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Abstract 

Increasing carbon sequestration in mangrove ecosystems has several benefits, including a 

potential role in climate change mitigation. However, mangroves are also known to emit 

methane (CH4)—a potent greenhouse gas—and the net climate change benefit of planting 

mangroves is not yet fully understood. In this research, I investigated pore-water CH4—a proxy 

for CH4 production and export—in a mangrove rehabilitation area on an Indonesian tropical 

island. Initially, I established a new pore-water extraction method that is simple, cheap and 

reliable. This sampler was used to measure pore-water CH4 in several mangrove rehabilitation 

sites on a tropical island in Indonesia. The pore-water CH4 concentrations were very high (20 to 

30,000 times the saturated value). However, my estimates of the CH4 fluxes at the soil surface 

were very low, which agreed with previous studies. Therefore, I surmised that the exceptionally 

high levels of CH4 in the pore-water would be exported not only through the sediment–air 

interface, but also by lateral tidal flow and especially via mangrove stem (sediment-root-stem-

lenticel pathways). Temperature and pore-water chemistry were found to be ideal for CH4 

production, thereby implying that the major constraint was substrate supply. This was 

confirmed by the finding that the pore-water CH4 concentration was associated with the stage of 

the mangrove regrowth, and roughly followed mangrove forest productivity, with the highest 

pore-water CH4 concentration at intermediate stand ages. This was also confirmed by the 

dominant pathway of CH4 production that was through the degradation of methylated 

compounds (supplied by mangrove vegetation), rather than via acetate or CO2/H2. Thus, this 

study indicates that mangrove vegetation plays a critical role in CH4 production. 
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Chapter 1: Introduction 

1.1 Background 

During the last two decades, the ability of coastal vegetation to sequester carbon dioxide 

(CO2) has been increasingly recognised. Previously, this ability was overlooked in discussions 

of terrestrial and marine carbon cycles; however, a report produced in 2009 through an inter-

agency collaboration between the United Nations Environment Programme; Food and 

Agriculture Organization; and Intergovernmental Oceanographic Commission/United Nations 

Educational, Scientific and Cultural Organization drew attention to this function (Nellemann et 

al., 2009). This report also highlighted the risk of increased CO2 emissions from degrading 

vegetated coastal ecosystems. Nellemann et al. (2009) coined the term ‗blue carbon‘ to refer to 

carbon sequestration by these ecosystems (i.e., mangroves, saltmarshes and seagrass). 

Mangrove forests accumulate a considerable amount of carbon in biomass and sediment, 

yet also emit greenhouse gases (GHGs). For example, Donato et al. (2011) reported that the 

above- and below-ground carbon stock of tropical mangroves in the Indo-West Pacific region 

accounted for 10
3
 Mg C ha

-1
 on average, while global CO2 emissions from mangrove 

deforestation constituted around 2 to 12 × 10
7
 Mg C year

-1
. Another important function of 

mangroves is the burial of large quantities of organic carbon in the sediment. Mangroves 

contribute 8 to 15% of all organic carbon burial in the marine environment, or 2.6 × 10
7
 Mg 

year
-1

 (Breithaupt et al., 2012). However, few studies have been undertaken on CH4 emissions 

from mangroves, although this gas is part of the carbon cycle and contributes to raising the 

Earth‘s surface air temperature (Saarnio et al., 2009). 

Consequently, CH4 emissions are increasingly in focus as we attempt to mitigate climate 

change. This is due to CH4 being the second-largest of the long-lived GHGs. Further, this gas 

has a relative warming potential higher than CO2. In other words, an additional one kilogram of 

CH4 in the atmosphere causes an increase of the Earth‘s surface temperature that will be higher 

than that generated by an additional one kilogram of CO2. For this comparison, the 

Intergovernmental Panel on Climate Change (IPCC) adopted an index called global warming 

potential (GWP), which contains parameters of residence time
1
 and relative radiative forcing

2
 

(Forster et al., 2007). For example, with a 500-year horizon time, the GWP of methane is 3.7 

times that of CO2 (Lashof and Ahuja, 1990). This is due to CH4 having a direct effect on 

radiative forcing. CH4 oxidation also has this effect, as it generates CO2 and H2O (Wuebbles 

and Hayhoe, 2002). In addition, a shorter horizon time generates a larger GWP. For example, 

                                                     

1
 The period that GHGs live in the atmosphere. 

2
 The relative impact of GHGs to absorb infrared radiance, re-radiate and heat back into 

the Earth‘s surface because of changes in GHG concentrations—W m
-2

 ppm
-1 

(Lashof 

and Ahuja, 1990). 
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with a time horizon of 100 years, the GWP of CH4 is 25 times that of CO2; however, when the 

horizon time reduces to 20 years, the GWP of CH4 is 72 times that of CO2 (Forster et al., 2007). 

Therefore, research into CH4 emissions is as important as CO2 sequestration. 

1.2 Description of issues to be addressed 

Indonesia represents a major part of the Indo-West Pacific mangrove region, with carbon 

storage potential in mangrove forests being extensively studied. The estimated carbon stocks of 

Indonesian mangroves are around 1,000 (± 378) Mg C ha
-1

 (Alongi et al., 2015; Murdiyarso et 

al., 2015). However, during the last three decades, 40% of the total mangrove area has been lost, 

and this has resulted in annual emissions of 7 to 21 × 10
7
 Mg CO2 equivalent. 

The capacity of mangroves to store carbon enhances the importance of Indonesian 

mangrove rehabilitation projects, which were originally conceived for conservation benefits and 

to protect/enhance livelihoods. Mangroves‘ capacity to store carbon has encouraged mangrove 

planting not only by governments and non-governmental organisations (NGOs), but also by 

local communities. Areas have been rehabilitated by planting seedlings of a single species, 

which are mostly unsuccessful (Bosire et al., 2008, Primavera and Esteban, 2008). In addition to 

this approach, one specific rehabilitation project uses a method called ecological mangrove 

rehabilitation (EMR). This approach prioritises the restoration of hydrological regimes to 

facilitate natural recruitment of mangrove seedlings (for further information, see Lewis, 2005). 

This is believed to be as successful and ecologically meaningful, since the method can 

potentially restore the mangrove communities to their former, natural condition. 

To date, most studies have focused on CO2 sequestration potential, with relatively few 

studies investigating the CH4 emission potential from Indonesian mangroves. Chen et al. (2014) 

investigated CH4 emissions from undisturbed mangroves in North Sulawesi. To the best of my 

knowledge, only Cameron et al. (2019a) have examined CH4 emissions from sediments in 

mangrove rehabilitation area in Indonesia, contrasting between rehabilitation sites and 

undisturbed forests. Our study aimed to assess the dynamics of CH4 following mangrove 

regrowth during the implementation of EMR project. We addressed this study by measuring 

dissolved CH4 in the pore-water at sites with different stage of mangrove regrowth. In 

particular, the study focused on mangroves of Tanakeke Island, South Sulawesi, Indonesia. It 

was anticipated that the results of this study would provide quantifiable evidence regarding the 

effectiveness of EMR projects. 

1.3 Thesis structure 

The structure of this thesis is outlined in Fig. 1.1. Chapter 2 discusses the ways this thesis 

addresses the overall study aim by measuring pore-water CH4, rather than CH4 production and 

emission. This study is presented in three discrete yet interrelated sections, based on three 
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specific aims and associated research questions, which are presented at the end of the literature 

review (Chapter 2). Chapter 3 describes the interrelationships among the study components and 

identifies the targeted outcomes of the research questions. The study location is also described 

in this chapter, with a general overview of the methods. Chapters 4, 5 and 6 are the three 

substantive components of this study. Chapter 7 comprises the conclusion and recommendations 

of this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Thesis structure. 

 

Chapter 2: Literature review 

Chapter 3: Study location and methods 

Chapter 4: Development of a method to measure pore-water CH4 

Chapter 5: Quantification of pore-

water CH4 

Chapter 6: Identification of the 

dominant pathway of CH4 

production 

Chapter 7: Conclusion 
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Chapter 2: Biogeochemistry of methane in 
mangrove ecosystems—A review 

2.1 Introduction 

An increase in atmospheric methane first became prominent in the 1980s (Whalen, 2005), 

with the atmospheric concentration now increasing at around 5 to 10 ppb year
-1

 (Reay et al., 

2018). Attributing this increase is complex because global CH4 sources and sinks are diverse 

and include wetlands, oceans, termites, rice farming, livestock farming, landfills, biomass 

burning, fossil-fuel burning and fossil-fuel mining (e.g., oil/gas/coal) (Milich, 1999). According 

to the processes involved in CH4 production, the sources of CH4 can be classified as either 

biogenic, thermogenic or pyrogenic CH4 (Kirschke et al., 2013). Biogenic CH4 is produced by a 

biological process (e.g., those typically occurring in wetlands and farming), while thermogenic 

and pyrogenic CH4 are produced by physicochemical processes. Fugitive emissions resulting 

from fossil-fuel mining are the dominant source of thermogenic CH4 (Kirschke et al., 2013). 

Recently, Schaefer et al. (2016) reported that the source of the increase in atmospheric CH4 

increase has shifted from thermogenic to biogenic origins. They identified the most likely 

biogenic source as agriculture (i.e., rice and livestock farming), rather than natural wetlands. 

However, wetlands might still contribute to an increase of biogenic CH4 sources in the future, 

with projected warming expected to enhance the emission of CH4 from wetlands (Milich, 1999; 

Chambers et al., 2014; Martins et al., 2016; Dean et al., 2018). 

Studies of wetland CH4 production estimate its contribution at around 23% of global 

emissions (Reeburgh, 2003). The first review paper on wetland CH4 production ranked wetlands 

in order of CH4 emissions as bogs, lakes, fens, swamps and marshes (Aselmann and Crutzen, 

1989). The emissions ranged from 0.6 to 11 mg m
-2

 hour
-1

 and were generally lower than that 

reported from rice fields (13 mg m
-2

 hour
-1

) (Aselmann and Crutzen, 1989). Later, studies of 

CH4 in wetlands became prolific, producing multiple and detailed studies on, for example, the 

physics, microbiology and biogeochemistry of wetland CH4 production. In the studies noted 

above, very few involved coastal wetlands. Further, Aselmann and Crutzen‘s (1989) review did 

not present CH4 fluxes from coastal wetlands due to low values of CH4 fluxes based on an 

earlier investigation in a saltmarsh by Bartlett et al. (1987). Moreover, a search using the online 

database Web of Science, using the keyword combinations of ‗mangrove‘ and ‗methane‘ and 

‗saltmarshes‘ and ‗methane‘, displayed fewer than 200 and 300 papers, respectively (Fig. 2.1). 

According to the Web of Science (accessed 6 November 2019), the number of studies on CH4 in 

coastal wetlands increased rapidly during the candidature of this PhD (2015 to 2019) (Fig. 2.1). 

This is coincident with both increasing concern and interest in coastal wetlands for climate 

change mitigation. 
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Figure 2.1. Number of scientific papers about CH4 in Web of Science, accessed 
6 November 2019. The red line denotes the year when this PhD 
thesis began (2015). 

 

Many of the previous studies (Fig. 2.1) investigated CH4 fluxes at the sediment–air 

interface. For example, in 2015, I identified 18 papers on CH4 emissions from mangrove 

sediments, and since then a further 23 papers have become available. This may be due to CH4 

fluxes at the sediment-air interface is the central parameter in CH4 emissions from mangrove 

ecosystems and its measurement is relatively simple and straightforward. On the contrary, pore-

water CH4 do not directly relate to CH4 emissions, besides its measurement is a bit complicated, 

involving gas and liquid phase. Thus, investigations on pore-water CH4 were only reported in a 

total of nine papers, with many of the early studies reporting no detectable pore-water CH4. 

Identification of soil microbiomes, including the presence/absence of methanogenic and 

methanotrophic communities or even the balance between both groups, is also a sub-topic of 

major recent interest (19 papers). Another identifiable sub-topic of recent interest is CH4 

transport by tidal pumping (five papers since 2015). Several papers have also included a 

discussion of sulfate reduction, decomposition and geochemistry; however, to my knowledge, 

few have specifically focused on CH4 biogeochemistry in mangrove ecosystems. Given the 

absence of mangrove–CH4 specific studies, many authors have been forced to extrapolate using 

knowledge acquired from studies in freshwater wetlands or rice fields. 

With that in mind, this chapter reviews current studies of CH4 in mangrove ecosystems. 

This review is based on 154 papers identified using the Web of Science database that 

specifically investigated CH4 in mangrove ecosystems, along with several related papers in 
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other freshwater wetlands. The review includes CH4 fluxes, CH4 production pathways and 

biogeochemical aspects. 

2.2 Geographical coverage 

Studies of CH4 fluxes at the sediment–air interface have mostly been undertaken in the old 

mangrove region (the Indo-West Pacific), across tropical latitudes (Fig. 2.2, top panel). The data 

on CH4 fluxes in the 35 papers reported during the last two decades were generally collected by 

using static-chamber methods. There were 27 papers reported from studies in the Indo-West 

Pacific, including Australia (five), China (10), India (seven), Indonesia (one), the Philippines 

(one), Tanzania (one) and Thailand (one). The remaining studies were undertaken in the 

Atlantic-East Pacific (nine), including Brazil (one), the United States (four), Columbia (one), 

Mexico (two) and Puerto Rico (one). 

 

Figure 2.2. Summary of field studies reporting CH4 fluxes from mangrove 
sediments. Top panel shows spatial distribution and lower panel 
shows average flux in sites reported in the 36 separate papers. 
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2.3 CH4 fluxes from mangrove ecosystems 

2.3.1 Sediment–air interface 

Previous studies indicated wide variation in CH4 fluxes from mangrove sediment-air 

interface and ranged from ‗undetected‘ fluxes (Giani et al., 1996; Alongi et al., 2004) to a 

maximum of 82.69 mg m
-2

 hour
-1

 (Chen et al., 2010) (see Fig. 2.2, lower panel). In general, 

reported CH4 fluxes were very low or even negative. Only Chen et al. (2010) reported that CH4 

fluxes from mangrove sediment were relatively high (82.69 mg m
-2

 hour
-1

) and they noted the 

reason was a high pollution in their study site. These studies have apparently highlighted again 

that CH4 emissions in mangrove ecosystems is generally lower than in freshwater wetlands and 

even rice fields (see Aselmann and Crutzen, 1989). Thus, CH4 emission from mangrove 

ecosystem was not yet fully characterized in scientific discourse of global CH4 emission.  

2.3.2 Water–air interface 

Considering the total CH4 flux from mangrove ecosystem may enrich the scientific 

discourse of CH4 emissions in that ecosystem, but there are only a few investigations of CH4 

fluxes from water-air interface of the mangrove surrounding waters, i.e., river, creek, lagoon 

and coastal waters. CH4 fluxes of up to 33.29 mg m
-2 

hour
-1

 had been reported, and the fluxes 

were highly variable in both space and time (Ramesh et al., 1997; Purvaja and Ramesh, 2001; 

Rajkumar et al., 2008). Later studies reported how dissolved CH4 in mangrove pore-water 

sediments amends CH4 in coastal waters. Bouillon et al. (2007) indicated a gradual increase in 

CH4 concentration in creek waters during ebb tide. Call et al. (2015) found evidence of a 

positive strong correlation between 
222

Rn and CH4 concentration at the creek mouth of 

subtropical mangrove measured for two weeks (Fig. 2.3). Given that the increasing 

concentration of 222Rn represents a pore-water amendment to creek waters, they concluded that 

CH4 came from the pore-waters. This demonstrates that the CH4 flux from mangrove sediments 

not only occurs through the sediment–air interface, but is also laterally exported to surrounding 

waters. The export of CH4 will be facilitated by tidal cycles, which are a characteristic of 

mangrove habitats. Hence, mangrove ecosystems may contribute higher CH4 fluxes through 

water-air interface of the mangrove surrounding waters. 
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Figure 2.3. Correlation CH4 with 
222

Rn in creek mouth and upstream (Call et al., 
2015). 

2.4 Methane production 

Methane production or methanogenesis is the final step in organic carbon mineralisation in 

anoxic sediments (Sarmiento and Gruber, 2006; Zhuang, 2014) (see Fig. 2.4). In oxic layers, 

aerobic bacteria break down carbohydrate using oxygen as electron acceptors. In the same layer, 

protein is decomposed and produces ammonia, and, eventually, nitrifying bacteria oxidise the 

ammonia to nitrate (NO3
-
). In between the oxic and anoxic layers, NO3

- 
and MnO2 replace O2 as 

electron acceptors to decompose carbohydrate. After these acceptors are depleted, iron 

reduction continues mineralisation. When oxygen is totally absent, sulfate-reducing bacteria and 

methanogenic archaea compete for energy from organic carbon decomposition. The first 

microbe group generally out-competes the other, which is reflected in the standard energy yields 

(∆G°) (Fig. 2.4). However, this ideal sequence probably changes if there are aquatic plants 

supplying O2 from the atmosphere to deep soil layers (as shown by Fritz et al., 2011) or if 

methanogens are not out-competed by sulfate reducers. 
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Figure 2.4. Sequence of organic carbon degradation in marine sediment and its 
chemical reaction with associated standard free energy yields (∆G°) 
(reproduced from Fig. 1.2 in Zhuang, 2014). 

 
Some methanogens are out-competed by sulfate-reducing bacteria because they use the 

same substrates (i.e., H2/CO2 and acetate). Methanogens use specific substrates and, based on 

this, methanogens are usually divided into three groups: hydrogenotrophic, acetotrophic and 

methylotrophic methanogens. Hydrogenotrophs use CO2 for an energy substrate and H2 as 

electron donors, while acetotrophic methanogens specifically need acetate. These substrates are 

also used by sulfate-reducing bacteria. In contrast, methylotrophic methanogens produce CH4 

through reduction of methylated compounds, which are known as non-competitive substrates 

(Oremland and Polcin, 1982). 

Hydrogenotrophic and acetotrophic pathways are considered major contributors of CH4 

production in wetland habitats. This is due to the abundance of carbohydrates or 

polysaccharides, with their decomposition producing CO2/H2 and acetate. Polysaccharides are 

degraded gradually by three consortia (hydrolytic, fermentative and homoacetogenic/syntrophic 

bacteria) with the production of CO2/H2 and acetate occurring in the last step (Garcia et al., 

2000). It has been noted that, stoichiometrically, hydrogenotrophs change CO2/H2 to CH4 and 

contribute one-third of total CH4 production, while acetotrophic methanogens use acetate to 

produce two-thirds of the production (Conrad, 2007). However, the exact proportions are 

dependent on H2 production by homoacetogenic bacteria (Conrad, 1999). Given that these 

pathways are common in most wetlands, many authors conceptualise the stage of anaerobic 
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degradation as shown in Fig. 2.5. (Garcia et al., 2000; Conrad, 2007; Liu and Whitman, 2008), 

disregarding the methylotrophic pathway. 

  

Figure 2.5. Anaerobic degradation of organic carbon-producing CH4 in the 
terminal process (reproduced from Fig. 1 in Conrad, 2007). 

 

Although methylotrophic methanogens were identified at the end of the 1970s (Weimer 

and Zeikus, 1978; Patterson and Hespell, 1979), methylotrophic pathways were at that stage 

considered minor contributors to CH4 production. However, a later study found that these 

methanogens can coexist with sulfate-reducing bacteria generating CH4 from methanol and 

trimethylamine (Oremland et al., 1982). Oremland et al. (1982) proposed the concept of non-

competitive substrates in biochemistry pathways of methanogenesis, and used methanol, 

trimethylamine and methionine to test substrate competitions of methanogens and sulfate-

reducing bacteria from salt marshes. 

Later, the theory of non-competitive substrate of methanogens became a much-debated 

topic in the pathways of CH4 production. For instance, Lyimo et al. (2009) found that sulfate-

reducing bacteria from their mangrove sites reduced methanol and trimethylamine in laboratory 

conditions, yet at slower reduction rates than those by methanogens. For another non-

competitive substrate, Lyimo et al. (2002) provided evidence that sulfate-reducing bacteria are 

involved in dimethyl sulfide degradation at low concentrations (10 µM), since sulfate-reducing 

bacteria have a higher affinity to the substrate. However, recent field studies reported that non-

competitive substrates might exist to explain the high rate of CH4 production in the sulfate-

reducing zone of marine sediments (Young, 2005; Zhuang, 2014). 
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Prior to the study by Zhuang (2014), little was known about how much each methanogenic 

pathway contributed to CH4 production in marine sediments in terms of substrate concentration 

and composition. Zhuang found that methylotrophic methanogenesis in the sulfate-reduction 

zone contributed 13 to 74% of the total CH4 production, while, in the sulfate-depleted sediment, 

hydrogenotrophic methanogenesis was dominant, accounting for 67 to 97% of the total CH4 

production. Acetotrophic methanogenesis was shown to contribute up to 31% in organic-rich 

sediment. Zhuang (2014) also proposed a new concept of anaerobic degradation that involves 

marine algae and terrestrial input as carbon sources (Fig. 2.6). 

 

Figure 2.6. Revision concept of anaerobic degradation (reproduced from Fig. 1.3 
in Zhuang, 2014). 

 

Given that mangrove ecosystems occur at the interface between marine and terrestrial 

systems, the domination of the methanogenesis pathway is probably different from site to site. 

In fact, it is reflected in the extreme (space–time) variability in CH4 fluxes, as discussed 

previously. The intertidal cycle and freshwater discharge largely determine the salinity gradient 

and sulfate content in mangrove sediment. In addition, these hydrological regimes control 

organic matter supply from mangrove primary productivity, marine algae and terrestrial inputs. 

Hence, changing substrate composition and environmental conditions will ultimately alter the 

microbial process of methanogenesis. To my knowledge, Reshmi et al. (2015) may be the first 
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authors who attempted to study methane production in situ at a microbial level in mangroves. 

They found that acetotrophic methanogens were more abundant during the wet than dry season, 

while methylotrophic methanogens were relatively stable in both wet and dry seasons. Despite 

this recent work, the quantification of, and shifts in, methanogenic pathways in mangrove 

systems with respect to seasonal and spatial variation remain poorly documented. 

2.5 Source of CH4 variability 

The magnitude of CH4 emissions from mangrove soils and mangrove-influenced waters 

varies substantially across sites and seasons. Variability of measurement techniques may be one 

of the reasons for this, but a study by Yavitt et al. (1997) concluded that the variation of 

emissions across sites and time is the result of a complex interplay of CH4 production, microbial 

CH4 consumption and gas transport through the sediment and aquatic vegetation. This finding 

was supported by Borges and Abril (2011), who suggested that those processes are highly 

dependent on the supply of methane precursors to the soil; the presence of oxygen and other 

electron acceptors; and local conditions of hydrodynamics, temperature and salinity. 

2.5.1 Organic matter 

Of all the factors that control CH4 production and emission, organic matter availability is 

likely the most important. In general, many studies have reported that soil organic carbon (SOC) 

content and its decomposition is positively correlated with increased atmospheric CH4 and 

production (Verma et al., 2002; Cui et al., 2005; Belger et al., 2011; Dutta et al., 2013; Koebsch 

et al., 2013). Yu et al. (2013) and Konnerup et al. (2014) specifically found a positive 

relationship between CH4 production and SOC (R2 = 0.940, p = 0.006; R2 = 0.563, p < 0.005, 

respectively—see Fig. 2.7). 

 

 

 

 

 

 

Figure 2.7. Correlation of CH4 production (μg/g dry weight/day) with SOC (% of 
dry weight) (reproduced from Fig. 6 in Yu et al., 2013). 

 

Given that the organic matter mainly comes from vegetation and phytoplankton, many 

authors have used productivity or plant biomass as a predictor of CH4 production (C.B. Zhang et 
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al., 2012; Koebsch et al., 2013). Earlier studies using in vitro measurements indicated organic 

matter as the major factor controlling CH4 production (Boon and Mitchell, 1995). More 

recently, it was demonstrated that the larger biomass of invasive saltmarsh cordgrass (Spartina 

alternifolia) generates higher CH4 emission rates than those in experimental mesocosms of 

native common reed (Phragmites australis) (Cheng et al., 2007). Chen et al. (2009) found a 

weak positive correlation between plant community height (used as a proxy for biomass) and 

methane emission rates (R2
 = 0.59, p < 0.01, n = 30). Further, data from Megonigal and 

Schlesinger (1997) revealed that CH4 emission rates increase as a result of the higher activity of 

photosynthesis and organic carbon released into soils. Similarly, Joabsson et al. (1999) found in 

their experiment that the concentration of dissolved CH4 in the rhizosphere was higher in 

vegetated plots than in plots where vegetation had been removed. Under dynamic conditions, 

Van Der Nat and Middelburg (2000) hypothesised that the rate of methane production was 

closely related to the growth cycle of plants. 

The rate of CH4 production and emissions in water systems (e.g., canals, rivers and 

estuaries) also depends on organic matter supply (Jayakumar et al., 2001; Datta et al., 2013; 

Dutta et al., 2013; Reshmi et al., 2015). Smith et al. (2000) demonstrated this phenomenon 

when they sampled soils four metres from the shoreline at Lake Merecure, Venezuela. The soils 

in this study were covered by decomposed plant material and emitted four to six times more 

CH4 than did soils in the same position at Lake Mamo, where no plant material had 

accumulated. Aquaculture ponds also produced the most CH4 when they were affected by 

sewage (Strangmann et al., 2008). In a tropical mangrove-dominated estuary off the northeast 

coast of Bay of Bengal, India, mangrove litter provides nutrients for phytoplankton, resulting in 

algal blooms and ultimately increasing CH4 production (Biswas et al., 2007). The availability of 

high organic carbon contributes to enhanced decomposition rates, along with high temperatures, 

which lead to the production of substrates for methanogenic microorganisms (Boon and 

Mitchell, 1995; Cui et al., 2005; Krupadam et al., 2007). 

In contrast, Sutton-Grier and Megonigal (2011) found a negative relationship between 

below-ground biomass and the production of CH4 in their experimental mesocosms. In this case, 

plant-mediated oxygen supply to the root zone regulated the competition between methanogenic 

and non-methanogenic microorganisms. Given that more Fe
2+

 was oxidised, leading to 

increased Fe
3+

, methanogens were out-competed by Fe
3+

-reducing bacteria for organic matter 

(Sutton-Grier and Megonigal 2011; Megonigal et al., 2013). This condition may also occur in 

the case of sulfate-reducing bacteria in marine systems. High sulfate content in saline waters 

causes more favourable conditions for sulfate-reducing bacteria than for methanogens, which 

use competitive substrates—acetate and H2/CO2 (Boon and Mitchell, 1995; Giani et al., 1996; 

Van Der Nat et al., 1998). For example, Shalini et al. (2006) found a negative correlation 

between dissolved CH4 and dissolved sulfate in the estuary of Pulicat Lake, India (R2
 = 0.49, 
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n = 52). In laboratory incubations, the sulfide production rate can reach up to 200 times greater 

than the CH4 production rate. In addition, the suppression of methanogenesis also occurs when 

nitrate or manganese-reducing bacteria out-compete methanogens (Biswas et al., 2007; 

Krupadam et al., 2007). For these substrate competitions, Verma et al. (2002) demonstrated a 

negative relationship between CH4 emissions and electron acceptors, including dissolved iron 

and manganese (R2
 = 0.77; R2

 = 0.98) and sediment iron and manganese (R2
 = 0.61; R2

 = 0.57). 

2.5.2 Salinity 

The competition for substrates between methanogens and non-methanogens in saline 

waters has been generally accepted, since the majority of methanogenesis uses acetate, H2/CO2 

or other competitive substrates. As a result, CH4 emissions in marine environments are expected 

to be negligible. However, the direction of that competition is likely to change if there is an 

abundance of organic matter or the presence of methylated compounds, as reported by Aulakh 

et al. (2001) and Reshmi et al. (2015) from mangrove sites in Tanzania and India, and by 

Zhuang (2014) from sea bottom sediment in Aarhus Bay, Denmark, and the Mediterranean Sea. 

In the first case, methanogens may be active after sulfate depletion, while, in the second case, 

methanogenesis and sulfate reduction can coexist. 

Although organic matter and electron acceptors are the major factors in methanogenesis, 

salinity is considered an additional factor controlling CH4 production. When scholars identify 

salinity as a predictor for biogenic production of CH4 in marine environments (Ramesh et al., 

1997; Verma et al., 2002; Koebsch et al., 2013), sulfate content is actually the salient factor. As 

long as non-competitive substrates do not exist, quantitative data have revealed strong 

relationships between salinity and CH4 production and emissions or dissolved CH4, as reported 

by Scranton and McShane (1991), Ramesh et al. (1997), Jayakumar et al. (2001), Verma et al. 

(2002), Shalini et al. (2006), Poffenbarger et al. (2011) and Dutta et al. (2013). In contrast, 

Reshmi et al. (2015) did not find that salinity influenced methanogenesis in estuarine soils 

(Ashtamudi, India) as a result of methylotrophic methanogen abundance (non-competitive 

substrate users). 

2.5.3 Temperature 

Higher temperatures generally increase the level of bacterial activity. However, 

methanogens can remain active under low temperatures if there is sufficient available organic 

matter. Many authors have identified soil or air temperature as limiting factors of CH4 

production and emission, such as Verma et al. (2002), Cui et al. (2005), Inamori et al. (2007), 

Poffenbarger et al. (2011), Zhang and Ding (2011), Datta et al. (2013) and Lofton et al. (2014). 

Specifically, Boon and Mitchell (1995) found in their in vitro experiments that methanogenesis 

is highest at 30°C and least at 5°C, with the exception in sediment enriched with methanol 

(maximum at 20°C). Meanwhile, in a coastal brackish fen, in Rostock, Northeast Germany, CH4 
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emissions were almost undetectable in air temperatures < 10°C and water temperatures < 8°C 

(Koebsch et al., 2013). Dutta et al. (2013) noted that CH4 emission from sediment is positively 

correlated with the sediment temperature (n = 8, R2
 = 0.35). However, another correlation 

analysis revealed that the relationship was not statistically significant (R2
 = 0.078, n = 40, 

p = 0.10) (Purvaja et al., 2004). The correlation analysis indicated that CH4 production is not 

only dependent on temperature, but also on other factors. 

Sun et al. (2013) and Reshmi et al. (2015) explained that organic matter input, salinity and 

plant community are interrelated with temperature to control the production of CH4. Using a 

step-wise linear regression approach, Chen et al. (2009) found that plant community and 

inundation depth were more likely to be key factors explaining the spatial variability of CH4 

emissions, rather than temperature. Similarly, when temperature was excluded from the list of 

independent variables of a step-wise linear regression, the height of the water table was the best 

explanatory variable for daily variation of CH4 emissions (Yang et al., 2013). 

2.5.4 Acidity, dissolved oxygen and redox potential 

Although acidity (pH) is likely to be a secondary factor, dissolved oxygen and redox 

potential are strong limiting factors, since most methanogens are obligate anaerobic. 

Methanogenic communities are generally dominated by neutrophilic species (Koebsch et al., 

2013; Megonigal et al., 2013). As a result, some studies have revealed that no significant 

relationships exist between pH and annual CH4 flux (Koebsch et al., 2013) or CH4 production 

(Yu et al., 2013), even though CH4 emissions have increased in acidic soils along with a 

negative redox potential (Krupadam et al., 2007; Megonigal et al., 2013). In another study, the 

pH value did not vary greatly (Reshmi et al., 2015); hence, this cannot explain CH4 variability. 

Conversely, oxygen availability inhibits methanogen activity (Ramesh et al., 1997; Konnerup et 

al., 2014), with soil redox potential as an indicator of this aerobic–anaerobic condition. In a 

review, Aulakh et al. (2001) found that soil anaerobiosis occurs at redox potentials (Eh) below 

˗100 or ˗200 mV. There may be a gradation between aerobic and anaerobic conditions with soil 

depth; hence, dissolved CH4 concentration may change gradually with the change of redox 

potential. This can be inferred from a strong correlation between dissolved CH4 and Eh obtained 

from diurnal and seasonal measurements (Zhang and Ding, 2011; Marín-Muñiz et al., 2015). 

The presence of an aerobic zone for CH4 oxidisers or methanotrophs is also important in 

controlling CH4 loss to the atmosphere. This is because they consume 14 to 36% of gross CH4 

emissions (Vann and Megonigal, 2003), ~43% of the annual potential flux of CH4 in the oxic 

zone (Roslev and King, 1996) or up to 90% of dissolved CH4 in the unsaturated zone (Fechner 

and Hemond, 1992). In general, extensive aerobic zones occur when the surface sediment is 

exposed to the atmosphere (Roslev and King, 1996). These conditions can also be found within 

submerged leaf sheaths and as a thin layer in a sediment–water interface when the sediment is 
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inundated (Inamori et al., 2007). In addition, inside roots and the rhizosphere of aquatic plants 

are aerobic, since they have aerenchyma structures that can transport oxygen from the 

atmosphere to the root zone (Chowdhury and Dick, 2013). In some studies, different oxygen 

concentrations from the soil surface to the depth of aerobic–anaerobic zones result in 

stratification of CH4 oxidation rates (Sundh et al., 1995; Bodelier et al., 2000; Siljanen et al., 

2011). This oxidation also possibly occurs in the water column, since some methanotrophs have 

been detected living as plankton (Ross et al., 2001). 

CH4 concentration in pore or column water seems to control CH4 oxidation. Sundh et al. 

(1995) included water table position (as the extension of the aerobic zone for the 

methanotrophs) and pore-water CH4 concentration as independent variables in the regression 

equation when calculating CH4 oxidation rates. Meanwhile, Lofton et al. (2014) found that the 

rate of CH4 oxidation increased linearly with increased CH4 concentration in the water column. 

Similarly, Megonigal (2002) suggested that CH4 oxidation rates respond positively to gross CH4 

emission rates (R2 = 0.96). His data also revealed that methanotrophs were very dependent on 

CH4 concentration, rather than O2, since the change of gross CH4 emissions and oxidation in 

response to large differences in incubation temperature was similarly consistent. 

From the discussion of CH4 oxidation, we can conclude that the combination of aerobic 

conditions, high CH4 concentration and temperature provide ideal ambient factors to support 

methanotrophs in reducing CH4. However, to some extent, this environmental setting can be less 

favourable when other groups of bacteria out-compete methanotrophs for oxygen or nitrate (Van 

Bodegom et al., 2001). For nitrate-reducing bacteria, this competition only occurs when nitrate 

concentration is high, which is only found in laboratory conditions (Boon and Lee, 1997). 

Although aquatic plants are essential in CH4 production by supplying organic matter to 

methanogens, these plants have two contradictory roles in reducing CH4. The roots of some 

aquatic plant species provide micro-habitats for methanotrophs (Inubushi et al., 2001; Inamori 

et al., 2007). The plants supply oxygen to the root zone, taking it from the atmosphere and 

transporting it through the stem and root tissues. However, some authors have reported that 

aquatic plants act as ventilation (e.g., Shannon and White, 1994). CH4 in the anaerobic zone 

egresses through plant tissue, without passing through the CH4 oxidation zone within the 

sediments. For example, water hyacinth is expected to facilitate CH4 transport via the 

aerenchyma tissues from sediment to the atmosphere (Verma et al., 2002). Plant structures in 

mangrove species, known as pneumatophores, can also help this transportation (Purvaja et al., 

2004). 

In the discussions about CH4 emissions from mangroves and other wetlands, net CH4 

emissions are the result of complex interacting processes involving interrelated or counteracting 

factors. However, methanogenic substrates and microbial metabolism can both act as proxies to 

explain the variability of CH4 emissions in mangrove ecosystems. Therefore, further 
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investigation and experimentation into methanogens and energy sources for these bacteria are 

strongly recommended. 

2.6 Formulation of research questions 

Global CH4 fluxes from mangrove sediments are generally negligible (< 5 mg m
-2

 hour
-1

) 

relative to the typical range in freshwater wetlands (0.6 to 13 mg m
-2

 hour
-1

). However, CH4 

fluxes from mangrove sediment could as high as 83 mg m
-2

 hour
-1

 (Chen et al., 2010), because 

the site has nutrient polluted sediments. Furthermore, to characterised CH4 emissions from 

mangrove ecosystem in the global CH4 emissions, the investigations of CH4 fluxes should not 

only on the sediment–air interface, but also on other sources (e.g., water–air interface). CH4 

fluxes from water-air interface may have a great contribution to the total CH4 fluxes of 

mangrove ecosystem (see 2.3.2). The source of CH4 in the mangrove surrounding waters is not 

only produced in the water column but also supplied from mangrove pore-water. Thus, pore-

water CH4 could act as a proxy for CH4 fluxes/transport, as well as production and consumption. 

To address the aim of this study, I chose to investigate dynamics of dissolved pore-water CH4. 

This study focused on the role of mangrove regrowth following rehabilitation on dissolved 

CH4 pore-water. It also investigated physicochemical factors that may be controlling CH4 

production and consumption, as well as the microbial metabolism involved in such processes. 

The specific study aims and research questions are presented as follows: 

A. The development of a method to measure pore-water CH4  

1. How can filter and chamber modification affect the performance of a multilevel pore-

water sampler designed by Martin et al. (2003) in various mangrove soils? 

2. How to transport gas samples extracted from pore-water? 

B. The quantification of dissolved CH4 concentrations and identification of mangrove 

regrowth effects 

1. What is the relationship between stand basal area (a surrogate of stand age) and pore-

water dissolved CH4? 

2. How do the physicochemical characteristics of pore-water relate to dissolved CH4? 

3. How do pore-water CH4 concentrations change seasonally? 

C. The identification of the dominant methanogenic pathway 

1. Can the dominant methanogenic pathways be determined using concentrations of SO4
2-

, 

S
2+

, Fe
2+

, Fe
3+

 and Cl
-
? 

2. How can the dominant pathway be identified through substrate (i.e., methanol, acetate, 

hydrogen) enrichment of mangrove sediment samples? 

3. What is the relative abundance of methanogenic groups? What is the abundance of 

sulfate-reducing bacteria? 
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Chapter 3: Research approach, site 
descriptions and general methods 

3.1 Research approach 

As formulated in Chapter 2, the research consisted of three major components: (i) 

development of a method to measure pore-water CH4, (ii) quantification of pore-water CH4 and 

(iii) identification of the dominant pathway of CH4 production (see Fig. 3.1). First, the 

development of a method to accurately measure pore-water CH4 is urgently needed to overcome 

current methodological limitations in remote locations (Chapter 4). This includes the repeated 

non-destructive sampling of pore-water and the subsequent extraction of dissolved CH4 using 

the headspace equilibration technique. To determine variability in pore-water CH4 

concentrations and the factors controlling such variability, this study measured dissolved CH4 

concentrations in mangrove sediments at contrasting sites and identified the effects of mangrove 

regrowth on dissolved CH4 (Chapter 5). This study also identified the dominant methanogenic 

pathway to understand the microbial processes underpinning CH4 productions (Chapter 6). 

Chapter 6 consisted of: (i) a geochemical study using the pore-water CH4 measurement method 

described in Chapter 4 and (ii) a microbial study including abundance estimation of 

methanogens and sulfate-reducing bacteria, along with associated laboratory experiments that 

used methanogenic substrate enrichments of the soil slurry samples (i.e., methanol, acetate and 

hydrogen).  

 

Figure 3.1. Study components, data chapters and the interrelationships. 

 

Table 3.1 outlines the structure by which each research component was linked to key 

research questions and targeted datasets or outcomes. Chapter 4 will provide qualitative and 
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quantitative data to indicate the performance of a modified pore-water sampler designed by 

Martin et al. (2003) in various mangrove soils. In addition, it will describe measurements of 

CH4 gas standards with various concentrations that were stored in aluminium gas-tight bags and 

transported from the field site to the laboratory via a commercial aircraft. Chapter 5 will focus 

mainly on investigating the effect of mangrove regrowth on dissolved CH4, complemented by 

analysing potential confounding factors. Chapter 6 will provide depth profiles of key ion 

parameters involved in methanogenesis and sulfate reduction. In addition, it will present the 

results of laboratory experiments investigating the effect of substrate enrichments (i.e., 

methanol, acetate and hydrogen) on the flux of CH4 released from the sediment samples. 

Together with these results, the relative abundance of methanogen and sulfate-reducing bacteria 

will elucidate the dominant methanogenic pathways in the study site. 

 

Table 3.1. Summary of research questions and outcomes of each study 
component. 

Study component Research question(s) Outcomes 

Chapter 4 

Development of a 

method to measure 

pore-water CH4 

How can filter and chamber 

modification affect the performance 

of a multilevel pore-water sampler 

designed by Martin et al. (2003) in 

various mangrove soils?  

Qualitative data taken from 

laboratory experiments using 

freshwater with different colours 

Quantitative data of depth profiles of 

physicochemical parameters and 

dissolved CH4 

How to transport gas samples 

extracted from pore-water? 
CH4 measurements of gas standard 

kept in aluminium gas bags, 

transported by plane 

Chapter 5 

Quantification of 

pore-water CH4 

concentrations and 

identification of 

mangrove regrowth 

effects 

What is the relationship between 

stand basal area (a surrogate of stand 

ages) and pore-water dissolved CH4? 

Relationship of pore-water dissolved 

CH4 concentration and stand basal 

area 

How do the physicochemical 

characteristics of pore-water relate to 

dissolved CH4? 

Relationships of pore-water 

dissolved CH4 concentrations and 

physicochemical factors 

How do pore-water CH4 

concentrations change seasonally? 

Seasonal variation of pore-water 

dissolved CH4 concentrations 

Chapter 6 

Identification of the 

dominant pathway of 

CH4 production 

Can the dominant methanogenic 

pathways be determined by 

concentrations of SO4
2-

, S
2+

, Fe
2+

, 

Fe
3+

 and Cl
-
? 

Depth profiles of SO4
2-

, S
2+

, Fe
2+

, 

Fe
3+

, Cl
-
 and CH4 concentrations 

How can the dominant pathway be 

identified through substrate (i.e., 

methanol, acetate, hydrogen) 

enrichments of mangrove sediment 

samples? 

CH4 concentrations released from 

mangrove sediment slurry after 

substrate enrichments 

What is the relative abundance of 

methanogenic groups? What is the 

abundance of sulfate-reducing 

bacteria? 

Relative abundance of methanogens 

and sulfate-reducing bacteria 
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3.2 Site descriptions 

The empirical data of this research were primarily based on a field study in Dusun 

Lantangpeo, Tanakeke Island, South Sulawesi, Indonesia (5° 27‘ S and 119° 17‘E) (Fig. 3.2). 

This is one of a series of mangrove rehabilitation sites implementing the EMR approach in 

Indonesia. This rehabilitation site was selected for this thesis because there was an active EMR 

project that had been successful in terms of mangrove recruitment (Brown et al., 2014). A 

physical description of the site is given below and a more detailed description of the EMR 

program follows in a later section. 

 

Figure 3.2. Regional map showing location of the field site at Lantangpeo, 
Tanakeke Island. 

 

Tanakeke is a coralline island located around 10 km from the mainland of Sulawesi and 

falling within the Takalar (administrative) District, Province of South Sulawesi (Fig. 3.2). It is 

about 40 km southwest of Makassar, the capital city of the province. The island has a tropical 

climate, with two distinct seasons. It experiences a wet season from November to April, 

although occasional dry season rainfalls do occur (Fig. 3.3). The annual average precipitation is 

around 3,000 mm, and around 80% of that typically falls in the wet season. Air temperature is 

reasonably stable with respect to small diurnal or seasonal fluctuations (Fig. 3.3). The annual 

mean minimum and maximum air temperature is around 25°C and 32°C, respectively, with an 

overall annual mean air temperature close to 28°C. 
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Figure 3.3. Climate data from May 2016 to April 2017 showing daily precipitation 
(bars, right axis) and daily air temperature (left axis). Open circles, 
closed circles and plus symbols indicate minimum, mean and 
maximum temperature, respectively (Meteorological, Climatological, 
and Geophysical Agency—Stasiun Meteorologi Maritim Paotere, 
Makassar). 

 

In Tanakeke, mangrove vegetation grows in sandy sediments, adjacent to seagrass beds 

and coral reefs, which are a dominant feature of the island. The mangrove vegetation is 

inundated by tides on a (near) daily basis. There is approximately one low and one high tide per 

day, with a maximum range of 1 m difference between low and high tide. At the highest high 

tide, there is around 0.5 m depth of sea water covering the soil surface. The mangrove 

vegetation is characterised as an overwash mangrove, dominated by Rhizophora stylosa 

(Setiawan and Mursidin, 2018). A further 10 species compose commonly occurring mangrove 

communities on the island, including Avicennia alba, Bruguiera gymnorrhiza, Excoecaria 

agallocha, Gymnanthera paludosa, Heritiera littoralis, Lumnitzera racemosa, Pemphis acidula, 

Rhizophora apiculata, Rhizophora mucronata and Sonneratia alba. 

In Lantangpeo, nine study sites were selected systematically, based on the variation in 

canopy density of the mangrove stands as a result of natural regeneration and EMR (Fig. 3.4). 

The site selection was to accommodate the research objective of Chapter 5, where long-term 

measurements of pore-water dissolved CH4 were undertaken. First, two different groups of sites 

were selected. Sites 1 to 3 were chosen to represent new (< 5 years) regeneration sites, while 

Sites 4 to 6 represented old (> 10 years) regeneration sites. I also selected three sites (Sites 7 to 

https://www.bmkg.go.id/?lang=EN
https://www.bmkg.go.id/?lang=EN
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9) that contained natural mangroves to act as control sites. These sites were selected after 

consultation with local inhabitants. The field evaluation for the pore-water samplers (Chapter 4) 

and microbial analysis (Chapter 6) were conducted only on Sites 3, 5 and 8, which associated 

with the rehabilitation/regeneration status.  

 

 

 

 

 

 

 

 

Figure 3.4. Site locations in the study area. Distribution of sampling sites (1 to 
9) plotted on Google Earth imagery, depicting the landscape of 
aquaculture ponds and mangroves with two creeks splitting the 
landscapes. White and brown colour spotted by green (lower section 
of figure) depicts recently abandoned ponds; patches of green 
colour surrounded by a brown line depict long abandoned ponds; 
green colour blocks show undisturbed mangrove vegetation. 

3.3 History of mangrove rehabilitation in Tanakeke 
Island 

According to 2016 Census, Department of Statistics, Takalar District, Tanakeke was 

inhabited by around 7,700 people in 2016, residing in settlements on the terrestrial part of the 

island. Some of the inhabitants had built a kampong or hamlet in shallow water adjacent to 

mangroves and fishponds. They reclaimed the shallow waters by using coral stones, sands and 

stranded coarse woody debris (e.g., logs and branches) and then built a rumah panggung or 

‗stage house‘ on top of this reclaimed land. The study area at Lantangpeo was one of the 

kampongs in the north of Tanakeke and had around 400 inhabitants. Unlike other kampongs, 

this kampong had not yet been connected to the electricity grid, and the local inhabitants relied 

on a fossil-fuel generator that operated for four hours each night to supply electricity. In 

addition, Lantangpeo had no access to freshwater and the local inhabitants had to purchase 

freshwater from adjoining kampongs or harvest rainwater. 
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Overall, the islanders gained their livelihood from fishing and farming (Brown et al., 

2014). Capturing fish in mangrove lagoons and coral reefs was generally undertaken for 

subsistence needs, although villagers could also sell surplus captures. A few residents who lived 

on the terrestrial part of the island also cultivated rice and vegetables, but this agriculture 

activity had previously ceased when shrimp farming in ponds became more profitable. After 

shrimp farming collapsed because of disease, the islanders abandoned this activity and only a 

few continued using the ponds for milkfish culture. For those who owned rice fields, these were 

revitalised to support their livelihoods. At the time of the research, most of the islanders relied 

on seaweed farming in the adjacent lagoons for their livelihoods. 

The shifting of livelihoods in Tanakeke Island, particularly to shrimp farming, has changed 

the environment and landscape of the island significantly over the last three decades. In 1979, 

unlike most mangrove forests in the Takalar district, mangrove forests in Tanakeke were intact 

ecosystems (Malik et al., 2017; see Fig. 3.5). However, a success story in aquaculture business 

within the broader region triggered farmers on Tanakeke Island to clear the available mangrove 

stands for aquaculture ponds. Hence, by 1996, almost 70% of the former mangrove stands on 

Tanakeke were occupied by aquaculture developments (Fig. 3.5). In 2003, aquaculture activities 

collapsed because of white spot disease outbreaks attacking shrimp cultures (Tangko and 

Pantjara, 2007). Thus, aquaculture was no longer profitable, and the farmers abandoned the 

aquaculture ponds (Brown et al., 2014). At that time (2003), there was no rehabilitation of the 

abandoned aquaculture ponds, but mangrove stands could naturally regenerate in some 

abandoned ponds. 



39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Historical development of aquaculture and effect on mangrove 
stands in the Takalar District (1979–2011). Mangroves are classified 
into five classes (highest to lowest) based on canopy density 
(reproduced from Fig. 2. in Malik et al., 2017). 
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To restore the local economy and the environment in the abandoned aquaculture ponds that 

could not or were less occupied by mangrove seedlings, Mangrove Action Project—Indonesia 

(MAP–Indonesia) combined with a variety of NGO partners to undertake social and physical 

works through Community-based Ecological Mangrove Rehabilitation (CB-EMR) in 2012. This 

is an adaption of EMR to involve socioeconomic aspects, particularly in the issue of land tenure. 

Of the 400 ha of ponds in the broader Tanakeke EMR project, 64 ha were located in Lantangpeo 

(Brown et al., 2014). 

EMR is a rehabilitation or restoration method that attempts to create conditions that 

facilitate natural recruitment and regeneration of mangrove vegetation (Lewis and Brown, 

2014). This is a general approach that can be readily adapted to a variety of local situations and 

circumstances. There are at least six steps to be followed, including: (i) preliminary assessment, 

(ii) biophysical assessment, (iii) socioeconomic assessment, (iv) site selection, (v) project 

design and (vi) project implementation and monitoring. Further information on EMR can be 

found in Ecological Mangrove Rehabilitation: A Field Manual for Practitioners (Lewis and 

Brown, 2014). 

In the EMR case study of Tanakeke, MAP–Indonesia led a number of institutions and 

communities to implement the project (Brown et al., 2014), including the Canadian 

International Development Agency and Oxfam Great Britain as sources of project funding. 

Yayasan Konservasi Laut, a local NGO, was the main collaborator at the community level. In 

addition, numerous Indonesian government agencies, from provincial to village levels, acted to 

assist in terms of coordination, training and policy development, while universities were 

involved in the project by providing technical support, background studies and guidance. 

Brown et al. (2014) claimed that the Tanakeke EMR project, covering six locations, was 

successful, at least based on the criteria of plant recruitment and early growth. They selected a 

relatively pristine site on the island of Panikiang, 150 km north of Tanakeke, as a reference site 

to determine the benchmark criteria of plant recruitment, which was 1,250 plants per ha. They 

reported that the EMR project in Lantangpeo exceeded that benchmark after 32 months. 

3.4 General methods 

The rehabilitation site in Lantangpeo was considered suitable to meet the principal aim of 

this research. The main requirement was that pore-water dissolved CH4 should be mainly 

affected by mangrove regrowth. In this research, mangrove regrowth was defined as an increase 

of mangrove stand basal area over time in a rehabilitation site (see Chapter 5). Therefore, all 

potential confounding factors should be minimised. Fortunately, the rehabilitation site in 

Lantangpeo was relatively homogenous in terms of species composition, which was 

predominantly Rhizophora stylosa. All the rehabilitation sites were in the same hydrological 

regimes (i.e. tidal cycle and relative position to mean sea level), with more or less the same 
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sediment types—coralline sands. Located on a small island, these sites were unlikely to have 

influences from terrestrial inputs, which could affect methanogenesis because of changes in 

geochemistry or the supply of organic carbon. 

Nevertheless, because of Lantangpeo being relatively remote in terms of access to 

freshwater and electricity, fieldwork that required electric power or freshwater would not be 

suitable. Transportation was also another issue for fieldwork in this study location. Therefore, 

only two possible approaches applied in this situation: using portable equipment with long-

lasting batteries and minimising the transport of samples back to the laboratory. Although I 

worked with sediment samples, data collection in the current study heavily relied on pore-water 

samples. I needed a large volume of pore-water samples to undertake repeated measurements of 

several parameters, including dissolved CH4 and various physicochemical factors. 

Consequently, I developed a pore-water sampler that could overcome the limitations of working 

in Lantangpeo (see Chapter 4 for further explanation). In addition, I expelled dissolved gas from 

the pore-water samples and stored the gas samples in gas-tight aluminium bags for ease of 

transportation. I used field portable instruments to measure physicochemical factors at the time 

of sampling (see Chapters 4 and 5). Hence, only small amounts of pore-water and sediment 

samples were transported to a laboratory for parameters that could not be analysed in situ, such 

as Cl
-
 content and abundance of methanogen and sulfate-reducing bacteria. 
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Chapter 4: Measuring dissolved methane in 
mangrove pore-water 

4.1 Introduction 

Increases in atmospheric methane (CH4) concentration are an important anthropogenic 

forcing of the global climate. Although the current atmospheric concentration of CH4 (~1.8 

ppm) is substantially smaller than carbon dioxide (CO2, ~400 ppm), on a mass basis, CH4 has 25 

times the Global Warming Potential (GWP) of CO2 (Forster et al., 2007). In addition, current 

understanding suggests that atmospheric CH4 has experienced a 150% increase since the 1700s 

(IPCC, 2013; Reay et al., 2018), while CO2 has increased by around 40% over the same period 

(IPCC, 2013). An increase in the atmospheric concentration of these two greenhouse gases 

increases the Earth‘s surface temperature, which then, in a classic positive feedback, has the 

potential to further increase CH4 emissions either from natural or anthropogenic sources (Dean 

et al., 2018; Reay et al., 2018). 

CH4 production by methanogenic microorganisms in the anoxic sediments of coastal 

wetlands is mainly controlled by carbon source availability, temperature and the frequency of 

inundation (Dean et al., 2018). Methanogens derive their carbon source from photosynthetic 

organisms (i.e., vegetation and phytoplankton). The productivity of vegetation and 

phytoplankton usually (Gamage et al., 2018; Lahijani et al., 2018; Xie et al., 2018), but not 

always (e.g., Keys et al., 2018; Obermeier et al., 2018), increases with CO2, implying the future 

possibility of greater substrate availability for CH4 production. In addition, phytoplankton 

productivity in coastal wetlands can also increase for other reasons including, most commonly, 

nutrient enrichment from polluted rivers (Purvaja and Ramesh, 2000; Chuang et al., 2017). 

However, methanogens can only use the carbon substrate in anoxic environments (Wang et al., 

1993; Le Mer and Roger, 2001). Sea level rise could promote new anoxic zones through an 

expansion of coastal wetlands (Geselbracht et al., 2015; Tabak et al., 2016) and alteration in the 

extent and frequency of inundation (Grenfell et al., 2016) leading to increased potential CH4 

emissions (Lu et al., 2018). Hence, there is widespread interest in CH4 production and emission 

from coastal environments. 

The role of mangrove vegetation in the global CH4 budget is still under debate, and this 

situation is at least partly due to the lack of empirical studies. The available empirical data 

report CH4 emissions from the sediment surface, varying from near zero (Giani et al., 1996; 

Alongi et al., 2004) to around 80 mg m
-2

 h
-1

 (Chen et al., 2010). Based on several previous 

studies that reported low CH4 emissions from the sediment of mangrove ecosystems with low 

CH4 emissions, Twilley et al. (2017) disregarded CH4 emissions in their calculations of the 

global mangrove carbon budget. However, some recent studies have suggested that CH4 

emissions in mangrove ecosystems also occur at the interface of surrounding water bodies and 
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the atmosphere (Linto et al., 2014; Call et al., 2015; Rosentreter et al., 2018). Furthermore, the 

dissolved CH4 in the water bodies (i.e. mangrove creeks and estuarine waters) is mainly derived 

from mangrove pore-water, exported through tidal pumping (Call et al., 2015). In addition, a 

number of recent studies in vegetated wetlands have demonstrated substantial CH4 emissions 

through the stems of woody plants (Terazawa et al., 2015; Pangala et al., 2017; Pitz et al., 

2018), which apparently also apply in mangrove wetlands (Jeffrey et al. 2019). Therefore, the 

CH4 contribution to the carbon budget of mangrove ecosystems remains uncertain.  

To address current gaps in the mangrove CH4 budget, I proposed studying CH4 dissolved 

in the pore-water within the sediments. The concentration of CH4 in the pore-water at a given 

time is the result of a balance between the various processes involved in CH4 production, 

consumption and transport. These processes occur at both short (diurnal) and longer (seasonal) 

timeframes. In addition, CH4 production and consumption both vary with depth in sediment, 

which is apparently mainly due to the variability of carbon content and aerobic/anaerobic 

conditions with depth (Wassmann et al., 2000; Gonsalves et al., 2011; Xu et al., 2015; Islam et 

al., 2018). Further, vertical transport of (either gas phase or dissolved) CH4 through the 

sediment would affect the pore-water CH4 variability with depth, and eventually determine CH4 

emission variability (Bazhin, 2003). 

The most advanced method of dissolved CH4 measurement in pore-water is in-situ Raman 

measurement (X. Zhang et al., 2012), but this remains expensive and not widely used. To date, 

most studies of CH4 pore-water have been based on pore-water extracted from sediments (Dutta 

et al., 2015; Chuang et al., 2016; Schile et al., 2017) either ex-situ or in-situ (Bufflap and Allen 

1995; Prayitno, 2016). The ex-situ approach extracts pore-water in a laboratory from sediment 

cores using mechanical force (i.e., squeezing, centrifugation). This approach is simple, 

inexpensive and rapid, yet has the potential for oxidation, redox potential and temperature 

artefacts (Bufflap and Allen, 1995). In addition, it cannot be used for repeated sampling at the 

same location. 

The in-situ approach withdraws pore-water from the sediment using either dialysis or 

suction-filtration. A dialysis pore-water sampler relies on the diffusive equilibration between a 

solute in the dialysis chambers and pore-water, separated by a semi-permeable membrane. 

Although the dialysis approach is unlikely to have potential artefacts, it can take up to 24 hours 

for equilibrium to be achieved (Xu et al., 2012). The 24 hour time frame precludes the use of 

this method for diurnal sampling. The suction-filtration approach is undertaken by pumping out 

the pore-water in the field. This approach is both artefact-free and the sample volumes allow the 

possibility of, for example, diurnal sampling (Martin et al., 2003; Nayar et al., 2006; Beck et 

al., 2007). Current designs of suction-filtration samplers have been specific to particular 

applications and there is no generic design as yet. For example, Nayar et al. (2006) and Gao et 

al. (2012) developed a pore-water sampler for a single depth sample, while Martin et al. (2003) 
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and Beck et al. (2007) constructed a multilevel pore-water sampler for application in estuarine 

and intertidal flat sediments. Liu et al. (2018) further improved the multilevel pore-water 

sampler for use in deep-sea sediments. 

Here, I describe the development of a complete CH4 measurement system suitable for use 

in remote field locations. The pore-water sampler was constructed based on modifications to a 

design originally described by Martin et al. (2003) for collecting a minimum sample of 200 mL 

of pore-water. This volume of pore-water is necessary for measuring dissolved CH4 using 

Magen et al. (2014) approach and some physicochemical parameters. Instead of transporting the 

pore-water samples to a laboratory, like in Magen et al. (2014), I evacuated gas dissolved in the 

pore-water samples in the field and stored that gas in aluminium gas-tight bags for transport to 

the laboratory. The gas samples are easy to be transported through various modes of 

transportation because it is obviously lighter than pore-water samples. The overall aim was to 

develop a new method for use in mangrove forests located in remote areas where transportation 

of samples can include traditional wooden boats, cars, and various types of aircraft. The method 

developed here would be suitable for use in other similarly located mangrove forests. In this 

paper, I (i) describe the design and performance of the new pore-water sampler in various 

mangrove soils, and (ii) report a series of tests to evaluate the reliability of the aluminium gas-

tight bags to store and transport the extracted gas. Finally, I show typical CH4 and related 

physicochemical data to demonstrate the utility of the new system. 

4.2 Design and construction 

I modified the pore-water sampler designed by Martin et al. (2003) and combined that with 

an adapted headspace equilibration method developed by Magen et al. (2014). The aim was to 

develop a new method for use in mangrove forests located in remote areas where transportation 

of samples can include traditional wooden boats, cars and airplanes. The method developed here 

would be suitable in other similarly located mangrove forests. 

I initially developed several prototype pore-water samplers at the Engineering Workshop, 

Research School of Earth Science, Australian National University (RSES-ANU). The 

assessment of the sampler prototype was conducted at the Marine Biogeochemistry Laboratory, 

RSES-ANU, and in mangrove forests in Batemans Bay, New South Wales (NSW), Australia. I 

assessed each prototype in terms of the extraction rate of pore-water at multiple depths. The 

assessments described below include initial data, as well as data collected during a subsequent 

one-year field study in the mangrove forests of Lantangpeo, Tanakeke Island, South Sulawesi, 

Indonesia. 

Here I will only shows the last two designs of pore-water samplers. This is because I 

perform a complete assessment for these samplers, including in the laboratory and fields 

(described in Section 4.4). 
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The near-final prototype consisted of three chambers located at 10, 40 and 70 cm from the 

cone-shaped end (Fig. 4.1A). Chambers are one of improvements in our design of pore-water 

sampler which previously designed by Martin et al. (2003).The chambers were made of solid 

PVC that was machined to make suitable grooves and holes (Fig. 4.1B and C). At each chamber 

position, the pipe wall was drilled to make six holes, with a curve-edged rectangular shape (1 

cm × 2.5 cm). The holes were made along the circumference of the pipe, with a gap between 

holes of 1.5 cm (Fig. 4.1B). For the fabrication of the chamber ports, mesh screens were set 

between the chambers and pipe walls covering the holes. While, Martin et al. (2003) used a 

polypropylene mesh screen with mesh size of 210 µm, I constructed three prototypes of the 

pore-water samplers, using different sizes and materials for the mesh screens. The first was a 

polypropylene mesh with a mesh size of 20 µm, while the other two were made of stainless 

steel, with mesh sizes of 90 µm and 160 µm. 
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Figure 4.1. Prototype design of pore-water sampler with three chambers. (A) 
Whole body, (B) transparent inset of a chamber showing a hole of a 
port with curve-edged rectangular shape, (C) chambers with (left) 
and without (right) the mesh screen. 

 

The final design of the pore-water samplers consisted of 10 chambers located at 10 cm 

intervals along the pipe length (Fig. 4.2AB). As previously mentioned, these pore-water 

samplers were made from 4.5 cm ID PVC pipe. In the final design, the chambers were simpler 

than those in the prototypes. They were made of 4.5 cm length and 2 cm ID PVC pipes and 

assembled inside the 4.5 cm ID pipe horizontally. The two ends of the 2 cm ID pipe were 

attached to the walls of the 4.5 cm ID pipe, where the wall had been drilled to make a round 

hole with 2 cm diameter (Fig. 4.2C). Stainless steel mesh (size 90 µm) covered the holes 

sandwiched between the outer walls of the pipe and patches. The patches were made of half 

round PVC pipe, with ID size of 5.5 cm. 
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Figure 4.2. Final design of pore-water sampler. (A) Sampler body showing the 
10 chambers, (B) inset of two chambers and circular holes of the 
ports, (C) port with installed stainless steel mesh (size 90 µm) 
screen. 

 

4.3 Deployment and sampling 

The deployment of the samplers in soft sediments was undertaken by pushing the samplers 

into the sediment. However, in some circumstances, I needed to make a hole using a hand corer 

or an additional PVC pipe that had the same diameter as the pore-water samplers. Making a hole 

was usually easy during low tide. Once the pore-water samplers were installed, the pore-water 

could be extracted at sequential sampling intervals. I used a small 12-volt peristaltic pump for 

each chamber. The pump had a maximum capacity of 100 ml water per minute. The power 

supply for the pump came from a 12 V, 100 Ah, sealed lead-acid rechargeable battery. The 

pore-water samples were collected into 120 ml glass bottles and sealed with a rubber stopper. 

4.4 Initial evaluation of performance 

During the prototyping, I tested the effectiveness of the mesh screen, including its opening 

size and material, to collect pore-water samples in different sediment types. The evaluation  was 

based on both laboratory and field experiments. 
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4.4.1 Laboratory experiment 

I undertook an initial laboratory experiment using a 20 µm square mesh screen. I used 

three sediment types, which included sand, silt and a composite sand-silt mixture in separate 

buckets to which tap water was added. The pore-water sampler was inserted into the sediment, 

so that the bottom chamber of the sampler was buried. Using a peristaltic pump, the pore-water 

was pumped out and the extraction rate (ml hour
-1

) was measured. The extraction rate of pore-

water from sandy sediment was the highest, accounting for 12,600 ml hour
-1

. Extraction rates of 

400 and 200 ml hour
-1

 were found in a finely textured sand-silt mixture and in silt sediments, 

respectively. The higher extraction rates from the coarse-grained (sand) sediment were expected 

(Masch and Denny, 1966). 

4.4.2 Field experiment 

I undertook field experiments using three identical pore-water samplers each fitted with a 

different mesh size (20 µm, 90 µm, 120 µm). The 20 µm mesh was made of polypropylene, 

while the other two mesh sizes were made from stainless steel. The samplers were sequentially 

installed into two different sediment types (inland mangrove, creek levee, see Table 1) within 

existing mangrove vegetation at Batemans Bay, NSW, Australia. Prior to installing the pore-

water samplers, I used a PVC pipe with the same 4.5 cm ID to both create a suitable hole and to 

extract sediment for subsequent grain size analysis. I deployed the three samplers with a 1 m 

separation. Once the installation was completed, I extracted the pore-water using a peristaltic 

pump installed in each chamber. The extraction rate from all chambers was measured 

simultaneously.  

The results were for extraction rates of 3000 to 4250 ml hour-1 in near pure sand that were 

independent of depth or mesh size (inland mangrove, Table 4.1). In contrast, at the other site 

with finer sediment texture (creek levee, Table 1), the extraction rates were again more or less 

independent of mesh size but they did vary with depth. The highest extraction rates were at the 

surface (~ 4000 ml hour
-1

) with the extraction rate declining to 400 ml hour
-1

 at 75 cm depth. 

Because the sediment texture was more or less uniform with depth, I did not see the sediment 

texture is the salient factor controlling the extraction rates. At this stage, nevertheless, I did not 

further evaluate why the extraction rates varied with depth, because the minimum volume of all 

samples of pore-water was more than sufficient for CH4 analysis. In particular, the system was 

capable of collecting the necessary 200 ml pore-water sample in 3-30 minutes. 
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Table 4.1. Extraction rates of pore-water measured from experiments using the 
prototype pore-water sampler in the Batemans Bay region of NSW 
(Prayitno, 2016). 

 

No. Opening filter size Locations 

 

Depth (cm); 

sediment 

Extraction rate 

(ml hour
-1

) 

1 20 × 20 µm
2
 Inland mangrove 

 

Top (15); 

73% sand, 

22% silt, 5% clay 

4,160 

   Middle (45);  

72% sand, 

24% silt; 4% clay 

4,250 

   Bottom (75);  

67% sand, 

29% silt; 4% clay 

600 

  Creek levee  Top (15); 

96% sand, 

~0% silt, 4% clay 

4,250 

   Middle (45);  

98% sand,  

1% silt, 1% clay 

4,250 

   Bottom (75);  

98% sand, 

~0% silt, 2% clay 

3,000 

2 90 × 90 µm
2
 Inland mangrove Top (15) 4,000 

   Middle (45) 800 

   Bottom (75) 600 

  Creek levee  Top (15) 4,500 

   Middle (45) 4,250 

   Bottom (75) 4,250 

3 120 × 120 µm
2
 Inland mangrove Top (15) 4,250 

   Middle (45) 2,800 

   Bottom (75) 400 

  Creek levee  Top (15) 4,300 

   Middle (45) 4,250 

   Bottom (75) 4,250 

 

Our study has made progress in the extraction of pore-water, particularly in terms of 

extracted sample volume within a practical time scale. The performance of this sampler is 

generally similar to that developed by Martin et al. (2003), although the size of mesh screens 

used here (i.e., 20, 90 and 120 µm) are smaller than the earlier design (210 µm). In addition, the 

volume of extracted pore-water sample is considerably higher than those previously reported 

(cf. Table 4.1 and Table 4.2). The previous studies generally extracted a small volume of pore-

water, mostly because of technical limitations of the methods. For example, squeezing or 
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centrifugation approaches depend on the volume of the samples and water-holding capacity of 

the sediment. In Table 4.2, the highest volume extracted using the squeezing approach is 75 ml, 

which required 15 minutes of extraction time (Sasseville et al., 1974). Similarly, the extraction 

volume of dialysis pore-water samplers is dependent on the chamber size. Moreover, dialysis 

approaches need a longer time for equilibration—at least 24 hours (Xu et al., 2012), and the 

longest equilibration time reported is six weeks (Steinmann and Shotyk, 1996). 

Table 4.2. Comparative analysis of volume rates of pore-water using various 
approaches. 

Approach Sediment type Extracted 

volume (mL) 

Time 

required 

Sources 

Squeezing Unspecified (lake) 75 15 minutes Sasseville et al. (1974) 

Unspecified (lake) 20 10–20 minutes Robbins and Gustinis (1976) 

Unspecified (acid 

mine) 

49 18 minutes Lopes and Ribeiro (2005) 

Sand 1–10 Not informed Huerta-Diaz et al. (2007) 

Clay 2–12 8–32 days Fernández et al. (2014) 

 Clay 10 15–20 minutes Mazurek et al. (2015) 

Centrifugation Unspecified 

(marine)  

5–10 60 minutes de Lange et al. (1992) 

Unspecified 

(grassland) 

6–10 50 minutes Ronday (1997) 

Unspecified (acid 

mine) 

49 45 minutes Lopes and Ribeiro (2005) 

Dialysis Unspecified (bog) 5 7 days Thomas and Arthur (2010) 

 Unspecified (salt 

marsh) 

20 2 weeks Ugo et al. (1999) 

 Unspecified (lake) 0.014 24–72 hours Xu et al. (2012) 

 Unspecified (mud 

flat) 

30 2 weeks Bertolin et al. (1995) 

 Sand 3 < 1 week Huerta-Diaz et al. (2007) 

 Peat 30 4–6 weeks Steinmann and Shotyk (1996) 

Suction-

filtration 

Unspecified (lake) 5–10 30 minutes Shotbolt (2010) 

Unspecified 6 1–12 hours Darrouzet-Nardi and 

Weintraub (2014) 

Unspecified (lake) 0.01–0.05 < 0.5 minutes Torres et al. (2013) 

Sand Unlimited Not informed Beck et al. (2007) 

Sand > 60 > 5 minutes Nayar et al. (2006) 

Sand Unlimited Not informed Martin et al. (2003) 

 Sand 4000 1 hour Current study 

 

4.5 Extraction of dissolved methane 

In this section I describe the entire procedure used to measure pore-water dissolved CH4. 

Briefly, gas was extracted from the pore-water samples and subsequently transferred to 

aluminium gas-tight bags (Shanghai Sunrise Instrument Co., Ltd., Shanghai, 10 x 10 cm
2
, 20 

mL) while in the field. The aluminium gas-tight bags were then transported (by boat and 
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aircraft) from the field site to the Greenhouse Gases Laboratory, Research Institute for 

Agricultural Environment, Indonesian Agency for Agricultural Research and Development, 

Pati, Central Java. The CH4 gas concentration was determined using Shimadzu type 14A gas 

chromatography (GC) equipped with a flame ionisation detector (FID) and a packed column of 

Porapak Q. The temperatures of the GC were set at 25°C (injector), 50°C (column) and 300°C 

(detector). This instrument has a limit of detection of 0.12 ppmv for CH4. I used the result of the 

GC measurement to calculate the concentration of CH4 dissolved in the pore-water samples. A 

detailed calculation is described in the Appendix.  

In more detail, the field-based procedure followed that used by Magen et al. (2014) with 

modifications as described below. In the field, the pore-water samples for gas extractions were 

stored in suitably labelled 120 ml glass bottles. The sample bottles were then carefully sealed 

with grey butyl stoppers without gas space at the top and transported to the field base camp. At 

room temperature, 25 ml of the pore-water solution was removed from each bottle and replaced 

with 25 ml of ultra-high purity (UHP) nitrogen (N2) gas to a final pressure of 1.8 atm in the 

bottle head-space. Unlike the procedure described by Magen et al. (2014), in which the pore-

water bottles were then sent to the laboratory, I extracted 20 ml of gas from the bottle headspace 

using a plastic syringe after vigorously shaking the bottles (~30 seconds). The extracted gas was 

then injected into aluminium gas-tight bags that were subsequently transported to the laboratory 

for further analysis. While the reliability of dissolved CH4 measurement had been previously 

described by Magen et al. (2014), I had introduced an additional step into the procedure, i.e., the 

extraction and storage in gas-tight aluminium bags in the field.   

Previous studies have noted the possibility of gas leakages and contamination (Fisher and 

Reddy, 2013; Sturm et al., 2015) that would compromise the results. Accordingly, I evaluated 

the additional procedural step to confirm that the aluminium bags could store the gas samples 

and reliably transport them to a laboratory without any contamination. For this evaluation, I put 

known concentrations of standard CH4 into several aluminium gas-tight bags (Shanghai Sunrise 

Instrument Co., Ltd., Shanghai, 10 x 10 cm
2
, 20 mL) that were subsequently transported to the 

laboratory (~ 6-day delivery) and analysed for CH4 concentrations. In this case, I only had two 

concentrations of certified standard CH4 available—10.3 and 2055 ppm. These standards are 

diluted in nitrogen (N2), supplied by PT Linde Indonesia, The Linde Group. I made 10 replicates 

for each concentration with each gas-tight bag having a volume of 20 ml. The GC measurement 

for the standard CH4 (10.3 ppm) ranged between 8.2 and 10 ppm with a median from the 10 

measurements of 9.6 ppm (Fig. 4.3). For the second CH4 standard (2055 ppm) the GC 

measurements ranged between 1867 and 2038 ppm with a median from the 10 measurements of 

2013 ppm. In both cases the GC measurement was slightly less than the corresponding standard 

but the difference was small and I concluded that the aluminium gas-tight bags were a reliable 

way to store and transport gas samples for a week long period. 
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Figure 4.3. Boxplot showing distribution of measured concentrations of CH4 
standards. Box shows inter-quartile range. 

 

4.6 Final design 

After evaluating the performance of the various pore-water sampler prototypes, I finally 

adopted a 90 × 90 µm
2
 mesh screen made of stainless steel for the final design. This was 

subsequently used in an extensive fieldwork program in mangrove forests of Lantangpeo, 

Tanakeke Island, South Sulawesi, Indonesia. I chose three sites for the evaluation reported here. 

Two sites represented a low- and a high-density mangrove regrowth stand (Fig. 4.4). The third 

site was a control site—a natural mangrove stand that was identified after consultation with 

local inhabitants. 

 

 

 

 

 

 

 

Figure 4.4. The selected sites for evaluation of field performance for the final 
design pore-water samplers. (A) low- and (B) high-density mangrove 
regrowth sites, and the (C) natural mangrove site that was used as a 
control.  
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4.7 Evaluation of field performance 

When using the pore-water samplers during fieldwork, I had no major problems in 

acquiring the necessary volume (~200 mL) in a reasonable time frame (e.g. < 20 min). The 

sediment at the field sites was mostly coarse sand and the short time required to collect a sample 

was consistent with earlier tests using sandy sediments (Table 1). Occasionally, I experienced a 

blockage in some ports, but these blockages were always temporary. At this stage, I are 

confident with the broad applicability of the pore-water samplers, particularly for use in sandy 

sediments. I note that many mangrove systems occur in silt- (Gontharet et al., 2014; Ha et al., 

2018) or clay-dominated sediments (Ólafsson, 1995; Noronha-D‘Mello and Nayak, 2015) and 

further evaluation of the sampler would be needed for those sediments. 

The evaluation of field performance of the entire system was undertaken during an 

extensive fieldwork program measuring CH4 using the method explained previously. In 

addition, I measured related physicochemical parameters. I present only two ancillary 

parameters for this evaluation, i.e. redox potential (ORP) and acidity (pH). Pore-water ORP is a 

useful parameter to define the presence of anaerobic conditions which is a requirement of CH4 

production. Pore-water pH is a factor indirectly controlling CH4 production. The measurements 

were undertaken using Mi151 pH/ORP/Temperature Laboratory Bench Meter (Milwaukee, 

USA) in the field basecamp. The ORP value (Eh) was normalized with respect to a standard 

hydrogen electrode by adding +200 mV (Jardim, 2014; Bourgeois et al., 2019). Thus, based on 

the two ancillary parameters (pH and ORP), I demonstrated the performance of the pore-water 

sampler to provide reliable data of pore-water dissolved CH4 and the underpinning 

biogeochemical mechanisms of CH4 variability. 

4.7.1 Depth profile from a single site 

With each sampler having 10 chambers, I was able to derive depth profiles for dissolved 

CH4 gas, as well as other relevant physicochemical variables. An example is shown in Fig. 4.5. 

For this sample, pore-water dissolved CH4 was 11 µmol L
-1

 at 10 cm depth and increased 

gradually, with a peak of 40 µmol L
-1

 at 50 cm depth before gradually declining to very low 

values (~1 µmol L
-1

) at 100 cm depth. By contrast, pore-water ORP and pH did not show 

significant variations with depth. The ORP and pH measured here fall within the optimum range 

for methanogenesis (Wang et al., 1993; Le Mer and Roger, 2001; Inglett et al., 2004). 

Accordingly, I concluded that in this environment, other variables (e.g., sulfate and sulfide 

concentrations [Chuang et al., 2016]) would likely be needed to fully interpret the concentration 

of dissolved methane in pore-water. 
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Figure 4.5. Example depth profile of pore-water CH4 concentration, ORP and pH 
measured at one pore-water sampler located in a low-density 
mangrove regrowth site. 

 

4.7.2 Diurnal sampling of depth profile from repeat sampling at 
a single site 

With rapid extraction rates, the pore-water samplers can also provide measurement data 

over a day (i.e., a diurnal cycle) at multiple depths (Fig. 4.6. Top). Such data is needed to study 

interactions between pore-water CH4 and the tidal cycle. Here I show a typical example of 

sampling every two hours during daylight at five different depths for CH4, ORP and pH. In this 

example, again from the same low-density mangrove regrowth site (Fig. 4.4), the results 

indicate that CH4 production was occurring at a depth of 20 cm in the morning between 8.00 

and 10.00 am. There was no indication of CH4 oxidation during low tide, as CH4 concentration 

at this depth was stable (Fig. 4.6. Bottom). Changes in dissolved CH4 at depths of 30 and 40 cm 

indicate vertical movement of CH4 within the profile during the afternoon hours. pH was 

relatively stable over the daylight hours, while ORP showed a variability but still fell within the 

optimal range for CH4 production (Fig. 4.6).  
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Figure 4.6. (Top) Example depth profiles of pore-water CH4 concentration, ORP 
and pH measured every two hours (from 8.00 to 18.00) in a low-
density mangrove regrowth site. (Bottom) Tide height (m) relative to 
MSL 

 

4.7.3 Depth profile from three sites, three replicates 

The pore-water samplers were also used to investigate local-scale spatial variation in the 

CH4 concentration, ORP and pH. At each of the previously mentioned (three) sites, I examined 

differences in the variables sampled at three replicates located only 1 m apart to gain an 

appreciation of local scale variability (Fig. 4.7). These results showed that, even though the 

pore-water samplers were deployed in almost the same location (within 1 m), they generated 

variable data for all three variables. For instance, two depth profiles in the low-density site (Fig. 

4.7) had a similar pattern, having a low concentration of CH4 (1 - 4 µmol L
-1

). In contrast, one 

depth profile had CH4 concentrations of 5 and 8 µmol L-1 at depths of 20 and 30 cm, 

respectively. Moreover, the depth profiles of ORP showed a random pattern, although the 
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values were within the range expected for anaerobic conditions (Wang et al., 1993; Le Mer and 

Roger, 2001, Inglett et al., 2004). Nonetheless, the high density and natural sites (Fig. 4.7) 

exhibited a low variability of pH values in replicates. Consequently, a research design of pore-

water CH4 in future studies should devote attention to this local-scale spatial variation.  

 

 

Figure 4.7. Depth profiles of (top) pore-water CH4, (middle) ORP and (bottom) pH 
measured at the (left) low and (middle) high-density mangrove 
regrowth sites, and the (right) control site located in natural 
mangroves. Three replicates (separated by 1 m distance) were 
installed at each site to investigate local-site spatial variation.  

 

4.8 Discussion 

Field studies of pore-water dissolved CH4 in mangrove ecosystems are scarce, probably 

because of methodological difficulties. The method described here has been successfully used to 

measure pore-water CH4 and other relevant physicochemical variables in mangrove sediments 

in a remote field location. The main challenges were to design a system that could be used for 

repetitive non-destructive sampling of pore-water, with the CH4 gas extracted from the pore-

water in the field before transport to the laboratory for chemical analysis. 

To address the aforementioned challenges, I modified the pore-water sampler originally 

developed by Marten et al. (2003) and adapted the method of dissolved gas extraction and CH4 
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measurement described by Magen et al. (2014). In our final design of the pore-water sampler, I 

chose 90 µm mesh made from stainless steel, while Marten et al. (2003) used 210 µm screen 

made from polypropylene. This smaller selected mesh size (90 µm) is to minimize suspended 

sediment content in the pore-water samples. In the new design described here, chambers were 

installed between the ports and tubes (Fig. 4.2), while in Marten et al. (2003) the tubes were 

directly connected to the ports, which are covered by a polypropylene mesh screen. Chambers in 

the new design were added to prevent blockages. Under field conditions, primarily in sandy 

sediments, I found that blockages still did occur but were self-correcting as long as the pump 

kept working.  

The CH4 measurement method I developed can extract sufficient water samples in 

reasonable time frames. The pore-water sampler described here can extract a minimum volume 

of pore-water of around 4,000 ml per hour from mangrove forest with sandy sediments. This 

compares favourably with the 200 ml of pore-water that is needed to estimate dissolved CH4 gas 

using the method described by Magen et al. (2014) and related physicochemical parameters. 

Hence, in a typical situation, I can collect sufficient pore-water for sampling in around three 

minutes (i.e., 200/4,000 hours ~3 minutes). 

I am optimistic that our pore-water sampler can be used for repeat non-destructive 

sampling of pore-water. Moreover, I successfully measured pore-water CH4 in mangrove 

sediments, as well as ancillary physicochemical variables. For instance, the depth profiles at 10 

cm intervals down to a maximum depth of 100 cm demonstrated variations in pore-water CH4 

gas with depth (Fig. 4.5). With non-destructive repeat sampling capability, our method was also 

used to examine temporal (Fig. 4.6) and fine-scale spatial variations (Fig. 4.7) of pore-water 

CH4. 

The limitation in the CH4 measurement method described here is the capacity of the gas 

sample storage containers to store and transport gas samples. The aluminium gas-tight bags 

used in this study were verified for storing the gas samples for a week (0.8-8% differences, see 

Fig. 4.3). This storage container has a relatively small mass/volume and was ideal for transport 

(e.g., boat, car, aircraft). However, the bags need to be handled with care, particularly during the 

injection of collected gas. Occasionally I found that the syringe needle can slip and puncture the 

bag wall. In addition, when transporting the gas-tight bags to a laboratory, they should be stored 

in a rigid box to prevent compression of the gas bags. In retrospect, placing the gas-tight 

aluminium bags in an ice box filled with frozen chill blocks would be a better approach to 

storage and transport.  

The ultimate accuracy of any method to measure CH4 gas concentrations will be limited by 

the sensitivity of the GC-FID. Fortunately, I used a GC with a detection limit of 0.12 ppmv, 

equivalent to 2.48 nmol L
-1

 for water with a salinity of 30 ppt at 30°C (see Appendix for the 

calculation). If I was to use a GC with a detection limit of 1 ppmv, then I would be able to 
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measure pore-water CH4 down to 0.3 µmol L
-1

. For example, Giani et al. (1996) reported that 

their GC could not determine CH4 concentrations in the pore-water samples less than 0.2 µmol 

L
-1

. Meanwhile, Alongi et al. (1999) noted that they found no pore-water CH4 in their samples 

by using a GC thermal conductivity detector. This is because it can only be used for a sample 

gas with CH4 concentration greater than 100 ppmv or equivalent to 2 µmol L
-1

 (Magen et al., 

2014). 

The method described here has the potential to expand the study of pore-water CH4 in 

mangrove ecosystems. For example, pore-water CH4 profiling can provide datasets to simulate 

CH4 turnover (Chuang et al., 2016). Diurnal measurements of pore-water CH4 would be 

important for understanding the tidal effects on pore-water CH4 dynamics and the diurnal role of 

photosynthesis in providing labile exudates to the soil (Girkin et al., 2018; Lu et al., 2018). This 

could potentially be integrated with tidal pumping studies using 222Rn isotopes (Call et al., 

2015) or pore-water CH4 pumping based on observations of CH4 enrichment in adjacent 

mangrove creeks, lagoons or estuaries (Jacotot et al., 2018; Rosentreter et al., 2018).  

In summary, this study has established a method of measuring pore-water CH4 in 

mangrove ecosystems. The pore-water extraction method is simple and inexpensive, being 

constructed using readily available PVC pipe and stainless steel mesh. In addition, this method 

offers artefact-free repeated extractions at a relatively high extraction rate (~4,000 ml hour
-1

 in 

sandy sediments). When combined with sensitive GC or other gas measurement equipment, the 

CH4 measurement system in this study can be operated at high temporal resolution, subject to 

labour constraints. Use of this method for CH4 studies in mangrove ecosystems can help to 

resolve the importance of mangrove carbon budgets because of the lateral transport of dissolved 

inorganic and organic carbon in mangrove pore-water (Alongi, 2014; Twilley et al., 2017; 

Rosentreter et al., 2018). 
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Chapter 5: Mangrove regrowth may enhance 
dissolved methane in pore-water—A year-

long study of an ecological mangrove 
rehabilitation site in Indonesia 

5.1 Introduction 

Methane (CH4) emissions are becoming a global concern because of its positive feedback 

to climate change. CH4, together with CO2, causes an increase of Earth‘s surface temperature, 

and this could make a further increase in CH4 emissions (Gedney et al., 2004). Also, CH4, on a 

mass basis, is 25 times more potent in heating the Earth‘s surface than CO2 (Forster et al., 

2007). Its atmospheric concentration is steadily increasing, and is projected to be 2,200 ppb in 

2030 (IPCC 2013). The contribution of wetland CH4 emissions is about 23% of global CH4 

sources (Reeburgh, 2013) and represents around 60% of emissions from all natural sources 

(Kirschke et al., 2013). 

Wetland contribution to CH4 emissions may be increasing because of warmer temperatures 

as well as another climate change phenomenon (e.g., sea-level rise). Climate change modifies 

three main factors that control CH4 emissions from wetlands: (1) soil temperature (controlling 

bacterial activity rates) (Inamori et al., 2007; Datta et al., 2013; Lofton et al., 2014), (2) water 

inundation (changing oxic–anoxic soil layers) (Zhang and Ding, 2011; Marín-Muñiz et al., 

2015) and (3) soil carbon availability (providing favourable substrates for methanogens) (Yu et 

al., 2013; Konnerup et al., 2014). 

Like other wetlands, mangrove ecosystems naturally produce and emit CH4 because they 

accumulate soil organic matter and exist in primarily anaerobic and hydro-dynamically complex 

environments (Bouillon et al., 2008; Weston et al., 2014). However, the relative contributions 

of mangrove ecosystems to atmospheric CH4 are still debatable (Chen et al., 2016; Cabezas et 

al., 2018). Studies measuring CH4 emissions from mangrove ecosystems indicate a large range, 

from zero (Giani et al., 1996; Alongi et al., 2004) to around 80 mg m
-2

 h
-1

 (Chen et al., 2010). 

To date, studies on CH4 in mangrove ecosystems have focused primarily on soil surface 

CH4 emissions (Giani et al., 1996; Chauhan et al., 2008; Krithika et al., 2008; Chen et al., 2016; 

Cabezas et al., 2018). Other studies have sought to explain the variability of methane emissions 

from mangrove ecosystems. For example, CH4 produced in the soil can be transported to the 

atmosphere through the vascular tissue (i.e., stems) of herbaceous and woody plants (Van Der 

Nat et al., 1998; Bazhin, 2004; Pangala et al., 2013; Pangala et al., 2017; Maier et al., 2018). A 

recent study on the Amazon wetlands reported that CH4 emissions from woody stems accounted 

for around 40% of total emissions and far exceeded soil surface emissions (~15% of the total). 

The remaining emissions (~45%) were from open water surfaces and the stems of herbaceous 
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plants (Pangala et al., 2017). The results from this recent report provide evidence that previous 

estimates of mangrove contributions to ecosystem CH4 emissions based only on soil surface 

CH4 fluxes are likely to be underestimates. 

In the present study, I observed dissolved CH4 in mangrove pore-water as a source of the 

mangrove CH4 emissions. This may be more representative of the contribution of mangrove 

ecosystems to global CH4 emissions for two reasons. First, as aforementioned, mangrove tree-

mediated CH4 emissions may be mainly responsible for ecosystem CH4 emissions. Indeed, 

recent literature reported this pathway of CH4 emissions (Jeffrey et al. 2019). Second, although 

sulfate-reducing bacteria (SRB) may out-compete methanogens because of an extensive sulfate 

supply from seawater, methylotrophic methanogens—which use a different substrate 

(methylated compounds, rather than acetate or CO2/H2)—can keep producing CH4 under 

conditions of high sulfate concentrations (Chuang et al., 2016; Jing et al., 2016). In that case, 

the CH4 production will be reflected in the pore-water dissolved CH4. In addition, empirical 

results have indicated a strong relationship between ecosystem CH4 fluxes and pore-water CH4 

(Bartlett et al., 1987; Wassmann et al., 2000; Yoshikawa et al., 2014). 

The objective of this study was to investigate dissolved CH4 heterogeneity at two 

contrasting rehabilitation sites and its changes throughout seasons. Regarding this, Cameron et 

al. (2019) recently reported that CH4 emissions, in the EMR site at Tanakeke Island, increased 

following the redeveloped mangrove forest from the abandoned ponds. My study may be 

complementary with Cameron‘s, and this will improve understandings of how the state of 

mangrove regrowth controls dissolved pore-water CH4. I also measured several 

physicochemical parameters (e.g., pH, redox potential, temperature and salinity) that could help 

to explain the CH4 heterogeneity, besides the mangrove regrowth. The results provided seasonal 

data on pore-water dissolved CH4 in rehabilitated mangrove stands, identified possible factors 

controlling its variability, and highlighted the importance of including CH4 emissions in the 

calculation of a carbon budget in mangrove rehabilitation projects. 

5.2 Study area and sampling sites 

This study was undertaken in a rehabilitation site applying EMR as well as natural 

regeneration. The site was located at Dusun Lantangpeo, Tanakeke Island, South Sulawesi, 

Indonesia (Fig. 3.2). Detailed information about this study area has been provided in Chapter 3, 

including the geography, ecology and regional socio-economy. 

I used a contrasting approach to investigate the changes of dissolved CH4 in the pore-water 

of mangrove sediment due to natural regeneration and EMR. Sampling was undertaken at 

contrasting sites. Sites 1 to 3 represented new (< 5 years) regeneration sites, while Sites 4 to 6 

represented old (> 10 years) regeneration sites. Given that the EMR was designed to follow 

natural succession, the rehabilitation/regeneration status of Sites 1 to 6 could be distinguished 
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by their canopy cover. Three more sites (Sites 7 to 9) were selected in the natural mangroves 

representing as control sites. These sites were selected after consultation with local inhabitants. I 

selected a further two control sites in unvegetated areas (Sites A and B)—mangrove creeks (Fig. 

5.1). All sites can be seen in Google Earth imagery (Fig 5.1, left) with site 1 to 6 all located in 

abandoned fish ponds. In addition, all the sites were in a similar position in relation to mean sea 

level (MSL), ranging from ˗11.8 to 6.9 cm relative to MSL. At the study area, the maximum 

tidal range was 112 cm and the average flooding period was 13 hours per day. This implies that 

long inundation was observed, and thus soil at the sites contained a great volume of pore-water 

(Cameron et al., 2019a). 

 

 

 

 

 

 

 

 

 

Figure 5.1. Site locations in the study area. (Left) Distribution of sampling sites 
plotted on Google Earth imagery, depicting the landscape of 
aquaculture ponds and mangroves with two creeks splitting the 
landscapes. White and brown colour spotted by green colour (lower 
left) depicts recently abandoned ponds; patches of green colour 
surrounded by a brown line depict long abandoned ponds; green 
colour blocks show undisturbed mangrove vegetation. (Right) 
Photograph at Site 4 showing the elevated work bench. 

 

To confirm the sequence of sites based on their successional stages, I undertook a forest 

structure assessment using measurements following Kauffman and Donato (2012). I selected 

stand basal area (BA) as a measure of forest structure reflecting successional stages, rather than 

canopy cover or stand density. This is because BA increases logarithmically with successional 

stages (Lohbeck et al., 2012; Cheng et al., 2013; Gosper et al., 2013; Pszwaro et al., 2016), 

while tree density increases in the early successional stages, reaches a peak and then decreases 

because of self-thinning (Schulze et al., 2005). 

A 

B 
A 

B 
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For CH4 monitoring, at each site, I deployed one multilevel pore-water sampler and 

constructed an elevated work bench to avoid disturbing the mangrove soil while collecting 

samples (Fig. 5.1, right). At the nine sites, seasonal variations were observed by repeated 

sampling undertaken every month from May 2016 to March 2017 (Fig. 3.3). Heavy rain during 

January 2017 caused a cancellation of the fieldwork in that month. 

5.3 Sample collections and analytical methods 

5.3.1 Pore-water dissolved CH4 

The concentration of pore-water dissolved CH4 was determined by using GC-FID. At the 

selected sites, pore-water samples were pumped out from mangrove sediments by using the 

recently developed pore-water sampler (see Chapter 4). The pore-water samples were initially 

collected in glass bottles. The dissolved CH4 concentrations in the pore-water samples were 

determined indirectly by measuring CH4 concentrations of gas samples extracted from the pore-

water. Later, the concentrations of pore-water dissolved CH4 were calculated based on the CH4 

concentration of the extracted gas samples. The detailed steps of extraction and calculation can 

be seen in Chapter 4 and Appendix 1. An example calculation is included in Appendix 2. 

5.3.2 CH4 fluxes 

Based on the concentration of pore-water dissolved CH4 in the top layer of soils or at 

10 cm depth ([CH4]pw) in mol m
-3

, methane fluxes (FluxCH4) in mg m
-2

 h
-1

 were estimated by 

using the gas-transfer equation (Sarmiento and Gruber, 2006; Wanninkhof et al., 2009; Wania 

et al., 2010): 

FluxCH4 = k ([CH4]pw − β [CH4]a) Equation 5.1 

where k is a transfer coefficient and [CH4]a is the concentration in the near-surface air. The 

reasons for and assumptions of choosing this model are explained in Appendix 2. 

Soil surface CH4 fluxes to the overlying atmosphere depend on the difference 

concentration between pore-water dissolved CH4 in the surface soil ([CH4]pw) and atmospheric 

CH4 on the top of the surface soil ([CH4]a). Multiplication between the Bunsen coefficient (β) 

and [CH4]a represents CH4 concentration in the air in liquid phase, when it reaches equilibrium. 

Measurements of [CH4]a were not available and it was subsequently assumed to be equal to the 

global atmospheric CH4 concentration, and set to 1.8 ppmv or 7.2 × 10
-5

 mol m
-3 

at 30°C. To 

calculate the gas transfer coefficient (k in cm h
-1

) in Eqn. 5.2, the following equation was 

applied, which is a result of reconciliation of the assumptions of several equations reported by 

Borges et al. (2004), Wania et al. (2010) and Rosentreter et al. (2017)—see Appendix 2 for 

further explanation: 
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k = 2.03  Equation 5.2 

where Sc is the Schmidt number as a function of temperature (T) in °C (Wanninkhof, 1992): 

Sc (CH4) = 2101.2 − 131.54 T + 4.4931 T
2
 − 0.08676 T

3
 + 0.000707 T

4
 Equation 5.3 

As an illustration, an example of calculation for Eqn. 5.1 to 5.3 is provided in Appendix 2. 

For comparison, CH4 fluxes from the soil surface were also measured by using the static-

chamber method; however, unfortunately, the results indicated that the CH4 fluxes were much 

too small to be realistic. Then, I used estimations of CH4 fluxes from soil surface in mangrove 

sites in Tanakeke, reported by Cameron et al. (2019), which were small, too. CH4 fluxes at, 

including two rehabilitation sites and mature mangrove forests, accounted for 0.14 ± 0.0, 0.09 ± 

0.0 and 0.45 ± 0.09 mg m
-2

 h
-1

. 

5.3.3 Physicochemistry of pore-water 

From the beginning of the research design, site selection was established in similar 

biogeochemical and hydrological settings to avoid potential confounding factors. However, 

wetlands are inherently complex, meaning that multiple parameters control CH4 production and 

fluxes. Therefore, several physicochemical parameters of pore-water were also observed to help 

understanding pore-water CH4 variability across sites and seasons. These included physical 

parameters (e.g., pH, temperature and redox potential) and ion species that are closely related to 

methanogenesis (i.e., Fe
2+

, Fe
3+

, SO4
2-

 and S
2-

). All physicochemical parameters were 

determined by measuring the porewater samples stored in HDPE bottles, subsequently after 

sampling in the field. The redox potential (ORP), temperature and pH of pore-water samples 

were measured using a Mi180 pH/ORP/Conductivity/TDS/NaCl/Temperature Laboratory 

Bench Meter by Milwaukee Instruments, Inc., United States (US). This instrument has ±0.01 

pH, ±0.4 °C and 0.2 mV accuracy and it can measure the range of -2.00-16.00 pH, -20-120 °C 

and -699.9-699.9 mV. The ORP value (Eh) was normalized with respect to a standard hydrogen 

electrode by adding +200 mV (Jardim, 2014; Bourgeois et al., 2019). Ion content including 

Fe
2+

, Fe
3+

, SO4
2-

 and S
2-

 was measured using a DR 2700 Hach Portable Spectrophotometer. This 

instrument can detect the range of 0.02-3.00 (±0.01) mg L
-1 

of Fe
2+

, 2-70 (±10) mg L
-1

 of SO4
2-

 

and 5-800 (±16) µg L
-1 

of S
2-

.  
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5.4 Results 

5.4.1 Stand basal area, pore-water dissolved CH4 and CH4 
fluxes 

Basal Area (BA), as a measure of forest structure confirmed that the sequence of sites 

based on their successional stages, with two exceptions. First, during the fieldwork program, 

local inhabitants collected firewood at Site 7 and this site was subsequently excluded from the 

analysis. Second, the BA at Site 6 indicated that this was apparently a much older rehabilitation 

site. Accordingly, I decided to display the results ordered by BA, and Fig. 5.2 displays the pore-

water dissolved CH4 concentrations for each month, at five depths across the (eight) sites based 

on the sequential BA. Unvegetated sites are not displayed in the figure, because it did not cover 

the same period of measurements as the other sites (i.e. only Dec 2016).  

 

 

Figure 5.2. Seasonal variability of pore-water CH4 concentrations at the eight 
sites over a year (dry season = May–Oct and wet season = Nov–Apr 
[shaded]). Stacked area chart (grey gradations) indicate the pore-
water CH4 concentration at different depths from 10 to 50 cm. The 
top of each panel shows the site number (see Fig. 5.1) with the BA 
(m

2
 ha

-1
) in brackets. The panels are ordered by their BA, ranging 

from 2.3 to 14.2 m
2
 ha

-1
. Unvegetated sites are not displayed, while 

the control sites are panel 8 (8.7) and 9 (12.3). 

 

Pore-water CH4 concentrations of ~400 samples (5 depths × 8 sites × 10 months) ranged 

from 0.04 to 59.87 µmol L
-1

, with an average of 7.3 µmol L
-1 

(Fig. 5.3). Compared with 

methane concentration in equilibrium with the atmosphere (i.e., 1.75 × 10
-3

 µmol L
-1

), CH4 

saturation levels ranged from 20 to 30,000 times the mean atmospheric values. Therefore, all 
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pore-water samples were supersaturated with CH4 with respect to the atmosphere. In addition, 

according to CH4 concentrations of pore-water at 10 cm depth substituted to Eqn. 5.1, CH4 

fluxes from soil surface in the study area ranged from 0.02 to 17 mg m
-2

 h
-1

, with an average of 

2.1 mg m
-2

 h
-1

. 

 

 

Figure 5.3. Data distribution of pore-water CH4 concentrations, collected from 
~400 pore-water samples.  

 

Pore-water CH4 concentrations varied considerably among sites and seasons. Generally, 

the sites with low (Sites 1, 2 & 3) and high (control sites 8/9 and Sites 6) BA exhibited higher 

pore-water CH4 concentrations in the wet season (November to April) than those in the dry 

season (May to October). However, sites with intermediate BA (Sites 5 and 4, see Fig. 5.2) 

showed the highest pore-water CH4 concentrations in the dry season (May to October). Seasonal 

differences led the CH4 concentrations to be different by up to two orders of magnitude. For 

example, at Site 3 (BA = 4.1 m
2 

ha
-1

), the range of CH4 concentrations was 0.6 to 11.3 and 0.05 

to 35.9 µmol L
-1

 in the dry and wet season, respectively. As noted above, Sites 4 and 5 showed 

an opposite trend, with the dissolved CH4 concentrations being greater in the dry season. In 

addition to this, those two sites also had extremely high seasonal variability in pore-water CH4 

concentrations.  

5.4.2 Physicochemical parameters 

Overall, temperature ranged from 27 to 35°C (Fig. 5.4A), while pH ranged from 6.2 to 7.7 

(Fig. 5.4B). Within this range of soil pH and temperature, there was no indication that the pH or 

temperature significantly reduced CH4 production. Moreover, at the same pH or temperature 

values, pore-water CH4 was observed over the full range. Therefore, there was no reason to 
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expect that these two parameters were salient factors that influenced CH4 production and 

emission at the study sites. 

 

 

Figure 5.4. Relationship between pore-water CH4 concentrations and (A) 
temperature (r = ˗0.09, p = 0.08) and (B) pH (r = ˗0.17, p = 0.0009) at 
the eight sites. pH and temperature were measured in the field at the 
time of collection, and approximate the in-situ conditions. Legend 
denotes the depth. 

 

Similar to pH and temperature, ORP values were generally at the optimum range for 

methanogenesis. In my data, only 13 samples exhibited ORP > 100 mV and they were 

associated with the nearly zero pore-water CH4 (Fig. 5.5). Most of the samples were found in 

the top layer, which was, to some extent, easily oxidised. Some were at a depth where O2 might 

come from roots or animal burrows. However, the vast majority of data on pore-water ORP 

were in the range of ˗200 and 0 mV (Fig. 5.5). In this range, high CH4 concentrations were 

consistently detected, although some low concentrations were also observed. This finding 

indicated that ambient ORP was perfect for methanogenesis. 
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Figure 5.5. Relationship between pore-water CH4 concentrations and pore-water 
redox potential (r = ˗0.15, p = 0.004). Redox potential was measured 
in the field at the time of data collection, and approximates the in-
situ conditions. Legend denotes the depth. 

 

Among measured ions, the data for Fe
2+

 and Fe total are not presented because the 

concentrations were low (< 1 ppm) and most were below the instrumental detection limits. Pore-

water SO4
2- ranged between 3.1 and 59.3 mmol L-1, while S2- ranged between 0.3 and 

1,622 µmol L-1 (Fig. 5.6). In relation to dissolved CH4 concentration, there was no clear pattern 

in SO4
-2

 (r = 0.25, p = 3.4 × 10
-4

). While S
2-

 showed a positive relationship with CH4, there was 

considerable noise in low concentrations (r = 0.67, p < 0.001). Therefore, the relationships 

between CH4 and SO4
2-

/S
2-

 indicated that CH4 productions were little affected by the abundance 

of SO4
2-

. 
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Figure 5.6. Relationship between pore-water CH4 concentrations and (A) SO4
2-

 
and (B) S

2-
 at the eight sites. SO4

2-
 and S

2-
 were measured in the field 

at the time of data collection, and approximate the in-situ conditions. 
Legend denotes the depth. 

 

5.4.3 Relationships between pore-water CH4 and stand basal 
area 

The relationship between dissolved pore-water CH4 and BA showed a hump shape, with a 

rise of CH4 concentrations from sites with low mangrove cover—Site 1 (2.1 m
2
 ha

-1
)—to a peak 

at intermediate BA (Sites 2 and 3), and then started to decrease at higher BA, which is control 

sites and Site 6 (Fig. 5.7). Although there was much scatter, I fitted a smooth curve to the data 

(Fig. 5.7), and the pore-water CH4 at all depths showed a peak at an intermediate BA of around 

6 m
2
 ha

-1
. By using linear model, the pore-water and BA relationship was fitted to a polynomial 

model, y = 4.02x - 0.5x
2
 + 0.02x

3
- 0.4, R

2
 = 0.109, p <0.05. 
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Figure 5.7. Relationship between pore-water CH4 concentrations and mangrove 
stand BA. BA was measured in the sites where the pore-water 
samplers were located at the centre of the site. (top) CH4 
concentrations at five depths, across sites with different BA and 
general pattern of the relationship, with locally estimated scatterplot 
smoothing (span = 0.8). Legend denotes the depth. (bottom) 
Relationship model for the whole data set, y = 4.02x - 0.5x

2
 + 0.02x

3
 -

0.4.    
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5.5 Discussion 

In the literature, there are only a handful of studies on pore-water dissolved CH4 from 

mangrove ecosystems (Giani et al., 1996; Lee et al., 2008; Strangmann et al., 2008; Dutta et al., 

2015; Schile et al., 2017). In addition, when researchers did examine CH4 in pore-water, they 

measured it without investigating variation with depth, season or stand age/status. My study 

provides data on the pore-water CH4 measured on a monthly basis at different depths (up to 50 

cm) over a full year. Accordingly, the results offer a new clue to understand the effects of 

mangrove regrowth on the pore-water CH4, which may be responsible for CH4 emissions. 

5.5.1 Effects of seasons and mangrove regrowth on dissolved 
CH4 

In general, the range of pore-water CH4 concentration (0.04 to 59.9 µmol L
-1

) in this study 

is comparable to previous works in mangrove ecosystems (Table 5.1). These values are in a 

similar range to those in oceanic mangrove islands in Belize (Lee et al., 2008) and the pristine 

mangroves at Balandra, Mexico (Strangmann et al., 2008). The CH4 concentrations are lower 

than those reported from the coastal sabkha ecosystem, United Arab Emirates (UAE) (Schile et 

al., 2017), but are much higher than in a study of Balandra mangroves (Giani et al., 1996). 

Interestingly, pore-water CH4 in the current study could be up to one order of magnitude higher 

concentration than that from an earlier study involving pristine mangroves in Sundarban, India 

(Biswas et al., 2007; Dutta et al., 2013; Dutta et al., 2017). However, it is lower than the values 

in most non-mangrove wetlands, such as peatland and brackish marsh (Gross et al., 1993; 

Pangala et al., 2013). 

 

Table 5.1. Ranges of pore-water CH4 (µmol L
-1

) in this study compared with 
worldwide data from mangrove and other wetland ecosystems. 

No. References Locations Ecosystem Pore-water CH4 

µmol L
-1

 

1 Current study EMR site, Tanakeke, Indonesia Mangrove 0.04–59.9 

2 Schile et al. (2017) Coastal sabkha ecosystem, UAE 125–875 

3 Lee et al. (2008) Oceanic mangrove islands, Belize 0–80 

4 Strangmann et al. 

(2008) 

Pristine mangrove soils, Balandra, 

Mexico 

0–77.7 

5 Dutta et al. (2017) Mangrove, Sundarban, India 2.0–6.0 

6 Dutta et al. (2015) Mangrove, Sundarban, India 2.8–4.0 

7 Giani et al. (1996) Balandra and Ensenada La Paz 

mangrove, Mexico 

0–2.1 

8 Terazawa et al. 

(2007) 

Forest floodplain, northern Japan Forest 

floodplain 

5.6–28.4 

9 Pangala et al. 

(2013) 

Sebangau river catchment, Sumatra, 

Indonesia 

Peatland 113.0–1539.0 

10 Pangala et al. 

(2015) 

Forested peatland, Flitwick, 

Bedfordshire, United Kingdom 

0–450.0 



71 

 

11 Gross et al. (1993) Delaware brackish marsh, US Brackish 

marsh 

0–700.0 

12 Tong et al. (2015b) Oligohaline marsh, Min River 

estuary, southeastern China 

17.1–94.5 

13 Biswas et al. 

(2007) 

Sundarban mangrove water, India Estuarine 0.8–1.5 

14 Chuang et al. 

(2016) 

Mangrove-dominated coastal lagoon, 

Mexico 

Lagoon 20–3,500 

15 Ding et al. (2004) Sanjiang Mire Wetland Experimental 

Station, northeast China 

Freshwater 

marsh 

8–232 

 

Although many studies have found pore-water physicochemical factors to be responsible 

for controlling CH4 turnover (Inamori et al., 2007; Poffenbarger et al., 2011; Zhang and Ding, 

2011; Dutta et al., 2013; Marín-Muñiz et al., 2015), it may be less important here. The 

temperature and ORP found here (Fig. 5.4 and 5.5) are within the optimum range for 

methanogen bacteria to convert organic matter to CH4 (Wang et al., 1993; Le Mer and Roger, 

2001). Further, the ranges of pH (Fig. 5.4B) are favourable for methane production and reach a 

maximum at a range of 6.8 to 6.9, which agrees with Wang et al. (1993). In addition, abundance 

of SO4
2-

 is unlikely to affect CH4 production. A weak correlation between SO4
2-

 and pore-water 

CH4 is an indication of no competition for the organic matter between methanogens and SRB 

(Fig. 5.6). Thus, in general, these physicochemical factors indicate favourable conditions for 

CH4 production. 

The only measured parameter correspond well with pore-water CH4 concentrations is stand 

basal area (BA, Fig. 5.7). Therefore, soil organic carbon (SOC) availability may be the most 

likely explanation for a regulatory factor of pore-water CH4 concentration in my study. This can 

be inferred from findings in Cameron et al. (2019b) that SOC in the newly abandoned ponds is 

lower than the sites with mangrove regrowth post-EMR in Tanakeke, where I did my study. 

Sasmito et al. (2019) further provide evidences that soil carbon content linearly increases 

following the successional or regeneration age (R
2
=0.441, p<0.05), while BA has a linear 

positive correlation with the regeneration age (R
2
=0.667, p<0.001). Also, Sasmito et al. (2019) 

found that belowground carbon increases and reaches the plateau at some period of time.    

The abundances of carbon sources are a conducive environment supporting methanogen 

bacteria to produce CH4. This was reflected in the fact that the full range of CH4 concentrations 

was observed at the same value of some physicochemical factors—temperature, pH, ORP and 

SO4
2-

 (Fig. 5.4 to 5.6). This meant that high pore-water CH4 concentration could be detected 

when substrates for methanogen bacteria were available. Conversely, it could be low if the sites 

had a lack of organic carbon, even if the physicochemical environments at the sites were 

optimal for methanogenesis. In addition, this idea was supported by Tong et al. (2015a) when 

studying CH4 production variability at a small scale, who reported that the best predictor of CH4 

concentration was the availability of organic carbon. Further, Marinho et al. (2012) reported a 
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similar idea, where they found that methane concentration in pore-water was a function of the 

amount of carbon, mainly associated with the occurrence of vegetation. In the sampling sites of 

this current study, mangrove vegetation was likely to be the major source of soil organic matter 

because the study area was located on a small island, separated from the mainland by about 10 

km. In addition, the base rock was coralline rubble and sand, both of which lack organic matter 

(Cameron et al., 2019b). 

SOC supply from vegetation is highly dependent on photosynthesis and the allocation of 

photosynthates. Forests actively fix CO2 by photosynthesis, whereby some amount of the fixed 

carbon is emitted back to the atmosphere by autotrophic respiration, and the rest is allocated to 

biomass and root exudates. Litterfall and root biomass are thought to be the sources of soil 

organic matter (Lallier-Vergès et al., 2008; Marchand et al., 2008; Marchand, 2017; Ha et al., 

2018). They accumulate in the soil because of slow decomposition rates, particularly in 

waterlogged soils. Meanwhile, root exudates exhibit a rapid turnover and are generally thought 

to account for a small proportion of soil organic matter (Allen et al., 2010). 

Regarding methane production, a further explanation of the soil organic matter might be 

related to its type or source. Some literature shows a straightforward relationship between total 

soil organic matter and methane flux (Xiang et al., 2015; Yu et al., 2013; Konnerup et al., 2014) 

and several studies have specifically examined the response of CH4 production to different 

carbon sources (Lu et al., 2000; Lin et al., 2015; Girkin et al., 2018; Lu et al., 2018). Those 

studies found that labile organic matter, which mainly comes from root exudates, is preferable 

for methanogen bacteria. In addition, the exudates can induce decomposition of large and 

complex organic compounds (van Nugteren et al., 2009) through activating microbial 

metabolisms that can decompose insoluble and recalcitrant soil organic matter (Kuzyakov, 

2010; Mason-Jones and Kuzyakov, 2017). This eventually leads to the production of labile 

organic matter from decomposition of recalcitrant organic matter. 

The body of knowledge explained above provides a basis for interpreting the pattern of 

pore-water CH4 reported here, where seasonal variability was dependent on the age of 

rehabilitation sites (see Fig. 5.2). In Fig. 5.2, sites are arranged based on the BA of the 

mangrove stand, which is a representation of successional stages. The figure indicates that sites 

in the early (Sites 1 to 3) and late (control sites 6, 8 and Sites 9) successional/regeneration age 

had similar patterns of pore-water CH4. Those sites all exhibited low concentrations during the 

dry season, yet high concentrations during the wet season. However, the intermediate stage sites 

(Sites 4 and 5) showed a reverse pattern (Fig 5.2). Thus, I speculate that there is a shift in the 

relative abundance of labile to the total soil organic matter, which would then cause differences 

in the seasonal pattern of dissolved CH4 among sites. Rocha et al. (2015) suggested that root 

exudates—a form of labile organic matter—are produced seasonally, and production is higher 

during the growing season. Similarly, as a major source of soil carbon in mangrove ecosystems, 



73 

 

fine root production is also closely related to seasons (Poungparn et al., 2016; Xiong et al., 

2017). While root exudates are readily digested by methanogen bacteria as soon as they are 

released to the soil (King et al., 2002; Dorodnikov et al., 2011; Tokida et al., 2011), fine roots 

need several months of active decomposition before the residues can form labile organic matter 

(Robertson and Alongi, 2016; Liu and Xiong, 2017). 

The slow decomposition rate of fine roots might affect a shift in the abundance and sources 

of labile organic matter for methane production. At the intermediate stage sites (4 and 5), 

methanogens might use labile organic matter from fine root decompositions as the main 

substrates (see Fig. 5.2). However, slow decomposition might cause a lag in methane production 

during the peak production periods of fine roots. Fine root necromass, which is abundantly 

produced during the wet season, decomposes more rapidly in the dry than the wet season 

(Poungparn et al., 2016). Hence, in the dry season, methane production might increase, even 

though root exudate releases are in low concentrations. Meanwhile, in the mature forests (Sites 

6, 8 and 9), much slower decomposition could cause methanogens to produce CH4 mostly using 

root exudates. Therefore, at these sites, pore-water CH4 concentrations in the wet season are 

greater than in the dry season. The slow decomposition causes a gradual carbon accumulation in 

soils over periods of time; hence, the more developed mangrove stands also have higher soil 

carbon reserves (Marchand, 2017; Sasmito et al. 2019). Zhang et al. (2013) found a much 

slower decomposition rate in late successional vegetation, which is consistent with an increase 

in soil carbon. Therefore, in the mature forests, root exudates might be more abundant than 

labile organic matter from decomposition, especially in the wet season. In contrast, having 

similar seasonal patterns in pore-water CH4 with the mature forests, the early successional 

stages (Sites 1, 2 and 3) might rely on labile organic matter from both root exudates and 

decomposition. During production periods of fine roots and exudates, the decomposition rate in 

these sites would be faster than in the intermediate stages (Sites 4 and 5), as Zhang et al. (2013) 

indicated. Thus, together with root exudates, labile organic matter from decomposition 

amplified methane production during the wet season. 

Further, since fine roots and root exudates are integral components of forest production, 

net primary productivity (NPP) could also be a proxy to explain pore-water CH4 variability 

across sites in the current study. From freshwater wetland studies, a review paper concluded that 

a positive correlation between NPP and CH4 emission is evident (Aselmann and Crutzen, 1989). 

Interestingly, in my study, pore-water CH4 concentrations across chronosequence sites seemed 

to follow the successional pattern of NPP (Fig. 5.7). The general pattern of forest NPP across 

successional stages has long been known (Day Jr et al., 1996; Chen et al., 2002). In brief, NPP 

increases rapidly at the young ages, peaks in the middle ages and declines slowly as the 

vegetation stand matures (Chen et al., 2002; Wang et al., 2011; L. He et al., 2012). Likewise, 

this very general pattern is followed in mangrove ecosystems (Okimoto et al., 2008). 
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Specifically, Aksornkoae (1993) concluded that NPP of R. apiculata stands starts to decline at 

the age of five to six years after they exhibit an exponential increase in the initial growth. 

Meanwhile, Ong et al. (1985) noted that the decline starts at 10 years. Thus, these explanations 

support the inference that mangrove productivity at the Indonesian sites would peak at around 

six years, and subsequently lead to the highest dissolved CH4 concentrations in the pore-water. 

5.5.2 Potential mangrove contribution to CH4 emissions 

Based on values calculated using the gas-transfer model, soil surface CH4 fluxes in the 

current study could be higher than in most mangrove ecosystems that have been reported, as 

well as comparable with those recorded at freshwater wetlands (Table 5.2). Mangroves in the 

current study area covered low and high emitters (0.02 to 17 mg m
2
 h

-1
), although the majority 

of CH4 fluxes were less than 10 mg m
-2 

h
-1

, with an average and median value of 2.1 and 

0.6 mg m
-2

 h
-1

. This is in agreement with most CH4 studies in mangrove ecosystems (Table 5.2, 

No. 6 to 24), particularly Cameron et al. (2019a) who measured CH4 flux at the same study 

location. Interestingly, the average CH4 flux is similar to that observed in freshwater wetlands, 

which have been relatively well studied and hence included in the global carbon budget (Table 

5.2, No. 25). As a comparison to the average CH4 flux in the current study (2.1 ± 3.6 mg m
-2

 h
-

1
), the averages from lakes, fens, swamps and floodplains account for 1.8, 3.3, 3.5 and 4.2 mg 

m
-2

 h
-1

,
 
respectively. 
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Table 5.2. Ranges of CH4 fluxes from soil surface in this study (gas-transfer 
model) compared with worldwide data from mangrove and freshwater 
wetland ecosystems (static-chamber method). 

No. References Locations Ecosystem CH4 flux ranges 

[average] 

mg m
-2 

(ground 

surface) h
-1

 

1 Current study 

 

Mangrove rehabilitation, 

Tanakeke, South Sulawesi, 

Indonesia 

Mangrove 0.02–17 [2.1] 

2 Chen et al. (2010) Shenzhen and Hong Kong 

mangroves, south China 

0.2–82.7 […] 

3 Konnerup et al. (2014) Mangrove in Ciénaga Grande 

de Santa Marta, Colombia 

0–31.6 […] 

4 Wang et al. (2016) Mangrove, Fujian, China 0.4–30.8 […] 

5 Allen et al. (2007) Southeast Queensland 

mangrove, Australia 

0–17.4 […] 

6 Arai et al. (2016) Mangrove, Ca Mau, Vietnam 4.4–7.3 […] 

7 Biswas et al. (2007) Lothian Island mangrove, 

Bengal, India 

0.9–3.5 […] 

8 Sotomayor et al. 

(1994)  

Southwest coast mangrove, 

Puerto Rico 

0.01–3.4 […] 

9 Chauhan et al. (2008) Bhitarkanika mangrove, East 

India 

0.1–3.2 […] 

10 Purvaja et al. (2004) Pichavaram mangrove, South 

India 

0.03–2.7 […] 

11 Chauhan et al. (2015) Bhitarkanika mangrove, India 0.1–2.3 […] 

12 Allen et al. (2011) Subtropical mangrove, 

Southeast Queensland, 

Australia 

0.05–1.6 […] 

13 Krithika et al. (2008) Muthupet mangrove, South 

India 

0.8–1.6 […] 

14 Lyimo et al. (2002)  Mtoni mangrove, Tanzania 0.02–1.3 […] 

15 Chauhan et al. (2008) Pichavaram mangrove, South 

India 

0.6–0.9 […] 

16 Dutta et al. (2013) Sundarban mangrove 

biosphere, India 

0.2–0.4 […] 

17 Kreuzwieser et al. 

(2003) 

Queensland mangrove, 

Australia 

0.02–0.4 […] 

18 

 

Cameron et al. 

(2019a) 

 

Mangrove rehabilitation, 

Tanakeke, South Sulawesi, 

Indonesia 

0.09–0.45 […] 

 

 19 

 

Lu et al. (1999) Dongzhai Harbour mangrove, 

China 

0–0.2 […] 

20 Chang and Yang 

(2003)  

Kang-nan wetland mangrove, 

northern Taiwan 

0.04–0.1 […] 

21 Cabezas et al. (2018) Southwest Florida, US 0.01–0.1 […] 

22 Chen et al. (2010)  Guangdong, China 0–0.1 […] 

23 Lekphet et al. (2005) Ranong, Thailand 0–0.01 […] 

24 Chen et al. (2014) North Sulawesi, Indonesia 0–0.01 […] 

25 Alongi et al. (2005) Fujian, China 0–0.01 […] 
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Table 5.2. (continued) Ranges of CH4 fluxes from soil surface in this study (gas-
transfer model) compared with worldwide data from mangrove and 
freshwater wetland ecosystems (static-chamber method). 

No. References Locations Ecosystem CH4 flux ranges 

(average) 

mg m
-2 

(ground 

surface) h
-1

 

26 Aselmann and Crutzen 

(1989), a review 

Bogs Freshwater 

wetlands 

0.04–2.1 [0.6] 

Lakes 0.7–3.7 [1.8] 

Fens 1.2–9 [3.3] 

Swamps 2.4–4.6 [3.5] 

Floodplain 2.4–8.3 [4.2] 

Marsh 5.7–16.6 [10.5] 

Rice paddies 7.5–18.3 [12.3] 

In the literature presented in Table 5.2, four articles (No. 2 to 5) reported relatively high 

CH4 fluxes from mangrove environments, accounting for greater than 10 mg m
-2

 h
-1

. All the 

articles explicitly agreed with the explanation that high CH4 fluxes were due to high discharges 

of sewage to the study sites, except Wang et al. (2016). However, the study site of Wang et al. 

was located at the estuary of Jiulong River, China, and had been experiencing sewage 

discharges from agriculture, industry and settlements (Cao et al., 2005; Wu et al., 2017). The 

mechanism behind the discharge of sewage is nutrient enrichment in mangrove waters, which 

may lead to eutrophication, triggering algal blooms (Pacheco et al., 2014). In general, 

eutrophication causes increased methane emissions for two main reasons. First, increasing algal 

biomass provides an abundance of carbon sources for methanogen bacteria, particularly labile 

organic carbon (West et al., 2012; DelSontro et al., 2018). Second, with organic matter 

accumulation because of eutrophication, dissolved oxygen decreases to decompose the organic 

matter, thereby generating anoxic environments that are conducive to methane production 

(Howarth et al., 2011; Jenny et al., 2016).  

Finally, comparing CH4 fluxes from the soil surface in the current study to the worldwide 

mangrove data indicated that mangrove ecosystems are generally low methane emitters; 

however, anthropogenic activities may amplify CH4 emissions in these ecosystems through 

eutrophication. Moreover, the magnitude of CH4 fluxes in the eutrophic mangroves could be as 

high as an anthropogenic wetland (i.e., rice paddies) or even greater. For example, in a world 

data synthesis, CH4 fluxes from the soil surface of rice paddies ranged from 7.5 to 18.3, with an 

average of 12.3 mg m-2 h-1 (Aselmann and Crutzen, 1989), while mangroves could range from 

0.2 to 82.7 mg m
-2

 h
-1

 (Chen et al., 2010)—see Table 5.2. 

5.5.3 Indication of CH4 releases through mangrove trees 

Methane dissolved in the pore-water can be removed from sediments by either 

consumption or transport. In my study area, pore-water geochemistry indicated that CH4 

consumption might be apparent only at the top 10 cm depth. This could be the reason why CH4 
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flux measurements and estimations gave too small result, which agreed with Cameron et al. 

(2019a) who measured CH4 fluxes in the same location. Unfortunately, I was not measured 

pore-water CH4 at the top 10 cm depth. Thus, methane transports could be an alternative 

explanation for pore-water CH4 removals as there are emerging insights in tidal pumping 

transporting pore-water CH4 horizontally (e.g. Call et al., 2015) and CH4 releases to the 

atmosphere through lenticels of mangrove stems (e.g. Jeffrey et al., 2019). 

According to tidal cycles, pore-water geochemistry and depth profiles of pore-water CH4, 

CH4 is more likely to be released through the woody tissue of mangrove trees (i.e. lenticels of 

the stems and pneumatophore), rather than through tidal pumping. Anoxic environments were 

mostly detected in all pore-water samples that is obviously not favourable for methane oxidation 

at the depth < 10 cm (Fig. 5.5). In addition, anaerobic methanotrophy coupled with sulfate 

reduction was unlikely because I did not observe a strong relationship between CH4 and SO4
2-

 

(Fig. 5.6). In the mechanism of anaerobic methanotrophy, SRB uses H2 as an electron donor to 

reduce sulfate, and this creates a more favourable environment for CH4 oxidation (Hanson and 

Hanson, 1996; Chowdhury and Dick, 2013). Then, if CH4 oxidation exists, SO4
2-

 and CH4 

would disappear simultaneously, which was not detected in my experiments. Although another 

anaerobic methanotrophy pathway could be occurring, which is driven by nitrate, but I did not 

undertake observation of this parameter. Horizontal (tidal pumping) CH4 transports would be 

unlikely in my study sites because: (i) all the sites were located in a similar position at low-lying 

elevations, susceptible to flooding and inundated for around 13 hours per day. If this is the case, 

pore-water could not be drained during low tide—see Susilo et al. (2005) and Xia and Li (2012) 

for the relationship between pore-water, tidal cycles and tidal pumping; and (ii) ORP was low 

and stable at anoxic conditions, even during low tide (Fig. 5.5), thereby indicating that pore-

water seepage might be too small. Therefore, CH4 transport through lenticels on the surface of 

mangrove stems could primary contribute to changes in the depth profile of pore-water CH4. 

Unclear patterns in the depth profiles of pore-water CH4 further indicated the possibility of 

tree-mediated CH4 fluxes. Basically, pore-water CH4 concentrations in wetland soils 

exponentially increase with depth, but the depth profile may change significantly when 

vegetation grows on that soil. Bazhin
 
(2004) pointed out that the depth profiles would have 

maxima and minima at a certain depth, depending on the distributions of roots, as also found in 

my depth profile of pore-water CH4. In fact, CH4 supersaturation of pore-water within a 50 cm 

depth reflected potential sources of CH4 emissions ranging from 20 to 30,000 times saturation). 

This result indicates that vertical transport via plant stems might be contributing to remove CH4 

from the pore-water. Therefore, vertical transports of CH4 through mangrove trees should be 

elucidated in further studies, as it is an emerging topic in CH4 studies in freshwater forested 

wetlands as well as mangrove forests. 
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The importance of woody plants as a pathway for CH4 transport in vegetated wetlands has 

very recently attracted much attention in CH4 flux studies. The idea of CH4 transport through the 

woody plant was first proposed by Zeikus and Ward (1974), who found that new borer holes of 

a Cotton Wood tree stem released high-pressure flammable gas. However, there was a lack of 

interest in this idea until the 1990s, when Pulliam (1992) observed CH4 fluxes from knee roots 

of Bald Cypress (Taxodium distichum), and Rusch and Rennenberg (1998) experimented with 

Black Alder seedlings (Alnus glutinosa). In fact, while the fieldwork for my study was being 

conducted, there were several additional reports of methane fluxes through the woody stems of 

trees (Pangala et al., 2015; Terazawa et al., 2015; Pangala et al., 2017; Maier et al., 2018; Pitz 

et al., 2018). 

Table 5.3 presents a summary and comparison of CH4 fluxes through sediment surface and 

woody stems. It is no surprise that CH4 emissions are higher in flooded than non-flooded 

forests. This is because continuous soil flooding is known to cause anaerobic conditions and 

hence an increase in CH4 production, as is well documented in studies of CH4 and water 

management in rice paddies (Wassmann et al., 2000; Xu et al., 2015; Islam et al., 2018). 

Interestingly, in flooded forests, methane fluxes through woody stems appear to be much larger 

(by a factor of five to 20) than soil fluxes. In contrast, unflooded forests exhibit lower CH4 

fluxes through tree stems than the soil surface (Table 5.3, No. 6). In addition, some observations 

have indicated CH4 absorption by soils, yet CH4 emission by tree stems (Table 5.3, No. 4, 5 and 

7). Nevertheless, the previous studies in this table highlight the possibility of a CH4 flux 

pathway through tree stems, which can be higher than soil surface CH4 flux in flooded soils. 
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Table 5.3. CH4 fluxes from tree stem and soil surface in the literature, 
presented in the same unit (milligram CH4 per metre square ground 
surface per hour). 

No. References Locations CH4 flux 

mg m
-2 

(ground surface) h
-1

 

Stem Soil 

 Flooded    

1 Pangala et al. (2017) Negro River, floodplain forest 3.9 ± 1.3 0.6 ± 0.5 

  Amazon River, floodplain forest 6.9 ± 1.8 0.4 ± 1.5 

  Solimões River, floodplain forest 15.6 ± 3.9 0.7 ± 0.9 

  Madeira River, floodplain forest 6.9 ± 2.7 2.1 ± 2.4 

  Tapajos River, floodplain forest 23.9 ± 6.3 3.8 ± 4.7 

 Non-flooded    

2 Pangala et al. (2013) Sebangau River catchment, 

tropical peatland 

0.2 ± 0.02 0.03 ± 0.01 

3 Terazawa et al. (2007) Northern Japan, floodplain forest 0.003 ˗0.004 

4 *Pitz et al. (2018) Upland forest 0.01 ˗0.06 ± 0.01 

  Transitional 0.03 0.01 ± 0.03 

  Wetland forest 0.08 0.2 ± 0.1 

5 *Terazawa et al. (2015) Floodplain forest 0.01–0.18  

6 *Gauci et al. (2010) Freshwater wetlands 0.004–0.01 0.3–0.8 

7 *Maier et al. (2018) Upland forest 0.01 ˗0.07 

*In the original paper, fluxes were reported per unit stem surface area. This was converted to per unit 

ground surface area using an approximate relation (see Appendix 3). 

5.5.4 A conceptual model 

In summary, pore-water CH4 variability in this study could be conceptualised as a simple 

relationship between the pore-water CH4 and successional stages. This is in accordance with the 

successional pattern of NPP (see Fig. 5.8). In freshwater wetlands, based on the relationships 

between CH4 emissions and NPP, 3% of fixed carbon (NPP) is released back into the 

atmosphere as CH4 (Aselmann and Crutzen, 1989; Whiting and Chanton, 1993). Therefore, 

assuming that this fraction applies to mangrove wetlands, my findings might reconcile missing 

carbon in the carbon budget calculations in mangrove forests (Bouillon et al., 2008; Alongi, 

2009; Twilley et al., 2017). 
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Figure 5.8. (A) Conceptual model of pore-water dissolved CH4 in mangrove 
rehabilitations. Vertical axis represents pore-water dissolved CH4 
and horizontal axis represents time (current study). (B) Forest 
successional development. NPP = net primary productivity, GPP = 
gross primary productivity, R = respiration, B = biomass (Odum, 
1969; Alongi, 2011). 

5.6 Conclusion 

I tracked for the first time the annual cycle of pore-water CH4 concentrations at contrasting 

sites of mangrove rehabilitation. Such data are essential to refine greenhouse gas emissions 

from restored mangroves given the increase interest in blue carbon ecosystem 

restoration/rehabilitation as a mechanism of GHG abatement. The pore-water at all eight sites 

was supersaturated with CH4, with a wide range of CH4 fluxes from the soil surface, ranging 

between 0.02 and 17 mg m
2
 h

-1
. The variability of the pore-water CH4 showed a seasonal pattern 

that correlated with the successional stages in the rehabilitation (Fig. 5.7 and 5.8). The 

implication is that the concentration of CH4 in pore-water is likely to be largely controlled by 

the availability of carbon substrate, which varies with NPP and hence the stage of mangrove 

regrowth. Future research should consider: (i) CH4 fluxes through woody stems in combination 

with pore-water CH4 to confirm CH4 pathways in a soil–plant–atmosphere system and mangrove 

contributions to CH4 emissions, and (ii) root exudates and NPP in relation to pore-water CH4. 

With that knowledge, we can better characterise the complete carbon budget on mangrove 

ecosystems. 



81 

 

Chapter 6: The pathway of methane 
production in overwash mangroves 

6.1 Introduction 

Methanogenesis or methane production in wetland ecosystems is an important process in 

the global carbon cycle. This is a final stage of organic matter decomposition in anaerobic 

conditions, generating methane gas (CH4)—one of the strongest greenhouse gases. Along with 

methanotrophy or CH4 oxidation in the aerobic zone of wetlands, methanogenesis controls CH4 

emissions from the sediment to the atmosphere. Currently, wetlands contribute 20 to 40% of 

global CH4 emissions (Reeburgh, 2003; Kirschke et al., 2013; Saunois et al., 2016). These 

emissions may increase because of climate change, which is connected to warming 

temperatures, increasing inundation frequency and increasing organic carbon supply (Dean et 

al., 2018; Reay et al., 2018). 

With climate change, the increase in the Earth‘s surface temperature and CO2 could 

amplify the feedback of wetland sediment to climate change through controlling 

methanogenesis and methanotrophy. Warming temperatures trigger more methanogen 

microorganisms to accelerate methanogenesis (Zhang et al., 2018), which has an optimum 

temperature range of 35 to 42°C (Zeikus and Winfrey, 1976). This warming could also drive 

methanotroph bacteria to oxidise CH4, such as in permafrost and alpine grass meadows (R. He 

et al., 2012; Kao-Kniffin et al., 2015). However, in rice wetlands, methanogenesis only occurs 

at the ripening stage (D. Liu et al., 2016). This is not only because of the warm temperature, but 

also because, at this stage, CH4 concentrations are higher than in other stages (i.e., tillering and 

heading) when the paddy soil is drained. Elevated CO2 concentration in the atmosphere 

generally increases plant productivity (Gamage et al., 2018; Lahijani et al., 2018), leading to 

increased root exudation, which enhances the supply of organic substrates for consumption by 

methanogens (Whiting and Chanton, 1993; Chanton et al., 1995; Kao-Kniffin and Zhu, 2013). 

In contrast, increases in the atmospheric CO2 level reduces the abundance of methanotrophs 

(Kolb et al., 2005; Das and Adhya, 2012; Y. Liu et al., 2016). 

As a result of climate change, increased rainfall frequency and sea level rise also have a 

critical role in the positive feedback of CH4 production in wetland sediments. Increasing 

frequency of heavy rainfall results in an increase in the time that soils are saturated, and should 

enhance methanogenesis (Wei and Wang, 2017; Zhang et al., 2018), yet is also anticipated to 

reduce methanotrophy (Ni and Groffman, 2018). In coastal wetlands, sea level rise alters the 

extent and frequency of inundation (Grenfell et al., 2016), thereby promoting new anoxic zones 

(Geselbracht et al., 2015), which are an ideal environment for methanogen growth (Lu et al., 

2018). However, to date, the effects of sea level rise on methanotrophy in coastal areas have not 

been investigated (Dean et al., 2018). 
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In coastal wetlands, sulfate reduction makes the CH4 cycle more complicated. SRB, which 

are often found in marine environments, are believed to out-compete methanogens for the same 

substrates of H2/CO2 and acetate (Ferry, 1993). The methanogen groups that use these 

compounds are called hydrogenotrophic and acetotrophic methanogens. However, there is a 

methanogen group—methylotrophic methanogens—that can coexist with SRB. The 

methylotrophic methanogens use methylated compounds (e.g., methanol, trimethylamine and 

dimethylamine) as carbon sources, whereas SRB do not. Oremland and Polcin (1982) found this 

phenomenon in laboratory investigations, and defined the compounds as non-competitive 

substrates. Numerous in-situ studies have also provided evidence that methylotrophic 

methanogens always involve the coexistence of methanogens and SRB (Lyimo et al., 2002; 

Cadena et al., 2018; Maltby et al., 2018; Zalman et al., 2018; Zhuang et al., 2018). 

Nevertheless, under laboratory conditions, SRB can oxidise some methylated compounds (i.e., 

methanol, dimethyl sulfide and methanethiol) (King et al., 1983; Lyimo et al., 2009), producing 

other methyl compounds, and thus feeding methylotrophic methanogens (Moran et al., 2008; 

Mitterer, 2010). More intriguingly, SRB may also interact with methanotrophs to oxidise CH4 in 

anaerobic conditions (Hinrichs et al., 1999; Orphan et al., 2001; Reeburgh, 2007). 

Mangroves are one of the coastal wetlands that are thought to produce less CH4 than 

freshwater wetlands because of the inhibiting influence of sulfate abundance in seawater 

(Alongi et al., 2004; Alongi et al., 2005; Welti et al., 2017; Cabezas et al., 2018). However, in 

my previous investigation (Chapter 5), pore-water in mangroves of Tanakeke Island was 

supersaturated with CH4, compared with its equilibrium state with atmospheric CH4. In 

addition, pore-water sulfate did not correlate with CH4 concentrations. Therefore, this indicates 

that methylotrophic methanogens may play a critical role in methanogenesis in Tanakeke‘s 

mangroves. 

Although the importance of methylotrophic methanogens in mangrove forests has been 

identified since the 1990s by Ramamurthy et al. (1990) and Mohanraju and Natarajan (1992), 

there appear to be a few studies that further investigate this topic. Mohanraju et al. (1997) and 

Lyimo et al. (2009) were successful in isolating a species of methylotrophic methanogens from 

mangrove sediments. Lymo et al. also tested metabolic responses of methylotrophic 

methanogens and SRB to various substrates (Lyimo et al., 2000; Lyimo et al., 2002; Lyimo et 

al., 2009). Later, Jing et al. (2016) investigated methanogenic communities using 

deoxyribonucleic acid (DNA) analysis, indicating methylotrophic methanogens are the most 

abundant. In contrast, Chuang et al. (2016) noted that there is concurrence between sulfate 

reduction and methanogenesis in some sites when observing CH4 and SO4
2-

 dynamics in the 

pore-water sediment of a mangrove lagoon. 

In this study, I investigated methanogenic pathways in overwash mangrove forests by 

combining analysis of sediment geochemistry, microbial functional groups and potential CH4 
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production. Depth profile analysis of CH4, SO4
2-

, S
2-

, Cl
-
 and Fe

2+
 was used as a proxy to 

elucidate which processes (methanogenesis, sulfate reduction or pyritisation) were occurring in 

the system. I used the spread plate count method, as well as an analysis of extractable functional 

genes, to gain insight into which group of methanogens was dominant. Finally, laboratory 

experiments with additional methanogenic substrates (methanol, acetate and hydrogen) added to 

sediment slurries were used to provide evidence of which substrates were more favourable to 

methane production. 

6.2 Study location and sampling site 

The study was conducted in Dusun Lantangpeo, Tanakeke Island, South Sulawesi, 

Indonesia, which was fully described in Chapter 3. According to Lugo and Snedaker (1974), 

this mangrove forest is categorised as an overwash forest because it is located very close to sea 

level and is completely overwashed during high tides. The sampling sites for sediment 

geochemistry were the same as those described in Chapter 5—Sites 1 to 9 (also see Fig. 6.1). 

The sediment sampling for microbial enumerations and sediment slurry experiments was 

undertaken in the three sites used for geochemical analysis of sediment—Sites 3, 5 and 8. 
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Figure 6.1. Site locations in the study area. Distribution of sampling sites (1–9) 
plotted on Google Earth imagery, depicting the landscape of 
aquaculture ponds and mangroves with two creeks splitting the 
landscapes. White and brown colour spotted by green (lower section 
of figure) depicts recently abandoned ponds; patches of green 
colour surrounded by a brown line depict long abandoned ponds; 
green colour blocks show undisturbed mangrove vegetation. 

6.3 Sample collection and analytical methods 

6.3.1 Sediment geochemistry 

I used sediment geochemical data collected in February 2017 for the analysis (see Chapter 

5 for details). These data were selected because the maximum concentration of pore-water CH4 

was found at the wet season. The data may depict a strong indication of CH4 production, while I 

assumed that sulfate reduction always occur in the saline environment. Thus, depth profile 

analysis of CH4 and SO4
2- 

was conducted to provide a more detailed interpretation of anaerobic 

respiration, which had been indicated by the pore-water CH4 and SO4
2-

 relationship reported in 

Chapter 5. Besides CH4 and SO4
2-

, the data for sulfide (S
2-

) concentrations were also selected to 

assist in the analysis of sulfate reduction. In addition, the geochemical data for Site 7 were 

included in this chapter, yet excluded in Chapter 5. As explained in Chapter 5, some mangrove 

trees in Site 7 were chopped down during the fieldwork program, and this disturbance 

apparently affected the local sediment geochemistry and made the interpretation of pore-water 

CH4 difficult with respect to mangrove successional status. However, the disturbance appeared 

to generate peculiar depth profiles of SO4
2- and CH4 that clearly showed the concurrence of CH4 

production and SO4
2-

 reduction. 

Chapter 4 described the method for collecting the data for the geochemistry of Tanakeke‘s 

mangrove sediment. Here, I also report measurements of pore-water salinity (‰), which have 
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not previously been reported. Salinity was used to estimate chlorine concentrations (Cl
-
). The 

Cl
- 
and SO4

2-
 ion concentrations were used to calculate the ratio [SO4

2-
]/[Cl

-
] and used as an 

indicator of sulfate reduction (Howarth and Giblin, 1983; Graedel and Keene, 1996). Salinity 

was measured using a salinity refractometer (S-10E 2422 Atago), with a scale range of 0.0 to 

10.0% sodium chloride and minimum scale of 0.1%. Cl
- 
was estimated using Eqn. 6.1 (Wright 

et al., 2011): 

, Equation 6.1 

where Cl
- 
is in mM and salinity is in ‰. 

At Site 3, repeated sampling to assess the sediment geochemistry was performed at two-

hour intervals from 8.00 am to 6.00 pm on 24 August 2016. This was to capture diurnal changes 

of CH4 and SO4
2-

 profiles to depict methane production and sulfate reduction in a short 

timescale. 

6.3.2 Microbial enumeration 

The microbial enumerations were undertaken using the spread plate count method and 

quantitative polymerase chain reaction (qPCR) method of extractable functional genes. These 

approaches were incorporated in this study because they provided complementary results 

showing all possible processes in sediment respiration. The spread plate count method required 

a 1 g sediment sample, while the qPCR method required around 0.25 g. The sediment sampling 

was undertaken only once in the dry season for the first method, while, for the second, it was 

completed during both the dry and wet seasons. 

The sediment sampling for both the plate count and qPCR method was performed with the 

same technique. The sampling was undertaken in the dry and wet season for the qPCR method, 

yet only in the dry season for the other method. One sediment core was collected at each 

selected site (Sites 3, 5 and 8) using a 100 cm hand auger. The sediment core was sampled from 

the surface to 50 cm depth and then sliced into five separate 10 cm sections. Each 10 cm slice 

was sub-sampled by scooping the inner section of the slice with a spatula. The sub-samples 

were then placed into three sterile Eppendorf tubes until they were full. The tubes containing 

sediment samples were stored in a zip-lock plastic bag. Before zipping the bag, the air inside the 

bag was flushed with UHP nitrogen (N2) for around one minute and then the air was squeezed 

out. The bag was wrapped with sticky tape to minimise air exchange, and stored in a cool box to 

be sent to a laboratory. In the laboratory, the sediment samples for the spread plate count 

method had to proceed as soon as possible, while the sediment samples for qPCR analysis were 

stored (at ˗4°C) until further processing. 

For the spread plate counting, the sediment samples were inoculated into the selective agar 

media by pouring the slurry of sediments. The slurry was made from serial 10 × dilutions of the 
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sediment samples. Initially, 1 g sediment was added by 0.85% NaCl to make a total solution 

volume of 5 mL. After vortexing this sediment suspension, 0.1 mL suspension was transferred 

to the clean tube and diluted with 0.85% NaCl to a total volume of 1 mL. This dilution was then 

repeated 10 times and the last three dilutions (10
-8

 to 10
-10

) were selected to be poured into the 

agar medium for isolation of methylotrophic methanogens. To isolate acetotrophic 

methanogens, 10
-4 

to 10
-6

 dilutions were selected. Hydrogenotrophic methanogens were not 

involved in this microbial enumeration because I used agar medium for the isolation of 

methanogens, and I found it difficult to amend CO2/H2 into this medium for hydrogenotrophic 

substrates. 

The agar medium for methanogen isolations in this study referred to the recipe for rumen 

methanogens, known as artificial saliva (McDougall, 1947). It was made from 250 mL Aqua 

Dest, 30 mL macro-mineral, 0.15 mL micro-mineral, 30 mL buffer solution, 1.6 mL Resazurin, 

20 mL reduction solution and 10 g agarose. The macro-mineral consisted of 5.7 g L
-1 

Na2HPO4, 

6.2 g L-1 KH2PO4 and 1 g L-1 MgSO4.7H2O, while the micro-mineral contained 132 g L-1 

CaCl2.2H2O, 100 g L
-1

 MnCl2.4H2O, 10 g L
-1

 CaCl2.6H2O and 10 g L
-1

 FeCl3. The buffer 

solution was made from 35 g NaHCO3 and 4 g NH4HCO3 diluted in 1 L Aqua Dest. The 

Resazurin solution was made from 1 g Resazurin in 1 L Aqua Dest, while the reduction solution 

was made from 373 mg Na2S.H2O and 2.6 mL of 1 mol L
-1

 NaOH diluted in 62 mL Aqua Dest. 

The agar media for isolation of methylotrophic methanogens were enriched by 25 mL of 5% 

methanol, while the media for acetotrophs were enriched by 25 mL of 25% acetate. The 

methanogens colony count was conducted after a 72-hour incubation in an anaerobic jar, and 

expressed as colony forming unit per gram of wet sediment (CFU g
-1

). 

Prior to functional gene enumerations, bacterial or archaeal DNA was isolated using a 

MOBIO PowerSoil Kit (Zhuang et al., 2016). DNA was extracted following the kit‘s protocol. 

Initially, 0.25 g samples were vortexed in the Power Bead tubes and centrifuged at 10,000 g for 

30 seconds. Then, serial centrifugations with the provided solutions were conducted to obtain 

100 µL DNA solution per sample. The DNA extracts were stored at ˗20°C before being used to 

construct the targeted genes and enumerate their abundance. 

The construction of targeted genes was done by qPCR on a PCR—the LightCycler Nano 

Instrument (Roche). I used methyl coenzyme M reductase or mcrA gene to detect methanogen 

populations. The particulate methane monooxygenase (pmoA) and dissimilatory sulfite 

reductase beta subunit (dsrB) genes were used to detect methanotrophs and SRB. DNA extract 

of 1 µL was used as a template for PCR with a reaction mixture containing SYBR green I dye 

(Toyobo, Osaka, Japan), and the primers of the targeted genes, provided in Table 6.1. The 

temperature of qPCR in pre-incubation was set at 95°C for 1 minute. The PCR amplification 

was 45 cycles (denaturation at 95°C for 5 s, annealing at 60°C for 15 s and elongation at 72°C 

for 30 s). 
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Table 6.1. Primers used for qPCR. 

Oligo 

name 

Sequence References 

mcrA Forward: M13F (5‘- 

TGTAAAACGACGGCCAGTGGTGGTGTMGGATTCA

CACARTAYGCWACAGC-3‘) 

Reverse: M13R (5‘-CA- 

GGAAACAGCTATGACCTTCATTGCRTAGTTWGGR- 

TAGTT-3‘) 

Luton et al. (2002) 

dsrB Forward: DSRp2060F (5‘-

CAACATCGTYCAYACCCAGGG- 3‘)  

Reverse: DSR4R (5‘- GTGTAGCAGTTACCGCA-3‘) 

Geets et al. (2006) 

pmoA Forward: A189 (5‘-GGNGACTGGGACTTCTGG-3‘) 

Reverse: A682 (5‘-GAASGCNGAGAAGAASGC-3‘) 

Holmes et al. (1995) 

 

The enumeration of target genes was conducted based on cycle quantification value (Cq), 

which was generated by qPCR. The number of target gene copies was calculated using a 

standard curve of Cq and gene copies. Ideally, a standard curve is generated using a serial 

dilution of the solution of the pure target genes. Here, I made the standard curve by using gene 

copies of a pure culture of Escherichia coli strain InaCC B5. Ten standard suspensions of E. 

coli DNA with different concentrations were prepared from the E. coli suspension of 4.6 × 10
10

 

CFU mL
-1

 (≈ 4.6 × 10
10

 CFU g
-1

), diluted 10 times. According to Oliver et al. (2016), CFU g
-1

 

correlates with gene copies g
-1 

samples
 
and its linear regression has a slope of around one 

(R = 0.82). Therefore, I established the standard curve based on gene copies of E. coli and the 

values of Cq generated from qPCR. This standard curve, then, was used to estimate a relative 

abundance of mcrA, pmoA and dsrB, as the functional genes of methanogens, methanotrophs 

and SRB. However, it should be kept in mind that this estimation was not to indicate the 

absolute copy numbers of target genes, but to compare the relative abundance among different 

bacteria/archaea groups (in CFU g-1 sediments). 

6.3.3 Sediment slurry experiments 

Sediment slurry experiments were performed to identify the methanogenesis pathways 

through CH4 production from sediment samples. Three kinds of substrates were tested, which 

represented the major methanogenic pathways (Table 6.2). The control treatments consisted of 

an untreated sediment and an autoclaved sediment in which all living organisms were killed at a 

temperature of 121°C for two hours. Two replicates were prepared for each combination 

(sampling sites/treatments). The sampling of gas headspace was conducted once per week, 

starting within seven days after preparation and continuing for around five weeks. An exception 

was the autoclaved treatments, where the sampling was performed only at Day 7, as well as the 

last day of the experiment. The microbial enumerations were also undertaken for all the 

sediment slurries at Days 0 and 28, using the spread plate count method in units of CFU mL
-1

 

slurry. 
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Table 6.2. Treatment conditions for sediment slurry experiments. 

 Treatments Volume, 

duration and 

concentration 

Experiment 

length (days) 

Replicates Sites Depth 

levels 

Controls No additional 

substrates 

N2 headspace 37 2 3 5 

Autoclaved N2 headspace 37 2 3 5 

Treatments 

(methanogenic 

substrates) 

Methanol 30 µL, 10 mM 37 2 3 5 

Acetate 30 µL, 10 mM 37 2 3 5 

H2 gas 100%, 1 min 37 2 3 5 

 

The sediment samples were obtained from the same sites as the sampling for microbial 

enumerations (Sites 3, 5 and 8). In the laboratory, a 10 g sediment sample of each slice was 

weighed, stored in a 120 mL bottle, and then mixed with 10 mL seawater collected from the 

mangrove waters. During this preparation, UHP N2 was flushed continuously inside the bottle to 

maintain a consistently low oxygen environment. For the addition of liquid methanogenic 

substrates (methanol and acetate), 30 µL, 10 mM of these solutions was poured into the 

sediment slurry, before the bottles were sealed with grey butyl rubber stoppers. H2 amendment 

was made by flushing 100% H2 into the sediment slurry for around one minute just before 

sealing. All bottles used were placed in the dark at room temperature. 

Gas headspace samples were collected using plastic syringes. A 20 mL gas sample was 

withdrawn from each bottle. The same volume of UHP N2 was injected into the experiment 

bottle to compensate the gas pressure change. The gas samples were transferred into gas-tight 

aluminium bags to be sent to another laboratory that was equipped with GC-FID. Details of the 

GC setting can be found in Chapter 4. 

6.4 Results 

6.4.1 Sediment geochemistry 

The geochemical data, selected from the full-year measurement, showed a full range of 

pore-water CH4 concentrations, ranging between 0.06 and 63 µmol L
-1 

(Fig. 6.2A). This range 

was similar to the pore-water CH4 data in the full-year measurement (0.04 to 59.87 µmol L
-1

—

see Chapter 5). Pore-water SO4
2- 

concentrations had a narrow range of 30.2 to 59.3 mM. The 

selected CH4 data were then plotted alongside pore-water SO4
2- 

against depth. SO4
2-

 depth 

profiles showed similar figures (except for Site 7), while CH4 profiles showed variability among 

sites. However, site comparison of these profiles is not of concern in the current chapter because 

it has been discussed in Chapter 5. In addition, incorporating this aspect is not necessary for the 

analysis of geochemical data regarding the concurrence of methane production and sulfate 

reduction in the current chapter. Nevertheless, this phenomenon was more obvious at Site 7 than 

the other sites. SO4
2-

 concentrations at this site were uniform (10 mmol L
-1

) at all depths, while 

CH4 concentrations varied between 0.09 and 63 µmol L
-1

. In addition, the occurrence of sulfate 
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reduction was evidenced by the presence of pore-water sulfide (Fig. 6.2B) and [SO4
2-

]:[Cl
-
] ratio 

(Fig. 6.2C). Fig. 6.2C shows that the ratio was always lower in the pore-water than in the 

seawater (solid line at 0.0518), except for Site 5 at a depth of 30 cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.2. Sulfate-methane systems in pore-water mangroves. (A) Depth 
profiles of dissolved methane (closed squares) and sulfate (open 
squares) in pore-water. Panels represent study sites (note missing 
data at 20 and 40 cm for Site 5). (B) Pore-water sulfide 
concentrations. (C) Sulfate and chloride ratio—a proxy for sulfate 
reduction compared with this ratio in seawater (vertical heavy solid 
line at 0.0518 represents reference seawater). 

 

The diurnal evolution of SO4
2-

 and CH4 concentrations provided much clearer results in the 

analysis of geochemical data regarding the co-occurrence of methane production and sulfate 

reduction (Fig. 6.3). At Site 3, CH4 concentrations were near-minimum at 08.00 hrs and 

generally increased until sunset, with the largest increases at depths of 20 and 40 cm (Fig. 

6.3B). For example, CH4 concentrations at 20 cm depth increased rapidly from 2.3 to 

17.8 µmol L
-1 

within 10 hours (8.00 am to 6.00 pm). The ratio of [SO4
2-

]:[Cl
-
] further supported 

the concurrence of methane production and sulfate reduction with the lower value in the pore-

water compared with those in the seawater (Fig. 6.3B). Sulfide was detected in the pore-water 

samples, yet its values were very low (0 to 0.13 mmol L
-1

) (Fig. 6.3C).  
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Figure 6.3. Diurnal dynamics of the sulfate-methane system at Site 3. 
(A) Measurements of pore-water sulfate (open squares) and methane 
(closed squares) over daylight hours. First measurement was at 
8.00 am and last was at 6.00 pm (depicted in the panels). (B) Pore-
water sulfide concentrations. (C) Sulfate and chloride ratio—a proxy 
for sulfate reduction compared with this ratio in seawater (vertical 
heavy solid line at 0.0518). 

 

6.4.2 Abundances of methanogens, methanotrophs and SRBs 

According to qPCR analysis, the abundance of methanogens in the sediment samples 

ranged between 72 and 6 × 10
5 

CFU g
-1

 sediment, while the abundance of SRB ranged from 

2 × 10
2
 to 2 × 10

5 
CFU g

-1
 sediment (Fig. 6.4). At the three sampling sites (Sites 3, 5 and 8), the 

abundance of methanogens was generally higher than those of SRB. However, in the wet 

season, the abundance of SRB was greater than the methanogens that were observed at the 

surface sediments, around 10 to 20 cm. The range of methanotroph abundance accounted for 

between 7 and 8 × 10
4 

CFU g
-1

 wet sediment. The maximum abundance of methanotrophs was 

observed to be one order of magnitude lower than methanogens and SRB. 
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Figure 6.4. The abundances of archaea/bacteria groups (methanogens, 
methanotrophs and SRBs). Panels represent the three selected sites. 
Sediment samples were collected in the dry and wet seasons. 

 

Fig. 6.5 indicates the abundance of methylotrophic and acetotrophic methanogens (CFU g
-

1
), revealed from the plate count method. The abundances of methylotrophic methanogens 

ranged between 8.3 × 10
2
 and 5.1 × 10

4
 CFU g

-1
, while those of acetotrophs ranged from 0 to 

7.7 × 10
2
 CFU g

-1
. In other words, the abundance of methylotrophic methanogens was two 

orders of magnitude greater than that of acetotrophs. This domination was observed in all 50 cm 

sediment depths at the three selected sites (Sites 3, 5 and 8) only in the dry season. Here, I 

assumed that hydrogenotrophic methanogens were considerably low compared with 

methylotrophic methanogens. This is due to the sediment geochemistry and qPCR results 

consistently shows an indication that hydrogenotrophic methanogens may be out-competed by 

SRBs (Fig. 6.2, 6.3 and 6.4). Therefore, domination of methylotrophic pathways at the current 

study sites was evident. 
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Figure 6.5. The abundance of methylotrophic and acetotrophic methanogens. 
The number of panels represents the three sampling sites. Data were 
collected only in the dry season. The values are the average of two 
replicates. ‘nd’ means ‘not detected’. 

 

6.4.3 Potential CH4 production 

Methanol amendment into the sediment slurries yielded a massive amount of CH4, as much 

as 9 × 10
4
 ppm (Fig. 6.6). At this figure, the headspace CH4 was presented as an average of two 

replicates and five depths because there was no clear pattern with depth. The surge of CH4 in the 

methanol amendment occurred similarly in the three selected sites and was observed from the 

first measurement at Day 7 to the end at Day 37. The headspace CH4 at Site 3 accounted for 

1.9 (±1.8) × 10
4
 ppm at Day 7 and continued to increase afterwards. It reached the maximum 

value of 5.8 (±2.1) × 104 ppm at Day 28 and then decreased slightly by Day 37. Similarly, Sites 

5 and 8 exhibited peaks at Day 28 with the values of 7.3 (±1.2) × 10
4
 and 6.8 (±2.5) × 10

4 
ppm, 

respectively. They also showed a slight decrease by Day 37. The minimum value of CH4 at Site 

5 was 4.4 (±3.2) × 10
4
 ppm (Day 21), while at Site 8 was 2 (±3.4) × 10

4
 ppm (Day 14). The 

headspace CH4 observed in the treatment of methanol amendment was one to two orders of 

magnitude higher than that in the control experiments. For the autoclaved sediments, the 

magnitudes ranged from 3.3 (±8.3) × 10
2
 to 1.9 (±2.1) × 10

3
 ppm, while, for the no substrate 

amendments, values ranged from 4 (±9) × 10
2
 to 3.7 (±3.6) × 10

3
 ppm. Meanwhile, the other 

two treatments had the same order of magnitude of headspace CH4 as the controls. 
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Figure 6.6. CH4 concentrations in the headspace following the sampling times. 
Incubation times (t7 to t37) denote sampling times from Day 7 to 37. 
Controls and treatments are indicated at the top of each panel. The 
values are the average of the two replicates and five depths, and 
error bars represent 1 standard deviation. 

 

The enumerations of the methanogen colony at Days 0 and 28 of the incubation times 

confirmed that methylotrophic methanogens played a critical role in methane production in the 

sediment samples (Fig. 6.7). The treatment of methanol amendments clearly depicted that the 

abundance of methylotrophs at Day 28 was around eight orders of magnitude greater than those 

at Day 0. Further, similar figures were observed in the other treatments, as well as in the 

controls, which indicated that SRB did not inhibit methylotrophic methanogens. These figures 

were observed at all three selected sites (Sites 3, 5 and 8). More interestingly, methylotrophic 

methanogens survived and were able to grow normally, although the sediment samples had been 

autoclaved. 
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Figure 6.7. The abundance of methylotrophic methanogens in the sediment 
slurries at Day 0 and 28. Treatment indicated at the top of each 
panel. The values are the average of two replicates and five depths. 

 

In contrast, acetotrophic methanogens apparently were out-competed by SRB in the slurry 

sediment experiments. First, it was indicated by the five experiments that acetotrophs were not 

detected at Day 28, although at Day 0 they were abundant (Fig. 6.8). This occurred in all the 

treatments, as well as the control (no substrate amendments). Second, the experiment of 

autoclaved sediments showed that acetotrophic methanogens survived and were able to grow. 

Thus, at Day 28, the abundance of acetotrophs was 10 orders of magnitude greater than at Day 

0. This indicated that SRB might be killed after the sediments were autoclaved, and hence did 

not inhibit the acetotrophic methanogens. 

 

 

Figure 6.8. The abundance of acetotrophic methanogens in the sediment 
slurries at Day 0 (t0) and 28 (t28). Treatment indicated at the top of 
each panel. The values are the average of two replicates and five 
depths. ‘nd’ means ‘not detected’. 
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6.5 Discussion 

Here, I have investigated sediment geochemistry, microbial enumerations and potential 

methane production to identify the dominant pathway of methanogenesis at the study sites. 

Sediment geochemistry reported in Fig. 6.2 indicated that methane production and sulfate 

reduction co-occurred at all the sites. In addition, Fig. 6.3 displayed this concurrence within a 

short timeframe (one day). The functional gene quantification further confirmed that SRB and 

methanogens coexisted in the sediment samples. Indeed, the plate count method provided an 

insight that the abundance of methylotrophic methanogens was two orders of magnitude greater 

than that of acetotrophs. Further, when methanol was added to the sediment samples in the 

sediment slurry experiments, CH4 production increased substantially (Fig. 6.6). In total, these 

results indicate that methylotrophic methanogens were the dominant pathway for methane 

production at the study sites. 

6.5.1 Sediment geochemistry 

In general, the concentration of pore-water SO4
2-

 remained high (25 to 30 mM) (see Fig. 

6.2A and 6.3A). However, Site 7 in Fig. 6.2A showed low concentrations of SO4
2-

 at all depths 

(~7 mM), which means that sulfate reduction occurred at this site. For the other sites, sulfate 

reduction could be detected by the [SO4
2-

]/[Cl
-
] ratio presented in Fig. 6.2C and 6.3C, where the 

ratio was always lower in the pore-water than in the reference seawater (0.0518). In sulfate 

reduction, SO4
2-

 is reduced, while Cl
- 
in seawater is assumed to be conservative, allowing the 

[SO4
2-

]/[Cl
-
] ratio to decrease (Howarth and Giblin, 1983; Graedel and Keene, 1996). 

The ratio of [SO4
2-]/[Cl-] has been widely used to detect sulfate reduction. It should be kept 

in mind that this ratio basically represents sulfate depletion because it is not only sulfate 

reduction, but also sulfide re-oxidation and pore-water exchange with seawater. At my sites, 

sulfide oxidation in aerobic conditions was unlikely because the mangrove sediments were 

always anaerobic at depths > 10 cm. Sulfate oxidation may occur at the top 10 cm, but I did not 

measure it (see Chapter 5). In anaerobic conditions, sulfide could be converted to sulfate by the 

presence of MnO2 (King, 1990; Schippers and Jorgensen, 2002; Machado et al., 2008). 

Although MnO2 was not measured here, it can be inferred from the positive relationships 

between reactive manganese and silt percentage (Roy et al., 2013). Given that the sediments at 

my sites were typically sandy (see Chapter 4) or had a low percentage of silt, MnO2 contents 

could be low. Thus, I could postulate that sulfide oxidation by this compound was unlikely to 

occur.  

One may argue that periodic inundation may dilute pore-water with seawater, adding more 

SO4
2-

, thereby leading to bias in the interpretation of the [SO4
2-

]/[Cl
-
] ratio as an indicator of 

sulfate reduction. This typical dilution is particularly true in mangrove ecosystems situated in a 

steep landscape, with high inundation amplitudes (Susilo et al., 2005; Xia and Li, 2012). 



96 

 

However, my study sites had a relatively flat terrain, where sediment surfaces were near MSL. 

In addition, the pore-water did not totally drain out during the low tide (see Chapter 5). Hence, 

seawater dilution into pore-water occurred, but may only have added a small amount of 

seawater to the pore-water. Another argument posits that Cl
- 

in mangrove pore-water may 

decrease as Rhizophora spp. trees (also found as a dominant species in my study location) 

uptake saline water and release Cl
-
 through salt glands in the leaves (Carlson et al., 1983). 

However, this should make the [SO4
2-

]/[Cl
-
] ratio higher in the pore-water than in the seawater 

(Carlson et al., 1983), while my results showed a lower ratio. Therefore, I suggest that the 

[SO4
2-

]/[Cl
-
]

 
ratio reported here may represent sulfate reduction. 

The presence of pore-water sulfide (S
2-

) may also suggest that sulfate reduction occurred. 

However, the concentrations of sulfide were low at all sites, ranging from 3 × 10
-3

 to 

1.6 mmol L
-1 

(Fig. 6.2B), while in previous studies it was substantially higher, ranging from 1 to 

6 mmol L
-1

 (Nickerson and Thibedou, 1985; Lyimo and Mushi, 2005). The range of sulfide in 

the diurnal measurement at Site 3 was even lower (0 to 0.13 mmol L-1) (Fig. 6.3B). According 

to these figures, I speculate that S
2- 

reacted with Fe
2+

, forming
 
metastable compounds of FeS or 

FeS2 (pyrite), as previously reported (Araújo et al., 2012; Nóbrega et al., 2013). This 

mechanism could occur because pore-water Fe
2+ 

was also in low concentrations (see Chapter 5). 

Alternatively, Fe
2+ 

concentration in my study sites was inherently low because of the sediments 

being sandy, while Fe
2+ 

is commonly associated with silty sediments (Roy et al., 2013). In 

contrast, a low concentration of S
2-

 was probably due to SO4
2-

 not being totally depleted, which 

was depicted from SO4
2-

 concentrations that remained high (30.2 to 60 mmol L
-1

). Nevertheless, 

the presence of sulfide likely indicated sulfate reduction at my study sites. 

The occurrence of sulfate reduction, however, did not seem to inhibit methane production. 

Sulfate reductions did occur at the sampling sites, at depths>10 cm and so did methane 

productions. Further, if sulfate reduction inhibits methane production, the depth profiles of SO4
2-

 

and CH4 should mirror each other (Martens and Berner, 1974), yet this was not observed in my 

study. The concurrence of sulfate reduction and methane production was more clearly depicted 

at Site 7, where the pore-water SO4
2-

 ranged between 7 and 7.3 mmol L
-1

, while pore-water 

dissolved CH4 ranged between 0.09 and 62.8 mmol L
-1

. At this site, trees were chopped down 

during the sampling, possibly leading to a greater supply of labile organic matter from the 

decomposition of the dead roots, which could supply non-methylotrophic substrates. Thus, the 

abundance of these substrates in the sediments could provide enough supplies for both SRBs 

and methanogens (Holmer and Kristensen, 1994). In this condition, SRB initially dominate the 

substrate use, incorporating SO4
2-

 as the energy source. Once SO4
2- 

depletes, methanogens use 

the remaining substrates. In the limited substrates—which could be the case at most study 

sites—SRBs could coexist with methanogens because they are unable to inhibit the metabolism 

of methylotrophic methanogens, given that the SRB and methylotrophic methanogens use 
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different kinds of substrates, with methylotrophs using more specific substrates—that is, 

methylated compounds (Oremland and Polcin, 1982; Kiene et al., 1986). Alternatively, SRB 

may use substrates (e.g., methylated amines and methanethiol) that can produce methylated 

compounds, and thus feed methylotrophic methanogens. 

As explained in Chapter 5, the sediments in the study sites contained organic matter that 

was mainly supplied by mangrove vegetation. The import of terrestrial organic matter into this 

mangrove forest was negligible because of it being located on a small coralline island situated 

10 km from the mainland. In contrast, marine organic matter, including from mangrove trees, is 

rich in methylated compounds (e.g., methanol, trimethylamine and dimethyl sulfide), which are 

derived from cell fluids or cytoplasm. The cytoplasm of marine organisms contains taurine, 

betaine, glycine, choline and alanine as osmolytes, which allow cells to maintain an osmotic 

balance with saline water (Yancey et al., 1982; Slama et al., 2015; Downing et al., 2018). 

Further, some methanogens can use choline directly—a precursor of methylated compounds 

(Watkins et al., 2012). Therefore, there is a high possibility that methane production co-

occurred with sulfate reduction at my study sites, as has been suggested in previous studies 

(Mitterer, 2010; Ramírez-Pérez et al., 2015; Sela-Adler et al., 2017; Cadena et al., 2018). 

6.5.2 Microbial enumerations 

The abundance of methanogens ranged from 7.2 × 10
1
 to 6 × 10

5
 CFU g

-1
, or it can be said 

that the abundance of the functional gene of methanogens (mcrA) ranged from 72 to 6 × 10
5
 

gene copies g
-1

 (see the method section and Fig. 6.4). This range was comparatively lower than 

those reported previously—for example, 10
8
 gene copies g

-1 
in river sediments (Chaudhary et 

al., 2017; Tong et al., 2017), 2.5 × 10
6
 to 3.7 × 10

9
 gene copies g

-1 
in paddy soils (Bao et al., 

2014) and 10
6
 gene copies g

-1 
in saltmarshes (Zeleke et al., 2013; Gao et al., 2018). However, it 

is comparable with those found in the subsurface of a tidal flat (0 to 4 × 10
5
 gene copies g

-1 

sediments) and in lake sediment (5 × 10
6
 gene copies g

-1
) (Wilms et al., 2007; Yang et al., 

2017). The low population of methanogens in my study may be due to the low supply of 

methanogenic substrates, given that the geochemical evidence suggested that the sediments 

were conducive for methanogen growth (see Chapter 5), whereas sulfate reduction is unlikely to 

inhibit methane production.  

The abundance of SRB seemed to reflect some signs that sulfate reduction has less 

influence on methane production. The abundance of SRB was generally lower than 

methanogens (Fig. 6.4). However, the abundance of SRB can be greater than methanogens—for 

example, at the top layer of sediments (10 to 20 cm)—during the wet season. In such a case, I 

could interpret that methanogens can be inhibited by SRB because there is a shift of 

methanogenic communities driven by environmental changes. For example, Reshmi et al. 

(2015) found that, during the wet season, more organic matter was supplied from terrestrial 
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ecosystems, and enhanced the metabolism of acetotrophic methanogens in estuarine sediments. 

Thus, this methanogen group was more abundant during the wet than dry season, while the 

abundance of methylotrophic methanogens did not differ significantly between the seasons. 

Meanwhile, Jing et al. (2016) reported that heavy metals caused a shift of methanogenic 

pathways in polluted mangrove sediments. Further, this kind of shift may occur because of 

vegetation changes in the wetland, which lead to changes in methanogenic substrates (Yuan et 

al., 2016). In my case, SRBs were likely to coexist with methanogens, but seasonal variations in 

pore-water and sediment geochemistry could alter the methanogenic communities at the top 

layer of sediments, thereby leading SRB at this layer to be more abundant in the wet than dry 

season. 

The coexistence between SRB and methanogens was supported by the fact that 

methylotrophic methanogens were more abundant than acetotrophic methanogens in all the 

samples. Methylotrophic methanogens made up a huge colony in my mangrove sediments, with 

the abundance range of 8.3 × 102 to 5.1 × 104 CFU g-1, while the abundance of acetotrophs 

ranged from 0 to 7.7 × 10
2
 CFU g

-1
. For comparison, Reshmi et al. (2015) reported that the 

abundance of methylotrophs in estuarine sediments ranged from 1.9 × 10
2
 to 10

3
 CFU g

-1
, while 

the abundance of acetotrophs ranged between 2 × 10
2
 and 8.1 × 10

2
 CFU g

-1
. Torres-Alvarado et 

al. (2013) also observed that methylotrophs were the most abundant in estuarine sediments 

during the dry season (10
6
 to 2 × 10

7
 cells g

-1
), while acetotrophs accounted for between 3 × 10

4
 

and 10
5
 cells g

-1
. In the wet season, they found that the abundance of acetotrophs (10

6 
to 

2 × 10
7
 cells g

-1
) and methylotrophic methanogens (10

7
 to 2 × 10

7
 cells g

-1
) could be within a 

similar range.  

To my knowledge, there are few studies in mangrove sediments addressing the 

enumeration of methanogens. This renders it difficult to compare my work with previous 

studies. An early attempt by Mohanraju and Natarajan (1992) noted that the total abundance of 

methanogens ranged from 3.6 × 10
2
 to 1.1 × 10

5
 cells g

-1
. However, they did not mention the 

abundance of each group of methanogens. In contrast, Jing et al. (2016) presented a detailed 

study in methanogenic communities up to class-level taxonomic groups. They found that 

methylotrophic methanogens were predominant in almost all their samples. This is in 

accordance with my findings and thus might add evidence to support the premise that 

methylotrophic methanogenesis could be the dominant pathway of methane production in the 

current study. 

6.5.3 Potential CH4 production 

The control experiment using autoclaved sediments demonstrated a surprising result that 

the sediments still produced CH4 at around the same rate as the other control treatment (no 

additional substrates) (Fig. 6.6). Further, bacterial enumerations at Day 0 and 28 demonstrated 
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that methanogens survived and grew well (Fig. 6.7 and 6.8). These are intriguing results. To my 

knowledge, methanogen archaea has no spores, which allows survival in extreme heat (Peter 

and Conrad, 1995). In addition, to date, only methanogen archaea living in thermal vents are 

known to survive in the autoclave temperature of 110°C (Miller et al., 1988; Takai et al., 2008). 

Therefore, further investigation should be undertaken to characterise the methanogens in my 

study sites. 

Meanwhile, the addition of methanol into the sediment slurry resulted in the rapid and high 

production of CH4 (Fig. 6.6), which occurred similarly in the sediments from all three selected 

sites (Sites 3, 5 and 8). For example, on Day 7 of Site 3, CH4 concentrations in the bottle 

headspace with methanol amendment were two orders of magnitude higher 

{1.9 (±1.8) × 10
4
 ppm} than the control (no additional substrates) {4 (±9.2) × 10

2
 ppm}. 

Afterwards, this headspace CH4 increased gradually to reach a peak at Day 28. This is in 

agreement with Chuang et al. (2016), Xiao et al. (2017) and Lyimo et al. (2002). According to 

them, methylated compounds are more favourable for methanogens than competitive substrates 

(hydrogen and acetate), even though the in-situ concentrations are extremely low. In contrast, 

the experiments with hydrogen and acetate amendments yielded CH4 of the same order of 

magnitude as in the controls. Therefore, only the experiments with methanol amendment 

demonstrated significantly increased CH4 production. 

When the number of methanogens in the sediment slurry of experiments was enumerated, 

methylotrophic methanogens were detected in all the treatments and controls (Fig. 6.7). In 

addition, methylotrophic methanogens proliferated successfully, even in the autoclaved 

sediments. The abundance of methanogens at Day 28 was eight orders of magnitude higher than 

those at Day 0. In contrast, not all the treatment conditions showed that acetotrophic 

methanogens survived until Day 28, particularly in the treatments with acetate and H2 

amendments (Fig. 6.8). This indicated that SRB inhibited acetotrophs through competition for 

the same substrates (acetate or H2) (Oremland and Polcin, 1982). Therefore, the slurry sediment 

experiments provided further evidence that methylotrophic methanogenesis was the dominant 

pathway at my study sites. 

6.6 Synthesis 

Despite SO4
2-

 being abundant in the pore-water at the mangrove sites, apparently it did not 

reduce methane production. The presence of SO4
2- 

controls methane production through two 

mechanisms. First, SRB out-compete acetotrophic and hydrogenotrophic methanogens for 

common substrates (Oremland and Polcin, 1982). Second, SRB interact with anaerobic 

methanotrophs to oxidise methane (Bebout et al., 2004; Avrahamov et al., 2014). My study 

provides evidence for these two mechanisms. 
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I found that SRB out-competed acetotrophic and hydrogenotrophic methanogens, while 

methylotrophic methanogens played a major role in methane production. I found that the 

abundance of methanogens was generally higher than SRB. Further, methanogens comprised 

more methylotrophic methanogens than acetotrophs. The in-situ measurements revealed that the 

depth profiles of pore-water CH4 were not mirroring SO4
2- 

profiles, indicating that CH4 

productions did not depend on sulfate reduction. Moreover, the ratio of [SO4
2-

]/[Cl
-
] provided 

evidence that sulfate reduction really occurred, while pore-water CH4 was abundant. The 

sediment slurry experiments further indicated that stimulation by methanol amendments into 

sediment samples resulted in the highest yield of headspace CH4. Investigations into the 

methanogens in the sediment samples revealed that methylotrophic methanogens grew well, 

while acetotrophic methanogens were undetected on Day 28 of incubation. In contrast, 

hydrogen and acetate stimulation produced CH4 at the same order of magnitudes as those 

without stimulation. 

SRB may cooperate with anaerobic methanotrophs, yet their low abundance and the high 

abundance of SO4
2-

 indicated that this pathway may be less important in controlling pore-water 

CH4. I detected the presence of methanotrophs in my sediment samples. These methanotrophs 

were likely anaerobic methanotrophs because mangrove sediments are always anaerobic (see 

Chapter 5). The abundance of methanotrophs (7 to 8 × 10
4
 CFU g

-1
) was one order of magnitude 

lower than methanogens (72 and 6 × 10
5
 CFU g

-1
). Thus, I could interpret that the rate of CH4 

production was higher than the rate of CH4 oxidation. However, this interpretation should be 

used with caution, as suggested by Tong et al. (2015b), since they found a weak correlation 

between methane production and methanogen abundance. 

6.7 Conclusion 

This study confirms the importance of the methylotrophic pathway for methane production 

in overwash mangrove environments. The results from sediment geochemistry analysis, 

microbial enumerations and potential CH4 production provide evidence for this pathway. In fact, 

the rate of in-situ methane production would mainly rely on the concentrations of methylated 

compounds supplied into the sediment. Therefore, future studies should consider this supply and 

the mass balance of methanogenesis to quantify the relative importance of methylotrophic 

methanogenesis with the other pathways in mangrove forests, and determine how it controls 

methane emissions. 
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Chapter 7: Conclusion and 
recommendations 

7.1 Background 

In designing climate policy mechanisms based around the blue carbon concept, a key 

consideration has been carbon sequestration potential (McLeod et al., 2011; Ullman et al., 

2013). Likewise, CO2 emissions—particularly due to coastal ecosystem degradation or land use 

changes—have also been a fundamental concern (Ahmed and Glaser, 2016; Atwood et al., 

2017; Lovelock et al., 2017) because these activities offset the gains made by sequestration. 

However, CH4 emissions have been overlooked because of the comparatively smaller fluxes 

involved (Twilley et al., 2017; Cabezas et al., 2018). For example, a typical CO2 flux is three to 

four orders of magnitude higher than a typical CH4 flux (Song and Liu, 2016; Gao et al., 2018). 

On a mass basis, it is easy to see why attention has focused on CO2 fluxes. However, CH4 has 

25 times more GWP than CO2 (Forster et al., 2007) and, from the perspective of reducing global 

warming, CH4 is of interest. 

In early attempts, CH4 emissions from mangrove ecosystems were mostly investigated by 

taking measurements at the sediment–atmosphere interface. However, recent studies have 

reported that CH4 produced in mangrove sediments could be transported to surrounding waters 

(Call et al., 2015) and released through the water surface (Jacotot et al., 2018). Rosentreter et al. 

(2018) posited that this could partially offset the rates of carbon burial. Further, a number of 

very recent papers reported that a substantial fraction of the total methane flux to the 

atmosphere is via plant stems (Pangala et al., 2015; Pangala et al., 2017; Maier et al., 2018; Pitz 

et al., 2018). Therefore, CH4 emissions from mangrove ecosystems are likely to be under-

reported in the existing literature. 

7.2 Research findings and contributions 

This study described CH4 in the pore-water of mangrove rehabilitation sites on a tropical 

island in Indonesia. The study included the development of a measurement system of pore-

water CH4, application of the system and analysis of the mechanisms underpinning the observed 

space–time variability of pore-water CH4. The main findings of the thesis are summarised in 

Fig. 7.1. 
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Figure 7.1. Summary of findings. 

 

Finding 1: A system for measuring CH4 in mangrove sediments was developed by using 

readily available materials (Point 4.1, Fig. 7.1 and Fig. 4.2). This system is capable of extracting 

pore-water from various depths simultaneously and repeatedly at a typical rate of 

~4,000 mL hour
-1

 in sandy sediments. In this study, the CH4 contents in the gas samples that 

were evacuated from pore-water samples were measured using GC. Besides CH4 measurements, 

various physicochemical parameters of pore-water can also be measured simultaneously. 

Therefore, this measurement system can provide depth profiles of multi-parameters, allowing 

for the analysis of geochemical or biological mechanisms underpinning space–time variability 

in the amount of CH4 dissolved in pore-water. 

Finding 2: Applications of the measurement system revealed that pore-water in mangrove 

sediments was supersaturated (20 to 30,000 times) with CH4 with respect to the atmospheric 

equilibrium (1.75 µmol L
-1

) (Point 5.1, Fig. 7.1 and Fig. 5.3). The pore-water CH4 varied 

seasonally, but the pattern was different from site to site. Moreover, the depth profiles of pore-

water CH4 did not show any distinct pattern. 
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Finding 3: Pore-water CH4 concentrations in my study (0.04 to 59.9 µmol L
-1

) were within 

the range of those found in previous studies in mangrove sediments (0 to 875 µmol L
-1

) (Point 

5.3, Fig. 7.1 and Table 5.1). However, the concentrations were generally one order of magnitude 

lower than those reported from freshwater wetlands (Table 5.1). 

Finding 4: In this study, CH4 emissions were estimated from pore-water CH4 

concentrations that were measured in the top sediment layer (0 to 10 cm) (Point 5.3, Fig. 7.1). 

The results showed that the study sites were relatively low emitters of CH4, with average and 

median estimated fluxes of 2.1 and 0.6 mg m
-2 

h
-1

, respectively (Table 5.2). This aligns with 

many previous studies. However, this fact has raised the question of how pore-water CH4 can be 

oxidised. Anoxic conditions in mangrove sediments suggested that CH4 oxidation was unlikely, 

while the flat terrain and tidal cycle in the study sites indicated that tidal pumping was also 

unlikely to drain out the pore-water. Consequently, I deduced that mangrove pore-water CH4 

was most likely transported to the atmosphere via plant stems. 

Finding 5: In the study area, the prevailing physicochemical conditions (temperature, pH 

and ORP) were ideal year round for the production of CH4 (Point 5.4, Fig. 7.1). For example, 

pore-water was always in the anaerobic condition needed by microorganisms to produce CH4. 

Interestingly, pore-water CH4 was not correlated with SO4
2-

, indicating that SO4
2-

 reduction did 

not inhibit CH4 production. Consequently, to identify the underpinning mechanisms that control 

pore-water, I further investigated the regrowth effects of mangrove forests on pore-water CH4 

and the concurrence of CH4 production and SO4
2-

 reduction. The results are explained below in 

Finding 6 (Point 5.5, Fig. 7.1) and Finding 7 (Point 6.1–3, Fig. 7.1), respectively. 

Finding 6: Pore-water CH4 correlated with mangrove stand BA, which is in turn a 

surrogate of stand age (Point 5.5, Fig. 7.1). Given that mangrove productivity is expected to 

scale with stand age, an association between CH4 concentration in pore-water and mangrove 

productivity is reasonable. The general pattern of forest productivity has long been known to 

follow stand age, while pore-water CH4 roughly follows a similar pattern. This association 

might occur because of changes over time (with stand age) in the carbon allocation pattern of 

mangrove vegetation. For example, a high allocation of photosynthate to root exudates and fine 

roots would lead to the use of that carbon by methanogen microorganisms. Hence, at the study 

site, CH4 production was apparently controlled by mangrove productivity, rather than the 

prevailing physicochemical conditions. 

Therefore, Finding 6 has a crucial implication for blue carbon management. It has long 

been known that above-ground carbon increases exponentially in the initial stages of growth, 

yet levels off as mangrove forests mature (> 25 years old) (Fig. 7.2A) (Alongi, 2011). In 

contrast, below-ground carbon may continue to increase, like in Sasmito et al. (2019) (Fig. 

7.2B). Hence, carbon sequestration in the soil has made mangrove ecosystems attractive for 

climate change mitigation. However, CH4 production in mangrove sediment should be 
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considered in mangrove rehabilitation for mitigation projects, particularly in the intermediate 

stage (~5 to 10 years old), when CH4 production reaches its peak (Fig. 7.2C). 

 

 

  

 

 

 

 

 

 

 

 

Figure 7.2. Conceptual model of carbon accumulation in mangrove forests. 

 

Finding 7: Among three pathways for CH4 production (hydrogenotrophic, acetotrophic 

and methylotrophic), the first two pathways were not activated (Point 6.1, Fig. 7.1 and Fig 6.6). 

This means that CH4 production was mainly through the methylotrophic pathway, which does 

not depend on SO4
-2 reduction. This result aligns with Finding 5 (Point 5.4, Fig. 7.1) that SO4

2- 

did not correlate with pore-water CH4. 

Finding 8: Although Finding 7 is uncommon in most previous studies, especially those 

from freshwater wetlands, my results on CH4 production pathways (dominated by the 

methylotrophic pathway) align with other studies in mangrove environments (Point 6.2, Fig. 

7.1). Further, recent studies in deep-sea sediments also reported the relative importance of the 

methylotrophic pathway in the sea sediment. 

Finding 9: With multiple approaches, the methylotrophic pathway was consistently 

detected as the dominant process (Point 6.3, Fig. 7.1 and Fig. 6.3 to 6.6). This detection was 

achieved through analysis of sediment geochemistry, microbial functional groups and potential 

CH4 production. 
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7.3 Recommendations for future research 

This study has found that physicochemical conditions are optimum for methane 

production, and this result is likely to hold in tropical environments worldwide. The findings 

demonstrate that vegetation plays a central role in the supply of substrates for methane 

production, and very recent literature indicates that at least some of this methane is transported 

to the atmosphere via the woody stems of mangroves. Based on this, I recommend future 

research investigate the following. 

The role of vegetation productivity in CH4 production (Chapter 5). This can be studied 

at macro levels to include the following questions: (i) What is the allocation of carbon 

production to fine roots and exudates? (ii) How does the seasonal variability of productivity 

shape CH4 production and/or emission? (iii) How does the productivity of different mangrove 

species determine CH4 production and/or emission? (iv) If there are non-mangrove sources of 

methanogenic substrates (Chapter 6), how does the relative importance of mangrove 

productivity control CH4 production? With that knowledge, we could better understand the total 

carbon budget on mangrove ecosystems. The line of questions can also be approached from 

micro-levels to examine: (i) fine root production and decomposition (e.g., seasonal pattern and 

contribution to methanogenic substrates), (ii) exudates (e.g., chemical compositions, quantity 

and variability) and (iii) the microbial community in the rhizosphere and its interaction with 

mangrove roots (Chapter 6). 

Measurement of CH4 emissions through woody plant tissues of mangrove species 

(Chapter 5). This investigation could include the following questions: (i) What is the 

magnitude of CH4 fluxes through woody plant stems or specialised root structures (i.e., prop and 

stilt roots)? (ii) Do the fluxes come from pore-water CH4, CH4 produced in the stems/roots or 

both? (iii) What are the mechanisms of CH4 transport from sediment to the atmosphere through 

the woody plant stems/roots? (iv) What is the proportion of CH4 emissions that occur through 

the woody plant stems/roots? 

The extension of CH4 observations in various geomorphological and hydrological 

settings. The oceanic mangroves in the study region represented a very simple system because 

the mangrove vegetation was the sole source of carbon (see Chapters 5 and 6). This result needs 

to be extended to the more general case, where carbon can be supplied from upstream flows. 

This leads to a final recommendation regarding how different geomorphological and 

hydrological settings determine CH4 production and emissions. This includes: (i) lateral carbon 

inputs from terrestrial ecosystems, (ii) freshwater inputs, (iii) seasonal patterns of carbon and 

freshwater inputs, (iv) tidal cycles and anaerobic conditions and (v) shifts in methanogen or 

microbial communities. 
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Appendix 1: Calculation of CH4 
concentrations based on headspace 

equilibration method 

CH4 concentration of pore-water was calculated using a set of equations as described by 

Magen et al. (2014). The molar concentration of CH4 (mol L
-1

) in the pore-water samples at the 

time of collection was calculated by dividing the amount (mol) of methane (nCH4) by the volume 

of water in the bottle (Vw): 

        Equation 1 

Given that the bottle was completely full of pore-water sample, Vw at the time of collection was 

120 mL. After replacing 25 mL of the pore-water sample with UHP N2 gas, the 120 mL bottle 

consisted of a liquid and gas phase. Hence, the volumes of the pore-water (VL, liquid) and UHP 

nitrogen (VG, gas) were 95 and 25 mL, respectively, while the gas pressure (PG) in the head 

space was 1.8 atm. Before equilibration (by shaking), CH4 concentration in the pore-water 

remained the same as Eqn. 1.1. After equilibration between the adjacent liquid and gas phases, 

some of the CH4 originally in the pore-water was now in the gas phase in the headspace. 

Therefore, the total amount of methane (nCH4) was the sum of the amount of methane dissolved 

in the pore-water as liquid phase (nCH4L) and methane in the headspace as gas phase (nCH4G): 

nCH4 = nCH4L + nCH4G        Equation 2 

To calculate nCH4, nCH4L and nCH4G should be calculated separately based on the partial pressure 

of methane in the headspace (pCH4G) in L of CH4/L, which was obtained by measuring 

headspace gas samples after equilibration by using GC. The amount of methane (nCH4G) in the 

gas phase was then calculated according to: 

 ,       Equation 3 

where R is the ideal gas constant (0.08206 L atm K
-1

 mol
-1

), T (°C) is the temperature and PG is 

the gas pressure. 

The amount of methane in the liquid phase (nCH4L) was determined using the following 

equation (Magen et al., 2014): 

       Equation 4 

where β is the Bunsen coefficient of methane reflecting the solubility of this gas in water at 

atmospheric pressure, temperature (T, K) and salinity (S, parts per thousand) (Yamamoto et al., 

1976):
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          Equation 5 
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Appendix 2: Example of calculation for pore-
water CH4 and soil surface CH4 

Pore-water CH4 calculation 

CH4 concentration in the headspace gas sample for an example calculation was 1,824 ppm, 

which was collected from the pore-water sample at the depth of 10 cm at Site 8 on May 2016, 

when the pore-water temperature was 30°C. Note that gas pressure and the volume of the gas in 

the headspace were 1.8 atm and 25 mL, while the volume of pore-water sample was 95 mL; 

thus, the amount of CH4 in the gas phase in the headspace was calculated according to Eqn. 3: 

 

Further, the amount of CH4 dissolved in the pore-water as liquid phase was calculated as 

follows (Eqn. 4): 

 

Therefore, the molar concentration of CH4 in the 95 mL of pore-water sample collected from a 

depth of 10 cm at Site 8 on May 2016 (see Eqn. 1 and 2) was as follows: 

 

 

Soil surface CH4 flux 

The majority of CH4 studies have used a gas diffusion model according to Fick‘s first law, 

which is widely implemented in the calculation of molecular diffusion of chemical species 

either in fluid or solid media. The law assumes that soil surface CH4 flux occurs due to 

molecular diffusions within a few centimetres at the top layer of soils (Van Der Nat and 

Middelburg, 2000) or at soil–air or soil–water interfaces (Man et al., 2004; Dutta et al., 2015) 

(see Fig. 1). In my case, I assumed that dissolved CH4 at the top layer of soil (at 10 cm) was 

well mixed and the soils were saturated with water, where the water level keeps at the soil 

surface. Therefore, the molecular diffusion through the soil compartment within a 10 cm depth 

was assumed to be zero because of no gradient concentration (Fig. 1, dashed line). Thus, the 

diffusion primarily occurs as a result of gradient CH4 concentration in the boundary layer (Fig. 

1). 
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Figure 1. Illustration of the conceptual model of gas transfer through an 
interface, and assumptions underlying the mathematical model used 
in the current study compared with previous studies. 

 

If one used Fick‘s first law for CH4 diffusion across the boundary layer in Fig. 1, one 

would encounter difficulties determining the boundary conditions because gas diffusivities 

change by at least 10
4
 times (Wania et al., 2010). Thus, I used a more robust model flux in Eqn. 

5.1, as Wania et al. (2010) suggested. In fact, Eqn. 5.1 is a modified equation of Fick‘s first law. 

Further explanations of this can be found in Sarmiento and Gruber (2006) and Wanninkhof et 

al. (2009). 

Eqn. 5.1 contains a gas transfer coefficient (k, in cm h
-1

), and the generic equation to 

estimate k is as follows: 

k = k600          Equation 6 

where Sc is a Schmidt number that has been presented in Eqn. 5.3, and n is a Schmidt exponent. 

In the current study, the exponent of ˗0.5 was suitable for mangrove areas because of high 

turbulence, instead of ˗2/3, which is commonly used for open ocean waters at wind speeds 

below 3 m s
-1

 (Borges et al., 2004). The gas transfer coefficient at a Schmidt number of 600 

(k600, cm h
-1

) was used to normalise the gas transfer coefficient k. Many equations of k600 have 

been proposed, yet mostly for gas flux calculation in lakes or oceans (Wanninkhof et al., 2009). 

Thus, I evaluated two equations that could be appropriate for the conditions of my study site. 

First, k600 is expressed as a function of wind speed at 10 m height (U10, m s-1) (Wania et al., 

2010): 

k600 = 2.07 + 0.215 U10
1.7

       Equation 7 

Second, k600 is a function of speed of the background water current (v, m s-1): 

k600 = 2.03 + 0.43 v        Equation 8 
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Eqn. 8 is an empirical model for CH4 flux calculations from surface water in mangrove creeks 

(Rosentreter et al., 2017). Then, I assumed that U10 and v were 0 because the pore-water–

atmosphere interface in mangrove soils is less influenced by wind, and the speed of the 

background water current was small. Hence, both Eqn. 7 and 8 were identical, and I then 

calculated the gas transfer coefficient (k) as Eqn. 5.2. 

To apply Eqn. 5.1, I began with calculating the Schmidt number (Sc) by using Eqn. 5.3. 

The value of temperature to calculate Sc was set to 30°C and then: 

Sc (CH4) = 2101.2 − 131.54 (30) + 4.4931 (30
2
) − 0.08676 (30

3
)

 
+ 0.000707 (30

4
) = 428.6 

Thus, the gas transfer coefficient (k) calculation was as follows: 

k = 2.03 = 2.03 = 2.4 cm h-1 = 2.4 × 10-2 m h-1 

Finally, by using this coefficient, I calculated soil surface CH4 flux: 

FluxCH4 = k ([CH4]pw – β [CH4]a  

 = (2.4 × 10
-2

 m h
-1

) [(3.7 × 10
-2 

mol m
-3

) − (0.02424)(7.2 × 10
-5 

mol m
-3

)] 

 = (9 × 10
-4

 mol m
-2

 h
-1

)(16 g mol
-1

)(10
3
 mg g

-1
) = 14 mg m

-2
 h

-1 
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Appendix 3: CH4 fluxes from tree stem and 
soil surface in the literature 

Table 1. CH4 fluxes from tree stem and soil surface in the literature. 

No. References Locations 

CH4 fluxes 

Stem Stem*) Soil 

mg m
-2

 (stem surface) 

h
-1

 
mg m

-2
 (ground surface) h

-1
 

1 Pitz et al. (2018) Upland forest 0.07 ± 0.01 0.01 ˗0.06 ± 0.01 

 Transitional 0.2 ± 0.06 0.03 0.01 ± 0.03 

 Wetland forest 0.6 ± 0.2 0.08 0.2 ± 0.1 

2 Terazawa et al. 

(2015) 

Floodplain 

forest 

0.1–1.3 0.01–0.18  

3 Gauci et al. (2010) Freshwater 

wetlands 

0.03–0.1 0.004–0.01 0.3–0.8 

4 Maier et al. (2018) Upland forest 0.1 0.01 ˗0.07 

Note the different area basis of expression. 

*) Rough estimates according to the ratio between an average of stem surface area of mature trees in 13 

plots (565 m
2
) and the ground surface area of the plot (50 × 80 m

2
) in a CH4 study of the Amazon 

floodplain (Pangala et al., 2017). 


