k for which ak = 1. Then uj = u2k1 ...u2kp and so the

coefficient of uj in equation 3.1 is bk1 ...bkp by the uniqueness of the binary expansion.

Thus,
(
j
i

)
≡ bk1 ...bkp ≡ 1 mod 2 if and only if bk1 , ..., bkp are all 1.

Theorem 3.15. If n = (2a+ 1)2b with a > 0 then in RPn−1 we have

Sq2b αn−2b−1 = αn−1 and Sqj αn−j−1 = 0 for 0 < j < 2b.

Proof. To prove the first assertion, note that 2b is a non-zero term of the binary ex-

pansion of n− 1− 2b since

n− 1− 2b = 2b+1a− 1 = 2b+1 − 1 + 2b+1(a− 1) =

b∑
i=0

2i + 2b+1(a− 1).
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Then Lemma 3.14 implies
(
n−1−2b

2b

)
≡ 1 mod 2 and Theorem 3.13 gives us that Sq2b αn−1−2b =

αn−1.

To prove the second statement, suppose j = 2s(2t + 1) where 0 ≤ s < b. Then we

know the coefficient of 2s in the binary expansion of j is 1. (Why? If j =
∑m

i=0 ai2
i is

the binary expansion of j, then ai = 0 for all i < s. It follows that as = 0 implies 2s+1

divides j. So as must be 1.) Since

n− 1 = 2b − 1 + 2b+1a =
b−1∑
i=0

2i + 2b+1a,

the coefficient of 2s in the binary expansion n − 1 is 1. Thus, the coefficient of 2s in

the binary expansion of n − j − 1 is 0. Lemma 3.14 implies
(
n−j−1

j

)
≡ 0 mod 2 and

Theorem 3.13 gives the required result.

3.3 Proving the special case

The following is a simplified version of Steenrod and Whitehead’s original proof, adapted

from [9, page 494].

Proof. When a = 0, the result is trivially true. In this case, n = 2b and ρ(n) = 2b. It

is not possible to have 2b orthogonal vectors tangent to a point in S2b−1 ⊂ R2b – there

simply are not enough dimensions. Therefore, we can assume a > 0. Let k = ρ(n) + 1.

Suppose we have k−1 vector fields on Sn−1. By Lemma 1.40, equivalently suppose

we have section f : Sn−1 → Vn,k of the bundle p : Vn,k → Sn−1. Then

Hn−1(Sn−1;Z2)
p∗−→ Hn−1(Vn,k;Z2)

f∗−→ Hn−1(Sn−1;Z2)

is the identity. It follows that f∗ is surjective. We can always deform f to be a cellular

map and then its image will be contained in the (n− 1)-skeleton of Vn,k.

We know that 2k− 1 = 2ρ(n) + 1 = 2b+1 + 1 ≤ n. So Proposition 1.41 tells us that

the (n − 1)-skeleton of Vn,k is RPn−1
n−k. Thus, by deforming f if necessary, we obtain a

map g : Sn−1 → RPn−1
n−k with

Sn−1 g−→ RPn−1
n−k

p|RPn−1
n−k−−−−−→ Sn−1

the identity. Then g∗ is surjective on Hn−1(−;Z2). Since

Hn−1(RPn−1
n−k;Z2) ∼= Hn−1(Sn−1;Z2) ∼= Z2,

it follows that g∗ is an isomorphism on Hn−1.

Now, the inclusion i : RPn−1
n−k → RPn−1 induces an isomorphism on Hn−1(−;Z2).

Thus, g∗i∗ : Hn−1(RPn−1;Z2)
∼=−→ Hn−1(Sn−1;Z2) is an isomorphism.

By Theorem 3.15, we know that

Sqk−1 : Hn−k(RPn−1;Z2)→ Hn−1(RPn−1;Z2)
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is non-zero. But

Sqk−1 : Hn−k(Sn−1;Z2)→ Hn−1(Sn−1;Z2)

is obviously zero. We then have a contradiction by using the naturality of Steenrod

squares. Specifically, we know that g∗i∗ Sqk−1 αn−k = g∗i∗αn−1 6= 0, where αn−k is the

generator of Hn−k(RPn−1;Z2). But Sqk−1 g∗i∗αn−k must be 0.

If we replaced k = 2c + 1 with j ≤ 2c, then

Sqj−1 : Hn−j(RPn−1;Z2)→ Hn−1(RPn−1;Z2),

αn−j 7→ 0,

by Theorem 3.15 and so we would no longer gain a contradiction. This shows that the

upper bound of 2c on the number of vector fields is the best possible provided by this

argument. So this argument can only prove that ρ(n) is the upper bound when d = 0.

We need more sophisticated tools (i.e. K-theory) to prove the general case.



Chapter 4

The Stable Homotopy Category

We are now at the point where we need to develop some significant amount of the-

ory before we can make more progress on our vector fields problem. The next three

chapters—on the stable homotopy category, duality and spectral sequences—may seem

to be a detour, but they have important applications to our task, as well as many other

areas of algebraic topology.

In this chapter, we will introduce the stable homotopy category. There are a number

of constructions of the stable homotopy category. All these constructions first build a

category of objects, called spectra. Then they replace the morphisms in this category

with some notion of homotopy classes of maps. The resulting category is called the

stable homotopy category Ho(Spectra). These constructions are analogous to defining

the category CW of CW complexes and then using this to construct the category

Ho(CW) of CW complexes with homotopy classes of maps.

All of these constructions result in equivalent categories. So we can talk about the

stable homotopy category.

We will primarily present the historical construction, given first by Boardman [23]†.

While the stable homotopy category enjoys a symmetric smash product, Boardman’s

category of spectra does not. It was only in 1997 when a category of spectra with a

symmetric smash product was discovered by Elmendorf, Kriz, Mandell and May [7].

We will briefly present the category of symmetric spectra, first given in [12], to highlight

the advantages of these modern spectra.

As indicated by the name, the stable homotopy category is the natural environment

for stable homotopy theory. One advantage is that the suspension functor

Σ : Ho(Spectra)→ Ho(Spectra)

is an equivalence, as we shall prove later. So we can invert suspensions and consequently

many phenomenon are stable under suspension in Ho(Spectra). Suspension on topo-

logical spaces is not so well behaved. In this sense, Ho(Spectra) is the ‘stabilisation’

of the classical homotopy category Ho(Top).

†However, Adams attributes the notion of spectra to Lima (in [17]) and G. W. Whitehead [2, p.

131]

37
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In this chapter, we assume every space is locally compact Hausdorff.

4.1 Boardman’s spectra

4.1.1 Definitions

Definition 4.1. A (Boardman) spectrum E is a sequence {En} of based spaces (called

components) with structure maps

σn : ΣEn → En+1.

The index n may vary over Z or N. We will show later that the choice does not

matter. Usually, we will index by N.

Definition 4.2. For a based space (X,x0), the loopspace ΩX is the space of loops

in X based at x0 (that is, the space of based maps (S1, s0) → (X,x0)), with the

compact-open topology. The constant loop is taken as the basepoint of ΩX.

Define Ω0X to be the connected component of ΩX containing the basepoint.

By loopspace-suspension adjunction, we can write the structure maps in the form

σ′n : En → ΩEn+1.

Definition 4.3. A spectrum E is an Ω-spectrum (or omega-spectrum) if σ′n : En →
ΩEn+1 is a weak equivalence for all n. If, in addition, all the components are connected,

then σ′n maps En into Ω0En+1 and E is an Ω0-spectrum.

Example 4.4. Given a space X, we can form a spectrum Σ∞X with components

(Σ∞X)n := ΣnX

for n ∈ N. The structure maps are simply the identity. We call Σ∞X the suspension

spectrum of X. In particular, Σ∞S0 is the sphere spectrum and Σ∞∗ is the spectrum

where every component is a point ∗.

From here on, we will often denote Σ∞X by X as well, when the meaning is clear

from the context.

We define the wedge sum of spectra componentwise:

Definition 4.5. The wedge sum of spectra E and E′ is the spectrum E ∨ E′ with

spaces

(E ∨ E′)n := En ∨ E′n.

Since Σ(X ∨ Y ) ∼= ΣX ∨ ΣY , for spaces X and Y , the structure maps are simply

σEn ∨ σE
′

n .
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Definition 4.6. A map of spectra f : E → E′, of degree 0, is a sequence of maps

fn : En → E′n making

ΣEn En+1

ΣE′n E′n+1

Σfn fn+1

commute.

A map of spectra f : E → E′ of degree r is a sequence of maps fn : En → E′n−r
making the analogous diagram commute.

This is not very well behaved. We demonstrate this with the following example.

Define the sphere spectrum S with Sn = Sn and σn = idSn+1 .

Define a modified version S′ of the sphere spectrum with

S′n =

Sn if n ≥ n0,

∗ if n < n0,

for some constant n0. The structure maps are trivial

σn =


∗ id−→ ∗ if n < n0 − 1,

∗ tr−→ Sn0+1 if n = n0 − 1,

Sn → Sn if n ≥ n0.

We have an obvious map f : S′ → S. For n < n0, fn : ∗ → Sn is the trivial map

and fn : Sn → Sn is the identity for n ≥ n0. This is indeed a map of spectra since

ΣS′n0−1 = ∗ S′n0
= Sn0

ΣSn0−1 = Sn0 Sn0

fn0−1 id

commutes.

But if we want a map g : S → S′, we need that

Sn0 = ΣSn0−1 Sn0 = Sn0

ΣS′n0−1 = ∗ S′n0
= Sn0

Σgn0−1

id

gn0

tr

commutes. This implies that gn0 must be trivial. By induction gn must be trivial for

all n ≥ n0.

So we have a good map f : S′ → S which induces an isomorphism on homotopy

groups. (Later, we will define the homotopy groups of a spectrum E as πr(E) :=

colimn→∞ πr+nEn. In particular, the homotopy groups of S and S′ are just the stable

homotopy groups of spheres.) We would then like f to have some sort of inverse, since
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in the category of CW complexes, we have this property†. But the only map S → S′ is

the trivial map, as we have seen.

4.1.2 Constructing the Stable Homotopy Category

So if we want the induced stable homotopy category to behave well, it will take a bit of

work to develop a good definition of homotopy classes of maps. First, we restrict our

attention to CW spectra.

Definition 4.7. A spectrum E is a CW spectrum if each component En is a based

CW-complex and each structure map σn : ΣEn → En+1 is a homeomorphism from

ΣEn to a subcomplex of En+1.

Unsurprisingly, the connection between CW spectra and CW spaces is deep. Through-

out this section, we will see that many of the nice properties of CW spaces carry over

to spectra.

Definition 4.8. A subspectrum A of a CW spectrum E is a spectrum with components

An ⊂ En a subcomplex.

A subspectrum A is cofinal in E if for each n and each finite subcomplex K ⊂ En,

there is some m such that the map

ΣmEn
Σm−1εn−−−−−→ Σm−1En+1

Σm−2εn+1−−−−−−→ ...
εn+m−1En+m−−−−−−−−−→ En+m

sends ΣmK into An+m.

Intuitively, A is cofinal in E if A eventually contains every subcomplex K ⊂ En.

Definition 4.9. Let E be a CW spectrum and E′ any spectrum. Suppose E1 and E2

are cofinal subspectra of E. Two maps f1 : E1 → E′, f2 : E2 → E′ of the same degree

are equivalent if there exists a cofinal subspectrum E3 contained in both E1 and E2

such that the restrictions of f1 and f2 to E3 are equal.

The previous definition gives an equivalence relation. The proof of this is straight-

forward, using the fact that the intersection of two cofinal subspectra is a cofinal sub-

spectrum.

Definition 4.10. An emap from a CW spectrum E to a spectrum E′ is an equivalence

class of maps from cofinal subspectra of E to E′.

Note the equivalence class consist of maps of the same degree r, by definition. So

we can define the degree of the emap to be r.

All of this work amounts to saying that, when defining an emap f , if you have a

cell c in En, we need not define f on c at once; you can wait till Em+n before defining

the map on Σmc. The slogan from [2] is, “cells now—maps later.”

†This is Whitehead’s theorem, which states that a weak equivalence between CW complexes is a

homotopy equivalence.
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Proposition 4.11. Composition of maps of spectra determines a well-defined compo-

sition of emaps.

That is, it is possible to define composition of emaps as [f ] ◦ [g] = [f ◦ g], where f, g

are representatives of the emaps [f ] and [g] respectively. We omit the proof; see [25,

Proposition 1.5, §3].

We want to define homotopy of emaps. Recall that, in Top, a homotopy of maps

f, g : X → Y is a map h : I ×X → Y satisfying h(0,−) = f and h(1,−) = g. We will

define an analogous concept for spectra.

Let fl : X ∧ Y → Y ∧X be the flip map. Let the cylinder spectrum Cyl(E) of E

be the spectrum with components I+ ∧ En and structure maps

S1 ∧ I+ ∧ En
fl∧idEn−−−−−→ I+ ∧ S1 ∧ En

idI+∧σn−−−−−→ I+ ∧ En+1,

Given f : E → E′, define Cyl(f) : Cyl(E)→ Cyl(E′) in the obvious way.

Proposition 4.12. There are injections (of degree 0)

i0, i1 : E → Cyl(E)

corresponding to the two ends of the cylinder.

Proof. We define i0 by

i0,n : En → Cyl(E)n

x 7→ (0, x).

We need to show that i0 is a map of spectra.

Since the smash product is symmetric, we can consider σn as a map En∧S1 → En+1.

Then we need to verify that the square

En ∧ S1 En+1

I+ ∧ En ∧ S1 I+ ∧ En+1

σn

i0,n∧idS1 i0,n+1

id[0,1]+∧σn

commutes. It is easy to verify this element-wise:

(x, s) σn(x, s)

(0, x, s) (0, σn(x, y)).

σn

i0,n∧idS1 i0,n+1

id[0,1]+∧σn

The i1 case is analogous.
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It is straightforward to check that the cylinder spectrum Cyl(E) of a CW-spectrum

E is also a CW-spectrum. Thus, we can consider the emaps from Cyl(E).

Definition 4.13. Two emaps f, g : E → E′ of the same degree are homotopic if there

exists a emap h : Cyl(E)→ F such that f = h ◦ i0 and g = h ◦ i1.

The standard proof that homotopy defines an equivalence relation extends to the

case of emaps. The equivalence classes of this relation are called homotopy classes. The

set of homotopy classes of emaps E → F of degree 0 is denoted by [E,F ] and the set

of homotopy classes of emaps of degree r is denoted by [E,F ]r.

Proposition 4.14. Composition of emaps determines a well-defined composition of

homotopy classes.

Again, this means we can define the composition of homotopy classes [f ] and [g] as

[g ◦ f ]. The standard proof of this property also extends to the case of emaps.

Definition 4.15. The stable homotopy category has CW spectra as objects and homo-

topy classes of emaps of degree 0 as morphisms.

We can define another version of the stable homotopy category, where we do not

force the degree of the emaps to be 0. Then the homsets are Z-graded, by their degree.

If you compose a morphism of degree r and a morphism of degree s then you have a

morphism of degree r + s.

We see that we have now solved our motivating problem: that there was no good

inverse to the weak equivalence f : S′ → S. Now we know that S′ is a cofinal subspec-

trum of S, so there is a map S → S′ in the stable homotopy category corresponding to

the identity map S′ → S′ of spectra. This is the inverse of f in the stable homotopy

category. The following proposition makes this argument rigorous.

Proposition 4.16. If E′ is cofinal in E then E′ and E are isomorphic in the stable

homotopy category.

Given the working above, this result should now be intuitive. See [2, §, part III] for

a proof.

Example 4.17. Given a CW-spectrum E, define E′ by

E′n =

En if n ≥ 0,

∗ if n < 0.

We know E′ is cofinal in E and therefore isomorphic in the stable homotopy category.

So it does not matter whether we index spectra by Z or N.
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4.1.3 Homotopy Groups of Spectra

Definition 4.18. Define the r-th homotopy group of a spectrum E as

πr(E) = colim
n→∞

πr+n(En).

On the right side, the direct limit is taken over the maps

[Sr+n, En] [Sr+n+1, En+1],

f σE ◦ Σf.

σE◦Σ−

Since the direct limit of a sequence of abelian groups always exists (Proposition

A.4), the homotopy groups are always well defined. However, the sequence may not

stabilise as the following example illustrates.

Example 4.19. Let E be the spectrum with components En = ∨nSn and structure

maps σ : ΣEn → En+1 inclusion of the first n wedge summands. Then

π0(E) = colim
n→∞

πn(En) = colim
n→∞

⊕nZ = ⊕n∈NZ.

Proposition 4.20 [2, Proposition 2.8, part III]. Suppose X is a finite CW complex

and E a spectrum. Then there is a natural 1-to-1 correspondence

[Σ∞X,E]r ↔ colim
n→∞

[Σn+rX,En].

Analogous to the above definition, on the right side, the direct limit is taken over

the maps

[Σn+rX,En]
σE◦Σ−−−−−→ [Σn+r+1X,En+1].

For a proof, see [2, Proposition 2.8, part III]. An easy corollary is that πr(E) =

[S,E]r, where S is the sphere spectrum.

A map of spectra f : E → E′ induces a homomorphism between homotopy groups

f∗ : πr(E) → πr(E
′). There are maps πn+rEn → πn+rE

′
n induced by the component

fn. Then taking colimits gives an induced map

f∗ : colim
n→∞

πn+rEn → colim
n→∞

πn+rFn

between the homotopy groups of spectra.

4.1.4 Brown’s Representability Theorem

Every spectrum E represents a reduced cohomology theory Ẽ∗, called the E cohomol-

ogy, defined by

Ẽr(X) = colim
n→∞

[ΣnX,En+r].

(The direct limit is taken over the same maps as in Proposition 4.20.) If E is an

Ω-spectrum, then this simplifies to

Ẽr(X) = [X,Er],
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where the right side is a homotopy classes of maps of spaces, since the structure maps

σE are weak equivalences.

The corresponding unreduced cohomology theory is given by

Er(X) = [X+, Er].

Brown’s representability theorem states that we can go in the other direction too

and build Ω-spectra from reduced cohomology theories.

Theorem 4.21 [9, Theorem 4E.1]. Let Ẽ∗ be a reduced cohomology theory. Then

there exist an Ω-spectrum E and natural isomorphism ẼrX ∼= [X,Er]. Furthermore,

the spaces of E are unique up to homotopy equivalence.

Therefore, this construction is an equivalence (in the category theory sense) between

Ω-spectra and reduced cohomology theories.

Examples

The sphere spectrum S represents

Er(X) = lim
k

[ΣrX,Sr+k]

the r-th stable cohomotopy group.

Recall that the loopspace ΩK(π, n + 1) is an Eilenberg-MacLane space of type

K(π, n). This allows us to make the following definition.

Definition 4.22. Given a group π, we define the Eilenberg-MacLane spectrum Hπ to

be the omega spectrum whose n-th space is K(π, n) and whose structure maps are

σ′n : K(π, n)→ ΩK(π, n+ 1).

Ordinary cohomology is represented by the Eilenberg-MacLane spectrum:

H̃r(X;G) ∼= [X,K(G, r)]

Spectra Represent Homology (as well)

A spectrum E also represents a reduced homology theory defined by

Er(X) = πr(E ∧X).†

Proposition 4.23. The Eilenberg-MacLane spectra HZ represents ordinary homology

with coefficients in Z
πr(HZ ∧X) ∼= H̃r(X,Z).

For a proof see [25, §11].

†As before, the smash product ∧ takes a spectrum E and a based space X, and gives a spectrum

defined by (E ∧X)n = En ∧X with structure maps S1 ∧ En ∧X
σn∧idX−−−−−→ En+1 ∧X.
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4.1.5 Weak Equivalence of Spectra

Definition 4.24. A map f : E → F of spectra is a weak equivalence if it induces

isomorphisms on all homotopy groups.

Every space has a CW approximation [9, page 352]. This result carries over to

spectra as well:

Theorem 4.25. Every spectrum is weakly equivalent to a CW-spectrum.

So we are not losing anything by our restriction to CW spectrum. We can consider

every spectra as an object of the stable homotopy category, by passing to a weakly

equivalent CW spectra.

In [2, part III], Adams defines weak equivalence of spectra as follows.

Definition 4.26. A map f : E → F between spectra E,F is a weak equivalence if the

induced map

f∗ : [X,E]∗ → [X,F ]∗

g 7→ f ◦ g

is a bijection, for all CW-spectra X.

This is equivalent to our definition, by the following theorem:

Theorem 4.27 [2, Theorem 3.4, part III]. Let f : E → F be a function between

spectra such that the induced map f∗ : π∗(E) → π∗(F ) is an isomorphism. Then for

any CW-spectrum X,

f∗ : [X,E]∗ → [X,F ]∗

is a bijection.

By a standard category theory fact†, this implies that weak equivalences are iso-

morphisms in the stable homotopy category. This proves the following corollary:

Corollary 4.28. Let f : E → F be a map such that fn : En → Fn is a homotopy

equivalence for each n. Then f is an isomorphism in the stable homotopy category.

Moreover, all isomorphisms in the stable homotopy category are weak equivalences†.

4.1.6 Inverse Suspension

One of the advantages of working with spectra, instead of spaces, is that we can invert

suspensions.

†The category theory fact is ‘if f∗ : C (X,E)
f◦−−−−→ C (X,F ) is a bijection, then f is an isomorphism’.

Proof: define f−1 as the map in C (F,E) sent to id ∈ C (F, F ) by f∗.
†If f : E → F is an isomorphisms in the stable homotopy category, then there is f−1 : F → E such

that f ◦f−1 = idF and f−1 ◦f = idE . Then the induced maps on homotopy groups satisfy f∗ ◦f−1
∗ = id

and f−1
∗ ◦ f∗ = id. So f∗ is an isomorphism of homotopy groups.
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Definition 4.29. Let E be a spectrum with components En and structure maps σn.

The suspension ΣE of E has components

(ΣE)n := S1 ∧ En

and structure maps

S1 ∧ S1 ∧ En
fl∧idEn−−−−−→ S1 ∧ S1 ∧ En

idS1∧σn−−−−−→ S1 ∧ En+1

where fl : S1 ∧ S1 → S1 ∧ S1 is the flip map.

The desuspension Σ−1E of E has components (Σ−1E)n = En−1 and n-th structure

map given by the (n− 1)-st structure map σn−1 of E.

Proposition 4.30. There are natural isomorphisms in the stable homotopy category

E
∼=−−−−−→ ΣΣ−1E,

Σ−1ΣE
∼=−−−−−→ E.

We define Σ and Σ−1 on maps as well, in the obvious way. Given a map of spectra

f : E → E′ of degree r with components fn : En → E′n, the suspension Σf : ΣE → ΣE′

is a map of spectra of degree r with components Σfn. Similarly, the desuspension

Σ−1f : Σ−1E → Σ−1E′ has components fn−1. It is not hard to see that this gives well

defined functors Σ and Σ−1 in the stable homotopy category.

Corollary 4.31. Suspension induces a bijection

Σ : [E,E′]∗
∼=−→ [ΣE,ΣE′]∗

[f ] 7→ [Σf ].

So we have an adjunction [ΣE,E′] ∼= [E,Σ−1E′]. The analogous statement for

spaces is the suspension-loopspace adjunction [ΣX,Y ] ∼= [X,ΩY ]. So we can think

of Σ−1E′ as the loopspace of the spectrum E′. If E′ is an Ω spectrum, then in fact

(Σ−1E′)n = E′n−1 is weakly equivalent to ΩE′n. So there is an isomorphism in the stable

homotopy category between Σ−1E′ and the spectrum formed by taking loopspaces of

each component of E′.

Proof. The isomorphisms of the Proposition 4.30 give a bijection

[Σ−1ΣE,Σ−1ΣE′]∗
∼=−→ [E,E′]∗.

Using this, we can consider

Σ−1 : [ΣE,ΣE′]∗ → [Σ−1ΣE,Σ−1ΣE′]∗ ∼= [E,E′].

This map is the inverse of the suspension Σ, so we are done.
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We will prove Proposition 4.30 by introducing a ‘fake’ suspension Σf : given a

spectrum E, the fake suspension ΣfE has components

(ΣE)n := S1 ∧ En

and structure maps

S1 ∧ S1 ∧ En
idS1∧σn−−−−−→ S1 ∧ En+1.

So ΣE and ΣfE are identical, except the structure maps of ΣE first flip S1 ∧S1. This

flip is critical if we want to define a compatible smash product on spectra.

Proposition 4.32. There is a natural isomorphism between ΣfE and ΣE in the stable

homotopy category.

We will not prove this result. See [25, Proposition 1.4, §4]. The proof of Proposition

4.30 follows from the following lemma:

Lemma 4.33. Proposition 4.30 holds when Σ is replaced by Σf .

Proof. To begin, note that the n-th space of ΣfΣ−1E and Σ−1ΣfE are ΣEn−1. More-

over, the n-th structure maps of ΣfΣ−1E and Σ−1ΣfE are both idS1∧σn−1. Therefore,

we obtain a canonical isomorphism

ΣfΣ−1E
∼=−→ Σ−1ΣfE.

Using this result, it suffices to prove E
∼=−→ ΣfΣ−1E.

Note that the n-th space of ΣfΣ−1E is S1 ∧ En−1 and the n-th structure map is

idS1 ∧ σn−1.

We will construct a weak equivalence f : Σ−1ΣfE → E. Then by previous results,

f will be an isomorphism in the stable homotopy category.

Define the n-th component of f to be the structure map σn−1 : ΣEn−1 → En. This

is a map of spectra since the relevant square

S1 ∧ S1 ∧ En−1 S1 ∧ En

S1 ∧ En En+1.

idS1∧σn−1

idS1∧σn−1 σn

σn

obviously commutes.

We will define an inverse φr : πrE → πrΣ
−1ΣfE of the induced map f∗ : πrΣ

−1ΣfE →
πrE. Suspension induces a map Σ∗ : πn−1+rEn−1 → πn+rΣEn−1. Taking colimits as

n→∞, we get our map

φr : πrE = colim
n→∞

πn−1+rEn−1 → colim
n→∞

πn+rΣEn−1 = πrΣ
−1ΣfE.
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Then f∗ and φr are inverses by the category theoretic fact that given a diagram

... An An+1 ...

... Bn Bn+1 ...

the diagonal arrows induce inverse isomorphisms on the colimits

colim
n→∞

An ∼= colim
n→∞

Bn.

This fact follows straightforwardly from the universal properties of colimits.

In our case, we have constructed the diagram

... πn−1+rEn−1 πn+rEn ...

... πn−1+rΣEn−1 πn+rΣEn ...

Σ∗(fn−1)∗ (fn)∗

and so we get inverse isomorphisms

colimn→∞ πn+rΣEn−1 colimn→∞ πn−1+rEn−1.
f∗

φr

This proves that Σ and Σ−1 form an equivalence on the stable homotopy category.

Since Σ−1 is a shift down of indices, [Σ−rE,E′]∗ ∼= [E,E′]∗−r. By the equivalence just

proven, we must also have [ΣrE,E′]∗ ∼= [E,E′]∗+r.

The next result will prove useful in later chapters.

Proposition 4.34. If V and W are vector bundles which determine the same class in

KF(X), then Th(V ) ∼= Th(W ), in the stable homotopy category.

Proof. We only consider the case for real vector bundles, since this will suffice for our

needs. The complex case follows analogously. If V and W determine the same class,

then V ⊕ εn = W ⊕ εm, for some trivial bundles εn, εm. But we know that,

Th(V ⊕ εn) ∼= ΣnTh(V ).

in spaces (by Proposition 1.27). Thus, Th(V ) ∼= Σm−nTh(W ) ∼= Th(W ), in the stable

homotopy category.

One advantage of working with spectra, as opposed to working with spaces, is that

[E,F ] always forms an abelian group. Since every CW spectrum E is equivalent to

its suspension ΣE and hence also its double suspension Σ2E, we can define an abelian

sum operation just as in ordinary homotopy theory.
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4.1.7 Cells of CW-Spectra

We outline the concept of stable cells given in [2, part III]. This will be important in

understanding the Spanier-Whitehead duals of CW complexes, in the next chapter.

Definition 4.35. Let E be a CW-spectrum and let Cn be the set of cells in En other

than the base-point. Define a map Cn → Cn+1 by c 7→ σn(Σc). This is an injection (by

definition of CW-spectra), so the direct limit

C = colim
n→∞

Cn

exists by proposition A.5. An element of C is called a stable cell of E.

By definition, a stable cell is an equivalence class of cells. Each equivalence class

contains at most one cell in En. Moreover, if c and c′ are cells in En and Em respectively,

with n ≤ m, then c and c′ are equivalent if and only if

Cn → Cn+1 → ...→ Cm

maps c to c′.

Definition 4.36. Let [c] be a stable cell represented by c ∈ En. Suppose the dimension

of c is m. Then the stable dimension of [c] is m− n.

The stable dimension is well defined by the reasoning in the previous paragraph.

This allows us to have cells of negative dimensions in CW spectra.

Proposition 4.37. A subspectrum E′ ⊂ E is cofinal if and only if C ′ → C is a

bijection.

So a cofinal subspectrum has the same stable cells as its superspectrum. This

explains why we cared about maps out of cofinal subspectrum, instead of maps out of

the superspectrum. We only cared about maps defined on the stable cells. The proof

of this proposition is straightforward.

Definition 4.38. A CW spectrum is finite if it has are a finite number of stable cells.

4.2 The Smash Product and Symmetric Spectra

We want a smash product that provides a symmetric monoidal structure on the cate-

gory of spectra. Moreover, a ring spectrum E—a spectrum representing a multiplicative

cohomology theory—needs to come with a map E ∧ E → E which encodes the multi-

plication in E-cohomology.

More explicitly, given spectra X = {Xn} and Y = {Yn}, we want the following

properties:

1. X ∧ Y ∼= Y ∧X,
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2. (X ∧ Y ) ∧ Z ∼= X ∧ (Y ∧ Z),

3. the sphere spectrum S is the unit: X ∧ S ∼= X ∼= S ∧X,

4. and these isomorphisms act nicely (i.e. they satisfy the pentagon axioms).

One obvious possible definition is

(X ∧ Y )2n := Xn ∧ Yn and (X ∧ Y )2n+1 := Xn+1 ∧ Yn,

with structure maps

σ2n : Σ(Xn ∧ Yn) = ΣXn ∧ Yn
σn,X∧idYn−−−−−−→ Xn+1 ∧ Yn

σ2n+1 : Σ(Xn+1 ∧ Yn) = Xn+1 ∧ ΣYn
idXn+1

∧σn,Y
−−−−−−−−→ Xn+1 ∧ Yn+1 = (X ∧ Y )2(n+1).

But this definition is not symmetric, we don’t have X ∧ Y ∼= Y ∧X.

Another possible definition is

(X ∧ Y )n =
∨

i+j=n

Xi ∧ Yj ,

with structure maps are

σn : Σ(X ∧ Y )n =
∨

i+j=n

Σ(Xi ∧ Yj)
∨(σX∧σY )−−−−−−−→ (X ∧ Y )n+1.

This satisfies properties 1. and 2. But it doesn’t satisfy property 3. We run into

problems with the homotopy groups of X ∧ S and X, which must be the same for

property 3 to hold.

So it is no easy task to define a nice smash product on Boardman’s category of

spectra. In fact, there is no known way. Instead, we will present an alternative category

of spectra, which has a well behaved smash product:

Symmetric spectra

Let Σn be the symmetric group on n letters. If we define Sm = S1 ∧ ... ∧ S1, then we

have a Σm-action by permuting the S1’s. Write Σm × Σn ⊂ Σm+n for the subgroup

that permutes the first m letters and the last n letters, separately.

Definition 4.39. A symmetric spectrum X is a sequence {Xn} of based Σn-spaces,

with structure maps

σm,n : Sm ∧Xn → Xm+n

which are Σm × Σn-equivariant and make the square

Sk ∧ Sm ∧Xn Sk ∧Xm+n

Sk+m ∧Xn Xk+m+n

Σkσm,n

id σk,m+n

σk+m,n

commute.
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Symmetric spectra form a monoidal category. We define the smash product as

follows. First define a ‘pre-smash product’ X ∧0 Y by

(X ∧0 Y )n =
∨

i+j=n

(Σn)+ ∧Σi×Σj (Xi ∧ Yj).

Here Σn is considered as a discrete space. By ∧Σi×Σj we mean take the smash product

and then quotient out by Σi × Σj .

As a space, (Σn)+∧Σi×Σj (Xi∧Yj) is
∨

(ni)
Xi∧Yj . So ∧0 is associative up to natural

isomorphism.

The structure maps of X give us a map αX : S ∧0 X → X by∨
i+j=n

(Σn)+ ∧Σi×Σj (Si ∧Xj)
∨σi,j−−−→ Xn.

Define the smash product X ∧ Y of symmetric spectra X and Y as the coequaliser

of

X ∧0 S ∧0 Y X ∧0 Y.
αX∧0idY

idX∧0αY

4.3 Some Stable Homotopy Theory

In this section, we will quickly introduce some relevant stable theory. A general idea

in mathematics is to call a phenomenon stable if it occurs in the same way for all

sufficiently large dimensions. Otherwise, it is unstable.

It turns out that many problems that were originally thought to be unstable can in

fact be reduced to stable problems, which are often easier to solve.

Definition 4.40. The homotopy class of (based) maps between (spaces) X and Y is

stable if it is in bijection with [ΣnX,ΣnY ] for arbitrary n ≥ 0.

4.3.1 The Freudenthal Suspension Theorem

The field of stable homotopy theory arose from the Freudenthal suspension theorem.

It shows that homotopy groups of spheres are stable.

Theorem 4.41 (the Freudenthal suspension theorem). The suspension map

πn(Sm)→ πn+1(Sm+1)

is an isomorphism for n < 2m − 1 and a surjection for n = 2m − 1. More generally,

this holds for the suspension πn(X)→ πn+1(ΣX) whenever X is an (m− 1)-connected

CW complex.

A proof can be found in [9, corollary 4.24].

In particular, if X is a CW complex with bottom cell in dimension m, then the

n-th homotopy group of X is stable, provided n < 2m− 1. In the next section we will

prove the dual statement: if X is a finite CW complex with top cells in dimension n,

then the m-th cohomotopy group† of X is stable, provided n < 2m− 1.

†While homotopy groups consist of maps out of spheres, cohomotopy groups are the dual: maps into
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4.3.2 A Stability Theorem for Cohomotopy Groups

We want to prove a stability result for cohomotopy groups of finite CW complexes. To

do this, we will start with a map f : X → Y , add a cell Dk to X, and look at the

obstructions to extensions X ∪φ Dk → Y of f :

X Y

X ∪φ Dm

f

An extension X ∪φ Dm → Y exists if and only if Sm−1 φ−→ X
f−→ Y is null-homotopic.

Why? We need to define a map Dm → Y that agrees with f on the boundary. But

this is equivalent to defining a homotopy from a map Sm−1 → Y to a constant map.

Fix one extension g0 : Dm → Y . Build a map h : Sm → Y out of another extension

g : Dm → Y as follows: Define h on the northern hemisphere Dm by g and on the

southern hemisphere by g0. We know h is well defined, since g and g0 agree on the

equator Sm−1. It is clear that this construction is invariant under homotopy.

This construction gives a bijection Φ between the homotopy classes of extensions

and elements [h] ∈ πm(Y ). It is obviously injective. To see it is surjective, consider

h : Sm → Y as a map Sm−1 × I → Y which is constant on {0} × Sm−1 and on

{1} × Sm−1. We can also consider an extension g : Dm → Y as a map Sm−1 × I → Y

which is constant on {0} × Sm−1 and equal to f on {1} × Sm−1.

Define h̃ : Sm−1 × I → Y by

h̃(s, i) =


g0(s, 2i) if i ∈ [0, 0.5],

g0

(
s, 1− 4(i− 0.5)

)
if i ∈ [0.5, 0.75],

h
(
s, 4(i− 0.75)

)
if i ∈ [0.75, 1].

i = 0

i = 1
2

i = 3
4

i = 1

g0

g0 upside down

h

h̃

We know that h̃ is homotopic to h. But the northern hemisphere is an extension

Dm → Y of f and the southern hemisphere is the extension g0. So [h] is in the image

of Φ. Therefore, we have the following lemma:

spheres. We define the m-th cohomotopy set of X to be the set of homotopy classes πm(X) = [X,Sm].

It turns out that we can give πm(X) a group structure, provided that X is a CW complex of dimension

at most 2m− 2.
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Lemma 4.42. Given f : X → Y , if f extends to a map X ∪Dk → Y , then the set of

homotopy classes of extensions is in bijection with πk(Y ).

Theorem 4.43. Let X be an n-dimensional CW complex. If n < 2m−1, then [X,Sm]

is stable.

Proof. We will induct on the cells of X. Let X̃ be an arbitrary subcomplex of X.

Base case: If X̃ is a single cell, then it has dimension ñ ≤ n. By the Freudenthal

suspension theorem, [X̃, Sm] is stable.

Step case: Assume that both [X̃, Sm] and the obstruction to extending f are stable.

Add a cell Dk to X̃ with attaching map φ. We want to show that [X̃ ∪φ Dk, Sm] is

stable. Each class [f ′] ∈ [X̃ ∪φ Dk, Sm] is an extension of some class [f ] ∈ [X̃, Sm].

Moreover, the number of extensions of [f ] is in bijection with πk(S
m).

Now, each class [g′] ∈ [ΣnX̃ ∪Σφ D
k+n, Sm+n] is an extension of some class [g] ∈

[ΣnX̃, Sm+n]. The number of extensions of [g] is in bijection with πk+n(Sm+n). But

we know that πk(S
m) ∼= πk+n(Sm+n) by the Freudenthal suspension theorem and that

[X̃, Sm] is in bijection with [ΣnX̃, Sm+n]. Thus, [X̃ ∪φ Dk, Sm] is in bijection with

[ΣnX̃ ∪Σφ D
k+n, Sm+n].

Note that we only used the Freudenthal suspension theorem to conclude that πk(S
m)

was stable for k ≤ n < 2m − 1. Thus, the theorem also holds if we replace Sm with

any (m− 1)-connected CW complex.

4.3.3 Maps of suspension spectra in the stable range

Recall Proposition 4.20: we have a natural 1-to-1 correspondence

[Σ∞X,E]r ↔ colim
n→∞

[Σn+rX,En],

where X is a finite CW complex and E a spectrum.

Now, if it turns out that the homotopy classes [Σn+rX,En] stabilise, that is,

colim
n→∞

[Σn+rX,En] = [ΣN+rX,EN ]

for some large N , then maps of spectra [Σ∞X,E]r correspond to maps of spaces.

Suppose that E was also a suspension spectrum Σ∞Y . By theorem 4.43, the se-

quence [Σn+rX,ΣnY ] is stable if ΣrX is an n-dimensional CW complex; Y is (m− 1)-

connected; and n < 2m− 1. Re-arranging this gives us the following corollary.

Corollary 4.44. Let X, Y be CW complexes. Suppose X is finite with top cell in

dimension n and Y is (m− 1)-connected. If n+ r < 2m− 1 then maps between spectra

[Σ∞X,Σ∞Y ]r correspond to maps between spaces [ΣrX,Y ].

When we prove the vector fields problem, we will move from spaces into the stable

homotopy category via the functor Σ∞. This will allow us to exploit some stable

properties. But to conclude the proof, we will need to move back into the category of
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spaces. The above proposition will provide this link back. In particular, we now know

that if we are in the stable range, a space is (co)reducible if and only if its suspension

spectrum is (co)reducible. (We have not yet defined (co)reducibility of spectrum. We

will do so in the next chapter, but intuitively it means that the top or bottom stable

cell splits.)



Chapter 5

Duality

In this chapter, we assume that there exists a commutative and associative tensor prod-

uct, which we call the smash product ∧, in the stable homotopy category. Moreover,

this smash product is compatible with the previously defined smash product between

a space and a spectra. So given a spectrum E and a CW complex X,

E ∧X ∼= E ∧ Σ∞X

where X ∧ E is the spectrum defined by (E ∧ X)n = En ∧ X with structure maps

S1 ∧ En ∧X
σn∧idX−−−−−→ En+1 ∧X.

Thus, the smash product ∧ makes the stable homotopy category into a symmetric

monoidal category. See [2, Part III, §4] for the construction of ∧ and proof of these

facts.

Further, we assume that the smash product ∧ preserves cofibre sequences and the

sphere spectrum S0 is the unit object of ∧. We assume that the function spectrum

F (X,Y ), defined below, is the internal hom object in the stable homotopy category.

So there is an adjunction

[W ∧X,Y ] ∼= [W,F (X,Y )] (5.1)

5.1 Spanier-Whitehead Duality

5.1.1 Function Spectra

Definition 5.1. Let X and Y be spectra and W a CW complex. The functor sending

a CW complex W to the morphisms from X ∧W to Y in the stable homotopy category

W 7→ [X ∧W,Y ]

is a generalised reduced cohomology theory. Brown’s representability theorem then

implies that it is represented by an object in the stable homotopy category. We define

this object to be the function spectrum F (X,Y ).

55
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5.1.2 Dual Objects in the Stable Homotopy Category

Definition 5.2. The Spanier-Whitehad dual of a spectrum E is the dual object† of E

in the stable homotopy category, if it exists. We denote the dual by DE.

Proposition 5.3. If the dual of X exists, it is F (X,S0).

This is a result in category theory, which holds for any closed symmetric monoidal

category.

Proposition 5.4. D is a contravariant functor on the subcategory of dualisable objects.

Proof. We need to show that [DX2, DX1] ∼= [X1, X2] for dualisable objects X1, X2. We

use the adjoint property to get

[DX2, DX1] ∼= [S0, X2 ∧DX1] ∼= [S0 ∧X1, X2] ∼= [X1, X2].

Lemma 5.5. If A → X → Y = X ∪ CA is a cofibre sequence such that A and X

are dualisable, then Y is dualisable and the sequence DY → DX → DA is a fibre (or

equivalently cofibre†) sequence.

We omit the proof. See [25, §8].

Proposition 5.6. πrF (Y,Z) = [Y,Z]r

Proof. By Proposition 4.20, πrF (Y, Z) ∼= [S0, F (Y, Z)]r. But [S0, F (Y,Z)]r ∼= [S0 ∧
Y,Z]r by the adjunction 5.1 and [S0 ∧ Y, Z]r ∼= [Y,Z]r since S0 is the unit of ∧.

Proposition 5.7. DY ∧ Z ∼= F (Y,Z)

Proof. We need to show that [X,DY ∧Z] and [X,F (Y,Z)] ∼= [X∧Y,Z] are isomorphic,

for all spectra X. This is a standard result in category theory, see Theorem A.8 in the

appendix.

5.1.3 Cell Dimensions are Inverted when Taking Duals

If Y = S0 and X = Sn, then F (X,Y ) represents the cohomology

Ek(W ) = lim
i

[Σi(W ∧ Sn), Sk+i] ∼= Sk−n(W ),

where S∗ is the cohomology theory represented by the sphere spectrum. This implies

that DSn and S−n are isomorphic in the stable homotopy category, since they represent

the same cohomology. So the dual of Sn is S−n.

So now we know that the dimension of the spheres are inverted when we take duals.

Since CW-spectra are made up of spheres, we should be able to show the cells of any

CW spectrum are also inverted when taking duals.

†See the appendix for the definition of a dual object, in category theory.
†In the stable homotopy category, every cofibre sequence is a fibre sequence, and visa versa. See

[25, §7].
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Suppose that X is an n-dimensional CW spectra. Then Xn/Xn−1 dualises to the

(−n)-skeleton of DX. By induction, Xn/Xk−1 dualises to the (−k)-skeleton of DX.

Moreover, we have a cofibre sequence

Xn/Xk−1 → Xn/Xk → Xk/Xk−1 =
∨
Sk

Dualising, we get

D(Xn/Xk−1)← D(Xn/Xk)←
∨
S−k,

by Lemma 5.5. It turns out that this is the attaching map for the (−k)-cells. Why? It

is a cofibre sequence where D(Xn/Xk) only has cells from dimension −n to dimension

−k − 1 and D(Xn/Xk−1) has cells from dimension −n to dimension −k.

We have proved the following theorem:

Theorem 5.8. Let X be a finite CW spectrum. Then the dual of X exists.

5.1.4 S-reducible and S-coreducible

Definition 5.9. Let X be a (n − 1)-dimensional CW complex and suppose Y con-

structed from X by attaching an n-cell via f : Sn−1 → X. Let q : Σ∞Y → Σ∞Sn

be the map collapsing Σ∞X to a point. Then Y is S-reducible if there exists a map

f : Σ∞Sn → Σ∞Y such that post-composition with q

Σ∞Sn
f−→ Σ∞Y

q−→ Σ∞Sn

has degree 1. That is, the map Z = πn(Σ∞Sn)
q∗f∗−−−→ πn(Σ∞Sn) is multiplication by 1.

We can think of Y being S-reducible if the attaching map of the stable n-cell of

Σ∞Y is trivial. Equivalently, the r-fold suspension of the attaching map of the n-cell

of Y is trivial, for sufficiently large values of r.

Definition 5.10. Let Y be a CW complex such that there is a single cell in dimension

n, and all cells (except perhaps the base point 0-cell) have dimension greater than n.

Define i : Σ∞Sn ↪→ Σ∞Y to be the inclusion map of the corresponding stable cell in

Σ∞Y . Then Y is S-coreducible if there exists a map f : Σ∞Y → Σ∞Sn such that

pre-composition with i

Σ∞Sn
i−→ Σ∞Y

f−→ Σ∞Sn

has degree 1.

S-reducibility and S-coreducibility are weaker conditions than reducibility and co-

reducibility. However, if we are in the stable range, then they are equivalent properties.

Since the Spanier-Whitehead dual inverts the dimensions of the stable cells and is a

contravariant functor, we have that:

Proposition 5.11. The dual DX is S-coreducible if and only if X is S-reducible, and

visa versa.
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5.2 Alexander Duality

Alexander duality is a standard result relating the homology of X with the cohomology

of Sn −X:

Theorem 5.12. Let X be a finite CW complex embedded into Sn, such that Sn −X
is homotopy equivalent to a finite CW complex. Then there is an isomorphism

H̃r(X;Z)
∼=−→ H̃n−1−r(Sn −X;Z).

This is a specialisation of corollary 3.45 of [9]. We omit the proof. A corollary is

the Alexander duality for spectra:

Theorem 5.13. Let X be as in Theorem 5.12. Then there is an isomorphism

DX ∼= Σ−(n−1)(Sn −X)

in the stable homotopy category.

We delay the proof until the end of this section. It is not too difficult to prove

standard Alexander duality from Alexander duality for spectra: We have an isomor-

phism D(Sn − X) → Σ−(n−1)X, since we can interchange X and Sn − X. Then by

smashing with the Eilenberg-MacLane spectrum HZ and taking the induced map on

the (r + 1− n)-th homotopy group, we get

πr+1−n
(
D(Sn −X) ∧HZ

) ∼=−→ πr+1−n

(
Σ−(n−1)X ∧HZ

)
.

But we have on the left hand side

πr+1−n
(
D(Sn −X) ∧HZ

) ∼= πr+1−nF (Sn−X,HZ) ∼= [Sn−X,HZ]r+1−n ∼= H̃n−1−r(Sn−X;Z),

where the first isomorphism follows from Proposition 5.7 and the second from Propo-

sition 5.6. On the right we have

πr+1−n

(
Σ−(n−1)X ∧HZ

)
∼= πr (X ∧HZ) ∼= H̃r(X;Z),

where the final isomorphism is Proposition 4.23.

So Theorems 5.12 and 5.13 are equivalent.

Lemma 5.14. Suppose Y is a finite CW spectrum with [Y,HZ]r = 0 for all r ∈ Z.

Then Y ∼= ∗ in the stable homotopy category.

Proof. This follows from the Hurewicz theorem, which holds for spectra†.

†Alternatively, here is a proof that doesn’t rely of the Hurewicz theorem:We need only show that the

homotopy groups of Y are trivial. Choose N such that the N -th component YN contains representatives

for every stable cell of Y . We can do this since Y has a finite number of stable cells. Let K be a finite

subcomplex of YN containing all the representatives. By passing to ΣK ⊂ YN+1 if necessary, we may

assume that K is simply connected.
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Proof of Theorem 5.13. Let A be a finite CW complex such that A is homotopy equiv-

alent to Sn −X.

First we define a natural map

φ : Σ−(n−1)A→ DX

then we will show it is an isomorphism in the stable homotopy category.

Suppose, for the moment, that, when A and X are embedded in Sn, there is no

point in A which is antipodal to a point in X. Then, for any tuple (a, x) ∈ A × X,

there is a unique great circle of Sn containing both a and x. Let γa,x : [0, 1] → Sn be

the arc of length one from a to x along this great circle. We have a map

A ∗X → Sn,

(a, x, t) 7→ γa,x(t).

Note that A∗X is homotopy equivalent to Σ(A∧X). Thus, we get a map Σ(A∧X)→
Sn. This gives a map Σ−(n−1)A ∧ X → S0 in the stable homotopy category, and

consequently

φ : Σ−(n−1)A→ F (X,S0) ∼= DX,

as required.

Now, if there is a pair of antipodal points, one in A and one in X, the construction

of φ is more difficult. We need to use the Hopf construction, which takes a map

W × Y → Z and builds a map W ∗ Y → ΣZ. To define the Hopf construction, note

that the join is the pushout

W ∗ Y C ′W × Y

W × C ′Y W × Y
iY

iW

The suspension spectrum of K has n-th component ΣnK. The inverse suspension shifts indices

down, so Σ−nK has n-th component K. Thus, Σ−nK is a cofinal subspectrum of Y and so Σ−nK and

Y are isomorphic in the stable homotopy category. But we know

0 = [Y,HZ]r ∼= [Σ−nK,HZ]r ∼= [K,HZ]r−n ∼= H̃n−r(K;Z).

So all the cohomology groups of K are zero.

We can use the universal coefficient theorem to conclude the homology groups of K must also be zero:

Specifically, we know that Hom(Hn(X),Z) ∼= 0 and Ext(Hn(X),Z) ∼= 0 for all n > 0. Also, Hn(X) is

a finitely generated abelian group by [9, Proposition 3F.12], so Hn(X) ∼= Zr ⊕ Zm1
p1 ⊕ ...⊕ Zms

ps . Then

Zr ∼= Hom(Hn(X),Z)

implies r = 0 and

Zm1
p1 ⊕ ...⊕ Zms

ps
∼= Ext(Hn(X),Z)

implies s = 0. So Hn(X) = 0 for n > 0. Finally, the Hurewicz theorem (for spaces) then implies

that all the homotopy groups of K are zero: We have assume K is simply connected. So we can

apply the Hurewicz theorem to find that π2(K) → H2(K) ∼= 0 is an isomorphism. By induction,

πn(K)→ Hn(K) ∼= 0 is an isomorphism.
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where C ′ is the unreduced cone. There are obvious maps

W × C ′Y → C ′Z → ΣZ and C ′W × Y → C ′Z → ΣZ,

which commute with the inclusions iY , iW . Therefore, by the universal property of

pushouts, we have a map W ∗ Y → ΣZ.

Returning to the problem at hand, suppose there is a pair of antipodal points. By

changing A if necessary, we can assume that there is a point p in Sn not in X ∪ A.

Defining St : Sn−{p} → Rn to be the stereographic projection at point p we get a map

X ×A→ Sn−1,

(x, a) 7→ St(x)− St(a)

|St(x)− St(a)|
,

as required. The Hopf construction on this map gives us φ.

Consider the cofibre sequence of φ

Σ−(n−1)A
φ−→ DX ↪→ DX ∪ C(Σ−(n−1)A) = Y.

Since cofibre sequences are fibre sequences, they induce long exact sequences of homo-

topy groups. If πr(Y ) ∼= 0 then φ induces an isomorphism on homotopy groups for all

r. Consequently, φ is an isomorphism in the stable homotopy category.

We know that taking Spanier-Whitehead duals and the smash product preserve

cofibre sequences, so both

DY → X → DΣ−(n−1)A and DY ∧HZ→ X ∧HZ→ D
(

Σ−(n−1)A
)
∧HZ

are cofibre sequences. Consider the exact sequence of homotopy groups induced by

the last cofibre sequence. We have that πr(X ∧HZ) ∼= H̃r(X,Z) by Proposition 4.23.

Additionally,

πr

(
D
(

Σ−(n−1)A
)
∧HZ

)
∼= πrF (Σ−(n−1)A,HZ)

∼= [Σ−(n−1)A,HZ]r = [A,HZ]r−(n−1)

∼= H̃n−1−r(A,Z),

using Propositions 5.7 and 5.6. Now, it turns out that the isomorphism in Theorem

5.12 is the map H̃r(X,Z)→ H̃n−1−r(A,Z) in this long exact sequence. Therefore,

0 ∼= πr (DY ∧HZ) ∼= πrF (Y,HZ) = [Y,HZ]r,

for all r. By Lemma 5.14, Y ∼= ∗ and consequently πr(Y ) ∼= 0 as required.

5.3 Atiyah Duality

We now examine the Spanier-Whitehead duals of manifolds and the duals of Thom

spaces of vector bundles over manifolds. This is due to Atiyah [3].
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We know that Th(V ⊕ εn) = ΣnTh(V ), where V is a vector bundle over X. Now

that we have an inverse suspension, we should be able to extend this, at least in the

stable homotopy category. Define the Thom spectrum of any element V − εn of KF(X)

by

Th(V − εn) = Σ−nΣ∞Th(V ).

in the stable homotopy category.

Let M be a n-dimensional differentiable manifold. Suppose we have an embedding

M → Rm. Then we can define the normal bundle NM,Rm whose fibre at p is the

(m − n)-dimensional space of vectors in Rm normal to p. The sum of the normal and

tangent bundles is trivial:

TM ⊕NM,Rm ∼= εm.

By rearranging this equation, we have Th(−TM ) ∼= Σ−mTh(NM,Rm). This doesn’t

depend on the choice of embedding since any two embeddings are stably equivalent.

Definition 5.15. A vector bundle p : E → B is differentiable if E and B are dif-

ferentiable manifolds, p is a differentiable map and the local trivialisations of p are

diffeomorphisms.

Atiyah duality is a powerful result. Assuming the Thom isomorphism theorem,

Poincaré duality (for generalised cohomology) is an easy corollary. (See [25, §10] for

the proof.)

Theorem 5.16. Suppose M is a compact, differentiable manifold. If M has a boundary

∂M , then

D(M/∂M) ∼= Th(−TM )

Otherwise, if M doesn’t have a boundary and E →M is a differentiable vector bundle,

then

D(ThE) ∼= Th(−TM − E).

An easy corollary is that D(M+) ∼= Th(−TM ) for M a compact, smooth manifold

without a boundary, since Th(B, ε0) = B+ for any space B.

The second statement also holds for a real (not necessarily differentiable) vector

bundle E. To see this, we need to know about the universal bundle En(R∞) over

the Grassmannian Gn(R∞), the space of all n-dimensional linear subspaces of R∞.

See [10, §1.2]. Let f : M → Gn be the map inducing E–that is, f∗(En) = E. We

may approximate f by a differentiable map, which will induce a differentiable bundle

isomorphic to E. Then, the corresponding Thom spectra will also be isomorphic.

Proof. Suppose M has a boundary ∂M . We can embed M into Dm, for m sufficiently

large, so that ∂M is in the boundary Sm−1, with M transverse to Sm−1. (See Lemma

3.1 of [3] for details.) Additionally, we may assume that M is a finite CW complex (see

[15]) and this embedding is cellular.

By considering the relevant cofibre sequence, M/∂M is homotopy equivalent to

Y = M ∪ C ′(∂X) ⊂ Dm ∪ C ′Sm−1 ∼= Sm
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where C ′ is the unreduced cone. We can apply Alexander duality to Y to get

D(M/∂M) ∼= Σ−(m−1)(Sm − Y ).

Let N be a tubular neighbourhood (c.f. chapter 3 of [16]) of M . Then N ′ =

N ∪ C ′(N ∩ Sm−1) deformation retracts onto Y . So Sm − Y ' Sm − N ′. Since the

tip of the cone C ′Sm−1 is in C ′(N ∩ Sm−1), we have that C ′Sm−1 − C ′(N ∩ Sm−1)

deformation retracts to Sm−1 − N ∩ Sm−1. Therefore, Sm − N ′ deformation retracts

to Dm −N and consequently

D(M/∂M) ∼= Σ−(m−1)(Dm −N).

As Dm is contractible, Dm −N → Dm → Σ(Dm −N) is a cofibre sequence. So,

Σ(Dm −N) ' Dm/(Dm −N).

Since N is open, Dm/(Dm −N) = N/∂N , where N is the closure of N .

We may choose N such that N and ∂N are identified with the disk bundle and the

sphere bundle of NM,Dm respectively. Thus, N/∂N ∼= Th(NM,Dm) and

D(M/∂M) ∼= Σ−mΣ(Dm −N) ∼= Σ−mTh(NM,Dm) ∼= Th(−TM ).

This proves the first statement. The second statement is a corollary: The disk

bundle D of E is a compact differentiable manifold with boundary the sphere bundle

of E. So

D(ThE) = D(D/∂D) ∼= Th(−TD).

Let p : D →M be the bundle map of D. With some work, we find TD and p∗(TM ⊕
E) represent the same class in K(D). So their Thom spectra are isomorphic in the

stable homotopy category Th(−TD) ∼= Th
(
−p∗(TM ⊕ E)

)
by Proposition 4.34. Since

p is a homotopy equivalence, we conclude Th
(
−p∗(TM ⊕ E)

) ∼= Th(−TM − E).

5.3.1 Dual of Stunted Projective Spaces

Recall that RPn+k
k = Th(RPn, kξ) where ξ is the canonical line bundle on RPn.

Theorem 5.17. The Spanier-Whitehead dual of RPn+k
k is ΣRP

−(k+1)
−(n+k+1).

Proof. We will show in chapter 7 that KR(RPn) is generated by ξ. So there is only

one class in KR(RPn) for each (virtual) dimension. Since the tangent space TRPn is

n dimensional, (n + 1)ξ − ε1 represents the same class as TRPn . Therefore, by Atiyah

duality,

DRPn+k
k
∼= Th(RPn,−TRPn − kξ)
∼= Th(RPn,−(n+ 1)ξ + ε1 − kξ)
∼= ΣTh(RPn,−(n+ k + 1)

∼= ΣRP
−(k+1)
−(n+k+1).



Chapter 6

Spectral Sequences

Spectral sequences are a powerful computational tool in algebraic topology. In chapter

7, the Atiyah Hirzebruch spectral sequence will be essential in our computations of the

K theory of stunted projective spaces.

6.1 A General Formulation

We take the approach given in [18, chapter 2] and [11], although spectral sequences

exist in more general environments (for example, abelian categories). We also restrict

our attention to spectral sequences of cohomological type.

Definition 6.1. Let R be a ring. A spectral sequence is a collection of R-modules

{Ep,qr }p,q∈Zr∈N>0
and differentials dr : E∗,∗r → E

∗+r,∗−(r−1)
r such that

1. dr ◦ dr = 0,

2. Ep,qr+1
∼= Hp,q(E∗,∗r , dr) := Ker dr : Ep,qr → E

p+r,q−(r−1)
r

/
Im dr : E

p−r,q+(r−1)
r → Ep,qr

for all r, p, q.

A spectral sequence can be thought of as a book. For fixed r, the modules Ep,qr are

called the r-th page. (Often the r-th page is denoted simply by Er.) On each page,

the modules E∗,∗r form an integral lattice in the Cartesian plane. For example, the 3rd

page of a spectral sequence is below.

63
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p

q

To avoid cluttering the lattice, we have omitted many of the differentials.

It does not really matter which page the spectral sequence starts on. In practise,

spectral sequences are often defined for r ≥ 0, r ≥ 1 or r ≥ 2.

6.1.1 Exact and Derived Couples

Often, spectral sequences are built from algebraic objects called exact couples. This is

the case with the Atiyah Hirzebruch spectral sequence.

Definition 6.2. An exact couple is a pair F,E of abelian groups and an exact diagram

F F

E.
j

i

k

Note that d = jk is a differential, since d2 = jkjk = j0k = 0. So we can consider

the homology Ker jk/Im jk.

Definition 6.3. Given an exact couple (F,E, i, j, k), the associated derived couple is

the pair F ′ = i(F ) ⊂ F and E′ = Ker jk/Im jk of abelian groups and morphisms

F ′ F ′

E.
j′

i′

k′

defined below.

1. The morphism i′ = i|F ′ is the restriction of i to its image.
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2. We can write an arbitrary element of F ′ as i(f) for f ∈ F . So define j′ by

j′
(
i(f)

)
= [j(f)] ∈ E′. This is well defined: firstly j(f) ∈ Ker jk since jkj(f) = 0;

secondly, if i(f1) = i(f2) then f1 − f2 ∈ Ker i = Im k, do j(f1)− j(f2) ∈ Im jk.

3. Define k′[e] = ke. Since e ∈ Ker jk, we have ke ∈ A′ = Im i = Ker j, so

this definition makes sense. It is well defined since [e1] − [e2] = 0 ∈ E′ implies

e1 − e2 ∈ Im jk ⊂ Im j = Ker k.

Lemma 6.4. A derived couple is exact.

This is an exercise in diagram chasing; see [11, lemma 1.1] for a proof.

By iterating the process of forming derived couple, we get a sequence E,E′, E′′, ...

with differentials d, d′, .... We call E the zeroth derived couple of E; E′ the first derived

couple of E; E′′ the second, and so on. These can often be combined to form a spectral

sequence. We will illustrate this with an example.

Let Ẽ be a reduced cohomology theory. Suppose X is a CW complex and we filter

X by an increasing chain of subcomplexes

∅ ⊂ X0 ⊂ ... ⊂ Xn ⊂ ... ⊂ X.

Note that this filtration does not necessarily need to be the skeletal filtration, but

(Xk, Xk−1) must be a CW pair, so that we can form long exact sequences of cohomology

groups (c.f. Definition 1.28). These long exact sequences fit into a diagram

Ẽ∗(X0) Ẽ∗(X1) Ẽ∗(X2) Ẽ∗(X3) ...

Ẽ∗(X1/X0) Ẽ∗(X2/X1) Ẽ∗(X3/X2) ...E

j

i

j

i

j

i

j

i

k k k

Each triangle is the long exact sequence of the pair (Xk, Xk−1) and the dashed arrows

increase the degree of the cohomology group by one.

This diagram gives an exact triangle. Define E = ⊕pẼ∗(Xp/Xp−1) and F =

⊕pẼ∗(Xp). Then we can rewrite the above diagram as

F F

E.
j

i

k

We have a grading on E and F given by Ep,q = Ẽp+q(Xp/Xp−1) and F p,q = Ẽp+q(Xp).

Then i, j and k have bidegree (−1, 1), (1, 0) and (0, 0) respectively.

It remains to see that this gives us a spectral sequence. Let (Fr, Er, ir, jr, kr) be

the (r− 1)st derived couple of the above exact couple. Note that the grading of E and

F carry over to Er and Fr. To show that Ep,qr and dr = jrkr form a spectral sequence,
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the only thing to check is that the bidegree of dr is (r,−(r − 1)). This is purely book

keeping†.

6.1.2 The E∞ page

Definition 6.5. Given a spectral sequence (E∗,∗r , dr), suppose there exists a function

r(p, q) ∈ N>0 such that

Ep,qr
∼= Ep,qr+1,

for all r ≥ r(p, q). Then (E∗,∗r , dr) is said to stabilise and, in this case, the limit page

E∞ is defined by

Ep,q∞ = colim
r

Ep,qr .

Note that the limit page is defined more generally, not just when stable. But this

definition will suffice for our purposes.

In practise we can often assume Ep,qr = 0 for some fixed r and all p, q < 0. So all

the non-zero modules are located in the first quadrant, when we visualise the Er page

as an integral lattice. Then, for fixed p, q and large enough r, the differentials going in

and out of Ep,qr will be zero. At this point, passing to the next page will not change

the modules: Ep,qr+1 = Ep,qr . So the groups stabilise and Ep,q∞ = Ep,qr .

There is another simple condition that guarantees stability. If there are only finitely

many non-zero modules in each E column, then dr, which goes downward r − 1 rows,

is again zero for sufficiently large r. Analogously, stability is guaranteed if there are

only finitely many non-zero modules in each E row. We will see that this ensures that

the Atiyah Hirzebruch spectral sequence stabilises.

6.1.3 Convergence

We remind the reader that we are only concerned with cohomology. As such we will

focus on decreasing filtrations and convergence with respect to decreasing filtrations.

Definition 6.6. A (decreasing) filtration F∗ on an R-module A is a sequence of sub-

modules

{0} ⊂ ... ⊂ Fn+1A ⊂ FnA ⊂ Fn−1A ⊂ ... ⊂ A.

Suppose H∗ is a graded R-module. The motivating example is any cohomology

theory. If we have a filtration F on H∗ then FnHm = FnH∗ ∩Hm is a filtration on

Hm and
FpHp+q

/Fp+1Hp+q

forms a bigraded module.

†We prove this by induction. The differential d1 = jk has bidegree (1, 0) since j has bidegree (1, 0)

and k has bidegree (0, 0).

In the step case, assume that ir, jr and kr have bidegree (−1, 1), (r,−(r− 1)) and (0, 0) respectively.

Since ir+1 = ir|ir(Fr), the bidegree of ir+1 is equal to the bidegree of ir. Similarly, the bidegree of kr+1

is equal to the bidegree of kr, as kr+1[e] = kr(e). Recall that jr+1 is defined by jr+1(ir(f)) = [jrf ].

If ir(f) ∈ F p,qr , then f ∈ F p+1,q−1
r and consequently, jr(f) ∈ Ep+r+1,q−r

r . Thus, jr+1 has bidegree

(r + 1,−r). Therefore, the degree of dr+1 is (r + 1,−r) as required.
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Definition 6.7. A spectral sequence (E∗,∗r , dr) converges to a graded R-module H∗ if

Ep,q∞
∼= FpHp+q

/Fp+1Hp+q ,

for some filtration F of H∗. In this case, we write

Ep,q1 ⇒ Hp+q or Ep,q2 ⇒ Hp+q.

Maps of spectral sequences

Definition 6.8. Let (E∗,∗r , dr) and (Ê∗,∗r , d̂r) be two spectral sequences. A morphism

of spectral sequences is a sequence of homomorphisms fr : E∗,∗r → Ê∗,∗r of bigraded

modules, of bidegree (0, 0), such that

1. Each fr commutes with the corresponding differentials: fr ◦ dr = d̂r ◦ fr.

2. Each fr+1 is the induced map of fr on homology: that is, fr+1 is the composite

E∗,∗r+1

∼=−→ H(E∗,∗r , dr)
H(fr)−−−→ H(Ê∗,∗r , d̂r)

∼=−→ Ê∗,∗r+1.

Since we often do not care about the first few pages of a spectral sequence, we allow

the sequences of homomorphisms fr to start at r = 2 or even later.

If both E∗,∗r and Ê∗,∗r stabilise, then we get a map f∞ : E∗,∗∞ → Ê∗,∗∞ by taking fr
for large r. It is not too difficult to see that if fn : En → Ên is an isomorphism, then

fr is also, for n ≤ r ≤ ∞.

Suppose that E∗,∗r and Ê∗,∗r are both built from exact couples (E,F, i, j, k) and

(Ê, F̂ , î, ĵ, k̂) respectively. Suppose f : E → Ê commutes with the first differential:

fjk = ĵk̂f.

Then f induces a map of spectral sequences {fr} by defining f1 = f and fr+1 the

map induced by fr on homology. (We omit the proof that fr commutes with the r-th

differential.)

6.2 The Atiyah Hirzebruch Spectral Sequence

This spectral sequence computes the cohomology of CW complexes, for any cohomology

theory. It was first published by Atiyah and Hirzebruch in [4] but Adams states that

they were probably invented by G. W. Whitehead in the 1950’s [2, p. 214].

Suppose X is a CW complex with basepoint x0. Let Cp be the set of p-cells of X.

Define the corresponding reduced version

C̃p =

Cp if p 6= 0,

Cp − {x0} if p = 0.

Then the p-th cellular chain complex Cp(X) is the free abelian group with basis Cp.
Similarly, the reduced p-th cellular chain complex C̃p(X) is the free abelian group with
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basis C̃p. Define the reduced and unreduced cellular cochain complexes with coefficients

in G

C∗(X;G) = HomZ(C∗(X), G) ∼=
∏
Cp

G and C̃∗(X;G) = HomZ(C̃∗(X), G) ∼=
∏
C̃p

G.

Theorem 6.9. Let e be an unreduced cohomology theory and X a finite-dimensional

CW complex. Then there exist spectral sequences (E∗,∗r , dr) and (Ê∗,∗r , d̂r) with

Ep,q1 = ep+q(Xp/Xp−1) ∼= Cp
(
X; eq(∗)

)
, Ep,q2

∼= Hp
(
X, eq(∗)

)
⇒ ep+q(X),

and

Êp,q1 = ẽp+q(Xp/Xp−1) ∼= C̃p
(
X; eq(∗)

)
, Êp,q2

∼= H̃p
(
X, eq(∗)

)
⇒ ẽp+q(X).

Proof. For our purposes, we will only need the second spectral sequence. Therefore,

we will only prove the existence of this spectral sequence. The other one follows in a

similar manner.

Suppose X is a finite dimensional CW complex and let Xp be the p-skeleton of X

with inclusion Xp ↪→ X. Define Xp = {x0} for p < 0, where x0 is the basepoint of X.

Let d be the dimension of X.

We build the spectral sequence Êp,qr using the exact couple in subsection 6.1.1, using

the skeletal filtration of X. Specifically, define Êp,q1 = ẽp+q(Xp/Xp−1) and F̂ p,qr =

ẽp+q(Xp). Let i, j, k be the maps of this exact couple, following the conventions of

subsection 6.1.1.

We have that ẽp+q(Sp) ∼= eq(∗)†. Consequently,

Êp,q1
∼= ẽp+q(∨C̃pS

p) ∼=
∏
C̃p

ẽp+q(Sp) ∼=
∏
C̃p

eq(∗) ∼= C̃p
(
X; eq(∗)

)
.

Notice that the diagram

Êp,q1 C̃p
(
X; eq(∗)

)

Êp+1,q
1 C̃p+1

(
X; eq(∗)

)
∼=

jk=d̂1 ∂

∼=

commutes, where ∂ is the cellular coboundary map. This implies Êp,q2
∼= H̃p

(
X, eq(∗)

)
,

as required.

We know that H̃p
(
X, eq(∗)

)
is zero for p < 0 and p > d. Thus, the spectral

sequences stabilises. All that remains is to show that the spectral sequence converges

to ẽp+q(X).

†This can be proven directly from the axioms of cohomology, or through Browns representability

theorem: Let A be a spectrum representing ẽ. Then we can compute

ẽp+q(Sp) ∼= colim
n→∞

[ΣnSp, An+p+q] ∼= colim
n→∞

[ΣnS0, An+q] ∼= ẽq(S0) ∼= eq(∗).
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Define a (decreasing) filtration of ẽn(X)

ẽn(X) = F0ẽn(X) ⊃ F1ẽn(X) ⊃ ... ⊃ Fd+1ẽn(X) = 0

where Fpẽn(X) = Ker
(
ẽn(X)→ ẽn(Xp−1)

)
for p > 0 and F0ẽn(X) = ẽn(X). We

claim that Êp,q∞ ∼= Fpẽp+q(X)/Fp+1ẽp+q(X).

Consider the long exact sequence for the (r − 1)st derived couple

Êp−r+1,q+r−2
r

kr−→ F̂ p−r+1,q+r−2
r

ir−→ F̂ p−r,q+r−1
r

jr−→ Êp,qr
kr−→ F̂ p,qr

ir−→ F̂ p−1,q+1
r

jr−→ Êp+r−1,q−r+2
r .

Since F̂ p−r,q+r−1
r ⊂ F̂ p−r−1,q+r

r−1 ⊂ ... ⊂ F̂ p−2r+1,q+2r−1
1 = ẽp+q(Xp−2r+1), the second

F̂ term in the above long exact sequence is 0, for large enough r. This implies Êp,qr is

isomorphic to the kernel of F̂ p,qr → F̂ p−1,q+1
r .

But F̂ p,qr = ir−1(F̂ p+1,q−1
r−1 ), so all the elements of F̂ p,qr come from F̂ p+r−1,q−r+1

1 =

ẽp+q(Xp+r−1). If r is large enough, ẽp+q(Xp+r−1) = ẽp+q(X). Similarly, all the elements

of F̂ p−1,q+1
r come from ẽp+q(X) for large enough r. Thus, Êp,q∞ is isomorphic to the

quotient of Ker
(
ẽp+q(X)→ F̂ p−1,q+1

r

)
by Ker

(
ẽp+q(X)→ F̂ p,qr

)
. That is,

Êp,q∞
∼= Fpẽp+q(X)/Fp+1ẽp+q(X),

as required.

This spectral sequence also works for infinite dimensional X. The proof is mostly

the same, but it’s necessary to take limits at some points. See [2, part III, §7]. However,

the finite case will be satisfactory for our purposes.
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Chapter 7

K-Theory of Stunted Projective

Spaces

In this chapter, we will compute the K-theory of stunted projective space and their

corresponding Adams’ operations. This will form a major component of the proof that

RPn+ρn/RPn−1 is not coreducible. However, we will include every stunted projective

space, for completeness, even if it is not used in the vector fields problem. We will

generally use the notation RPn/RPm instead of RPnm+1 to emphasise that we only

consider actual stunted projective space, as opposed to the general definition RPnm =

Th(RPn−m,mξ).

We will proceed by examining

1. the complex K-theory of CPn/CPm,

2. the complex K-theory of RPn/RPm,

3. the real K-theory of RPn/RPm,

for n > m ≥ 0.

This chapter follows section 7 of [1] closely.

Cohomology of stunted projective spaces

In this chapter, we will use the Atiyah Hirzebruch spectral sequence extensively in

the computations of K̃F(FPn/FPm). It is therefore convenient to state the relevant

cohomology groups which form the E2 pages. When m = 0, these are given by [9,

Theorem 3.19]:

H̃k(RPn;Z) ∼=


Z if k = n odd,

Z2 if k even and 0 < k ≤ n,

0 otherwise.

71
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H̃k(RPn;Z2) ∼=

Z2 if 0 < k ≤ n,

0 otherwise.

H̃k(CPn;Z) ∼=

Z if k even and 0 < k ≤ 2n,

0 otherwise.

These groups can be computed by examining the cellular chains of FPn. In the real

case, there is one cell in every dimension 0 ≤ m ≤ n and in the complex case, one cell

in every even dimension 0 ≤ m ≤ 2n. For n ≥ m ≥ 0, pruning the first m cells in the

cellular chain of FPn produces the cellular chain of FPn/FPm. The attaching maps of

the higher-dimension cells remains unaffected, with the exception of the (m + 1)-cell

in the real case and the (2m + 2)-cell in the complex case, which now have trivial

attaching map. Therefore, we compute the cohomology of FPn/FPm in the same way

as for FPn. For simplicity in writing the cohomology groups, we switch back to the

notation FPnm = FPn/FPm−1.

H̃k(RPnm;Z) ∼=


Z if k = n odd or k = m even,

Z2 if k even and m < k ≤ n,

0 otherwise.

(7.1)

H̃k(RPnm;Z2) ∼=

Z2 if m ≤ k ≤ n,

0 otherwise.
(7.2)

H̃k(CPnm;Z) ∼=

Z if k even and 2m ≤ k ≤ 2n,

0 otherwise.

The Standard Projection

Definition 7.1. Writing

RP2n+1 = S2n+1/(x ∼ −x) and CPn = S2n+1/(x ∼ λx for λ ∈ S1),

define the standard projection π : RP2n+1 → CPn by π([x]) = [x].

This is well defined since the equivalence classes [x] ∈ RP2n+1 are finer than the

equivalence classes [x] ∈ CPn†.

Note that π : RP2n−1 → CPn−1 is induced by the map R2n → Cn that sends

(x1, x2, ..., x2n) to (x1 + ix2, ..., x2n−1 + ix2n).

Using this definition, we see that the image of the subcomplex RP2m−1 ⊂ RP2n−1

is contained in CPm−1 ⊂ CPn−1.

†That is, for every x ∈ S2n+1, the equivalence class [x] ∈ CPn contains the equivalence class

[x] ∈ RP2n+1.
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Notation

Let ξ and η be the canonical line bundles over RPn and CPn respectively. If we project

RPn onto RPn−1, then ξ over RPn restricts to ξ over RPn−1. Similarly for η. This

justifies not displaying the index n in our notation. We introduce the following elements

λ, µ, ν:

λ = ξ − ε1 ∈ K̃R(RPn),

µ = η − ε1 ∈ K̃C(CPn),

ν = cλ ∈ K̃C(RPn),

where ε1 is the trivial line bundle. These bundles will play a large role in describing

the K-theory of stunted projective spaces. By the same reasoning as above, we need

not display the index n in the notation for λ, µ and ν.

For odd n = 2k − 1, we have ν = π∗µ for µ ∈ K̃C(CPk−1) by the following lemma:

Lemma 7.2. Let ξ be the canonical real line-bundle over RP2n−1. Let η be the canonical

line-bundle over CPn−1. Then cξ ∼= π∗η, where c is complexification.

We delay the proof of this lemma, until after we have introduced Stiefel-Whitney

and Chern classes.

Stiefel-Whitney and Chern Classes

Characteristic classes are ways of associating algebraic invariants, specifically coho-

mology classes, to vector bundles. Stiefel-Whitney and Chern classes are two such

characteristic classes, defined for real and complex vector bundles respectively.

All results in this section are well known and therefore we shall omit their proofs.

These can all be found in [10, §3.1].

Recall that VectF(X) is the isomorphism classes of F-vector bundles over X. We

present the Stiefel-Whitney classes first:

Theorem 7.3. There exist functions wi : VectR(X) → H i(X;Z2) such that, for all

real bundles E → X,

1. wi is natural: wi(f
∗(E)) = f∗(wi(E)), where f∗(E) is a pullback of E, and

f∗(wi(E)) is the induced map on cohomology;

2. w(E1 ⊕ E2) = w(E1) ^ w(E2), where w(E) := 1 + w1(E) + w2(E) + ... ∈
H∗(X;Z2);

3. wi(E) = 0 if i is greater than the dimension of E†;

4. the class w1(ξ) is the generator of H1(RP∞;Z2) ∼= Z2, where ξ is the canonical

line bundle on RP∞.

†This ensures that the sum w(E) := 1 + w1(E) + w2(E) + ... is always finite.
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The cohomology class wi(E) is called the i-th Stiefel-Whitney class of E and w(E)

is called the total Stiefel-Whitney class of E.

We have a similar theorem for Chern classes:

Theorem 7.4. There exist functions ci : VectC(X) → H2i(X;Z) such that, for all

complex bundles E → X,

1. ci is natural: ci(f
∗(E)) = f∗(ci(E)), where f∗(E) is a pullback of E, and f∗(ci(E))

is the induced map on cohomology;

2. c(E1 ⊕ E2) = c(E1) ^ c(E2), where c(E) := 1 + c1(E) + c2(E) + ... ∈ H∗(X;Z);

3. ci(E) = 0 if i is greater than the dimension of E;

4. the class c1(η) is a generator of H2(CP∞;Z) ∼= Z, specified in advance, where η

is the canonical line bundle on CP∞.

The cohomology class ci(E) is called the i-th Chern class of E and c(E) is called

the total Chern class of E;

It turns out that, in most cases, the first Stiefel-Whitney classes classify the real

line bundles and the first Chern classes classify the complex line bundles: Recall that

the isomorphism classes of one-dimensional vector bundles Vect1
F(X) form a group with

respect to the tensor product.

Theorem 7.5. The first class w1 : Vect1
R(X) → H1(X;Z2) is a homomorphism, and

an isomorphism if X is homotopy equivalent to a CW complex. The same applies for

c1 : Vect1
C(X)→ H2(X;Z).

Proof of Lemma 7.2. If n = 1, then H2(RP2n−1;Z) = 0. But the complex line bundles

are classified by their Chern class c1 in H2(RP2n−1;Z). Since both cξ and π∗η are

complex line bundles, they must be isomorphic.

Suppose n > 1. Now, H2(RP2n−1;Z) ∼= Z2. We will show that the Chern classes of

cξ and π∗η are non-trivial. Then we must have c1cξ = 1 = c1π
∗η and so cξ ∼= π∗η.

To show c1cξ is non-trivial, it suffices to show that cξ is non-trivial. We know that

w(ξ) = 1 + x, where x is the generator of H1(RP2n−1;Z2). Let r be the ‘realification’

map, defined in subsection 1.3.2. Then w(rcξ) = w(ξ ⊕ ξ) = 1 + x2. It follows that cξ

is non-trivial.

To show c1π
∗η 6= 0, note first that c1π

∗η = π∗c1η. Since η is the canonical line

bundle, c1η is a generator of Z ∼= H2(CPn−1;Z) (c.f. [10, Theorem 3.2]). But a

generator is sent to 1 by the map

Z ∼= H2(CPn−1;Z)
π∗−→ H2(RP2n−1;Z) ∼= Z2,

and so π∗c1η = 1.
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7.1 The Complex K-Theory of CPn/CPm

Theorem 7.6. KC(CPn) ∼= Z[µ]/〈µn+1〉. The projection q : CPn → CPn/CPm induces

an isomorphism K̃C(CPn/CPm)
∼=−→ 〈µm+1〉 ⊂ K̃C(CPn). (That is, K̃C(CPn/CPm) is

isomorphic to the ideal of KC(CPn) generated by µm+1). The Adams operations on

KC(CPn) are given by

Ψk
C(µs) =

(
(1 + µ)k − 1

)s
.

When k is negative, we interpret the power (1 + µ)k by the binomial expansion

(1 + µ)k = 1 + kµ+
k(k − 1)

2!
µ2 + ...

which is finite since µn+1 = 0.

Since Adams operations are natural, their behaviour on K̃C(CPn/CPm) is de-

termined by Ψk
C : KC(CPn) → KC(CPn) and the isomorphism K̃C(CPn/CPm)

∼=−→
〈µm+1〉 ⊂ Z[µ]/〈µn+1〉.

Proof. The first statement is a well known result (c.f. [10, Proposition 2.24]), so we

will omit its proof. However, we will take the opportunity to illustrate the power

of the Atiyah Hirzebruch spectral sequence, by computing the group structure of

K̃C(CPn/CPm). Note that the spectral sequence (E∗,∗r , dr) for K̃C(CPn/CPm) sta-

bilises on the E2 page. Why? The E2 page is given by

Ep,q2
∼= Hp

(
CPn/CPm;Kq

C(∗)
) ∼=

Z if q even and 2m+ 2 ≤ p ≤ 2n even,

0 otherwise.

So the E2 page looks like, where the squares are Z:

p

q

2m+ 2 2n
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As usual, we have omitted many of the differentials. The total degree of every non-zero

term is always even. But the total degree of every differential dr is odd. Thus, every

differential has a zero term as their source or target. Then

K̃s
C(CPn/CPm) ∼= Ep,s−p∞ = Ep,s−p2 = 0

if s is odd. If s is even then K̃s
C(CPn/CPm) ∼= Ep,s−p2 has a filtration such that the

successive quotients are n−m copies of Z. It follows that K̃s
C(CPn/CPm) is free abelian

on n−m generators, for s even. This determines the group structure of K̃C(CPn/CPm).

The generators and ring structure of K̃C(CPn) can be determined using the Chern

classes. See [10, Proposition 2.24] or [1, Theorem 7.2].

To prove the second statement, examine the long exact sequence of the pair (CPn,CPm):

0→ K̃C(CPn/CPm)
q∗−→ K̃C(CPn)

i∗−→ K̃C(CPm)
δ−→ ...

So K̃C(CPn/CPm) is isomorphic to the kernel of i∗. But the kernel of i∗ is the subgroup

of K̃C(CPn) generated by µm+1, µm+2, ..., µn. The second statement now follows.

It remains to compute Ψk
C(µs). By Theorem 1.47, we have Ψk

C(η) = ηk; that is,

Ψk
C(1 + µ) = (1 + µ)k†. It follows that Ψk

C(µ) = (1 + µ)k − 1 and consequently

Ψk
C(µs) =

(
(1 + µ)k − 1

)s
,

as required.

Define µ(m+1) to be the element in K̃C(CPn/CPm) that is sent to µm+1 by q∗ from

Theorem 7.6. The following lemma justifies not displaying n in the notation.

Lemma 7.7. The map induced by the inclusion i : CPn/CPm → CPn+1/CPm sends

µ(m+1) ∈ K̃C(CPn+1/CPm) to the corresponding µ(m+1) ∈ K̃C(CPn/CPm). Similarly

for the projection q : CPn+1/CPm → CPn/CPm.

Proof. If you take the canonical line bundle on CPn+1 and restrict to CPn, the result is

again the canonical line bundle. It follows that i∗C : K(CPn+1)→ K(CPn) sends µm+1

to µm+1. Then the result follows from commutativity of the square

K̃(CPn+1/CPm) K̃(CPn/CPm)

µ(m+1) µ(m+1)

µm+1 µm+1

K(CPn+1) K(CPn).

i∗C

q∗C q∗C

3 ∈

∈3
i∗C

The second statement follows in the same manner.
†Note that the multiplicative identity in KF(X) is the trivial line bundle ε1.
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7.2 The Complex K-Theory of RPn/RPm

The complex K-theory of RPn/RPm is more difficult. We need to consider two cases,

m = 2t and m = 2t+ 1.

Consider the diagram

RP2n+1 CPn

RP2n+1/RP2t CPn/CPt.

π

q

ω1

We know that the image of RP2t ⊂ RP2n+1 under π is contained in CPt ⊂ CPn. So

q ◦ π sends RP2t to the basepoint. Thus, the quotient map ω1 exists. In an analogous

way, the standard projection π also factors to give ω2 : RP2n+1/RP2t+1 → CPn/CPt.

Define ν
(t+1)
1 = ω∗1µ

(t+1) and ν
(t+1)
2 = ω∗2µ

(t+1). Note that ν
(1)
1 = ν, by Lemma 7.2.

The following lemma explains the choice of notation.

Lemma 7.8. We have

ν
(t+1)
2 = i∗ν

(t+1)
1 and q∗1ν

(t+1)
1 = q∗2ν

(t+1)
2 = νt+1,

where i : RP2n+1/RP2t+1 → RP2n+1/RP2t is the inclusion and q1 : RP2n+1 → RP2n+1/RP2t,

q2 : RP2n+1 → RP2n+1/RP2t+1 are the quotient maps. Moreover,

ν
(t+1)
1 = q∗3ν

(t+1)
2 ,

where q3 : RP2n+1/RP2t → RP2n+1/RP2t+1 is the quotient map.

Proof. The diagram

RP2n+1 CPn

RP2n+1/RP2t+1 CPn/CPt

RP2n+1/RP2t

q2

q1

π

q̃

ω2

i ω1

commutes. Then the first two results follow from the induced diagram on K-theory:

The first result is immediate and we obtain the second by observing

q∗j ν
(t+1)
j = q∗jω

∗
jµ

(t+1) = π∗q̃∗µ(t+1) = νt+1,

for j = 1, 2.
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The final statement follows from the fact that the triangle

RP2n+1/RP2t+1 CPn/CPt

RP2n+1/RP2t

ω2

q3 ω1

commutes.

There are statements analogous to Lemma 7.7 for ν
(t+1)
1 and ν

(t+1)
2 justifying why

n does not appear in the notation.

We are now in a position to state the complex K theory of RPn/RPm and the

corresponding Adams operations.

Theorem 7.9. 1. Suppose m = 2t is even. Then there is a group isomorphism

K̃C(RPn/RP2t) ∼= Z2f where f = b1
2(n−m)c.

(a) The (non-unital) ring K̃C(RPn) is generated by ν with two relations

ν2 = −2ν and νf+1 = 0.

(It follows that 2fν = −2f−1ν2 = ... = νf+1 = 0.)

(b) For m 6= 0, the projection q : RPn → RPn/RP2t induces an isomorphism

from K̃C(RPn/RP2t) onto the ideal of K̃C(RPn) generated by νt+1.

The Adams operations are given by

Ψk
Cν

(t+1)
1 =

ν
(t+1)
1 if k odd,

0 otherwise.

2. Suppose m = 2t+ 1 is odd. Then there is an isomorphism (of non-unital rings)

K̃C(RPn/RP2t+1) ∼= Z⊕ K̃C(RPn/RP2t+2),

where the first summand is generated by ν
(t+1)
2 and the second summand is em-

bedded by the quotient q : RPn/RP2t+1 → RPn/RP2t+2.

The Adams operations are given by

Ψk
Cν

(t+1)
2 = kt+1ν

(t+1)
2 +

1
2k

t+1ν
(t+2)
1 if k even,

1
2(kt+1 − 1)ν

(t+2)
1 otherwise.

Since Adams operations Ψk
C are natural, the value of Ψk

C on the second summand

of K̃C(RPn/RP2t+1) ∼= Z⊕ K̃C(RPn/RP2t+2) is given by part 1. of the above theorem.

We can write K̃C(RPn/RP2t) explicitly as

ν
(t+1)
1 Z2f [ν

(t+1)
1 ]

/〈(
ν

(t+1)
1

)2
− (−2)t+1ν

(t+1)
1

〉
.
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Proof. We leave the results on the Adams operations to the end of the proof. We first

examine the Atiyah Hirzebruch spectral sequence (E∗,∗r , dr) of K̃C(RPn/RPm).

Recall that

Kq
C(∗) ∼=

Z if q even,

0 otherwise,

by Bott periodicity in chapter 1. Then by equation 7.1, the second page is given by

Ep,q2
∼= H̃p

(
RPn/RPm,Kq

C(∗)
) ∼=


Z if q even and either p = n odd or p = m+ 1 even,

Z2 if m+ 1 < p ≤ n even and q even,

0 otherwise.

We will call the set of terms {Ep,−pr }p∈Z the main diagonal of the r-th page. We know

that K̃C(RPn/RPm) is built from the groups Ep,−p∞ along the main diagonal. Therefore,

we often need only examine the fourth quadrant of each page, if the differentials from

the other quadrants don’t interact with the fourth quadrant. So this quadrant will be

our main focus. For example, the fourth quadrant of the second page is drawn below,

for n,m odd. As usual, we have omitted many of the differentials. The circles are Z2

and the squares are Z.

p

q

m+ 1 n

Write f = b1
2(n − 2t)c, where m = 2t or 2t − 1, according to whether m is odd or

even. (Note we have changed m = 2t+1 in the theorem statement to m = 2t−1.) The

number of Z2 along the main diagonal of E2 is f . These account for all the non-zero

terms on the main diagonal, if m is even. If m is odd, then there is an additional Z
term, at Em+1,−m−1

2 .
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We want to show that Ep,−p∞ = Ep,−p2 . Every non-zero term Ep,q2 , except when p = n

odd, has even total degree. But dr has odd total degree. So the target or source of

every differential is 0, except perhaps differentials with targets in Ep,qr , for p = n odd

and q even.

By our proof of the Atiyah Hirzebruch spectral sequence, we know that K̃C(X) is

filtered by the images of the groups K̃C(X/Xp−1). So the elements

ν
(t+i)
2 ∈ K̃C(RPn/RP2t+2i−1),

for i = 1, 2, ..., f , yield generators for the filtration quotients. (We know they are

generators since these filtration quotients are built from the Ep,−p2 terms, for p 6= m odd.

So the filtration quotients are Z2 or 0. Thus, any non-trivial element is a generator.)

Then, by passing to quotients, they yield generators for the E2 terms Z2 along the

main diagonal, apart from the Em+1,−m−1
2 term when m is odd. Similarly, by passing

to quotients, ν
(t)
2 yields a generator for Z ∼= Em+1,−m−1

2 , when m odd.

Since these generators come from the filtration of K̃C(X), they must survive to the

E∞ page. Thus, the differentials out of these terms into En,q2
∼= Z (with n odd, q even)

must be zero. Similarly, the differentials out of these terms into En,qr must be zero.

Therefore, for all r, the differentials dr with target or source on the main diagonal are

zero and consequently, Ep,−p∞ = Ep,−p2 .

We conclude that:

1. If m = 2t is even, then K̃C(RPn/RPm) has a filtration with successive quotients

f copies of Z2, with generators the images of ν
(t+1)
2 , ..., ν

(t+f)
2 . So K̃C(RPn/RP2t)

is embedded in K̃C(RPn). Moreover, this embedding sends ν
(t+1)
1 to νt+1. In the

case t = 0, the generators are ν, ν2, ..., νf , so K̃C(RPn), as a ring, is generated by

ν.

2. If m = 2t − 1 is odd, then we have an additional Z term in the filtration

of K̃C(RPn/RPm). This term comes from Em+1,−m−1
1 = K̃C(RP2t/RP2t−1)

and is generated by ν
(t)
2 . By examining the filtrations of K̃C(RPn/RP2t) and

K̃C(RPn/RP2t−1), we see that

0→ K̃C(RPn/RP2t)
q∗−→ K̃C(RPn/RP2t−1)→ K̃C(RP2t/RP2t−1) ∼= K̃C(S2t) ∼= Z→ 0

forms a short exact sequence, with ν
(t)
2 mapping to a generator of Z. Such a short

exact sequence always splits, so we get the first half of part 2 of the theorem:

K̃C(RPn/RP2t−1) ∼= Z⊕ K̃C(RPn/RP2t).

All that remains is to prove that K̃C(RPn/RP2t) ∼= Z2f and the two relations

ν2 = −2ν and νf+1 = 0,

(and the computation of the Adams operations). To do this, we first prove the relation

ν2 = −2ν. We know that w1 : Vect1
R(RPn) → H1(RPn;Z2) ∼= Z2 is an isomorphism.
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It follows that γ ⊗ γ = ε1 for all real line bundles γ on RPn. In particular, ξ2 = ε1 so

(ε1 + λ)2 = ε1. By expanding this,

λ2 = −2λ. (7.3)

Then ν2 = c(λ2) = −2c(λ) = −2ν, as required.

This relation resolves the question of extensions in the filtration of K̃C(RPn) in

point 1. above. As previously noted, in this case the generators of the quotients are

ν, ν2, ..., νf . Then ν2 = −2ν forces the extension to be Z2f . We illustrate this by the

specific case f = 2: There are, naively, two possible extensions

1. Z2 × Z2 generated by (ν, 0) and (0, ν2), or

2. Z4.

The first possibility cannot satisfy the relation ν2 = −2ν, so it must be the second

extension. This argument extends to general f , since it shows that K̃C(RPn) cannot

be a product of groups.

Thus, K̃C(RPn) ∼= Z2f . This forces the second relation in part 1.(a) of the theorem:

νf+1 = 0. The general result K̃C(RPn/RP2t) ∼= Z2f then follows by part 1.(b) of the

theorem, which we proved above.

Finally, we compute the Adams operations Ψk
C. We do the m = 2t case first. From

above, ξ2 = 1 and so cξ2 = 1. As we know how Adams operations behave on line

bundles,

Ψk
C(cξ) =

1 if k even,

cξ if k odd.

Since ν = cξ − 1, we have

Ψk
C(ν) =

0 if k even,

ν if k odd,

from which we obtain

Ψk
C(νs) =

0 if k even,

νs otherwise.

The computation of Ψk
C(ν

(t+1)
1 ) then follows by naturality

q∗Ψk
C(ν

(t+1)
1 ) = Ψk

C(νt+1) =

νt+1 = q∗ν
(t+1)
1 if k odd,

0 otherwise.

Since q∗ is injective, the desired result follows.

Now we move onto the m = 2t − 1 case. From the structure K̃C(RPn/RP2t−1) ∼=
Z⊕ K̃C(RPn/RP2t), we have

Ψk
C(ν

(t)
2 ) = aν

(t)
2 + bν

(t+1)
1 ,
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for some a ∈ Z, b ∈ Z2f . Let i : S2t = RP2t/RP2t−1 → RPn/RP2t−1 be the injection.

Then, remembering that ν
(t)
2 doesn’t depend on the index n,

aν
(t)
2 = i∗Ψk

C(ν
(t)
2 ) = Ψk

C(i∗ν
(t)
2 ) = kti∗ν

(t)
2 = ktν

(t)
2

where the second last equality comes from Corollary 1.48. Thus, a = kt. To compute

b, consider q : RPn/RP2t−2 → RPn/RP2t−1. By Lemma 7.8, q∗ν
(t)
2 = ν

(t)
1 . Also,

q∗ν
(t+1)
1 = (ν

(t)
1 )2 = −2ν

(t)
1 , so

aν
(t)
1 − 2bν

(t)
1 = q∗Ψk

C(ν
(t)
2 ) = Ψk

C(q∗ν
(t)
2 ) = Ψk

C(ν
(t)
1 ),

in K̃C(RPn/RP2t−2) ∼= Z2f+1 . If k is odd, we get

ktν
(t)
1 − 2bν

(t)
1 = Ψk

C(ν
(t)
1 ) = ν

(t)
1 ,

and so b = 1
2(kt − 1) ∈ Z2f . If k is even, we get ktν

(t)
1 − 2bν

(t)
1 = 0 and so b = 1

2k
t ∈

Z2f .

7.3 The Real K-Theory of RPn/RPm

Define φ(n,m) to be the number of integers p such that m < p ≤ n and p ≡ 0, 1, 2, or

4 mod 8.

Theorem 7.10. 1. Suppose m 6≡ −1 mod 4. Then there is a group isomorphism

K̃R(RPn/RPm) ∼= Z2f where f = φ(n,m).

(a) The (non-unital) ring K̃R(RPn) is generated by λ with two relations, de-

scribing multiplication

λ2 = −2λ and λf+1 = 0.

(As in the previous theorem, this implies 2fλ = 0.)

(b) For m 6= 0, the projection q1 : RPn → RPn/RPm induces an isomorphism

from K̃R(RPn/RPm) onto the ideal of K̃R(RPn) generated by λg+1, where

g = φ(m, 0).

2. Suppose m ≡ −1 mod 4. Writing m = 4t− 1, we have

K̃R(RPn/RP4t−1) ∼= Z⊕ K̃R(RPn/RP4t),

where the second summand is embedded by the quotient q2 : RPn/RP4t−1 →
RPn/RP4t.

For clarity, we delay all proofs and present the results on the Adams operations.

First we need to develop some notation for the generators. Let m 6≡ −1 mod 4 and

g = φ(m, 0). Define λ
(g+1)
1 to be the element in K̃R(RPn/RPm) that is mapped to
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λg+1 ∈ K̃R(RPn) by q∗1. Then the Adams operations on K̃R(RPn/RPm) are completely

described by their value on λ
(g+1)
1 .

Now let m = 4t − 1 and define g = φ(4t, 0). Write λ
(g)
2 for a generator, which we

define below Lemma 7.17 of the first summand in

K̃R(RPn/RP4t−1) ∼= Z⊕ K̃R(RPn/RP4t).

(Here g = φ(m, 0) as before.)

Theorem 7.11. The Adams operations Ψk
R : K̃R(RPn/RPm) → K̃R(RPn/RPm) for

m 6≡ −1 mod 4 and m ≡ −1 mod 4 are given by

Ψk
Rλ

(g+1)
1 =

λ
(g+1)
1 if k odd,

0 otherwise,

and

Ψk
Rλ

(g)
2 = k2tλ

(g)
2 +

1
2(k2t − 1)λ

(g+1)
1 if k odd,

1
2k

2tλ
(g+1)
1 otherwise,

respectively, where m = 4t− 1 in the second case.

To prove Theorem 7.10, we split it into a number of smaller, more manageable

results. But first we need some preliminary lemmata. We begin by examining the

relevant spectral sequence.

Lemma 7.12. Let (E∗,∗r , dr) be the Atiyah Hirzebruch spectral sequence associated with

K̃R(RPn/RPm). There are φ(n,m) non-zero groups along the main diagonal of the E2

page. If m ≡ −1 mod 4, then one of these groups is Z and all the others are Z2.

Otherwise, they are all Z2.

Unlike in Theorem 7.9, we will not show directly that these groups survive to the

E∞ page. Instead, we will leverage the results from Theorem 7.9, to get that they

survive and that the extensions are trivial.

Proof. Recall real Bott periodicity from chapter 1:

Kq
R(∗) ∼=


Z2 if q ≡ 6 or 7 mod 8,

Z if q ≡ 0 or 4 mod 8,

0 otherwise.

We compute the second page Ep,q2
∼= H̃p

(
RPn/RPm,Kq

R(∗)
)

using equations 7.1 and
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7.2:

q ≡ 7 mod 8 H̃p
(
RPn/RPm;Z2

)
Z2 Z2 Z2 Z2 Z2 Z2

q ≡ 6 mod 8 H̃p
(
RPn/RPm;Z2

)
Z2 Z2 Z2 Z2 Z2 Z2

q ≡ 4 mod 8 H̃p
(
RPn/RPm;Z

)
Z Z2 Z2 Z

q ≡ 0 mod 8 H̃p
(
RPn/RPm;Z

)
Z Z2 Z2 Z

even odd even odd even odd

p = m+ 1 m+ 1 < p < n p = n

As in the Theorem 7.9, we want to find the non-zero Ep,−p∞ terms and thus we are

mostly concerned with the fourth quadrant. As an example, the fourth quadrant of the

second page is drawn below, for n,m odd. The circles are Z2 and the squares are Z.

p

q

m+ 1 n

By inspecting the E2 page, we reach the following conclusions:

1. If m + 1 6≡ 0 mod 4, then the only non-zero terms along the main diagonal of

E2 are Z2. But Ep,−p2 is non-zero if and only if p ≡ 0, 1, 2 or 4 mod 8 and

m+ 1 ≤ p ≤ n. Therefore, there are φ(n,m) copies of Z2 on the main diagonal.

2. If m + 1 ≡ 0 mod 4 then Em+1,−m−1
2

∼= Z. All the other non-zero terms along

the main diagonal of E2 are Z2. Moreover, as before, Ep,−p2 is non-zero if and only

if p ≡ 0, 1, 2 or 4 mod 8 and m + 1 ≤ p ≤ n. Therefore, there are φ(n,m) − 1

copies of Z2 and one copy of Z on the main diagonal.
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Lemma 7.13. If n ≡ 0, 6 or 7 mod 8 then the complexification map

c : K̃R(RPn)→ K̃C(RPn)

is an isomorphism.

Proof. We know that K̃C(RPn) is generated by ν by Theorem 7.9. By definition ν = cλ,

where λ = ξ − ε1 ∈ K̃R(RPn). Thus, c : K̃R(RPn)→ K̃C(RPn) is always surjective.

By the above lemma, K̃R(RPn) has a filtration whose successive quotients are φ(n, 0)

copies of Z2. It follows that number of elements in K̃R(RPn) is at most 2φ(n,0).

When n = 8t+ 6, or n = 8t+ 7, we have φ(n, 0) = 4t+ 3. So K̃R(RPn) contains at

most 24t+3 elements. But by Theorem 7.9, K̃C(RPn) contains exactly

2b
1
2
nc = 24t+3

elements.

Since c is surjective, K̃R(RPn) must contain 24t+3 elements and consequently, c is

an isomorphism.

When n = 8t, a similar argument applies: φ(n, 0) = 4t and b1
2nc = 4t so K̃R(RPn)

and K̃C(RPn) have the same number of elements.

Lemma 7.14. Part 1.(a) of Theorem 7.10: There is a group isomorphism K̃R(RPn) ∼=
Z2f where f = φ(n, 0), and as a ring K̃R(RPn) is generated by λ with two relations,

describing multiplication

λ2 = −2λ and λf+1 = 0.

Proof. Theorem 7.9 and the above lemma show that K̃R(RPn) ∼= Z2f , for n ≡ 0, 6 or

7 mod 8. In this case, we also have that λ generates K̃R(RPn), since cλ = ν generates

K̃C(RPn),

Now reconsider the spectral sequence (E∗,∗r , dr) for K̃R(RPn). Along the main

diagonal of the E2 page, there are φ(n, 0) copies of Z2. All other terms on the main

diagonal are zero. If n ≡ 0, 6 or 7 mod 8, then all of the main diagonal terms on the

E2 page must survive to the E∞ page. Otherwise, K̃R(RPn) could not be in bijection

with K̃C(RPn).

We want to show that this is true for general n. Fix some n and choose n̂ > n with

n̂ ≡ 0 mod 8. Let (E∗,∗r , dr) and (Ê∗,∗r , d̂r) be the spectral sequences associated with

K̃R(RPn) and K̃R(RPn̂) respectively. Note that the E2 page is (roughly) a truncated

version of the Ê2 page. The inclusion map RPn → RPn̂ induces a map of spectral

sequences Ê∗,∗r → E∗,∗r . It follows that if d̂r is zero then the corresponding dr is also

zero. Therefore, all the main diagonal terms on the E2 page survive to the E∞ page.

However, it is not immediately obvious that what the extensions of the filtration for

K̃R(RPn) are.

Note that we already showed λ2 = −2λ. See equation 7.3 in the proof of Theorem

7.9. Then by the same reasoning as in the proof of Theorem 7.9, the relation λ2 = −2λ

resolves the question of extensions for general n. Therefore ,we have K̃R(RPn) ∼= Z2f

generated by λ. The second relation λf+1 = 0 follows from the first and the fact

that2fλ = 0.
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Lemma 7.15. Part 1.(b) of Theorem 7.10: Suppose m 6≡ −1 mod 4 and m 6= 0.

There is a group isomorphism K̃R(RPn/RPm) ∼= Z2f where f = φ(n,m). Moreover,

the projection q1 : RPn → RPn/RPm induces an isomorphism from K̃R(RPn/RPm)

onto the ideal of K̃R(RPn) generated by λg+1, where g = φ(m, 0).

Proof. Consider the exact sequence

K̃R(RPn/RPm)
q∗1−→ K̃R(RPn)

i∗−→ K̃R(RPm).

We know that λ ∈ K̃R(RPn) is sent to λ ∈ K̃R(RPm) by i∗. Therefore, i∗ is surjective

with kernel

Ker i∗ =
{

0, 2φ(m,0)λ, 2× 2φ(m,0)λ, 3× 2φ(m,0)λ..., (2φ(n,0)−φ(m,0) − 1)2φ(m,0)λ
}
.

Thus, Ker i∗ has 2f elements, where f = φ(n, 0)− φ(m, 0) = φ(n,m).

When m 6≡ −1 mod 4, there is a filtration on K̃R(RPn/RPm) such that the suc-

cessive quotients are f copies of Z2. Thus, K̃R(RPn/RPm) has at most 2f elements.

By exactness, it follows that

1. K̃R(RPn/RPm) has exactly 2f elements;

2. The map q∗1 is injective and therefore embeds K̃R(RPn/RPm) into K̃R(RPn) as

the ideal Ker i∗ generated by 2φ(m,0)λ = ±λφ(m,0)+1.

We have now proved part 1. of Theorem 7.10. We move onto part 2.

Lemma 7.16. Part 2 of Theorem 7.10: Suppose m ≡ −1 mod 4. Writing m = 4t−1,

we have

K̃R(RPn/RP4t−1) ∼= Z⊕ K̃R(RPn/RP4t),

where the second summand is embedded by the quotient q2 : RPn/RP4t−1 → RPn/RP4t.

Proof. It suffices to show that

0→ K̃R(RPn/RP4t)
q∗2−→ K̃R(RPn/RP4t−1)

i∗2−→ K̃R(RP4t/RP4t−1) ∼= K̃R(S4t) ∼= Z→ 0

is a split short exact sequence, where i∗2 is the obvious inclusion map. Such a short exact

sequence always splits, so we need only show that q∗2 is injective and i∗ is surjective.

In Lemma 7.15, we showed that the map

K̃R(RPn/RP4t)
q∗1−→ K̃R(RPn)

is injective. Since q∗2 factors through q∗1, it follows that q∗2 is also injective.

We will now show that i∗2 is surjective. Consider the commutative diagram, with the

bottom row and the middle and right columns exact and every map above is induced
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by an inclusion or a projection, except δ which is the connecting homomorphism in the

relevant long exact sequence.

0 ∼= K̃R(S4t−1) K̃R(RP4t−1/RP4t−2) K̃R(RP4t−1/RP4t−2)

Z ∼= K̃R(S4t) K̃R(RP4t/RP4t−2) K̃R(RPn/RP4t−2)

K̃1
R(RPn/RP4t) K̃R(RP4t/RP4t−1) K̃R(RPn/RP4t−1).

i∗1

δ

j∗1

i∗2

j∗2

We immediately see that j∗1 and j∗2 are surjective, since K̃R(RP4t−1/RP4t−2) ∼= 0.

By Lemma 7.15, K̃R(RP4t/RP4t−2) ∼= Z2 and i∗1 is a surjection.

Thus j∗1i
∗
2 = i∗1j

∗
2 is a surjection. But j∗1 is a surjection from

K̃R(RP4t/RP4t−1) = K̃R(S4t) ∼= Z

to Z2, which means j∗1 is the map z 7→ z mod 2. It follows that some odd number is

in the image of i∗2. Let a be the smallest positive odd number in the image of i∗2. Then

a ∈ Ker δ and so Za embeds in Im δ. This implies δ(1) has odd order.

Recall the spectral sequence for K̃R(RPn/RP4t). We know K̃1
R(RPn/RP4t) is built

from the groups Ep,1−p∞ , which are in turn built out of the groups Ep,1−p2 . But all Ep,1−p2

are either zero, Z2 or Z. This means that there are no elements of odd order in Ep,1−p∞ ,

except zero, and therefore, no elements of odd order in K̃1
R(RPn/RP4t), except zero.

Thus, δ(1) = 0, which implies Im i∗2 = Ker δ = K̃R(RP4t/RP4t−1). So i∗2 is surjective,

as required.

We have now proven Theorem 7.10. Before proving Theorem 7.11, we need to

construct the generator λ
(g)
2 . To do this, we state the following result whose proof

requires material beyond the scope of this thesis.

Lemma 7.17 [1, Lemma 7.7]. If n ≡ 0, 6 or 7 mod 8 then the complexification map

c : K̃R(RPn/RP 4t−1)→ K̃C(RPn/RP4t−1)

is an isomorphism for t even and a monomorphism for t odd.

In the case n ≡ 0, 6 or 7 mod 8, we define λ
(g)
2 ∈ K̃R(RPn/RP4t−1) as follows. If

t = 2u even, then g = φ(4t, 0) = 4u and we can define λ
(g)
2 to be the unique element

that is mapped to ν
(g)
2 by c. If t = 2u + 1 odd, then g = 4u + 3 and we define

λ
(g)
2 = −rν(4u+2)

2 , where r is the ‘realification’ map. With some work (c.f. proof of

lemma 7.7 of [1]), one obtains i∗2λ
(g)
2 ∈ K̃R(RP4t/RP4t−1). So we indeed have that λ

(g)
2

is a generator of Z in

K̃R(RPn/RP4t−1) ∼= Z⊕ K̃R(RPn/RP4t).

If n 6≡ 0, 6 or 7 mod 8, we take some n̂ > n with n̂ ≡ 0 mod 8. Define λ
(g)
2 ∈

K̃R(RPn/RP4t−1) as the image of λ
(g)
2 ∈ K̃R(RPn̂/RP4t−1) under the map induced by
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the inclusion. This definition doesn’t depend on the choice of n̂ since, as we decrease

n̂, each λ
(g)
2 map into each other.

Note that the image of λ
(g)
2 under the map

K̃R(RPn/RP4t−1)
c−→ K̃C(RPn/RP4t−1)

q∗−→ K̃C(RPn)

is νg. Since c commutes with q∗, the generator λ
(g)
2 maps to λg ∈ K̃R(RPn) under

q∗ : K̃R(RPn/RP4t−1)→ K̃R(RPn). This explains the choice of notation.

We can now compute the Adams operations:

Proof of Theorem 7.11. To start with, assume m 6≡ −1 mod 4. The method in the

proof of Theorem 7.9 is also applicable here: we know ξ2 = 1 and we know how Adams

operations behave on line bundles, so

Ψk
R(ξ) =

1 if k even,

ξ if k odd.

Then we can compute the Adams operations for λ = ξ − 1:

Ψk
R(λ) =

0 if k even,

λ if k odd,

from which we obtain

Ψk
R(λs) =

0 if k even,

λs otherwise.

The computation of Ψk
R(λ

(t+1)
1 ) then follows by naturality

q∗1Ψk
R(λ

(t+1)
1 ) = Ψk

R(λt+1) =

λt+1 = q∗1λ
(t+1)
1 if k odd,

0 otherwise.

Since q∗1 is injective, the desired result follows.

Now assumem = 4t−1. We will again leverage the known results for K̃C(RPn/RPm)

by passing through the complexification map c. Specifically, if n ≡ 0, 6 or 7 mod 8,

then we know by Lemmata 7.13 and 7.17 that c is injective. Moreover, the complexifi-

cation map commutes with the Adams operations. Thus, in the case t = 2u even, we

have g = 2t and

cΨk
R(λ

(g)
2 ) = Ψk

C(ν
(g)
2 ) = kgν

(g)
2 +

1
2k

gν
(g+1)
1 if k even,

1
2(kg − 1)ν

(g+1)
1 otherwise.

= k2tc(λ
(g)
2 ) +

1
2k

2tc(λ
(g+1)
1 ) if k even,

1
2(k2t − 1)c(λ

(g+1)
1 ) otherwise.

as required. The case when t is odd follows similarly.
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Finally, if n 6≡ 0, 6 or 7 mod 8, then we can embed K̃R(RPn/RPm) into K̃R(RPn̂/RPm),

for some n̂ > n with n̂ divisible by 8. The Adams operations on K̃R(RPn/RPm) then

follow by naturality.
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Chapter 8

Proof of the main theorems

In this chapter, we prove the two main theorems (1.5 and 1.3), thereby resolving the

vector fields problem.

8.1 Proof of theorem 1.5

Recall that we defined n = (2a + 1)2b, b = c + 4d and ρ(n) = 2c + 4d. In this section

we prove Theorem 1.5, which states that RP
n+ρ(n)
n is not coreducible, for d 6= 0. Since

we have proved the main result (theorem 1.3) using Steenrod squares when d = 0, we

are not concerned with the coreducibility of RP
n+ρ(n)
n when d = 0.

The following is one attempt at proving Theorem 1.5: If Sn
i−→ RPn+k

n
f−→ Sn is

degree 1, then the induced map on ordinary cohomology

Z ∼= Hn(Sn;Z)← Hn(RPn+k
n ;Z)← Hn(Sn;Z) ∼= Z

must be the identity. If n > 0 is odd and k ≥ 1, then Hn(RPn+k
n ) = 0. But the identity

map Z→ Z does not factor through 0. Thus, RPn+k
n cannot possibly be coreducible.

For n not odd, we need a stronger test to prove that RPn+k
n is not coreducible. It

turns out that K-theory provides this stronger test. That is, we will show that

K̃R(Sn)
i∗←− K̃R(RPn+ρ(n)

n )
f∗←− K̃R(Sn)

cannot be equality, by using the results on stunted projective spaces from the chapter

7. Specifically, we will use the fact that K̃R(RP
n+ρ(n)
n ) splits as a direct sum, with

one summand generating K̃R(Sn). Then we will use Adams operations to derive a

contradiction.

To prove this theorem, we will need the following easy number-theoretic result,

whose proof is delayed until the end of this section.

Lemma 8.1. If m = (2a′ + 1)2b
′

with b′ ≥ 1, then 3m − 1 ≡ 2b
′+2 mod 2b

′+3.

Proof of Theorem 1.5. Since d 6= 0, we know n ≡ 0 mod 8. Recall the function φ(p, q)

whose value is the number of integers s such that q < s ≤ p and s ≡ 0, 1, 2 or 4 mod 8.

91
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We compute

φ
(
n+ ρ(n), n

)
= φ

(
ρ(n), 0

)
= φ(8d, 0) + φ(2c, 0) = 4d+ c+ 1 = b+ 1.

By Theorem 7.10,

K̃R(RPn+ρ(n)/RPn−1) = Z⊕ Z2b+1

where the first summand is generated by λ
(g+1)
2 and the second by λ

(g+1)
1 , with g =

1
2n. Recall that the second summand is an embedding j∗ : K̃R(RPn+ρ(n)/RPn) →
K̃R(RPn+ρ(n)/RPn−1) induced by the inclusion. From the split exact sequence in the

proof of Lemma 7.16,

K̃R(RPn+ρ(n)/RPn)
j∗−→ K̃R(RPn+ρ(n)/RPn−1)

i∗−→ K̃R(RPn/RPn−1) ∼= Z,

we can conclude that i∗λ
(g+1)
1 = 0 and i∗λ

(g+1)
2 is a generator γ of K̃R(Sn) ∼= Z.

Now suppose, for contradiction, that we had a map f : RPn+ρ(n)/RPn−1 → Sn such

that the composition with i has degree 1. Then f∗i∗ is multiplication by one and so

f∗i∗γ = γ. Therefore,

f∗γ = Nλ
(g+1)
1 + λ

(g+1)
2

for some integer N .

By naturality of the Adams operations,

f∗Ψk
Rγ = Ψk

Rf
∗γ = Ψk

R

(
Nλ

(g+1)
1 + λ

(g+1)
2

)
,

for all integers k.

We know how Ψk
R acts on Sn by Corollary 1.48 and on RPn+ρ(n)/RPn−1 by Theorem

7.11, so we get

f∗(kn/2γ) = km/2λ
(g+1)
2 +

1

2

(
km/2 − δ

)
λ

(g+1)
1 + δNλ(g+1),

where δ = 0 if k even and 1 otherwise. Then

km/2Nλ
(g+1)
1 + km/2λ

(g+1)
2 = km/2λ

(g+1)
2 +

1

2

(
km/2 − δ

)
λ

(g+1)
1 + δNλ(g+1)

which factors to (
N − 1

2

)(
km/2 − δ

)
λ

(g+1)
1 = 0.

Since λ
(g+1)
1 is a generator of K̃R(RPn+ρ(n)/RPn) ∼= Z2b+1 , it follows(

N − 1

2

)(
km/2 − δ

)
≡ 0 mod 2b+1,

or

(2N − 1)(km/2 − δ) ≡ 0 mod 2b+2,
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for all k. Now Lemma 8.1 gives us a contradiction in the case k = 3: taking m = n
2 in

the lemma, we have b′ = b− 1 and so

3n/2 − 1 ≡ 2b+1 mod 2b+2

which implies

M(3n/2 − δ) ≡ 2b+1 6≡ 0 mod 2b+2

for any odd M .

Proof of Lemma 8.1. Firstly, we prove by induction on b′ that

32b
′
− 1 ≡ 2b

′+2 mod 2b
′+3,

for b′ ≥ 1. In the case b′ = 1, the result is true since 321 − 1 = 8. In the step case, we

have

32b
′+1 − 1 =

(
32b
′
− 1

)(
32b
′

+ 1

)
.

By the induction hypothesis, 32b
′
− 1 = 2b

′+2 + q2b
′+3 for some integer q. Also, since

32 ≡ 1 mod 8, we have 32b
′
≡ 1 mod 8 and consequently 32b

′
+ 1 = 2 + r23 for some

integer r. Thus,

32b
′+1 − 1 =

(
2b
′+2 + q2b

′+3
)(

2 + r23
)
≡ 2b

′+3 mod 2b
′+4,

which proves the induction step.

Now, we have

(
32b
′
− 1

)2

≡ 0 mod 2b
′+3 by this induction result and consequently

32·2b′ ≡ 2(32b
′
− 1) + 1 ≡ 2b

′+3 + 1 ≡ 1 mod 2b
′+3.

Then 3(2a′)2b
′
≡ 1 mod 2b

′+3 so

3m − 1 ≡ 32b
′
· 3(2a′)2b

′
− 1 ≡ 32b

′
− 1 ≡ 2b

′+2 mod 2b
′+3,

where the last equivalence follows by using the induction result.

8.2 Proof of theorem 1.3

We need one final result before we can prove theorem 1.3.

Theorem 8.2. In the stable homotopy category, for n ≥ 0,

Σ−kRPn+k
k

only depends on k modulo 2φ(n,0), where φ(n,m) is the number of integers p such that

m < p ≤ n and p ≡ 0, 1, 2, or 4 mod 8.



94 CHAPTER 8. PROOF OF THE MAIN THEOREMS

This theorem is called James periodicity, after I. M. James.

An immediate corollary, is that

Σ−kRPn+k
k
∼= Σ−k−qfRPn+k+qf

k+qf ,

where f = 2φ(n,0), and consequently

RPn+k
k
∼= Σ−qfRPn+k+qf

k+qf ,

for all integers q.

Proof. We may suppose that n > 0, since for n = 0, the theorem is a tautology. We

know that RPn+k
k = Th(RPn, kξ) only depends on the class of kξ in KR(RPn) by

Proposition 4.34. Equivalently, Σ−kTh(RPn, kξ) only depends on kξ− εk in K̃R(RPn).

Recall from Theorem 7.10 that λ = ξ − ε1 is the generator of K̃R(RPn) and has

order 2φ(n,0). Thus, kξ − εk = kλ depends only on k modulo 2φ(n,0).

Theorem 1.3. There does not exists ρ(n) vector fields on Sn−1.

We will prove this by contradiction, using Theorem 1.5 proved above.

Proof. Since we have already proved this result when n is not a multiple of 16 in chapter

3, we may assume that d 6= 0, where n = (2a+ 1)2b with b = c+ 4d.

Suppose there did exist ρ(n) vector fields on Sn−1. Then there exists ρ(n) vector

fields on Spn−1 by Lemma 2.12, for all p. By Lemma 1.40, there exists a section

Vpn,ρ(n)+1 → Spn−1. We chose p to be odd and large enough such that pn − 1 ≤
2(pn− ρ(n)− 1). (The fact we need p odd will only become apparent at the end of the

proof.) Then we can apply Corollary 1.42. We obtain a map Spn−1 → RPpn−1
pn−ρ(n)−1

giving a homotopy equivalence

Spn−1 ∨ RPpn−2
pn−ρ(n)−1 ' RPpn−1

pn−ρ(n)−1.

It follows that there is a weak equivalence between the suspension spectra of the

above spaces. By taking Spanier-Whitehead duals, which preserves wedge sums, we

have

S−pn+1 ∨ ΣRP
−pn+ρ(n)
−pn+1

∼= ΣRP
−pn+ρ(n)
−pn ,

where we have compute DRPpn−2
pn−ρ(n)−1 using Theorem 5.17.

Since Σ is an equivalence in spectra, we can take its inverse to get a weak equivalence

S−pn ∨ RP
−pn+ρ(n)
−pn+1

∼= RP
−pn+ρ(n)
−pn .

We now want to apply James periodicity so that we can move into the stable range.

We know that RP
−pn+ρ(n)
−pn only depends on −pn modulo f = 2φ(ρ(n),0) and RP

−pn+ρ(n)
−pn+1

only depends on −pn+ 1 modulo f ′ = 2φ(ρ(n)−1,0). Since either f = f ′ or f = 2f ′, we

have that RP
−pn+ρ(n)
−pn+1 only depends on −pn+ 1 modulo f . Thus,

S−pn ∨ Σ−qfRP
qf−pn+ρ(n)
qf−pn+1

∼= Σ−qfRP
qf−pn+ρ(n)
qf−pn ,
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or

Sqf−pn ∨ RP
qf−pn+ρ(n)
qf−pn+1

∼= RP
qf−pn+ρ(n)
qf−pn ,

for all q.

We choose q so that:

1. We have qf−pn > 0. This ensures that RP
qf−pn+ρ(n)
qf−pn

∼= RPqf−pn+ρ(n)/RPqf−pn−1

is actually a stunted projective space and Sqf−pn a sphere.

2. We have ρ(n) + 1 < qf − pn. By Corollary 4.44, this ensures that we are in the

stable range. Then the weak equivalence

Sqf−pn ∨ RP
qf−pn+ρ(n)
qf−pn+1

∼= RP
qf−pn+ρ(n)
qf−pn ,

corresponds to a homotopy equivalence

Sqf−pn ∨ RP
qf−pn+ρ(n)
qf−pn+1 ' RP

qf−pn+ρ(n)
qf−pn ,

of spaces.

3. We have qf is a multiple of 2n.

Therefore, the space RPqf−pn+ρ(n)/RPqf−pn−1 is coreducible. Since p is odd and qf

is a multiple of 2n, it follows that m = qf−pn is an odd multiple of n. So ρ(m) = ρ(n).

Moreover, m is divisible by 16, since n is. Thus,

RPqf−pn+ρ(n)/RPqf−pn−1 = RPm+ρ(m)/RPm−1

is not coreducible. But this contradicts Theorem 1.5.
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Appendix A

Some Category Theory

A.1 Limits

Definition A.1. Let I be a (small) category. A diagram of shape I is a functor

D : I → C .

A cone of a diagram D is an object A ∈ C with a collection of maps (A
fi−→ D(i))i∈I .

A limit of a diagram D is a cone (L, {fi}i∈I) such that, for every cone (A, {f ′i}i∈I),
there exists a unique map f : A→ L with

A

D(i) L

f
f ′i

fi

commuting, for all i ∈ I.

Definition A.2. Let I be a (small) category. A cocone of a diagram D : I → C is an

object A ∈ C with a collection of maps (D(i)
fi−→ A)i∈I .

A colimit of a diagram D is a cocone (L, {fi}i∈I) such that, for every cocone

(A, {f ′i}i∈I), there exists a unique map f : L→ A with

A

D(i) L
fi

f ′i
f

commuting, for all i ∈ I.

Direct Limits

Definition A.3. Let I be the category

• • • · · ·

97
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A directed system is a diagram of shape I†. A direct limit (or inductive limit) is the

colimit of a directed system. If

A1 → A2 → A3 → ...

is a directed system, define colimn→∞An to be the associated direct limit.

Proposition A.4. Modules (and therefore abelian groups) always have direct limit.

We omit the proof of this proposition.

Proposition A.5. Suppose we have a sequence of sets with maps

S1 → S2 → S3 → ...

that are injective. Then the direct limit of this sequence exists.

Proof idea. Define an relation on
⋃
i Si by the following x ∼ y if x ∈ Si and y ∈ Sj with

i < j and x gets mapped to y by Si → Si+1 → ...→ Sj . Take the reflexive symmetric

closure of ∼. Then ∼ is an equivalence relation on
⋃
i Si. The set of equivalence classes

satisfies the universal property.

This proves that the direct limit

C = colim
n→∞

Cn

in Definition 4.35 of a stable cell always exists.

A.2 Monoidal Categories

Definition A.6. A monoidal category is a tuple (C ,⊗, a, S, ι) where

1. C is a category,

2. ⊗ : C × C → C is a bifunctor, callend the tensor product,

3. a : (−⊗−)⊗−
∼=−→ −⊗ (−⊗−) is a natural isomorphism, called the associator,

4. S ∈ C , called the unit object.

We require a monoidal category to satisfy two axioms:

1. the pentagon axiom (c.f. [8, §2.1]), and

2. the unit axiom: there are natural isomorphisms λX : S⊗X ∼= X and ρX : X⊗S ∼=
X, called the left and right unitors respectively.

A monoidal category is associative if its associator a is the identity. A monoidal

category is strict if its associator and its left and right unitors are the identity.

A monoidal category is symmetric if there exists a natural isomorphism X ⊗ Y
∼=−→

Y ⊗X.
†Actually, a directed system is more general than this: let I be a small category with a preorder

(reflexive and transitive relation) on objects such that every pair has an upper bound. Further, the

morphisms of I consist of fij : i→ j for all i ≤ j such that fii = idi and fjk ◦fij = fik for all i ≤ j ≤ k.

A directed system is a diagram of shape I.
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A.3 Duals

Definition A.7. Suppose C is a monoidal category with unit object I. A dual of an

object X ∈ C is an object X∗ with maps

ε : X ⊗X∗ → S and η : S → X ⊗X∗,

such that the two pentagon diagrams commute (c.f. [8, §2.10]).

If C is an associative, symmetric monoidal category, then the pentagon axioms can

be restated as requiring

X ⊗ S 1⊗η−−→ X ⊗X∗ ⊗X ε⊗1−−→ S ⊗X and X∗ ⊗ S 1⊗η−−→ X∗ ⊗X ⊗X∗ ε⊗1−−→ S ⊗X∗

to be the canonical isomorphisms.

Theorem A.8. 1. If X∗ is dual to X, then for all Y and W , the map

Hom(Y ⊗X∗,W )
−⊗X−−−→ Hom(Y ⊗X∗ ⊗X,W ⊗X)

−◦η◦ρ−1
Y−−−−−→ Hom(Y,W ⊗X)

is an isomorphism, where ρY is the natural isomorphism Y ⊗ S ∼= Y .

2. If X∗ is a dual of X, then X is a dual of X∗.

A.4 Internal Hom

Definition A.9. Let C be a monoidal category. An internal hom in C is a functor

[−,−] : C op × C → C

such that for every object X ∈ C , the functors −⊗X and [X,−] are adjoint:

−⊗X a [X,−].

If an internal hom exists, then C is called closed.

In a closed category, there is a isomorphism

Hom(X, [Y, Z])
∼=−→ Hom(X ⊗ Y,Z),

which is natural in all three variables.

The terminology ‘closed’ refers to the fact that forming hom-sets does not lead ‘out

of the category’. The stable homotopy category is closed symmetric monoidal category.
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