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Abstract

Neighbor maps are a new development in fractal geometry that can be used

to determine if an iterated function system (IFS) obeys the open set condition

(OSC). Neighbor maps also describe the topology of the fractal attractor. In this

thesis, the definition of the set of proper neighbor maps is generalised to any IFS

comprising contractive similitudes. It is proven, an IFS of similitudes obeys the

OSC if and only if the identity map is not in the closure of the set of proper

neighbor maps. The extended definition of the set of proper neighbor maps is

used to calculate several neighbor graphs of the generalised Sierpinski triangles.

It is then proven, if a generalised Sierpinski triangle has scaling factors that obey

the algebraic condition, then its neighbor graph is of finite type. The converse

is proven to only hold for the Sierpinski triangle and the Steemson triangle.

Neighbor maps are also applied to fractal tiling theory to discuss the prototile

set.
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Chapter 1

Introduction and Preliminary

Theory

1.1 Introduction

Fractals are mathematical objects that duplicate scaling properties inherit in

well-known geometry such as lines and triangles but without the restriction of

smoothness. The fractals considered in this thesis are self-similar sets generated

by an iterated function system (IFS). An IFS, F = {Rm; f1, . . . fN}, is a finite

collection of continuous functions on Rm. We will be considering the case where fi

are similitudes which means that they are compositions of rotations, reflections,

translations and uniform scalings of Rm. The fractal attractor, denoted A, is the

unique compact subset of Rm such that A =
⋃N
i=1 fi(A). For an example of a

fractal attractor see Figure 2.5 on page 22.

An important task in the field of fractal geometry is to determine the topology

of fractal attractors. The question we ask is: does the IFS that generated the frac-

tal attractor satisfy the open set condition (OSC)? An IFS F satisfies the OSC if

there exists a nonempty open set O such that fi (O) ⊂ O and fi (O)∩ fj (O) = ∅
for all i, j ∈ {1, . . . , N} with i 6= j. When a fractal attractor satisfies the OSC it

means that the self-similar pieces of which it consists do not overlap ‘too much’,

this is made precise in Chapter 2.

The motivation to study fractal geometry comes from modelling problems.

The natural world is rough and bumpy, so instead of using smooth models from

Euclidean geometry or calculus, we can create non-smooth models using fractal

1



2 CHAPTER 1. INTRODUCTION AND PRELIMINARY THEORY

geometry. To model accurately it is required that we understand the fractal at-

tractors being used, specifically, the Hausdorff dimension (Def 1.11) of the fractal

attractor? The Hausdorff dimension is useful when applying fractal geometry to

modelling problems, but often cannot be calculated. However, if the IFS satis-

fies the OSC then we can easily evaluate the Hausdorff dimension of the fractal

attractor using the Moran-Hutchinson Theorem (Thm 1.14) [PMor46, Hut81].

Therefore, determining if an IFS satisfies the OSC is often a necessity for mod-

elling problems but due to its difficulty, it has remained an open area of study in

the field.

The main goal of this thesis is to provide an in-depth discussion of the OSC

and an investigation into the recently developed theory of neighbor maps, includ-

ing proving some original results. The remainder of this chapter is dedicated to

introducing the preliminary theory for the discussion to follow. This includes

formally defining contractive similitudes, which are the type of functions that we

will consider and the basics of IFS theory. This is followed by an explanation of

the Hausdorff measure and how it is used to calculate the Hausdorff dimension

of fractal attractors.

Chapter 2 is a literature review of the work done up until now on the OSC. The

historical overview starts in 1946 when P.A.P. Moran defined the OSC [PMor46].

Later, Lalley [Lal88] provided an alternative topological condition called the

strong open set condition (SOSC). However, in Rm the SOSC is equivalent to

the OSC as proved by Schief [Sch94]. Another equivalence to the OSC was dis-

covered by Schief and is known as the combinatorial condition. Loosely speaking,

it says that the OSC is satisfied if the self-similar pieces that comprise the fractal

attractor only intersect with finitely many other fractal attractor pieces that are

of an appropriate size. Chapter 2 finishes with a discussion of a proposed theorem

by M. Morán [MMor99], it was stated that the OSC is satisfied if and only if the

attractor is not equal to its dynamical boundary (Def 1.7). However, the proof

that M. Morán offered was incorrect and so his mistake will be explained. In

doing so we will discuss why the proposed theorem remains open.

Chapter 3 introduces neighbor maps from Bandt and collaborators [BG92,

BHR05, BM09, BM18]. Neighbor maps are a new development in investigating

if an IFS satisfies the OSC and in describing the topology of a fractal attrac-

tor. Consider the Sierpinski triangle (Fig: 2.5 on Pg 22), it contains many little
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Sierpinski triangles of different sizes in various locations. For any pair of small

Sierpinski triangles we can consider the similitude that maps one of those little

triangles to the original Sierpinski triangle. This map will take the other little

Sierpinski triangle ‘elsewhere’ in R2. The neighbor map between these two little

Sierpinski triangles is the similitude that maps the original Sierpinski triangle to

the image of the other little Sierpinski triangle that is sitting ‘elsewhere’. In other

words, neighbor maps give the relative relationships between the little self-similar

pieces that make up the fractal attractor when one of the little self-similar pieces

is treated as the original fractal attractor. Bandt showed that the OSC is satisfied

if and only if the identity map is not in the closure of the set of neighbor maps

[BG92]. In the case where all functions in the IFS have equal scaling factors,

Bandt defined a subset of neighbor maps called the proper neighbor maps, which

map the attractor to an isometric copy that has a nonempty intersection with the

attractor [BM09]. The set of proper neighbor maps is used as the vertex set to

construct a directed graph called the neighbor graph that describes the topology

of the fractal attractor in the simplest possible way [BM18]. In this thesis, a

stronger theorem than Bandt’s is proven: for an IFS with uniform scaling factors

the OSC is satisfied if and only if the identity map is not in the closure of the set

of proper neighbor maps.

Chapter 4 is the application of Bandt’s neighbor map theory to the recently

discovered generalised Sierpinski triangles [SW18]. When the functions in the

IFS do not have equal scaling factors but do have scaling factors that are integer

powers of a common scaling factor, Grant [Gra18] proposed an extension to the

definition of the set of proper neighbor maps. This allowed us to calculate the set

of proper neighbor maps and neighbor graphs for specific cases of the generalised

Sierpinski triangles. In this thesis, Grant and Bandt’s discussion of proper neigh-

bor maps is extended to the case where the similitudes in the IFS have arbitrary

scaling factors. The new theorem from Chapter 3 is extended first to Grant’s

case and then to the arbitrary case. We now have, an IFS comprising similitudes

of arbitrary scaling factors satisfies the OSC if and only if the identity map is not

in the closure of the set of proper neighbor maps.

Chapter 5 provides a discussion of finite type neighbor graphs that involves

proving original results. A neighbor graph is of finite type if the set of proper

neighbor maps, which each correspond to a vertex in the graph, is finite. In this

thesis, we prove that if the scaling factors of a generalised Sierpinski triangle are
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integer powers of a common scaling factor then the neighbor graph is of finite

type. The converse is also proven true for two types of the generalised Sierpinski

triangles, the Sierpinski and Steemson triangles. However, the converse is shown

not to be true for the other two types of generalised Sierpinski triangles, the

Williams and Pedal triangles. Therefore, we are able to construct an example

where the algebraic condition is not satisfied but the neighbor graph is of finite

type. We conclude with a discussion of how neighbor maps can be applied to

fractal tiling theory. A neighbor map gives the relationship between different

tiles in the fractal tiling and the proper neighbor maps describe the fractal tiles

that can be adjacent to each other in the tiling. Lastly, for each of the IFSs

considered in this thesis we determine the minimum number of different sized

fractal tiles needed in the tiling.

1.2 Functions

For the purposes of this thesis we restrict our attention to (Rm, d) where d is the

usual Euclidean metric on Rm. More generally we could consider an arbitrary

complete metric space (X, dX) however we do not find it necessary for the results

proven here.

In fractal geometry, we are often concerned with affine maps. An affine map

f : Rm → Rm is a transformation of the form f(x) = Lx+ b, where L ∈ Rm×Rm

is a linear transformation (i.e. a matrix) and b ∈ Rm is a vector. For this thesis

we are concerned with a specific type of affine map known as a similitude.

Definition 1.1. A similitude is a function f : Rm → Rm of the form f(x) =

λOx+ b, where λ ∈ R, O is an isometry of Rm and b ∈ Rm.

Remark 1.2. An isometry is a function ϕ : Rm → Rm that preserves distance

between points such that d (ϕ (x) , ϕ (y)) = d (x, y) for all x, y ∈ Rm. Isometries of

R2 are any composition of rotations around the origin, reflections about a straight

line through the origin and translations. The isometries of R3 are the same as R2,

except with rotation and reflection defined with respect to a line passing through

the origin and a plane containing the origin. The natural extensions of rotation

and reflection continue to give the isometries of Rm to be any composition of

rotations, reflections and translations. For simplicity, the isometry O only needs

to be considered as a composition of rotations and reflections which fix the origin

since any translation can be absorbed into b ∈ Rm.
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A visual interpretation of a similitude is a transformation that can rotate,

reflect, translate and scale the space uniformly. The more general affine transfor-

mations also allow the space to be scaled differently in different directions.

A function f : Rm → Rm is contractive if there exists λ ∈ [0, 1) such that

d (f (x) , f (y)) ≤ λd (x, y) for all x, y ∈ Rm. If f is a similitude then it is con-

tractive precisely when its scaling factor, λ, satisfies 0 < |λ| < 1.

1.3 IFS Theory

A set of functions known as an iterated function system (IFS) are used to con-

struct fractal attractors.

Definition 1.3. Iterated Function System (IFS)

If fn : Rm → Rm, n ∈ {1, 2, ..., N}, are a finite number of contractive similitudes

then F := {Rm; f1, . . . , fN} is called an iterated function system.

Remark 1.4. An IFS, F = {Rm; f1, . . . , fN}, is called contractive if all functions,

fi, in the IFS are contractive.

The Hausdorff subsets, denoted H (Rm), are the nonempty compact sets of

(Rm, d), i.e. the closed and bounded subsets of Rm. Overloading the notation

we can treat the IFS as one function that acts on the Hausdorff subsets, that is,

F : H (Rm)→ H (Rm). We define the operation of an IFS on a ‘point’ S ∈ H (Rm)

as

F(S) =
N⋃
i=1

fi (S) = f1 (S) ∪ · · · ∪ fN (S) . (1.1)

Let Fk represented repeated composition, Fk (S) = F (· · · F(S) · · · ) (k times).

Definition 1.5. The attractor of an IFS F is A ∈ H (Rm) if F (A) = A.

Banach’s contraction mapping theorem states that every contractive function

in a complete metric space has a unique fixed point. The following theorem

is a specific case of this by considering F acting on the complete metric space

(H (Rm) , dH), where dH is the Hausdorff metric defined for X, Y ∈ H(R2) as

dH(X, Y ) = max {maxx∈X miny∈Y {d(x, y)} ,maxy∈Y minx∈X {d(x, y)}} .

Theorem 1.6. Hutchinson’s Theorem [Hut81]

If the IFS F is contractive on the complete metric space (Rm, d), then F has a

unique attractor A and for any S ∈ H (Rm), limk→∞Fk(S) = A, where the limit

is taken with respect to the Hausdorff metric.
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The critical set, also referred to as the set of overlap, is defined by C =⋃
i 6=j, fi (A) ∩ fj (A). The critical set is used to define the dynamical boundary

and to classify different types of IFSs.

Definition 1.7. The Dynamical Boundary

For an IFS F = {Rm; f1, . . . , fN} with attractor A and critical set C we define

the dynamical boundary to be

∂MA =
∞⋃
k=1

F−k (C) ∩ A,

where S denotes the closure of the set S.

Remark 1.8. The subscript M is in reference to M. Morán who defined it and

to distinguish it from Bandt’s definition (Def 2.16).

Remark 1.9. The reader may find the definition of ∂MA ambiguous due to not

knowing the order of operations between the infinite union and the intersection.

However, it is straightforward to see
⋃∞
k=1

(
F−k (C) ∩ A

)
=
(⋃∞

k=1F−k (C)
)
∩ A

by the following argument (note that N = {1, 2, 3, . . . }):

x ∈
∞⋃
k=1

(
F−k (C) ∩ A

)
⇐⇒ ∃j ∈ N s.t. x ∈ F−j (C) ∩ A

⇐⇒ ∃j ∈ N s.t. x ∈ F−j (C) and x ∈ A

⇐⇒ x ∈
∞⋃
k=1

F−k (C) and x ∈ A

⇐⇒ x ∈

(
∞⋃
k=1

F−k (C)

)
∩ A.

(1.2)

An IFS is classified into one of three types using its critical set and dynamical

boundary. If the critical set is empty then the IFS is called totally disconnected.

If C 6= ∅ and ∂MA 6= A then the IFS is just touching. If there exists a nonempty

open set U ⊂ Rm such that U ⊂ fi (A) ∩ fj (A) for some i 6= j then the IFS is

said to be overlapping.

1.4 Hausdorff Measure and Fractal Dimension

In fractal geometry we use the s-dimensional Hausdorff measure to define the

dimension of fractal attractors. First, let us define the diameter of a set S ⊂ Rm,
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|S|, to be the least upper bound for the distance between two points of the set.

That is, |S| = sup {d (x, y) : x, y ∈ S}. If {Ui} is a countable collection of sets of

diameter at most δ that cover the set F , i.e. F ⊂
⋃∞
i=1 Ui with 0 ≤ |Ui| ≤ δ for

each i, then it is called a δ-cover of F .

Definition 1.10. s-Dimensional Hausdorff Measure [Fal04]

Let F ⊂ Rm and s ≥ 0. For any δ > 0 we define

Hs
δ (F ) = inf

{
∞∑
i=1

|Ui|s : {Ui} is a δ-cover of F

}
. (1.3)

dimH F

∞

0
0

s

∞

Hs (F )

As δ decreases the class of permissible covers of F

is reduced. Therefore, the infimum of Hs
δ (F ) increases,

and so limits as δ → 0. This limit exists in R ∪ {∞},
and therefore we define the s-dimensional Hausdorff

measure as,

Hs (F ) = lim
δ→0
Hs
δ (F ) . (1.4)

Definition 1.11. Hausdorff Dimension [Fal04]

The Hausdorff dimension of a set F ⊂ Rm, denoted dimH F , is the value at which

Hs (F ) ‘jumps’ from ∞ to 0. Formally we have

dimH F = inf {s ≥ 0 : Hs (F ) = 0} = sup {s : Hs (F ) =∞} . (1.5)

In fractal geometry we have more than one measurement of dimension. Along

with the Hausdorff dimension we also have the similarity dimension.

Definition 1.12. Similarity Dimension [Hut81]

If F = {Rm; f1, . . . , fN} is an IFS where each fi is a similitude with scaling factor

0 < λi < 1, then the similarity dimension is the unique positive solution D to the

equation
∑N

i=1 λ
D
i = 1.

Remark 1.13. From [Hut81] we have that the solution D is unique. We see

this by considering γ(t) :=
∑N

i=1 λ
t
i. Since 0 < λi < 1 then we have that γ is

a monotonically decreasing continuous function with γ(0) = N and γ(t) → 0 as

t→∞. Therefore there is a unique positive value t such that γ(t) = 1.

The Hausdorff dimension and similarity dimension of a fractal attractor are

equal when the IFS generating the fractal attractor satisfies the OSC which was

introduced in Section 1.1 and is formally defined in Definition 2.1.



8 CHAPTER 1. INTRODUCTION AND PRELIMINARY THEORY

Theorem 1.14. The Moran-Hutchinson Theorem [Hut81, PMor46]

If an IFS comprising similitudes satisfies the open set condition, then the Haus-

dorff dimension of the attractor is equal to the similarity dimension.

The following proposition is a nontrivial relation between the similarity di-

mension and the Hausdorff dimension when the OSC condition is not necessarily

satisfied. It is taken from Hutchinson [Hut81] and is proven here in a way that

will be useful to us later.

Proposition 1.15. [Hut81](c.f. 5.1.(4)(i))

If F is an IFS constructed only of similitudes with attractor A, similarity dimen-

sion D and Hausdorff dimension dimH A, then HD (A) <∞ and dimH A ≤ D.

Proof. Let F = {Rm; f1, . . . , fN} be an IFS of contractive similitudes each with

a contraction factor λi. As A is the attractor of F then A =
⋃N
i=1Ai where

Ai = fi(A). This union describes a way of breaking up A into smaller pieces.

Given any δ > 0, there exists a finite integer p such that the process of breaking

up A can be repeated so that A =
⋃

iAi, where Ai = Ai1,...,ip = fi1 ◦ · · · ◦ fip (A)

and |Ai| < δ for length p strings of integers {1, . . . , N}. Therefore given a δ > 0

we have a δ-cover of the attractor by using the pieces Ai. This implies,

HD
δ (A) = inf

{
∞∑
i=1

|Ui|D : {Ui} is a δ-cover of F

}
≤
∑
i

|Ai|D =
∑
i

|fi (A)|D =
∑
i

λDi |A|
D = |A|D .

(1.6)

The last equality comes from recalling that by the definition of the similarity

dimension we have
∑N

i=1 λ
D
i = 1 and then expanding the summation. Therefore

for any given δ > 0 we have HD
δ (A) ≤ |A|D. Taking the limit as δ → 0 gives

us that HD (A) ≤ |A|D. As A ∈ H (Rm) then A is bounded and so it has finite

diameter and therefore |A|D < ∞. Thus, it has been shown that for an IFS of

similitudes with attractor A and similarity dimension D we have HD (A) < ∞.

This says that the jump of Hs(A) from ∞ to 0 occurs before or at D which

implies that dimH A ≤ D.



Chapter 2

The Open Set Condition

In an effort to understand the topology of a fractal attractor we have the following

question: given an IFS, how can we prove whether or not it satisfies the open set

condition? Before we can discuss this question we must properly understand the

OSC.

2.1 The Open Set Condition

The open set condition was defined by P.A.P. Moran [PMor46] as a way of clas-

sifying if the critical set of an IFS is small.

Definition 2.1. The Open Set Condition (OSC)

The IFS F = {Rm; f1, . . . fN} with obeys the open set condition if there exists a

nonempty open subset O of Rm such that

1. fi(O) ⊂ O for all i ∈ {1, . . . , N}, and

2. fi(O) ∩ fj(O) = ∅ for all i, j ∈ {1, . . . , N} with i 6= j.

It is important to realise that it is the IFS that obeys the OSC not the at-

tractor. By Hutchinson’s Theorem (Thm 1.6) each contractive IFS on a complete

metric space has a unique attractor, however the converse is not true. Example

2.2 provides two distinct IFSs which have the same attractor where one obeys

the OSC while the other does not.

Example 2.2. Let us define two IFSs, F =
{
R; f1(x) = 1

2
x, f2(x) = 1

2
x+ 1

2

}
and G =

{
R; g1(x) = 3

5
x, g2(x) = 3

5
x+ 2

5

}
. For A = [0, 1] we have F(A) = A and

G(A) = A by Equations 2.1 and 2.2. By Hutchinson’s Theorem we have that

9
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A = [0, 1] is the unique attractor for both F and G. A graphical representation

of the IFSs is displayed in Figure 2.1.

F ([0, 1]) = f1 ([0, 1]) ∪ f2 ([0, 1]) =

[
0,

1

2

]
∪
[

1

2
, 1

]
= [0, 1] (2.1)

G ([0, 1]) = g1 ([0, 1]) ∪ g2 ([0, 1]) =

[
0,

3

5

]
∪
[

2

5
, 1

]
= [0, 1] (2.2)

0 1 0 1

f1(A)

f2(A)

g1(A)

g2A)

Figure 2.1: The two IFSs F and G, have [0, 1] as the attractor but only F obeys

the OSC.

In order to show that F obeys the OSC we can simply provide a sufficient

nonempty open set such as O = (0, 1). We have that,

f1 (O) = f1 ((0, 1)) =

(
0,

1

2

)
⊂ (0, 1) = O,

f2 (O) = f2 ((0, 1)) =

(
1

2
, 1

)
⊂ (0, 1) = O,

and f1 (O) ∩ f2 (O) =

(
0,

1

2

)
∩
(

1

2
, 1

)
= ∅.

(2.3)

Therefore F satisfies the OSC.

It will now be shown that G does not satisfy the open set condition. If we

were to try and show this directly from the definition of the OSC then it would

be nontrivial and inelegant. This is because it would involve showing that there

does not exist any suitable open set O. Initially, one might think that we could

simply take an arbitrary open interval (a, b) and show that there does not exist

any a, b ∈ R such that the OSC is satisfied. However, we must also consider ar-

bitrary open sets such as those constructed from infinite unions of open intervals

because there is no requirement that O must be convex or connected [Ban91].

Therefore, the task of showing that all nonempty open sets do not satisfy the

OSC can be extremely difficult depending on the IFS. Note that for F above we

showed that it satisfies the OSC by simply producing a suitable O. If we were
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not able to find the needed O, then although an IFS could satisfy the OSC it

could be equally difficult to show that it does satisfy the OSC.

Now, in order to show that G does not satisfy the OSC we will assume that

it does and gain a contradiction. Assuming G satisfies the OSC then by the

Moran-Hutchinson Theorem (Thm 1.14) we have that the Hausdorff dimension is

equal to the similarity dimension. The similarity dimension is the unique positive

solution D to the equation,

1 =
N∑
i=1

λDi = 2

(
3

5

)D
.

By a simple calculation we have D =
ln( 1

2)
ln( 3

5)
≈ 1.36. It is a contradiction to have

a Hausdorff dimension of 1.36 since the IFS is defined on R. Therefore it was

incorrect to assume that G satisfies the OSC.

2.2 The Strong Open Set Condition

Lalley [Lal88] strengthened the open set condition to the strong open set condi-

tion by adding the extra requirement that the nonempty open set must have a

nonempty intersection with the attractor.

Definition 2.3. The Strong Open Set Condition (SOSC)

The IFS F = {Rm; f1, . . . fN} with attractor A obeys the strong open set condi-

tion if there exists a nonempty open subset O of Rm such that

1. fi(O) ⊂ O for all i ∈ {1, . . . , N},

2. fi(O) ∩ fj(O) = ∅ for all i, j ∈ {1, . . . , N} with i 6= j, and

3. O ∩ A 6= ∅.

Remark 2.4. From the definitions, an IFS that satisfies the SOSC must also

satisfy the OSC (SOSC =⇒ OSC).

A natural question that arises from the definition of the SOSC is: what does

an IFS look like that would satisfy the OSC but not the SOSC? Schief [Sch94]

proved that in Rm the OSC is equivalent to the SOSC. This will be discussed

further in Section 2.3. Therefore to construct an IFS that satisfies the OSC but
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fails the SOSC requires leaving (Rm, d), and so we do not pursue this question.

Thus, to show that an IFS on Rm does not satisfy the OSC via the direct method

the type of nonempty open sets to consider has been restricted but there is still

infinitely many. In order to understand the situation better let us now present an

example of an IFS that satisfies the OSC (and equivalently the SOSC). It will be

shown that there exists a nonempty open set which shows that the IFS satisfies

the OSC but the same nonempty open set is not sufficient to show that the IFS

satisfies the SOSC.

Example 2.5. Let F =
{
R; f1(x) = 1

3
x, f2(x) = 1

3
x+ 2

3

}
, it has the Cantor set,

C , as its attractor. The Cantor set has the following construction, let C0 = [0, 1]

and construct C1 by removing the open middle third to give C1 =
[
0, 1

3

]
∪
[

2
3
, 1
]
.

The first five iterations of this process are illustrated in Figure 2.2. The Cantor

set is given by C =
⋂∞
n=0.

0 1

Figure 2.2: The first five iterations of the Cantor set which is the attractor of

F =
{
R; f1(x) = 1

3
x, f2(x) = 1

3
x+ 2

3

}
.

Let us consider O = (0, 1) which is a nonempty open set and we see that

f1 (O) = f1 ((0, 1)) =

(
0,

1

3

)
⊂ O,

f2 (O) = f2 ((0, 1)) =

(
2

3
, 1

)
⊂ O,

and f1 (O) ∩ f2 (O) =

(
0,

1

3

)
∩
(

2

3
, 1

)
= ∅.

Therefore F satisfies the OSC and since O ∩ A 6= ∅ then O also shows that F
satisfies the SOSC. Let us now construct a nonempty open set U which shows

that F satisfies the OSC but U ∩ A = ∅ and so U is not sufficient to show that

F satisfies the SOSC (if we were to forget about their equivalence in Rm). Let

U = (0, 1) \A = (0, 1)∩Ac. As A is a Hausdorff subset it is compact in R which is

to say that it is closed and bounded. Therefore its compliment, Ac, is a open set.

As U is the intersection of two open sets it is also an open set. Thus U is open

and since A 6= (0, 1) then it is also nonempty. We have that f1

((
1
3
, 2

3

))
=
(

1
9
, 2

9

)
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which is the middle interval that was from
[
0, 1

3

]
in creating C2. Similarly, each

of the disjoint open intervals comprising U are mapped by f1 to another interval

that is removed from [0, 1] during the construction of the Cantor set. Therefore

we have f1 (U) ⊂ U . Similarly we have f2 (U) ⊂ U . Since U ⊂ (0, 1) and from

above we have f1 ((0, 1)) ∩ f2 ((0, 1)) = ∅, then we have that f1 (U) ∩ f2 (U) = ∅.
Therefore U satisfies the OSC; however, U ∩A = ((0, 1) \A) ∩A = ∅, which is to

say that U is not sufficient to show that F satisfies the SOSC (disregarding the

equivalence of the OSC and SOSC in Rm).

2.3 Schief’s Equivalences of the OSC

Schief published a paper in 1994 [Sch94] that presented two important theorems

relating to the OSC. The first, Theorem 2.6, proved the equivalence of the OSC

and the SOSC in Rm, relating them to the Hausdorff measure of the attrac-

tor and its dimension. Schief’s second theorem provided a new and equivalent

combinatorial condition to the OSC as seen in Theorem 2.8.

Theorem 2.6. Schief ’s Equivalences [Sch94]

If F = {Rm; f1, . . . , fN} is an IFS where each fi is a contractive similitude with

scaling factor λi and A is the attractor, then we have the following,

SOSC ⇔ OSC ⇔ HD (A) > 0 ⇒ dimH A = D. (2.4)

Here D is the similarity dimension of F , dimH A is the Hausdorff dimension of

the attractor A, and HD is the D-dimensional Hausdorff measure.

The proof of Theorem 2.6 will not be presented but can be found in [Sch94].

Instead, we offer a discussion to support Schief’s work. Let us note that three of

these implications were already well-known. The first was that SOSC ⇒ OSC as

stated in Remark 2.4. The implication OSC ⇒ HD (A) > 0 was also known as

P.A.P. Moran stated and proved it in 1946 [PMor46](c.f. Thm II) and Hutchin-

son [Hut81] (c.f 5.3.(1).(ii)) offered a different proof in 1981. The last implication

that Schief already knew was
(
HD (A) > 0 ⇒ dimH A = D

)
. This is true since

for an IFS of contractive similitudes we have that HD (A) < ∞ by Proposition

1.15. Thus, assuming 0 < HD (A) is equivalent to assuming 0 < HD (A) < ∞
which by definition gives dimH A = D.

Schief [Sch94] stated that dimH A = D ; HD (A) > 0 due to a counterex-

ample credited to Mattila but with no reference. For that reason we present the
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counterexample in explicit detail in Example 2.7.

The contribution that Schief [Sch94] supplied in proving Theorem 2.6 was to

prove HD (A) > 0 ⇒ SOSC. This turned the first and second implications into

equivalences. Therefore we have that the SOSC is equivalent to the OSC in Rm.

Theorem 2.6 also provides a computation method, in that the IFS satisfies the

OSC if and only if HD(A) > 0. However, the process of calculating HD(A) is not

necessarily any easier than the direct proof method of determining if the OSC is

satisfied.

Example 2.7. A counter example will now be provided to show that dimH A = D

does not imply HD (A) > 0. To do so let us define the following IFS which has a

disconnected Sierpinski triangle A as its attractor as shown in Figure 2.3,

F =

{
R2; fi

(
x

y

)
=

(
1
3

0

0 1
3

)(
x

y

)
+ bi

∣∣∣∣ i ∈ {1, 2, 3} ,
b1 =

(
0

0

)
, b2 =

(
2
3

0

)
, b3 =

(
1
3√
3

3

)}
.

(2.5)

Figure 2.3: The attractor of the IFS given in Equation 2.5 is a disconnected

Sierpinski triangle with side lengths of size 1.

It is clear to see that F obeys the OSC since O = (0, 1)× (0, 1) is a suitable

nonempty open set. Equivalently, it is a known fact that if the IFS is totally

disconnected then it will obey the OSC since there exists ε > 0 such that the

attractor dilated by ε is a suitable nonempty open set.
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The similarity dimension, D, of F is given by
∑3

i=1 λ
D
i = 1 with λi = 1

3
. The

equation simplifies to 3
(

1
3

)D
= 1, and so D = 1. As the IFS satisfies the OSC

then by the Moran-Hutchinson Theorem (Thm 1.14) the Hausdorff dimension of

A is equal to its similarity dimension and so dimH A = 1.

Let Lθ be the straight line in R2 that passes through the origin and makes an

angle θ with the positive x-axis measured in a counter-clockwise direction. The

set A and the IFS F can be projected onto the 1-dimensional subspace of R2

described by Lθ. Let Aθ be the projection of A onto the line Lθ. The set Aθ is

the attractor of IFS Fθ, where the maps in Fθ are the maps in F composed with

the projection map onto Lθ.

Figure 2.4: The projection of an arbitrary set F onto Lθ [Fal04].

For example let θ = 0 so that A is being projected onto the x-axis. We

have F0 =
{
R; f1(x) = 1

3
x, f2(x) = 1

3
x+ 2

3
, f3(x) = 1

3
x+ 1

3

}
which has an attrac-

tor A0 = [0, 1].

Similitudes contract the space uniformly in all directions and therefore the

three maps in Fθ will be three similitudes of scaling factor 1
3

but the translation

factors of the maps will depend on the value of θ ∈ [0, π). The similarity dimen-

sion for all Fθ and corresponding Aθ will be D = 1 due to the IFS always having

three maps of scaling one third.

Falconer [Fal04](c.f. Thm 6.1) states that if dimH A = 1 then dimH Aθ =

dimH A for almost all θ ∈ [0, π). Therefore dimH Aθ = 1 = D for almost all

θ ∈ [0, π), and so in order to have Aθ be our desired contradiction all that re-

mains to show is HD (Aθ) = 0.
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According to Falconer [Fal04](c.f. Thm 6.4), since A ∈ R2 is the attractor of

a totally disconnected IFS with Hausdorff dimension 1 then the 1-dimensional

Lebesgue measure of the projection set Aθ is 0 for almost all θ ∈ [0, π). It is a

known property for a set F ⊂ Rn that the n-dimensional Hausdorff measure and

the n-dimensional Lebesgue measure differ by a nonzero multiplication constant

that is dependent on n. Therefore the 1-dimensional Hausdorff measure of the

projection set Aθ is 0 for almost all θ ∈ [0, π). Therefore, almost all projec-

tions sets Aθ satisfiy dimH Aθ = D and HD (Aθ) = 0, and thus the implication

dimH A = D ⇒ HD (A) > 0 is not true and we have our desired counterexample.

Prior to discussing Schief’s second theorem and the combinatorial condition

for the OSC we must first introduce some notation. Let F = {Rm; f1 . . . , fN} be a

contractive IFS and let the scaling factor of fi be λi ∈ [0, 1). Let us consider finite

length vectors i = (i1, . . . , in) and j = (j1, . . . , jm) of length n and m respectively,

where each element of i and j is from {1, . . . N}. Let us denote the concatenation

of i and j as ij = (i1, . . . , in, j1, . . . jm). We say that i and j are incomparable

if there does not exist any finite length vector k such that i = jk or j = ik. In

other words, i and j are incomparable if neither is an initial sub-vector of the

other. Two pieces of a fractal attractor Ai and Aj are incomparable, one is not a

subset of the other, if i and j are incomparable. Let us also define the following

notational abbreviations: fi = fi1 ◦ · · · ◦ fin , Ai = fi (A) and λi = λi1 · · ·λin . We

sometimes call i an address since it describes a particular ‘location’ in the fractal

attractor, specifically the compact subset Ai. If i was an infinite string then it

would refer to a single point in the attractor.

For a given 0 < b ≤ 1 we can define the following set,

Ib =
{
i = (i1, . . . , in) |λi < b ≤ λ(i1,...,in−1)

}
, (2.6)

where λ(i1,...,in−1) is the scaling factor for the map f(i1,...,in−1) = fi1 ◦ · · · ◦ fn−1

which is one iteration less into the fractal attractor then fi. The set Ib is the

collection of addresses i that are of minimum length and correspond to attractor

peices, Ai, that has been scaled more than b ∈ (0, 1]. Therefore the elements of

Ib are incomparable and satisfy A =
⋃

i∈Ib Ai. Now fix ε ∈
(
0, 1

3

)
[Sch94] and let

B(x, r) be the open ball centred at x with radius r. Using this notation we define

the set Gk to be the dilated version of Ak,

Gk = B (Ak, ελk) =
⋃
{B (x, ελk) |x ∈ Ak} . (2.7)
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Recalling that |Gk| is the diameter of Gk. Without loss of generalisation we

can assume that the |Gk| ≤ 1 by a change of coordinates. Thus, we have the

following,

I (k) =
{
i ∈ I|Gk| | Ai ∩Gk 6= ∅

}
. (2.8)

I (k) is the set of finite length vectors which describe the incomparable pieces Ai

which intersect the (ελk)-neighborhood of Ak and are of size at least λmin |Gk|.
Then we define γ = supk #I (k), where #I (k) denotes the cardinality of I (k).

Therefore γ is the least upper bound for the number of intersecting pieces for any

k. We are now equiped to understand Schief’s [Sch94] second theorem.

Theorem 2.8. Schief ’s Combinatorial Equivalence of the OSC [Sch94]

If F = {Rm; f1, . . . , fN} is an IFS of contractive similitudes with scaling factors

λi, similarity dimension D and attractor A the following are equivalent conditions.

1. SOSC.

2. OSC.

3. HD(A) > 0.

4. For each ε > 0, γ <∞ holds.

5. There exists ε > 0 such that γ <∞.

6. SOSC holds with an open set U such that µ(U) = 1, see below.

Remark 2.9. Condition (6) tells us that U contains almost all of A with respect

to an appropriate measure µ which is explicitly defined in Schief [Sch94] but we

omit the technicalities here because the real points of interest for us are Conditions

(4) and (5) since they relate to the combinatorial description of the open set

condition.

Theorem 2.8 tells us that if there exists an ε > 0 such that γ is finite then γ is

finite for all ε which is equivalent to the OSC being satisfied. Let us now calculate

γ for a simple example to show how this method may be used to establish that

the OSC is satisfied.

Example 2.10. Let us take the IFS, F =
{
R; f1(x) = 1

2
x, f2(x) = 1

2
x+ 1

2

}
from

Example 2.2 which has attractor [0, 1]. Let us fix ε = 1
5
. We begin by taking

several values for k and determining the cardinality of I(k).

Let k = (1). Then Gk = G(1) = B (A1, ελ1) = B
(
A1,

1
10

)
. Therefore
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∣∣ = λ1 |A|+2ελ1 = 1
2
·1+2 · 1

5
· 1

2
= 7

10
. Now note that I|Gk| = I 7

10
= {(1), (2)}.

We have that G(1) intersects both A1 and A2. Thus #I((1)) = 2. Also, by sym-

metry we get that #I((2)) = 2.

Let k = (1, 1). Then Gk = G(1,1) = B (A11, ελ11) = B
(
A11,

1
20

)
. Therefore

|Gk| = λ11 |A| + 2ελ11 = 1
4
· 1 + 2 · 1

5
· 1

4
= 0.35. Now note that I|G(1,1)| =

I0.35 = {(1, 1), (1, 2), (2, 1), (2, 2)}. Only A11 and A12 intersect G(1,1). Thus

#I((1, 1)) = 2. By symmetry we get that #I((2, 2)) = 2.

Let k = (1, 2). Then Gk = G(1,2) = B (A12, ελ12) = B
(
A12,

1
20

)
. Therefore

|Gk| = λ12 |A| + 2ελ12 = 1
4
· 1 + 2 · 1

5
· 1

4
= 0.35. Now note that I|G(1,2)| = I0.35 =

{(1, 1), (1, 2), (2, 1), (2, 2)}. We have that A11, A12 and A21 intersect G(1,2). Thus

#I((1, 2)) = 3. By symmetry we get that #I((2, 1)) = 3.

Let k = (1, 2, 2). Then Gk = G(1,2,2) = B (A122, ελ122) = B
(
A122,

1
40

)
.

Therefore |Gk| = λ122 |A| + 2ελ122 = 1
8
· 1 + 2 · 1

5
· 1

8
= 0.175. Now note that

I|G(1,2,2)| = I0.175 = {strings of length 3}. We have that A121, A122 and A211 in-

tersect G(1,2,2). Thus #I((1, 2, 2)) = 3. By symmetry we get that #I((1, 1, 2)) =

#I((1, 2, 1)) = #I((2, 1, 1)) = #I((2, 1, 2)) = #I(2, 2, 1)) = 3.

From the above values of k it is straightforward to see that for any k the

cardinality of I(k) is at most 3 since the piece Gk intersects Ak and can intersect

at most one attractor piece Ai (i 6= j) near its left endpoint and the same for its

right endpoint. The cases where we get #I(k) < 3 is when Ak includes either

{0} or {1} and so we do not have both end point intersections. Therefore we

have that γ = 3 for this IFS and value of ε.

As there exists an ε > 0 where γ is finite, we have that γ is finite for all ε > 0

and F has again been shown to satisfy the open set condition.

We can also ask what is γ for other ε values. We find that if ε < 1 (which it is

because we assumed 0 < ε < 1
3
) then γ = 3 for this IFS. The proof of this follows

identical reasoning to Example 2.11.

Example 2.10 is instructive in how to calculate the value of γ for an IFS but it

was made easier by the use of symmetry, and so let us now do an example where

the scaling factors are not equal.

Example 2.11. Let us consider the IFS F =
{
R; f1(x) = 1

3
x, f2(x) = 2

3
x+ 1

3

}
,

which has attractor [0, 1]. We consider some fixed 0 < ε < 1
3

and an arbitrary

attractor piece given by k. The dilated set around Ak is Gk = B (Ak, ελk). The

diameter of Gk is |Gk| = λk|A| + 2ελk = λk (1 + 2ε). Now, I|Gk| describes the

addresses of the attractor pieces Ai whose size satisfy λi < |Gk| ≤ λλ1,...,λn−1 .

Therefore we have that the minimum size attractor piece that we would consider
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for the given k is λminλk (1 + 2ε), where λmin = 1
3

for the given IFS.

Now we claim that for the given IFS we have γ = 3. First note that the

attractor piece A12 has nonempty intersection with itself, A11 and A21. Therefore

the dilated set G(1,2) will intersect at least three attractor pieces, namely those

above. Therefore we have that γ = supk #I(k) ≥ 3.

Now, let us prove that γ is not bigger than 3 by contradiction. Assume that

there exists j such that #I (j) ≥ 4. In order for this to be the case the amount

Gj dilates must be at least as big as one of the adjacent attractor pieces. We

have that Gj dilates by ελj and that the smallest possible attractor piece that

we are considering is size 1
3
λj (1 + 2ε). Thus we must have ελj ≥ 1

3
λj (1 + 2ε).

This implies ε ≥ 1, and so we have a contradiction as it was assumed 0 < ε < 1
3

[Sch94]. Therefore, there does not exist j such that #I (j) ≥ 4 and so for the

given IFS we have that γ = 3.

Bandt, Hung and Rao [BHR05] describe Schief’s combinatorial condition for

the OSC as: there exists an integer N such that at most N incomparable pieces

Aj intersect the ε-neighborhood of a piece Ai where |Ai| , |Aj| ≥ ε. This de-

scription of the combinatorial condition suggests some links between the OSC

and fractal tiling theory. In that, the combinatorial condition is describing the

number of fractal attractor pieces that are near to each other at different parts

of the attractor which sounds like it is describing how many fractal tiles are in a

region. The topic of fractal tiling is briefly considered in Chapter 5.

2.4 M. Morán and the Dynamical Boundary

M. Morán [MMor99] claimed that A 6= ∂MA was an equivalent to the OSC, where

A is the attractor and ∂MA is Morán’s definition of the dynamical boundary stated

in Definition 1.7. Morán’s original proof contained a mistake and his conjecture

has remained an open question. During his work, Morán introduced a new version

of the OSC.

Definition 2.12. The Restricted Open Set Condition (ROSC)

If F = {Rm; f1, . . . , fN} is an IFS with attractor A and (A, d) is the restricted

topology, then F satisfies the ROSC if there exists a nonempty open set O ⊂
(A, d) such that

1. fi(O) ⊂ O for all i ∈ {1, . . . , N}, and

2. fi(O) ∩ fj(O) = ∅ for all i 6= j ∈ {1, . . . , N}.
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Remark 2.13. The ROSC is the OSC where the openness is with respect to the

restricted topology (A, d) instead of the original (or extended) topology (Rm, d).

Also note that M. Morán [MMor99] stated Condition (2) as fi(O)∩ C = ∅ for all

i ∈ {1, . . . , N}, where C is the critical set from page 6.

M. Morán posed an impressive theorem regarding the OSC [MMor99] in 1999;

however, the proof that Morán offered was later realised to be incorrect by Bandt,

Hung and Rao in 2005 [BHR05].

Conjecture 1. M. Morán’s (open) Theorem

For the IFS F = {Rm; f1, . . . , fN} with attractor A the following conditions are

equivalent.

1. F satisfies the ROSC.

2. The open set V = A\∂MA is nonempty.

3. F satisfies the SOSC.

M. Morán [MMor99] correctly proves (1) ⇒ (2), (2) ⇒ (1) and (3) ⇒ (1).

However, his proof for (2) ⇒ (3) contains a mistake. Before discussing the

mistake, let us first discuss something good that comes from M. Morán’s work.

By combining the third and first of the correctly proved implications we have

(3) ⇒ (2) which is that if F satisfies the SOSC then V = A\∂MA 6= ∅. This is

equivalent to, if F satisfies the SOSC then A 6= ∂MA. Taking the contrapositive

of this provides the following corollary.

Corollary 2.14. If F = {Rm; f1, . . . , fN} is an IFS with attractor A and A =

∂MA then the SOSC is not satisfied and so the OSC is also not satisfied.

Now we discuss the openness of V . From Definition 1.7 we have that ∂MA is

a closed set and so in the restricted topology of (A, d) the set V = A\∂MA is the

complement of a closed set and therefore is an open set. In fact, if V is nonempty

then V satisfies the ROSC. In order to see this let us show how the IFS operates

on the dynamical boundary:

F (∂MA) = F

(
∞⋃
k=1

F−k (C) ∩ A

)
= F

(
∞⋃
k=1

F−k (C) ∩ A

)

= F

(
∞⋃
k=1

F−k (C)

)
∩ F (A) =

(
∞⋃
k=1

F−k (C) ∪ C

)
∩ A

(2.9)



2.4. M. MORÁN AND THE DYNAMICAL BOUNDARY 21

=

(
∞⋃
k=1

F−k (C) ∩ A

)
∪ (C ∩ A) =

(
∞⋃
k=1

F−k (C) ∩ A

)
∪ C

=

(
∞⋃
k=1

F−k (C) ∩ A

)
∪ C = ∂MA ∪ C.

Therefore we have that ∂MA ⊂ F (∂MA). Taking the complement reverses

the direction of the set inclusion to give (F (∂MA))c ⊂ (∂MA)c. This implies

F ((∂MA)c) ⊂ (∂MA)c which is equal to F (V ) ⊂ V and thus fi(V ) ⊂ V for all

i ∈ {1, . . . , N}. We also have fi(V ) ∩ fj(V ) = ∅ for all i 6= j by construction of

∂MA. Therefore V satisfies the ROSC.

For the implication (2) ⇒ (3) of Morán’s conjecture, we assume that V is

nonempty and thus we have that V ∩A is nonempty and therefore it might seem

like V would satisfy the SOSC. However, the SOSC (or equivalently the OSC) re-

quires a nonempty open set in (Rm, d) while the ROSC only requires a nonempty

open set in (A, d). It is not the case that since V is open in (A, d) then V is open

in (Rm, d).

To demonstrate this point let us now provide an example where extending V

to the full topology results in V not being an open set. Let F be the following

IFS,

F =

{
R2; fi

(
x

y

)
=

(
1
2

0

0 1
2

)(
x

y

)
+ bi

∣∣∣∣ i ∈ {1, 2, 3} ,
b1 =

(
0

0

)
, b2 =

(
1
2

0

)
, b3 =

(
1
4√
3

4

)}
.

(2.10)

The attractor of F is the Sierpinski triangle with side lengths of one and it is

shown in Figure 2.5. Through a simple calculation we get the critical set of F
and Morán’s dynamical boundary to be

C =

{(
1

2
, 0

)
,

(
1

4
,

√
3

4

)
,

(
3

4
,

√
3

4

)}
, and

∂MA =

{
(0, 0) , (1, 0) ,

(
1

2
,

√
3

2

)}
.

Therefore in (A, d) we have that V = A\∂MA is an open set since it is the com-

plement of the closed set ∂MA. However, in (R2, d) we have that V = A\∂MA
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Figure 2.5: The Sierpinski triangle

is the Sierpinski triangle with its vertices removed. This is not an open set (nor

is it closed). Therefore, V is not necessarily an open set in the extended topology.

It has been shown that in general V does not satisfy the SOSC (or the OSC)

since V may not be open. The natural fix to this is to dilate V by a minuscule

amount so that V becomes an open set. Therefore, let U :=
⋃
x∈V B (x, ε). This

was the approach that M. Morán [MMor99] took to prove his conjecture but it

does not work.

The mistake M. Morán made was to say that since fi(V ) ∩ fj(V ) = ∅ for

i 6= j ∈ {1, . . . , N} and U is an ε dilation of V then fi(U) ∩ fj(U) = ∅ for i 6=
j ∈ {1, . . . , N}. Let us now explain why we cannot assert that fi(U)∩ fj(U) = ∅
for i 6= j ∈ {1, . . . , N}. Recall from Definition 1.7 and remark 1.9 we have

∂MA =
⋃∞
k=1 (F−k (C) ∩ A). Therefore, at each stage in the calculation of the

preimages of C, only the points in the attractor are taken. But, what if there

were a point not in A whose preimage under F was in A? This would mean that

∂MA would not include all points which could map to the critical set. However,

as the next proposition shows once a point escapes A then it never returns under

the operation of the inverse maps.

Proposition 2.15. For an IFS F = {Rm; f1, . . . , fN} with attractor A. If x 6∈ A
then f−1

i (x) 6∈ A for all i ∈ {1, . . . , N}.
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Proof. Let x 6∈ A and let i ∈ {1, . . . N}. In order to gain a contradiction let us

assume that f−1
i (x) ∈ A. This implies that x ∈ fi (A) ⊂ A, so x ∈ A. This is a

contradiction and therefore f−1
i (x) 6∈ A for all i ∈ {1, . . . , N}.

Therefore, once the point x ∈ A leaves A under the operation of F−1, it can

never return. However, the orbit could get arbitrarily close to A which means

that when V is dilated to create U we cannot guarantee that U ∩
⋃∞
k=1F−k (C)

is equal to the empty set. Therefore U does not imply that the IFS satisfies

the SOSC (or OSC). This concludes the discussion of how M. Morán’s proof was

incorrect.

In an effort to fix the proof, we give the following revised definition of the

dynamical boundary that was motivated by Bandt [BHR05] and so we have the

subscript B.

Definition 2.16. For an IFS F = {Rm; f1, . . . , fN} with attractor A and critical

set C we define Bandt’s dynamical boundary to be

∂BA =
∞⋃
k=1

F−k (C) ∩ A.

It is helpful to note that for arbitrary sets A and B we cannot assert A ∩B =

A ∩B and therefore we do not necessarily have ∂BA = ∂MA.

Using the revised dynamical boundary we could replace M. Morán’s conjecture

with “F satisfies the OSC if and only if A\∂BA 6= ∅” which is equivalent to “F
satisfies the OSC if and only if A 6⊂ ∂BA”. This is not proven here and if it

were to be then it may not be of much use for determining if F satisfies the OSC

considering it would involve calculating
⋃∞
k=1F−k (C). Consider the simplest

situation where C only contains a single point and the IFS is only made of two

maps, then the kth preimage would contain 2k points. Thus, in the case where

C is nontrivial this would be an extreme computation. As an alternative to M.

Morán’s approach, Bandt introduced some new theory called neighbor maps.

Neighbor maps are the feature of the next chapter and it will be seen that there

exists a set H such that the OSC is satisfied if and only if A 6⊂ H (Cor 3.4).
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Chapter 3

Bandt’s Neighbor Maps

3.1 Neighbor Maps

In order to show that an IFS F satisfies the OSC, a particular nonempty open set

O must be found. If we were unable to find a suitable O it by no means proves

that the OSC is not satisfied. To show that the IFS does not satisfy the OSC

we would need to prove that there does not exist any such O which is a much

stronger statement then simply failing to find one. As a result, the following

question is still open: “does an arbitrary IFS obey the OSC?”. Bandt and vari-

ous collaborator [BG92, BHR05, BM09, BM18] developed the theory of neighbor

maps and neighbor graphs in an attempt to answer this question. The concept

comes from the idea that if the OSC is satisfied that means that a certain group

of isometries are acting discontinuously and the set O is a fundamental domain

of that group [BG92].

Let us now introduce the notation for neighbor maps which we take from

Bandt and Graf [BG92]. Let the IFS F = {Rm; f1, . . . , fN} comprise simili-

tudes with scaling factors λi and have attractor A. We define S := {1, . . . , N}
to be the alphabet set. Let Sk := {1, . . . , N}k denote the set of words of

length k and if k = 0 then S0 is the empty word. The set of all words is

given by S∗ =
⋃
{Sn | n ∈ N0} where N0 = {0, 1, 2 . . . }. Let i = i1i2 . . . ip and

j = j1j2 . . . jq be two words from S∗ of length p and q, denoted |i| and |j| respec-

tively. We say that i is an initial word of j, denoted i v j, if p ≤ q and im = jm

for all m ∈ {1, . . . , p}. The words i and j are incomparable if i 6v j and j 6v i.

Note that this definition of incomparable agrees with the one given on page 16.

Recall that we have the following notation abbreviations: fi = fi1 ◦ · · · ◦ fip ,

25
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λi = λi1 · · ·λip and Ai = fi (A). If i v j then Aj ⊆ Ai and so if i and j

are comparable then Ai ∩Aj 6= ∅. However, if i and j are incomparable we can-

not make a similar general statement because Ai and Aj may or may not overlap.

For any attractor pieces Ai and Aj we can define a similitude fjf
−1
i that maps

one onto the other. These functions are commonly called household maps and

describe the relationship between the two attractor pieces. It would be nice to

be able to say that Ai and Aj are non-overlapping (their intersection does not

contain a nonempty open set) if fjf
−1
i is far from the identity map. However,

this is not quite the case. In order to see why, let us recall the Sierpinski triangle

shown in Figure 2.5 on page 22. The household map f21f
−1
12 from A12 onto A21,

which are non-overlapping, is a horizontal translation by 1
4
. Note that we are

using the notation f−1
12 to mean the inverse of f12 and so f−1

12 = (f1f2)−1 =

f−1
2 f−1

1 . Similarly we get that f211f
−1
122 is a horizontal translation of 1

8
between

non-overlapping attractor pieces. We see that as the attractor pieces get smaller

the household map between them can approach the identity map despite the

attractor pieces being non-overlapping. For this reason we consider the functions

of the form f−1
i fj (the order has swapped). The attractor pieces Ai and Aj have

the same geometric relationship as A and f−1
i fj(A) but now all the different

maps can be compared as they are on the same scale. Providing that i and j are

incomparable then h := f−1
i fj is a neighbor map. From Bandt and Graf [BG92]

we have that the set of all neighbor maps, denoted N , is

N =
{
f−1
i fj | i, j ∈ S∗, i, j incomparable

}
. (3.1)

This definition can be simplified by noting that if i and j have their first m

letters the same for m < min {p, q} (note that m 6= min {p, q} since the words

are incomparable) then the neighbor map h = f−1
ip
· · · f−1

i1
fj1 · · · fjq simplifies to

h = f−1
ip
· · · f−1

im+1
fjm+1 · · · fjq . This map is already included N since im+1 · · · ip

and jm+1 · · · jq are incomparable with distinct first letters. Therefore the set of

neighbor maps can be more simply given by

N =
{
h = f−1

i fj | i, j ∈ S∗, i1 6= j1

}
. (3.2)

This simplification was first noted by Bandt, Hung and Rao [BHR05]. Bandt

and Graf [BG92] proved the following theorem where id is the identity map (i.e.

f(x) = x). It provides a way that neighbor maps can be used to determine if an

IFS obeys the OSC.
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Theorem 3.1. If F = {Rm; f1, . . . , fN} is an IFS comprised of similitudes and

N is the set of neighbor maps of F , then F obeys the OSC if and only if id 6∈ N .

Remark 3.2. We have that N denotes the closure of N and that all neighbor

maps are similitudes, h = f−1
i fj : Rm → Rm, with scaling factor

λj
λi

. Theorem

3.1 is requiring that for F to satisfy the OSC the identity map is not a neighbor

map and not a limit point of a sequence of neighbor maps. For a limit point to be

well-defined we must note that we are in the space of similitudes from Rm to Rm

which we denote S (Rm) and let ds measure the distance between two similitudes

f and g of S (Rm) as

ds (f, g) = sup
x∈Rm,‖x‖=1

{‖f(x)− g(x)‖} . (3.3)

We have that (S (Rm) , ds) is a complete metric space.

Remark 3.3. When Bandt and Graf presented the theorem [BG92], Schief was

yet to produce his work of Theorem 2.6 [Sch94] and therefore it was originally pre-

sented with reference to the attractor having a positive D dimensional Hausdorff

measure.

Bandt, Hung and Rao [BHR05] provided an alternative condition for relating

the OSC to neighbor maps.

Corollary 3.4. An IFS F satisfies the OSC if and only if A is not contained in

H, where A is the attractor, H =
⋃
{h (A) | h ∈ N} and we call h(A) a neighbor

set of A.

By Theorem 3.1 we now have a new way of determining if an IFS satisfies the

OSC. It involves calculating the set of neighbor maps, N , and determining if the

identity map is or is not contained in the closure of N . Calculating the set of all

neighbor maps is a big task and so we ask, can we consider only a subset of the

neighbor maps?

Bandt and Mesing [BM09] only consider the neighbor maps h = f−1
i fj such

that Ai and Aj have nonempty intersection and are of ‘approximately’ the same

size. Also, the only IFSs they consider comprise of similitudes with equal scaling

factors. Their motivation for only considering these neighbor maps is to construct

neighbor graphs as discussed in Section 3.2. Neighbor maps which contribute to

the neighbor graphs are called proper neighbor maps, the set of which is denoted

N ∗ [BM18]. Following the example of Bandt [BM09, BM18] we will only consider
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IFSs comprising of similitudes with equal scaling factors for the remainder of this

chapter.

If F = {Rm; f1, . . . , fN} is an IFS of similitudes where each functions has

the same scaling factor λ ∈ [0, 1) then two attractor pieces, Ai and Aj are of

‘approximately’ the same size only when |i| = |j|. We see this because the

difference is sizes is given by the scaling factor of h, that is
λj
λi

as stated in

Remark 3.2. The scaling factor of h simplifies to λ|j|−|i|. Thus, if the scaling of

h is in (1− λ, 1 + λ) then |i| = |j|. Therefore, for an IFS with uniform scaling

factors we define the set of proper neighbor maps as,

N ∗ =
{
h = f−1

i fj | i, j ∈ S∗, i1 6= j1, |i| = |j| , Ai ∩ Aj 6= ∅
}
. (3.4)

The set of proper neighbor maps only includes the neighbor maps which are

isometries (since |i| = |j|) and do not have ‘too large’ of a translation factor

since Ai ∩Aj 6= ∅. As the following theorem states, when checking if the identity

map is contained in the closure of the neighbor maps we only need to consider

the proper neighbor maps since they represent the only neighbor maps which are

‘near’ to the identity. To the best the author’s knowledge the following result is

new.

Theorem 3.5. If F is an IFS comprised of similitudes with equal scaling factors

λ, N is the set of neighbor maps and N ∗ is the set of proper neighbor maps, then

id 6∈ N if and only if id 6∈ N ∗.

Proof. Let F be an IFS on Rm consisting of similitudes with equal scaling factors

λ. Without loss of generality we may assume that the attractor A contains

the origin by a simple change of coordinates. Let us now prove each direction

independently.

(⇒) By definition we have that the set of proper neighbor maps is a subset of

the set of all neighbor maps and therefore we have N ∗ ⊂ N . Therefore if id 6∈ N
then we have id 6∈ N ∗.

(⇐) Let us now assume that id 6∈ N ∗ and it will be shown that id 6∈ N .

In order for the identity map to be in N when not in N ∗ it must be the case

that the identity map is a limit point of a sequence of non-proper neighbor maps.

Therefore, if we show that h ∈ N\N ∗ cannot be arbitrarily close to the identity

then we have id 6∈ N . Let h = f−1
i fj ∈ N\N ∗ then we have i, j ∈ S∗ and i1 6= j1

as h is a neighbor map but we must have that either |i| 6= |j| or Ai∩Aj = ∅ since

h is not a proper neighbor map. All maps in the IFS are similitudes with equal
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scaling factor 0 < λ < 1 and so they take the form fi(x) = λOix + bi, where Oi

is an isometry of Rm and bi ∈ Rm is a translation vector. As h is a composition

of neighbor maps we have h(x) = λkOx + b where k ∈ Z, O is an isometry and

b ∈ Rm. By Remark 1.2 we may assume that the origin is a fixed point of the

isometry O. Now that we understand the form of h it will be shown that h is not

arbitrarily close to the identity map. Recalling the metric on similitudes from

Remark 3.2 we have that the distance between h and the identity is given by,

ds (h, id) = sup
x∈Rm,‖x‖=1

{‖h(x)− id(x)‖}

= sup
x∈Rm,‖x‖=1

{‖λnOx+ b− x‖} .
(3.5)

Let us assume that ‖b‖ = 0 and therefore b = 0. The origin is in A and is a

fixed point of O so it is also a fixed point of h which means that A ∩ h(A) =

A ∩ f−1
i fj(A) 6= ∅ which implies that Ai ∩ Aj 6= ∅. Therefore we must have that

|i| 6= |j| since h ∈ N\N ∗. This implies that the scaling factor of h cannot be one

or equivalently k ∈ Z\ {0}. Now we continue to determine the distance between

h and the identity,

ds (h, id) = sup
x∈Rm,‖x‖=1

{∥∥λkOx− x∥∥} ≥ sup
x∈Rm,‖x‖=1

{∥∥∥∥λkOx∥∥− ‖x‖∥∥}
= sup

x∈Rm,‖x‖=1

{∥∥λk ‖Ox‖ − ‖x‖∥∥} =
∥∥λk − 1

∥∥
=
∣∣λk − 1

∣∣ ≥ 1− λ.

(3.6)

Where the last inequality comes from noting that as 0 < λ < 1 then λ ≥ λk for

all k ≥ 1. Therefore 1 − λk ≥ 1 − λ for all k ≥ 1. Also, if k is negative then

k = −K for K ≥ 1 and so

∣∣λk − 1
∣∣ =

∣∣λ−K − 1
∣∣ =

∣∣∣∣ 1

λK
− 1

∣∣∣∣ =

∣∣∣∣1− λKλK

∣∣∣∣ =
1− λK

λK
≥ 1− λK ≥ 1− λ.

Therefore
∣∣λk − 1

∣∣ ≥ 1− λ for any k ∈ Z\ {0}. Thus it has been shown that, in

the case of ‖b‖ = 0, h cannot be arbitrarily close to the identity.

Let us now assume that ‖b‖ > 0. Let L be the line in Rm that passes through

the origin and b. Let ±z be the intersection points between L and the unit

(m-dimensional) ball centred at the origin, where z is the point closer to b by

the Euclidean metric. Let ±y with ‖ ± y‖ = 1 denote the image of ±z under

the isometry O. The situation is illustrated in Figure 3.1. Now, in the case of
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b

z

−z

Ly

−y

O

O

Figure 3.1: The situation described for ‖b‖ > 0 drawn in a plane of Rm that

contains ±z and ±y := O(±z) (the plane is not necessarily unique).

‖b‖ > 0, we will calculate the distance between a non-proper neighbor map h and

the identity,

ds (h, id) = sup
x∈Rm,‖x‖=1

{∥∥λkOx+ b− x
∥∥}

≥ sup
x=±z

{∥∥λkOx+ b− x
∥∥}

= max
{∥∥λkOz + b− z

∥∥ , ∥∥λkO(−z) + b− (−z)
∥∥}

= max
{∥∥λky + b− z

∥∥ , ∥∥−λky + b+ z
∥∥} .

(3.7)

We have that both b − z and b + z lie on line L and that ‖b − z‖ ≥ 0 while

‖b+ z‖ ≥ 1. Therefore∥∥λky + b− z
∥∥ ≥ ‖λky‖ = λk‖y‖ = λk and∥∥−λky + b+ z

∥∥ =
∥∥b+ z − λky

∥∥ ≥ ∥∥‖b+ z‖ −
∥∥λky∥∥∥∥ =

∥∥1− λk
∥∥ .

Therefore we have that the distance between h and the identity has the following

lower bound,

ds (h, id) ≥ max
{
λk,

∣∣1− λk∣∣} . (3.8)

If k = 0 then ds (h, id) ≥ 1 and as before, if k 6= 0 then ds (h, id) ≥
∣∣1− λk∣∣ ≥

1−λ. Therefore, it has been shown that for h ∈ N\N ∗ we have ds (h, id) ≥ 1−λ
which implies that the distance from a non-proper neighbor map to the identity

cannot be arbitrarily small and therefore any such h cannot contribute to the tail

of a sequence which limits to the identity map and therefore id 6∈ N .
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Applying Theorem 3.5 to Theorem 3.1 we get the following result, which we

have not found in the literature.

Corollary 3.6. If F = {Rm; f1, . . . , fN} is an IFS comprised of similitudes with

equal scaling factors λ and N ∗ is the set of proper neighbor maps, then F obeys

the OSC if and only if id 6∈ N ∗.

Remark 3.7. Corollary 3.6 is a much stronger statement than Theorem 3.1 from

Bandt and Graf [BG92] but it has only been shown for when all similitudes in

the IFS have equal scaling factors. In Chapter 4 this will be generalised to other

types of IFSs (Cor 4.4 and 4.16).

Now that the set of proper neighbor maps have been introduced let us provide

some basic examples of calculating them to determine if an IFS obeys the OSC.

Example 3.8. Let us consider the IFS F =
{
R; f1(x) = 1

2
x, f2(x) = 1

2
x+ 1

2

}
from Example 2.2 with its attractor A = [0, 1] which is shown in Figure 2.1.

We already know that F obeys the OSC with O = (0, 1), but as an exercise in

calculating neighbor maps we will now determine that that F obeys the OSC by

using Corollary 3.6.

All similitudes in F have the same scaling factor and therefore we have that

|i| = |j| for the proper neighbor maps h = f−1
i fj . Let us first look at words of

length one. This only gives us two neighbor maps, f−1
1 f2 and f−1

2 f1. Explicitly

calculating these maps gives us f−1
1 f2(x) = x + 1 and f−1

2 f1(x) = x − 1. Thus

we have determined two of the proper neighbor maps. Now we look at words of

length two. Recalling that we also require i1 6= j1 and Ai ∩Aj 6= ∅ then the only

proper neighbor maps of length two are due to the nonempty intersection of A12

and A21 as seen in Figure 3.2. Thus, our proper neighbor maps due to words

of length two are f−1
2 f−1

1 f2f1 and f−1
1 f−1

2 f1f2. Calculating the proper neighbor

maps of length two we get f−1
2 f−1

1 f2f1(x) = x + 1 and f−1
1 f−1

2 f1f2(x) = x − 1.

Comparing the proper neighbor maps of length two to those already calculated

of length one we observe that,

f−1
2 f−1

1 f2f1 = f−1
1 f2 and f−1

1 f−1
2 f1f2 = f−1

2 f1.

We see that this pattern continues because as the length of the words increase

from n to (n + 1) the only proper neighbor maps that will be considered are

associated to the intersection occurring at 0.5 between A1(2)n and A2(1)n . This

will produce the neighbor map
(
f−1

2

)◦n
f−1

1 f2 (f1)◦n and its inverse. Since we

have that f−1
2 f−1

1 f2f1 = f−1
1 f2 then from a straightforward induction argument
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we have that
(
f−1

2

)◦n
f−1

1 f2 (f1)◦n = f−1
1 f2. Therefore we have found all proper

neighbor maps for F to be

N ∗ =
{
f−1

1 f2, f
−1
2 f1

}
= {x+ 1, x− 1} .

Now, as the identity map is not contained in the closure of the set of proper

neighbor maps we have, by Corollary 3.6, that F obeys the OSC.

0 1
A

A11
A12 A21

A22

Figure 3.2: The pieces of the attractor given by words of length two for the IFS

F =
{
R; f1(x) = 1

2
x, f2(x) = 1

2
x+ 1

2

}
.

Remark 3.9. For Example 3.8 the following neighbor maps are not proper neigh-

bor maps.

• The map f−1
1 f−1

1 f2f2(x) = x+ 3 is not a proper neighbor map since A11 ∩
A22 = ∅. This corresponds to f−1

1 f−1
1 f2f2(A) ∩ A = ∅ and so the neighbor

set h(A) is not a ‘close’ neighbor and need not be considered when trying

to determine if the identity map is in the closure of N .

• The map f−1
1 f2f1(x) = 1

2
x+ 1 is not a proper neighbor map since |i| 6= |j|.

As all maps in the IFS have the same scaling factor then if a neighbor

map h = f−1
i fj has |i| 6= |j| then the scaling factor on the x term cannot

approach 1 in the limit and so need not be considered when determining if

the identity map is in the closure of N .

Example 3.10. Let F =
{
R; f1(x) = 1

3
x, f2(x) = 1

3
x+ 2

3

}
be the IFS from Ex-

ample 2.5 with the Cantor set as its attractor. We already know that F obeys

the OSC with O = (0, 1) but let us discuss the set of proper neighbor maps.

The Cantor set is a totally disconnected set and therefore we have that for all

i, j ∈ S∗, if i1 6= j1 then Ai ∩ Aj = ∅. Therefore the set of proper neighbor

maps is empty and so id 6∈ N ∗ which implies that F obeys the OSC as previously

stated in Example 2.5. In fact we have something stronger here. Any totally

disconnected IFS has an empty proper neighbor map set and therefore obeys the

OSC.
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Let us now consider an example where calculating the proper neighbor maps

shows that the IFS does not obey the OSC.

Example 3.11. Let us consider the IFS F = {R; f1(x) = φx, f2(x) = φx+ (1− φ)},
where φ is the inverse golden ratio given by

(
0.5
(√

5 + 1
))−1 ≈ 0.618. The at-

tractor of F is [0, 1] and it can be shown to not satisfy the OSC through a similar

argument to that presented in Example 2.2. However, here we will use neighbor

maps to show that it does not satisfy the OSC.

A
0 1

A1
A2

A11
A12

A21
A22

Figure 3.3: The pieces of the attractor for words of length at most two for the IFS

F = {R; f1(x) = φx, f2(x) = φx+ (1− φ)} with φ =
(
0.5
(√

5 + 1
))−1 ≈ 0.618.

Figure 3.3 shows the first two iterations of attractor pieces and it can already

be seen that the proper neighbor map set will be much more complicated than

in Example 3.8 because A11 ∩ A21 6= ∅ 6= A12 ∩ A22. Figure 3.3 does not show

the attractor pieces for words of length 3 or more as it would become too messy,

but we will now consider the intersection between A122 and A211. Note that the

inverse functions are given by f−1
1 (x) = x

φ
, f−1

2 (x) = x
φ
− φ and we have the

property 1−φ
φ

= φ. The proper neighbor map from the intersection of A122 and

A211 is given by,

f−1
2 f−1

2 f−1
1 f2f1f1(x) = f−1

2 f−1
2 f−1

1 f2f1 (φx) = f−1
2 f−1

2 f−1
1 f2

(
φ2x
)

= f−1
2 f−1

2 f−1
1

(
φ3x+ (1− φ)

)
= f−1

2 f−1
2

(
φ2x+ φ

)
= f−1

2 (φx+ (1− φ)) = x.

(3.9)

Therefore, we have just shown that the proper neighbor map f−1
2 f−1

2 f−1
1 f2f1f1

is the identity map. Therefore we have that id ∈ N which implies, by Theorem

3.1, that F does not satisfy the OSC.

3.2 Neighbor Graphs

The proper neighbor maps do not only determine if an IFS satisfies the OSC

but they are also the vertex set for a directed graph, called a neighbor graph,
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which “describes the topology of A in the simplest possible way” [BM18]. The

neighbor graph allows the calculation of various geometric parameters of the

fractal attractor. These include but are not limited to: the connectedness of

the attractor, if it encloses holes and the Hausdorff dimension of the topological

boundary [BM18]. Bandt and Mesing [BM09] describe the construction of the

neighbor graph as follows. For the neighbor graph, each proper neighbor map

h = f−1
i fj is denoted by a vertex. Between these vertices there is a directed edge

labelled (i′, j′) from h to h̄ if h̄ = f−1
i′ hfj′ for some i′, j′ ∈ S. The identity map

is the root vertex of the neighbor graph but by convention it is not drawn in

the graph (unless it is a neighbor map) and all edges from the root to the other

vertices have no initial vertex. An IFS, F , is of finite type if there are only finitely

many proper neighbor maps and therefore finitely many vertices in the neighbor

graph [BM18]. Let us now present an example of how to construct a neighbor

graph.

Example 3.12. We will now calculate the neighbor graph for the IFS from

Example 3.8 that had the unit interval as its attractor. Recall that N ∗ ={
f−1

1 f2, f
−1
2 f1

}
= {x+ 1, x− 1} and we have the following behaviour of the

proper neighbor maps,

f−1
2 f−1

1 f2f1 = f−1
1 f2 and f−1

1 f−1
2 f1f2 = f−1

2 f1.

Let us denote the proper neighbor maps (and hence the vertices of the neighbor

graph) by a := f−1
1 f2 and a− := f−1

2 f1. Vertex a has an edge going to it from

the unmarked identity vertex labelled (1, 2). Then, by the left-hand side of the

above equation, we see that there is a loop on vertex a marked (2, 1). Identical

reasoning gives the edges for vertex a−. The neighbor graph is shown in Figure

3.4.

a a−

(2, 1) (1, 2)

(1, 2) (2, 1)

Figure 3.4: Neighbor Graph for F =
{
R; f1(x) = 1

2
x, f2(x) = 1

2
x+ 1

2

}
with at-

tractor [0, 1]. Where a := f−1
1 f2 and a− := f−1

2 f1.

Note that the proper neighbor maps f−1
1 f2 and f−1

2 f1 are inverses of each

other and so that is why there vertices have been named a and a− respectively.



3.3. NEIGHBOR MAPS OF THE SIERPINSKI TRIANGLE 35

We could simplify the neighbor graph of Example 3.12 by noting that the

graph is symmetrical about a vertical line through the centre. This will always

be the case for neighbor graphs because the inverse of every neighbor map is also

a neighbor map and for any edge (i, j) between h1 and h2, there is always an edge

(j, i) between h−1
1 and h−1

2 . Therefore, if the neighbor graph becomes large and

there are no edges between the two sides of the graph then only one side of the

neighbor graph needs to be drawn.

The classical Cantor set as given in Example 3.10 has an empty set of proper

neighbor maps and hence there are no vertices in its neighbor graph; i.e the

neighbor graph of the classical Cantor set is the empty graph.

3.3 Neighbor Maps of the Sierpinski Triangle

The Sierpinski triangle is a fundamental object in fractal geometry due to its

significance in history and ubiquity in pedagogy. Therefore it seems appropriate

to determine its proper neighbor maps and its associated neighbor graph. The

results of this calculation have been presented by Grant [Gra18], however the

calculation was not included and so we will now do that here. Let us define the

IFS for the Sierpinski triangle as F = {R2; f1, f2, f3} with maps

f1

(
x

y

)
=

(
1
2

0

0 1
2

)(
x

y

)
, f2

(
x

y

)
=

(
1
2

0

0 1
2

)(
x

y

)
+

(
1
2

0

)

and f3

(
x

y

)
=

(
1
2

0

0 1
2

)(
x

y

)
+

(
1
4√
3

4

)
.

(3.10)

The attractor of F is an equilateral Sierpinski triangle with sides of unit length.

In order to calculate the proper neighbor maps let us start with words of length

1. By a straightforward calculation this gives the following six proper neighbor

maps:

f−1
1 f2

(
x

y

)
=

(
x

y

)
+

(
1

0

)

f−1
1 f3

(
x

y

)
=

(
x

y

)
+

(
1
2√
3

2

)

f−1
2 f3

(
x

y

)
=

(
x

y

)
+

(
−1
2√
3

2

)

f−1
2 f1

(
x

y

)
=

(
x

y

)
+

(
−1

0

)

f−1
3 f1

(
x

y

)
=

(
x

y

)
+

(
−1
2
−
√

3
2

)

f−1
3 f2

(
x

y

)
=

(
x

y

)
+

(
1
2
−
√

3
2

)
.

(3.11)
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Note that maps in the same row are inverses of each other. We have exhausted all

possible proper neighbor maps with length 1. Now we consider words of length 2

recalling the requirements that i1 6= j1 and Ai ∩Aj 6= ∅. Thus the only neighbor

maps to consider for length 2 are associated with the following intersections:

A12 ∩ A21 =
{(

1
2
, 0
)}

, A13 ∩ A31 =
{(

1
4
,
√

3
4

)}
and A23 ∩ A32 =

{(
3
4
,
√

3
4

)}
.

For each of these intersections there are two corresponding neighbor maps. Let

us first look at the intersection A12 ∩ A21 which gives the proper neighbor map

f−1
12 f21 = f−1

2 f−1
1 f2f1 and its inverse f−1

1 f−1
2 f1f2. By a straightforward calculation

we see that f−1
2 f−1

1 f2f1 = f−1
1 f2 and similarly f−1

1 f−1
2 f1f2 = f−1

2 f1. Therefore

the two neighbor maps given by the intersection of A12∩A21 are already included

in N ∗. Now considering the proper neighbor maps (f13)−1 f31, (f23)−1 f32 and

their inverses we obtain similar identities as follows:

f−1
3 f−1

1 f3f1 = f−1
1 f3,

f−1
3 f−1

2 f3f2 = f−1
2 f3,

f−1
1 f−1

3 f1f3 = f−1
3 f1,

f−1
2 f−1

3 f2f3 = f−1
3 f2.

(3.12)

Therefore, all the proper neighbor maps of length 2 are equal to a proper neighbor

map of length 1 and thus already contained in N ∗. We must now consider proper

neighbor maps f−1
i fj for |i| = |j| > 2. The only i and j such that i1 6= j1

and Ai ∩ Aj will be of the form (fijn)−1 fjin with i, j ∈ {1, 2, 3} and distinct.

Note that the identities shown above give that f−1
j f−1

i fjfi = f−1
i fj and so by

a simple induction argument we have that f−nj f−1
i fjf

n
i = f−1

i fj. Therefore all

proper neighbor maps of any length are equal to one of the six proper neighbor

maps calculated for |i| = |j| = 1 which gives,

N ∗ =
{
f−1

1 f2, f
−1
2 f1, f

−1
1 f3, f

−1
3 f1, f

−1
2 f3, f

−1
3 f2

}
.

For all proper neighbor maps we have that the Sierpinski triangle is mapped to

an isometric copy that intersects with the original at its vertices. Figure 3.5 from

Grant [Gra18] shows the set h(A) for each h ∈ N ∗ with the centre triangle shaded

red to indicate that it is the original.

Now that the set of proper neighbor maps has been determined, the neighbor

graph can be drawn. Let us denote the vertices of the neighbor graph by

a := f−1
1 f2

b := f−1
1 f3

c := f−1
2 f3

a− := f−1
2 f1

b− := f−1
3 f1

c− := f−1
3 f2.
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Figure 3.5: The images of the proper neighbor maps of the Sierpinski triangle

[Gra18].

Each proper neighbor map f−1
i fj corresponds to a vertex in the neighbor graph.

On that vertex there will be a directed edge coming into it with no initial vertex

(the identity vertex is not drawn) that will be labelled by (i, j) and there will

also be a loop on it labelled (j, i) due to the property f−1
j f−1

i fjfi = f−1
i fj. The

neighbor graph for the Sierpinski triangle is drawn in Figure 3.6. We have chosen

to draw the entire neighbor graph instead of taking advantage of the symmetry

property because it has allowed us to use the location of each vertex to illustrate

the translation of each neighbor map and therefore which isometric copy it is

responsible for in Figure 3.5.

c b

a− a

b− c−

(3, 2) (3, 1)

(1, 2) (2, 1)

(1, 3) (2, 3)

(2, 3) (1, 3)

(2, 1) (1, 2)

(3, 1) (3, 2)

Figure 3.6: Neighbor Graph for the classical Sierpinski Triangle IFS.
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We have calculated the set of proper neighbor maps and the neighbor graph

for the IFS given in Equation 3.10 whose attractor is the equilateral Sierpinski

triangle. We have found that the identity map is not contained in N ∗, moreover

as N ∗ is a finite set N ∗ = N ∗ and thus id 6∈ N ∗. Therefore, by Corollary 3.6,

we have that the IFS that generated the equilateral Sierpinski triangle with side

length one obeys the OSC. This could have been determined by noting that the

open set O = (0, 1)×
(

0,
√

3
2

)
satisfies the OSC; however, it is good to note that

we have obtained the same answer using neighbor maps.

If it were desired to calculate the set of all neighbor maps, not just the set

of proper neighbor maps, it could be done but the task would be cumbersome.

The approach to determining all neighbor maps is as follows. A neighbor map

is of the form f−1
i fj with i1 6= j1 and a proper neighbor map has the additional

requirements that |i| = |j| and Ai∩Aj 6= ∅. Removing the restriction of |i| = |j|,
we get the collection of neighbor maps given by

h

(
x

y

)
= f−nj f−1

i fjf
k
i

(
x

y

)
=

(
2−k+n 0

0 2−k+n

)(
x

y

)
+ bk,

with b1 =

(
±1

0

)
, b2 =

(
±Cx
±Cy

)
, b3 =

(
±
(
−2−k+n + Cx

)
±Cy

)
,

where i, j ∈ {1, 2, 3}, i 6= j and the ± has been included in the translation

vectors to account for the inverse maps. Removing the restriction Ai ∩ Aj 6= ∅
gives neighbor maps of the following forms f−1

1n f2k , f−1
13nf21k , f−1

231nf31k and infinitely

many other forms. Therefore, there is an infinite number of forms that a neighbor

map can take and each of these gives rise to an infinite number of neighbor maps.

However, there may not be infinitely many proper neighbor maps as already seen

in Example 3.8 and above for the Sierpinski triangle. Therefore, the new result,

Theorem 3.6 which allows us to only consider the proper neighbor maps when

determining if the IFS satisfies the OSC, is useful.



Chapter 4

The Generalised Sierpinski

Triangles

The generalised Sierpinski triangles considered here are a recent discovery in

the field of fractal geometry [SW18]. The family of generalised Sierpinski tri-

angles has four members: the classic Sierpinski triangle (4NNN), the Pedal

triangle (4FFF ), and the two newly discovered triangles denoted (4FNN) and

(4FFN). Grant [Gra18] named the new fractal triangles the Steemson triangle

and the Williams triangle respectively after their discoverers. For examples of

the generalised Sierpinski triangles glance forward to Figure 4.3 on page 42.

An arbitrary triangle 4ABC in R2 is fully described by the coordinates of its

three vertices. That is, the side lengths, interior angles, location and orientation

of the triangle in the plane is determined by the vertex positions. Note that

if the vertices are all collinear then the triangle degenerates to a line segment.

Without loss of generalisation we assume that A lies at the origin, B = (1, 0)

and C = (Cx, Cy) is in the top half of the R2 plane. This can be done without

changing the geometric properties of the triangle because side length ratios and

interior angles are unchanged by rotation, translation and uniform scaling. Now,

as vertices A and B are fixed we choose to describe the triangle by the side lengths

a = |BC| and b = |AC| as illustrated in Figure 4.1a. Note c = |AB| = 1 and the

top vertex is given by Cx = 1
2

(b2 − a2 + 1) and Cy = 1
2

√
4b2 − (b2 − a2 + 1)2.

Historically, the term ‘Pedal triangle’ referred to a sub-triangle that exists

inside of another triangle created from a selected point. The geometric construc-

tion is illustrated in Figure 4.1b and goes as follows. Take a point P in the

39
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A B

C (Cx, Cy)

b aCy

Cx

(a)

A B

C

X

Y

Z
P

(b)

F (A)
= A

B

C

F (B)

F (C)

(c)

Figure 4.1: (a) The side lengths a and b fully describe 4ABC.

(b) The Pedal triangle 4XY Z generated by P from 4ABC [SW18].

(c) The operation of a flip map, F , on 4ABC.

interior of the triangle 4ABC. Let X be the point on the line AC such that PX

is perpendicular to AC. Similarly define the points Y and Z on the lines AB

and BC respectively. The triangle 4XY Z was referred to as the Pedal triangle

generated by P . This Pedal triangle can be used to construct a fractal attractor

by considering an IFS consisting of three maps that take 4ABC to 4AXY ,

4ZBY and 4ZXC. That is, the large triangle is mapped into each of the three

smaller corner triangles. For any point P generated Pedal triangle this can be

done using affine maps in a variety of ways. A specific interior Pedal triangle can

be constructed by joining the three feet of the altitudes of 4ABC as described

in [ZHWD08] and in this case the functions that map the large triangle into the

smaller corner triangles are similitudes. These similitudes involve a reflection and

a rotation so we call them flip maps. The operation of a flip map, F , that takes

the big triangle 4ABC to the lower left triangle 4AYX is illustrated in Figure

4.1c. The map F fixes the vertex A as that is the corner it is mapping to and

it performs a reflection along the x-axis and a rotation so that the other two

vertices exchange the lines that they lie on. This can be more easily thought of

as flipping the triangle over, hence the name. We will be using the term ‘Pedal

triangle’ for the triangular shaped fractal attractor generated by three flip maps.

The Pedal triangles and their Hausdorff dimension have been well researched in

[CM13, DL09, DT10, ZHWD08].

The Sierpinski triangle is not a singular triangle. Rather it describes the frac-

tal nature that can occurs inside of an arbitrary triangle. Similarly, the other

types of generalised Sierpinski triangles describe the fractal nature inside a tri-

angular hull. Therefore, we can use any arbitrary triangle with side lengths a
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and b as the convex hull for a generalised Sierpinski triangle. Note that there

is one exception to this: a Pedal triangle is only defined for an acute triangular

hull as otherwise the constructed4XY Z does not sit inside of the triangular hull.

The Sierpinski triangle is the attractor of an IFS with three non-flip maps

(N) and the Pedal triangle is the attractor of an IFS with three flip maps (F ).

The combinations of non-flip and flip maps is what gives the Steemson (4FNN)

and the Williams (4FFN) fractal triangles. When considering the Steemson

triangle, without loss of generality we can assume that the flip map is mapping

to the lower left and so fixes the origin. Similarly we can assume that for the

Williams triangle the flip maps are the lower left and the lower right maps. These

assumptions can be made because when the arbitrary triangle was taken to have

vertices at (0, 0), (1, 0) and with the third vertex in the top half of the plane

there is a total of six ways of doing this using similitudes and so preserving

the geometry of the triangle. The full derivation of the Steemson and Williams

triangles is included in [SW18] and various examples are displayed in Figure 4.3.

The IFSs that generate each of the generalised Sierpinski triangles are given in

Equation 4.1 where α, β, γ are the scaling factors of f1, f2, f3 which fix the origin,

(1, 0) and (Cx, Cy) respectively. For each of the generalised Sierpinski triangles

the scaling factors are given in Figure 4.2 [SW18].

FNNN =
{
R2; f1,N , f2,N , f3,N

}
FFNN =

{
R2; f1,F , f2,N , f3,N

}
FFFN =

{
R2; f1,F , f2,F , f3,N

}
FFFF =

{
R2; f1,F , f2,F , f3,F

} (4.1)

4 α β γ

4NNN 1
2

1
2

1
2

4FNN b
b2+1

1
b2+1

b2

b2+1

4FFN b
a2+b2

a
a2+b2

a2+b2−1
a2+b2

4FFF 1
2b

(−a2 + b2 + 1) 1
2a

(a2 − b2 + 1) 1
2ab

(a2 + b2 − 1)

Figure 4.2: The scaling factors for the generalised Sierpinski triangles.

The explicit formulas for the maps are stated below [SW18]:

f1,N

(
x

y

)
=

(
1
2

0

0 1
2

)(
x

y

)
f2,N

(
x

y

)
=

(
1
2

0

0 1
2

)(
x

y

)
+

(
1
2

0

)
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f3,N

(
x

y

)
=

(
1
2

0

0 1
2

)(
x

y

)
+

(
Cx

2
Cy

2

)
f1,F

(
x

y

)
=

(
α
b
Cx

α
b
Cy

α
b
Cy −α

b
Cx

)(
x

y

)

f2,F

(
x

y

)
=

(
β
a

(1− Cx) −β
a
Cy

−β
a
Cy −β

a
(1− Cx)

)(
x

y

)
+

(
1− β

a
(1− Cx)
β
a
Cy

)
(4.2)

f3,F

(
x

y

)
=

((
α
b
− β

a

)
Cx +

(
β
a
− 1
) (

α
b
− β

a

)
Cy(

α
b
− β

a

)
Cy −

(
α
b
− β

a

)
Cx −

(
β
a
− 1
))(x

y

)
+

(
1− β

a
(1− Cx)
β
a
Cy

)
.

(a) 4NNN (b) 4FNN (c) 4FFN (d) 4FFF

(e) 4NNN (f) 4FNN (g) 4FFN (h) 4FFF

(i) 4NNN (j) 4FNN (k) 4FFN (l) 4FFF

Figure 4.3: The generalised Sierpinski triangles are shown across the columns

with each row for a different pair of side lengths (a, b). From top to bottom the

side lengths are (0.85, 0.75), (0.8, 1.2) and (1.6, 1.3). For each of the triangles f1,

f2, f3 are shown in blue, yellow and red respectively.

4.1 Neighbor Maps of 4NNN

For the generalised Sierpinski triangle (4NNN) the set of proper neighbor maps

has already been calculated in the case of (Cx, Cy) = (1
2
,
√

3
2

), see Section 3.3.
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When repeating the process for the arbitrary 4NNN case we find that N , N ∗

and the neighbor graph do not change when the notation f−1
i fj is used for the

neighbor maps. This is not surprising because moving the top vertex has no effect

on the fractal structure or on the way attractor pieces intersect. Note that if the

maps are expressed in R2 notation then the neighbor map formulas depend on

(Cx, Cy).

4.2 Neighbor Maps of 4FNN

The similitudes in the IFS that generate the Steemson triangle (4FNN) have

scaling factors b
b2+1

, 1
b2+1

and b2

b2+1
. Assuming b 6= 1 then the maps have different

scaling factors. This does not prevent us from calculating the set of neighbor maps

as defined by Equation 3.2. However, we are currently unable to calculate the set

of proper neighbor maps as defined by Equation 3.4 because the similitudes in

the IFS that generates the Steemson triangle do not have equal scaling factors.

Since we do not yet have a definition of proper neighbor maps when the scaling

factors are not equal, we will calculate the neighbor maps and use Theorem 3.1 to

show that the IFS, FFNN , that generates the Steemson triangle satisfies the OSC.

We will now calculate the maps h = f−1
i fj for i, j ∈ S∗, i1 6= j1 and

Ai ∩ Aj 6= ∅. The set of these maps is a subset of N defined by the addition re-

quirement Ai∩Aj 6= ∅. In the case of uniform scaling factors, this restriction was

included in the definition of the set of proper neighbor maps because it prevented

us from considering maps which have large translation factors. The scaling fac-

tors of the similitudes in the IFS do not affect the validity of this argument and

therefore if the identity is not in the closure of this translation restricted set of

neighbor maps then it is not in the closure of the set of neighbor maps.

Let us consider the neighbor maps that satisfy the condition A1∩A2 6= ∅. The

first such neighbor maps are f−1
1 f2 and its inverse. The map f−1

1 f2 gives rise to

infinitely many additional neighbor maps of the form f−1
i f−1

1 f2fj for i, j ∈ S∗ and

A1i ∩ A2j . Noting the flip nature of f1 and the non-flip nature of f2 we see that

the only such i, j are of the form i = 3n and j = 1m for n,m ∈ N. The neighbor

maps f−1
13nf21m = (f3)−n f−1

1 f2 (f1)m for all n,m ∈ N can be explicitly calculated.

Note that f1 is a flip map and when it is composed on itself it becomes a non-flip

map, that is, f 2
1 does not flip and it does scale by α2. Therefore the calculation of
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these neighbor maps simplifies by considering the parity of m. Letting m = 2k+1

and m = 2k for some k ∈ N, we have:

(f3)−n f−1
1 f2 (f1)2k+1

(
x

y

)
=

(
b2k−2n

(b2+1)2k+2n+1 0

0 b2k−2n

(b2+1)2k−2n+1

)(
x

y

)
+

(
Cx

Cy

)

(f3)−n f−1
1 f2 (f1)2k

(
x

y

)
=

(
b2k−2n−1

(b2+1)2k+2nCx
b2k−2n−1

(b2+1)2k+2nCy
b2k−2n−1

(b2+1)2k+2nCy − b2k−2n−1

(b2+1)2k+2nCx

)(
x

y

)
+

(
Cx

Cy

)
.

In both cases we cannot get the identity map or approach it in a limit since the

translation factors are fixed and nonzero. Let us also note that the Steemson

triangle is fully described by its vertices {(0, 0), (1, 0), (Cx, Cy)} and so we can

determine the neighbor set h(A) for each of the above maps by determining the

image of the vertices. We have

(f3)−n f−1
1 f2 (f1)2k+1

{(
0

0

)
,

(
1

0

)
,

(
Cx

Cy

)}
=

{(
Cx

Cy

)
,

(
b2k−2n

(b2+1)2k+2n+1 + Cx

Cy

)
,

(1 + b2k−2n

(b2+1)2k+2n+1

)
Cx(

1 + b2k−2n

(b2+1)2k+2n+1

)
Cy

 and

(f3)−n f−1
1 f2 (f1)2k

{(
0

0

)
,

(
1

0

)
,

(
Cx

Cy

)}
=

{(
Cx

Cy

)
,(1 + b2k−2n−1

(b2+1)2k+2n

)
Cx(

1 + b2k−2n−1

(b2+1)2k+2n

)
Cy

 ,

(
b2k−2n−1

(b2+1)2k+2n + Cx

Cy

) .

The image of the vertices show that the above neighbor maps give a collection

of neighbor sets which intersect the attractor only at the top vertex and whose

adjacent sides are horizontal and a continuation of side b. That is, these maps

give the equivalent neighbor as the top right neighbor set in Figure 3.5 for the

Sierpinski triangle. Note that the inverse of these neighbor maps give the left and

bottom left neighbors of the Steemson depending on the parity of m.

This process can be repeated for the neighbor maps associated to the inter-

sections A1 ∩ A3 and A2 ∩ A3. The collection of neighbor maps f−1
i fj such that

Ai ∩ Aj 6= ∅ are given by:

f−1
12nf31m = (f2)−n f−1

1 f3 (f1)m , f−1
23nf32m = (f3)−n f−1

2 f3 (f2)m ,
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and their inverses. For the neighbor maps involving f1 we are again concerned

parity. Therefore we express the above neighbor maps as follows for n,m, k ∈ N:

(f2)−n f−1
1 f3 (f1)2k+1

(
x

y

)
=

(
b2(k+1)

(b2+1)2k−n+1 0

0 b2(k+1)

(b2+1)2k−n+1

)(
x

y

)
+

(
1

0

)

(f2)−n f−1
1 f3 (f1)2k

(
x

y

)
=

(
b2k

(b2+1)2k−nCx
b2k

(b2+1)2k−nCy
b2k

(b2+1)2k−nCy − b2k

(b2+1)2k−nCx

)(
x

y

)
+

(
1

0

)

(f3)−n f−1
2 f3 (f2)m

(
x

y

)
=

(
b2−2n

(b2+1)k−n 0

0 b2−2n

(b2+1)k−n

)(
x

y

)
+

(
Cx − b2−2n

(b2+1)k−n

Cy

)
.

All neighbor maps f−1
i fj such that Ai∩Aj 6= ∅ have now been determined. As all

maps have non-zero translation factors that do not limit to zero then the identity

is not contained in the closure of the set of neighbor maps. Therefore by Theorem

3.1 we have that the Steemson triangles given by the IFS FFNN obey the OSC.

Alternatively, taking O as the open convex hull of the attractor satisfies the OSC

[SW18], yet is it good to see that Bandt’s theory does again agree with previously

established results.

Thus far we have avoided defining the set of proper neighbor maps for an IFS

with nonequal scaling factors. However, we would now like to construct a neighbor

graph for a Steemson triangle and so we must find an appropriate replacement

condition for |i| = |j|. All of Bandt’s published work to date has only considered

the case where all similitudes in the IFS have equal scaling factors. However,

from Grant [Gra18] we have the following definition for the case when the scaling

factors are integer powers of a common scaling factor.

Definition 4.1. [Gra18] If F = {R2; f1, . . . fN} is an IFS of contractive simili-

tudes with scaling factors λi = λai where 0 < λ < 1 is a fixed scaling factor base,

ai ∈ N = {1, 2, 3, . . . }, i ∈ {1, . . . N} and gcd (a1, . . . aN) = 1, then we define the

set of proper neighbor maps to be{
h = f−1

i fj | i, j ∈ S∗, i1 6= j1, Ai ∩ Aj 6= ∅, |ξ(i)− ξ(j)| < amax
}
.

Here amax = max {a1, . . . aN} and ξ : S∗ → N0 is the function from Barnsley and

Vince [BV18] such that ξ (∅) = 0 and for i = i1i2 · · · ip ∈ S∗ we have

ξ (i) = ai1 + ai2 + · · ·+ aip .

Thus, ξ (i) sums the integer powers for the scaling factors of each map in the

composition fi.
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Remark 4.2. When the scaling factors of F satisfy λi = λai for i ∈ {1, . . . N} we

say that the scaling factors satisfy the algebraic condition. Note that we assume

gcd (a1, . . . aN) = 1, where gcd denotes the greatest common divisor, so that if

the scaling factors satisfy the algebraic condition then they do so for a unique

base scaling factor.

The set of proper neighbor maps, N ∗, includes all neighbor maps which have

scaling factors ‘close’ to one. It would be reasonable to think that < amax could

be changed (to ≤ amax for example) and a different but equally reasonable set

of proper neighbor maps would be defined. However, we argue that this is the

best condition since in the case where all scaling factors are equal, λi = λ1, we

have amax = 1. Therefore the condition simplifies to |i| = |j|, and so the new

definition encompasses the initial definition of the set of proper neighbor maps

[Gra18]. Note that the motivation for Grant [Gra18] to construct this definition

came from fractal tiling theory. Importantly, Theorem 3.5 generalises for IFSs

which satisfy the algebraic condition as we will now show.

Theorem 4.3. If F = {Rm; f1, . . . , fN} is an IFS with scaling factors λai for

fixed 0 < λ < 1, ai ∈ N and i ∈ {1, . . . N}, then id 6∈ N if and only if id 6∈ N ∗,
where N is the set of neighbor maps by Equation 3.2 and N ∗ is the set of proper

neighbor maps given by Definition 4.1.

Proof. The proof of this theorem is a straightforward generalisation of the proof

supplied for Theorem 3.5; in fact, the proof of the forward direction is identical.

The changes in the proof of the reverse direction come from noting that the non-

proper neighbor map h = f−1
i fj must either satisfy Ai∩Aj = ∅ or |ξ(i)− ξ(j)| ≥

amax. We have that h is of the form h(x) = λkOx + b ∈ N\N ∗ for k ∈ Z, O

is a rotation reflection isometry and b ∈ Rm is a translational vector. When

‖b‖ = 0 is assumed this implies that k ∈ Z\ {−amax + 1, . . . , amax − 1} and so

we get ds(h, id) ≥ 1 − λamax . In the case of ‖b‖ > 0 the proof follows that of

Theorem 3.5 and so we get ds(h, id) ≥ 1− λ. Therefore any non-proper neighbor

map h cannot be arbitrarily close to the identity so we have that id 6∈ N ∗ implies

id 6∈ N .

Applying Theorem 4.3 to Theorem 3.1 we get the following result.

Corollary 4.4. If F = {Rm; f1, . . . , fN} is an IFS of contractive similitudes with

scaling factors that satisfy the algebraic condition, then F obeys the OSC if and

only if id 6∈ N ∗.
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If the scaling factors of the IFS satisfy the algebraic condition then the possible

scaling factors for the neighbor maps are discrete and given by λk for k ∈ Z.

Therefore consider the following subset of N ∗,

N † =
{
h = f−1

i fj | i, j ∈ S∗, i1 6= j1, Ai ∩ Aj 6= ∅, ξ(i) = ξ(j)
}
. (4.3)

Theorem 4.3 remains true if N ∗ is replaced with N † and so we get the following

result.

Corollary 4.5. If F = {Rm; f1, . . . , fN} is an IFS of contractive similitudes with

scaling factors that satisfy the algebraic condition, then F obeys the OSC if and

only if id 6∈ N †.

Remark 4.6. We do not call N † the set of proper neighbor maps even though

it is a ‘smaller’ set of neighbor maps which are sufficient to check for the OSC.

This is because the set of proper neighbor maps, as Bandt and Mesing [BM09]

define them, generate a neighbor graph that describes the topology of the fractal

attractor, see Remark 4.9. We claim that N † does not generate a neighbor graph

that sufficiently describes the topology of the fractal attractor. This claim is not

proved here but represents an exciting area of the topic to be further researched.

In Section 5.2 it will be discussed how the neighbor graph illustrates the topology

by describing how different sub-attractor pieces relate to each other. However,

N † only describes the relationship between sub-attractor pieces of equal size.

Now that the set of proper neighbor maps have been defined when the scaling

factors satisfy the algebraic condition we would like to know about the set of

proper neighbor maps for arbitrary scaling factors. This will be discussed in de-

tail in Section 4.5; however, for the majority of our work we restrict ourselves to

IFSs for which the scaling factors satisfy the algebraic condition. This is because,

by Theorem 5.1, the algebraic condition guarantees that the neighbor graph of

the generalised Sierpinski triangles will be of finite type. However, Example 5.5

provides a counterexample to the converse of this statement, that is, a situation

where the algebraic condition is not satisfied yet the neighbor graph is finite.

Returning to our goal of constructing a neighbor graph of the Steemson tri-

angle, we will find a particular Steemson triangle whose scaling factors obey the

algebraic condition. This involves solving the system of linear equations that

relate the scaling factors to the side lengths, namely

αb+ β = 1, α + γb = b, βa+ γa = a,
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for α = λi, β = λj, γ = λk with i, j, k ∈ Z+. In Mathematica a triple ‘For’ loop

was written to iterate through the integer values of i, j, k and for each case it

attempted to solve for the side lengths a and b and the scaling factor λ. We

find that there does not exist a solution for all integer combinations and that the

side length a is a free variable. One particular solution is (i, j, k) = (2, 1, 3) with

b ≈ 0.68 and λ ≈ 0.65. This Steemson triangle is shown in Figure 4.4 and its

neighbor graph is calculated in Example 4.8.

In order to present an example of determining the set of proper neighbor maps

and then calculating the neighbor graph for an IFS which satisfies the algebraic

condition, we must first introduce some notation from Grant [Gra18].

Definition 4.7. The set of symbolic neighbor pairs is given by:

P = {(i, j) ∈ S∗ × S∗ | ξ(i), ξ(j) ≤ amax} . (4.4)

The set of symbolic neighbor pairs is the starting point for determining the

set of proper neighbor maps. The maps h = f−1
i fj such that (i, j) ∈ P , i1 6= j1

and Ai ∩ Aj 6= ∅ are the proper neighbor maps which come from the identity.

Then the map h̃ = f−1

ĩ
f−1
i fjfj̃ for

(
ĩ, j̃
)
∈ P is a proper neighbor map providing

that
∣∣∣ξ (iĩ)− ξ (jj̃)∣∣∣ < amax and Aiĩ∩Ajj̃ 6= ∅. This process can be continually

repeated to find more proper neighbor maps. However, this will not necessarily

find all proper neighbor maps, as will be seen later. The examples provided in the

remainder of this chapter illustrate a systematic way of determining all proper

neighbor maps, even those which are not connected to the identity. This method

also determines the directed edges of the neighbor graph.

Example 4.8. Consider the Steemson triangle with scaling factors satisfying the

algebraic condition described by (i, j, k) = (2, 1, 3) that is displayed in Figure

4.4. We will determine the proper neighbor maps and the neighbor graph for this

Steemson triangle. Let us start by calculating the set of symbolic neighbor pairs,

P =
{

(i, j) | i, j ∈
{

1, 2, 3, 22, 12, 21, 23
}}

.

Note that we have adopted the notation 23 for the string 222 in order to make the

following working more readable. From P we see that the neighbor maps which

come from the identity are given by the pairs; (1, 2), (1, 21), (3, 1), (3, 12), (2, 3)

and their inverses. From now we will omit discussion of the corresponding inverse

maps and only look at the five just stated maps and those which connect to them
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Figure 4.4: The Steemson triangle (4FNN) with scaling factors (α, β, γ) =

(λ2, λ, λ3) for λ ≈ 0.6477. The side lengths are (a, b) ≈ (0.9, 0.68).

in the neighbor graph. We do this because the neighbor graph will be quite large

and so we will take advantage of the symmetry property. Let us now begin our

systematic method for determining all proper neighbor maps and first consider

the maps which arise due to the intersection between A1 and A2. The maps which

come from the identity at this intersection are (1, 2) and (1, 21) as stated above.

Additional maps for this intersection will be of the form (n11, 2n2) or (n31, 21n4)

for ni being a string of length li, that is ni ∈ {1, 2, 3}li . Recalling the requirement

that Ai∩Aj 6= ∅ and noting that f1 is a flip map and f2 is a non-flip map then we

have that n1 and n3 can only be strings of 3’s and n2 and n4 can only be strings

of 1’s. Therefore all proper neighbor maps for the intersection A1 ∩A2 are of the

form
(
3n1, 21k

)
with the additional restriction that

∣∣ξ (3n1)− ξ
(
21k
)∣∣ < 3. We

are now in a position where we can simply write down all the different proper

neighbor maps for A1 ∩A2. We do this in Figure 4.5 by fixing n for each column

and varying k such that the ξ condition is satisfied.

(1, 2) (31, 21) (321, 213) (331, 214) (341, 216) = (1, 2)

(1, 21) (31, 212) (321, 214) (331, 215) (341, 217) = (1, 21)

(31, 213) (331, 216)

Figure 4.5: The list of proper neighbor maps for the Steemson triangle with

scaling factors (λ2, λ1, λ3) that are due to the intersection A1 ∩A2. Note that for

each of these maps there is an inverse map which we are omitting.

The scaling factor of f3 is λ3 and the scaling factor of f1 is λ2, and so the

maps f 2
3 and f 3

1 both have a scaling factor of λ6. Note that the sets f 2
3 f1(A) and

f 3
1 f2(A) do not have the same relationship as f1(A) and f2(A) since f1 is a flip
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map and has been applied an odd number of times. Thus, we double the expo-

nents and observe that f 4
3 f1(A) and f 6

1 f2(A) have the same relationship as f1(A)

and f2(A). Therefore (341, 216) = (1, 2). Due to this equality we can conclude

that Figure 4.5 includes all proper neighbor maps for A1 ∩ A2. Since all proper

neighbor maps for this intersection are of the form
(
3n1, 21k

)
and that 3 and 1

appear in P as only single digits then the only pair
(
ĩ, j̃
)
∈ P to map between

neighbor maps is (3, 1). Therefore we have fully determined the neighbor graph

for the intersection of A1 ∩A2. It is drawn in Figure 4.6 and note that the entire

graph is mirrored for the inverse vertices but these are omitted from the graph.

(31, 213) (321, 214) (331, 215) (1, 2) (31, 21)

(331, 216) (1, 21) (31, 212) (321, 213) (331, 214)

(3, 1) (3, 1) (3, 1) (3, 1)

(3, 1) (3, 1) (3, 1) (3, 1)

(1, 2)

(1, 21)

Figure 4.6: The neighbor graph of the Steemson triangle (4FNN) with scaling

factors (α, β, γ) = (λ2, λ, λ3) for the intersection between A1 and A2.

We now must repeat the process for the neighbor maps that are associated to

the intersection between A1 and A3. The proper neighbor maps which come from

the identity are (3, 1) and (3, 12). Accounting for the flip nature of f1 and the

non-flip nature of f2 we have that all proper neighbor maps for this intersection

will be of the form
(
1n3, 12k

)
with the ξ restriction. By similar reasoning to above

we have that (123, 124) = (3, 1). This allows an exhaustive list of the maps to

be written out. For neighbor maps being mapped to other neighbor maps there

exists two pairs
(
ĩ, j̃
)
∈ P which are (1, 2) and (1, 22).

Lastly, we determine the proper neighbor maps for A2∩A3. Only (2, 3) comes

from the identity and all maps will be of the form
(
3n2, 32k

)
where the ξ condition
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is satisfied. The only pairs which can take one neighbor map to another are (3, 2)

and (3, 22).

The proper neighbor maps for the Steemson triangle with scaling factors

(α, β, γ) = (λ2, λ, λ3) are denoted by letters of the alphabet in Figure 4.10 as

is the convention for neighbor graphs. Figure 4.7 gives the proper neighbor map

that corresponds to each vertex using symbolic neighbor pair notation.

a = (31, 213) b = (321, 214) c = (331, 215) d = (1, 2) e = (31, 21)

f = (331, 216) g = (1, 21) h = (31, 212) i = (321, 213) j = (331, 214)

k = (13, 125) l = (3, 122) m = (13, 123) n = (3, 1) o = (13, 12)

p = (3, 123) q = (13, 124) r = (3, 12) s = (13, 122) t = (123, 123)

u = (2, 3) v = (32, 32) w = (322, 322) x = (32, 322) y = (32, 3)

Figure 4.7: The list of proper neighbor maps for the Steemson triangle with

scaling factors (λ2, λ1, λ3) that are seen in the Neighbor Graph of Figure 4.10.

The Steemson (2, 1, 3) neighbor graph, Figure 4.10, is only half of the complete

neighbor graph but the other half has been omitted because it contains no new

information and doing so simplifies a relatively large graph. Note that in some

cases the inverse half and the original half of the neighbor graphs interplay but

it is not the case for this example which can be seen by explicitly calculating

all proper neighbor maps and their inverses. Alternatively, an argument could

be constructed from the geometry of the fractal attractor. However, for this

case Mathematica was used because there were only 25 neighbor maps and their

inverses to check.

Remark 4.9. It was stated in Remark 4.6 that N ∗ (Def 4.1) is the set of proper

neighbor maps even though N † (Def 4.3) is a ‘smaller’ set of neighbor maps

that is sufficient for checking that the IFS obeys the OSC. As a point of interest

we calculate N † for the Steemson triangle with scaling factors (λ2, λ, λ3). The

proper neighbor maps in symbolic neighbor pair notation (omitting inverses) that

satisfy ξ(i) = ξ(j) are (31, 212), (331, 215), (3, 12), (13, 123) and (32, 32). These

correspond to vertices h, c, r, m and v respectively. If we were to draw a neighbor

graph of just these vertices then the only directed edge would be (1, 22) between

m and r. This does not prove the claim made in Remark 4.6, that N † does not

generate a sufficient neighbor graph, but it provides a supporting example.
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(a) (b)

Figure 4.8: (a) The Williams triangle (4FFN) with scaling factors (α, β, γ) =

(λ, λ2, λ2) for λ ≈ 0.6435. The side lengths are (a, b) ≈ (0.71, 1.10).

(b) The Williams triangle (4FFN) with scaling factors (α, β, γ) = (λ2, λ2, λ) for

λ ≈ 0.6477. The side lengths are (a, b) ≈ (1.19, 1.19).

4.3 Neighbor Maps of 4FFN

The goal of this section is to calculate two neighbor graphs for the Williams tri-

angle. Calculating more neighbor graphs will help us understand them better

and two examples for the same type of generalised Sierpinski triangle will allow

us to compare neighbor graphs for similar fractal attractors. The introduction

of a second flip map to change a Steemson triangle to a Williams triangle does

not affect the process used to determine the set of proper neighbor maps or how

to construct the neighbor graph. One difference between 4FNN and 4FFN
is that the Williams triangle has ‘more’ solutions to the algebraic condition. It

is not necessary to make explicit what is meant by ‘more’; however, we can do

a quick comparison to demonstrate the difference. Let the scaling factors for

the triangles be (α, β, γ) = (λi, λj, λk) with i, j, k ∈ {1, 2, 3, 4} and not all three

integer powers equal. For the Steemson triangle there are four solutions and for

the Williams triangle there are 39 solutions.

The Williams triangle with scaling factors given by (i, j, k) = (1, 2, 2) can be

seen in Figure 4.8a and Grant [Gra18] determined the associated neighbor graph.

However, there was one vertex (and its inverse) missing from Grant’s graph. The

revised neighbor graph is included in Figure 4.11. Something interesting to note

is that although we do have three disconnected sections of the neighbor graph,

they are not each due to one of the intersection points. Instead A1 ∩ A2 gives

the vertices a = (1, 2) and b = (31, 2) which are not connected and so (31, 2)
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represents a neighbor map which cannot be reached from the identity. We also

see that the regions due to A1 ∩ A3 and A2 ∩ A3 are connected. This is because

f1 and f2 have the same scaling factors. The vertices represent the following

neighbor maps in Figure 4.11,

c = (1, 3) = (23, 213)

e = (21, 31) = (3, 2)

g = (221, 312) = (23, 21)

d = (21, 312) = (3, 21)

f = (221, 313) = (23, 212)

h = (21, 3) = (223, 213).

(4.5)

For an interesting comparison the neighbor graph for the Williams triangle

with (i, j, k) = (2, 2, 1) was also calculated. This triangle can be seen in Figure

4.8b. The neighbor graph is seen in Figure 4.12 and the vertices denote the

following proper neighbor maps:

t = (1, 23) u = (1, 2) v = (31, 2)

w = (1, 3) x = (21, 3)

y = (3, 2) z = (23, 21).

(4.6)

Let us now compare the two neighbor graphs of the Williams with scaling factors

(1, 2, 2) and (2, 2, 1) given in Figures 4.11 and 4.12 respectively. First note that

both graphs have been drawn using the symmetry property. For both graphs (3, 3)

is a loop on vertices that are due to the intersection A1 ∩A2. But for the second

graph, we have that ξ(3) < amax so the maps (32, 3) and (3, 32) are allowed and

are the inverse of each other. Also, since for the second graph we have ξ(1) = ξ(2)

we get a third vertex in the section due to A1 ∩ A2. For both graphs the map

(2, 1) is applicable to both the (1, 3) and (3, 2) section. But for the first case with

ξ(1) = 1 and ξ(2) = 2 the map (2, 12) is allowed when it is not for the second case

as ξ(1) = ξ(2) = 2 which is the maximum. For the first case, we observe that

the map (2, 12) is its own inverse, that is, if you apply it twice you get back to

where you started. However, for the second case the map (2, 1) is its own inverse .

The two neighbor graphs for the Williams triangles are significantly simpler

than the neighbor graph for the Steemson triangle. It would be incorrect to

assume that this is due to the introduction of a second flip map but rather it

is due to the smaller integer powers of the scaling factor λ and that two of the

maps have the same scaling. To demonstrate this point the neighbor graph for

the Williams triangle with scaling factors (i, j, k) = (1, 2, 4) was calculated. For
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this case the symbolic neighbor set is

P =
{

(i, j) | i, j ∈
{

1, 2, 3, 12, 13, 12, 21, 122, 212, 212, 14
}}

.

Therefore when calculating the proper neighbor maps due to A1∩A3 we have that

both (1, 3) and (1, 32) are from the identity. Possible neighbor pairs that can be

applied to these maps involve putting 2’s on the left and 1’s on the right, these are

(2, 1), (2, 12), (2, 13), (2, 14), (22, 1), (22, 12), (22, 13), (22, 14). Continuing the work-

ing it was found that 14 distinct proper neighbor maps (and their inverses) came

from this intersection and there were 92 directed edges between those 14 maps.

Thus, this example is not included because the neighbor graph is so congested

that it offers little in enlightening the reader about neighbor graphs except that

when amax is increased the complexity of the graph increases dramatically.

Additional neighbor graphs were calculated for the Pedal triangle (4FFF )

such as for the scaling factors (i, j, k) = (1, 2, 3). But its presence does not add

much to the understanding of neighbor graphs. Instead, we now progress to a

situation where we can compare the neighbor graphs of each of the types of the

generalised Sierpinski triangles.

4.4 Neighbor Graphs of Equilateral Generalised

Sierpinski Triangles

The equilateral generalised Sierpinski triangles are found by setting the side

lengths a and b equal to 1. This forces the scaling factors to satisfy α = β = γ = 1
2
.

Therefore, although each type of generalised Sierpinski triangle still has a dis-

tinct IFS we do have the same attractor. Calculating the neighbor graphs for

the equilateral generalised Sierpinski triangles offers the interesting opportunity

to compare the IFSs when the attractors are the same.

The equilateral Sierpinski triangle had its neighbor graph drawn in Figure

3.6 when it was first calculated but we redraw it in Figure 4.13 with a differ-

ent structure so that it may be more easily compared to the other equilateral

generalised Sierpinski triangles. The Steemson, Williams and Pedal equilateral

neighbor graphs are drawn in Figures 4.14, 4.15 and 4.16 respectively. Note that

the entire neighbor graphs are drawn because the ‘inverse’ half of the graph in-

terplays with the ‘original’ half. The vertices are labelled as a = (1, 2), b = (1, 3)
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(a) 4NNN (b) 4FNN (c) 4FFN (d) 4FFF

Figure 4.9: Equilateral generalised Sierpinski triangles are given for a = b = 1

and the maps f1, f2 and f3 are shown in blue, yellow and red respectively. Refer

to Figure 4.3 to see that the fractal attractors are different for the non-equilateral

cases.

and c = (2, 3) for all equilateral generalised Sierpinski triangles, with the addi-

tion of x = (13, 21) and y = (12, 31) for the Steemson triangle in Figure 4.14.

Let us now make some observations about the neighbor graphs of the equilateral

generalised Sierpinski triangles.

When going from the Sierpinski triangle to the Steemson triangle f1 becomes

a flip map. As a result the neighbor graph of the Steemson triangle now contains

the vertices x and y which represent the parity of how many times the flip has

been applied. It has already been noted that f 2
1 only scales the space because it

is its own inverse with respect to its flipping nature. Thus when (3, 1) or (2, 1)

has been applied twice (to (1, 2) or (1, 3) respectively) then you have returned to

the initial vertex. Since it is only f1 which has been changed then the section of

the neighbor graph that is due to the intersection A2∩A3 has been left unchanged.

When the neighbor graph of the equilateral Williams triangle was originally

calculated it looked similar to the neighbor graph of the equilateral Steemson

triangle, in that a new vertex was introduced near c which was called z = (12, 32)

and the vertex x disappeared into vertex a which now has a loop on it. The dis-

appearance of x and the appearance of z was due to f2 now also being a flip map,

and specifically a mirror image flip of f1 due to the equilateral nature. However,

the neighbor graph of the Williams triangle simplified significantly when it was

noted that z− equalled b. This resulted in c− being connected to b and that is

why it is now on the left of the neighbor graph.

All maps for the equilateral Pedal triangle are flip maps. This means that at
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each intersection Ai ∩ Aj the only map that can be applied is (k, k) for i, j, k ∈
{1, 2, 3} and all distinct. Since the map (k, k) is a flip map then instead of

getting loops on each vertex as we did for the Sierpinski we get 2-cycles with

(k, k) being its own inverse. The Pedal graph simplifies when it is noted that

(31, 23) = (2, 1) and similar for the other intersections. This results in a neighbor

graph where the vertex and its inverse are connected, which is not uncommon in

more complicated graphs but is the first example we have seen of it for such a

simple fractal attractor.

4.5 Proper Neighbor Maps for an Arbitrary IFS

In order for the neighbor map h = f−1
i fj to be a proper neighbor map it needs to

have a scaling factor ‘near’ to 1, so for an IFS with uniform scaling factors we had

the requirement |i| = |j| which was then replaced by |ξ(i)− ξ(j)| < amax for an

IFS with scaling factors that satisfy the algebraic condition. We are desire a new

definition for the set of proper neighbor maps when the IFS has arbitrary scaling

factors. It might be initially tempting to use the following restriction. For a fixed

ε > 0, suppose h = f−1
i fj is a proper neighbor map if and only if Ai ∩ Aj 6= ∅

and |
∏p

k=1 λik −
∏q

k=1 λjk | < ε for i = i1i2 . . . ip and j = j1j2 . . . jq. However, we

find that this is not a good restriction as the following example demonstrates.

Example 4.10. Let F =
{
R; f1(x) = 1

2
x, f2(x) = 1

2
x+ 1

2

}
be the IFS from Ex-

amples 3.8 and 3.12 which has its neighbor graph drawn in Figure 3.4. The

set of neighbor maps f−1
i fj which satisfy i1 6= j1 and Ai ∩ Aj 6= ∅ are of

the form f−n2 f−1
1 f2f

k
1 . Letting n = 10, k = 15 and ε = 2−10 we find that∣∣∣∏l

k=1 λik −
∏m

k=1 λjk

∣∣∣ = |2−11 − 2−16| < ε so for n = 10 and k = 15 we do have a

‘proper neighbor map’ by this alternative definition. Recalling that f−1
2 f−1

1 f2f1 =

f−1
1 f2 then f−10

2 f−1
1 f2f

15
1 = f−1

1 f2f
5
1 . Therefore, under this alternative neighbor

map definition we have that f−1
1 f2f

5
1 (x) = 2−5x + 1 is a ‘proper neighbor map’.

This does not agree with the results previously established and we see that for any

ε > 0 there would exist infinite proper neighbor maps. Therefore this definition

does not yield anything useful.

Instead we look to the ξ function from Definition 4.1 [BV18] to extend our

definition of proper neighbor maps for arbitrary scaling factors. Consider the IFS

F = {Rm; f1, . . . fN} of similitudes with scaling factors λ1, . . . λN respectively.

Let us fix 0 < λ < 1 and let ai ∈ R be such that λi = λai . Therefore ai = log(λi)
log(λ)

.

It is important to note that the way of choosing the base λ is not unique but as
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stated in Theorem 4.13 all choices of λ produce the same set of proper neighbor

maps. Let ξ̃ : S∗ → R be the extended ξ function such that ξ̃ (∅) = 0 and for

i = i1i2 · · · ip ∈ S∗ we have

ξ̃ (i) = ai1 + ai2 + · · ·+ aip .

Thus, ξ̃ (i) sums the scaling factor powers of each map in the composition fi.

Definition 4.11. If F = {R2; f1, . . . fN} is an IFS with scaling factors λi = λai

for fixed 0 < λ < 1, ai ∈ R and i ∈ {1, . . . N}, then we define the set of proper

neighbor maps to be{
h = f−1

i fj | i, j ∈ S∗, i1 6= j1, Ai ∩ Aj 6= ∅,
∣∣∣ξ̃(i)− ξ̃(j)

∣∣∣ < amax

}
.

Here amax = max {a1, . . . aN} and let ξ̃ : S∗ → R be the extended version of the

ξ function originally taken from Barnsley and Vince [BV18].

Remark 4.12. As a proposed convention we will select the scaling factor base

as λ = mini {λi}. We do this so that amax = 1 which makes working with the

extended function ξ̃ a little bit easier.

Theorem 4.13. The set of proper neighbor maps is independent of the choice of

scaling factor base λ.

Proof. Let us consider the IFS F = {R2; f1, . . . fN} with scaling factors λi. Let

0 < λa, λb < 1 be two arbitrary scaling factor bases so that λi = λaia and λi = λbib
for ai, bi ∈ R and i ∈ {1, . . . , N}. Therefore we have that ai = log(λi)

log(λa)
, amax =

log(λmin)
log(λa)

and similar for λb. Let ξ̃a, ξ̃b be the extended ξ functions which return

the sum of the exponents for the bases λa and λb respectively. Let i = i1i2 . . . ip

and j = j1j2 . . . jq in S∗ be such that they satisfy the ξ̃ condition for base λa. It

will be shown that they also satisfy the ξ̃ condition for base λb. Thus we have:∣∣∣ξ̃a (i)− ξ̃a (j)
∣∣∣ < amax

⇔
∣∣(ai1 + · · ·+ aip

)
−
(
aj1 + · · ·+ ajq

)∣∣ < amax

⇔

∣∣∣∣∣
p∑

k=1

aik −
q∑
l=1

ajl

∣∣∣∣∣ < amax

⇔

∣∣∣∣∣
p∑

k=1

log (λik)

log (λa)
−

q∑
l=1

log (λjl)

log (λa)

∣∣∣∣∣ < log (λmin)

log (λa)

⇔ 1

|log (λa)|

∣∣∣∣∣
p∑

k=1

log (λik)−
q∑
l=1

log (λjl)

∣∣∣∣∣ < log (λmin)

log (λa)

(4.7)



58 CHAPTER 4. THE GENERALISED SIERPINSKI TRIANGLES

⇔ log (λa)

log (λb)

1

|log (λa)|

∣∣∣∣∣
p∑

k=1

log (λik)−
q∑
l=1

log (λjl)

∣∣∣∣∣ < log (λa)

log (λb)

log (λmin)

log (λa)

⇔ 1

|log (λb)|

∣∣∣∣∣
p∑

k=1

log (λik)−
q∑
l=1

log (λjl)

∣∣∣∣∣ < log (λmin)

log (λb)

⇔

∣∣∣∣∣
p∑

k=1

log (λik)

log (λb)
−

q∑
l=1

log (λjl)

log (λb)

∣∣∣∣∣ < log (λmin)

log (λb)

⇔

∣∣∣∣∣
p∑

k=1

bik −
q∑
l=1

bjl

∣∣∣∣∣ < bmax

⇔
∣∣(bi1 + · · ·+ bip

)
−
(
bj1 + · · ·+ bjq

)∣∣ < bmax

⇔
∣∣∣ξ̃b (i)− ξ̃b (j)

∣∣∣ < bmax

Therefore it has been shown that for any i, j ∈ S∗ then
∣∣∣ξ̃a (i)− ξ̃a (j)

∣∣∣ < amax if

and only if
∣∣∣ξ̃b (i)− ξ̃b (j)

∣∣∣ < bmax. This implies that if f−1
i fj is a proper neighbor

map when the scaling factors are written in terms a particular base scaling then

it will be a proper neighbor map for any scaling factor base. Therefore the set of

proper neighbor maps is independent of the chosen base.

If we were to take any of the previous examples that involved calculating

the set of proper neighbor maps and the neighbor graph then we would only

have amax = 1 in the case of uniform scaling factors. For the situation where

the algebraic condition was satisfied with non-uniform scaling factors we had

amax 6= 1. Therefore, Theorem 4.13 gives that the set of proper neighbor maps

and the resulting neighbor graph are the same as if the algebraic condition for

integer powers had never been solved and λmin was chosen as the scaling factor

base so that amax = 1. Therefore, the extension of ξ to ξ̃ so that N ∗ could

be defined for arbitrary scaling factors is consistent with previously determined

results. We now note that Theorem 3.1 generalises to the case of arbitrary IFSs.

Theorem 4.14. If F = {Rm; f1, . . . , fN} is an IFS of contractive similitudes

with the set of neighbor maps, N , given by Equation 3.2 and the set of proper

neighbor maps, N ∗, given by Definition 4.11, then id 6∈ N if and only if id 6∈ N ∗.

Proof. The proof of this theorem is a straightforward generalisation of the proofs

supplied for Theorem 3.5 and then for Theorem 4.3, in fact the proof of the

forward direction is identical. For the reverse direction let us note that given an

IFS of similitudes the scaling factors λi can be written in base λ = mini {λi} by

λi = λai for ai ∈ R and amax = 1. The non-proper neighbor map h = f−1
i fj
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must either satisfy Ai ∩ Aj = ∅ or
∣∣∣ξ̃(i)− ξ̃(j)

∣∣∣ ≥ 1. We have that h is of the

form h(x) = λkOx + b for k ∈ R, O is a rotation reflection isometry and b ∈ Rm

is a translation vector. Assuming ‖b‖ = 0 implies k ∈ R\ (−1, 1) and so we get

ds(h, id) ≥ 1 − λ. In the case of ‖b‖ > 0 the proof follows as for Theorem 3.5

and so we get that ds(h, id) ≥ 1− λ and therefore any non-proper neighbor map

h cannot be arbitrarily close to the identity so we have that id 6∈ N ∗ implies

id 6∈ N .

Remark 4.15. In Definition 4.11, we could replace amax with amax

n
for any finite

n ∈ N. This would define a subset of the proper neighbor maps which we would

denote N †. By a slight variation of the proof for Theorem 4.14 we would find that

h ∈ N\N † could not be arbitrarily close to the identity map and therefore the

IFS satisfies the OSC if and only if id 6∈ N †. As for the algebraic condition case,

we do not call N † the set of proper neighbor maps because it does not describe

the way sub-attractor pieces relate. The relationship between N † and neighbor

graphs would be an exciting area for further research into this topic.

Applying Theorem 4.14 to Theorem 3.1 we get the following result.

Corollary 4.16. If F is an IFS of similitudes then F obeys the OSC if and only

if id 6∈ N ∗.

The generalisation of this result from the case of uniform scaling factors to the

algebraic condition case and then to the case of arbitrary scaling factors allows

us to only consider proper neighbor maps when determining if an IFS satisfies

the OSC. This does not complete the research in the field since it is unknown to

us if the extended definitions of proper neighbor maps generate neighbor graphs

that describe the topology of the fractal attractor in the same way as Bandt

and Mesing [BM09] initial definition does for IFSs with uniform scaling factors.

Another area for future research is proper neighbor maps for IFSs comprising

general affine maps (not similitudes) as no mention of these could be found in

the literature.

In Section 3.1, Corollary 3.4 states that F satisfies the OSC if and only if A

is not contained in H where H =
⋃
{h (A) | h ∈ N} is the union of all neighbor

sets. Considering the work that we have just done, we get the following conjecture.

Conjecture 2. F satisfies the OSC if and only if A is not contained in H∗,

where H∗ =
⋃
{h (A) | h ∈ N ∗}.
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Since N ∗ ⊂ N then H∗ ⊂ H. Therefore, if F satisfies the OSC then A 6⊂ H

by Corollary 3.4 which implies A 6⊂ H∗, and so the forward direction is true.

However, the reverse direction cannot yet be proven because we would be making

the same mistake as M. Morán as discussed in Section 2.4. Note that we tried

and could not construct a counterexample to disprove the reverse direction and

so it has been labelled a conjecture.
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a b c d e

f g h i j

(3, 1) (3, 1) (3, 1) (3, 1)

(3, 1) (3, 1) (3, 1) (3, 1)

(1, 2)

(1, 21)

k l m n o

p q r s t

(3, 1)

(3, 12)

(1, 2) (1, 2) (1, 2) (1, 2)

(1, 2) (1, 2) (1, 2) (1, 2)

(1, 22) (1, 22) (1, 22) (1, 22) (1, 22)

u v w

x y

(2, 3)
(3, 2) (3, 2)

(3, 2)

(3, 22)

(3, 22) (3, 22)

(3, 22)

Figure 4.10: The neighbor graph of the Steemson triangle (4FNN) with scaling

factors (α, β, γ) = (λ2, λ, λ3) for λ ≈ 0.68. For the side lengths we have b ≈ 0.68

and a is a free variable so its value does not affect the neighbor graph.
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a b

c d

e f

g h

(2, 1) (2, 1)

(2, 1) (2, 1)

(3, 3) (3, 3)

(2, 12)

(2, 12)

(2, 12)

(1, 2)

(1, 3)

(3, 2)

Figure 4.11: The neighbor graph of the Williams triangle (4FFN) with scaling

factors (α, β, γ) = (λ, λ2, λ2).

t u v

w x

y z

(33, 3) (33, 3)

(3, 32)(3, 32)

(3, 3)(3, 3) (3, 3)

(2, 1)

(2, 1)

(1, 2)

(1, 3)

(3, 2)

Figure 4.12: The neighbor graph of the Williams triangle (4FFN) with scaling

factors (α, β, γ) = (λ2, λ2, λ).
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a a−

b b−

c c−

(2, 1) (1, 2)

(3, 1) (1, 3)

(3, 2) (2, 3)

(1, 2) (2, 1)

(1, 3) (3, 1)

(2, 3) (3, 2)

Figure 4.13: The neighbor graph of the equilateral Sierpinski triangle (4NNN).

a x x− a−

b y y− b−

c c−

(3, 2) (2, 3)

(1, 2) (2, 1)

(1, 3) (3, 1)

(2, 3) (3, 2)

(3, 1) (1, 3)

(2, 1) (1, 2)

Figure 4.14: The neighbor graph of the equilateral Steemson triangle (4FNN).
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a a−

b b−

c− c

(3, 3) (3, 3)

(1, 2) (2, 1)

(1, 3) (3, 1)

(3, 2) (2, 3)

(2, 1) (1, 2)

Figure 4.15: The neighbor graph of the equilateral Williams triangle (4FFN).

a a−

b b−

c c−

(1, 2) (2, 1)

(1, 3) (3, 1)

(2, 3) (3, 2)

(3, 3)

(2, 2)

(1, 1)

Figure 4.16: The neighbor graph of the equilateral Pedal triangle (4FFF ).



Chapter 5

Finite Type Neighbor Graphs

The neighbor graphs considered in this thesis thus far have all been of finite

type. Recall that this means that the number of vertices in the neighbor graph

or equivalently the set of proper neighbor maps is finite. We are interested in de-

termining if an IFS has a finite type neighbor graph because it can make it easier

to determine if the identity map is in the closure of the set of proper neighbor

maps and therefore easier to determine if the IFS satisfies the OSC.

The following chapter provides original results regarding when the neighbor

graph of the generalised Sierpinski triangles is of finite type and offers a brief

discussion about the connection between neighbor maps and fractal tiling theory.

5.1 Discussion of Finite Type Neighbor Graphs

For the generalised Sierpinski triangles, we have that if the IFS satisfies the

algebraic condition (or more simply the scaling factors are uniform) then the

neighbor graph is of finite type.

Theorem 5.1. If a generalised Sierpinski triangle has scaling factors that can

be written as λi = λai with ai ∈ N for i = {1, 2, 3}, then the associated neighbor

graph is of finite type.

Proof. First note that this theorem and its converse are trivially true for the

generalised Sierpinski (4NNN) triangle since it has all scaling factors equal to
1
2

and has a finite type neighbor graph as calculated in Section 4.1.

Let us assume that the scaling ratios of the generalised Sierpinski triangle satisfy

the algebraic condition, that is, (α, β, γ) = (λa1 , λa2 , λa3) for 0 < λ < 1, ai ∈ N

65



66 CHAPTER 5. FINITE TYPE NEIGHBOR GRAPHS

and amax = maxi {ai}. We define the set Nij to be the set of neighbor maps

that occur at the intersection between Ai and Aj for i, j ∈ {1, 2, 3} and i 6= j.

Explicitly that is,

Nij =
{
h = f−nx f−1

i fjf
m
y , h

−1 : x, y ∈ {1, 2, 3} , Aix ∩ Ajy 6= ∅, n,m ∈ N0

}
.

Let the scaling factors of fx and fy be λax and λay respectively with ax, ay ∈
{a1, a2, a3}. Take n̂ = 2ay and m̂ = 2ax. By Lemma 5.2 (see below) we have

f−n̂x f−1
i fjf

m̂
y = f−1

i fj. We can now define a subset of Nij that contains all the

proper neighbor maps from the intersection Ai ∩ Aj,

N̂ij =
{
h, h−1 ∈ Nij : 0 ≤ n ≤ (n̂+ amax) , |ξ(ixn)− ξ(jym)| < amax

}
.

Note that we are taking 0 ≤ n ≤ (n̂+ amax) which does involve taking some

proper neighbor maps twice but it guarantees that all proper neighbor maps are

captured. To demonstrate this, consider if n = 0, ξ(i) = 1 and amax = 3 then

ξ(ixn) = ξ(i) = 1 and so ξ(jym) ∈ {−1, 0, 1, 2, 3} by the ξ condition but it cannot

achieve all these values since ξ(k) cannot be negative for any k. Therefore, by

increasing the maximum value of n we ensure that all proper neighbor maps due

to the intersection Ai∩Aj are included in N̂ij. Taking the union across the various

intersection points we collect all proper neighbor maps and therefore,

N ∗ ⊂
(
N̂12 ∪ N̂13 ∪ N̂23

)
.

By construction of N̂ij we have that (n̂+ amax) is finite and the number of allow-

able m values for each n is also finite due to the ξ restriction. Thus N̂ij is a finite

set for each intersection which implies
(
N̂12 ∪ N̂13 ∪ N̂23

)
is finite. Therefore N ∗

is a finite set which is equivalent to saying that the neighbor graph has a finite

number of vertices or that the neighbor graph is of finite type.

We will now prove the following lemma as it was invoked in the above proof.

Lemma 5.2. If the generalised Sierpinski triangles have scaling factors λi = λai

for fixed 0 < λ < 1 and ai ∈ N then we have that f
−2ay
x f−1

i fjf
2ax
y = f−1

i fj for

i, j, x, y ∈ {1, 2, 3}, i 6= j and Aix ∩ Ajy 6= ∅.

Proof. We will provide a geometric argument for why this is true; however, it

has also been checked computationally for each generalised Sierpinski triangle at

each intersection point. For a flip map g with scaling factor κ we have that g2 is

a non-flip map with scaling factor κ2 because the flipping component within the
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map is its own inverse. Thus, f 2
x and f 2

y are non-flip maps with scaling factors

λ2ax and λ2ay respectively, and translations such that Aix2 ∩ Ajy2 = Ai ∩ Aj. As

ax, ay ∈ N we can take the maps (f 2
x)
ay and

(
f 2
y

)ax
which both have a scaling

factor of λ2axay and translations such that Aix2ay ∩Ajy2ax = Ai∩Aj. Therefore we

have that Ai and Aj have the same geometric relationship as Aix2ay and Ajy2ax .

This implies that the attractor A has the same geometric relationship to the

neighbor set f
−2ay
x f−1

i fjf
2ax
y (A) as it does to f−1

i fj (A). Therefore the functions

f
−2ay
x f−1

i fjf
2ax
y and f−1

i fj are equal.

The converse of Theorem 5.1 is not always true. Before discussing this further,

let us first note that the proper neighbor maps for each type of the generalised

Sierpinski triangles take the following form depending on which point of intersec-

tion is of interest. We require that n,m ∈ N and that they satisfy the ξ condition.

Steemson

(1, 2)→(3,1) (3n1, 21m)

(1, 3)→(2,1) (2n1, 31m)

(2, 3)→(3,2) (3n2, 32m)

Williams

(1, 2)→(3,3) (3n1, 23m)

(1, 3)→(2,1) (2n1, 31m)

(2, 3)→(1,2) (1n2, 32m)

Pedal

(1, 2)→(3,3) (3n1, 23m)

(1, 3)→(2,2) (2n1, 32m)

(2, 3)→(1,1) (1n2, 31m)

The notation (1, 2) →(3,1) (3n1, 21m) is being used to represent that f−1
1 f2 is a

proper neighbor map and all other proper neighbor maps due to the intersection

A1 ∩ A2 can be achieved by adding 3’s on the left and 1’s on the right to give

f−n3 f−1
1 f2f

m
1 with the ξ condition is satisfied.

For completeness note that the generalised Sierpinski has proper neighbor maps

of the form (i, j)→(j,i) (jni, jin) for i, j ∈ {1, 2, 3} and i 6= j.

All proper neighbor maps are of the form (xni, jym) with i, j, x, y ∈ {1, 2, 3}
and i 6= j. Note that we also have i 6= x and j 6= y due to the fractal nature

of the generalised Sierpinski triangles. Interestingly, we can partition the set of

proper neighbor maps by separating those such that x 6= y from those with x = y.

We find that it is proper neighbor maps with x = y that prevent the converse of

Theorem 5.1 from being true. Note that we always have x 6= y for the Steemson

triangle and so we can prove the converse.

Theorem 5.3. If the scaling factors of the Steemson triangle can be written as

λi = λai with ai ∈ N for i = {1, 2, 3} if and only if its neighbor graph is of finite

type.
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Proof. Due to Theorem 5.1 we are only required to prove the reverse direction.

Let us assume that the neighbor graph is of finite type and so N ∗ is finite. Recall

that in the general case, the set of proper neighbor maps is defined as:

N ∗ =
{
h = f−1

i fj , | i, j ∈ S∗, i1 6= j1, Ai ∩ Aj 6= ∅,
∣∣∣ξ̃(i)− ξ̃(j)

∣∣∣ < amax

}
.

Let us define the set of proper neighbor maps which are due to each point of

intersection between Ai and Aj for i, j ∈ {1, 2, 3} and i 6= j,

N ∗ij =
{
h = f−nx f−1

i fjf
m
y , h

−1 ∈ N ∗ |x, y ∈ {1, 2, 3}
}
,

where x, y is given depending on i, j but we have that x 6= y since this is the

case for the Steemson triangle. As N ∗ij is a subset of N ∗ then we also have

Aixn ∩ Ajym 6= ∅ and
∣∣∣ξ̃(ixn)− ξ̃(jym)

∣∣∣ < amax. By construction we have that

N ∗ = N ∗12 ∪ N ∗13 ∪ N ∗23 and it was assumed that N ∗ is a finite set and thus so

is N ∗ij for each pair i, j. Since N ∗ij is finite then there exists a maximum value

for n and m that define the maps f−nx f−1
i fjf

m
y ∈ N ∗ij. Let n̄ and m̄ be integers

which are larger than the maximum values of n and m respectively in N ∗ij and

also satisfy the ξ̃ condition. Therefore f−n̄x f−1
i fjf

m̄
y is a proper neighbor map

which is not contained in N ∗ij so it must be equal to another proper neighbor map

in N ∗ij. Thus for some k, l ∈ N0 we have, f−n̄x f−1
i fjf

m̄
y = f−kx f−1

i fjf
l
y. Applying

fx to the left and f−1
y to the right does not change this equality so for p = n̄− k

and q = m̄− l we have,

f−1
i fj = f−px f−1

i fjf
q
y .

From this we see that the scaling ratio of fpx must equal the scaling ratio of f qy .

Thus, λpx = λqy and so (λax)p = (λay)q which gives axp = ayq. Equivalently we

have q = ax
ay
p and as p, q ∈ N then we must have ax, ay ∈ Q. Note that we have,

ax
ay

=
log (λx) / log(λ)

log(λy)/ log(λ)
=

log(λx)

log(λy)
= logλy(λx).

Which is equivalent to λx = λ
ax
ay
y . Therefore λx is a rational power of λy. By

Lemma 5.4 (see below) we have that λx and λy can be written as integer powers

of some common scaling ratio. This is true for all pairs i, j ∈ {1, 2, 3} with i 6= j.

Therefore from (i, j) = (1, 2) we have λ1 = rb11 , λ2 = rb21 and from (i, j) = (1, 3)

we have λ1 = rc12 , λ3 = rc22 for 0 < r1, r2 < 1 and b1, b2, c1, c2 ∈ Z+. Note that we

have two expressions for λ1 which gives rb11 = rc12 and so r2 = r
b1/c1
1 . Therefore

λ3 =
(
r
b1/c1
1

)c2
and so all scaling factors are now written in terms of the same
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base. Let us define a new base scaling factor 0 < λ < 1 such that λ = r
1
c1
1

then λ1 = rb11 = r
b1c1
c1

1 = λb1c1 , λ2 = rb21 = r
b2c1
c1

1 = λb2c1 and λ3 = r
b1c2
c1

1 = λb1c2 .

Therefore we have expressed all scaling factors λi in terms of integer powers of a

common scaling factor λ and thus the algebraic condition is satisfied.

Lemma 5.4. Let λ1, λ2 ∈ R be such that λ2 = λk1 for k ∈ Q. Then there exists

λ ∈ R and n1, n2 ∈ Z such that λ1 = λn1 and λ2 = λn2.

Proof. As k ∈ Q then it can be expressed as a reduced fraction k = n2

n1
where

n1, n2 ∈ Z and gcd(n1, n2) = 1. Let us define the common factor to be the real

number λ = λ
1
n1
1 . Then λ1 = λ

n1
n1
1 = λn1 and λ2 = λk1 = λ

n2
n1
1 = λn2 . Therefore we

have that λ1 and λ2 can be written as integer powers of a common base.

Theorem 5.3 is only true for the Steemson triangle (and the Sierpinski triangle)

because we have fx 6= fy but this is not the case for the Williams or Pedal

triangles. As we can have fx = fy then there are situations where the neighbor

graph being of finite type does not imply that the algebraic condition is satisfied.

Below, we provide an example for the Pedal triangle, and examples also exist for

the Williams triangle using the same construction method.

Example 5.5. Let us consider the Pedal triangle (4FFF ) with scaling factors

(α, β, γ) =
(

3
4
, 1

2
√

2
, 1

2
√

2

)
displayed in Figure 5.1. First note that it is not possible

to write these scaling factors as integer powers of a common scaling factor λ since

α includes a factor of 3 while β and γ only include factors of 2. Thus, we are

calculating the set of proper neighbor maps when the algebraic condition is not

satisfied. As per the proposed convention we still write the scaling factors in terms

of a common base λ = min
{

3
4
, 1

2
√

2
, 1

2
√

2

}
= 1

2
√

2
. For k =

log( 4
3)

log(2
√

2)
≈ 0.28 we have

(α, β, γ) =
(
λk, λ, λ

)
, where k is irrational. The set of symbolic neighbor pairs for

this Pedal triangle is P = {(i, j) |i, j ∈ {1, 12, 13, 2, 3}} and we have amax = 1. As

all three maps of the Pedal triangle are flip maps we have that the proper neighbor

maps will be of the forms (3n1, 23m), (2n1, 32m) and (1n2, 31m) where n,m ∈ N
such that the ξ̃ condition is satisfied. Note that we are omitting discussion of

the inverse of these maps due to symmetry. The proper neighbor maps due to

the intersection A1 ∩ A2 are either of the form (3n1, 23n) or (3n+11, 23n). We

see this because we start with the map (1, 2) which comes from the identity

and the only symbolic neighbor map that we can apply to it is (3, 3) which we

can do repeatedly. Then note that (21, 3) also satisfies the ξ̃ condition which

again can only be operated on by (3, 3). Finally we note that (321, 232) = (1, 2)
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Figure 5.1: The Pedal triangle (4FFF ) with scaling factors (α, β, γ) =(
3
4
, 1

2
√

2
, 1

2
√

2

)
and side lengths (a, b) =

(
1√
2
, 1
)

.

which implies (331, 232) = (31, 2). Therefore the only proper neighbor maps

from A1 ∩ A2 are (1, 2), (31, 23) and (31, 2), (321, 23), where each pair can map

between each other using (3, 3). Determining the set of proper neighbor maps

due to the intersection A1 ∩ A3 follows identical reasoning since ξ̃(2) = ξ̃(3).

Therefore the only proper neighbor maps are (1, 3), (21, 32) and (21, 3), (221, 32),

where each pair can map between each other using (2, 2). The neighbor graph

for the intersections A1 ∩ A2 and A1 ∩ A3 both take the form shown in Figure

4.12 for the combined (1, 3) and (3, 2) section except we would only have one

map from the identity. The neighbor graph for this example is not drawn though

due to the complexity of the section of the neighbor graph that is associated to

A2 ∩ A3. Let us now determine the proper neighbor maps for the intersection

A2 ∩ A3 which are explicitly given in Figure 5.2. From the identity we get the

map (2, 3) and the set of symbolic neighbor maps that can be applied to this

is
{

(1a, 1b)|a, b ∈ {1, 2, 3}
}

. We also note that (122, 312) = (2, 3) and therefore

we can list the set of proper neighbor maps for this intersection by looking at

(2, 31k) and determining the k values that satisfy the ξ̃ condition. Then looking

at (12, 31k) for various k values and continue increasing the number of 1′s on the

left.

The first two columns of Figure 5.2 are complete because there does not exists

any more non-negative k values for which the ξ̃ condition is satisfied. For the

remaining three columns we have that increasing the k value produces a map

that has already been considered because of (122, 312) = (2, 3) and continuing to

increase k does not produce any new maps because of the ξ̃ condition. Lastly,

there is not a sixth column because (152, 312) would be the first allowed map and
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2, 31k

) (
12, 31k

) (
122, 31k

) (
132, 31k

) (
142, 31k

)
(2, 3) (12, 3) (122, 3) (132, 3)

(2, 31) (12, 31) (122, 31) (132, 31) (142, 31)

(2, 312) (12, 312)

(2, 313) (12, 313)

(12, 314)

Figure 5.2: List of proper neighbor maps for the Pedal triangle with scaling

factors
(

3
4
, 1

2
√

2
, 1

2
√

2

)
for the intersection A2 ∩ A3.

this simplifies to (132, 3) which has already been considered. Therefore we have

that this is a complete list of the proper neighbor maps from the intersection

A2 ∩A3. A simple piece of code was written to explicitly calculate the identified

proper neighbor maps and their inverses to see if we have double counted any

maps but this was not the case. Between the 14 proper neighbor maps associated

to A2 ∩ A3 there is 48 directed edges. This is why the neighbor graph has not

been drawn. Therefore, the set of proper neighbor maps has been determined

to have exactly 44 (2× (4 + 4 + 14)) maps, and so the neighbor graph has 44

vertices. Thus, we have produced an example were the algebraic condition is not

satisfied but the neighbor graph is still of finite type.

5.2 Fractal Tiling

An application of neighbor maps is that they can be applied to fractal tiling the-

ory in order to explain how different tiles relate to each other. Barnsley and Vince

[BV14, BV17b, BV18] provide an in-depth explanation and the technicalities of

fractal tiling theory. However, for our purposes, a conceptual understanding of

fractal tiling in R2 will suffice.

Let F = {R2; f1, . . . fN} be an IFS with attractor A. By definition we have

A =
⋃N
i=1 fi(A) so when we ‘zoom in’ on the attractor we will ‘see’ smaller copies

of it. If the IFS is comprised only of similitudes then zooming in reveals smaller

copies of the attractor which have the same geometric proportions. The reverse

of this concept creates what we call fractal blow ups and it is the fractal blow

up that we tile. A tile is a nonempty compact subset of R2 and therefore all

attractors are themselves tiles. A tiling of R2 is a union of tiles which all have

equal Hausdorff dimension and are non-overlapping [BV14]. Two tiles are non-
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Figure 5.3: A fractal blow up of the Pedal triangle (4FFF ) with scaling factors

(α, β, γ) = (λ, λ, λ2). This image was created by zooming in at the point (0.5, 0)

[SW18].

overlapping if their intersection does not contain a nonempty open set. In the

case where the tiles are fractal attractors, we can equivalently require the IFS

that generated the fractal attractor to obey the OSC [BV14].

The following is a conceptual but not precise explanation of fractal blow ups

and how they can be tiled. For a complete picture see [BV14, BV17b, BV18].

Consider the fractal attractor A ⊂ R2 of a similitude IFS. Pick a point x ∈ A

and zoom in on that point ‘infinitely’ so that when you stop zooming the fractal

attractor extends in all directions further than the eye can see. Now, forget that

you ever zoomed in and the coordinates of x ∈ A. In the region just near you,

there will be many sections of the fractal blow up that look similar to the original

fractal attractor. Find a section that has the same geometry as the original fractal

and choose coordinates such that this is of size ‘one’. Now, if you look around

in the vast expanse surrounding you there will be infinitely many copies of the

(new) attractor which have the same geometry but of varying sizes. Therefore the

space can be tiled by different sized isometric copies, that is, copies that undergo

an isometry and then a uniform scaling. Note that tiling the space by scaled

isometric copies can always be done [BV14]. The prototile set P is a minimal

set of tiles such that the space is tiled and that every tile involved in the tiling

is an isometric copy of a tile in P [BV17b]. The question we are interested in

is how many different sized tiles would you need to tile the space. Note that

‘the space’ is not the ambient space R2 that the attractor lives in but rather the

infinite fractal blow up that is a subset of R2. The tiling of fractal blow ups links

directly to Bandt’s neighbor maps because the transformation from one tile to

another is described by a neighbor map and the tiles are neighbor sets. More so,



5.2. FRACTAL TILING 73

when two tiles intersect the transformation from one to the other is given by a

proper neighbor map. For the prototile set we have the following from Barnsley

and Vince [BV17b] (c.f. Result 4).

Theorem 5.6. If an IFS consisting of contractive similitudes has scaling factors

that obey the algebraic condition, λi = λai for ai ∈ N and are coprime, then the

prototile set is {λA, λ2A, . . . , λamaxA} [BV17b].

All IFSs for which the neighbor graph has been considered in this paper, ex-

cept for Example 5.5, obey the algebraic condition and therefore must have finite

prototile sets. Therefore, let us use the neighbor maps and neighbor graphs for

the previously considered examples to discuss their prototile sets.

First, let us consider the IFS F =
{
R; f1(x) = 1

2
x, f2(x) = 1

2
x+ 1

2

}
from Ex-

ample 3.12 with attractor A = [0, 1]. The set of proper neighbor maps and the

neighbor graph consisted of only two maps, namely a = f−1
1 f2 and a− = f−1

2 f1.

Both of these maps have a scaling factor of one and therefore the neighbor sets

f−1
1 f2(A) and f−1

2 f1(A) are the same size as the attractor. Therefore the pro-

totile set consists of only one tile, namely P = {λA} =
{[

0, 1
2

]}
. More generally,

we have that for an IFS comprising similitudes with uniform scaling factors the

proper neighbor maps take the form h = f−1
i fj ∈ N ∗ with |i| = |j|. Therefore

the scaling factor of h must be 1 which means that all neighbor sets are of equal

size to the attractor and so the prototile set consists of only one tile which is

again P = {λA}. This is not a new result as it is a special case of Theorem

5.6 but it is interesting that we could make the same observation using proper

neighbor maps. The equilateral and generalised Sierpinski triangle (4NNN)

from Sections 3.3 and 4.1 respectively as well as the equilateral Steemson triangle

(4FFN), equilateral Williams triangle (4FFN) and equilateral Pedal triangle

(4FFN) from Section 4.4 all have equal scaling factors and therefore have only

one tile in their prototile set.

Now we look at the neighbor graph examples with non-uniform scaling fac-

tors. In Section 4.3 we calculated the neighbor graph for the Williams triangle

(4FFN) with scaling factors (α, β, γ) = (λ, λ2, λ2) and (λ2, λ2, λ). The proper

neighbor maps h = f−1
i fj for this situation must satisfy |ξ(i)− ξ(j)| < amax = 2.

Therefore we have that ξ(i) − ξ(j) ∈ {−1, 0, 1} are the allowed ξ condition val-

ues. Each of these situations correspond to proper neighbor maps of scaling λ−1,

λ0 = 1 and λ. We can confirm that all three types of proper neighbor map scaling
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factors are in N ∗ by computing the determinants of the proper neighbor maps,

since |det(L)| describes how the linear transformation L scales the m-dimension

volume of a tile in Rm. We do this computation and find that all three types of

scaling are in N ∗. Therefore one might think that the size of the prototile set

would be three but this should raise alarms bells since amax = 2 for both Williams

triangles being considered here and that would contradict Theorem 5.6. Instead

let us view the situation by considering two tiles: ta and tb which intersect and

so the transformation from one to the other is given by a proper neighbor map.

Let h be the proper neighbor map such that h(ta) = tb. Then tb is an isometric

copy of ta which has either been scaled by λ−1, 1 or λ. However, note that scaling

ta by λ−1 or by λ produces the same situation with one little tile and one big tile

and scaling ta by 1 does not create a tile of a new size. Therefore we have that

the prototile set has one big tile and one little tile. Therefore P = {λA, λ2A}
which agrees with Theorem 5.6.

More generally, for an IFS with scaling factors that satisfy the algebraic condi-

tion the proper neighbor maps h = f−1
i fj ∈ N ∗ must satisfy |ξ(i)− ξ(j)| < amax.

By definition of ξ : S∗ → N0 we have that its output is a natural number and so

the allowable values of ξ(i)− ξ(j) are in

{−(amax − 1),−(amax − 2), · · · ,−1, 0, 1, · · · , amax − 2, amax − 1} .

Therefore the possible scaling factors of h are λb for b from the above set and

so the maximum number of different scaling factors on proper neighbor maps is

2amax − 1. Now, using the symmetry between h1 of scaling λb and h2 of scaling

λ−b we find that the maximum size of a prototile set is amax which again agrees

with Theorem 5.6.

Now let us now consider the neighbor graph from Section 4.2 of the Steemson

triangle (4FNN) with scaling factors (λ2, λ, λ3). As amax = 3 we have that the

maximum number of different scaling proper neighbor maps is five given by λb

for b ∈ {−2,−1, 0, 1, 2}. By simply calculating the determinants for each of the

proper neighbor maps we can confirm that all of the different scaling factors are

present. Therefore by symmetry the prototile set has amax = 3 tiles, namely,

P = {λA, λ2A, λ3A}.

The last case to consider is Example 5.5 which was the Pedal triangle (4FFF )

with scaling factors
(

3
4
, 1

2
√

2
, 1

2
√

2

)
which do not satisfy the algebraic condition.
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Although the neighbor graph was never drawn we did calculate the set of proper

neighbor maps and therefore using the absolute value of the determinants we

can determine how many different scaling factors are used for h ∈ N ∗. We find

that there is nine different scaling factors given by
{

1, s±1
1 , s±1

2 , s±1
3 , s±1

4

}
with

0 < si < 1 being irrational numbers that are not integer powers of each other or

a common scaling factor base. As the algebraic condition is not satisfied we do

not know how many tiles are in the prototile set or their scaling factors. However,

we claim that a finite number of different scaling for the proper neighbor maps

implies a finite prototile set. This remains an open question and was not found

in the literature and so would be an interesting area for future research.

For all the examples considered thus far we have that when the algebraic

condition is satisfied there are 2amax − 1 different possible scaling factors for the

proper neighbor maps and the prototile set is of size amax. However, let us now

construct an example to show that h ∈ N ∗ does not always achieve all possible

scaling factors.

Example 5.7. Consider the IFS F = {R; f1(x) = δ10x , f2(x) = δ6x + δ10,

f3(x) = δ15x+ δ10 + δ6} where δ10 + δ6 + δ15 = 1 and so δ ≈ 0.89. The at-

tractor of F is A = [0, 1] and the proper neighbor maps are either due to the

intersection A1 ∩ A2 or A2 ∩ A3. Therefore, for n,m, p, q ∈ N0 such that the ξ

condition is satisfied we have that the proper neighbor maps are given by:

f−n3 f−1
1 f2f

m
1 f−p3 f−1

2 f3f
q
1

and the inverses of the above maps. The ξ condition for each of these maps is,

|ξ(13n)− ξ(21m)| = |ξ(1) + nξ(3)− ξ(2)−mξ(1)| = |10 + 15n− 6− 10m|
= |15n− 10m+ 4| and

|ξ(23p)− ξ(31q)| = |ξ(2) + pξ(3)− ξ(3)− qξ(1)| = |6 + 15p− 15− 10q|
= |15p− 10q − 9| .

(5.1)

In order to gain a contradiction let us assume that there exits n,m, p, q ∈ N such

the ξ conditions from Equation 5.1 equals 2. For the intersection A1 ∩ A2 this

gives |15n− 10m+ 4| = 2 which implies 15n − 10m + 4 = ±2. Taking the ±
cases separately gives

15n− 10m+ 4 = 2

15n = 10m− 2
and

15n− 10m+ 4 = −2

15n = 10m− 6.
(5.2)
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For both these equations we see that LHS ≡ 0 mod 5 and RHS 6≡ 0 mod 5,

and so we have a contradiction. Therefore there does not exists n,m ∈ N such

that the ξ condition is 2. Now for the intersection A2 ∩ A3 the ξ condition is

|15p− 10q − 9| = 2 which implies 15p − 10q − 9 = ±2. Taking the ± cases

separately gives,

15p− 10q − 9 = 2

15p = 10q + 11
and

15p− 10q − 9 = −2

15p = 10q + 7.
(5.3)

For both these equations we see that LHS ≡ 0 mod 5 and RHS 6≡ 0 mod 5,

and so we have a contradiction. Therefore there does not exists p, q ∈ N such that

the ξ condition is equal to 2. Therefore there does not exist any proper neighbor

map with scaling δ±2. This process can be repeated to check all possible cases

{0, 1, . . . , 14} as amax = 15. We find that the possible scaling for the proper

neighbor maps are δ±b for b ∈ {1, 4, 6, 9, 11, 14}.

Therefore we have that the proper neighbor maps do not define all tile sizes.

Note that we think the only way to construct examples where the proper neighbor

maps do not achieve all possible scaling factors values is to have gcd(ai, aj) 6= 1

for every pair of scaling factors but gcd(a1, a2, . . . , aN) = 1 so that the scaling

factors are written in their simplest form.

In Chapter 3 and 4 we investigated the neighbor maps, the proper neighbor

maps and the associated neighbor graph for IFSs of contractive similitudes. Here,

in Chapter 5 we have offered a brief discussion about how neighbor map theory is

related to the structure of a fractal blow up and its prototile set. This relationship

is not fully understood and would be an interesting field of research to pursue,

particularly with the new neighbor map theory results provided in this thesis.
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