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Abstract

Model categories have been an important tool in algebraic topology since first

defined by Quillen. Given a category and a class of morphisms called weak equiv-

alences one can study the homotopy “category” in which the weak equivalences

are turned into isomorphisms by formally giving them inverses. However, the

resulting structure might not be a category, and even when it is understanding

it can be very difficult. A model structure on a category ensures that formally

inverting the weak equivalence does result in a category. It also makes the study

of the homotopy category easier by providing two weak factorisation systems on

the model category which can be used to understand the homotopy category.

We explore the basic consequences of weak factorisation systems and show

how one can be cofibrantly generated from a set of morphisms. We then define

model categories and discuss some fundamental results about them, including

defining their homotopy categories, and proving a recognition theorem. Having

done this we show there is a cofibrantly generated model structure on the category

of compactly generated, weakly Hausdorff, topological spaces, T .

We take a look at the category of simplicial sets, sSet, which can be considered a

generalisation of inductively constructed topological spaces. We later describe a

cofibrantly generated model structure on them and a Quillen adjunction between

T and sSet.

In stable homotopy theory the important objects of study are categories of D-

spectra and the stable model structures on them. We define a level model struc-

ture on D-spectra for chosen categories D, explain why it is not satisfactory for

stable homotopy theory, and then describe the stable model structure on spectra.

Finally, we describe the Reedy model structure on diagram categories MC
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whereM is a model category and C is a Reedy category. A recent result classifying

those functors between Reedy categories which induce a Quillen functor between

diagram categories for any choice of model category by Hirschhorn and Volić is

shown using a dual argument to the one in their paper.
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Chapter 1

Some Category Theory

We assume some basic knowledge of category theory of the reader.

Definition 1.1. Let D be a subcategory of C. We say that D is a full subcat-

egory of C if, for all objects X and Y in D, f ∈ C(X, Y ) =⇒ f ∈ D(X, Y ).

Definition 1.2. Let F : A → C and G : B → C be functors. Then the comma

category of F over G, denoted (F ↓ G), is the category whose

• objects are triples (α, β, f) such that α ∈ obj(A), β ∈ obj(B), and f :

F (α)→ G(β) is a morphism in C;

• morphisms (α, β, f) → (α′, β′, f ′) are pairs (ν, µ) where ν : α → α′ in A
and µ : β → β′ in B such that the following diagram commutes.

F (α) F (α′)

G(β) G(β′)

Fν

f f ′

Gµ

Notation 1.3. We will sometimes refer to objects of comma categories by their

morphism component, leaving the object components implied.

Comma categories involving functors out of the category 1 with a single object

and morphism, subcategory inclusion functors, and identity functors are partic-

ularly important.

For a functor 1 → C picking out a single object α ∈ obj(C) by an abuse of

notation the chosen object is written in place of the functor in comma category

notation. As there is only one object and one morphism in 1, objects in a comma

1



2 CHAPTER 1. SOME CATEGORY THEORY

category where the source of one of the functors is 1 can be treated as pairs and

similarly morphisms can be considered a single morphism in the source category

of the other functor.

When one of the functors is an identity functor on a category, the category is

written in place of the identity functor. If one of the functors is a subcategory

inclusion functor the subcategory is written in place of the identity functor. In

the case where the image of the other functor is contained in the subcategory

this can lead to some unfortunate confusion. For example let F : 1 → C and

G : B ↪→ C be the inclusion of B a subcategory of C and F (1) = α ∈ obj(B).

Then (α ↓ B) could either be (α ↓ 1B) or it could be (α ↓ G).

Notation 1.4. Unless otherwise specified, when a subcategory is indicated it will

denote the identity functor on that subcategory and not the inclusion functor.

Definition 1.5. Let C be a category, and let α be an object of C. The slice

category of C over α, (C ↓ α), is the comma category where C indicates the

identity functor 1C. Similarly coslice category of C under α, (α ↓ C), is the

comma category where C indicates the identity functor 1C.

Definition 1.6. Let F : C → M be a functor. A cocone under F is an object

X in M together with a set of morphisms {µα : Fα → X}α∈obj(C) such that for

all morphisms ϕ : α→ β in C the following diagram commutes.

Fα Fβ

X

µα

Fϕ

µβ

In fact this describes a natural transformation µ : F =⇒ ∆X where ∆X is the

constant functor C →M taking all objects to X and all morphisms to 1X . Hence

a cocone is an object X together with such a natural transformation. Dually,

a cone over F is an object X in M together with a natural transformation

ν : ∆X =⇒ F .

Definition 1.7. Given a functor F : C → M we can consider the category of

cocones under F . A morphism between cocones (X,µ) → (Y, ω) is a morphism

f : X → Y inM such that for all objects α in C the following diagram commutes.

Fα

X Y

µα ωα

f
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If the category of cocones has an initial object (X,µ) then it is the colimit of F

and we write colimF = X. Dually, we can consider the category of cones over

F . A morphism between cones (X,µ)→ (Y, ω) is a morphism f : X → Y in M
such that for all objects α in C the following diagram commutes.

X Y

Fα

µα

f

ωα

If the category of cones has a terminal object (X,µ) then it is the limit of F

and we write limF = X. As initial and terminal objects colimits and limits are

unique up to unique isomorphism.

Where a (co)limit is written with a subcategory as a subscript then it is the

(co)limit of the functor restricted to that subcategory. That is, if B is a subcat-

egory of C with inclusion functor ιB : B ↪→ C then colim
B

F = colim(FιB) and

lim
B
F = lim(FιB).

Examples 1.8. (i) Where C is the empty category with no objects. If they

exist, the limit and colimit of the unique functor C → M are the terminal

and initial objects of M respectively.

(ii) Products/coproducts. If C = {• •}, that is the category with two

objects and only identity morphisms, a functor F : C → M picks out two

objects, A,B inM. Then the limit of F is the product of A and B written

A×B and the colimit of F is the coproduct of F written AqB.

(iii) Pushouts. If C = { • •

•
} the image of a functor F : C →M is a diagram

A B

C

j

k

in M. The colimit of F , if it exists, is an object B qA C together with

morphisms ιB : B → BqAC and ιC : C → BqAC inM such that for any

X ∈ obj(M) and morphisms B → X and C → X making the outside of the

following diagram commute there exists a unique morphism B qA C → X

such that the whole diagram commutes.
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A B

C B qA C

X

j

k ιB

ιC

∃!

We say that ιB is a pushout of k along j.

(iv) Pullbacks. If C = { •

• •
} then the image of a functor F : C → M is a

diagram

B

C A

j

k

in M. The limit of F , if it exists, is an object B ×A C together with

morphisms ιB : B×AC → B and ιC : B×AC → C inM such that for any

X ∈ obj(M) and morphisms X → B and X → C making the outside of the

following diagram commute there exists a unique morphism X → B ×A C
such that the whole diagram commutes.

X

B ×A C B

C A

∃!

ιB

ιC j

k

(v) Equalisers/Coequalisers. If C = {• ⇒ •} a functor F : C → M picks

out two objects, A,B inM and two morphisms f, g : A→ B. The limit of

F is the equaliser of f and g. The colimit of F is the coequaliser of f and

g. The coequaliser, if it exists, is an object C of M together with a map

h : B → C satisfying hf = hg such that for any object D ∈ objM and

map h′ : B → D satisfying h′f = h′g there is a unique morphism making

the following diagram commute.

A B C

D

f

g

h

h′
∃!
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Proposition 1.9. Let f : A → D, g : A → B, and h : B → C be morphisms in

some category M. Let i : B → E be the pushout of f along g. Then j : C → F

is the pushout of i along h if and only if j is the pushout of f along hg.

A B C

D E F

f

g

i

h

j

k l

Proof. Suppose j is the pushout of i along h. Let ϕ : D → W and ψ : C → W be

morphisms in M such that ϕf = ψhg. Then as i is a pushout of f along g the

morphisms ϕ and ψh induce a unique morphism µ : E → W such that µk = ϕ

and µi = ψh. As j is a pushout of i along h the morphisms µ and ψ induce a

unique morphism σ : F → W such that σl = µ and σj = ψ so ϕ = µk = σlk.

Note that because µ is uniquely determined by ϕ and ψ, so is σ. Hence j is a

pushout of f along hg.

Conversely, suppose that j is a pushout of hg. Let µ : E → W and ψ : C → W

be morphisms in M such that ψh = µi. Then we have µkf = µig = ψhg, as j

is a pushout of f along hg the morphisms µk and ψ induce a unique morphism

σ : F → W such that σlk = µk and σj = ψ. We have µi = ψh = σjh = σli.

As i is a pushout of f along g the equalities σlk = µk and µi = σli mean that

σl = µ. Hence j is a pushout of i along h.

Definition 1.10. We call a categoryM complete if it contains all small limits,

that is if limF exists for all functors F : C → M where C is a small category.

Similarly, we call a category cocomplete if it contains all small colimits, that is

if colimF exists for all functors F : C → M where C is a small category. If a

category is both complete and cocomplete we call it bicomplete.

Definition 1.11. Let M be a category, and let C be a small category. Then we

have a category whose objects are functors X : C → M and whose morphisms

are natural transformations f : X → Y with composition defined as a vertical

composition of natural transformations. We call this the category of C-diagrams

in M, denoted MC. Categories of this type are called diagram categories.

For any category M a functor G : C → D between small categories induces a

functor G∗ :MD →MC taking functors X : D →M to XG : C G−→ D X−→M.



6 CHAPTER 1. SOME CATEGORY THEORY

Definition 1.12. Let X be an object in a category M. An object Y in M is

a retract of X if there exist morphisms i : Y → X and r : X → Y such that

ri = 1Y .

Remark 1.13. Given a morphism f : X → Y in a category M a retract of f is

a retract in the arrow category M2. That is, a morphism g : A→ B in M such

that there exists a commutative diagram of the form

A X A

B Y B

1A

g f g

1B

Definition 1.14. Let M a cocomplete category and λ be some limit ordinal.

We can consider λ to be the category whose objects are ordinals β ≤ λ with

λ(α, β) = {∗} if α ≤ β and λ(α, β) = ∅ otherwise. A λ-sequence in C is a functor

X : λ→ C such that for every limit ordinal γ the induced morphism colim
β<γ

→ Xγ

is an isomorphism. The composition of X is the morphism X0 → colim
β<λ

Xβ.

Definition 1.15. Let J be a class of morphisms in a cocomplete category M.

A λ-sequence in J is a λ-sequence in M such that the morphism Xβ → Xβ+1

is in J for all β < λ. A transfinite composition of morphisms in J is the

composition of a λ-sequence in J .

Proposition 1.16. Let J be a class of morphisms in a cocomplete category M
and f : A → B be a morphism in M. If there exists a limit ordinal γ and a

functor X : γ →M such that

• X0 = A,

• colim
β<γ

Xβ = B,

• the natural morphism X0 → colim
β<γ

Xβ is f ,

• and for all β + 1 < γ the induced morphism colim
α≤β

Xα → Xβ+1 is in J ,

then f is a transfinite composition of morphisms in J .
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Proof. Let λ be the smallest ordinal such that the morphism Xβ → Xβ+1 is the

identity for λ ≤ β + 1 < γ. Then restricting X to λ → X gives a λ-sequence in

J whose composition is f . Hence f is a transfinite composition of morphisms in

J .

Definition 1.17. Let F : C → D and G : D → C be functors, we write F : C �
D : G. We say that F is a left adjoint functor to G (and that G is a right

adjoint functor to F ) if for all objects in X in C and all objects Y in D there

exists bijections ϕX,Y : D(FX, Y ) ∼= C(X,GY ) which are natural in X and Y . To

be explicit, naturality in X and Y here mean that for any morphisms f : W → X

in C and g : Y → Z in D the following diagrams commute.

D(FX, Y ) C(X,GY )

D(FW, Y ) D(W,GY )

ϕX,Y

(Ff)∗ (f)∗

ϕW,Y

D(FX, Y ) C(X,GY )

D(FX,Z) D(X,GZ)

ϕX,Y

g∗ (Gg)∗

ϕX,Z

We have a bifunctorD(F−,−) : Cop×D → Set which sends (X, Y ) ∈ obj(Cop×D)

to D(FX, Y ) and morphisms (f op : X → W, g : Y → Z) to (FX
h−→ Y ) 7→

(FW
Ff−→ FX

h−→ Y
g−→ Z). Similarly, we have a bifunctor C(−, G−) : Cop ×D →

Set which sends (X, Y ) ∈ obj(Cop×D) to C(X,GY ) and morphisms (f op : X →
W, g : Y → Z) to (X

h−→ GY ) 7→ (W
f−→ X

h−→ GY
Gg−→ GZ). With these bifunc-

tors in mind the bijections above are the components of a natural isomorphism

ϕ : D(F−,−)→ C(−, G−). We call the triple (F,G, ϕ) an adjunction between

C and D.

Notation 1.18. We write F a G to indicate that F is a left adjoint functor to

G.

Definition 1.19. Let (F,G, ϕ) be an adjunction between C and D where F a G
and F : C � D : G. The unit of the adjunction is the natural transformation

η : 1C → GF whose components are ηX = ϕX,F (X)(1F (X)). The counit of the

adjunction is the natural transformation ε : FG → 1D whose components are

εY = ϕ−1(1G(Y )).

Definition 1.20. Let C be a bicomplete category. We define the category C+ as

the comma category (∗ ↓ C) where ∗ is the terminal object in C. This category

is also bicomplete. There is an obvious functor C → C+ sending an object X to

X+ = X
∐
∗, that is, it adds a disjoint basepoint. This functor is left adjoint to

the forgetful functor U : C+ → C which takes an object and ‘forgets’ that it has

a basepoint.



8 CHAPTER 1. SOME CATEGORY THEORY

Definition 1.21. A monoidal category is a sextuple (M,⊗, I, λ, ρ, α) where

M is a category, ⊗ is a bifunctorM×M→M, I is a distinguished object called

the unit object, λ is a natural isomorphism with components λX : I ⊗ X ∼= X

called the left unitor, ρ is a natural isomorphism with components ρX : X⊗I ∼= X,

and α is a natural isomorphism (natural in X, Y , and Z) with components

αX,Y,Z : ((X ⊗ Y ) ⊗ Z) ∼= (X ⊗ (Y ⊗ Z)) called the associator and satisfying

two coherence conditions. The first coherence condition is that for any objects

W,X, Y, Z in M the following diagram commutes.

(W ⊗ (X ⊗ Y ))⊗ Z

((W ⊗X)⊗ Y )⊗ Z W ⊗ ((X ⊗ Y )⊗ Z)

(W ⊗X)⊗ (Y ⊗ Z) W ⊗ (X ⊗ (Y ⊗ Z))

αW,X⊗Y,ZαW,X,Y ⊗1Z

αW⊗X,Y,Z 1W⊗αX,Y,Z

αW,X,Y⊗Z

The second coherence condition is that for any objects X and Y in M the fol-

lowing diagram commutes.

(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y )

X ⊗ Y

αX,I,Y

ρX⊗1Y

1X⊗λY

In general we we refer to a monoidal category (M,⊗, I, λ, ρ, α) just by the un-

derlying category M.

Definition 1.22. A symmetric monoidal category is a monoidal category M
together with an natural isomorphism (natural in X and Y ) with components

sX,Y : X ⊗ Y ∼= Y ⊗ X called the braiding satisfying the coherence conditions

that for any objects X, Y , and Z in M the following diagrams commute.

X ⊗ I I ⊗X

X

sX,I

ρX λX

Y ⊗X

X ⊗ Y X ⊗ Y

sY,XsX,Y

(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z) Y ⊗ (Z ⊗X)

αX,Y,X

sX,Y ⊗1Z

sX,Y⊗Z

αY,Z,X

αY,X,Z 1Y ⊗sX,Z
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Definition 1.23. A closed symmetric monoidal category is a symmetric monoidal

category M such that for all objects X in M the functor −⊗X :M→M has

a right adjoint, hom(X,−) :M→M called internal hom.

Example 1.24. The category, T of compactly generated, weakly Hausdorff,

based topological spaces is a closed symmetric monoidal category. Here the

monoidal product is the smash product X ∧ Y = (X × Y )/(X ∨ Y ), the unit

object is the zero dimensional sphere S0, and for X, Y ∈ obj(T ) the internal hom

hom(X, Y ) is T (X, Y ) with the compact-open topology.

Proposition 1.25. If C is a small category and M is a complete category, then

for any functor G : C → D the induced functor G∗ : MD → MC has a right

adjoint.

For a proof of this proposition see Corollary 2 on page 235 of [9].

Definition 1.26. A zig-zag between two objects X and Y in a category M is

a finite sequence of morphisms.

X1

X X2

f1 f2

f3
. . .

Xn

Xn−1 Y

fn−1

fn fn+1

A category M is connected if given any two objects there exists a zig-zag be-

tween them.

Definition 1.27. Let C and D be small categories, and let G : C → D be a

functor. The functor G is left cofinal (or initial) if for all objects α in D the

comma category (G ↓ α) is non-empty and connected. The functor G is right

cofinal (or terminal) if for all objects α in D the comma category (α ↓ G) is

non-empty and connected.

For a proof of the following proposition see [3] Proposition 14.2.5.

Proposition 1.28. Let C and D be small categories, and let G : C → D be a

functor.

(i) The functor G is left cofinal if and only if for every functor X : D → M
where M is a complete category the natural morphism limDX → limC G

∗X

is an isomorphism.

(ii) The functor G is right cofinal if and only if for every functor X : D →M
where M is a cocomplete category the natural morphism colimC G

∗X →
colimDX is an isomorphism.
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Chapter 2

Simplicial Sets

Definition 2.1. The delta category, ∆, is the category whose objects are

the ordered sets [n] = {0, 1, . . . , n} for each n ∈ N = {0, 1, . . .}. A morphism

[n]→ [m] is a weakly order preserving function from [n] to [m].

There are two important sets of morphisms in ∆. The coface morphisms di,n

defined for all n ∈ N and 0 ≤ i ≤ n

di,n : [n− 1]→ [n], k 7→

k if k < i

k + 1 if k ≥ i

and the codegeneracy morphisms si,n defined for all n ∈ N and 0 ≤ i ≤ n

si,n : [n+ 1]→ [n], k 7→

k if k ≤ i

k − 1 if k > i.

Notation 2.2. In general these morphisms are written di and si as the codomain

is usually clear from context.

For a proof of the following proposition see page 173 of [9].

Proposition 2.3. The coface and codegeneracy morphisms of ∆ satisfy the fol-

lowing relations

djdi = didj−1, if i < j

sjsi = sisj+1, if i < j

sjdi =


1, if i = j, j + 1

disj−1, if i < j

di−1sj, if i > j + 1.

11
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Further, any morphism f : [n]→ [m] in ∆ can be factored uniquely as a composite

of coface morphisms followed by a composite of codegeneracy morphisms. This

factorisation has the form

f = si1 . . . sikdj1 . . . djl

such that n− l + k = m, 0 ≤ ik < . . . < i1 < m, and 0 ≤ j1 < . . . < jl < n− 1.

Definition 2.4. Let M be a category. Then a simplicial object in M is a

functor ∆op → M. We will write sM for the category of simplicial objects in

M, note that sM is the diagram category M∆op
. If X is a simplicial object in

M we call the morphisms di,n = Xdi,n and si,n = Xsi,n the face morphisms and

the degeneracy morphisms respectively.

The most important example of a category of simplicial objects is the category

of simplicial sets, sSet. We will consider this category in some detail. Let X be

a simplicial set, that is a functor ∆op → Set. The information of X consists of

sets Xn = X[n] for all n ∈ N and, by Proposition 2.3, for all n ∈ N and 0 ≤ i ≤ n

face and degeneracy morphisms di,n and si,n satisfying the following relations (as

in ∆ we omit n where it is clear from context)

didj = dj−1di, if i < j

sisj = sj+1si, if i < j

disj =


1, if i = j, j + 1

sj−1di, if i < j

sjdi−1, if i > j + 1.

We will refer to these as the simplicial relations. Let X, Y be simplicial sets,

then a morphism f : X → Y in sSet is a natural transformation with components

fn : Xn → Yn. In order for f to be a natural transformation of functors X =⇒ Y

we must have that the diagram

Xn Xm

Yn Ym

Xg

fn fm

Y g

commutes for all morphisms g : [m] → [n] in ∆. However by Proposition 2.3

g factors as a composite of coface and codegeneracy morphisms. So the above

diagram factors into squares as in the following diagram.
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Xn . . . Xp Xp−1 . . . Xr Xr+1 . . . Xm

Yn . . . Yp Yp−1 . . . Yr Yr+1 . . . Ym

fn fp

di

fp−1 fr

sj

fr+1 fm

di sj

Hence it is sufficient that the squares

Xn Xn−1

Yn Yn−1

di

fn fn−1

di

and

Xn Xn+1

Yn Yn+1

si

fn fn+1

si

commute for all n ∈ N and all 0 ≤ i ≤ n.

If X is a simplicial set we say that the elements of Xn are the n-simplices of X.

This terminology is for sM where the objects of the underlying category M are

sets with structure on them. We say that an n-simplex is degenerate if it is in

the image of some degeneracy morphism, otherwise we say it is non-degenerate.

In sSet the empty simplicial set ∅ : ∆op → Set with ∅n = ∅ for all n ∈ N
is an initial object and the simplicial set ∗ : ∆op → Set with ∗n = {∗} for all

n ∈ N is a terminal object. In the case of ∅ ∈ obj(sSet) it is sufficient to

specify that ∅0 is the empty set because there is only one function ∅ → ∅ in

Set. For ∗ ∈ obj(sSet) it is sufficient to say that there is a single non-degenerate

0-simplex and that all other simplices are degenerate, the simplicial relations

ensure there is a single element in ∗n for all n ∈ N. We show this by induction.

If a, b ∈ ∗1 then, as they must be degenerate simplices, they are in the image of

a degeneracy morphism. There is only one degeneracy morphism ∗0 → ∗1 and

∗0 is a singleton, so a = s0(∗) = b. Hence ∗1 is a singleton. Now let n ≥ 2 and

suppose that ∗k is a singleton for all k < n. Let a, b ∈ ∗n, as all n-simplices

are degenerate a = si(∗) and b = sj(∗) for some 0 ≤ i, j ≤ n. Relabelling if

necessary, let i ≤ j. Clearly if i = j then a = si(∗) = sj(∗) = b. Otherwise

i < j and by the simplicial relations and the fact that ∗n−1 = ∗n−2 = {∗} we have

a = si(∗) = sisj−1(∗) = sjsi(∗) = sj(∗) = b.

In fact, by the simplicial relations, a simplicial set is entirely determined by its

non-degenerate simplices and their images under the relevant face morphisms.

The representable functors ∆n = ∆(−, [n]) : ∆op → Set, [k] 7→ ∆([k], [n]) are an

important set of simplicial sets. The non-degenerate simplices are the injective
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morphisms [k]→ [n] in ∆, so ∆n has
(
n+1
k+1

)
non-degenerate k-simplices. The face

morphisms di : ∆([k], [n])→ ∆([k−1], [n]) are given by precomposition by the co-

face morphisms so that di([k]
f−→ [n]) = ([k−1]

fdi−−→ [n]). Similarly the degeneracy

morphisms si : ∆([k], [n]) → ∆([k + 1], [n]) are given by precomposition by the

codegeneracy morphisms so that si([k]
f−→ [n]) = ([k + 1]

fsi−−→ [n]). The bound-

ary of ∆n, written ∂∆n, is the simplicial set ∆n with the single non-degenerate

n-simplex removed. That is,

∂∆n
k = ∆([k], [n]) =


∆([k], [n]) if k < n

∆([n], [n])\{1[n]} if k = n

∆([k], [n])\Sk if k > n

where Sk is the set of surjective morphisms [k]→ [n]. The Sk sets consist precisely

of those degenerate simplices in ∆n generated by the n-simplex 1[n]. The non-

degenerate (n−1)-simplices are precisely the coface morphisms di : [n−1]→ [n].

For 0 ≤ 1 ≤ n the ith horn of ∆n, written Λn
i , is the boundary ∂∆n with the

(n− 1)-simplex di removed.

Definition 2.5. For each n ∈ N there is an nth evaluation functor evn :

sSet → Set with evn(X) = Xn and evn(f) = fn. In the other direction there

is an nth simplicial set functor (−n)• : Set → sSet where (Xn)• is the

simplicial set whose only non-degenerate simplices are the elements of X which

are n-simplices and a single non-degenerate 0-simplex. Note that there is a single

simplex in (Xn)n−1 so the face morphisms are the same and take all n-simplices

to the n−1 simplex. Given a morphism f : X → Y of sets, (fn)• : (Xn)• → (Yn)•

has components (fn)i : {∗} → ∗ for 0 ≤ i < n and (fn)n = f : X → Y . The

remaining components are determined by the simplicial relations.

Proposition 2.6. The nth evaluation functor and the the nth simplicial set func-

tor are adjoint functors evn a (−n)•.

Proof. Let X ∈ obj(sSet) and Y ∈ obj(Set). Suppose we have a morphism

f : X → (Yn)• in sSet. Below degree n the components of f are morphisms

in Set into a singleton set and so are uniquely determined. Above degree n the

components of f are entirely determined by the component of f at degree n as

(Yn)i contains only degenerate simplices for i > n. Hence f is determined by its

nth component which is a morphism fn : evn(X) = Xn → Y of sets. Hence there

is a bijection ϕX,Y : Set(evn(X), Y ) ∼= sSet(X, (Yn)•).
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It remains to check that the required naturality conditions are satisfied. Let

f : W → X be a morphism in sSet and g : Y → Z be a morphism in Set. Let

h : evn(X)→ Y be a morphism in Set.

Definition 2.7. Let C be a small category. The nerve of C, written NC is the

simplicial set with a 0-simplex for each object and, for n ≥ 1, an n-simplex for

each sequence of n composable morphisms, X0 → X1 → . . .→ Xn−1 → Xn. The

face morphisms are given by

di(X0 → . . .→ Xi−1
f−→ Xi

g−→ Xi+1 → . . .→ Xn)

=


(X1 → . . . . . .→ Xn) for i = 0

(X0 → . . .→ Xi−1
gf−→ Xi+1 → . . .→ Xn) for 0 < i < n

(X1 → . . .→ Xn−1) for i = n

and the degeneracy morphisms are given by

si(X0 → . . .→ Xi → . . . Xn)

= (X0 → . . .→ Xi

1Xi−−→ Xi → . . .→ Xn)

it is straightforward to check that the simplicial relations are satisfied.
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Chapter 3

Factorisation Systems

There are two distinct flavours of model category theoretic arguments. Those cen-

tred on the weak equivalences and those involving the co/fibrations. Arguments

involving the co/fibrations generally rely on the weak factorisation systems en-

coded into the model category axioms. The standard references [3] and [5] prove

many results about model categories that are actually results about weak factori-

sation systems. We prove those results in this chapter to make this distinction

clear.

Definition 3.1. Let i : A → B and p : X → Y be morphisms in some category

M. We say that i has the left lifting property with respect to p, and that p

has the right lifting property with respect to i if for any pair of morphisms

k : A → X and j : B → Y such that ji = pk there exists a morphism (called a

lift) B → X such that the following diagram commutes

A X

B Y

k

i p

j

.

Let I be a collection of morphisms in some category M. We write I for the

collection of morphisms inM that have the right lifting property with respect to

all morphisms in I. Similarly we write I for the collection of morphisms in M
that have the left lifting property with respect to all morphisms in I.

Proposition 3.2. (The retract argument) Let M be a category, and let f :

X → Y be a morphism in M. Then,

(i) if f = pi where p has the right lifting property with respect to f then f is a

retract of i,

17
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(ii) if f = pi where i has the left lifting property with respect to f then f is a

retract of p.

Proof. We show part (ii), part (i) is dual. Suppose f = pi and i has the left

lifting property with respect to f . Then there exists a morphism q such that the

following diagram commutes

X X

A Y

i f
∃q

p

.

Then the diagram

X A X

Y Y Y

f

i

1X

p

q

f

commutes with the commutativity of the top triangle, left square, and right square

following from the commutativity of the top triangle, square, and bottom triangle

in the previous diagram. Hence f is a retract of p.

Proposition 3.3. Let M be a category, and let f : X → Y be a morphism in

M. Then,

(i) the class of morphisms with the left lifting property with respect to f is

closed under composition,

(ii) the class of morphisms with the right lifting property with respect to f is

closed under composition.

Proof. We show part (ii), part (i) is dual. Let g : A → B and h : B → C be

morphisms with the right lifting property with respect to f . Suppose that j, k

are morphisms such that kf = hgj then as h ∈ f there exists a lift ϕ : Y → B

such that the following diagram commutes

X A B

Y C

j

f

g

h

k

∃ϕ .

As g ∈ f there exists a lift ψ : Y → A such that the following diagram commutes
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X A

Y B

j

f g

ϕ

∃ψ .

Then we have ψf = j and hgψ = hϕ = k such that the following diagram

commutes

X A

B

Y C

j

f

g

h

k

ψ .

Hence hg ∈ f .

Proposition 3.4. Let M be a category, and let f : X → Y be a morphism in

M. Then,

(i) the class of morphisms with the left lifting property with respect to f is

closed under retracts and

(ii) the class of morphisms with the right lifting property with respect to f is

closed under retracts.

Proof. We show part (ii), part (i) is similar. Suppose that g : A → B has the

right lifting property with respect to f , and let h : C → D be a retract of g. Let

p and q be morphisms such that hp = qf . Then we have a commutative diagram

X C A C

Y D B D

f

p

1C

i

g

j

h

q

∃ϕ
h

k

1D

l

where the existence of the lift ϕ follows from g having the right lifting property

with respect to f . The commutativity of the diagram tells us that jϕf = jip =

1Cp = p and that q = 1Dq = lkq = hjϕ. Thus the following diagram commutes

X C

Y D

p

f h

q

jϕ .
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Hence h has the right lifting property with respect to f .

Proposition 3.5. Let M be a category, and let f : X → Y be a morphism in

M. Then,

(i) the class of morphisms with the left lifting property with respect to f is

closed under pushouts and

(ii) the class of morphisms with the right lifting property with respect to f is

closed under pullbacks.

Proof. We show part (ii), part (i) is similar. Suppose that g : A → B has the

right lifting property with respect to f , and let h : C → B be a morphism such

that the pullback of g along h exists and call it p : P → C. Let i and k be

morphisms such that pi = kf . Then we have the commutative diagram

X P A

Y C B

i

f

j

g

k

ϕ
p

h

.

By the universal property of pullbacks and the commutativity of the lower triangle

in the diagram there exists a unique morphism ψ : Y → P such that the following

diagram commutes

Y

P A

C B

ϕ

k

∃!ψ

j

p g

h

.

Furthermore, by the commutativity of these two diagrams we have ji = ϕf = jψf

and hpi = hkf = hpψf . Thus, by the universal property of pushouts i = ψf .

Hence the following diagram commutes.

X P

Y C

i

f p

k

ψ

So p has the right lifting property with respect to f .

Definition 3.6. Let M be a category. A strong factorisation system on M
is a pair of classes of morphisms (L,R) such that:
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(i) The classes L and R are closed under composition with isomorphisms.

(ii) Any morphism f in M factors as f = gh where g ∈ R and h ∈ L.

(iii) We have L = R and R = L such that for any morphisms i ∈ L, p ∈ R
and commutative square

A X

B Y

k

i p

j

in M the dashed lift is unique.

Definition 3.7. LetM be a category. A weak factorisation system onM is

a pair of classes of morphisms (L,R) such that:

(F1) The classes L and R are closed under retracts.

(F2) Any morphism f in M factors as f = gh where g ∈ R and h ∈ L.

(F3) We have L = R and R = L .

Let M be a cocomplete category, then for any A ∈ obj(M) and any functor

B : N → M (where we treat N as the category whose objects are the natural

numbers with N(n,m) = {∗} if n ≤ m and N(n,m) = ∅ otherwise) there is a nat-

ural morphism B(n) → colim(B) for each natural number n. These morphisms

induce morphisms M(A,B(n)) → M(A, colim(B)) by postcomposition. These

morphisms induce a canonical map colim
n

(M(A,Bn))→M(A, colim
n

Bn).

Definition 3.8. An object A ∈ obj(M) is sequentially small if for all functors

B : N →M the canonical morphism colim
n

(M(A,Bn)) →M(A, colim
n

Bn) is an

isomorphism of sets.

The small object argument is a method of constructing a factorisation system

starting from a set of morphisms. Let I = {gq : Aq → Bq}q∈Q be a set of mor-

phisms in a cocomplete categoryM. We will construct a (cofibrantly generated)

weak factorisation system on M by building a factorisation for each morphism

using I. Let f : X → Y be a morphism in M, we define S0(q) to be the set of

pairs (j, k) with j, k ∈ Mor(M) such that the following diagram commutes
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Aq X

Bq Y

j

gq f

k

.

Letting P0 be the pushout of
∐
q∈Q

∐
(j,k)∈S0(q)

gq along
∐
q∈Q

∐
(j,k)∈S0(q)

j we have the

following factorisation of f .

∐
q∈Q

∐
(j,k)∈S0(q)

Aq X

∐
q∈Q

∐
(j,k)∈S0(q)

Bq P0

Y

∐
q

∐
(j,k)

j

∐
q

∐
(j,k)

gq i0

f

∐
q

∐
(j,k)

k

p0

.

While this is a perfectly good factorisation of f , we would like our factorisation to

have the useful property that the second morphism has the right lifting property

with respect to I. For n ∈ N+, assuming Pn−1 has been defined, we define Sn(q)

to be the set of pairs (j, k) with j, k ∈ Mor(M) such that the diagram

Aq Pn−1

Bq Y

j

gq pn−1

k

commutes. Letting Pn be the pushout of
∐
q∈Q

∐
(j,k)∈Sn(q)

gq along
∐
q∈Q

∐
(j,k)∈Sn(q)

j we

have the following factorisation of f .

∐
q∈Q

∐
(j,k)∈Sn(q)

Aq Pn−1

∐
q∈Q

∐
(j,k)∈Sn(q)

Bq Pn

Y

∐
q

∐
(j,k)

j

∐
q

∐
(j,k)

gq in
pn−1

∐
q

∐
(j,k)

k

pn

.

Then for each n ∈ N we have a factorisation f = pnin . . . i0. Let P be the functor

N → M with P (n) = Pn and taking the morphism n → n + 1 to pn for all
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n ∈ N. Letting P∞ = colimP , we have natural morphisms i∞ : X → P∞ and

p∞ : P∞ → Y such that f = p∞i∞.

Proposition 3.9. Let Aq be sequentially small for all q ∈ Q, then p∞ has the

right lifting property with respect to I.

Proof. Let gq ∈ I, and let (j, k) be a pair of morphisms in M such that the

diagram

Aq P∞

Bq Y

j

gq p∞

k

commutes. For all n ∈ N the morphism collections M(Aq, Pn) are sets hence

colim
n

(M(Aq, Pn)) is the quotient
∐
n∈N
M(Aq, Pn)/ ∼ where f ∼ g if one of them

is the other postcomposed by a sequence of in morphisms. We have the following

commutative diagram

M(Aq, P0)

M(Aq, P1)

... colim
n

(M(Aq, Pn)) M(Aq, P∞)

M(Aq, Pn)

...

i1

i2

in

in+1

where the morphismsM(Aq, Pn)→M(Aq, P∞) are postcomposition by the nat-

ural morphisms Pn → P∞. As Aq is sequentially small colim
n

(M(Aq, Pn)) →
M(Aq, P∞) is a bijection. Let j′ ∈ M(Aq, Pm) be a representative of the equiv-

alence class that j maps to under this bijection. Then by the commutativity of

the triangles
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M(Aq, Pm) colim
n
M(Aq, Pn)

M(Aq, Pm+1) M(Aq, P∞)

im+1

in the previous diagram, j factors as Aq
j′−→ Pm

im+1−−−→ Pm+1 → P∞. The pair (j′, k)

is in Sm+1(q) so there is a lift Bq → Pm+1 as shown in the following commutative

diagram

Aq Pm Pm+1 P∞

Bq Y Y

gq

j′

j

im+1

pm+1 p∞

k

.

This gives a lift Bq → Pm+1 → P∞. Hence p∞ has the right lifting property with

respect to I.

Definition 3.10. Given a set of morphisms I in a categoryM we call a morphism

a relative I-cell complex if it is a transfinite composition (Definition 1.15) of

pushouts of morphisms in I. We denote the collection of such morphisms by

I-cell.

Lemma 3.11. Let I be a set of morphisms in a cocomplete category M. If f is

a pushout of a coproduct of morphisms in I then f is in I-cell.

Proof. Let K be a set and gk : Ck → Dk a morphism in I for each k ∈ K. Let

λ be an ordinal isomorphic to K. Suppose f is the pushout of
∐
gk along some

morphism
∐
Ck → X. ∐

Ck X

∐
Dk Y

∐
gk f

Let Q : λ → M be the λ-sequence where Q0 = X, with Xβ → Xβ+1 as the

pushout of gβ along Cβ → Xβ, and Xβ = colimα<β for limit ordinals β. The

transfinite composition Q is isomorphic to f , so f is in I-cell.

Theorem 3.12. LetM be a cocomplete category, and let I be a set of morphisms

in M such that the domains of all morphisms in I are sequentially small. Then

( (I ), I ) is a weak factorisation system on M. We say this weak factorisation

system is cofibrantly generated by I.
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Proof. As the morphism classes are defined by lifting properties they are closed

under retracts by Proposition 3.4, hence F1 is satisfied. F3 is immediate. It

remains to show that any morphism can be factorised as a morphism in (I )

followed by a morphism in I . By the above lemma, the in morphisms of the small

object argument are in I-cell, so i∞ is a transfinite composition of transfinite

compositions of pushouts of morphisms in I. Hence i∞ is in I-cell. In light of

Proposition 3.9, to show that the factorisation given above can be used to satisfy

F2 it suffices to show that I-cell ⊆ (I ). Let f : X → Y be a morphism in I

and let g : A → B be a morphism in I-cell. Then g is a transfinite composition

of a λ-sequence, C, of pushouts of elements of I for some ordinal λ. Let gβ be

the morphism Cβ → Cβ+1 in I. As each gβ is the pushout of a morphism with

the left lifting property with respect to I , they have the same lifting property

by Proposition 3.5. Suppose j, k are morphisms such that fj = kg. We define

a lift by transfinite induction. We have a morphism j : C0 = A → X such that

there exists a lift making the following diagram commute.

C0 X

C1 colimC = B Y

j

g0 f
ϕ0

k

Given a morphism ϕβ : Cβ → X such that the outside of the following diagram

commutes, there exists a lift ϕβ+1 : Cβ+1 → X such that the whole diagram

commutes.

Cβ X

Cβ+1 colimC = B Y

ϕβ

gβ f
ϕβ+1

k

If β is a limit ordinal, given a morphism colimα<β Cα → X such that the outside

of the following diagram commutes, there exists a lift ϕβ : Cβ → X such that the

whole diagram commutes.

colimα<β Cα X

Cβ colimC = B Y

f
ϕβ

k

So g has the left lifting property with respect to I . Hence I-cell ⊆ (I ).
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Definition 3.13. LetM be a category. A functorial factorisation onM is a

pair, (α, β), of functors α, β :M2 →M2 such that for all morphisms f : X → Y

we have f = (βf)(αf).

Definition 3.14. Let γ be a cardinal and α be an ordinal. We say α is γ-filtered

if it is a limit ordinal and if A ⊂ α such that |A| ≤ γ, then sup(A) < α.

Definition 3.15. Let M be a cocomplete category, and let I be a class of mor-

phisms in M. An object A in M is κ-small relative to I for κ a cardinal

if, for all κ-filtered ordinals λ and all λ-sequences X such that each morphism

Xβ → Xβ+1 is in I for β + 1 < λ, the morphism of sets

colim
β<λ

M(A,Xβ)→M(A, colim
β<λ

Xβ)

is an isomorphism. If there exists a cardinal κ such that an object A of M is

κ-small relative to I then we say that A is small relative to I. If A is small

relative to M we say it is small.

Remark 3.16. The small object argument presented above and Theorem 3.12

can be generalised so that it is sufficient that the domains of the morphisms in

the generating set I are small relative to the relative I-cell complexes. That is, we

have a factorisation f = p∞i∞ constructed similarly and ( (I ), (I )) is a weak

factorisation system on M. In this case and the previous case, the factorisation

f = p∞i∞ from the small object argument is a functorial factorisation. See

Theorem 2.1.14 on page 32 of [5] for details.



Chapter 4

Model Categories

Model categories were first defined by Quillen in [8]. The definition we use here

is the one found in [5] and [3]. This is a modification of what Quillen defined as a

closed model category. In particular requiring all bicompleteness rather than just

finite limits and colimits, and that the factorisations of the factorisation axiom

are functorial. The second of these is not included in the definition given in [1],

but in practice model categories satisfying this definition can generally be given

a functorial factorisation.

Definition 4.1. A model structure on a bicomplete category, M, consists

of three distinguished classes of morphisms, W , C,F , called the weak equiva-

lences, cofibrations, and fibrations respectively satisfying the following ax-

ioms;

1. (Two out of Three Axiom) If f and g are composable and two of f , g,

and gf are in W then so is the third. We say that W has the two out of

three property.

2. (Retract Axiom) The morphism classes W , C,F are each closed under

retracts.

3. (Lifting Axiom) The morphisms in C have the left lifting property with

respect to the morphisms in W ∩ F . The morphisms in F have the right

lifting property with respect to the morphisms in W ∩ C.

4. (Factorisation Axiom) There are two functorial factorisations (α, β) and

(γ, δ) on M such that for f : X → Y in M we have αf ∈ C, βf ∈
W ∩ F , γf ∈ W ∩ C, and δf ∈ F .

27
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A model category is a bicomplete category,M, together with a model structure

(W , C,F) on M.

A morphism in a model category which is both a weak equivalence and a cofibra-

tion is called an acyclic cofibration, similarly a morphism in a model category

which is both a weak equivalence and a fibration is called an acyclic fibration.

Remark 4.2. A given category can have more than one model structure on it.

We will see this when we get to examples of model categories.

Examples 4.3. (i) A trivial example of a model category is the one object

category where the only morphism is the identity morphism which is a

weak equivalence, a cofibration, and a fibration.

(ii) Less trivially let M be a bicomplete category. There is a model structure

on M given by letting W be the class of all isomorphisms and letting C
and F be the class of all morphisms in M. Let f : X → Y and g : Y → Z

be morphisms in M. The two out of three axiom is obviously satisfied for

isomorphisms. As they contain all morphisms C and F are clearly closed

under retracts. If g : X → Y is an isomorphism and f : A→ B is a retract

of g then there exists a commutative diagram

A X A

B Y B

1A

f g

j

f

k

1B

.

Then f(jg−1k) = 1B and (jg−1k)f = 1A so f is an isomorphism with inverse

jg−1k. So W is closed under retracts. Hence the retract axiom is satisfied.

Given the solid arrows in the diagram commute

A X

B Y

j

f g

k

ϕ

if f is an isomorphism then putting ϕ = jf−1 the above diagram commutes,

similarly if g is an isomorphism then putting ϕ = g−1k makes the diagram

commute. Hence the lifting axiom is satisfied. Finally the required functo-

rial factorisations are given by αf = f , βf = 1B, γf = 1A, and δf = f .
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For less trivial examples, showing that a given category M together with mor-

phism classes W , C, and F is a model category directly from the axioms can

be quite difficult. In practice one does this by showing that a model category is

a cofibrantly generated model category. Example of categories with interesting

model structures include the category of compactly generated, weakly Hausdorff

topological spaces, the category of simplicial sets, the category of R-modules

where R is a Frobenius ring, and the category of chain complexes of modules

over a ring R. We leave the description of these model structures until after

we have established some basic results about model categories and have defined

cofibrantly generated model categories.

Definition 4.4. Let M be a model category, and let X be an object in M. We

say that X is cofibrant if the morphism ∅ → X from the initial object is a

cofibration in M. We say that X is fibrant if the morphism X → ∗ to the final

object is a fibration in M.

Definition 4.5. Let M be a model category. For an object X in M we can

apply the functorial factorisation (α, β) to the morphism from the initial object

to X to get ∅→ QX
qX−→ X where QX is a cofibrant object and qX is an acyclic

fibration. Let f : X → Y be a morphism in M then f corresponds to a unique

morphism in M2. Applying α gives a unique morphism Qf : QX → QY .

α

 ∅ ∅

X Y
f

 =

∅ ∅

QX QY
Qf

We define the cofibrant replacement functor Q : M → M on objects and

morphisms as above. The functoriality of Q follows from the functoriality of α.

The morphisms qX : QX → X are the components of a natural transformation

q : Q =⇒ 1M. Similarly we define the fibrant replacement functor by

applying the functorial factorisation (γ, δ) to the morphism X → ∗ from an object

X to the final object. We get X
rX−→ RX → ∗ where RX is a fibrant object and

rX is an acyclic cofibration. A morphism f : X → Y in M corresponds to a

unique morphism in M2. Applying δ gives a unique morphism Rf : RX → RY .

α

 X Y

∗ ∗

f

 =
RX RY

∗ ∗

Rf
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The functoriality of R follows from the functoriality of δ. The morphisms rX :

X → RX are the components of a natural transformation r : 1M =⇒ R.

Proposition 4.6. Let M be a model category with model structure (W , C,F).

Then,

(i) a morphism f in M is a cofibration if and only if it has the left lifting

property with respect to all acyclic fibrations,

(ii) a morphism f in M is an acyclic cofibration if and only if it has the left

lifting property with respect to all fibrations,

(iii) a morphism f in M is a fibration if and only if it has the right lifting

property with respect to all acyclic cofibrations,

(iv) a morphism f in M is an acyclic fibration if and only if it has the right

lifting property with respect to all cofibrations.

Proof. We prove part (i), the other proofs are similar. Suppose that f ∈ C then f

has the left lifting property with respect toW∩F by the lifting axiom. Conversely,

suppose that f has the left lifting property with respect to all morphisms in

W ∩ F . By the factorisation axiom f factors as X
αf−→ αY

βf−→ Y where αf ∈ C
and βf ∈ W ∩ F . By assumption f has the left lifting property with respect to

βf . By the retract argument f is a retract of αf . Hence by the retract axiom

f ∈ C.

Remark 4.7. Proposition 4.6 together with the retract and factorisation axioms

show that in any model category M the pairs (C,W ∩ F) and (W ∩ C,F) are

weak factorisation systems on M.

Proposition 4.8. Let M be a model category with model structure (W , C,F).

Then a morphism f in M is a weak equivalence if and only if f = pi where p is

an acyclic fibration and i is an acyclic cofibration.

Proof. Suppose f is a weak equivalence. By the factorisation axiom we can

factorise f as f = (βf)(αf) where αf ∈ C and βf ∈ W ∩ F . By the two out

of three axiom αf is a weak equivalence, hence αf ∈ W ∩ C. The converse is

immediate by the two out of three axiom.

Proposition 4.9. Let M be a model category. Any two of the classes of weak

equivalences, cofibrations, and fibrations determines the other.
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Proof.

• If the weak equivalences and cofibrations are known then by Proposition 4.6

part (ii) the fibrations are precisely those morphisms with the right lifting

property with respect to the acyclic cofibrations.

• If the weak equivalences and fibrations are known then by Proposition 4.6

part (iv) the cofibrations are precisely those morphisms with the right lifting

property with respect to the acyclic fibrations.

• If the cofibrations and fibrations are known then by Proposition 4.6 parts

(i) and (iii) the acyclic cofibrations and acyclic fibrations are known. By

Proposition 4.8 the weak equivalences are precisely those morphism which

can be written as an acyclic cofibration followed by an acyclic fibration.

Functors between model categories which preserve the model structures, called

Quillen functors, are particularly important because they induce functors be-

tween the homotopy categories. When the induced functor is an equivalence of

categories these are called Quillen equivalences and can allow the same homotopy

category to be studied using model categories that are not equivalent.

Definition 4.10. Let M and N be model categories, and let F : M � N :G

be an adjoint pair of functors where F a G. We say that F is a left Quillen

functor if F preserves cofibrations and acyclic cofibrations. We say that G is

a right Quillen functor if G preserves fibrations and acyclic fibrations. If

(F,G, ϕ) is an adjunction and F is a left Quillen functor we call it a Quillen

adjunction.

Proposition 4.11. Let M and N be model categories, and let F : M � N :G

be an adjoint pair of functors where F is left adjoint to G. Then F is a left

Quillen functor if and only if G is a right Quillen functor.

Proof. Suppose F is a left Quillen functor. Let p : X → Y be a fibration in N
and i : A→ B be an acyclic cofibration inM. By the adjunction F a G the first

diagram (in M)

A GX

B GY

i Gp

FA X

FB Y

Fi p
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has the lift shown if and only the second diagram (in N ) has the lift shown. As F

is a left Quillen functor Fi is an acyclic cofibration in N , so Fi has the left lifting

property with respect to p. In particular the second diagram above has the lift

shown and hence so does the first. Hence Gp has the right lifting property with

respect to all acyclic cofibrations in M, that is Gp is a fibration inM. Hence G

preserves fibrations. Replacing acyclic cofibration and fibration with cofibration

and acyclic fibration above shows that G preserves acyclic fibrations. Hence G

is a right Quillen functor. A similar argument shows that if G is a right Quillen

functor then F is a left Quillen functor.

Definition 4.12. LetM be a category with a distinguished class of morphisms,

W called weak equivalences. The homotopy “category”, HoM, is the “cate-

gory” we get by formally adding inverses for the weak equivalences. More specif-

ically, let F (M,W−1) be the free category generated byM and a formal inverse

w−1 for each morphism w ∈ W where if w : X → Y then w−1 : Y → X. The

objects of this category are the objects ofM and the morphisms are finite strings

(f1, . . . , fn) of composable morphisms where each fi is either a morphism inM or

is w−1 for some w ∈ W . Composition is concatenation of strings and the empty

string at an object is the identity morphism for that object. Then HoM is the

quotient category of F (M,W−1) by the relations that for all X ∈ obj(M) we

have 1X = (1X), for all composable arrows of M we have (f, g) = (gf), and for

w : X → Y in W we have (w,w−1) = 1X and (w−1, w) = 1Y .

Remark 4.13. As defined HoM is not necessarily a category. In particular,

HoM(X, Y ) might be a proper class. Part of the motivation for studying model

categories is that ifM is a model category whereW are the weak equivalences of

the model structure then HoM is a category. This is shown in Theorem 1.2.10

on page 13 of [5].

Formal inversion of a class of morphisms in this way is called localisation. There

is an obvious inclusion functor γ :M→ HoM taking objects and morphisms to

themselves, in particular taking weak equivalences to isomorphisms. This functor

has the universal property1 that if ϕ : M → N is a functor such that ϕ(w) is

an isomorphism whenever w is a weak equivalence, then there exists a unique

functor δ : HoM→N such that ϕ = δγ.

Definition 4.14. LetM be a model category. We writeMc,Mf , andMcf for

the full subcategories ofM whose objects are respectively, the cofibrant objects,

1See Lemma 1.2.2 on page 7 of [5] for a proof.
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the fibrant objects, and objects which are both cofibrant and fibrant. If w was a

weak equivalence in M we will still consider it so in these subcategories.

Proposition 4.15. Let M be a model category. By the universal property of

the inclusion functors of categories into their homotopy categories, the inclusions

functors Mcf ↪→Mc ↪→M and Mcf ↪→Mf ↪→M induce functors HoMcf →
HoMc → HoM and HoMcf → HoMf → HoM. These induced functors are

equivalences of categories.

Proof. We show that the functor HoMc → HoM induced by the inclusion ι :

Mc ↪→M is an equivalence, the other cases are similar. A morphism w in Mc

is only a weak equivalence if it is a weak equivalence in M so weak equivalences

go to isomorphisms under the functor Mc
ι
↪−→ M → HoM. So by the universal

property of Mc → HoMc there is a functor Ho ι : HoMc → HoM induced by

ι. The cofibrant replacement functor Q :M→M takes objects inM to objects

in Mc and so we can consider it a functor M → Mc. If f : X → Y is a weak

equivalence then we have the commutative diagram

QX QY

X Y

Qf

qX qY

f

in M where qX and qY are weak equivalences. So by the two out of three axiom

Qf is a weak equivalence. So weak equivalences go to isomorphisms under the

functorM Q−→Mc → HoMc. So by the universal property ofM→ HoM there

is a functor HoQ : HoM→ HoMc induced by Q. For all objects X in M the

morphism qX is a weak equivalence ιQ(X) = QX → X and so are isomorphisms

QX → X in HoM. These give a natural isomorphism (Ho ι)(HoQ) =⇒ 1M.

Considering only the objects inMc in the same way gives a natural isomorphism

(HoQ)(Ho ι) =⇒ 1M. Hence Ho ι is an equivalence of categories.

Definition 4.16. Let M and N be model categories.

(i) If F : M → N is a left Quillen functor the total left derived functor,

LF : HoM→ HoN is the composition

HoM HoQ−−→ HoMc
HoF−−→ HoN .

(ii) If G : N →M is a right Quillen functor the total right derived functor,

RG : HoN → HoM is the composition

HoN HoR−−→ HoNf
HoG−−→ HoM.
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Lemma 4.17. Let (F,G, ϕ) be a Quillen adjunction with F :M� N : G. Then

there is an adjuntion L(F,G, ϕ) = (LF,RG,Rϕ) called the derived adjunction.

For a proof that the derived adjunction is an adjunction see Lemma 1.3.10 on

page 18 of [5].

Definition 4.18. A Quillen adjunction (F,G, ϕ) with F : M � N : G is a

Quillen equivalence if for all cofibrant objects X in M and all fibrant objects

Y in N , a morphism f : FX → Y is a weak equivalence if and only if ϕ(f) :

X → GY is a weak equivalence.

Proposition 4.19. Let (F,G, ϕ) be a Quillen adjunction with F :M� N : G.

Then the following are equivalent:

(i) (F,G, ϕ) is a Quillen equivalence.

(ii) The composition

X
ηX−→ GFX

GrFX−−−→ GRFX

is a weak equivalence of all cofibrant objects X in M, and the composition

FQGY
FqGY−−−→ FGY

εY−→ Y

is a weak equivalence for all fibrant objects Y in N .

(iii) The derived adjunction L(F,G, ϕ) is an adjoint equivalence of categories.

Proof. See Proposition 1.3.13 on page 19 of [5].

Definition 4.20. A cofibrantly generated model category, M, is a model

category such that there exist sets of morphisms I, J called the generating

cofibrations and the generating acyclic cofibrations respectively such that

the domains of I and J are small relative to I-cell and J-cell respectively, and

the weak factorisation systems from Remark 4.7 are those cofibrantly generated

by I and J . That is, (C,W ∩F) = ( (I ), I ) and (W ∩ C,F) = ( (J ), J )

Theorem 4.21. LetM be a bicomplete category, letW be a class of morphisms in

M, and let I, J be sets of morphisms inM. Then there is a model structure onM
where W is the class of weak equivalences, I is the set of generating cofibrations,

and J is the set a generating acyclic cofibrations if and only if the following

conditions hold:

(i) The class W has the two out of three property and is closed under retracts
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(ii) The domains of elements of I are small relative to I-cell

(iii) The domains of elements of J are small relative to J-cell

(iv) The class J-cell is contained in W ∩ (I )

(v) The class I is contained in W ∩ J

(vi) Either the class W ∩ (I ) is contained in (J ) or the class W ∩ J is

contained in I .

Proof. Suppose thatM is a cofibrantly generated model category where I, J are

the generating cofibrations and the generating acyclic cofibrations respectively.

By the two out of three axiom condition (i) is satisfied. The smallness conditions

(ii) and (iii) are satisfied by definition. If f ∈ J-cell then by Theorem 3.12

f ∈ (J ) = W ∩ C = W ∩ (I ) so condition (iv) is satisfied. Condition (v) is

satisfied as I = W ∩F = W ∩ J . Both conditions in part (vi) are satisfied as

W ∩ (I ) =W ∩ C = (J ) and W ∩ J =W ∩ C = I .

Conversely suppose that conditions (i) - (vi) are satisfied. By condition (i) the two

out of three axiom is satisfied. Define the class of cofibrations C to be (I ) and

define the class of fibrations F to be J . As these are defined by lifting properties

they are closed under retracts by Proposition 3.4. Together with condition (i),

this shows that the retract axiom is satisfied.

By Theorem 3.12 and Remark 3.16, conditions (ii) and (iii) allow us to apply

the small object argument using I and J to get functorial factorisations (α, β)

and (γ, β) such that for all morphisms f in M, α(f) is in (I ) = C, β(f) is in

I ⊆ W ∩ J =W ∩F by condition (v), γ(f) is in J-cell ⊆ W ∩ J =W ∩ C by

condition (iv), and δ(f) is in J = F . So the factorisation axiom is satisfied.

Finally we need to show that the lifting axiom holds. Suppose that W ∩ (I ) =

W ∩ C is contained in (J ) = F , that is every acyclic cofibration has the left

lifting property with respect to every fibration. Suppose p is an acyclic fibration,

we have a functorial factorisation p = (βp)(αp) where βp is in I ⊆ W ∩F , and

αp is in C. As the weak equivalences satisfy the two out of three property αp

is also in W . As p is a fibration it has the right lifting property with respect

to αp. By the retract argument (Proposition 3.2 (ii)) p is a retract of βp. So

by Proposition 3.4 p is in I and so has the right lifting property with respect
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to every cofibration. So the lifting axiom is satisfied. Alternatively, suppose

that W ∩ J = W ∩ F is contained in I . Then every acyclic fibration has the

right lifting property with respect to every cofibration (morphisms in (I ) = C).
Suppose i is an acyclic cofibration, we have a functorial factorisation i = (δi)(γi)

where δi is in F = J and γi is in J-cell ⊆ W ∩ C. Recall from the proof of

Theorem 3.12 that J-cell ⊆ (J ). As the weak equivalences satisfy the two out

of three axiom δi is also inW . As i is a cofibration it has the left lifting property

with respect to δi. By the retract argument (Proposition 3.2 (i)) i is a retract

of γi. So by Proposition 3.4 i has the left lifting property with respect to the

fibrations because γi does. Hence the lifting axiom is satisfied.

The roots of abstract homotopy theory lie in algebraic topology. An important

model structure then is the classic model structure on the category of topological

spaces. The category of topological spaces and continuous functions between

them, Top, is a poor category to work with as the product functor − × X :

Top → Top,W 7→ W × X does not commute with colimits for general X. In

the following we consider S−1 to be the empty set.

The following proof that the category of compactly generated, weakly Hausdorff,

topological spaces is a cofibrantly generated model category mostly follows the

proof in [5]. However the proof that condition (vi) is satisfied provided here is

more elementary than the proof in [5] (Theorem 2.4.12).

Theorem 4.22. The category, T of compactly generated, weakly Hausdorff, topo-

logical spaces is a cofibrantly generated model category where the generating cofi-

brations are the set of boundary inclusions I ′ = {Sn−1 ↪→ Dn}n∈N, the generating

acyclic cofibrations are the set of inclusions J = {Dn ↪→ Dn × I, x 7→ (x, 0)}n∈N,

and the class of weak equivalences W consists those morphisms f : X → Y which

induce a bijection of path components and an isomorphism of homotopy groups

f∗ : πn(X, x0)
∼=−→ πn(Y, f(x0)) for all n ≥ 1 and all choices of basepoint x0 ∈ X.

Proof. We prove this by showing that the conditions of Theorem 4.21 hold.

(i) Let f : X → Y and g : Y → Z be morphisms in T . Clearly if any two

of f , g, and gf induce a bijection of path components so does the third.

Let n ∈ N. If πn(X, x0)
f∗−→ πn(Y, f(x0)) and πn(Y, y0)

g∗−→ πn(Z, g(y0))

are isomorphisms then clearly πn(X, x0)
(gf)∗−−−→ πn(Z, g(f(x0))) is an isomor-

phism. Similarly, if g∗ and (gf)∗ are isomorphisms it is immediate that f∗

is an isomorphism. Suppose πn(X, x0)
f∗−→ πn(Y, f(x0)) and πn(X, x0)

(gf)∗−−−→
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πn(Z, g(f(x0))) are isomorphisms for all x0 ∈ X, and that f and gf induce

bijections of path components. If there is some x0 ∈ X such that f(x0) = y0

then clearly πn(Y, y0)
g∗−→ πn(Z, g(y0)) is an isomorphism. If y0 is not in the

image of f , by the assumption that f induces a bijection on path compo-

nents there exists some x0 such that f(x0) is in the same path component

as y0. So there is a path p : I → Y such that p(0) = f(x0) and p(1) = y0,

as g is continuous gp : I → Z is a path from g(f(x0)) to g(y0). By change

of basepoint isomorphisms βp and βgp (see [2] Proposition 1.5) there is a

commutative diagram as follows.

πn(Y, y0) πn(Z, g(y0))

πn(Y, f(x0)) πn(Z, g(f(x0)))

βp

g∗

βgp

g∗

As the other three morphisms are isomorphisms so is the top one. Hence

W has the two out of three property.

(ii) Given a space X0 in T the pushout of a boundary inclusion Sn−1 ↪→ Dn

along a morphism φ : Sn−1 → X0 glues an n-cell to X0 along the attaching

map φ. So if X : N → T is an N-sequence in I ′-cell then (Xn+1, Xn) is

a relative CW complex for all n ∈ N. In particular colimnXn =
⋃
nXn.

Given a morphism f : Sm → colimnXn, as Sm is compact the image f(Sm)

intersects the interior of at most finitely many cells so there exists j ∈ N
such that f factors through Xj by Sm

f−→ Xj ↪→ colimnXn. So the canonical

morphism colim
n

(T (Sm, Xn)) → T (Sm, colim
n

Xn) is a bijection of sets for

all m ∈ N. Hence the domains of the I ′ morphisms are sequentially small

relative to I ′-cell.

(iii) Given a space X0 in T the pushout of an inclusion Dn ↪→ Dn×I, x 7→ (x, 0)

along a morphism φ : Dn → X0 glues the finite CW complex Dn × I along

an n-disk. So if X : N → T is a N-sequence in J-cell then (Xn+1, Xn) is

a relative CW complex for all n ∈ N. In particular colimnXn =
⋃
nXn.

Given a morphism f : Dm → colimnXn, as Dm is compact the image

f(Dm) intersects the interior of at most finitely many cells so there exists

j ∈ N such that f factors through Xj by Dm f−→ Xj ↪→ colimnXn. So the

canonical morphism colim
n

(T (Dm, Xn))→ T (Dm, colim
n

Xn) is a bijection of

sets for all m ∈ N. Hence the domains of the J morphisms are sequentially

small relative to J-cell.
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(iv) Morphisms in J-cell are transfinite compositions of inclusion maps Xn ↪→
Xn+1 where (Xn+1, Xn) is a relative CW complex for all n. In particular

Xn+1 is always Xn with a finite CW complex Dm × I attached along some

m-disk, so Xn is a deformation retract of Xn+1. So if f : X → Y is in J-cell

then f is a homotopy equivalence, hence f ∈ W .

Let f : X → Y be a morphism in J-cell. Then f is some transfinite

composition of pushouts of morphisms of the form Dn ↪→ Dn×I, x 7→ (x, 0).

As per (iii) a pushout of such a morphism along some Dn → X is a gluing

of a finite CW complex Dn×I to X. In particular Dn×I has 9 cells and so

a pushout of a J morphism is a composition of pushouts of I ′ morphisms.

Hence f is a transfinite composition of pushouts of I ′ morphisms. Hence

J-cell ⊆ I ′-cell ⊆ ((I ′) ).

(v) Let p : X → Y be a morphism with the right lifting property with respect

to I ′ morphisms. Let i : Dn → Dn × I be a J morphism, and let j and k

be morphisms such that pj = ki. As mentioned above, Dn × I is obtained

from Dn by attaching finitely many cells. So a J morphism is a finite

composition of morphisms Dn ϕ1−→ C1 → . . . → Cm−1
ϕm−−→ Cm = Dn × I

where each ϕk is a pushout of an I ′ morphism. As I ′ morphisms have the

left lifting property with respect to p, by Proposition 3.5 so does each ϕk.

We have a morphism j : Dn → X such that there exists a lift making the

following diagram commute.

Dn X

C1 Dn × I Y

j

ϕ1 p
ψ1

k

Given a morphism ψk−1 : Ck−1 → X such that the outside of the following

diagram commutes, there exists a lift ψk : Ck → X such that the whole

diagram commutes.

Ck−1 X

Ck Dn × I Y

ψk−1

ϕk p
ψk

k

Hence a finite induction gives us a lift ψ = ψm such that the following

diagram commutes. Hence p has the right lifting property with respect to

the J morphisms.
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Dn X

Dn × I Y

i

j

p

k

ψ

Consider the homomorphism p∗ : πn(X, x0) → πn(Y, p(x0)) of homotopy

group induced by p for some n ∈ N. Suppose that p∗([f ]) = 0 for some

f : Sn → X. As p has the right lifting property with respect to I ′ morphisms

there is a lift such that the following diagram commutes.

Sn X

Dn+1 Y

f

p

So f is null-homotopic. Thus, [f ] = 0 so p∗ is injective. The n sphere Sn is

a CW complex, in particular it can be constructed from the empty space by

attached finitely many cells. So the morphism ∅ → Sn has the left lifting

property with respect to I . So given a morphism g : Sn → Y there exists

a lift such that the following diagram commutes.

∅ X

Sn Y

p

g

So p∗ is surjective. Hence p is a weak equivalence.

(vi) Let p : X → Y be a morphism in W ∩ J . For n ∈ N suppose there exist

morphisms j and k such that the following diagram commutes.

Sn−1 X

Dn Y

j

i p

k

As p is a weak equivalence the induced morphism p∗ : πn−1(X, x0) →
πn−1(Y, p(x0)) is an isomorphism. The composition ki is null-homotopic,

so by the isomorphism [j] = 0 in πn−1(X, x0). Hence j extends to a mor-

phism f : Dn → X. We can glue two copies of Dn together to get Sn as

the pushout of i along itself. This gives us a morphism g : Sn → Y from

the following commutative diagram.
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Sn−1 Dn
+ X

Dn
− Sn

Y

i

i

f

p

g

∃!g

Here the subscripts on the copies of Dn are to distinguish them. As p∗ :

πn(X, x0) → πn(Y, p(x0)) is an isomorphism there exists a lift f̃ : Sn → X

in the above diagram together with a homotopy H : Sn × I → Y between

pf̃ and g. We can choose H so that H|Dn+×{t} = f for all t ∈ I. With the

morphisms constructed we have the following commutative diagram.

(Sn × {0}) ∪ (Dn
+ × I) X

Sn × I Y

f̃∪(f×I)

p

H

The right hand morphism is a relative J-cell complex. As p is in J there

exists a lift H̃ : Sn × I → X in the above diagram. Put h̃ = H̃|Sn×{1} :

Sn → X. Then h̃|Dn+ = f and ph̃|Dn− = g|Dn− = g. So h̃|Dn− is a lift in the

original diagram. Hence p is in I .

For a proof of the following proposition see Proposition 1.1.8 on page 5 of [5].

Proposition 4.23. Let M be a model category. There is a model structure on

M+ where a morphism f is a weak equivalence (cofibration, fibration) if and

only if Uf is a a weak equivalence (cofibration, fibration) in M, where U is the

forgetful functor (see Defintion 1.20).

Corollary 4.24. The category T+ of compactly generated, weak Hausdorff, based

topological spaces is a cofibrantly generated model category where the weak equiva-

lences are those determined be the previous theorem and lemma and the generating

cofibrations, I ′+, and generating acyclic cofibrations, J+, are the based analogues

of the I ′ and J morphisms from the previous theorem.

The n-dimensional simplex in T is

∆n
T = {(x1, . . . , xn+1) ∈ Rn+1 |

n+1∑
i=1

= 1, xi ≥ 0 for all i}.
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There is an adjoint pair of functors | · | : sSet� T : S•. The functor | · | is called

geometric realisation. The geometric realisation |X| of a simplicial set X is

a topological space with one n-dimensional simplex for each n simplex with the

jth (n− 1)-dimensional face

{(x1, . . . , xn+1) ∈ Rn+1 |
n+1∑
i=1

xi = 1, xi ≥ 0 for all i, xj = 0}

of an n-dimensional simplex being identified with the (n − 1)-dimensional sim-

plex corresponding to by the (n − 1) simplex mapped to under the jth face

morphism. For the representables in sSet we define |∆n| = ∆n
T . Now we can

explicitly define |X| for some simplicial set X, treating Xn as a topological space

by giving it the discrete topology we have |X| =
∐

n(|∆n| × Xn)/ ∼ where

(f(σ), x) ∼ (σ, f(x)) for all f ∈ ∆([k], [n]). The functor S• : T → sSet is

called singular complex. Given a topological space X in T it produces a sim-

plicial set S•(X) whose n-simplices are continuous morphisms ∆n
T → X. The

jth face morphism dj : S•(X)n → S•(X)n−1 is given by precomposition with

the “inclusion” |∆n−1| ↪→ |∆n|, (x1, . . . , xn+1) 7→ (x1, . . . , xj−1, 0, xj, . . . , xn) so

that dj : (|∆n| f−→ X) 7→ (|∆n−1| ↪→ |∆n| f−→ X). Similarly the jth degener-

acy morphism sj : S•(X)n → S•(X)n+1 is given by precomposition with the

map |∆n+1| → |∆n|, (x1, . . . , xn+2) 7→ (x1, . . . , xj−1, xj + xj+1, xj+2, . . . , xn+2). So

sj : (|∆n| f−→ X) 7→ (|∆n+1| ↪→ |∆n| f−→ X). It is straightforward to check that

these morphisms satisfy the simplicial relations.

Proposition 4.25. Geometric realisation and singular complex are an adjoint

pair of functors | · | : sSet� T : S•.

Proof. Let X be an object of sSet and let Y be an object of T . Let f : X →
S•(Y ) be a morphism in sSet. Given (t, x) ∈ |∆n| ×Xn define f̂(t, x) = f(x)(t)

which is a morphism |X| → Y . Conversely, let g : |X| → Y be a morphism in T .

Given x ∈ Xn we define g(x)(t) = g(t, x) for t ∈ |∆n|. These are clearly inverse

constructions which are natural in X and Y .

The adjunction described above is a Quillen equivalence with respect to the fol-

lowing cofibrantly generated model structure on sSet. A proof that this is a

model category can be found at Theorem 3.6.5 in [5].

Theorem 4.26. The category sSet of simplicial sets is a cofibrantly generated

model structure where the generating cofibrations are the set of boundary inclu-

sions I = {∂∆n → ∆n}n∈N, the generating acyclic cofibrations are the set of horn
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inclusions J = {Λn
i → ∆n}n∈N,0≤i≤n, and the class of weak equivalences W con-

sists of those morphisms f : X → Y whose geometric realisation, |f | : |X| → |Y |
is a weak equivalence in T .

The following lemma is due to Reedy.

Lemma 4.27. LetM be a model category. If there exists a commutative diagram

A B

A′ B′

C D

C ′ D′

b

s

a
e

f

b′

e′
d

c g

d′

t

such that the front and back squares are pushouts, f is a cofibration, and the

morphism φ : A′ qA C → C ′ induced by the left square is a cofibration, then g is

a cofibration.

Proof. Let p : X → Y be an acyclic fibration inM. Given a commutative square

D X

D′ Y

g

j

p

k

there exists a lift ϕ in the following commutative diagram as f is a cofibration

and so has the left lifting property with respect to p.

B X

B′ Y

f

je

p

ke′

ϕ

Noting that jds = jeb = ϕfb = ϕb′a, the morphisms jd : C → X and ϕb′ : A′ →
X induce a morphism σ : A′ qA C → X. As φ : A′ qA C → C ′ is a cofibration

the lift ψ exists in the following commutative diagram.

A′ qA C X

C ′ Y

φ

σ

p

kd′

ψ
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As the front square in the original diagram is a pushout and ψt = ψφιA′ = ϕb′

where ιA′ is the pushout of s along a, the morphisms ψ and ϕ induce a morphism

h : D′ → X. We have hge = he′f = ϕf = je and hgd = hd′c = ψc = ψφιC =

σιC = jd where ιC is the pushout of a along s. As the back square in the original

diagram is a pushout this tells that hg = j. Further we have that kd′ = pψ = phd′

and ke′ = pϕ = phe′, as the back square of the original diagram is a pushout this

tells us that ph = k. Hence the following diagram commutes.

D X

D′ Y

g

j

ph

k

As p was an arbitrary acyclic fibration g has the left lifting property with respect

to any acyclic fibration. Hence g is a cofibration.
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Chapter 5

Spectra

In the category of based topological spaces the suspension functor Σ is not invert-

ible. Spectra were introduced to rectify this deficiency. Throughout this chapter

T+ will be the category of compactly generated, weak Hausdorff, based topolog-

ical spaces with the cofibrantly generated model structure defined in Corollary

4.24. In general, we leave the basepoint of objects in T+ implicit.

Definition 5.1. The suspension functor Σ : T+ → T+ is the functor taking

a space X in T+ to its based suspension ΣX = S1 ∧ X = (S1 × X)/(S1 ∨ X).

The loop space functor Ω : T+ → T+ is the functor taking X to Map(S1, X)

which is the set of basepoint preserving, continuous functions S1 → X with the

compact-open topology on it.

Proposition 5.2. The suspension and loop space functors are adjoints.

Proof. If f ∈ T+(X,ΩY ) then f is a continuous morphism X → Map(S1, Y ).

Such a morphism is continuous if and only if (see [10], page 6) the composition

X × S1
f×1S1−−−→ Map(S1, Y ) × S1 ev−→ Y where ev(g, s) = g(s) is continuous. As

the spaces are based, f(X ∨ S1) = y0 where y0 is the basepoint in Y . That is,

precisely a continuous morphism (S1 × X)/(S1 ∨ X) = ΣX → Y . This gives a

bijection T+(ΣX, Y ) ∼= T+(X,ΩY ) which is natural in X and Y .

Definition 5.3. A topological category is a category D which is enriched over

the category of (unbased) compactly generated, weakly Hausdorff topological

spaces, T . That is, for any objects d and e in D the set of morphisms D(d, e) is

an object of T .

Remark 5.4. The above definition is incomplete as we have left out some co-

herence conditions involving the monoidal structure on T , as we do not make

explicit use of them.

45
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Definition 5.5. Given a small topological symmetric monoidal categoryD (Defin-

tion 1.22) a D-space is an object continuous (limit preserving) functor D → T+.

As D and T are both enriched over T , for an object X in DT we have that the

induced morphism Map(A,B)→ Map(XA,XB) for all A,B ∈ obj(D). We write

DT+ for the full subcategory of T D+ whose objects are D-spaces. This category is

bicomplete with (co)limits constructed level-wise.

We can generalise the adjoint pair evn a (−)• from Definition 2.5. Let d ∈
obj(D), then the dth evaluation functor is evd : DT+ → T+ which sends

objects X : D → T+ to Xd and morphisms f : X → Y in DT+ which is a natural

transformation to the component fd : Xd → Yd. The dth shift desuspension

functor is Fd : T+ → DT+ which sends objects e to D(d, e)+∧X and morphisms

ϕ : e → f in D to D(d, e)+ ∧ X
ϕ∗∧1X−−−−→ D(d, f)+ ∧ X where the + is a disjoint

basepoint attached to make it a based space. If D(d, e) has the discrete topology

for all objects d and e in D then (FdX)e = D(d, e)+ ∧ X =
∨
σ∈D(d,e) X which

is a copy of X for each map d → e in D attached at the basepoint. Then for

a morphism ϕ : e → f we have Fd(ϕ) :
∨
σ∈D(d,e) X →

∨
σ∈D(d,f) X sending

the copy of X corresponding to σ ∈ D(d, e) to the copy of X corresponding to

ϕσ ∈ D(d, f).

Proposition 5.6. For all d ∈ obj(D) the dth shift desuspension functor and the

dth evaluation functor are adjoint, with Fd a evd.

Proof. Let f : FdX → Y be a morphism in DT , that is f is a natural transforma-

tion. So f has components fe : (Fd)e = D(d, e)+∧X → Ye. In particular we have

fd : (FdX)d = D(d, d)+ ∧X → Yd. We can restrict this to 1d to get a morphism

fd|1d+∧X : X → Yd = evd(Y ). By the naturality condition on the components of

f for any object e in D and ϕ ∈ D(d, e) the following diagram commutes.

(FdX)d Yd

(FdX)e Ye

fd

Fd(ϕ) Y ϕ

fe

Hence the components of f are entirely determined by fd|1d+∧X . Given a mor-

phism g : X → Yd = evd(Y ) in T+ we let g̃ : FdX → Y be the morphism in DT
with components g̃e : (FdX)e = D(d, e)+ ∧X → Ye, (σ, x) 7→ (Y σ)(g(x)).

Proposition 5.7. Given a small topological symmetric monoidal category D there

is a cofibrantly generated model structure on DT where the weak equivalences,
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WDT , are the morphisms f : X → Y whose component morphisms fd : Xd → Yd

are weak equivalences in T+ for all d ∈ obj(D), the set of generating cofibrations

is

FI = {Fd(f) | f ∈ I ′+} = {Fd(Sn ↪→ Dn)}d∈obj(D),
n∈N

,

and the set of generating acyclic cofibrations is

FJ = {Fd(f) | f ∈ J+} = {Fd(Dn ↪→ Dn × I, x 7→ (x, 0))}d∈obj(D),
n∈N

.

Proof. We prove this by showing that the conditions of Theorem 4.21 are satisfied.

(i) Let f and g be composable morphisms in DT . If two of f , g, and gf are

weak equivalences then their components are weak equivalences in T+. As

weak equivalences in T+ have the two out of three property the component

of the third morphism are also weak equivalences, so the third is itself a

weak equivalence. Hence the weak equivalences have the two out of three

property.

Let f : A → B be a retract of g : X → Y where g is a weak equivalence

then there exist morphisms in DT making the first diagram commute. It

follows that for each d ∈ obj(D) the d components of these morphisms in

T+ make the second diagram commute.

A X A

B Y B

1A

f g f

1B

Ad Xd Ad

Bd Yd Bd

1Ad

fd gd fd

1Bd

So fd is a retract of gd for all d. Then as T+ is a model category and gd

is a weak equivalence for all d, by the retract axiom, fd is also a weak

equivalence for all d ∈ obj(D). So f is a weak equivalence. Hence the weak

equivalences are closed under retracts.

(ii) The domains of the FI morphisms are small relative to FI-cell because the

domains of the I ′ morphisms are small relative to I ′-cell in T+

(iii) The domains of the FJ morphisms are small relative to FJ-cell because

the domains of the J morphisms are small relative to J-cell in T+
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(iv) Let f : A→ B be a morphism in FJ-cell. Then f is a transfinite composi-

tion of pushouts of FJ morphisms. Let the first of the following diagrams be

such a pushout. Then by the adjunction Fdi a evdi and the fact that colimits

are constructed level-wise in DT the second diagram is also a pushout.

Fdi(D
n) Ai

Fdi(D
n × I) Ai+1

Dn (Ai)di

Dn × I (Ai+1)di

So Ai → Ai+1 is in J-cell in T+. Then as T+ is a cofibrantly generated

model category Ai → Ai+1 is a weak equivalence and is in ((I ′) ). Hence

f is in WDT ∩ (FI ).

(v) Let f : X → Y be a morphism in FI . Then for all objects d inD and n ∈ N
and morphisms j, k such that the outside of the first diagram commutes the

dashed lift exists. Then by the adjunction Fd a evd the dashed lift also

exists in the second diagram.

Fd(S
n) X

Fd(D
n) Y

j

f

k

Sn Xd

Dn Yd

jd

fd

kd

So fd is in (I ′) in T+. Then as T+ is a cofibrantly generated model category

fd is a weak equivalence and is in J . Hence f is in WDT ∩ FJ .

(vi) Let p : X → Y be a morphism in WDT ∩ FJ . Then for all n ∈ N, objects

d in D, and morphisms j and k such that the outside of the first diagram

commutes, the dashed lift exists. Then by the adjunction Fd a evd the

dashed lift also exists in the second diagram.

Fd(D
n) X

Fd(D
n × I) Y

j

p

k

Dn Xd

Dn × I Yd

jd

pd

kd

Hence pd is in J . As p is a weak equivalence, so is pd. Hence as T+ is a

cofibrantly generated model category pd is in (I ′) . Hence p is in FI .
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Recall that T+ is a closed, symmetric monoidal category (Example 1.24). We

would like to use the monoidal product on T+ (the smash product) to define

a monoidal product on D-spaces. The obvious thing to do would be to define

the level-wise smash product X Z Y of two D-spaces by (X Z Y )e = Xe ∧ Ye.
Unfortunately (X Z Y ) : D × D → T+ may not be a D-space. Instead let � be

the monoidal product in D and let X ∧ Y be the left Kan extension of X Z Y

along �. This gives us the following definition.

Definition 5.8. Let D be a small symmetric monoidal category with monoidal

product �. Let X and Y be D-spaces, then the internal smash product

X ∧ Y is a D-space with (X ∧ Y )d = colim
(σ:e�f→d)∈(�↓d)

(Xe ∧ Yf ). Alternatively, this can

be written as the coend

(X ∧ Y )d =

∫ (e,f)∈D×D
D(e� f, d)+ ∧ (Xe ∧ Yf )

= coeq

 ∐
(σ:(e,f)→(e′,f ′))

∈D×D

(D(e� f, d)+ ∧ (Xe′ ∧ Yf ′))⇒
∐

(e,f)∈obj(D×D)

(D(e� f, d)+ ∧ (Xe ∧ Yf ))

 .

If D is a topological category where the morphism sets between objects are given

the discrete topology this becomes

(X ∧ Y )d =

coeq

 ∨
(σ:(e,f)→(e′,f ′))

∈D×D

 ∨
ψ∈D(e�f,d)

(Xe′ ∧ Yf ′)

⇒ ∨
(e,f)∈obj(D×D)

 ∨
ψ∈D(e�f,d)

(Xe ∧ Yf )


 .

That is, the coequaliser of the morphisms induced by the following families of

morphisms. ∨
ψ∈D(e�f,d)

(Xe′ ∧ Yf ′)
ω−→

∨
ψ∈D(e′�f ′,d)

(Xe′ ∧ Yf ′)
χ(e′,f′)−−−−−→

∨
(e′′,f ′′)∈obj(D×D)

 ∨
ψ∈D(e′′�f ′′,d)

(Xe′′ ∧ Yf ′′)


(σ:(e′,f ′)→(e,f))∈D×D

and ∨
ψ∈D(e�f,d)

(Xe′ ∧ Yf ′)
ξ−→

∨
ψ∈D(e�f,d)

(Xe ∧ Yf )
χ(e,f)−−−−→

∨
(e′′,f ′′)∈obj(D×D)

 ∨
ψ∈D(e′′�f ′′,d)

(Xe′′ ∧ Yf ′′)


(σ:(e′,f ′)→(e,f))∈D×D

Here ω is the morphism sending the copy of Xe′∧Yf ′ corresponding to ψ : e�f →
d to the copy of Xe′ ∧ Yf ′ corresponding to ψσ : e′ � f ′ → d (along the identity)

and, ξ sends the copy of Xe′ ∧ Yf ′ corresponding to ψ to the copy of Xe ∧ Yf
corresponding to ψ along the map Xσ1∧Y σ2 where σ = (σ1 : e′ → e, σ2 : f ′ → f).

The morphisms χ(e′,f ′) and χ(e,f) are the colimit injection morphisms.
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With this internal smash product DT is a closed symmetric monoidal category.

See [7] page 506 for a full proof of the following theorem and for the definition of

the internal hom.

Theorem 5.9. Let D be a small symmetric monoidal category with identity object

u. Then the category of D-spaces is a closed symmetric monoidal category where

the monoidal product is the internal smash product defined above, and the identity

object is FuS
0.

Definition 5.10. A D-spectrum is a D-space which is an S-module where S is

the “obvious” sphere functor for the choice of D. That is, a D-space X together

with a morphism S ∧X → X. We denote the category of D-spectra by SpD.

Remark 5.11. This can be generalised to D-spectra over R where R is any

monoid in DT . See [7] page 449 for details.

We will now describe some important examples of D-spectra.

Definition 5.12. Let N be the category whose objects are the natural numbers,

N, and whose only morphisms are identity morphisms. This is a small topological

symmetric monoidal category where the monoidal product is addition, and the

identity object is 0. The morphism spaces are all either the empty space or the

one point space. The sphere functor in this case is S : N → T+, n 7→ Sn. We

call N -spectra prespectra. For an N -space X to be a prespectrum we require

a morphism α : S ∧X → X. First consider the domain of αn, as there are only

identity morphisms in N for n ∈ N we have

(S∧X)n = colim
σ:e+f→n∈(+↓n)

Se∧Xf = (Sn∧X0)∨(Sn−1∧X1)∨. . .∨(S1∧Xn−1)∨(S0∧Xn).

Hence the nth component of α is given by morphisms Sp ∧ Xn−p → Xn for all

0 ≤ p ≤ n. Thus, equivalently a prespectrum is a sequence of spaces {Xn}n∈N in

T+ together with morphisms Sm ∧Xn → Xm+n for all n,m ∈ N.

Definition 5.13. Let Σ be the category whose objects are the sets [n] = {1, . . . , n}
for all n ∈ N and whose morphisms are permutations of [n] for each n ∈ N, that

is Σ([n], [n]) is the symmetric group on n letters, Σn. This also means there

are only morphisms [n] → [m] in Σ if n = m. This is a small topological

symmetric monoidal category where the monoidal product is addition, that is

[n] + [m] = [n + m], and the identity object is [0] which is the empty set. The

morphism sets are given the discrete topology. The sphere functor in this case is
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S : N → T+, n 7→ Sn ∼= S1 ∧ . . . ∧ S1 where the image of σ ∈ Σ([n], [n]) under S
permutes the smash factors of Sn. We call Σ-spectra symmetric spectra. For a

σ-space to be a symmetric spectrum we require the a morphism α : S ∧X → X.

First consider the domain of αn, we have

(S ∧X)n =

∫ (i,j)∈Σ×Σ

D(i+ j, n)+ ∧ (Si ∧Xj)

= coeq

 ∨
(σ:(i,j)→(i′,j′))

∈Σ×Σ

 ∨
ψ∈D(i+j,n)

(Si
′ ∧Xj′)

⇒ ∨
(i,j)∈obj(Σ×Σ)

 ∨
ψ∈D(i+j,n)

(Si ∧Xj)


 .

Since there are only morphisms i + j → n if i + j = n, and morphisms i′ → i

and j′ → j if i′ = i and j′ = j this is the coequaliser of the parallel morphisms

induced by the following families of morphisms.{ ∨
ψ∈Σn

(Si ∧Xn−i)
ω−→
∨
ψ∈Σn

(Si ∧Xn−i)→
n∨

i′=0

( ∨
ψ∈Σn

(Si
′ ∧Xn−i′)

)}
(σ1,σ2)∈Σi×Σn−i

0≤i≤n

and{ ∨
ψ∈Σn

(Si ∧Xn−i)
ξ−→
∨
ψ∈Σn

(Si ∧Xn−i)→
n∨

i′=0

( ∨
ψ∈Σn

(Si
′ ∧Xn−i′)

)}
(σ1,σ2)∈Σi×Σn−i

0≤i≤n

Here ω takes the copy of Si ∧ Xn−i corresponding the φ : [n] → [n] to the

copy corresponding to φ(σ1 + σ2) and the second takes the copy of Si ∧ Xn−i

corresponding to φ to the same copy by the morphism Si∧Xn−i
Sσ1∧Xσ2−−−−−→ Si∧Xn−i.

In the first case we are implicitly thinking about Σi × Σn−i as a subgroup of Σn

where the first component acts on the first i letters and the second acts on the last

n− i letters. So a morphism (S ∧X)n is equivalent to a (Σi ∧ Σn−i)-equivariant

morphism Si ∧ Xn−i → Xn for each 0 ≤ i ≤ n. So a symmetric spectra is a

sequence of spaces {Xn}n∈N in T+ together with (Σi∧Σn−i)-equivariant morphisms

Si ∧Xn−i → Xn for all n ∈ N and 0 ≤ i ≤ n.

Definition 5.14. Let I be the category whose objects are finite dimensional real

inner product spaces and whose morphisms are linear isometric isomorphisms.

This means there are only morphisms V → W if dim(V ) = dim(W ) = n for

some n ∈ N. When this is the case, I (V,W ) is homeomorphic to the orthogonal

group On. This is a small topological symmetric monoidal category where the

monoidal product is direct sum, and the identity object is the 0-dimensional
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space. The sphere functor in this case is S : I → T+, V 7→ SV where SV is the

1 point compactification of V where S takes a morphism V → W to the obvious

morphism SV → SW . We call I -spectra orthogonal spectra.

Definition 5.15. Restricting the evaluation functors from Definition 5.5 to D-

spectra gives a functor evd : SpD → T+, X → Xd this is the dth evaluation

functor on D-spectra. These evaluation functors have left adjoints Fd : T+ →
SpD which we will call the dth shift desuspension functor to D-spectra. We

will describe these functors for D = N and D = Σ.

For D = N the ith evaluation functor Fi : T+ → SpN takes a space X in T+ to

the presectra with

(FiX)j =

Sj−i ∧X for j ≥ i

{∗} for j < i

For D = Σ the ith evaluation functor Fi : T+ → SpN takes a space X in T+ to

the symmetric spectra with

(FiX)j =

Σj+ ∧Σj−i (Sj−i ∧X) for j ≥ i

{∗} for j < i

Theorem 5.16. Let D be one of N , Σ, or I . There is a level model struc-

ture on the category of D-spectra, where f : X → Y is a level weak equivalence

(fibration) if it is a level weak equivalence (fibration) of D-spaces, and f is a

q-cofibration if it has the left lifting property with respect to all level acyclic fibra-

tions.

Freudanthal’s suspension theorem (see [2] chapter 4 section 2) states that if X

is an (n − 1)-connected CW complex then the suspension map on homotopy

groups πi(X) → πi+1(ΣX) is a surjection for i = 2n − 1 and is an isomorphism

for i < 2n − 1. It follows that for each k ∈ N there exists N ∈ N such that

colimn πq+n(ΣnX) ∼= πq+n(ΣnX). This leads to the study of stable homotopy

theory. To study stable homotopy we want the weak equivalences to include

those morphisms which induce an isomorphism on stable homotopy groups. Un-

fortunately there are morphisms which do this which are not weak equivalences in

our level model structure. To rectify this we add more weak equivalences, a pro-

cess called localisation. However, changing just one of the classes of morphisms

in a model structure will prevent the lifting axiom from being satisfied. So we fix
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one of the other classes and change the third to be the class determined by the

fixed class and the new class of weak equivalences. In the case of spectra we fix

the cofibrations. As there are acyclic cofibrations the new class of fibrations is

contained in the previous class.

Definition 5.17. The qth homotopy group of a prespectrum X is defined to

be

πq(X) = colim
n

(πq+n(Xn)).

Where πi(Xn) is the ith homotopy group of Xn as a based topological space. A

morphism of prespectra f : X → Y is a natural transformation with components

fj : Xj → Yj for all j ∈ N which, for each k ∈ N, induces a group homomorphism

πk(Xj) → πk(Yj). Hence f induces a group homomorphism πn(X) → πn(Y ) for

all n ∈ N. We say that a morphism of prespectra is a π∗-isomorphism if it

induces an isomorphism πn(X)
∼=−→ πn(Y ) for all n ∈ N.

Definition 5.18. Let X be a prespectrum with structure morphisms σn : S1 ∧
Xn = ΣX → Xn+1 for all n ∈ N. As the suspension and loop space functors are

adjoint (Proposition 5.2) these morphisms have adjoints σ̃n : Xn → ΩXn+1. We

call X an Ω-spectrum if σ̃n is a weak equivalence in T+ for all n ∈ N.

Definition 5.19. There are inclusion functors between our D categories, N →
Σ, n 7→ n and Σ → I , n 7→ Rn. Their composition N → I is also an inclusion

functor. For ι : A → B such an inclusion we define the forgetful functor to be

U : BT → AT with (UX)a = X(ι(a)) for a ∈ obj(A). These forgetful functors

have right adjoints P : AT → BT called prolongation functors. For X an

A-space PX is the left Kan extension of X along ι. In particular, for a ∈ obj(A)

we have

(PX)b = colim
(ιa→b)∈(ι↓b)

Xa =

∫ a∈A
B(ιa, b) ∧Xa

Definition 5.20. Let D be either Σ or I and let [X, Y ] denote the set of mor-

phisms X → Y in the homotopy category HoD for any D-spectra X and Y . We

define the following:

(i) A D-spectra E is a D-Ω-spectrum if UE is an Ω-specturm.

(ii) A morphism of D-spectra f : X → Y is a π∗-isomorphism if Uf is a

π∗-isomorphism.

(iii) A morphism of D-spectra f : X → Y is a stable equivalence if f ∗ :

[Y,E]→ [X,E] is a bijection for all D-Ω-spectra, E.
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For details of the proof of the following theorem see page 471 of [7].

Theorem 5.21. Let D be one of N , Σ, or I . There is a stable model struc-

ture on the category of D-spectra, where the weak equivalences are the stable

equivalences, the cofibrations are the q-cofibrations, and the fibrations (called q-

fibrations) are morphisms with the right lifting property with respect to the acyclic

q-cofibrations.

Theorem 5.22. Let U a P be an adjoint pair of forgetful and prolongation func-

tors as defined above. Then (U,P, ϕ) is a Quillen equivalence.

This theorem shows that the homotopy categories of the D-spectra are equivalent

for the choices of D we have described above. This is an important result because

in [6] the author describes a collection of axioms that one might want a category of

spectra to satisfy then demonstrates that it is not possible to satisfy all of them

at the same time. The existence of Quillen equivalences between the different

categories of spectra allows one to choose the most convenient for the current

task.
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Reedy Model Categories

In [4] Hirschhorn and Volić characterise the Reedy functors C → D for which

the induced functor MD →MC is a left or right Quillen functor (for the Reedy

model structure) for all model categories M. Their paper characterises the case

for right Quillen functors and then establishes the characterisation for left Quillen

functors by discussing opposite categories. Here we establish the characterisation

for left Quillen functors by dualising the the argument presented in [4] for right

Quillen functors.

A Reedy category is a category that admits an assignation of degree to each

object and a unique factorisation of any morphism into a morphism decreasing

degree followed by a morphism increasing degree.

Definition 6.1. A Reedy category is a small category C in which each object

can be assigned a non-negative integer (its degree) together with subcategories
←−
C and

−→
C , each containing all the objects of C and satisfying the following axioms;

1. The target of every non-identity map in
←−
C is of strictly lower degree than

the source.

2. The target of every non-identity map in
−→
C is of strictly higher degree than

the source.

3. Every map g in C has a unique factorisation g = −→g←−g where −→g is in
−→
C and

←−g is in
←−
C .

The subcategories
←−
C and

−→
C are called the inverse subcategory and direct

subcategory respectively.

Examples 6.2. (i) Let X be a finite poset. We can consider the category X
whose objects are elements of X such that X (x, y) = {∗} if x � y and

55
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X (x, y) = ∅ otherwise. If x ∈ X is a minimal element let deg(x) = 0.

Otherwise there is some set of minimal elements Mx = {m ∈ X |X (m,x) =

{∗}}, let deg(x) be the largest n ∈ N such that there is a sequence m
f1−→

a1 → . . .→ an−1
fn−→ x in X for some m ∈Mx. Then X is a Reedy category

where
←−
X includes only identity morphisms,

−→
X = X , and the factorisation

is given by
−→
f = f and

←−
f is the identity of the source of f . This naturally

extends to any countable poset with a unique minimal element such as N.

(ii) Reedy categories are a generalisation of the ∆ category (Definition 2.1). In

particular, ∆ is a Reedy category with deg([n]) = n, the direct subcategory

contains the injective morphisms, the inverse subcategory contains the sur-

jective morphisms, and the factorisation of a morphism is the one described

in Proposition 2.3.

(iii) The category consisting of a parallel pair of morphisms · ⇒ · is a Reedy

category where both non-identity arrows strictly raise degree.

(iv) Given a Reedy category R, the opposite category Rop is a Reedy category

with the same degree assignation on objects,
−−→
Rop = (

←−
R)op,

←−−
Rop = (

−→
R)op,

and the factorisation given by f op = (
←−
f )op(

−→
f )op.

(v) Given two Reedy categories R and P , the product category R × P is a

Reedy category with deg(r, p) = deg(r)+deg(p),
−−−−→
R×P =

−→
R×
−→
P ,
←−−−−
R×P =

←−
R×
←−
P , and the factorisation of (f, g) given by

−−−→
(f, g) = (

−→
f ,−→g ) and

←−−−
(f, g) =

(
←−
f ,←−g ).

Given two Reedy categories we can consider functors between them which pre-

serve the Reedy structure.

Definition 6.3. Let C,D be Reedy categories. A Reedy functor is a functor

G : C → D such that F (
←−
C ) is a subcategory of

←−
D and F (

−→
C ) is a subcategory of

−→
D . That is, objects and morphisms in the inverse and direct subcategories of C
are sent to objects and morphisms in the inverse and direct subcategories of D
respectively.

Definition 6.4. Let C be a Reedy category,M be a model category, f : X → Y

be a natural transformation between functors X, Y : C →M, and α ∈ obj (C).

(i) The latching category, ∂(
−→
C ↓ α) of C at α is the full subcategory of

(
−→
C ↓ α) containing all the objects except the identity map at α. Recalling
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Definition 1.2 and Notation 1.4, the objects of the latching category of C at

α are pairs (β, f) where β is an object of
−→
C and f : β → α is a morphism

in
−→
C , and the morphisms (β, f)→ (β′, f ′) are morphisms τ : β → β′ in

−→
C

such that the following diagram commutes.

β β′

α

τ

f f ′

(ii) The latching object of X at α is

LαX = colim
∂(
−→
C ↓α)

X

As written this is not well defined because ∂(
−→
C ↓ α) is not a subcategory of

C. By an abuse of notation we will identify ∂(
−→
C ↓ α) with the subcategory

of C in the image of the functor ∂(
−→
C ↓ α) → C taking objects (β, f) to β

and morphisms τ : β → β′ to themselves.

(iii) The latching map of X at α is the natural morphism

LαX → Xα

(iv) The relative latching map of f : X → Y at α is the natural morphism

Xα qLαX LαY → Yα

(v) The matching category, ∂(α ↓
←−
C ) of C at α is the full subcategory of

(α ↓
←−
C ) containing all the objects except the identity map at α.

(vi) The matching object of X at α is

MαX = lim
∂(α↓

←−
C )

X

(vii) The matching map of X at α is the natural morphism

Xα →MαX

(viii) The relative matching map of f : X → Y at α is the natural morphism

Xα →MαX ×MαY Yα
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If C is the category ∆op then for a ∆op-diagram, X, in M∆op
(that is for a sim-

plicial object in M) the latching object at [n] ∈ obj (∆op) is LαX = (skn−1X)n.

Given a Reedy category C and a model category M the functor category MC is

a model category.

Theorem 6.5. The diagram category MC has a model structure on it, where a

morphism f : X → Y is

• a weak equivalence if for all α ∈ obj (C) the component fα : Xα → Yα is a

weak equivalence in M

• a cofibration if for all α ∈ obj (C) the relative latching map XαqLαXLαY →
Yα is a cofibration in M

• a fibration if for all α ∈ obj (C) the relative matching map Xα →MαX×MαY

Yα is a fibration in M.

Proof. This result is due to Daniel Kan. See [3], Theorem 15.3.4.

Given a Reedy functor G : C → D we can consider factorisations of morphisms

in
←−
D whose source is in the image of G where the first morphism is in G(

←−
C ).

Definition 6.6. Let G : C → D be a Reedy functor, α ∈ obj (C), β ∈ obj (D),

and σ : Gα→ β be in
←−
D . The category of inverse C-factorizations of (α, σ),

denoted Fact←−C (α, σ), is the category where

• objects are pairs ((ν : α→ γ) , (µ : Gγ → β)) where ν is a non-identity map

in
←−
C and µ is in

←−
D such that the following diagram commutes

Gα Gγ

β

σ

Gν

µ
.

• morphisms between pairs

((ν : α→ γ) , (µ : Gγ → β))→ ((ν ′ : α→ γ′) , (µ′ : Gγ′ → β))

are maps τ : γ → γ′ in
←−
C such that the following diagrams commute

α

γ γ′

ν ν′

τ

Gγ Gγ′

β

µ

Gτ

µ′
.
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Similarly we can define the category of direct C-factorizations.

Definition 6.7. Let G : C → D be a Reedy functor, α ∈ obj (C), β ∈ obj (D),

and σ : β → Gα be in
−→
D . The category of direct C-factorizations of (α, σ),

denoted Fact−→C (α, σ), is the category where

• objects are pairs ((ν : γ → α) , (µ : β → Gγ)) where ν is a non-identity map

in
−→
C and µ is in

−→
D such that the following diagram commutes

β Gγ

Gα

σ

µ

Gν
.

• morphisms between pairs

((ν : γ → α) , (µ : β → Gγ))→ ((ν ′ : γ′ → α) , (µ′ : β → Gγ′))

are maps τ : γ → γ′ in
−→
C such that the following diagrams commute

α

γ γ′

ν

τ

ν′
Gγ Gγ′

β

Gτ

µ µ′
.

Remark 6.8. A Reedy functor induces a functor for each object in the source

category from its latching category to the under category of its image in the direct

subcategory. That is, let G : C → D be a Reedy functor, and let α ∈ obj (C)
then G induces a functor G∗ : ∂(

−→
C ↓ α) → (

−→
D ↓ Gα) which takes γ → α to

Gγ → Gα.

Proposition 6.9. Let G and α be as above, let β ∈ obj (D), and let σ : β → Gα

be a morphism in
−→
D . Then the category of direct C-factorisations, Fact−→C (α, σ)

is the category of the image of objects of the latching category under σ, that is,

(σ ↓ G∗).

Proof. An object in (σ ↓ G∗) is a pair (ν, µ) where ν is an object of ∂(
−→
C ↓ α),

that is a non-identity morphism ν : γ → α in
−→
C and µ is a morphism σ → Gν in

∂(
−→
C ↓ α), that is a morphism µ : β → Gγ in

−→
D such that the following diagram

commutes.

β Gγ

Gα

σ

µ

Gν
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A morphism (ν, µ) → (ν ′, µ′) in (σ ↓ G∗) is a morphism τ : ν → ν ′ in ∂(
−→
C ↓ α)

such that the following diagram commutes.

(β, σ)

G∗(γ, ν) G∗(γ
′, ν ′)

µ µ′

Gτ

That is, a non-identity morphism τ : γ → γ′ in
−→
C such that the following

diagrams commute.

α

γ γ′

ν

τ

ν′
Gγ Gγ′

β

Gτ

µ µ′
.

These are precisely the objects and morphisms of Fact−→C (α, σ).

Remark 6.10. In the case where G takes non-identity morphisms to non-identity

morphisms the induced functor G∗ is from the latching category of α to the

latching category of Gα.

Now we define the class of Reedy functors used in the classification.

Definition 6.11. Let G : C → D be a Reedy functor. It is a cofibring Reedy

functor if for every α ∈ obj (C), for every β ∈ obj (D), and for every map

σ : β → Gα in
−→
D the category of direct C-factorisations, Fact−→C (α, σ) is either

empty or connected. SimilarlyG is a fibring Reedy functor if every α ∈ obj (C),
for every β ∈ obj (D), and for every map σ : Gα→ β in

←−
D the category of inverse

C-factorisations, Fact←−C (α, σ) is either empty or connected.

Definition 6.12. Let G : C → D be a cofibring Reedy functor, let α ∈ obj (C)
with deg(Gα) = k ∈ N. Suppose that G sends non-identity morphisms γ → α

to non-identity morphisms. The nth latching subcategory, An, for −1 ≤ n ≤
k − 1 is the full subcategory of the latching category of Gα containing the both

the objects with source of degree at most n and objects which are in the image

of the induced functor G∗.

Let −1 ≤ n < k − 1, and let σ : β → Gα be an object in An not contained in

An−1. As G is a cofibring Reedy functor the category of direct C-factorisations

of (α, σ) is either connected or empty. Let Sn+1 be the set of such σ for which it

is connected and Tn+1 the set of such σ for which it is empty.
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The (n+ 1)th intermediate latching subcategory, Bn+1, for −1 ≤ n < k− 1

is the full subcategory of the latching category of Gα containing both the objects

of An and the elements of Sn+1.

Remark 6.13. Note that A−1 contains only objects in the image of G∗ but

may contain morphisms between them not in the image. We also have that

Ak−1 = ∂(
−→
D ↓ Gα).

The above definition gives a nested sequence of subcategories of the latching

category of Gα,

A−1 ⊆ B0 ⊆ A0 ⊆ . . . ⊆ Bk−2 ⊆ Ak−2 ⊆ Bk−1 ⊆ Ak−1 = ∂(
−→
D ↓ Gα)

The functor G∗ clearly factors through A−1, we will abuse notation by writing

G∗ : ∂(
−→
C ↓ α)→ A−1.

Proposition 6.14. Let G : C → D be a cofibring Reedy functor, letM be a model

category, let Z ∈ obj(MD), and let α ∈ obj(C) such that G takes non-identity

morphisms γ → α to non-identity morphisms. Then the functor G∗ : ∂(
−→
C ↓

α)→ A−1 is right cofinal (see Definition 1.27) so by Proposition 1.28 induces an

isomorphism

colim
∂(
−→
C ↓α)

G∗Z ∼= colim
A−1

Z.

Proof. Every object in A−1 can be written Gσ : Gβ → Gα for some σ : β → α

in the latching category of α. By Proposition 6.9 (σ ↓ G∗) = Fact−→C (α, σ). As G

is a cofibring Reedy category Fact−→C (α, σ) is either empty or connected. As σ is

a non-identity morphism in
−→
C the pair (σ : β → α, 1Gβ) is in Fact−→C (α, σ) so it

is not empty. Hence G∗ is right cofinal.

Remark 6.15. The sequence of subcategory inclusions induces a sequence of

natural morphisms

colim
∂(
−→
C ↓α)

G∗Z ∼= colim
A−1

Z → colim
B0

Z → colim
A0

Z → . . .

. . .→ colim
Bk−1

Z → colim
Ak−1

Z = colim
∂(
−→
D↓Gα)

Z.

There is a minor error in the proof of the following lemma in [4] which we have

rectified here.

Lemma 6.16. Under the assumptions of Proposition 6.14 the morphisms in the

sequence above of the form colim
An

Z → colim
Bn+1

Z are isomorphisms.
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Proof. Let σ : β → Gα be an object of Bn+1. We will write (σ ↓ An) for the

comma category where An represents the inclusion functor An ↪→ Bn+1. If σ is

an object of An then (σ, 1β) is an initial object in (σ ↓ An) and so (σ ↓ An)

is connected. Otherwise σ ∈ Sn+1, in which case the objects of the category

(σ ↓ An) are pairs (ν ′, µ) where ν ′ : γ′ → Gα is an object of An and µ : σ → ν ′ is

a morphism in Bn+1, that is µ is a morphism β → γ′ in
−→
D such that the following

diagram commutes.

β γ′

Gα

σ

µ

ν′

The morphism µ must be a non-identity morphism otherwise σ = ν ′ but this

cannot be the case as σ is not an object of An. Hence deg(γ′) > deg(β) = n+ 1.

By Definition 6.12 ν ′ must be in the image of G∗ that is there exists an object

ν : γ → α in ∂(
−→
C ↓ α) such that Gν = ν ′. The proof in [4] claims that this

shows that Fact−→C (α, σ) = (σ ↓ An), however ν may not be unique. It is sufficent

that we have shown that there is a surjective functor Fact−→C (α, σ) → (σ ↓ An).

As G is a cofibring Reedy functor (Fact−→C (α, σ)) is either empty or connected.

It is not empty as (σ, 1β) ∈ obj(Fact−→C (α, σ)). So (σ ↓ Ai) is connected. Hence

the inclusion functor An is right cofinal and by Proposition 1.28 the induced

morphism colim
An

Z → colim
Bn+1

Z is an isomorphism.

Lemma 6.17. Under the assumptions of Proposition 6.14 there is the following

pushout square. ∐
(β→Gα)∈Tn+1

colim
∂(
−→
D↓β)

Z
∐

(β→Gα)∈Tn+1

Zβ

colim
Bn+1

Z colim
An+1

Z

Proof. Let the top morphism be coproduct the latching morphisms of Z at β. As

the objects of the latching category of β are non-identity morphisms of the form

γ → β we have deg(γ) < deg(β) = n + 1. This gives us a functor ∂(
−→
D ↓ β) →

Bn+1, (γ → β) 7→ (γ → β → Gα) which induces the left morphism in the above

diagram. The inclusion functor Bn+1 ↪→ An+1 induces the bottom morphism.

The elements of Tn+1 are objects in An+1 so there is a natural morphism on the

right side of the square.
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The objects of An+1 are the elements of Tn+1 and the objects of Bn+1 so a mor-

phism colim
An+1

→ W inM is determined by its precompositions with the right and

bottom morphisms in the diagram below. As the morphisms in An+1 whose do-

mains are in Tn+1 are all identity morphisms and the only non-identity morphisms

with codomain an element (β → Gα) ∈ Tn+1 are the objects of the matching cate-

gory ∂(
−→
D ↓ β), morphisms colim

Bn+1

Z → W and
∐

(β→Gα)∈Tn+1

Zβ → W determine a morphism

colim
An+1

→ W if and only if their compositions from
∐

(β→Gα)∈Tn+1

colim
∂(
−→
D↓β)

Z agree.

We will classify the Reedy functors for which the induced functor of diagram

categories overM is a left Quillen functor for every model categoryM. We will

show this by dualising the classification theorem from Hirschhorn and Volić.

Theorem 6.18. If G : C → D is a cofibring Reedy functor, then the induced

functor G∗ :MD →MC is a left Quillen functor for every model category M.

Proof. As a model categoryM is complete so G∗ has a right Kan extension along

1MD . So by Proposition 1.25 G∗ has a right adjoint.

The induced functor G∗ preserves weak equivalences; to see this suppose f :

X → Y is a weak equivalence in MD. Then G∗f : XG → Y G has components

(G∗f)α = fGα : X (Gα) → Y (Gα) which are weak equivalences in M hence G∗

preserves weak equivalences.

It remains to show that G∗ preserves cofibrations.

Let f : X → Y be a cofibration inMD. That is, for all objects β in D the relative

latching map Xβ qLDβ X L
D
β Y → Yβ is a cofibration in M.

So we want to show that G∗f : XG→ Y G is a cofibration inMC. That is, for all

objects α in C we want to show that the relative latching map (G∗X)α qLCα(G∗X)

LCα(G∗Y ) → (G∗Y )α is a cofibration. We will write PCα = (G∗X)α qLCα(G∗X)

LCα(G∗Y ).

Let α ∈ obj(C) with deg(α) = k ∈ N. We consider two cases:

(i) there exist non-identity morphisms ν : γ → α in
−→
C such that Gν = 1Gα

(ii) G takes all non-identity morphisms ν : γ → α in
−→
C to non-identity mor-

phisms.
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First we consider the case where there exist non-identity morphisms ν : γ → α

in
−→
C such that Gν = 1Gα. We call the set of such morphisms the G-kernel.

If ν : γ → α is in the G-kernel, then the objects of Fact−→C (α,Gν) are precisely

pairs of the form (µ, 1Gα) where µ : κ → α is an element of the G-kernel. To

see this suppose that µ : κ → α is in the G-kernel, then the following diagram

commutes

Gα Gα

Gα

Gµ=1Gα

Gν=1Gα 1Gα

so (µ, 1Gα) is an object of Fact−→C (α,Gν). Conversely, suppose that (u, v) is an

object in Fact−→C (α,Gν), then u is a non-identity morphism in
−→
C and v is a

morphism of
−→
D such that the following diagram commutes.

Gα ξ

Gα

Gu

Gν=1Gα v

As G is a Reedy functor Gu is a morphism in
−→
D so deg(ξ) ≥ deg(Gα). As v

is in
−→
D we have deg(ξ) ≤ deg(Gα). Hence deg(ξ) = deg(Gα). As the only

morphisms in
−→
D which do not raise degree are identity morphisms v = 1Gα we

have Gu = 1Gα(Gu) = 1Gα. Hence u is in the G-kernel. As the latching object

is a colimit it corresponds to a cocone {χν : XGγ → LCα(G∗X)}
(ν:γ→α)∈obj(∂(

−→
C ↓α))

.

Let ν : γ → α and µ : κ → α be elements of the G-kernel such that there is a

morphism τ : ν → µ in ∂(
−→
C ↓ α), that is a morphism τ : γ → κ in

−→
C . Clearly

Gτ = 1Gα so we have the commutative diagram.

XGα XGα

LCα(G∗X)

χν χµ

Hence χν = χµ. As G is a cofibering Reedy functor Fact−→C (α,Gν) is connected.

That is, any there is a zig-zag of morphisms
−→
C between the sources of any two

morphisms in the G-kernel. Hence χν = χµ for any two elements ν and µ of the

G-kernel.

Let 0 ≤ n < k. Let ρ : ω → α be an object of ∂(
−→
C ↓ α) with deg(Gω) = n.

Suppose that for all µ : κ→ α in ∂(
−→
C ↓ α) such that deg(Gκ) > n, there exists
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ν : γ → α in the G-kernel and τ : κ → γ in ∂(
−→
C ↓ α) such that the following

diagram commutes.

XGκ XGα

LCα(G∗X)

XGτ

χµ
χν

As χν = χµ for any ν and µ in the G-kernel, χν(XGτ) = χµ = χν′(XGτ
′) =

χν(XGτ
′) for any other choice of ν ′ : γ′ → α in the G-kernel and τ ′ : κ→ γ′.

Consider the catgeory of direct C factorisations of Gρ. Clearly (ρ,Gν) for any

ν in the G-kernel and (1ω, Gρ) are objects of Fact−→C (α,Gρ). As G is a cofibring

Reedy functor Fact−→C (α,Gρ) is connected so there is a zig-zag between (1ω, Gρ)

and (ρ,Gν) for ν : γ → α in the G-kernel.

If (u : ξ → α, v : Gω → Gξ) and (w : ψ → α, x : Gω → Gψ) are in Fact−→C (α,Gρ)

and deg(Gξ) > deg(ψ) then a morphism (u, v)→ (w, x) is a morphism τ : ξ → φ

in
−→
C so as a Reedy functor Gτ : Gξ → Xψ cannot lower degree, a contradiction.

Hence there is no such morphism. Thus a zig-zag between (1ω, Gρ) and (ρ,Gν)

for ν : γ → α in the G-kernel can be split into zig-zags

(u1, v1)

(1ω, Gρ) (u2, v2)

. . .

(uq, vq)

(uq−1, vq−1) (µ, φ)

η

and

(w1, x1)

(µ, φ) (w2, x2)

. . .

(wr, xr)

(wr−1, xr−1) (ρ,Gν)

where µ : κ→ α with deg(Gκ) > n, and for all ui : ξi → α we have deg(Gξi) = n.

If (u, v) is an object of Fact−→C (α,Gρ) where u : ξ → α and deg(Gω) = deg(Gξ)

then as v : Gξ → Gω is degree preserving it must be the identity morphism on

Gω so Gρ = Gu. Hence χρ = χu1 = . . . = χur by the same argument used to show

that the components of the cocone corresponding to the elements of the G-kernel

are equal. Hence, by assumption, there exists ν ′ : γ′ → α in the G-kernel and

τ : κ→ γ′ in ∂(
−→
C ↓ α) such that the following diagram commutes.
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XGω XGκ XGα

LCα(G∗X)

XGη

χρ

XGτ

χµ
χν′

Similarly to before, the independence of χν from the choice of ν in the G-kernel

tells us that χν(XGτ)(XGη) = χρ = χν(XGτ
′)(XGη′) for any such µ′, τ ′, and

η′. We have established that for all objects σ : β → α in the latching category

∂(
−→
C ↓ α) and all elements ν : γ → α in the G-kernel, there exists ν ′ : γ′ → α

in the G-kernel and τ : β → γ′ in ∂(
−→
C ↓ α) such that the following diagram

commutes.

XGβ XGα

LCα(G∗X)

XGτ

χµ
χν

Fix some ν in the G-kernel. Let h : LCα(G∗X) → W for W ∈ obj(M), this

map corresponds to a cocone {hσ : Gβ → LCα(G∗X)}
(σ:β→α)∈obj(∂(

−→
C ↓α))

. We will

call the precomposition of h with the injection map ĥ : XGα
χν−→ LCα(G∗X)

h−→
W . Precomposing this with the latching map at α we have another morphism

LCα(G∗X)
ϕ−→ XGα

ĥ−→ W which also corresponds to a cocone {ĥσ : Gβ →
LCα(G∗X)}

(σ:β→α)∈obj(∂(
−→
C ↓α))

. By the commutative properties of cocones for each

σ in the latching category at α, using the τ gving us the above commuta-

tive diagram, and noting that ϕχν = 1XGα we have ĥσ = ĥϕχσ = hχνϕχσ =

hχνϕχν(GXτ) = hχν(GXτ) = hχσ = hσ. As the cocones are the same, they

correspond to the same morphism so ĥϕ = h. Consider the morphism of sets

− ◦ ϕ :M(XGα,W ) →M(LCα(G∗X),W ), g 7→ gϕ. Given h ∈ M(LCα(G∗X),W )

we can form ĥ as above, then ĥϕ = h so − ◦ ϕ is surjective. Suppose that

g, g′ ∈ M(XGα,W ) such that gϕ = g′ϕ, then for ν in the G-kernel g = gϕχν =

g′ϕχnu = g′. So −◦ϕ is injective, so −◦ϕ is an isomorphism of sets. Hence there

is an isomorphism XGα
∼= LCα(G∗X) in M.

Thus we have PCα = G∗Xα qLCαG∗X LCαG
∗Y = XGα qXGα YGα. Hence the relative

latching map at PCα → YGα is an isomorphism, and in particular this means it is

a cofibration.

Now we consider the case where all non identity morphisms ν : γ → α in
−→
C

we have Gν 6= 1Gα. In this case the G-kernel is empty and so the downward



67

induction used in the previous section cannot be used.

The latching objects of G∗X and G∗Y respectively at α are

LCαG
∗X = colim

∂(
−→
C ↓α)

G∗X and LCαG
∗Y = colim

∂(
−→
C ↓α)

G∗Y.

Similarly, the latching objects of X and Y respectively at Gα are

LDGαX = colim
∂(
−→
D↓Gα)

X and LDGαY = colim
∂(
−→
D↓Gα)

Y.

The functor G∗ : ∂(
−→
C ↓ α) → ∂(

−→
D ↓ Gα) (see Remarks 6.8 and 6.10) induces

maps

LCαG
∗X = colim

∂(
−→
C ↓α)

G∗X → colim
∂(
−→
D↓Gα)

X = LDGαX

LCαG
∗Y = colim

∂(
−→
C ↓α)

G∗Y → colim
∂(
−→
D↓Gα)

Y = LDGαY.

We have the following commutative diagram.

LCαG
∗X (G∗X)α

LDGαX XGα

LCαG
∗Y PCα

LDGαY PDGα (G∗Y )α

YGα

.

As f : X → Y is a cofibration in MD we know that the morphism PDGα → YGα

is a cofibration in M. So it is sufficient to show that PCα → PDGα is a cofibration.

Let PAk and PBk be the pushouts

colim
Ak

X XGα

colim
Ak

Y PAk

colim
Bk

X XGα

colim
Bk

Y PBk
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respectively and consider the sequence of maps from 6.15 for X and Y . This gives

a factorisation of PCα → PDGα as PCα → PA−1 → PB0 → PA0 → . . . → PAk−2
→

PBk−1
→ PDGα.

By Lemma 6.16, the morphisms colim
An

X → colim
Bn+1

X and colim
An

Y → colim
Bn+1

Y are

isomorphisms for all −1 ≤ n < k − 1 and hence the morphisms PAn → PBn+1

are isomorphisms for all −1 ≤ n < k − 1. In particular this means that these

morphisms are cofibrations.

Let Q and R be the following pushouts.

colim
Bn+1

X colim
An+1

X

colim
Bn+1

Y Q

∐
(σ:β→Gα)∈Tn+1

colim
∂(
−→
D↓β)

X
∐

(σ:β→Gα)∈Tn+1

Xβ

∐
(σ:β→Gα)∈Tn+1

colim
∂(
−→
D↓β)

Y R

Consider the following commutative diagram in M.

∐
(σ:β→Gα)∈Tn+1

colim
∂(
−→
D↓β)

X
∐

(σ:β→Gα)∈Tn+1

Xβ

R

∐
(σ:β→Gα)∈Tn+1

colim
∂(
−→
D↓β)

Y
∐

(σ:β→Gα)∈Tn+1

Yβ

colim
Bn+1

X colim
An+1

X

Q

colim
Bn+1

Y colim
An+1

Y

t

ψ

v

c

u
ϕ

a
d

t′

u′

s

λ p
e

b

h

s′

g
v′

By Lemma 6.17 the front and back squares are pushouts. The square
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R
∐

(σ:β→Gα)∈Tn+1

Xβ

Q colim
An+1

Y

a

h
u′

b

is also a pushout. We show this by showing that the universal property of

pushouts (see Example 1.8 (iii)) is satisfied. Suppose that W is an object in

M, and m : Q → W and n :
∐

(σ:β→Gα)∈Tn+1

Xβ → W are morphisms in M such

that mh = na. We have (mg)v′ = mhd = nad = nt′ so as the front square is a

pushout, mg and n induce a morphism φ : colim
An+1

→ W such that φs′ = mg and

φu′ = n.

We have φbes = φps = φs′λ = mgλ = mes and φbeu = φpu = φu′ϕ = φua′c =

nac = mhc = meu. As the back square is a pushout this tells us that φbe = me.

Further since φbg = φs′ = mg and Q is a pushout we have φb = m.

Suppose that ω : colim
An+1

Y → W is a morphism in M such that ωu′ = n and

ωb = m. Then ωu′ = n = φu′ and ωs′ = ωbg = mg = φs′. As the front square

is a pushout ω = φ. Hence the required morphism exists and is unique satisfying

the universal property.

Note that the morphism a : R →
∐

(σ:β→Gα)∈Tn+1

Xβ is a coproduct of relative latching maps

and so is itself a relative latching map. So a is a cofibration in M as f is a

cofibration inMD. As the pushout of a cofibration is a cofibration, the morphism

b : Q = colim
An+1

X q(
colim
Bn+1

X
) colim
Bn+1

Y → colim
An+1

Y is also a cofibration.

For −1 ≤ n < k − 1 the morphism PBn+1 → PAn+1 is defined by the following

commutative diagram.
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colim
Bn+1

X XGα

colim
An+1

X XGα

colim
Bn+1

Y PBn+1

colim
An+1

Y PAn+1

From above we have that colim
An+1

X q(
colim
Bn+1

X
) colim
Bn+1

Y → colim
An+1

Y is a cofibration.

As an isomorphism, the identity 1XGα is a cofibration. As the front and back

squares are pushout squares by Lemma 4.27, the morphism PBn+1 → PAn+1 is a

cofibration.

As a composition of cofibrations the morphism PCα → PDGα is a cofibration. Hence

the relative latching map at α is a cofibration.

So the relative latching map PCα → YGα is a cofibration for all objects α in C.
Hence G∗ preserves cofibrations and so is a left Quillen functor.
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