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Abstract

Model categories have been an important tool in algebraic topology since first
defined by Quillen. Given a category and a class of morphisms called weak equiv-
alences one can study the homotopy “category” in which the weak equivalences
are turned into isomorphisms by formally giving them inverses. However, the
resulting structure might not be a category, and even when it is understanding
it can be very difficult. A model structure on a category ensures that formally
inverting the weak equivalence does result in a category. It also makes the study
of the homotopy category easier by providing two weak factorisation systems on

the model category which can be used to understand the homotopy category.

We explore the basic consequences of weak factorisation systems and show
how one can be cofibrantly generated from a set of morphisms. We then define
model categories and discuss some fundamental results about them, including
defining their homotopy categories, and proving a recognition theorem. Having
done this we show there is a cofibrantly generated model structure on the category

of compactly generated, weakly Hausdorff, topological spaces, T .

We take a look at the category of simplicial sets, sSet, which can be considered a
generalisation of inductively constructed topological spaces. We later describe a
cofibrantly generated model structure on them and a Quillen adjunction between
T and sSet.

In stable homotopy theory the important objects of study are categories of D-
spectra and the stable model structures on them. We define a level model struc-
ture on D-spectra for chosen categories D, explain why it is not satisfactory for

stable homotopy theory, and then describe the stable model structure on spectra.

Finally, we describe the Reedy model structure on diagram categories MC

X



where M is a model category and C is a Reedy category. A recent result classifying
those functors between Reedy categories which induce a Quillen functor between
diagram categories for any choice of model category by Hirschhorn and Voli¢ is

shown using a dual argument to the one in their paper.
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Chapter 1
Some Category Theory

We assume some basic knowledge of category theory of the reader.

Definition 1.1. Let D be a subcategory of C. We say that D is a full subcat-
egory of C if, for all objects X and Y in D, f € C(X,Y) —= f e D(X,Y).

Definition 1.2. Let F': A — C and G : B — C be functors. Then the comma
category of I over GG, denoted (F' | ), is the category whose

e objects are triples («, 3, f) such that o € obj(A), 5 € obj(B), and f :
F(a) — G(p) is a morphism in C;

e morphisms («, 3, f) — (/, 5, f') are pairs (v, ) where v : @« — o in A
and pu : f — (" in B such that the following diagram commutes.

F(a) LN F(d)

i| |7

G(p) —5 G(8)

Notation 1.3. We will sometimes refer to objects of comma categories by their

morphism component, leaving the object components implied.

Comma categories involving functors out of the category 1 with a single object
and morphism, subcategory inclusion functors, and identity functors are partic-

ularly important.

For a functor 1 — C picking out a single object v € obj(C) by an abuse of
notation the chosen object is written in place of the functor in comma category

notation. As there is only one object and one morphism in 1, objects in a comma,
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2 CHAPTER 1. SOME CATEGORY THEORY

category where the source of one of the functors is 1 can be treated as pairs and
similarly morphisms can be considered a single morphism in the source category

of the other functor.

When one of the functors is an identity functor on a category, the category is
written in place of the identity functor. If one of the functors is a subcategory
inclusion functor the subcategory is written in place of the identity functor. In
the case where the image of the other functor is contained in the subcategory
this can lead to some unfortunate confusion. For example let F' : 1 — C and
G : B — C be the inclusion of B a subcategory of C and F'(1) = o € obj(B).
Then (a | B) could either be (a | 15) or it could be (o | G).

Notation 1.4. Unless otherwise specified, when a subcategory is indicated it will

denote the identity functor on that subcategory and not the inclusion functor.

Definition 1.5. Let C be a category, and let a be an object of C. The slice
category of C over «, (C | «), is the comma category where C indicates the
identity functor 1c. Similarly coslice category of C under a, (« | C), is the

comma category where C indicates the identity functor 1c.

Definition 1.6. Let F' : C — M be a functor. A cocone under F is an object
X in M together with a set of morphisms {jt : Foo = X }qconj(c) such that for

all morphisms ¢ : @« — [ in C the following diagram commutes.

Fa UL A— Ol
k/‘ A
X

In fact this describes a natural transformation p: F = AX where AX is the

constant functor C — M taking all objects to X and all morphisms to 1x. Hence
a cocone is an object X together with such a natural transformation. Dually,
a cone over F' is an object X in M together with a natural transformation
v:AX = F.

Definition 1.7. Given a functor F' : C — M we can consider the category of
cocones under F'. A morphism between cocones (X, u) — (Y,w) is a morphism

f X — Y in M such that for all objects a in C the following diagram commutes.

Fo
2N
X 7 s Y




If the category of cocones has an initial object (X, p) then it is the colimit of F’
and we write colim F' = X. Dually, we can consider the category of cones over
F. A morphism between cones (X, u) — (Y,w) is a morphism f : X — Y in M

such that for all objects a in C the following diagram commutes.

X ! Y
Fa

If the category of cones has a terminal object (X, ) then it is the limit of F

and we write lim /' = X. As initial and terminal objects colimits and limits are

unique up to unique isomorphism.

Where a (co)limit is written with a subcategory as a subscript then it is the
(co)limit of the functor restricted to that subcategory. That is, if B is a subcat-
egory of C with inclusion functor ¢z : B < C then Cong = colim(F'tz) and
liénF = lim(Fp).

Examples 1.8. (i) Where C is the empty category with no objects. If they
exist, the limit and colimit of the unique functor C — M are the terminal

and initial objects of M respectively.

(ii) Products/coproducts. If C = {e e}, that is the category with two
objects and only identity morphisms, a functor F': C — M picks out two
objects, A, B in M. Then the limit of F' is the product of A and B written
A x B and the colimit of F' is the coproduct of F written A Il B.

(ili) Pushouts. If C = {{~" } the image of a functor F': C — M is a diagram

lﬁ

<—
ol

Q

in M. The colimit of F', if it exists, is an object B 114 C together with
morphisms tg : B — BIll4C and 1 : C'— B4 C in M such that for any
X € obj(M) and morphisms B — X and C' — X making the outside of the
following diagram commute there exists a unique morphism B I, C' — X

such that the whole diagram commutes.



(iv)
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We say that ¢p is a pushout of £ along j.

Pullbacks. If C = {1} then the image of a functor /' : C — M is a

diagram

B

Ik

C—f A

in M. The limit of F, if it exists, is an object B x4 C' together with
morphisms g : BXx,4C — B and tc: Bx,C — C in M such that for any
X € obj(M) and morphisms X — B and X — C making the outside of the
following diagram commute there exists a unique morphism X — B x4 C'

such that the whole diagram commutes.

C— A

Equalisers/Coequalisers. If C = {e = o} a functor F' : C — M picks
out two objects, A, B in M and two morphisms f,g: A — B. The limit of
F is the equaliser of f and g. The colimit of F' is the coequaliser of f and
g. The coequaliser, if it exists, is an object C' of M together with a map
h : B — ( satisfying hf = hg such that for any object D € obj M and
map h' : B — D satisfying h'f = h’g there is a unique morphism making

the following diagram commute.

f
A?;B%C’

I
N et

N2
D



Proposition 1.9. Let f: A— D, g: A— B, and h: B — C be morphisms in
some category M. Leti: B — E be the pushout of f along g. Then j:C — F
15 the pushout of i along h if and only if j is the pushout of f along hg.

A2 spB_",(C

fl l lﬂ’
D k>E z>F

Proof. Suppose j is the pushout of ¢ along h. Let ¢ : D — W and ¢ : C' — W be
morphisms in M such that ¢ f = 1hg. Then as i is a pushout of f along g the
morphisms ¢ and Yh induce a unique morphism p : F — W such that uk = ¢
and pi = ¥h. As j is a pushout of ¢ along h the morphisms g and ¢ induce a
unique morphism o : F' — W such that ol = p and o5 = ¥ so ¢ = uk = olk.
Note that because p is uniquely determined by ¢ and v, so is 0. Hence j is a
pushout of f along hg.

Conversely, suppose that j is a pushout of hg. Let p: E - W and ¢ : C' - W
be morphisms in M such that ¢)h = pi. Then we have ukf = pig = hg, as j
is a pushout of f along hg the morphisms pk and 1 induce a unique morphism
o : F — W such that olk = pk and oj = . We have ui = vh = ojh = oli.
As i is a pushout of f along g the equalities olk = pk and pi = oli mean that
ol = p. Hence j is a pushout of ¢ along h. O]

Definition 1.10. We call a category M complete if it contains all small limits,
that is if lim F' exists for all functors F' : C — M where C is a small category.
Similarly, we call a category cocomplete if it contains all small colimits, that is
if colim F' exists for all functors F' : C — M where C is a small category. If a

category is both complete and cocomplete we call it bicomplete.

Definition 1.11. Let M be a category, and let C be a small category. Then we
have a category whose objects are functors X : C — M and whose morphisms
are natural transformations f : X — Y with composition defined as a vertical
composition of natural transformations. We call this the category of C-diagrams

in M, denoted MC. Categories of this type are called diagram categories.

For any category M a functor G : C — D between small categories induces a
functor G* : MP — MC taking functors X : D — M to XG : C SpE5 M.
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Definition 1.12. Let X be an object in a category M. An object YV in M is
a retract of X if there exist morphisms 7 : ¥ — X and r : X — Y such that

ry = 1y.

Remark 1.13. Given a morphism f : X — Y in a category M a retract of f is
a retract in the arrow category M2. That is, a morphism g : A — B in M such

that there exists a commutative diagram of the form

Definition 1.14. Let M a cocomplete category and A be some limit ordinal.
We can consider \ to be the category whose objects are ordinals f < A with
Ma, B) = {x}ifa < fand N, B) = @ otherwise. A A\-sequence in C is a functor
X : A — C such that for every limit ordinal v the induced morphism C(ﬁ)lim — X,

<7

is an isomorphism. The composition of X is the morphism X, — cgli/r\n Xg.
<

Definition 1.15. Let J be a class of morphisms in a cocomplete category M.
A X-sequence in J is a A-sequence in M such that the morphism Xz — X34
is in J for all 5 < A. A transfinite composition of morphisms in J is the

composition of a A-sequence in 7.

Proposition 1.16. Let J be a class of morphisms in a cocomplete category M
and f : A — B be a morphism in M. If there exists a limit ordinal v and a
functor X : v — M such that

.XOZA;

e colim X3 = B,
<y

e the natural morphism Xy — cglim Xp is f,
<y

e and for all 5+ 1 < v the induced morphism col<ién Xo = Xpp1 s n T,

then f is a transfinite composition of morphisms in J.



Proof. Let X be the smallest ordinal such that the morphism Xz — Xz, is the
identity for A < 8+ 1 < 7. Then restricting X to A — X gives a A-sequence in

J whose composition is f. Hence f is a transfinite composition of morphisms in

J. [l

Definition 1.17. Let F': C — D and GG : D — C be functors, we write ' : C =
D : G. We say that F' is a left adjoint functor to G (and that G is a right
adjoint functor to F)) if for all objects in X in C and all objects Y in D there
exists bijections ¢ xy : D(FX,Y) = C(X,GY) which are natural in X and Y. To
be explicit, naturality in X and Y here mean that for any morphisms f: W — X
inC and g: Y — Z in D the following diagrams commute.

Pxv XY

D(FX,Y) -5 C(X,GY) D(FX,Y) 2% C(X,GY)
|y | I |(a.
D(FW,Y) -2 D(W,GY) D(FX, Z) % D(X,GZ)

We have a bifunctor D(F—, —) : C°*xD — Set which sends (X,Y) € obj(C°*xD)
to D(FX,Y) and morphisms (f? : X — W,g : Y — Z) to (FX LN Y) —
(FW rx by 4 Z). Similarly, we have a bifunctor C(—,G—) : C°®* x D —
Set which sends (X,Y’) € obj(C x D) to C(X GY) and morphisms (f°P : X —
W,g:Y > 2Z)to(X 5 GY)— WL X2 ay £ G2). With these bifunc-
tors in mind the bijections above are the components of a natural isomorphism
¢ :D(F—,—) — C(—,G—). We call the triple (F,G, ¢) an adjunction between
C and D.

Notation 1.18. We write F' 4 GG to indicate that F' is a left adjoint functor to
G.

Definition 1.19. Let (F, G, ¢) be an adjunction between C and D where F 4 G
and F': C = D : G. The unit of the adjunction is the natural transformation
n : l¢ = GF whose components are nx = ¢x rx)(lpx)). The counit of the

adjunction is the natural transformation ¢ : FG — 1p whose components are
ey = ¢ (law))-

Definition 1.20. Let C be a bicomplete category. We define the category C, as
the comma category (x | C) where x is the terminal object in C. This category
is also bicomplete. There is an obvious functor C — C, sending an object X to
X, = X ][, that is, it adds a disjoint basepoint. This functor is left adjoint to
the forgetful functor U : C; — C which takes an object and ‘forgets’ that it has

a basepoint.
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Definition 1.21. A monoidal category is a sextuple (M, ®,Z, A, p,«) where
M is a category, ® is a bifunctor M x M — M, I is a distinguished object called
the unit object, A\ is a natural isomorphism with components Ax : I ® X = X
called the left unitor, p is a natural isomorphism with components px : X®1I = X,
and « is a natural isomorphism (natural in X, Y, and Z) with components
axyz (X ®Y)®2Z) =2 (X ® (Y ®Z)) called the associator and satisfying
two coherence conditions. The first coherence condition is that for any objects

W, X,Y,Z in M the following diagram commutes.

WR(XQY)eZ
(WeX)eY)® Z We(XeY)® 2)
OéW®X,Y,Zl llw®axyy,z

WeX)e (e 2) s W R (XY eZ)

aw,X,Y®Z

The second coherence condition is that for any objects X and Y in M the fol-

lowing diagram commutes.

(Xo)oY LY y X®(I®Y)
pPxQly
\ A)\Y
XoY

In general we we refer to a monoidal category (M, ®, I, A, p, @) just by the un-

derlying category M.

Definition 1.22. A symmetric monoidal category is a monoidal category M
together with an natural isomorphism (natural in X and Y') with components
sxy : X®Y =2 Y ® X called the braiding satisfying the coherence conditions
that for any objects X, Y, and Z in M the following diagrams commute.

X®T i s T X Y X
SX,/ sy, x
X X®Y X®Y

XoY)oZ XX XeoYez) XX Yeo2) X

5X,Y®1Zl la‘/,z,x

YOX)®Z 42 YO (X®Z) =0 Y © (28 X)

ay, X,z



Definition 1.23. A closed symmetric monoidal category is a symmetric monoidal
category M such that for all objects X in M the functor — ® X : M — M has
a right adjoint, hom(X, —) : M — M called internal hom.

Example 1.24. The category, T of compactly generated, weakly Hausdorff,
based topological spaces is a closed symmetric monoidal category. Here the
monoidal product is the smash product X AY = (X x Y)/(X VY), the unit
object is the zero dimensional sphere S°, and for X, Y € obj(7T) the internal hom
hom(X,Y) is 7(X,Y) with the compact-open topology.

Proposition 1.25. If C is a small category and M s a complete category, then
for any functor G : C — D the induced functor G* : MP — MC has a right
adjoint.

For a proof of this proposition see Corollary 2 on page 235 of [9].

Definition 1.26. A zig-zag between two objects X and Y in a category M is

a finite sequence of morphisms.
Xl Xn
fl f2 fn fn+1
/N Lo\ N
X X X1 Y

A category M is connected if given any two objects there exists a zig-zag be-

tween them.

Definition 1.27. Let C and D be small categories, and let G : C — D be a
functor. The functor G is left cofinal (or initial) if for all objects o in D the
comma category (G | «) is non-empty and connected. The functor G is right
cofinal (or terminal) if for all objects o in D the comma category (o | G) is

non-empty and connected.
For a proof of the following proposition see [3] Proposition 14.2.5.
Proposition 1.28. Let C and D be small categories, and let G : C — D be a

functor.

(1) The functor G is left cofinal if and only if for every functor X : D — M
where M is a complete category the natural morphism limp X — lime G* X

1S an isomorphism.

(11) The functor G is right cofinal if and only if for every functor X : D — M
where M is a cocomplete category the natural morphism colime G*X —

colimp X s an isomorphism.
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Chapter 2
Simplicial Sets

Definition 2.1. The delta category, A, is the category whose objects are
the ordered sets [n] = {0,1,...,n} for each n € N = {0,1,...}. A morphism
[n] — [m] is a weakly order preserving function from [n] to [m].

There are two important sets of morphisms in A. The coface morphisms d*"
defined for alln € Nand 0 <7 <n

k itk <1

d"":[n—1] = [n], k —
k+1 ifk >

and the codegeneracy morphisms s*" defined for alln € Nand 0 <i <n

k itk <1

s n4+1] = [n], k>
kE—1 it k> 1.

Notation 2.2. In general these morphisms are written d‘ and s’ as the codomain

is usually clear from context.
For a proof of the following proposition see page 173 of [9].

Proposition 2.3. The coface and codegeneracy morphisms of A satisfy the fol-

lowing relations
dd=dd, ifi<g
st =gt ifi<
L, ifi=j,7+1
sld = digi=l, ifi<

di=si, ifi>j+ 1.

11
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Further, any morphism f : [n] — [m] in A can be factored uniquely as a composite
of coface morphisms followed by a composite of codegeneracy morphisms. This

factorisation has the form
f=s".. . sk .. "
such thatn —l+k=m,0< i, <...<ig3<m,and 0 < j1 <...<ji<n-—1.

Definition 2.4. Let M be a category. Then a simplicial object in M is a
functor A — M. We will write sM for the category of simplicial objects in
M, note that sM is the diagram category M2, If X is a simplicial object in
M we call the morphisms d;,, = Xd"" and s;,, = Xs"" the face morphisms and

the degeneracy morphisms respectively.

The most important example of a category of simplicial objects is the category
of simplicial sets, sSet. We will consider this category in some detail. Let X be
a simplicial set, that is a functor A°? — Set. The information of X consists of
sets X, = X|[n] for all n € N and, by Proposition 2.3, for alln € Nand 0 <i <n
face and degeneracy morphisms d;,, and s;, satisfying the following relations (as

in A we omit n where it is clear from context)

didj = dj—ldi> if ¢ <]
§iS; = Sj+15i, if 1 < j
1, ifi=7,7+1
diSj = Sj—ldz', if i < ]
deifl, if 4 >]+1
We will refer to these as the simplicial relations. Let X,Y be simplicial sets,
then a morphism f : X — Y in sSet is a natural transformation with components

fn: X, = Y,. Inorder for f to be a natural transformation of functors X — Y

we must have that the diagram

X, =% X,

W

commutes for all morphisms ¢ : [m] — [n] in A. However by Proposition 2.3
g factors as a composite of coface and codegeneracy morphisms. So the above

diagram factors into squares as in the following diagram.
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di s
Xo—...—> X, 53X, 1 — ... 2 X, 53X, — ... — X,

fnl lfp lfp—l lfr lfr+l fm
d Sj
m

YV, = ...— Y, —>Y 1 — ... =Y, 5V, — ... =Y,

Hence it is sufficient that the squares

Xn L Xn—l Xn L) Xn+1
f’nl lfnfl and fnl lfn«‘ﬁl
Yn T) Yn—l Yn T> Yn+1

commute for alln € Nand all 0 <¢ <n.

If X is a simplicial set we say that the elements of X, are the n-simplices of X.
This terminology is for sM where the objects of the underlying category M are
sets with structure on them. We say that an n-simplex is degenerate if it is in

the image of some degeneracy morphism, otherwise we say it is non-degenerate.

In sSet the empty simplicial set @ : A°® — Set with @, = @ for all n € N
is an initial object and the simplicial set x : A°® — Set with %, = {x} for all
n € N is a terminal object. In the case of @ € obj(sSet) it is sufficient to
specify that @, is the empty set because there is only one function @ — & in
Set. For x € obj(sSet) it is sufficient to say that there is a single non-degenerate
0-simplex and that all other simplices are degenerate, the simplicial relations
ensure there is a single element in *, for all n € N. We show this by induction.
If a,b € *; then, as they must be degenerate simplices, they are in the image of
a degeneracy morphism. There is only one degeneracy morphism %y — *; and
%o 1s a singleton, so a = so(x) = b. Hence %, is a singleton. Now let n > 2 and
suppose that %, is a singleton for all k& < n. Let a,b € x,, as all n-simplices
are degenerate a = s;(x) and b = s;(*) for some 0 < 7,5 < n. Relabelling if
necessary, let i < j. Clearly if i« = j then a = s;(%) = s;(%) = b. Otherwise
i < j and by the simplicial relations and the fact that *,_; = %, o = {*} we have

a = s;(*) = s;8j_1(%) = s;8;(%) = s;(x) = b.

In fact, by the simplicial relations, a simplicial set is entirely determined by its

non-degenerate simplices and their images under the relevant face morphisms.

The representable functors A" = A(—, [n]) : A°® — Set, [k] — A([k], [n]) are an

important set of simplicial sets. The non-degenerate simplices are the injective
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n+1
k+1

morphisms d; : A([k], [n]) — A([k—1], [n]) are given by precomposition by the co-

face morphisms so that d;([k] EN n]) = ([k—1] ELR [n]). Similarly the degeneracy

morphisms [k] — [n] in A, so A™ has (}7]) non-degenerate k-simplices. The face

morphisms s; : A([k], [n]) — A([k + 1], [n]) are given by precomposition by the
codegeneracy morphisms so that s;([k] IR n]) = ([k+ 1] AN [n]). The bound-
ary of A", written 0A”, is the simplicial set A™ with the single non-degenerate

n-simplex removed. That is,

A([k], [n]) ifk<n
0Ay = Ak [n]) = § A, [\ {1} ifk=mn
A([k], [n])\ Sk itk>n

where S}, is the set of surjective morphisms [k] — [n]. The Sy, sets consist precisely
of those degenerate simplices in A" generated by the n-simplex 1. The non-
degenerate (n — 1)-simplices are precisely the coface morphisms d : [n— 1] — [n].
For 0 < 1 < n the ith horn of A", written A}, is the boundary OA™ with the

(n — 1)-simplex d* removed.

Definition 2.5. For each n € N there is an nth evaluation functor ev, :
sSet — Set with ev,(X) = X,, and ev,(f) = f,. In the other direction there
is an nth simplicial set functor (—,), : Set — sSet where (X,), is the
simplicial set whose only non-degenerate simplices are the elements of X which
are n-simplices and a single non-degenerate O-simplex. Note that there is a single
simplex in (X,,),—1 so the face morphisms are the same and take all n-simplices
to the n—1 simplex. Given a morphism f: X — Y of sets, (fn)e : (Xn)e = (Yn)e
has components (f,); : {x} — xfor 0 < i <nand (f,), = f: X — Y. The

remaining components are determined by the simplicial relations.

Proposition 2.6. The nth evaluation functor and the the nth simplicial set func-

tor are adjoint functors ev, 4 (—,)e-

Proof. Let X € obj(sSet) and Y € obj(Set). Suppose we have a morphism
f X — (Y,). in sSet. Below degree n the components of f are morphisms
in Set into a singleton set and so are uniquely determined. Above degree n the
components of f are entirely determined by the component of f at degree n as
(Y,,); contains only degenerate simplices for ¢ > n. Hence f is determined by its
nth component which is a morphism f,, : ev,(X) = X,, = Y of sets. Hence there
is a bijection ¢xy : Set(ev,(X),Y) = sSet(X, (Y,,).)-
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It remains to check that the required naturality conditions are satisfied. Let
f W — X be a morphism in sSet and g : Y — Z be a morphism in Set. Let
h:ev,(X) — Y be a morphism in Set. O

Definition 2.7. Let C be a small category. The nerve of C, written NC is the
simplicial set with a O-simplex for each object and, for n > 1, an n-simplex for
each sequence of n composable morphisms, Xg — X; — ... = X,,_1 — X,,. The

face morphisms are given by

dZ(X0—>—>XZ_1i>XZi>XH_1—>—>Xn)

(X1 — ... — X,) fori=10
= (X0—>—>XZ_1£>X1+1—>—>X7Z) forO<i<n
(X1 —...—> X, 1) fori=n

and the degeneracy morphisms are given by

siXo— ... 2 X, = ... X,)

1x.
:(XO—>...—>Xii>XZ-—>...—>Xn)

it is straightforward to check that the simplicial relations are satisfied.
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CHAPTER 2. SIMPLICIAL SETS



Chapter 3
Factorisation Systems

There are two distinct flavours of model category theoretic arguments. Those cen-
tred on the weak equivalences and those involving the co/fibrations. Arguments
involving the co/fibrations generally rely on the weak factorisation systems en-
coded into the model category axioms. The standard references [3] and [5] prove
many results about model categories that are actually results about weak factori-
sation systems. We prove those results in this chapter to make this distinction

clear.

Definition 3.1. Let i : A — B and p : X — Y be morphisms in some category
M. We say that ¢ has the left lifting property with respect to p, and that p
has the right lifting property with respect to ¢ if for any pair of morphisms
k:A— X and j: B — Y such that ji = pk there exists a morphism (called a
lift) B — X such that the following diagram commutes

A—* . x

R
Zl g lp .
s
s

B——Y
Let Z be a collection of morphisms in some category M. We write Z% for the
collection of morphisms in M that have the right lifting property with respect to
all morphisms in Z. Similarly we write ?Z for the collection of morphisms in M

that have the left lifting property with respect to all morphisms in Z.

Proposition 3.2. (The retract argument) Let M be a category, and let f :
X =Y be a morphism in M. Then,

(i) if f = pi where p has the right lifting property with respect to f then f is a

retract of 1,

17
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(i) if f = pi where i has the left lifting property with respect to f then f is a
retract of p.

Proof. We show part (ii), part (i) is dual. Suppose f = pi and ¢ has the left
lifting property with respect to f. Then there exists a morphism ¢ such that the

following diagram commutes

X X
zl 3(/1//7 fe
Then the diagram
1x

/\
X—A—>X
A
Y Y Y

commutes with the commutativity of the top triangle, left square, and right square
following from the commutativity of the top triangle, square, and bottom triangle

in the previous diagram. Hence f is a retract of p. O]

Proposition 3.3. Let M be a category, and let f : X — Y be a morphism in
M. Then,

(i) the class of morphisms with the left lifting property with respect to f is

closed under composition,

(ii) the class of morphisms with the right lifting property with respect to f is

closed under composition.

Proof. We show part (ii), part (i) is dual. Let g : A — B and h : B — C be
morphisms with the right lifting property with respect to f. Suppose that j, k
are morphisms such that kf = hgj then as h € f? there exists a lift ¢ : Y — B

such that the following diagram commutes

X Ly 4_9 3 B
fl Hf’/’// lh :
Y - s O

As g € f? there exists a lift 1) : Y — A such that the following diagram commutes
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:s.

<

12

Then we have ¥ f = j and hgy = hy = k such that the following diagram

tU

<,o

commutes
X —> A
l“’
B -
lh
Y — C
Hence hg € f°. O

Proposition 3.4. Let M be a category, and let f : X — Y be a morphism in
M. Then,

(1) the class of morphisms with the left lifting property with respect to f is

closed under retracts and

(11) the class of morphisms with the right lifting property with respect to f is

closed under retracts.

Proof. We show part (ii), part (i) is similar. Suppose that g : A — B has the
right lifting property with respect to f, and let h: C' — D be a retract of g. Let

p and ¢ be morphisms such that Ap = ¢f. Then we have a commutative diagram

1o
SN
X 25 C i/gA I 5 C
T N (R
Y s D—sB—D
\_/‘
1p

where the existence of the lift ¢ follows from g having the right lifting property
with respect to f. The commutativity of the diagram tells us that jof = jip =
lep = p and that ¢ = 1pq = lkq = hjp. Thus the following diagram commutes

X 250

L 27

Y—>D
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Hence h has the right lifting property with respect to f. m

Proposition 3.5. Let M be a category, and let f : X — Y be a morphism in
M. Then,

(i) the class of morphisms with the left lifting property with respect to f is

closed under pushouts and

(ii) the class of morphisms with the right lifting property with respect to f is

closed under pullbacks.

Proof. We show part (ii), part (i) is similar. Suppose that g : A — B has the
right lifting property with respect to f, and let h : C' — B be a morphism such
that the pullback of g along h exists and call it p : P — C. Let ¢ and k be

morphisms such that pi = kf. Then we have the commutative diagram

X —— P j/% A
1A b
Y ’/k »C —— B

By the universal property of pullbacks and the commutativity of the lower triangle
in the diagram there exists a unique morphism v : Y — P such that the following

diagram commutes

Furthermore, by the commutativity of these two diagrams we have ji = ¢ f = j¢ f
and hpi = hkf = hpyf. Thus, by the universal property of pushouts ¢ = ¢ f.
Hence the following diagram commutes.

i

So p has the right lifting property with respect to f. O]

Definition 3.6. Let M be a category. A strong factorisation system on M

is a pair of classes of morphisms (£, R) such that:



21
(i) The classes £ and R are closed under composition with isomorphisms.
(ii) Any morphism f in M factors as f = gh where g € R and h € L.

(iii) We have £ = ?R and R = L” such that for any morphisms i € £,p € R

and commutative square

Aty X
zl //Z lp
B T> Y

in M the dashed lift is unique.

Definition 3.7. Let M be a category. A weak factorisation system on M is

a pair of classes of morphisms (£, R) such that:

(F1) The classes £ and R are closed under retracts.

(F2) Any morphism f in M factors as f = gh where g € R and h € L.
(F3) We have £ ="R and R = L”.

Let M be a cocomplete category, then for any A € obj(M) and any functor
B : N — M (where we treat N as the category whose objects are the natural
numbers with N(n, m) = {x} if n < m and N(n, m) = & otherwise) there is a nat-
ural morphism B(n) — colim(B) for each natural number n. These morphisms
induce morphisms M(A, B(n)) — M(A, colim(B)) by postcomposition. These
morphisms induce a canonical map co}lim(/\/l (A, By,)) = M(A, colim B,).

Definition 3.8. An object A € obj(M) is sequentially small if for all functors
B : N — M the canonical morphism colim(M (A, B,)) — M(A, colim B,,) is an

isomorphism of sets.

The small object argument is a method of constructing a factorisation system
starting from a set of morphisms. Let I = {g, : A, = By}seq be a set of mor-
phisms in a cocomplete category M. We will construct a (cofibrantly generated)
weak factorisation system on M by building a factorisation for each morphism
using /. Let f: X — Y be a morphism in M, we define Sy(gq) to be the set of
pairs (j, k) with j, k € Mor(M) such that the following diagram commutes
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A, 1= X

9q lf .
Y

B, —r
Letting Py be the pushout of [T [[ ¢, along [[ ]I Jj we have the
9€Q (4,k)€S0(q) 9€Q (4,k)€S0(q)
following factorisation of f.
]EI('k)]
I 11 4, ——X
qu (jvk)ESO(Q)
1 gql io
4 (k)

I I B,—— K

4€Q (j,k)ES0(g)
~. Do
\g
I 11 & Y
a (4,k)

While this is a perfectly good factorisation of f, we would like our factorisation to
have the useful property that the second morphism has the right lifting property
with respect to I. For n € Nt assuming P, _; has been defined, we define S, (q)
to be the set of pairs (j, k) with j, k € Mor(M) such that the diagram

Aq ;) Pn—l

b

B, —— Y

commutes. Letting P, be the pushout of [[ [] g,along [T [] J we
9€Q (§,k)E€Sn(q) q€Q (4,k)€Sn(q)
have the following factorisation of f.

H H Aq : ? Pn—l
4€Q (,k)€Sn(q)
111 gql

q (j,k)

I I By—— P
4€Q (j,k)ESn(q)

Then for each n € N we have a factorisation f = p,i, ...1. Let P be the functor

N — M with P(n) = P, and taking the morphism n — n + 1 to p, for all
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n € N. Letting P,, = colim P, we have natural morphisms i, : X — P, and
Poo : Pso — Y such that f = pise.

Proposition 3.9. Let A, be sequentially small for all ¢ € @Q, then ps has the
right lifting property with respect to I.

Proof. Let g, € I, and let (j,k) be a pair of morphisms in M such that the
diagram

A, —1 Py
b

B, —— v

Poo

commutes. For all n € N the morphism collections M(A,, P,) are sets hence
colim(M(A,, P,)) is the quotient [[ M(A,, P,)/ ~ where f ~ g if one of them

neN
is the other postcomposed by a sequence of 7,, morphisms. We have the following

commutative diagram

=

M(Ay, Fo)

N

M(Aq7 Pl)

where the morphisms M(A,, P,) = M(A,, Px) are postcomposition by the nat-
ural morphisms P, — P. As A, is sequentially small colim(M(A4,, P,)) —
M(A4,, P) is a bijection. Let j' € M(A,, P,,) be a represengative of the equiv-
alence class that 7 maps to under this bijection. Then by the commutativity of

the triangles
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M( A ,Pp) —— cohm./\/l (Ag, Pr)

M(A,, P+1 — M(4,, Py)

in the previous diagram, j factors as 4, EiN P, LN P,v1 — Ps. The pair (j', k)
is in S;,+1(q) so there is a lift B, — P,,+; as shown in the following commutative

diagram

Tm+1
Ay 7 > P, ? Pni1 — Py
gql /,/’/// J/perl l o -
B, - > Y Y

This gives a lift B, — P11 — Ps. Hence p,, has the right lifting property with
respect to I. O

Definition 3.10. Given a set of morphisms [ in a category M we call a morphism
a relative I-cell complex if it is a transfinite composition (Definition 1.15) of

pushouts of morphisms in I. We denote the collection of such morphisms by
I-cell.

Lemma 3.11. Let I be a set of morphisms in a cocomplete category M. If f is

a pushout of a coproduct of morphisms in I then f is in I-cell.

Proof. Let K be a set and ¢g; : C, — D, a morphism in [ for each k € K. Let
A be an ordinal isomorphic to K. Suppose f is the pushout of ] gx along some
morphism [[Cy, — X.

HCk—>X

w

Let @ : A — M be the A\-sequence where ()9 = X, with X3 — Xpgi; as the
pushout of gz along Cs — X3, and X3 = colim,.g for limit ordinals 3. The

transfinite composition @ is isomorphic to f, so f is in I-cell. n

Theorem 3.12. Let M be a cocomplete category, and let I be a set of morphisms
in M such that the domains of all morphisms in I are sequentially small. Then
(A(17),1?) is a weak factorisation system on M. We say this weak factorisation

system is cofibrantly generated by I.
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Proof. As the morphism classes are defined by lifting properties they are closed
under retracts by Proposition 3.4, hence F1 is satisfied. F3 is immediate. It
remains to show that any morphism can be factorised as a morphism in 4(/%)
followed by a morphism in I?. By the above lemma, the 7,, morphisms of the small
object argument are in I-cell, so i, is a transfinite composition of transfinite
compositions of pushouts of morphisms in /. Hence i, is in I-cell. In light of
Proposition 3.9, to show that the factorisation given above can be used to satisfy
F2 it suffices to show that I-cell C ?(1?). Let f : X — Y be a morphism in [?
and let g : A — B be a morphism in /-cell. Then g is a transfinite composition
of a A-sequence, C, of pushouts of elements of I for some ordinal . Let gz be
the morphism Cg — Cpyq in I. As each gg is the pushout of a morphism with
the left lifting property with respect to 1%, they have the same lifting property
by Proposition 3.5. Suppose 7,k are morphisms such that fj = kg. We define
a lift by transfinite induction. We have a morphism j : Cp = A — X such that

there exists a lift making the following diagram commute.

Cy J s X

| “°° lf

4 = colimC =B — Y

Given a morphism ¢g : Cg — X such that the outside of the following diagram
commutes, there exists a lift ¢g1; : Csy1 — X such that the whole diagram

commutes.

CIB YB % X

gﬁl 3 M lf

Cpi1 5 colimC =B — Y

If 8 is a limit ordinal, given a morphism colim,.g C, — X such that the outside
of the following diagram commutes, there exists a lift ¢z : Cz3 — X such that the

whole diagram commutes.

colim,<g Cy 3 X

Cjs = s colimC =B — Y

So g has the left lifting property with respect to I”. Hence I-cell C ?(17). O
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Definition 3.13. Let M be a category. A functorial factorisation on M is a
pair, (a, ), of functors «, 8 : M? — M? such that for all morphisms f: X — Y

we have f = (5f)(af).

Definition 3.14. Let v be a cardinal and « be an ordinal. We say « is y-filtered
if it is a limit ordinal and if A C « such that |A| <+, then sup(A) < a.

Definition 3.15. Let M be a cocomplete category, and let I be a class of mor-
phisms in M. An object A in M is k-small relative to [ for x a cardinal
if, for all k-filtered ordinals A and all A\-sequences X such that each morphism
Xp — Xpyq isin [ for B+ 1 < A, the morphism of sets

I A X A, colim X
colim M(A, Xp) — M(A4, colim X)

is an isomorphism. If there exists a cardinal x such that an object A of M is
r-small relative to I then we say that A is small relative to I. If A is small

relative to M we say it is small.

Remark 3.16. The small object argument presented above and Theorem 3.12
can be generalised so that it is sufficient that the domains of the morphisms in
the generating set I are small relative to the relative I-cell complexes. That is, we
have a factorisation f = pis constructed similarly and (?(17), (1)) is a weak
factorisation system on M. In this case and the previous case, the factorisation
f = Poolso from the small object argument is a functorial factorisation. See
Theorem 2.1.14 on page 32 of [5] for details.



Chapter 4
Model Categories

Model categories were first defined by Quillen in [8]. The definition we use here
is the one found in [5] and [3]. This is a modification of what Quillen defined as a
closed model category. In particular requiring all bicompleteness rather than just
finite limits and colimits, and that the factorisations of the factorisation axiom
are functorial. The second of these is not included in the definition given in [1],
but in practice model categories satisfying this definition can generally be given

a functorial factorisation.

Definition 4.1. A model structure on a bicomplete category, M, consists
of three distinguished classes of morphisms, W, C, F, called the weak equiva-
lences, cofibrations, and fibrations respectively satisfying the following ax-

ioms;

1. (Two out of Three Axiom) If f and g are composable and two of f, g,
and gf are in W then so is the third. We say that W has the two out of
three property.

2. (Retract Axiom) The morphism classes W,C, F are each closed under

retracts.

3. (Lifting Axiom) The morphisms in C have the left lifting property with
respect to the morphisms in W N F. The morphisms in F have the right
lifting property with respect to the morphisms in W N C.

4. (Factorisation Axiom) There are two functorial factorisations («, $) and
(7,9) on M such that for f : X — Y in M we have af € C,ff €
WNF.vfeWnC,and 0f € F.

27
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A model category is a bicomplete category, M, together with a model structure

(W,C,F) on M.

A morphism in a model category which is both a weak equivalence and a cofibra-
tion is called an acyclic cofibration, similarly a morphism in a model category

which is both a weak equivalence and a fibration is called an acyclic fibration.

Remark 4.2. A given category can have more than one model structure on it.

We will see this when we get to examples of model categories.

Examples 4.3. (i) A trivial example of a model category is the one object
category where the only morphism is the identity morphism which is a

weak equivalence, a cofibration, and a fibration.

(ii) Less trivially let M be a bicomplete category. There is a model structure
on M given by letting W be the class of all isomorphisms and letting C
and F be the class of all morphisms in M. Let f: X =Y andg:Y — Z
be morphisms in M. The two out of three axiom is obviously satisfied for
isomorphisms. As they contain all morphisms C and F are clearly closed
under retracts. If g : X — Y is an isomorphism and f : A — B is a retract

of g then there exists a commutative diagram

Then f(jg 'k) = 1g and (jg~'k)f = 14 so f is an isomorphism with inverse
jg~'k. So W is closed under retracts. Hence the retract axiom is satisfied.

Given the solid arrows in the diagram commute

A%X

/7(
fl v lg

if f is an isomorphism then putting ¢ = jf~! the above diagram commutes,
similarly if g is an isomorphism then putting ¢ = ¢~ 'k makes the diagram
commute. Hence the lifting axiom is satisfied. Finally the required functo-

rial factorisations are given by af = f, 8f =1, vf = 1la, and 0 f = f.
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For less trivial examples, showing that a given category M together with mor-
phism classes W, C, and F is a model category directly from the axioms can
be quite difficult. In practice one does this by showing that a model category is
a cofibrantly generated model category. Example of categories with interesting
model structures include the category of compactly generated, weakly Hausdorft
topological spaces, the category of simplicial sets, the category of R-modules
where R is a Frobenius ring, and the category of chain complexes of modules
over a ring R. We leave the description of these model structures until after
we have established some basic results about model categories and have defined

cofibrantly generated model categories.

Definition 4.4. Let M be a model category, and let X be an object in M. We
say that X is cofibrant if the morphism @ — X from the initial object is a
cofibration in M. We say that X is fibrant if the morphism X — * to the final
object is a fibration in M.

Definition 4.5. Let M be a model category. For an object X in M we can
apply the functorial factorisation («, 3) to the morphism from the initial object
to X to get @ — QX 5 X where QX is a cofibrant object and ¢y is an acyclic
fibration. Let f : X — Y be a morphism in M then f corresponds to a unique
morphism in M2, Applying « gives a unique morphism Qf : QX — QY.

g — I b — O
ol L]=1 |
x J.y ox 2L gy

We define the cofibrant replacement functor ) : M — M on objects and
morphisms as above. The functoriality of () follows from the functoriality of a.
The morphisms gx : QX — X are the components of a natural transformation
q: @ = 1, Similarly we define the fibrant replacement functor by
applying the functorial factorisation (v, §) to the morphism X — * from an object
X to the final object. We get X =55 RX — * where RX is a fibrant object and
rx is an acyclic cofibration. A morphism f : X — Y in M corresponds to a
unique morphism in M?2. Applying ¢ gives a unique morphism Rf : RX — RY.

x 1.y RY

AU A

* ——— %
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The functoriality of R follows from the functoriality of §. The morphisms ry :

X — RX are the components of a natural transformation r : 1, = R.

Proposition 4.6. Let M be a model category with model structure (W,C,F).
Then,

(i) a morphism f in M is a cofibration if and only if it has the left lifting

property with respect to all acyclic fibrations,

(i) a morphism f in M is an acyclic cofibration if and only if it has the left
lifting property with respect to all fibrations,

(iii) a morphism f in M is a fibration if and only if it has the right lifting

property with respect to all acyclic cofibrations,

(iv) a morphism f in M is an acyclic fibration if and only if it has the right
lifting property with respect to all cofibrations.

Proof. We prove part (i), the other proofs are similar. Suppose that f € C then f
has the left lifting property with respect to WNF by the lifting axiom. Conversely,
suppose that f has the left lifting property with respect to all morphisms in
W N F. By the factorisation axiom f factors as X oy 2L Y where fec
and gf € WN F. By assumption f has the left lifting property with respect to
Bf. By the retract argument f is a retract of af. Hence by the retract axiom

fec. a

Remark 4.7. Proposition 4.6 together with the retract and factorisation axioms
show that in any model category M the pairs (C, W N F) and (W NC,F) are

weak factorisation systems on M.

Proposition 4.8. Let M be a model category with model structure (W,C,F).
Then a morphism f in M is a weak equivalence if and only if f = pi where p is

an acyclic fibration and i is an acyclic cofibration.

Proof. Suppose f is a weak equivalence. By the factorisation axiom we can
factorise f as f = (6f)(af) where af € C and 5f € W N F. By the two out
of three axiom af is a weak equivalence, hence af € W N C. The converse is

immediate by the two out of three axiom. m

Proposition 4.9. Let M be a model category. Any two of the classes of weak

equivalences, cofibrations, and fibrations determines the other.
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Proof.

e If the weak equivalences and cofibrations are known then by Proposition 4.6
part (ii) the fibrations are precisely those morphisms with the right lifting

property with respect to the acyclic cofibrations.

e If the weak equivalences and fibrations are known then by Proposition 4.6
part (iv) the cofibrations are precisely those morphisms with the right lifting
property with respect to the acyclic fibrations.

e If the cofibrations and fibrations are known then by Proposition 4.6 parts
(i) and (iii) the acyclic cofibrations and acyclic fibrations are known. By
Proposition 4.8 the weak equivalences are precisely those morphism which

can be written as an acyclic cofibration followed by an acyclic fibration.
O

Functors between model categories which preserve the model structures, called
Quillen functors, are particularly important because they induce functors be-
tween the homotopy categories. When the induced functor is an equivalence of
categories these are called Quillen equivalences and can allow the same homotopy

category to be studied using model categories that are not equivalent.

Definition 4.10. Let M and N be model categories, and let F: M =2 N :G
be an adjoint pair of functors where F' #4 G. We say that F' is a left Quillen
functor if F' preserves cofibrations and acyclic cofibrations. We say that G is
a right Quillen functor if G preserves fibrations and acyclic fibrations. If
(F,G, ) is an adjunction and F' is a left Quillen functor we call it a Quillen

adjunction.

Proposition 4.11. Let M and N be model categories, and let F: M =2 N :G
be an adjoint pair of functors where F is left adjoint to G. Then F is a left
Quillen functor if and only if G is a right Quillen functor.

Proof. Suppose F is a left Quillen functor. Let p : X — Y be a fibration in N/
and ¢ : A — B be an acyclic cofibration in M. By the adjunction F' 4 G the first
diagram (in M)

A—— GX FA— X

7 P
1l o le le R lp

B QY FB ——Y



32 CHAPTER 4. MODEL CATEGORIES

has the lift shown if and only the second diagram (in N) has the lift shown. As F
is a left Quillen functor F'i is an acyclic cofibration in A, so F7 has the left lifting
property with respect to p. In particular the second diagram above has the lift
shown and hence so does the first. Hence Gp has the right lifting property with
respect to all acyclic cofibrations in M, that is Gp is a fibration in M. Hence G
preserves fibrations. Replacing acyclic cofibration and fibration with cofibration
and acyclic fibration above shows that GG preserves acyclic fibrations. Hence G
is a right Quillen functor. A similar argument shows that if G is a right Quillen
functor then F' is a left Quillen functor. m

Definition 4.12. Let M be a category with a distinguished class of morphisms,
W called weak equivalences. The homotopy “category”, Ho M, is the “cate-
gory” we get by formally adding inverses for the weak equivalences. More specif-
ically, let F'(M, W™!) be the free category generated by M and a formal inverse
w~! for each morphism w € W where if w : X — Y then w™!: Y — X. The
objects of this category are the objects of M and the morphisms are finite strings
(f1,-.., fn) of composable morphisms where each f; is either a morphism in M or
is w! for some w € W. Composition is concatenation of strings and the empty
string at an object is the identity morphism for that object. Then Ho M is the
quotient category of F'(M,W™!) by the relations that for all X € obj(M) we
have 1x = (1x), for all composable arrows of M we have (f,g) = (¢f), and for
w:X — Y in W we have (w,w™!) = 1x and (w™! w) = 1y.

Remark 4.13. As defined Ho M is not necessarily a category. In particular,
Ho M(X,Y') might be a proper class. Part of the motivation for studying model
categories is that if M is a model category where WV are the weak equivalences of
the model structure then Ho M is a category. This is shown in Theorem 1.2.10
on page 13 of [5].

Formal inversion of a class of morphisms in this way is called localisation. There
is an obvious inclusion functor v : M — Ho M taking objects and morphisms to
themselves, in particular taking weak equivalences to isomorphisms. This functor
has the universal property! that if ¢ : M — A is a functor such that ¢(w) is
an isomorphism whenever w is a weak equivalence, then there exists a unique
functor ¢ : Ho M — N such that ¢ = 6.

Definition 4.14. Let M be a model category. We write M., M, and M,y for

the full subcategories of M whose objects are respectively, the cofibrant objects,

!See Lemma 1.2.2 on page 7 of [5] for a proof.
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the fibrant objects, and objects which are both cofibrant and fibrant. If w was a

weak equivalence in M we will still consider it so in these subcategories.

Proposition 4.15. Let M be a model category. By the universal property of
the inclusion functors of categories into their homotopy categories, the inclusions
functors Mcy — M, — M and My — My — M induce functors Ho M.y —
HoM, — HoM and HoM. — HoM; — HoM. These induced functors are

equivalences of categories.

Proof. We show that the functor Ho M, — Ho M induced by the inclusion ¢ :
M. — M is an equivalence, the other cases are similar. A morphism w in M,
is only a weak equivalence if it is a weak equivalence in M so weak equivalences
go to isomorphisms under the functor M, < M — HoM. So by the universal
property of M, — Ho M, there is a functor Hot : Ho M. — Ho M induced by
t. The cofibrant replacement functor ) : M — M takes objects in M to objects
in M, and so we can consider it a functor M — M,. If f: X — Y is a weak

equivalence then we have the commutative diagram

ox 2L, oy

qu l‘”
x I .y

in M where gx and gy are weak equivalences. So by the two out of three axiom
Qf is a weak equivalence. So weak equivalences go to isomorphisms under the
functor M % M, — Ho M.. So by the universal property of M — Ho M there
is a functor Ho @) : HoM — Ho M, induced by (). For all objects X in M the
morphism gy is a weak equivalence tQ(X) = QX — X and so are isomorphisms
QX — X in Ho M. These give a natural isomorphism (Ho:)(Ho Q) = 1.
Considering only the objects in M, in the same way gives a natural isomorphism

(Ho@Q)(Hot) = 1. Hence Ho is an equivalence of categories. O
Definition 4.16. Let M and N be model categories.

(i) If F: M — N is a left Quillen functor the total left derived functor,
LF : HoM — HoN is the composition

Ho M HoQ, Ho M. HoF Ho N

(i) If G : N'— M is a right Quillen functor the total right derived functor,
RG : HoN — Ho M is the composition

HoN 2% Ho N 2% Ho M.
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Lemma 4.17. Let (F, G, ) be a Quillen adjunction with F: M S N : G. Then
there is an adjuntion L(F, G, ¢) = (LF, RG, Ry) called the derived adjunction.

For a proof that the derived adjunction is an adjunction see Lemma 1.3.10 on
page 18 of [5].

Definition 4.18. A Quillen adjunction (F,G,¢) with ' : M S N : G is a
Quillen equivalence if for all cofibrant objects X in M and all fibrant objects
Y in N, a morphism f : FX — Y is a weak equivalence if and only if ¢(f) :
X — GY is a weak equivalence.

Proposition 4.19. Let (F,G, ) be a Quillen adjunction with F: M S N : G.

Then the following are equivalent:
(i) (F,G,p) is a Quillen equivalence.
(ii) The composition
nx Grpx
X — GFX — GRFX

1s a weak equivalence of all cofibrant objects X in M, and the composition
FOGY 2o, pay 2y
is a weak equivalence for all fibrant objects Y in N .
(iii) The derived adjunction L(F,G,p) is an adjoint equivalence of categories.
Proof. See Proposition 1.3.13 on page 19 of [5]. O

Definition 4.20. A cofibrantly generated model category, M, is a model
category such that there exist sets of morphisms I,.J called the generating
cofibrations and the generating acyclic cofibrations respectively such that
the domains of I and J are small relative to I-cell and J-cell respectively, and

the weak factorisation systems from Remark 4.7 are those cofibrantly generated

by I and J. That is, (C,WNF) = (4(1%),1?) and W NC, F) = (4(J%), J?)

Theorem 4.21. Let M be a bicomplete category, let W be a class of morphisms in
M, and let I, J be sets of morphisms in M. Then there is a model structure on M
where W is the class of weak equivalences, I is the set of generating cofibrations,
and J is the set a generating acyclic cofibrations if and only if the following

conditions hold:

(i) The class W has the two out of three property and is closed under retracts
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(i1) The domains of elements of I are small relative to I-cell
(i1i) The domains of elements of J are small relative to J-cell
(iv) The class J-cell is contained in W N?(1?)

(v) The class I? is contained in W N J?

(vi) Either the class W N 2(I%) is contained in %(J%) or the class W N J? is

contained in I®.

Proof. Suppose that M is a cofibrantly generated model category where I, .J are
the generating cofibrations and the generating acyclic cofibrations respectively.
By the two out of three axiom condition (i) is satisfied. The smallness conditions
(ii) and (iii) are satisfied by definition. If f € J-cell then by Theorem 3.12
fe?J?) =wWnC =Wn?I%) so condition (iv) is satisfied. Condition (v) is
satisfied as I = WNF = W N J% Both conditions in part (vi) are satisfied as
WwneI?) =wncC =%%J%) and WNnJ?=WnCc = I“

Conversely suppose that conditions (i) - (vi) are satisfied. By condition (i) the two
out of three axiom is satisfied. Define the class of cofibrations C to be ?(I?) and
define the class of fibrations F to be J%. As these are defined by lifting properties
they are closed under retracts by Proposition 3.4. Together with condition (i),

this shows that the retract axiom is satisfied.

By Theorem 3.12 and Remark 3.16, conditions (ii) and (iii) allow us to apply
the small object argument using / and J to get functorial factorisations («, 3)
and (v, 8) such that for all morphisms f in M, «(f) is in ?(I%) = C, B(f) is in
I CWnJ? =WnNF by condition (v), v(f) is in J-cell CWNJ? =WNC by

condition (iv), and 6(f) is in J? = F. So the factorisation axiom is satisfied.

Finally we need to show that the lifting axiom holds. Suppose that WN?(I%) =
W NC is contained in ?(J%) = “F, that is every acyclic cofibration has the left
lifting property with respect to every fibration. Suppose p is an acyclic fibration,
we have a functorial factorisation p = (8p)(ap) where 8p is in I? C W N F, and
ap is in C. As the weak equivalences satisfy the two out of three property ap
is also in W. As p is a fibration it has the right lifting property with respect
to ap. By the retract argument (Proposition 3.2 (ii)) p is a retract of Sp. So
by Proposition 3.4 p is in I? and so has the right lifting property with respect
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to every cofibration. So the lifting axiom is satisfied. Alternatively, suppose
that W N J? = W N F is contained in I?. Then every acyclic fibration has the
right lifting property with respect to every cofibration (morphisms in ?(1%) = C).
Suppose i is an acyclic cofibration, we have a functorial factorisation i = (i) (i)
where di is in F = J? and ~i is in J-cell C W N C. Recall from the proof of
Theorem 3.12 that J-cell C ?(J?). As the weak equivalences satisfy the two out
of three axiom 47 is also in W. As i is a cofibration it has the left lifting property
with respect to di. By the retract argument (Proposition 3.2 (i)) 7 is a retract
of vi. So by Proposition 3.4 ¢ has the left lifting property with respect to the
fibrations because vi does. Hence the lifting axiom is satisfied. m

The roots of abstract homotopy theory lie in algebraic topology. An important
model structure then is the classic model structure on the category of topological
spaces. The category of topological spaces and continuous functions between
them, Top, is a poor category to work with as the product functor — x X :
Top — Top, W — W x X does not commute with colimits for general X. In
the following we consider S~! to be the empty set.

The following proof that the category of compactly generated, weakly Hausdorff,
topological spaces is a cofibrantly generated model category mostly follows the
proof in [5]. However the proof that condition (vi) is satisfied provided here is

more elementary than the proof in [5] (Theorem 2.4.12).

Theorem 4.22. The category, T of compactly generated, weakly Hausdorff, topo-
logical spaces is a cofibrantly generated model category where the generating cofi-
brations are the set of boundary inclusions I' = {S"™1 — D"}, cn, the generating
acyclic cofibrations are the set of inclusions J = {D" < D" x I,z — (x,0) },en,
and the class of weak equivalences VW consists those morphisms f : X — Y which
mduce a bijection of path components and an isomorphism of homotopy groups
Fo i (X, 20) = ma(Y, flx0)) for allm > 1 and all choices of basepoint zo € X.

Proof. We prove this by showing that the conditions of Theorem 4.21 hold.

(i) Let f: X —» Y and g : Y — Z be morphisms in 7. Clearly if any two
of f, g, and gf induce a bijection of path components so does the third.

Let n € N. If m,(X, x) ELN (Y, f(20)) and 7, (Y, y0) L5 7.(Z, g(y0))
are isomorphisms then clearly ,, (X, z¢) NN (2, g(f(x0))) is an isomor-
phism. Similarly, if g, and (gf). are isomorphisms it is immediate that f.

is an isomorphism. Suppose 7, (X, zo) TN (Y, f(z0)) and 7, (X, o) {oD)-,
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mn(Z, g(f(x0))) are isomorphisms for all 5 € X, and that f and gf induce
bijections of path components. If there is some xy € X such that f(zg) = yo
then clearly 7, (Y, yo) £ 7.(Z, g(yo)) is an isomorphism. If yq is not in the
image of f, by the assumption that f induces a bijection on path compo-
nents there exists some xy such that f(zg) is in the same path component
as yo. So there is a path p: I — Y such that p(0) = f(xy) and p(1) = yo,
as g is continuous gp : I — Z is a path from ¢(f(z0)) to g(yo). By change
of basepoint isomorphisms 3, and f,, (see [2] Proposition 1.5) there is a

commutative diagram as follows.

Tu(Y. f(x0)) == mu(Z, g(f (o))

As the other three morphisms are isomorphisms so is the top one. Hence

W has the two out of three property.

Given a space X, in T the pushout of a boundary inclusion S"~ ! < D"
along a morphism ¢ : S"~! — X glues an n-cell to X; along the attaching
map ¢. So if X : N — T is an N-sequence in [’-cell then (X, 1, X,) is
a relative CW complex for all n € N. In particular colim, X, = {J, X,.
Given a morphism f : S™ — colim,, X, as S is compact the image f(S™)
intersects the interior of at most finitely many cells so there exists j € N
such that f factors through X; by S™ ENS'e ; = colim,, X,,. So the canonical
morphism colim(7 (S, X)) — T(S™,colim X,,) is a bijection of sets for
all m € N. Hnence the domains of the I’ rﬁorphisms are sequentially small

relative to [I’-cell.

Given a space Xg in T the pushout of an inclusion D™ < D" x I, x + (x,0)
along a morphism ¢ : D" — X, glues the finite CW complex D" x I along
an n-disk. So if X : N — T is a N-sequence in J-cell then (X, 1, X)) is
a relative CW complex for all n € N. In particular colim, X, = {J, X,.
Given a morphism f : D™ — colim, X,, as D™ is compact the image
f(D™) intersects the interior of at most finitely many cells so there exists
J € N such that f factors through X; by D™ ER X, < colim, X,,. So the
canonical morphism colim(7 (D,,, X,,)) — T (D™, colim X,,) is a bijection of
sets for all m € N. Her?ce the domains of the J mor;n)hisms are sequentially

small relative to J-cell.
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Morphisms in J-cell are transfinite compositions of inclusion maps X,, —
Xpy1 where (X411, X,,) is a relative CW complex for all n. In particular
Xyt is always X, with a finite CW complex D,, x I attached along some
m-disk, so X, is a deformation retract of X,, 1. Soif f: X — Y isin J-cell
then f is a homotopy equivalence, hence f € W.

Let f : X — Y be a morphism in J-cell. Then f is some transfinite
composition of pushouts of morphisms of the form D" < D" x [, x + (z,0).
As per (iii) a pushout of such a morphism along some D" — X is a gluing
of a finite CW complex D" x I to X. In particular D™ x I has 9 cells and so
a pushout of a J morphism is a composition of pushouts of I” morphisms.
Hence f is a transfinite composition of pushouts of I’ morphisms. Hence
J-cell C I'-cell C?((I")7).

Let p: X — Y be a morphism with the right lifting property with respect
to I’ morphisms. Let i : D™ — D™ x I be a J morphism, and let j and k
be morphisms such that pj = ki. As mentioned above, D" x [ is obtained
from D™ by attaching finitely many cells. So a J morphism is a finite
composition of morphisms D" 5% C; — ... = Choy 25 C,y = D" x I
where each ¢}, is a pushout of an I’ morphism. As I’ morphisms have the
left lifting property with respect to p, by Proposition 3.5 so does each ¢y,.
We have a morphism j : D™ — X such that there exists a lift making the

following diagram commute.

D" ! '
wl /%}1 —— P

C’l—>D”><I—>Y

Given a morphism ;1 : Cx_1 — X such that the outside of the following
diagram commutes, there exists a lift ¢, : Cx — X such that the whole

diagram commutes.

C-1

y X
o e

Ck—>D"><I—>Y

Hence a finite induction gives us a lift ¢ = 1), such that the following
diagram commutes. Hence p has the right lifting property with respect to

the J morphisms.
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pr—t 5 x

| o7

D”XITY

Consider the homomorphism p, : 7,(X,z9) — 7, (Y, p(z0)) of homotopy
group induced by p for some n € N. Suppose that p.([f]) = 0 for some
f 8™ —= X. Asp has the right lifting property with respect to I’ morphisms

there is a lift such that the following diagram commutes.

gn 1 o x

7
l /// lp
//

Dn+1 — Y

So f is null-homotopic. Thus, [f] = 0 so p, is injective. The n sphere S™ is
a CW complex, in particular it can be constructed from the empty space by
attached finitely many cells. So the morphism @ — S™ has the left lifting
property with respect to I%. So given a morphism ¢ : S™ — Y there exists

a lift such that the following diagram commutes.

g —— X

1
l /// lp

Sn T> Y
So p, is surjective. Hence p is a weak equivalence.

Let p: X — Y be a morphism in W N J%. For n € N suppose there exist

morphisms j and k such that the following diagram commutes.

g1t _J

]

As p is a weak equivalence the induced morphism p, : 7, (X, z9) —
Tn—1(Y,p(x0)) is an isomorphism. The composition ki is null-homotopic,
so by the isomorphism [j] = 0 in m,_1(X,z). Hence j extends to a mor-
phism f : D™ — X. We can glue two copies of D" together to get S™ as
the pushout of i along itself. This gives us a morphism g : S™ — Y from

the following commutative diagram.
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-1 A \ ? \
Sn ‘ 7 Di 7 X

(!

Dr ——— St p

AN

\\\ 3!?
N
g
Y

Here the subscripts on the copies of D™ are to distinguish them. As p, :

Tn(X, o) = 7, (Y, p(x0)) is an isomorphism there exists a lift f : S" — X
in the above diagram together with a homotopy H : S™ x I — Y between
pf and g. We can choose H so that H|D1X{t} = f for all t € I. With the

morphisms constructed we have the following commutative diagram.

X
lp
%

The right hand morphism is a relative J-cell complex. As p is in J% there
exists a lift H : S" x I — X in the above diagram. Put h = _H|Sn><{]_} :
S™ — X. Then ;L|Di — f and ph|pn = Glp» = g. So h|p» is a lift in the
original diagram. Hence p is in I%.

|

(5" x {0} U (D x 1) L20D,
S™x I 5

H

O
For a proof of the following proposition see Proposition 1.1.8 on page 5 of [5].

Proposition 4.23. Let M be a model category. There is a model structure on
M, where a morphism f is a weak equivalence (cofibration, fibration) if and
only if Uf is a a weak equivalence (cofibration, fibration) in M, where U is the
forgetful functor (see Defintion 1.20).

Corollary 4.24. The category T, of compactly generated, weak Hausdorff, based
topological spaces is a cofibrantly generated model category where the weak equiva-
lences are those determined be the previous theorem and lemma and the generating
cofibrations, I'_, and generating acyclic cofibrations, J, are the based analogues
of the I' and J morphisms from the previous theorem.

The n-dimensional simplex in 7T is

n+1
AL ={(z1,...,Tn41) € R Z =1,x; > 0 for all 7}.

i=1
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There is an adjoint pair of functors |- | : sSet = T : S,. The functor |- | is called
geometric realisation. The geometric realisation |X| of a simplicial set X is
a topological space with one n-dimensional simplex for each n simplex with the
jth (n — 1)-dimensional face
n+1
{(z1,...,Tny1) € R Z:z;l =1,2; > 0 for all 4,z; = 0}
i=1

of an n-dimensional simplex being identified with the (n — 1)-dimensional sim-
plex corresponding to by the (n — 1) simplex mapped to under the jth face
morphism. For the representables in sSet we define |A"| = A’%. Now we can
explicitly define | X| for some simplicial set X, treating X,, as a topological space
by giving it the discrete topology we have |X| = ][, (|A" x X,,)/ ~ where
(f(o),z) ~ (o, f(x)) for all f € A([k],[n]). The functor S, : T — sSet is
called singular complex. Given a topological space X in T it produces a sim-
plicial set S,(X) whose n-simplices are continuous morphisms A%} — X. The
jth face morphism d; : Se(X), — Se(X),—1 is given by precomposition with
the “inclusion” |A™ — |A"], (z1,...,Zns1) — (T1,...,25-1,0,24,...,2,) SO
that d; : (JA"| ER X) = (JA™ ] — A" EN X). Similarly the jth degener-
acy morphism s; : S¢(X), — S¢(X)n+1 is given by precomposition with the
map |A™ — [A"| (21, ..., Tpg2) = (T2, T, T+ T, Tjga,s -y Toga). SO
s+ (JA™] Iy X) = (JA™Y < |A"| 5 X). Tt is straightforward to check that

these morphisms satisfy the simplicial relations.

Proposition 4.25. Geometric realisation and singular complex are an adjoint
pair of functors |-|: sSet =T : S,.

Proof. Let X be an object of sSet and let Y be an object of T. Let f : X —
S,(Y) be a morphism in sSet. Given (¢, z) € |A"| x X,, define f(t,z) = f(z)(t)
which is a morphism |X| — Y. Conversely, let g : | X| — Y be a morphism in 7.
Given z € X,, we define g(x)(t) = g(t,z) for t € |A"|. These are clearly inverse

constructions which are natural in X and Y. O

The adjunction described above is a Quillen equivalence with respect to the fol-
lowing cofibrantly generated model structure on sSet. A proof that this is a

model category can be found at Theorem 3.6.5 in [5].

Theorem 4.26. The category sSet of simplicial sets is a cofibrantly generated
model structure where the generating cofibrations are the set of boundary inclu-

sions I = {0A™ — A"},.en, the generating acyclic cofibrations are the set of horn
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inclusions J = {Al" — A" },eno<i<n, and the class of weak equivalences W con-
sists of those morphisms f : X — Y whose geometric realisation, |f|: | X| — |Y|

18 a weak equivalence in T .
The following lemma is due to Reedy.

Lemma 4.27. Let M be a model category. If there exists a commutative diagram

A b > B
\ X
s A Y > B’
o
C d > D e’
\ X
C’ d s D'

such that the front and back squares are pushouts, f is a cofibration, and the
morphism ¢ : A’ 114 C' — C" induced by the left square is a cofibration, then g is

a cofibration.

Proof. Let p: X — Y be an acyclic fibration in M. Given a commutative square
DX
gl lp
D’ T> Y

there exists a lift ¢ in the following commutative diagram as f is a cofibration

and so has the left lifting property with respect to p.

B, x

/>(
fl v lp

B’ — Y

Noting that jds = jeb = ¢ fb = pb'a, the morphisms jd : C — X and @b’ : A" —
X induce a morphism o : A/ LI, C — X. As ¢ : A/ 11, C — (' is a cofibration

the lift ¢ exists in the following commutative diagram.
ATl A C 7= X

A
27

/
C — Y
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As the front square in the original diagram is a pushout and ¥t = YL = b’
where ¢4/ is the pushout of s along a, the morphisms ¢ and ¢ induce a morphism
h: D" — X. We have hge = he'f = ¢f = je and hgd = hd'c = ¢ = e =
otc = jd where 1o is the pushout of a along s. As the back square in the original
diagram is a pushout this tells that hg = j. Further we have that kd' = py = phd’
and ke/ = pp = phe’, as the back square of the original diagram is a pushout this

tells us that ph = k. Hence the following diagram commutes.

D X

R
gl f/L// lp

D’ T> Y
As p was an arbitrary acyclic fibration g has the left lifting property with respect

to any acyclic fibration. Hence g is a cofibration. m
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Chapter 5
Spectra

In the category of based topological spaces the suspension functor ¥ is not invert-
ible. Spectra were introduced to rectify this deficiency. Throughout this chapter
T, will be the category of compactly generated, weak Hausdorff, based topolog-
ical spaces with the cofibrantly generated model structure defined in Corollary

4.24. In general, we leave the basepoint of objects in 7, implicit.

Definition 5.1. The suspension functor X : 7. — 7, is the functor taking
a space X in T, to its based suspension ¥X = S' A X = (S x X)/(S* v X).
The loop space functor 2 : 7, — 7, is the functor taking X to Map(S?, X)
which is the set of basepoint preserving, continuous functions S' — X with the

compact-open topology on it.
Proposition 5.2. The suspension and loop space functors are adjoints.

Proof. If f € T,(X,QY) then f is a continuous morphism X — Map(S!,Y).
Such a morphism is continuous if and only if (see [10], page 6) the composition
X x gt sty Map(S1,Y) x S' =5 Y where ev(g,s) = g(s) is continuous. As
the spaces are based, f(X V S') = y, where 1, is the basepoint in Y. That is,
precisely a continuous morphism (S! x X)/(S'V X) = ¥X — Y. This gives a

bijection T, (XX,Y) = T, (X, QYY) which is natural in X and Y. O

Definition 5.3. A topological category is a category D which is enriched over
the category of (unbased) compactly generated, weakly Hausdorff topological
spaces, T. That is, for any objects d and e in D the set of morphisms D(d, €) is
an object of T.

Remark 5.4. The above definition is incomplete as we have left out some co-
herence conditions involving the monoidal structure on 7, as we do not make

explicit use of them.

45
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Definition 5.5. Given a small topological symmetric monoidal category D (Defin-
tion 1.22) a D-space is an object continuous (limit preserving) functor D — T,.
As D and T are both enriched over T, for an object X in DT we have that the
induced morphism Map(A, B) — Map(X A, X B) for all A, B € obj(D). We write
DT, for the full subcategory of 77 whose objects are D-spaces. This category is

bicomplete with (co)limits constructed level-wise.

We can generalise the adjoint pair ev, 4 (—)e from Definition 2.5. Let d €
obj(D), then the dth evaluation functor is evy : D7, — 7T, which sends
objects X : D — T, to X4 and morphisms f : X — Y in D7, which is a natural
transformation to the component f; : X4y — Y,;. The dth shift desuspension
functor is Fy; : 7. — DT, which sends objects e to D(d, e)+ A X and morphisms
p:e— finDtoD(de)r N X pehlx, D(d, f)+ N X where the  is a disjoint
basepoint attached to make it a based space. If D(d, e) has the discrete topology
for all objects d and e in D then (FuX). = D(d,e)+ A X =V, cp X which
is a copy of X for each map d — e in D attached at the basepoint. Then for
a morphism ¢ : e = f we have Fy(¢) © V,epue X = Vyepup X sending
the copy of X corresponding to o € D(d, e) to the copy of X corresponding to
wo € D(d, f).

Proposition 5.6. For all d € obj(D) the dth shift desuspension functor and the

dth evaluation functor are adjoint, with Fy 4 evy.

Proof. Let f: F;X — Y be a morphism in DT, that is f is a natural transforma-
tion. So f has components f. : (Fy). = D(d,e) ANX — Y.. In particular we have
fa: (FyX)s=D(d,d)+ N X — Y. We can restrict this to 1; to get a morphism
falig.nx + X — Yy = evg(Y). By the naturality condition on the components of
f for any object e in D and ¢ € D(d, e) the following diagram commutes.

(FuX)q —5 v,

Fd(@)l leo
(

FuX). —5 v,

Hence the components of f are entirely determined by fal1,, nx. Given a mor-
phism g : X — Yy = evyg(Y) in 71 we let g : F;X — Y be the morphism in DT
with components g, : (FyX). = D(d,e)x N X = Y., (0,2) = (Yo)(g(x)).

O

Proposition 5.7. Given a small topological symmetric monoidal category D there

s a cofibrantly generated model structure on DT where the weak equivalences,



47

Whp7, are the morphisms f : X — Y whose component morphisms fq: Xq — Yy

are weak equivalences in T, for all d € obj(D), the set of generating cofibrations

18

FI = {Fd(f) | f S Ig_} = {Fd(Sn — Dn)}deobj(’D),v

neN

and the set of generating acyclic cofibrations is

FJ={F(f)| feJi}={Fa(D" — D" x I,z (x, 0))}deobj(D),-

neN

Proof. We prove this by showing that the conditions of Theorem 4.21 are satisfied.

(i)

Let f and g be composable morphisms in D7 . If two of f, g, and gf are
weak equivalences then their components are weak equivalences in 7,. As
weak equivalences in 7, have the two out of three property the component
of the third morphism are also weak equivalences, so the third is itself a

weak equivalence. Hence the weak equivalences have the two out of three

property.

Let f: A — B be a retract of g : X — Y where g is a weak equivalence
then there exist morphisms in DT making the first diagram commute. It
follows that for each d € obj(D) the d components of these morphisms in

T+ make the second diagram commute.

So f; is a retract of g4 for all d. Then as 7, is a model category and gy
is a weak equivalence for all d, by the retract axiom, f; is also a weak
equivalence for all d € obj(D). So f is a weak equivalence. Hence the weak

equivalences are closed under retracts.

The domains of the F'I morphisms are small relative to F'I-cell because the

domains of the I” morphisms are small relative to I’-cell in T,

The domains of the F'J morphisms are small relative to F'J-cell because

the domains of the J morphisms are small relative to J-cell in T,
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(iv)

(vi)
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Let f: A — B be a morphism in F'J-cell. Then f is a transfinite composi-
tion of pushouts of F'J morphisms. Let the first of the following diagrams be
such a pushout. Then by the adjunction F;, 4 evy, and the fact that colimits

are constructed level-wise in DT the second diagram is also a pushout.

Fp.(D") — A; D" — (Aj)a,
Fdl(Dn X [) E— Ai+1 D'"x [ —— (AiJrl)dZ'

So A; — A;11 is in J-cell in T,. Then as 7, is a cofibrantly generated
model category A; — A;.1 is a weak equivalence and is in ?((I")?). Hence
[ is in Wpr N2(FI?).

Let f : X — Y be a morphism in F'I?. Then for all objects d in D andn € N
and morphisms 7, k such that the outside of the first diagram commutes the
dashed lift exists. Then by the adjunction F; - evy the dashed lift also

exists in the second diagram.

Fa(s") —— X gn iy
//\( /‘7[

l ///// ‘f l //// lfd

Fy(D") —— Y D" Yo

So fgisin (I)?in T,. Then as T, is a cofibrantly generated model category

fq is a weak equivalence and is in J%. Hence f is in Wps N F.J%.

Let p: X — Y be a morphism in Wpy N FJ%. Then for all n € N, objects
d in D, and morphisms j and k such that the outside of the first diagram
commutes, the dashed lift exists. Then by the adjunction F; - evy the

dashed lift also exists in the second diagram.

Fd(Dn> ;Z, X Dn L Xd
e 7

l /// p l el lpd

Fy(D" xI) —— Y D"x[k—d>Yd

Hence py is in J%. As p is a weak equivalence, so is pg. Hence as T, is a

cofibrantly generated model category pq is in (I')?. Hence p is in FI”.
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Recall that T, is a closed, symmetric monoidal category (Example 1.24). We
would like to use the monoidal product on 7, (the smash product) to define
a monoidal product on D-spaces. The obvious thing to do would be to define
the level-wise smash product X AY of two D-spaces by (X AY), = X, AY..
Unfortunately (X AY) : D x D — T, may not be a D-space. Instead let ® be
the monoidal product in D and let X A'Y be the left Kan extension of X AY
along ©. This gives us the following definition.

Definition 5.8. Let D be a small symmetric monoidal category with monoidal
product ©. Let X and Y be D-spaces, then the internal smash product

X AY is a D-space with (X AY )= colim (X, AY}). Alternatively, this can
(020 f—d)E(@4d)

be written as the coend

(e,/)eDxD
av= | Die® f,d)y A (X, AY)

= coeq [[Dee f,dn(XenYp) ST (Do f.d)s A (X AYY))
(a:(e,é‘,)Dﬁ%’,f’)) (e,f)€obj(DxD)

If D is a topological category where the morphism sets between objects are given
the discrete topology this becomes

(XAY)a=

coeq \/ \/ (Xe ANYp) | = \/ \/ (XeNYY)

(o:(e,f)—(e,f") \weD(edf,d) (e,f)€obj(DxD) \veD(e®f,d)
€eDxD

That is, the coequaliser of the morphisms induced by the following families of

morphisms.

w X(e! ")
{ \/(Xe’ AN Yf/) — \/(Xe/ N Yj/) _— \/ ( \/ (Xe// N Yf”)) }
vepleald $ED(O1 ) (") Sobi(DXP)\SED(OD) (@:(e", )5 (e,)) EDXD

and

3 X(e,f)
{ V(X AYp) = \[(Xe nYy) = \/ ( \/ (Xor A Yf,,)> }
(DxD)\YED (" Of" ,d) (o:(e’,f")—=(e,f))€EDXD

YED(eOf,d) YeD(eO f,d) (e”,f"")€o0bj

Here w is the morphism sending the copy of X, AY} corresponding to ¢ : e® f —
d to the copy of X A Yy corresponding to o : ¢’ ©® f' — d (along the identity)
and, ¢ sends the copy of X AYy corresponding to 1 to the copy of X, A Y}
corresponding to 1 along the map Xo1AY oy where o = (01 : €/ = e,09: f' — f).

The morphisms x( ¢ and X, r) are the colimit injection morphisms.
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With this internal smash product D7 is a closed symmetric monoidal category.
See [7] page 506 for a full proof of the following theorem and for the definition of

the internal hom.

Theorem 5.9. Let D be a small symmetric monoidal category with identity object
u. Then the category of D-spaces is a closed symmetric monoidal category where
the monoidal product is the internal smash product defined above, and the identity
object is F,S°.

Definition 5.10. A D-spectrum is a D-space which is an S-module where S is
the “obvious” sphere functor for the choice of D. That is, a D-space X together
with a morphism S A X — X. We denote the category of D-spectra by Sp”.

Remark 5.11. This can be generalised to D-spectra over R where R is any
monoid in DT . See [7] page 449 for details.

We will now describe some important examples of D-spectra.

Definition 5.12. Let A be the category whose objects are the natural numbers,
N, and whose only morphisms are identity morphisms. This is a small topological
symmetric monoidal category where the monoidal product is addition, and the
identity object is 0. The morphism spaces are all either the empty space or the
one point space. The sphere functor in this case is S : N — T,,n — S". We
call N-spectra prespectra. For an N-space X to be a prespectrum we require
a morphism o : SA X — X. First consider the domain of «,, as there are only
identity morphisms in A/ for n € N we have
(SAX), = colim  SAX; = (S"AX)V(S" 'AX))V...V(S'AX, 1)V(S°AX,,).
o:e+f—one(+in)
Hence the nth component of « is given by morphisms S A X,,_, — X,, for all
0 < p < n. Thus, equivalently a prespectrum is a sequence of spaces {X,, },en in
T, together with morphisms S™ A X,, — X,,, 1, for all n,m € N.

Definition 5.13. Let ¥ be the category whose objects are the sets [n] = {1,...,n}
for all n € N and whose morphisms are permutations of [n] for each n € N, that
is ¥([n],[n]) is the symmetric group on n letters, ¥,. This also means there
are only morphisms [n] — [m] in ¥ if n = m. This is a small topological
symmetric monoidal category where the monoidal product is addition, that is
[n] + [m] = [n + m], and the identity object is [0] which is the empty set. The

morphism sets are given the discrete topology. The sphere functor in this case is



o1

S:N — Ti,n— S =S A ... A S where the image of o € ¥([n], [n]) under S
permutes the smash factors of S™. We call X-spectra symmetric spectra. For a
o-space to be a symmetric spectrum we require the a morphism o : SA X — X.

First consider the domain of «,,, we have
(i,§)€ETXS '
(S AX), :/ Dli +j,n)s A (S A X))
= coeq \/ V S'Axp) =V \V  ($AX))
(a:(i,j)2—>(2i:/,j’)) YED(i+j,n) (,4)€0bj(ExX) \YeD(i+j,n)
enx

Since there are only morphisms i + j — n if i + j = n, and morphisms i’ — i
and 7' — j if i’ =4 and j' = j this is the coequaliser of the parallel morphisms

induced by the following families of morphisms.

(01,02)EZ; XZ0—s

YES, YED, i'=0 \peS,
0<i<n
and
n
{ V(STA X)) S \(S A X)) = \/ ( \/ (57 A X,H-/)) }
PES, PET, i'=0 \yYeX, (01,02)EXi XEn_;
0<i<n

Here w takes the copy of S* A X,,_; corresponding the ¢ : [n] — [n] to the
copy corresponding to ¢(o; + 02) and the second takes the copy of S* A X,,_;
corresponding to ¢ to the same copy by the morphism S*AX,,_; SnAXT2 GinX, .
In the first case we are implicitly thinking about >; x ¥, _; as a subgroup of ¥,
where the first component acts on the first i letters and the second acts on the last
n — i letters. So a morphism (S A X),, is equivalent to a (3; A X,,_;)-equivariant
morphism S* A X,,_; — X, for each 0 < i < n. So a symmetric spectra is a
sequence of spaces { X, }nen in T together with (X;AX,,_;)-equivariant morphisms
S'ANX,_i = X, forallneNand 0<i<n.

Definition 5.14. Let .# be the category whose objects are finite dimensional real
inner product spaces and whose morphisms are linear isometric isomorphisms.
This means there are only morphisms V' — W if dim(V) = dim(W) = n for
some n € N. When this is the case, #(V, W) is homeomorphic to the orthogonal
group O,. This is a small topological symmetric monoidal category where the

monoidal product is direct sum, and the identity object is the O-dimensional
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space. The sphere functor in this case is S : . — T,,V — SV where SV is the
1 point compactification of V' where S takes a morphism V' — W to the obvious

morphism SV — SW. We call .#-spectra orthogonal spectra.

Definition 5.15. Restricting the evaluation functors from Definition 5.5 to D-
spectra gives a functor evy : Sp” — T, X — X, this is the dth evaluation
functor on D-spectra. These evaluation functors have left adjoints F; : T, —
Sp? which we will call the dth shift desuspension functor to D-spectra. We
will describe these functors for D = A and D = X..

For D = N the ith evaluation functor Fj : T, — Sp” takes a space X in T, to

the presectra with

SITEA X for j >
(FiX); = o
{x} for 7 <1

For D = ¥ the ith evaluation functor F; : 7, — Sp? takes a space X in T. to
the symmetric spectra with
Y As (STTAX for j >
(FzX)j — J4+ E]fl ( ) j -

{x} for j <1
Theorem 5.16. Let D be one of N', X, or .#. There is a level model struc-
ture on the category of D-spectra, where f : X — Y is a level weak equivalence
(fibration) if it is a level weak equivalence (fibration) of D-spaces, and f is a
q-cofibration if it has the left lifting property with respect to all level acyclic fibra-

tions.

Freudanthal’s suspension theorem (see [2] chapter 4 section 2) states that if X
is an (n — 1)-connected CW complex then the suspension map on homotopy
groups ;(X) — m41(2XX) is a surjection for ¢ = 2n — 1 and is an isomorphism
for i < 2n — 1. It follows that for each £ € N there exists N € N such that
colim, 7y, (X" X) = 7,1, (X"X). This leads to the study of stable homotopy
theory. To study stable homotopy we want the weak equivalences to include
those morphisms which induce an isomorphism on stable homotopy groups. Un-
fortunately there are morphisms which do this which are not weak equivalences in
our level model structure. To rectify this we add more weak equivalences, a pro-
cess called localisation. However, changing just one of the classes of morphisms

in a model structure will prevent the lifting axiom from being satisfied. So we fix
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one of the other classes and change the third to be the class determined by the
fixed class and the new class of weak equivalences. In the case of spectra we fix
the cofibrations. As there are acyclic cofibrations the new class of fibrations is

contained in the previous class.

Definition 5.17. The gth homotopy group of a prespectrum X is defined to
be
(X)) = colim (74, (X7))-

Where 7;(X,,) is the ith homotopy group of X, as a based topological space. A
morphism of prespectra f : X — Y is a natural transformation with components
fj + X; = Y; for all 7 € N which, for each k € N, induces a group homomorphism
7,(X;) — m(Y;). Hence f induces a group homomorphism 7, (X) — m,(Y) for
all n € N. We say that a morphism of prespectra is a m,~-isomorphism if it
induces an isomorphism 7, (X) = 7,(Y) for all n € N.

Definition 5.18. Let X be a prespectrum with structure morphisms o, : S* A
X, =XX — X,;; for all n € N. As the suspension and loop space functors are
adjoint (Proposition 5.2) these morphisms have adjoints o, : X, — QX 1. We

call X an Q-spectrum if g,, is a weak equivalence in 7, for all n € N.

Definition 5.19. There are inclusion functors between our D categories, N —
Y.n+—nand ¥ — £, n+— R Their composition N' — .# is also an inclusion
functor. For ¢ : A — B such an inclusion we define the forgetful functor to be
U: BT — AT with (UX), = X(¢(a)) for a € obj(.A). These forgetful functors
have right adjoints P : AT — BT called prolongation functors. For X an
A-space PX is the left Kan extension of X along ¢. In particular, for a € obj(.A)

we have
acA

(PX), = colim X,= B(ta,b) N X,
(ta—b)e(Llb)
Definition 5.20. Let D be either ¥ or .# and let [X, Y] denote the set of mor-
phisms X — Y in the homotopy category HoD for any D-spectra X and Y. We

define the following:
(i) A D-spectra E is a D-Q-spectrum if UE is an 2-specturm.

(ii)) A morphism of D-spectra f : X — Y is a m.-isomorphism if Uf is a

me-isomorphism.

(iii) A morphism of D-spectra f : X — Y is a stable equivalence if f* :
Y, E] — [X, E] is a bijection for all D-Q2-spectra, E.
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For details of the proof of the following theorem see page 471 of [7].

Theorem 5.21. Let D be one of N', &, or #. There is a stable model struc-
ture on the category of D-spectra, where the weak equivalences are the stable
equivalences, the cofibrations are the q-cofibrations, and the fibrations (called g-
fibrations) are morphisms with the right lifting property with respect to the acyclic

g-cofibrations.

Theorem 5.22. Let U 4 P be an adjoint pair of forgetful and prolongation func-

tors as defined above. Then (U, P, p) is a Quillen equivalence.

This theorem shows that the homotopy categories of the D-spectra are equivalent
for the choices of D we have described above. This is an important result because
in [6] the author describes a collection of axioms that one might want a category of
spectra to satisfy then demonstrates that it is not possible to satisfy all of them
at the same time. The existence of Quillen equivalences between the different
categories of spectra allows one to choose the most convenient for the current
task.



Chapter 6

Reedy Model Categories

In [4] Hirschhorn and Voli¢ characterise the Reedy functors C — D for which
the induced functor MP — MC is a left or right Quillen functor (for the Reedy
model structure) for all model categories M. Their paper characterises the case
for right Quillen functors and then establishes the characterisation for left Quillen
functors by discussing opposite categories. Here we establish the characterisation
for left Quillen functors by dualising the the argument presented in [4] for right
Quillen functors.

A Reedy category is a category that admits an assignation of degree to each
object and a unique factorisation of any morphism into a morphism decreasing

degree followed by a morphism increasing degree.

Definition 6.1. A Reedy category is a small category C in which each object
can be assigned a non-negative integer (its degree) together with subcategories

%
C and ?, each containing all the objects of C and satisfying the following axioms;

%
1. The target of every non-identity map in C is of strictly lower degree than

the source.

2. The target of every non-identity map in ? is of strictly higher degree than

the source.

3. Every map ¢ in C has a unique factorisation g = ?? where ? is in ? and
<_
? isin C.
The subcategories C and are called the inverse subcategory and direct

subcategory respectively.

Examples 6.2. (i) Let X be a finite poset. We can consider the category X
whose objects are elements of X such that X (z,y) = {x} if < y and

95
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X(xz,y) = @ otherwise. If € X is a minimal element let deg(x) = 0.
Otherwise there is some set of minimal elements M, = {m € X |X(m,z) =
{*}}, let deg(z) be the largest n € N such that there is a sequence m N
ar —> ... = Qp_1 in—) x in X for some m € M,. Then X is a Reedy category
where X includes only identity morphisms, /—Y> = X, and the factorisation
is given by ? = f and 7 is the identity of the source of f. This naturally

extends to any countable poset with a unique minimal element such as N.

(ii) Reedy categories are a generalisation of the A category (Definition 2.1). In
particular, A is a Reedy category with deg([n]) = n, the direct subcategory
contains the injective morphisms, the inverse subcategory contains the sur-
jective morphisms, and the factorisation of a morphism is the one described

in Proposition 2.3.

(iii) The category consisting of a parallel pair of morphisms - = - is a Reedy

category where both non-identity arrows strictly raise degree.

(iv) Given a Reedy category R, the opposite category R is a Reedy category
with the same degree assignation on objects, ROZ = (%)Op, ﬁi‘)p = (ﬁ)"p,
<_
and the factorisation given by fP = ( f )Op(7)0p.

(v) Given two Reedy categories R and P, the product category R x P is a
Reedy category with deg(r, p) = deg(r)+deg(p), R X 3 = ﬁx?, §€ X P =
R x %, and the factorisation of (f, g) given by (f,g; = (7, ¢) and Zf, g) =

AR
(f.79).
Given two Reedy categories we can consider functors between them which pre-

serve the Reedy structure.

Definition 6.3. Let C,D be Reedy categories. A Reedy functor is a functor

<_
G : C — D such that F(C
B. That is, objects and morphisms in the inverse and direct subcategories of C

) is a subcategory of D and F(?) is a subcategory of
are sent to objects and morphisms in the inverse and direct subcategories of D
respectively.

Definition 6.4. Let C be a Reedy category, M be a model category, f: X — Y
be a natural transformation between functors X,Y : C — M, and a € obj(C).

(i) The latching category, 8(? 1 @) of C at « is the full subcategory of
(? 1 @) containing all the objects except the identity map at o. Recalling
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Definition 1.2 and Notation 1.4, the objects of the latching category of C at
a are pairs (3, f) where (3 is an object of ? and f : f — « is a morphism
in ?, and the morphisms (3, f) — (8, f) are morphisms 7: § — ' in ?

such that the following diagram commutes.

f—T s
N
«

(ii) The latching object of X at « is

L, X = colim X
8(?¢a)

As written this is not well defined because 8(? 1 @) is not a subcategory of
C. By an abuse of notation we will identify 8(7 1 a) with the subcategory
of C in the image of the functor 8(? 1 a) — C taking objects (5, f) to

and morphisms 7 :  — [’ to themselves.

(iii) The latching map of X at « is the natural morphism

L, X — X,

(iv) The relative latching map of f : X — Y at « is the natural morphism

X, HLaX L)Y =Y,

%
(v) The matching category, d(a | C) of C at « is the full subcategory of
(o] C) containing all the objects except the identity map at c.

(vi) The matching object of X at « is

M, X = lirr}_ X
A(alC)

(vii) The matching map of X at « is the natural morphism

Xo — M, X

(viii) The relative matching map of f : X — Y at « is the natural morphism

Xa — MaX XMLY Ya
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If C is the category A°P then for a A°P-diagram, X, in M2" (that is for a sim-
plicial object in M) the latching object at [n] € obj (A°?) is L, X = (sk,—1X),,.

Given a Reedy category C and a model category M the functor category M is

a model category.

Theorem 6.5. The diagram category MC has a model structure on it, where a

morphism f: X —Y is

e o weak equivalence if for all o € 0bj(C) the component f, : X, — Yy is a

weak equivalence in M

e a cofibration if for all € obj(C) the relative latching map X, x LY —
Y, is a cofibration in M

e «a fibration if for all a« € obj(C) the relative matching map X, — Mo X X pry
Y, is a fibration in M.

Proof. This result is due to Daniel Kan. See [3], Theorem 15.3.4. O

Given a Reedy functor G : C — D we can consider factorisations of morphisms

%
in % whose source is in the image of G where the first morphism is in G(C).

Definition 6.6. Let G : C — D be a Reedy functor, a € obj(C), § € obj (D),
and o : Ga — 3 be in % The category of inverse C-factorizations of («, o),

denoted Facts (o, 0), is the category where

e objects are pairs ((v : a — ), (u : Gy — ()) where v is a non-identity map
in C and p is in % such that the following diagram commutes

Ga Gy > Gy
x /
B

e morphisms between pairs

(via=9),(p:Gy=0) = (vV:a=7),(W: GV = p)

(_
are maps 7 : v — 7 in C such that the following diagrams commute

a Gy or > G
Y > 3
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Similarly we can define the category of direct C-factorizations.

Definition 6.7. Let G : C — D be a Reedy functor, a € obj(C), € obj (D),
%

and 0 : B — Ga be in D. The category of direct C-factorizations of («, ),

denoted Fact (o, 0), is the category where

e objects are pairs ((v: 7 — «a), (1 : f — G7)) where v is a non-identity map
in C and p is in B such that the following diagram commutes

B . > Gy
Ga

e morphisms between pairs

(viy—=a),(p:B—=Gy) = (Vv =a),(:B—GY))

are maps 7 : vy — 7 in ? such that the following diagrams commute

o G~ or > G
gl > i

Remark 6.8. A Reedy functor induces a functor for each object in the source

category from its latching category to the under category of its image in the direct
subcategory. That is, let G : C — D be a Reedy functor, and let « € obj(C)
then G induces a functor G, : 8(? la) — (2_5 1 Ga) which takes v — « to
Gy — Ga.

Proposition 6.9. Let G and « be as above, let § € obj (D), and let 0 : f — Ga
be a morphism in B Then the category of direct C-factorisations, Facty (c, o)
15 the category of the image of objects of the latching category under o, that is,

(o] G.).
Proof. An object in (o | G.) is a pair (v, ) where v is an object of 8(? 1 a),

that is a non-identity morphism v : v — « in C and p is a morphism ¢ — Gv in
_>
8(? J @), that is a morphism p : f§ — G7 in D such that the following diagram

commutes.

B . > Gy
Ga
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A morphism (v, ) — (v, 1) in (0 ] G,) is a morphism 7 : v — v/ in 8(? 1l a)

such that the following diagram commutes.

G.(v,v) = > Gi(v, V)

That is, a non-identity morphism 7 : v — 4/ in ? such that the following

diagrams commute.

(07 G,y Gr y G’}/
gl > 8

These are precisely the objects and morphisms of Factz (v, 0). O

Remark 6.10. In the case where G takes non-identity morphisms to non-identity
morphisms the induced functor G, is from the latching category of o to the

latching category of Ga.
Now we define the class of Reedy functors used in the classification.

Definition 6.11. Let G : C — D be a Reedy functor. It is a cofibring Reedy
functor if for every a € obj(C), for every 5 € obj (D), and for every map
o: 0 — Gain 1_)> the category of direct C-factorisations, Factz (v, 0) is either
empty or connected. Similarly G is a fibring Reedy functor if every a € obj (C),
for every 5 € obj (D), and for every map o : Gav — 5 in % the category of inverse

C-factorisations, Facts (v, o) is either empty or connected.

Definition 6.12. Let G : C — D be a cofibring Reedy functor, let « € obj (C)
with deg(Ga) = k € N. Suppose that G' sends non-identity morphisms v — «
to non-identity morphisms. The nth latching subcategory, A, for —1 < n <
k — 1 is the full subcategory of the latching category of Ga containing the both
the objects with source of degree at most n and objects which are in the image
of the induced functor G..

Let —1 <n < k-1, and let 0 :  — Ga be an object in A, not contained in
A,_1. As G is a cofibring Reedy functor the category of direct C-factorisations
of (a,0) is either connected or empty. Let S,11 be the set of such o for which it

is connected and 7,4 the set of such o for which it is empty.
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The (n+ 1)th intermediate latching subcategory, B, 1, for —1 <n < k—1
is the full subcategory of the latching category of Ga containing both the objects
of A, and the elements of S, 1.

Remark 6.13. Note that A_; contains only objects in the image of G, but
may contain morphisms between them not in the image. We also have that
At = 8(D | Ga).

The above definition gives a nested sequence of subcategories of the latching

category of Ga,
AL CBCAC...CB o C A 2C B 1 CA = 3(B | Ga)

The functor G, clearly factors through A_;, we will abuse notation by writing

G.:0(C la)— A

Proposition 6.14. Let G : C — D be a cofibring Reedy functor, let M be a model
category, let Z € obj(MP), and let a € obj(C) such that G takes mon-identity
morphisms v — « to non-identity morphisms. Then the functor G, : a(? 4
a) — A_y is right cofinal (see Definition 1.27) so by Proposition 1.28 induces an
1somorphism

colim G*Z = colim Z.

a(C La) A
Proof. Every object in A_; can be written Go : G — Ga for some 0 : f — «
in the latching category of a. By Proposition 6.9 (0 | G.) = Factg (a,0). As G
is a cofibring Reedy category Factz («, ) is either empty or connected. As o is
a non-identity morphism in ? the pair (0 : 8 — «a,1gp) is in Facty (a,0) so it
is not empty. Hence G, is right cofinal. O]

Remark 6.15. The sequence of subcategory inclusions induces a sequence of

natural morphisms

colim G*Z = colim Z — colim Z — colim Z — ...
a(C 1a) A Bo Ao

...—colimZ — colimZ = colim Z.
Bi-1 Ak—1 o(B1Ga)
There is a minor error in the proof of the following lemma in [4] which we have

rectified here.

Lemma 6.16. Under the assumptions of Proposition 6.14 the morphisms in the

sequence above of the form C(ﬁimZ — cglimZ are 1somorphisms.
n n+1
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Proof. Let o : B — Ga be an object of B, 1. We will write (¢ | A,) for the
comma category where A,, represents the inclusion functor A, — B, 1. If o is
an object of A, then (o,1s) is an initial object in (¢ | A,) and so (o | A,)
is connected. Otherwise ¢ € S,.1, in which case the objects of the category
(o | A,) are pairs (v, u) where v/ : v/ — Ga is an object of A, and p: 0 — V' is
a morphism in B, 1, that is g is a morphism 5 — 7/ in 8 such that the following

diagram commutes.

B\M/}y
Guo

The morphism g must be a non-identity morphism otherwise ¢ = v/ but this
cannot be the case as o is not an object of A,,. Hence deg(v’) > deg(5) = n + 1.
By Definition 6.12 v’ must be in the image of G, that is there exists an object
v:y — ain 8(? 1 @) such that Gv = v/. The proof in [4] claims that this
shows that Factz(a,0) = (0 | A,), however v may not be unique. It is sufficent
that we have shown that there is a surjective functor Factz(a,0) = (0 | Ay).
As G is a cofibring Reedy functor (Factz(a,0)) is either empty or connected.
It is not empty as (0,15) € obj(Factz(a,0)). So (o | A;) is connected. Hence
the inclusion functor A, is right cofinal and by Proposition 1.28 the induced

morphism C(ziim Z — cglim Z is an isomorphism. O
n n+1

Lemma 6.17. Under the assumptions of Proposition 6.1 there is the following

pushout square.

colim Z —— [[ Z3
(B—Ga)eTnr1 O(DLB) (B—Ga)eTni1

| !

colim Z/ ———— colim Z

Bpnt1 Ant1
Proof. Let the top morphism be coproduct the latching morphisms of Z at 5. As
the objects of the latching category of 8 are non-identity morphisms of the form
v — [ we have deg(y) < deg(f) = n+ 1. This gives us a functor 8(1_?> 1B)—
B.i1,(y = B) — (v = f — Ga) which induces the left morphism in the above
diagram. The inclusion functor B,,; — A, induces the bottom morphism.
The elements of T}, are objects in A,,.1 so there is a natural morphism on the

right side of the square.
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The objects of A, ;1 are the elements of T, and the objects of B, so a mor-

phism cAolim — W in M is determined by its precompositions with the right and
n—+1
bottom morphisms in the diagram below. As the morphisms in A, ,; whose do-

mains are in 7,41 are all identity morphisms and the only non-identity morphisms
with codomain an element (5 — Ga) € 1,41 are the objects of the matching cate-

gory 8(B 1 ), morphisms colim Z — W and [[ Zg — W determine a morphism
Bnta (B—Ga)ETn 11

colim — W if and only if their compositions from IT colim Z agree. [
Ant1 (B—~Ga)eTn+1 B(Biﬂ)

We will classify the Reedy functors for which the induced functor of diagram
categories over M is a left Quillen functor for every model category M. We will

show this by dualising the classification theorem from Hirschhorn and Volic.

Theorem 6.18. If G : C — D s a cofibring Reedy functor, then the induced
functor G* : MP — MC is a left Quillen functor for every model category M.

Proof. As a model category M is complete so G* has a right Kan extension along

1yo. So by Proposition 1.25 G* has a right adjoint.

The induced functor G* preserves weak equivalences; to see this suppose f :
X — Y is a weak equivalence in MP. Then G*f : XG — Y G has components
(G*f), = faa : X (Ga) = Y (Ga) which are weak equivalences in M hence G*

preserves weak equivalences.
It remains to show that G* preserves cofibrations.

Let f : X — Y be a cofibration in MP. That is, for all objects 3 in D the relative
latching map Xz I 7y LEY — Y is a cofibration in M.

So we want to show that G* f : XG — Y G is a cofibration in M. That is, for all
objects o in C we want to show that the relative latching map (G*X)q e g+ x)
LE(GY) — (G*Y), is a cofibration. We will write PS = (G*X)a Hregex)
LE(G*Y).

Let o € obj(C) with deg(a) = k € N. We consider two cases:

(i) there exist non-identity morphisms v : v — « in C such that Gv — lea

(ii) G takes all non-identity morphisms v : v — « in ? to non-identity mor-

phisms.
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First we consider the case where there exist non-identity morphisms v : v — «
in ? such that Gv = 1¢,. We call the set of such morphisms the G-kernel.

If v: v — ais in the G-kernel, then the objects of Factz (o, Gv) are precisely
pairs of the form (i, 1lg,) where p : £ — « is an element of the G-kernel. To
see this suppose that p : K — « is in the G-kernel, then the following diagram

commutes

Gu=lga
Guo Guo

Ga

80 (i, 1ga) is an object of Factz(a, Gv). Conversely, suppose that (u,v) is an
object in Fact=(«,Gr), then u is a non-identity morphism in ? and v is a

morphism of D such that the following diagram commutes.

Ga Gu > £

SN

Ga

As G is a Reedy functor Gu is a morphism in D so deg(§) > deg(Ga). As v
is in B we have deg(§) < deg(Ga). Hence deg(§) = deg(Ga). As the only
morphisms in B which do not raise degree are identity morphisms v = 1g, we
have Gu = 1go(Gu) = 1g,. Hence u is in the G-kernel. As the latching object
is a colimit it corresponds to a cocone {x, : X¢, — Lg(G*X)}(u:y—m)eobj(a(?m))'
Let v: v — o and p : kK = « be elements of the G-kernel such that there is a
morphism 7 : v — p in 8(? 1 @), that is a morphism 7 : v — K in ? Clearly

GT = 1g, so we have the commutative diagram.

XGa XGa
)

LE(G* X

Hence x, = X, As G is a cofibering Reedy functor Factz (o, Gv) is connected.
That is, any there is a zig-zag of morphisms ? between the sources of any two

morphisms in the G-kernel. Hence x, = x, for any two elements v and p of the
G-kernel.

Let 0 < n < k. Let p: w — «a be an object of 6(? 1 «) with deg(Gw) = n.
Suppose that for all g : k — « in 8(? 1 @) such that deg(Gk) > n, there exists
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v : v — « in the G-kernel and 7 : Kk — v in 8(? 1 @) such that the following

diagram commutes.

XGr
Xew — Xga

\ lxu

LE(G*X

As x, = x, for any v and p in the G-kernel, x,(XG7) = x, = xv/(XGT') =
X (XGT') for any other choice of v/ : 4/ — « in the G-kernel and 7" : k — 7.

Consider the catgeory of direct C factorisations of Gp. Clearly (p, Gv) for any
v in the G-kernel and (1, Gp) are objects of Factz(a, Gp). As G is a cofibring
Reedy functor Facty (a, Gp) is connected so there is a zig-zag between (1., Gp)
and (p, Gv) for v : v — « in the G-kernel.

If (u:é— a,v:Gw— GE) and (w: Y — o, : Gw — G) are in Factz (o, Gp)
and deg(G¢) > deg(v)) then a morphism (u,v) — (w,x) is a morphism 7 : & — ¢
i so as a Reedy functor GT : G§¢ — X1 cannot lower degree, a contradiction.
Hence there is no such morphism. Thus a zig-zag between (1., Gp) and (p, Gv)
for v : v — « in the G-kernel can be split into zig-zags

(u1,01) / \ (g, V)
(L, Gp) (u2, v2) (ttg—1,0g-1) (1; @)
and
(wy, 1) (w,, )
SN L 7N
(1, @) (wa, x2) (wy—1, Tr—1) (p, Gv)

where p @ £ — « with deg(Gk) > n, and for all u; : §; — o we have deg(G¢;) = n

If (u,v) is an object of Factz(a, Gp) where u : § — a and deg(Gw) = deg(GY)
then as v : G¢ — Guw is degree preserving it must be the identity morphism on
Gw so Gp = Gu. Hence x, = Xu, = ... = Xu, by the same argument used to show
that the components of the cocone corresponding to the elements of the G-kernel
are equal. Hence, by assumption, there exists v/ : 4/ — « in the G-kernel and

T:k— 7 in 8(? 1 a) such that the following diagram commutes.
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XGn XGT
Xew — Xaw —— XGa

e

Similarly to before, the independence of x, from the choice of v in the G-kernel
tells us that x, (XGT)(XGn) = x, = xo(XGT')(XGn') for any such 1/, 7/, and
n’. We have established that for all objects o : f — « in the latching category
8(? 1 @) and all elements v : v — « in the G-kernel, there exists v/ : v — «
in the G-kernel and 7 :  — 7/ in 8(? J @) such that the following diagram

commutes.

Xag —XGT X

\lv

LE(G*X

Fix some v in the G-kernel. Let h : LS(G*X) — W for W € obj(M), this

map corresponds to a cocone {h, : Gf — Lg(G*X)}(U:B%a)eobj(a(?w)). We will

call the precomposition of h with the injection map h : Xgq % LE(G*X) LN
W. Precomposing this with the latching map at a we have another morphism

LE(G*X) % Xea " W which also corresponds to a cocone {ﬁg G —

c
La(G*X)} (o:8—a)€obj(d ?ia
o in the latching category at «, using the 7 gving us the above commuta-

By the commutative properties of cocones for each

tive diagram, and noting that ¢y, = 1x,, we have h, = izgoxa = hx,¥Xo =
hxopx, (GXT) = hx,(GXT) = hx, = h,. As the cocones are the same, they
correspond to the same morphism so h¢p = h. Consider the morphism of sets
—op: M(Xga, W) = M(LE(G*X), W), g — gp. Given h € M(LE(G*X), W)
we can form h as above, then ich = h so — o  is surjective. Suppose that
9,9 € M(Xga, W) such that gp = ¢'¢, then for v in the G-kernel g = gy, =
9 OXnu = ¢'. So — o is injective, so — o is an isomorphism of sets. Hence there

is an isomorphism Xg, & LS(G*X) in M.

Thus we have PC G*Xo e x L G"Y = Xgo Ux,, Yaa. Hence the relative
latching map at PS¢ — Y, is an isomorphism, and in particular this means it is

a cofibration.

Now we consider the case where all non identity morphisms v : v — « in ?

we have Gv # 1lg,. In this case the G-kernel is empty and so the downward
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induction used in the previous section cannot be used.

The latching objects of G*X and G*Y respectively at « are

LEG* X = colim G*X  and  LEG*Y = colim G*Y.
a(Cla) a(C La)

Similarly, the latching objects of X and Y respectively at Ga are

L2, X = colim X and L2,)Y = colim Y.
a(B1Ga) a(BLGa)

The functor G, : 8(? la) — 8(8 1 Ga) (see Remarks 6.8 and 6.10) induces

maps

LEG*X = colim G*X — colim X = LB X

8(C L) a(D1Ga)
LEGTY = colim G*Y — colim Y = LB Y.
a(Cla) a(D1Ga)

We have the following commutative diagram.

LGHX > (G*X),
L2 X l s Xea
LEGHY > PS
LEY > PE, (G*Y),
\ /

As f: X = Y is a cofibration in MP we know that the morphism PL, — Vg,
is a cofibration in M. So it is sufficient to show that PS¢ — PEL_ is a cofibration.
Let P4, and Pg, be the pushouts

colim X —— Xgo

A

C?}lim Y —— Pa,
k

colim X —— Xg,

T

coéimY — Pg,
k
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respectively and consider the sequence of maps from 6.15 for X and Y. This gives
a factorisation of PS¢ — PE as PS¢ — Py, — Py — Pag — ... — Pa,_, —
ng_l — 'Pga.

By Lemma 6.16, the morphisms C(letlmX — cgth and ccjle — Cé)hmY are
n+1 n n+1
isomorphisms for all =1 < n < k — 1 and hence the morphisms Py, — Pg,.,

are isomorphisms for all —1 < n < k — 1. In particular this means that these

morphisms are cofibrations.

Let @ and R be the following pushouts.

colim X —— colim X I colim X L1 X5
Bn+1 .An+1 (J:B%GO‘)ETWﬁFl a(B‘LB) (U:BQGQ)GT’,H»l
colimY ——— @ 11 colim ¥ —— R
Bni1 (0:8—Ga)e€Tni1 8(7_3)¢/8)

Consider the following commutative diagram in M.

cohm X L 11 Xp
(o:—Ga)eTh+1 8 (0:B—Ga)ET 41
A
P R “ ®
/ \
cohm Y 2 11 Ys
(o: ﬁ%Ga €Tn+1 O( iﬁ) (o:—Ga)eTh 11
h
colim X 5 colim X
Bn+1 -An+1
u/
A
A P
v’ Q
/ \
colimY s colimY
n+1 An+1

By Lemma 6.17 the front and back squares are pushouts. The square
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R —2 HXﬁ
J/ (O’:ﬁﬁGa)ETn+1
h

b

Q —2 colimY
An+1

is also a pushout. We show this by showing that the universal property of
pushouts (see Example 1.8 (iii)) is satisfied. Suppose that W is an object in
M,and m:Q — W and n : 11 Xg — W are morphisms in M such

(0:—Ga)ETn 41
that mh = na. We have (mg)v’" = mhd = nad = nt’ so as the front square is a

pushout, mg and n induce a morphism ¢ : c;l)lim — W such that ¢s’ = mg and
n+1

ou' = n.

We have ¢bes = ¢pps = ¢s'’\ = mgA = mes and pbeu = ppu = ¢pu'p = Pua’'c =
nac = mhe = meu. As the back square is a pushout this tells us that ¢be = me.

Further since ¢bg = ¢s' = mg and @ is a pushout we have ¢pb = m.

Suppose that w : cfc‘ﬂimY — W is a morphism in M such that wu' = n and
n+1

wb =m. Then wu' =n = ¢u’ and ws' = wbg = mg = ¢s’. As the front square
is a pushout w = ¢. Hence the required morphism exists and is unique satisfying

the universal property.

Note that the morphism a : R — [[ X is a coproduct of relative latching maps
(0:8—Ga)ETn+1
and so is itself a relative latching map. So a is a cofibration in M as f is a

cofibration in MP. As the pushout of a cofibration is a cofibration, the morphism
b: (@ = colimX H(

An+1

) colimY — colimY is also a cofibration.
%OhfllX) Bnt1 Ant1
n

For —1 < n < k — 1 the morphism Pg, ., — Pa,,, is defined by the following

n+1
commutative diagram.
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colim X > Xaa
o \
colim X > XGa
-An+1
colimY > Py
o \
colimY > P A
-An+1

) colimY — colimY is a cofibration.
%Oli_nll X) Bn+1 -An+1
n

As an isomorphism, the identity 1y, is a cofibration. As the front and back

From above we have that colim X I
An+1 (

squares are pushout squares by Lemma 4.27, the morphism Pg,., — Pa4,., is a

n+1
cofibration.
As a composition of cofibrations the morphism P¢ — PE. is a cofibration. Hence

the relative latching map at « is a cofibration.

So the relative latching map P$ — Yg, is a cofibration for all objects a in C.

Hence G* preserves cofibrations and so is a left Quillen functor. m
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