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All-sky surveys for isolated continuous gravitational waves present a significant data-analysis challenge.
Semicoherent search methods are commonly used to efficiently perform the computationally-intensive task
of searching for these weak signals in the noisy data of gravitational-wave detectors such as LIGO and
Virgo. We present a new implementation of a semicoherent search method, WEAVE, that for the first time
makes full use of a parameter-space metric to generate banks of search templates at the correct resolution,
combined with optimal lattices to minimize the required number of templates and hence the computational
cost of the search. We describe the implementation of WEAVE and associated design choices and
characterize its behavior using semianalytic models.
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I. INTRODUCTION

The detections of short-duration gravitational-wave
events from the inspiral and merger of binary black holes
[1–5] and binary neutron stars [6] are enabling advances
across astronomy, astrophysics, and cosmology. As the
gravitational-wave detectors LIGO [7,8] and Virgo [9]
improve in sensitivity in the coming years, and as new
detectors KAGRA [10] and LIGO India [11] come online,
it may become possible to detect gravitational radiation
from other astrophysical phenomena. Rapidly-spinning,
nonaxisymmetrically-deformed neutron stars will emit
gravitational waves in the form of continuous quasisinu-
soidal signals and remain an intriguing prospect for
detection with advanced instruments. Searches for con-
tinuous gravitational waves in contemporary LIGO and
Virgo data are ongoing, e.g., Refs. [12–16].
Since the maximum nonaxisymmetric deformation of

neutron stars is expected to be small, e.g., Ref. [17],
continuous waves are expected to be weak relative to the
sensitivity of the current generation of interferometric
detectors. Consequentially, a significant body of research
devoted to the data-analysis challenge of extracting such
weak signals from the gravitational-wave detector data has
accumulated. Early results [18,19] focused on the method
of matched filtering the entire data set against the known
continuous-wave signal model; while theoretically optimal
(in the Neyman-Pearson sense), this method quickly

becomes computationally intractable if some or all of
the model parameters are unknown. Such is the case if
one wished to target an interesting sky direction e.g.,
associated with a supernova remnant, e.g., Ref. [20], or
a low-mass x-ray binary, e.g., Ref. [13,15], or perform an
all-sky survey for isolated continuous-wave sources unas-
sociated with known pulsars, e.g., Ref. [18]. It is the latter
type of search that is the subject of this paper.
The additional challenge of a practical upper limit on the

computational cost of all-sky searches has spurred the
development of various suboptimal but computationally-
tractable hierarchical or semicoherent algorithms [21].
They share a common approach: the data set (which for
this example we assume is contiguous) with time span bT is
partitioned into N segments, each with time span T̃.
A fully-coherent matched filter search is then performed
individually for each segment. Most1 methods then com-
bine segments by incoherently summing the power from N
filters, one from each segment, which together follow a
consistent frequency evolution as dictated by the continu-
ous-wave signal model. The phase evolution need not be
continuous over the N filters, however; nor do the gravi-
tational-wave amplitudes in each segment need to be
consistent. This loss of complete signal self-consistency
comes, however, with a computational benefit: while the
computational cost of a fully-coherent matched filter search
of the entire data set scales as bTn ¼ NnT̃n with n a high
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1A few methods instead look for significant templates which
are coincident between segments [22,23].
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power ∼5 to 6, the cost of a semicoherent method typically
scales as NmT̃n with m ∼ 2 ≪ n [24]. The strain sensitiv-
ities of a fully-coherent and semicoherent search typically
scale as N1=2T̃1=2 and N1=4wT̃1=2, respectively, with w ≥ 1

[24,25]; for the loss of a factor N∼1=4 in sensitivity, a
semicoherent method is able to gain by being able to
analyze large (e.g., bT ≳ 1 yr) data sets, whereas a fully-
coherent search would be computationally restricted to a
much shorter (e.g., bT ≪ 1 yr) subset.
An important early advance in the development of

semicoherent methods was the adaption of the Hough
transform [26], originally created to analyze tracks in
bubble chamber photographs, to instead track the frequency
evolution of a continuous gravitational-wave signal [27].
A number of variations of the Hough transform have
been implemented, which map the signal track in the
time-frequency plane to either its sky position at a fixed
reference frequency and frequency derivative [28] or
conversely to its reference frequency and frequency deriva-
tive at a fixed sky position [29,30]. The detection statistic
computed, the number count, sums either 0 or 1 from each
segment depending on whether the significance of a filter
exceeds a set threshold. Some variations use short-duration
(T̃ ∼ 1800 s) segments and incoherently sum power above
threshold from each segment; others analyze longer seg-
ments and set a threshold on the F -statistic [19] which
computes the matched filter analytically maximized over
the gravitational-wave amplitudes. Another modification is
to weigh each segment by the antenna response function of
the detector and to sum these weights instead of 0 or 1
[31,32].
Two semicoherent methods which use short-duration

segments but which, unlike the Hough transform methods,
sum power without thresholding are the StackSlide [33]
and PowerFlux [34] methods. The StackSlide method
builds a time-frequency plane, where each column repre-
sents a segment. For each choice of signal parameters, it
“slides” each column up and down in frequency so that a
signal with those parameters would follow a horizontal line
and then “stacks” (i.e., sums) the columns horizontally to
accumulate the signal power over time for each frequency
bin. (Due to this intuitive representation of a semicoherent
search method, the term StackSlide is often used to refer to
semicoherent methods in general, e.g., Ref. [24].) The
PowerFlux method follows a similar methodology and in
addition weights the power from each segment by that
segment’s noise level and antenna response function, so
that segments containing transient instrumental noise and/
or where the response of the detector is weak are dew-
eighted. A “loosely-coherent” adaption to PowerFlux
allows the degree of phase consistency imposed at the
semicoherent stage to be controlled explicitly [35,36].
A third semicoherent method [37,38] was developed based
on the observance of global correlations between search
parameters [39] and uses longer segments analyzed with

the F -statistic. A comprehensive comparison of many of
the all-sky search methods described above is performed
in Ref. [40].
Aside from developments in semicoherent search tech-

niques, two other ideas have played an important role in the
development of continuous gravitational-wave data analy-
sis. First is the use of a parameter-space metric [18,41,42],
which is used to determine the appropriate resolution of the
bank of template signals such that the mismatch, or frac-
tional loss in the signal-to-noise ratio between any signal
present in the data and its nearest template, never exceeds a
prescribed maximum. The metric of the F -statistic for
continuous-wave signals was first studied rigorously in
Ref. [43]. An approximate form of the metric was utilized
in semicoherent search methods developed by Ref. [44],
and a related approximation was used in Refs. [37,38]. The
latter approximation, however, led to an underestimation of
the number of required templates in the sky parameter
space when analyzing long data stretches; an improved
approximate metric developed in Refs. [45,46] addresses
this limitation. It was also later realized that a further
approximation fundamental to the metric derivation—
namely that the prescribed maximum mismatch (as mea-
sured by the metric) could be assumed small—generally
does not hold under realistic restrictions on computational
cost. This issue was addressed in Ref. [47], which com-
puted an empirical relation between the metric-measured
mismatch and the true mismatch of the F -statistic.
A second important idea is the borrowing of results from

lattice theory, e.g., Ref. [48], to optimize the geometric
placement of templates within the search parameter space,
so as to fulfill the maximum prescribed mismatch criteria
described above with the smallest possible density of
templates [49,50]. Practical algorithms for generating
template banks for continuous-wave searches, using both
the parameter-space metric and optimal lattices, were
proposed in Refs. [51,52]. An alternative idea studied in
Refs. [53,54] is to instead place templates at random, using
the parameter-space metric only as a guide as to the relative
density of templates; this idea has found utility in searches
for radio, e.g., [55] and x-ray, e.g., Ref. [56], pulsars.
The number of computations that must be performed

during an all-sky search, even when utilizing an efficient
semicoherent search method, remains formidable. For
example, a recent all-sky search [16] of data from the first
Advanced LIGO observing run divided the data into N ¼
12 segments of time span T̃ ¼ 210 hr, performed ∼3 ×
1015 matched-filtering operations per segment, and finally
performed ∼3 × 1017 incoherent summations to combine
filter power from each segment. The total computational
cost of the search was ∼6 × 105 CPU days, although this
was distributed over Oð104Þ computers volunteered
through the Einstein@Home distributed computing project
[57]. Nevertheless, the significant number of filtering/
incoherent summation operations that must be performed
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during a typical all-sky search emphasizes the need to
optimize the construction of the template banks, and
thereby minimize the computational cost of the search,
as much as is practicable.
In this paper, we present WEAVE, an implementation

of a semicoherent search method for continuous gravita-
tional waves. This implementation brings together, for
the first time, several strands of previous research: the
use of a semicoherent method to combine data segments
analyzed with the F -statistic, combined with optimal
template placement using the parameter-space metric of
Refs. [45,46] and optimal lattices [52]. After a review of
relevant background information in Sec. II, the WEAVE

implementation is presented in Sec. III. In Sec. IV, we
demonstrate that important behaviors of the WEAVE imple-
mentation can be modeled semianalytically, thereby ena-
bling characterization and optimization of a search setup
without, in the first instance, the need to resort to time-
consuming Monte Carlo simulations. In Sec. V, we discuss
ideas for further improvement and extension.

II. BACKGROUND

This section presents background material pertaining to
the continuous-wave signal model, parameter-space metric,
and template bank generation.

A. Continuous-wave signals

The phase of a continuous-wave signal ϕðt; λÞ at time t
at the detector is given by, neglecting relativistic corrections
[19],

ϕðt; λÞ
2π

≈
Xsmax

s¼0

fðsÞ
ðt − t0Þsþ1

ðsþ 1Þ! þ rðtÞ · n
c

fmax: ð1Þ

The first term on the right-hand side primarily2 encodes the
loss of rotational energy of the neutron star as observed from
the Solar System barycenter: f0 is the gravitational-wave
frequency, and the spin-downsf1,f2, etc., are the first-order,
second-order, etc., rates of change of the gravitational-wave
frequency with time. All fðsÞ parameters are given with
respect to a reference time t0. The second term on the right-
hand side describes the Doppler modulation of the gravi-
tational waves due to the motion of an Earth-based detector:
rðtÞ is the detector position relative to the Solar System
barycenter, thereby including both the sidereal and orbital
motions of the Earth, and n is a unit vector pointing from the
Solar Systembarycenter to the continuous-wave source. The
value of fmax is chosen conservatively to be themaximumof
fðtÞ≡ dϕðt; λÞ=dt over the time span of the analyzed data.

Together, the phase evolution parameters λ ¼ ðn; fðsÞÞ
parametrize the continuous-wave signal template; addi-
tional amplitude parametersA are analytically maximized
over when computing the F -statistic [19]. In noise, the
F -statistic is a central χ2-statistic with 4 degrees of free-
dom; when in the vicinity of a signal, the noncentrality
parameter ρ̃2 of the noncentral χ2 distribution scales as ρ̃2 ∝
h20T=Sh½fðtÞ�, where h0 is the gravitational-wave ampli-
tude, T is the amount of analyzed data, and Sh½fðtÞ� is the
noise power spectral density in the vicinity of the signal
frequency fðtÞ.

B. Parameter-space metric

The parameter-space metric g of the F -statistic is
defined by a second-order Taylor expansion of the non-
centrality parameter,

ρ2ðA; λs; λÞ ¼ ρ2ðA; λs; λsÞ
× ½1 − gijðA; λsÞΔλiΔλj� þOðΔλ3Þ; ð2Þ

with implicit summation over i, j and where

gijðA; λsÞ≡ −1
2ρ2ðA; λs; λÞ

∂2ρ2ðA; λs; λÞ
∂λi∂λj

����
λ¼λs

: ð3Þ

Here, ρ2ðA; λs; λsÞ is the noncentrality parameter of the F -
statistic when perfectly matched to a signal with parameters
λs, and ρ2ðA; λs; λÞ is the noncentrality parameter when
computed at some mismatched parameters λ ¼ λs þ Δλ.
The mismatch is defined to be

μðA; λs; λÞ≡ 1 −
ρ2ðA; λs; λÞ
ρ2ðA; λs; λsÞ ð4Þ

¼ gijðA; λsÞΔλiΔλj: ð5Þ

A very useful approximation to Eq. (3) is the phase metric
[18,43,44]; it discards the amplitude modulation of the
signal and thereby the dependence on the known param-
eters A, retaining only dependence on the phase evolution
parameters:

gijðλsÞ≡
�∂ϕ
∂λi

∂ϕ
∂λj

�
−
�∂ϕ
∂λi

��∂ϕ
∂λj

�
: ð6Þ

C. Optimal template placement

Template placement using optimal lattices is an example
of a sphere covering, e.g., Ref. [48]: a collection of lattice-
centered n-dimensional spheres of equal radius. The radius
is chosen to be the smallest value that satisfies the property
that each point in the n-dimensional parameter space is
contained in at least one sphere. A lattice where the ratio of
the volume of the sphere to the volume of a lattice cell is

2The rate of spin-down observed at the Solar System bary-
center is strictly a combination of the spin-down observed in the
source frame and the motion of the source [19]; the latter is
usually assumed to be small.
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minimized generates a minimal sphere covering, i.e., the
minimal number of points required to cover a parameter
space, which is exactly the property desired for template
banks. (For example, in two dimensions, the minimal
sphere covering is generated by the hexagonal lattice.)
We identify the covering spheres with the metric ellipsoids
gijðλsÞΔλiΔλj ≤ μmax, where μmax is the prescribed maxi-
mum; it follows that the radius of the covering spheres isffiffiffiffiffiffiffiffiffi
μmax

p
. A matrix transform T can then be constructed [52],

which takes integers in ξ ∈ Zn to template parameters λ to
generate the template bank,

λi ¼ Tijξj ¼ Bik½gðλsÞ�Lkjξj; ð7Þ

whereB is a function of the metric gðλsÞ and L is particular
to the lattice being used. If T is a lower triangular matrix, an
efficient algorithm [52] can be found for generating the
template bank.

D. Reduced supersky metric

In order for Eq. (7) to preserve the sphere covering
property, however, it must be independent of the template
parameters λs. SinceB is a function of themetric, we require
a metric which is also independent of λ: gðλsÞ → g. The
phase metric of Eq. (6) is independent of the frequency and
spin-down parameters fðsÞ but retains a dependence on sky
position parameters, e.g., gðλsÞ → gðα; δÞ in terms of right
ascension α and declination δ. The question of how to derive
a useful metric which is independent of the sky position
parameters, i.e., gðα; δÞ → g, has stimulated numerous
approaches, e.g., Refs. [37,44,58]. In Ref. [45], a useful
g is derived through the following procedure:

(i) gðα; δÞ is expressed in terms of the three compo-
nents of n ¼ ðnx; ny; nzÞ, instead of two parameters
such as ðα; δÞ. The three components of n are taken
to be independent; geometrically, this is equivalent
to embedding gðα; δÞ into a three-dimensional
supersky parameter space, instead of being restricted
to the 2-sphere defined by ðα; δÞ. In the supersky
parameter space, g is independent of the sky position
parameters; i.e., we have the desired gðα; δÞ → g,
but with the addition of a third unwanted parameter-
space dimension.

(ii) A linear coordinate transform ðnx; ny; nz; fðsÞÞ →
ðna; nb; nc; νðsÞÞ is derived which satisfies the fol-
lowing: g is diagonal in the sky position parameters
ðna; nb; ncÞ, i.e., gnanb ¼ gnanc ¼ gnbnc ¼ 0; gnana ≫
gncnc ; and gnbnb ≫ gncnc . The last two properties
imply that the metric ellipsoids are much longer
along the nc axis than along the na and nb axes. In
computing the coordinate transform, use is made of
the well-known correlation between the sky and
frequency/spin-down parameters of the continuous-
wave signal, e.g., Refs. [39,59]. The correlations arise

because, on sufficiently short timescales, the change in
phase due to the cyclical sidereal and orbital motions
of the Earth may be Taylor expanded as linear,
quadratic, etc., changes in phasewith time and thereby
are equivalent to changes in the frequency (fð0Þ ≡ f),
first spin-down (fð1Þ ≡ _f), etc., parameters.

(iii) Since, in the new coordinates ðna; nb; nc; νðsÞÞ the
mismatch μ is only weakly dependent on gncnc , a
useful approximate metric g is found by discarding
the nc dimension. Geometrically, this corresponds
to projecting the three-dimensional supersky param-
eter space and metric onto the two-dimensional
na–nb plane. The resultant reduced supersky param-
eter-space metric g and associated coordinates
ðna; nb; νðsÞÞ have reduced the sky parameter space
dimensionality back to 2, while retaining the prop-
erty that g is parameter independent.

III. WEAVE IMPLEMENTATION

This section describes the WEAVE implementation of the
semicoherent search method, a schematic of which is
shown in Fig. 1. The implementation is freely available
as part of the LALSUITE [60] gravitational-wave data-
analysis library.

A. Overview

In step 1, the user runs a precursor program LALAPPS_
WEAVESETUP, which takes as an argument a list of N
segments fðtstartl ; tstopl ÞgN−1

l¼0 into which the data set is to be
partitioned. The program computes in step 2 theN coherent
parameter-spacemetricsfgl used to construct template banks
within each segment and the semicoherent parameter-space
metric bg used to incoherently combine segments. The
metrics are written to a setup file in the Flexible Image
Transport System format [61]. Due to the numerical ill-
conditioned-ness of the parameter-space metric [43,45], this
computation involves a boot-strapping process, whereby
successively better-conditioned iterations of the supersky
metric are computed, before then computing the reduced
supersky metric as outlined in Sec. II D. Since this boot-
strapping process can be time consuming for large N, and
may give slightly different results on different computer
hardware, precomputing the metrics both saves computing
time and adds robustness against numerical errors. Note
that, by Eq. (1), the sky components of the metrics
will scale with f2max; since its value depends on the search
frequency parameter space, which is not known by
LALAPPS_WEAVESETUP, an arbitrary fiducial value ffiducial
is used, and the sky components of the metrics are later
rescaled by ðfmax=ffiducialÞ2.
In step 3, the user runs themain search programLALAPPS_

WEAVE. The principle arguments to this program are the
setup file output by LALAPPS_WEAVESETUP, the search
parameter space, and the prescribed maximum mismatches
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μ̃max and bμmax for the coherent and semicoherent template
banks, respectively. The frequency and spin-down param-

eter space are specified by ranges ½fðsÞmin; f
ðsÞ
max�, where s ¼ 0,

1, etc., as required. The sky search parameter space may be
specified either as a rectangular patch in right ascension and
declination ½αmin; αmax� ⊗ ½δmin; δmax� or alternatively parti-
tioned into K patches containing an approximately equal
number of templates (see theAppendix) and a patch selected
by an index k, 0 ≤ k < K. In step 4, various preparatory
tasks are performed, such as loading the gravitational-wave
detector data into memory, before beginning the main
search loop.
The main search loop of a semicoherent search method

may be structured in two complementary ways, which differ
in the memory each requires to store intermediate results:

(i) The semicoherent template bank fbλg is stored in
memory, and the N segments are processed in
sequence. For each segment l, every coherent
template λ̃l ∈ fλ̃lg is mapped back to the semi-
coherent template bank, i.e., λ̃l → bλðλ̃lÞ. Because
the semicoherent template bank must track the
continuous-wave signal over a larger time span bT ≫
T̃ than the coherent template banks, it will contain a
greater density of templates; the ratio of semicoher-
ent to coherent template bank densities is the refine-
ment factor γ ≥ 1 [38,46]. It follows that the
mapping λ̃l → bλðλ̃lÞ will be one to many.
As the N segments are processed, any semi-

coherent detection statistic associated with bλðλ̃lÞ
is then updated based on the corresponding coherent
detection statistic associated with λ̃l. For example, it
is common to compute the summed F -statistic
2F sum ≡P

N−1
l¼0 2F ðλ̃lÞ; here, we would then have

2F sum½bλðλ̃lÞ�þ ¼ 2F ðλ̃lÞ. Once every segment has
been processed, computed 2F sum for every bλ ∈ fbλg
will exist in memory. The memory usage of the main
search loop will therefore be proportional to the

number of semicoherent templates bN ≡ γ × hÑ i,
where hÑ i is the average number of templates in a
coherent template bank.

(ii) The N coherent template banks feλlg are stored in
memory, and the semicoherent template bank is
processed in sequence. Each semicoherent templatebλ ∈ fbλg is mapped back to the coherent template

bank in each segment l, i.e., bλ → eλlðbλÞ; since bN ≥
Ñ in each segment, this mapping will be many to
one. With these N mappings in hand, the semico-
herent detection statistics may be immediately com-
puted in full, e.g., 2F sumðbλÞ ¼ P

N−1
l¼0 2F ½eλlðbλÞ�.

The memory usage of the main search loop will
therefore be proportional to N × hÑ i.

FIG. 1. Schematic of the WEAVE implementation. Boxes with
solid borders (green) represent actions taken by the user. Boxeswith
dotted borders (blue) represent actions taken by the program. Boxes
with dashesborders (red) represent decisions the programmust take.

Bracketed text denotes the optional computation of B̂SGL. See the
text in Sec. III for a full description of the WEAVE implementation.
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For the parameter-space metric for all-sky searches, γ ≫ N
[38,46], and therefore the latter structuring given above will
have the lower memory requirement; the WEAVE implemen-
tation uses this structuring of the main search loop. The
semicoherent template bank fbλg is generated one template at
a time using the algorithm described in Ref. [52]. For each
coherent template bank, an efficient lookup table [52] is
constructed for the mapping bλ → eλlðbλÞ.
We note an important distinction between the definition

of the WEAVE template banks and the traditional StackSlide
picture of a semicoherent search method. In the latter
picture, the frequency and spin-down template banks of
each segment are defined with respect to individual
reference times ðt0Þl, typically the midtime of each seg-
ment. When combining segments, therefore, the frequency
and spin-down parameters of each coherent template must
be adjusted so as to bring the parameters of all segments to
a common reference time t0; this is the “sliding” step. The
WEAVE implementation, however, defines the frequency
and spin-down templates banks of all segments at the same
reference time t0, which is also the reference time of the
semicoherent bank. Consequentially, there is no analogy to
the sliding step of StackSlide. Instead, the orientation of the
metric ellipses in the ðf; _fÞ plane changes from segment to
segment, as illustrated in Fig. 2. As the absolute difference

jΔlj ¼ jtmid
l − t0j ð8Þ

between the midtime of each segment tmid
l ≡ ðtstartl þ

tstopl Þ=2 and t0 increases, both the extent of the ellipses
in f and the correlation between f and _f also increase.
Steps 5–16 comprise the main search loop, which

performs two key tasks: the computation and output of

the detection statistics over the semicoherent template bank
(steps 5, 6, and 12–17) and the management of an internal
cache of required detection statistics computed on each
coherent template bank (steps 7–11). These two tasks are
described more fully in the following two sections and with
reference to a diagram of their operation in Fig. 3.
In this section and in Fig. 1, we focus for simplicity on

the computation of the semicoherent F -statistics 2F sum
and 2Fmean ≡ 2F sum=N. The computation of other detec-
tion statistics is also possible; in particular, a family of
Bayesian statistics has been developed which weigh the
likelihood of a continuous-wave signal against that of an
instrumental line which appears in all segments [62,63] or a
transient instrumental line which appears only in one
segment [64]. Computation of the former statistic, denotedbBSGL, is also illustrated in Fig. 1; it takes as input the
multidetector 2F sum which uses data from all gravitational-
wave detectors, as well as the per-detector 2FX

sum which are
computed from each detector X individually.

B. Computation of semicoherent statistics

In steps 5 and 16 (Fig. 1), the main loop of the search

method generates successive points bλ in the semicoherent
template bank. An example of such a point is indicated in
Fig. 3. Next, in steps 6 and 13, each segment l is visited, and

the mapping bλ → eλlðbλÞ is performed. The mapping used by

WEAVE is nearest-neighbor interpolation: the bλ is expressed
in the coherent metric coordinates of the lth segment, and
the nearest (with respect to the metric) coherent template in

the respective bank eλlðbλÞ is determined. If the template bank
is constructed on a lattice, efficient algorithms exist for
determining the nearest point, e.g., Ref. [52] and references
therein. In Fig. 3, example nearest coherent templates are

labeled eλ1ðbλÞ, eλ2ðbλÞ, and eλ3ðbλÞ.
As each nearest point is determined, the coherent

F -statistic in the respective segment is computed
(steps 7–11; see Sec. III C), and the value of the semi-
coherent statistic 2F sum is updated (step 12). Once all
segments have been processed (step 13), additional semi-
coherent statistics such as 2Fmean are computed (step 14),
and a candidate comprising the signal parameters together
with the computed semicoherent statistics is added (step 15)
to one or more top lists which rank3 each candidate by a
chosen semicoherent statistic. The size of the top lists is
generally of a fixed user-determined size so that only a fixed
number of the most promising candidates will be returned.
Once the semicoherent template bank is exhausted (step

16), the top lists are written to an output file in the Flexible
Image Transport System format, and the search concludes
(step 17).

FIG. 2. Coherent (solid) and semicoherent (dashed) metric
ellipses in the ðf; _fÞ plane. The seven coherent metric ellipses
are for segments with T̃ ¼ 2 days, evenly spaced within a time
span of T̂ ¼ 30 days; each ellipse is labeled by its value
of Δl=days [see Eq. (8)]. The reference time t0 for all metrics
is centered within T̂. The coherent and semicoherent metric
ellipses are plotted at maximum mismatches of μ̃max ¼ 0.1 and
μ̂max ¼ 10, respectively.

3Top lists are implemented efficiently as a binary heap, e.g.,
Ref. [65].
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C. Management of cache of coherent statistics

It is important that the main search loop minimizes
its memory usage as much as possible. Even though in
Sec. III Awe chose a structuring of the main search loop so
as to reduce memory usage, a naive implementation which
stores N × hÑ i coherent statistics would still require a
prohibitive amount of memory, given that both N and hÑ i
are typically large. We therefore implement a per-segment
cache which stores only those coherent statistics associated
with coherent templates eλl accessible from the unprocessed
portion of the semicoherent template bank via the mappingbλ → eλlðbλÞ. Put another way, if a eλl can no longer be
mapped to by any bλ remaining in fbλg, then 2F ðeλlÞ can be
safely removed from the cache.

In order to devise a cache management algorithm with
the above desired properties, we first define an operator
called relevance, denoted R∶λ → R. The relevance oper-
ates on both coherent and semicoherent templates and
should satisfy the following property:

For alleλl ∈ feλlg and for all λ̂ ∈ fλ̂g; the condition
RðeλlÞ < Rðλ̂Þ implies that nomapping

λ̂ → eλlðλ̂Þ exists in the remaining fλ̂g; and thus
2F ðeλlÞ can be safely removed from the cache: ð9Þ

A definition of R satisfying this property is derived as
follows.

FIG. 3. Diagram of the WEAVE template banks for an example search setup with three segments. Shown are the semicoherent and
coherent template banks in the two sky parameters of the reduced supersky metric ðna; nbÞ; the frequency and spin-down dimensions are
omitted. For clarity, the semicoherent and coherent template banks are plotted with metric ellipses of the same size. Arrows with solid
lines (green) represent iteration over the semicoherent template bank. Arrows with dashed lines (blue) represent the process of
computing semicoherent statistics, described in Sec. III B. Arrows with dotted lines (red) represent the process of managing the caches
of coherent statistics, described in Sec. III C. Also shown is the semicoherent template bank in physical coordinates ðα; δÞ; the solid
square (green) shows the rectangular boundary of the sky parameter space in these coordinates.
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First, take any coherent template (e.g., fλ01 in Fig. 3), and
surround it by its metric ellipsoid at mismatch μ̃max. Then,
surround the metric ellipsoid in turn by its bounding box, the
smallest coordinate box which contains the ellipsoid, e.g.,

Ref. [52]; the metric ellipse bounding box centered on fλ01 is
also shown in Fig. 3. Now, transform the bounding box into
the semicoherent parameter space; practically, this may be
achieved by expressing the coordinates of each vertex of the
bounding box in the semicoherent metric coordinates. See

Fig. 3 for the transformed bounding box of fλ01 in the

semicoherent parameter space, which is centered on bλ0ðfλ01Þ.
Note that, by definition, any semicoherent template bλ

outside of the transformed bounding box centered onbλ0ðcλ01Þ cannot map to fλ01 under bλ → eλlðbλÞ. Thus, to

determine whether fλ01 is accessible by bλ, we can compute

whether bλ is within the transformed bounding box ofbλ0ðcλ01Þ. To be conservative, however, we also surround bλ
by its bounding box as shown in Fig. 3 and instead compute

whether the bounding boxes of bλ0ðcλ01Þ and bλ intersect.
To simplify the bounding box intersection calculation,

we compare just the coordinates of the bounding boxes ofbλ0ðcλ01Þ and bλ in one dimension; for reasons that will soon
be apparent, we choose the lowest-dimensional coordinate,
na. First, we define the relevance R for both coherent and
semicoherent templates:

RðeλlÞ≡ themaximum value of na within the

transformed bounding box of eλl; ð10aÞ

and

Rðλ̂Þ≡ theminimum value of na within the

bounding box of λ̂: ð10bÞ

We now compute Rðeλ0lÞ and RðbλÞ; in Fig. 3, Rðeλ0lÞ is
the na coordinate of the rightmost edge of the transformed

bounding box of bλ0ðeλ0lÞ, and RðbλÞ is the na coordinate of

the leftmost edge of the bounding box of bλ. In this example,

Rðeλ0lÞ < RðbλÞ, and it follows from the definition of R in

Eqs. (10) that the bounding boxes of bλ0ðbλ01Þ and bλ cannot
intersect.
On the other hard, let us choose another coherent

template eλ001 and examine its relevance Rðeλ01Þ; here, we
have Rð eλ001Þ > RðbλÞ (see Fig. 3). From the simplified
bounding box intersection calculation, we conclude that the

bounding boxes of bλ00ð bλ001Þ and bλ could potentially inter-
sect, since at least in the na dimension the bounding boxes
overlap (although in this example, the bounding boxes do
not overlap in the nb dimension).

Finally, if for some bλ we have Rðeλ01Þ < RðbλÞ, then this
condition is guaranteed to remain true for all remaining bλ in
the template bank. This is simply a consequence of the
algorithm used to generate the semicoherent template bank
[52], which operates as follows: first, values of na are
generated in a constant range ½namin; namax�; then, for each
value of na, values of nb are generated in ranges
½nbðnaÞmin; nbðnaÞmax� dependent on na, and so on. It
follows that the value of na can only increase during the
generation of the semicoherent template bank, and since
RðbλÞ is defined in terms of na, it, too, can only increase.
To summarize, the relevance operator R defined by

Eqs. (10) satisfies the desired property given by Eq. (9). In

Fig. 3, since Rðeλ01Þ < RðbλÞ, the cache management
algorithm would discard any coherent statistics associated

with fλ01 from memory, since they cannot be accessed by bλ
nor any remaining semicoherent template. On the other
hard, the algorithm would retain any coherent statistics

associated with eλ001, since they could still be needed for
future semicoherent templates; indeed, in Fig. 3, it is clear
that the next semicoherent template in the bank, labeled bλ000,
could require coherent statistics associated with eλ001, since
the bounding boxes of bλ00ð eλ001Þ and bλ000 intersect.
The cache management algorithm described above is

implemented in the main search loop in steps 7–11 (Fig. 1).
In step 7, the cache is interrogated for a required F -statistic
value 2F ðeλlÞ: if it is in the cache, it is retrieved and utilized
(step 8); otherwise, it is computed and inserted into the
cache (step 9). In the latter case, the cache is also checked to
see if any cache items can be discarded. Starting with step
10, cache items indexed by eλl are retrieved in order of
ascending RðeλlÞ. If RðeλlÞ < RðbλÞ, the cache items are
discarded (step 11). Only one cache item is removed at any
one time, and therefore the memory usage of the cache will
either remain constant or increase by one item per main
search loop iteration. The cache is implemented using two
data structures, e.g., Ref. [65]: a binary heap to rank cache
items byRðeλlÞ and a hash table to find cache items indexed
by eλl.

IV. MODELS OF WEAVE BEHAVIOR

This section presents semianalytic models of the WEAVE

implementation. It greatly facilitates the practical usage of
any search method if its behavior can be characterized
a priori as much as possible using a computationally-cheap
model. For example, a model of the distribution of F -
statistic mismatches (Sec. IVA) permits the estimation of
the sensitivity of a particular search setup [25], which in
turn allows the setup to be optimized so as to maximize
sensitivity [24]. Similarly, models of the number of
coherent and semicoherent templates (Sec. IV B) and
computational cost (Sec. IV C) allow the parameters of
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the optimal search setup to be estimated [24]. The memory
usage (Sec. IV D) and input data bandwidth (Sec. IV E)
required by the implementation are also important proper-
ties when implementing a search pipeline.
Each model presented in this section is implemented as

an OCTAVE [66] script and is freely available as part of the
OCTAPPS [67] script library.

A. Distribution of F -statistic mismatches

The distribution of the mismatch between the F -statistic
computed at an exact signal location, and at the nearest
point in the WEAVE semicoherent template bank, gives an
idea of the expected loss in signal-to-noise ratio due to the
necessary coarseness of the template bank. Figure 4 plots
the predicted means and standard deviations of WEAVE

F -statistic mismatch distributions, against their measured
values, for a variety of setups given in Table I. The

distributions were measured using software injection stud-
ies, where relatively strong (h0=

ffiffiffiffiffi
Sh

p ≳ 70 Hz1=2) simu-
lated signals are added to Gaussian-distributed noise and
then searched for using LALAPPS_WEAVE.
The predictedmeans and standard deviations are from the

model presented in Ref. [47] and are generally conservative:
Fig. 4 shows that the model generally overestimates the
mean F -statistic mismatch by ∼0.13 [Fig. 4(a)] to ∼0.20
[Fig. 4(c)], and the predicted standard deviations imply
slightly broader distributions than were measured. As
explored in Ref. [47], the relationship between the maxi-
mummismatches of the coherent and semicoherent template
banks (which are inputs to LALAPPS_WEAVE) and the
F -statistic mismatch distribution (which is output by
LALAPPS_WEAVE) is difficult to model when the former
are large, e.g., ≳1.
In addition, an optimization implemented in WEAVE but

not accounted for in the model of Ref. [47] complicates the
picture: the coherent and semicoherent template banks are
constructed to have equally-spaced templates in the fre-
quency parameter f. This permits (in step 9 of Fig. 1) the
simultaneous computation of a series of 2F values at
equally-spaced values of f across the frequency parameter
space, which can be performed efficiently using fast
Fourier transform–based algorithms (see Sec. IV C). The
construction of equal-frequency-spacing coherent and
semicoherent template banks is performed by first con-
structing each bank independently and then reducing the
frequency spacing in all banks to that of the smallest

(a) (b) (c)

(d) (e) (f)

FIG. 4. Predicted means (top row) and standard deviations (bottom row) of the distributions of F -statistic mismatches, against their
measured values, for (left column to right column) the three search setups listed in Table I. The dotted line denotes equality between
predicted and measured values.

TABLE I. Details of search setups used to test model in Sec. IV
A. Columns are (left to right): number of segments, timespan of
each segment in hours, total time span of all segments in days,
number of ðμ̃max; μ̂maxÞ pairs used, ranges of maximum coherent
and semicoherent mismatches, and average number of injections
per ðμ̃max; μ̂maxÞ pair.
N T̃ T̂ jfðμ̃max; μ̂maxÞgj μ̃max μ̂max ninj

228 25.0 256.0 56 0.1–1.2 1.5–12.0 111.4
195 30.0 256.2 56 0.1–1.6 2.0–12.0 111.4
147 40.0 256.6 71 0.1–1.5 4.0–24.0 111.4
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frequency spacing in any bank. This construction will
always reduce the maximum possible mismatch in each
grid, but never increase it, and so wewould expect the mean
F -statistic mismatch measured by WEAVE to be smaller
than that predicted by the model of Ref. [47].
The model of Ref. [47] is implemented in the OCTAPPS

script WEAVEFSTATMISMATCH.M.

B. Number of templates

Since the WEAVE coherent and semicoherent template
banks are constructed using lattices (see Sec. II C), the
number of templates in each is estimated starting from the
formula, e.g., Refs. [51,52],

N ¼ θμ−n=2max

ffiffiffiffiffiffiffiffiffiffi
detg

p
V; ð11Þ

where V is the volume of the n-dimensional parameter
space, g is the parameter-space metric, and μmax is the
maximum mismatch. The normalized thickness θ is a
property of the particular lattice used to generate the
template bank, e.g., Ref. [48].
The parameter-space volume is given explicitly by the

following expressions:

V ¼ Vnanb

Ysmax

s¼0

VfðsÞ ; ð12Þ

Vnanb ¼ maxfβaβb;V 0
nanbg;

V 0
nanb ¼ 2ðπ þ 4βb þ βaβbÞ

( ðαmax−αminÞðsin δmax−sin δminÞ
4π or

1
K ;

ð13Þ

VfðsÞ ¼ βfðsÞ þ fðsÞmax − fðsÞmin: ð14Þ

Here, β is the vector of which the components are the
extents of the bounding box of g in each dimension; it is
used to ensure that the volume of the parameter space in
each dimension is not smaller than the extent of a single
template. In Eq. (13), the volume of the sky parameter
space may be specified either by a rectangular patch
½αmin; αmax� ⊗ ½δmin; δmax� or by the number K of equal-
size sky patches (see Sec. III A).
Finally, the total number of coherent and semicoherent

templates, Ñ and bN , respectively, are given by

Ñ ¼ 1.436
XN−1

l¼0

θeμ−n=2max

ffiffiffiffiffiffiffiffiffiffiffiffi
det egl

p
V; ð15Þ

bN ¼ θbμ−n=2max

ffiffiffiffiffiffiffiffiffiffi
det bgp bV: ð16Þ

The numerical prefactor on the right-hand side of Eq. (15)
is chosen to better match Ñ to the number of coherent

templates actually computed by LALAPPS_WEAVE: the
coherent parameter space is augmented with additional
padding along its boundaries to ensure that it encloses the
semicoherent parameter space, i.e., that it includes a nearest
neighbor for every bλ.
Equations (15) and (16) are used to predict the number of

templates computed by LALAPPS_WEAVE for a variety of
search setups detailed in Table II. Figure 5 plots the

predicted Ñ and bN against the values measured by running
LALAPPS_WEAVE. Reasonable agreement is achieved
between predicted and measured Ñ [Fig. 5(a)]; while
Eq. (15) sometimes underestimates the number of coherent
templates, it rarely does so by more than a factor of a few.
Better agreement is seen between predicted and measuredbN [Fig. 5(b)].
Equations (15) and (16) are implemented in the OCTAPPS

script WEAVETEMPLATECOUNT.M.

C. Computational cost

The total computational cost Ctot of a particular search
setup may be modeled in terms of the number of coherent

TABLE II. Details of search setups used to test models in
Secs. IV B–IV E. Columns are (left to right): number of seg-
ments, time span of each segment in hours, total time span of all
segments in days, maximum coherent and semicoherent mis-
matches, number of patches used to partition sky, number of sky
patches used to test models, range of frequency parameter space
in Hz, range of spin-down parameter space in Hz/s, and
F -statistic algorithm (D ¼ demodulation, R ¼ resampling).

N T̃ T̂ μ̃max μ̂max K jfkgj Δf Δ _f Falg.

10 25.0 10.5 0.1 0.1 100 24 0.1 4.5 × 10−9 R
10 25.0 10.5 0.1 0.1 100 24 0.5 1.0 × 10−9 R
10 25.0 10.5 0.1 0.1 100 24 0.1 5.0 × 10−9 D
10 25.0 10.5 0.1 0.2 24 24 0.1 3.6 × 10−9 R
10 25.0 10.5 0.1 0.2 24 24 0.5 8.0 × 10−10 R
10 25.0 10.5 0.1 0.2 24 24 0.1 4.0 × 10−9 D
29 25.0 33.8 0.1 0.5 100 24 0.1 8.1 × 10−10 R
29 25.0 33.8 0.1 0.5 100 24 0.5 1.8 × 10−10 R
29 25.0 33.8 0.1 0.5 100 24 0.1 9.0 × 10−10 D
29 25.0 33.8 0.1 0.5 500 24 0.1 9.0 × 10−10 R
29 25.0 33.8 0.1 0.5 500 24 0.5 2.0 × 10−10 R
29 25.0 33.8 0.1 0.5 500 24 0.1 1.0 × 10−9 D
90 25.0 105.2 0.01 0.8 2700 24 0.1 1.8 × 10−10 R
90 25.0 105.2 0.01 0.8 2700 24 0.5 4.0 × 10−11 R
90 25.0 105.2 0.01 0.8 2700 24 0.1 2.0 × 10−10 D
90 25.0 105.2 0.1 0.8 1000 24 0.1 2.7 × 10−9 R
90 25.0 105.2 0.1 0.8 1000 24 0.5 6.0 × 10−10 R
90 25.0 105.2 0.1 0.8 1000 24 0.1 3.0 × 10−9 D
228 25.0 256.0 0.1 2 5000 24 0.1 8.1 × 10−10 R
228 25.0 256.0 0.1 2 5000 24 0.5 1.8 × 10−10 R
228 25.0 256.0 0.1 2 5000 24 0.1 9.0 × 10−10 D
228 25.0 256.0 0.1 2 5000 24 0.1 5.4 × 10−10 R
228 25.0 256.0 0.1 2 5000 24 0.5 1.2 × 10−10 R
228 25.0 256.0 0.1 2 5000 24 0.1 6.0 × 10−10 D
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Ñ and semicoherent bN templates (see Sec. IV B), the
number of segments N, and the number of detectors Ndet.
Following Ref. [24], we write

CtotðÑ ; bN ; N; NdetÞ ¼ C̃ðÑ ; NdetÞ þ bCð bN ; N; NdetÞ
þ Cother; ð17Þ

where C̃ and bC denote the computational cost of the
coherent and semicoherent stages of the search method,
respectively, and Cother denotes any unmodeled computa-
tional costs.
The computational cost model takes as input fundamen-

tal timing constants which give the time taken to complete
certain fundamental computations. Their values are highly
dependent on various properties of the computer hardware
used to run LALAPPS_WEAVE, such as the processor speed
and cache sizes, as well as what other programs were using
the computer hardware at the same time as LALAPPS_
WEAVE. Some values are also specific to the search setups
detailed in Table II. For the interest of the reader, Table III
lists representative values of the fundamental timing con-
stants obtained on a particular computer cluster.
The coherent cost C̃ is simply the cost of computing the

F -statistic (step 9 of Fig. 1):

C̃ðÑ ; NdetÞ ¼ ÑNdetτeffF ðΔf; T̃;F algÞ: ð18Þ

The fundamental timing constant τeffF gives the time taken
to compute theF -statistic per template and per detector and
is further described in Ref. [68]. Its value depends primarily
upon the range of the frequency parameter space Δf, the
coherent segment length T̃, and the algorithm used to
compute the F -statistic. Choices for the latter are the
resampling algorithm, e.g., Refs. [19,69], which computes
the F -statistic over a wide band of frequencies efficiently
using the fast Fourier transform and is generally used to
performing an initial wide-parameter-space search, and the
demodulation algorithm of Ref. [70], which uses a
Dirichlet kernel to compute the F -statistic more efficiently
at a single frequency or over a narrow frequency band and
is therefore used to perform follow-up searches of localized
parameter spaces around interesting candidates. The addi-
tional cost of managing the cache of computed F -statistic
values (steps 8, 10, and 11) is amortized into C̃.

(a)

(b)

FIG. 5. Predicted number of (a) coherent templates [Eq. (15)]
and (b) semicoherent templates [Eq. (16)], against their measured
values. The error bars denote the standard deviations of measured

Ñ and N̂ when averaged over different sky patches. The dotted
line denotes equality between predicted and measured values.
The search setups used in this figure are listed in Table II.

TABLE III. Representative values of the fundamental timing
constants of the computational cost model detailed in Sec. IV C.
These values were computed by running LALAPPS_WEAVE on a
computer cluster of Intel Xeon E5-2658V4 processors running at
2.30 GHz. Some values are specific to the search setups detailed
in Table II.

Representative value/s

Fundamental timing constant Demodulation Resampling

τeffF 2.5 × 10−6 ð1.5–4Þ × 10−7

τiter 1.4 × 10−10

τquery 8.6 × 10−11

τ2Fmean
8.3 × 10−10

τ2F sum
7.3 × 10−10

τB̂SGL
9.9 × 10−9

τout 7.9 × 10−10
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The semicoherent cost

bCð bN ; N; NdetÞ ¼ bCiterð bN Þ þ bCqueryð bN ; NÞ
þ bC2F sum

ð bN ; N; NdetÞ þ bC2Fmean
ð bN Þ

þ bCbBSGL

ð bN Þ þ bCoutð bN Þ ð19Þ

has a number of components:
(i) bCiter is the cost of iterating over the semicoherent

template bank (steps 5 and 16 of Fig. 1);
(ii) bCquery is the cost of finding the nearest templates in

the coherent template banks (step 6 and 13) and of
interrogating the cache of computed F -statistic
values (step 7);

(iii) bC2F sum
is the cost of computing 2F sum and, if

required, 2FX
sum (step 12);

(iv) bC2Fmean
is the cost of computing 2Fmean (step 14);

(v) bCbBSGL

is the cost of computing bBSGL, if required

(step 14); and
(vi) bCout is the cost of adding candidates to top lists

(step 15).

These components of bC are further defined in terms of bN ,
N, Ndet, and various fundamental timing constants (see
Table III) as follows:

bCiterð bN Þ ¼ bN τiter; ð20Þ

bCqueryð bN ; NÞ ¼ bNNτquery; ð21Þ

bC2F sum
ð bN ;N;NdetÞ ¼ bN ðN − 1Þτ2F sum

×

�
1þNdet if 2FX

sum reqd;

1 otherwise;
ð22Þ

bC2Fmean
ð bN Þ ¼ bN τ2Fmean

; ð23Þ

bCbBSGL

ð bN Þ ¼ bN τbBSGL

; ð24Þ

bCoutð bN Þ ¼ bN τout × number of top lists: ð25Þ

Figure 6 compares the computational cost model of
Eqs. (17)–(20) against the measured computational cost of
LALAPPS_WEAVE (see Table III), using the search setups
detailed in Table II. The total computational cost of
LALAPPS_WEAVE is generally well modeled [Fig. 6(a)],
and the unmodeled component of the measured computa-
tional cost is low [Fig. 6(b)]. The coherent computa-
tional cost C̃ of Eq. (18) and the components of the
semicoherent cost bC of Eq. (19) are also in good agreement
[Figs. 6(c)–6(i)].
Equations (17)–(20) are implemented in the OCTAPPS

script WEAVERUNTIME.M.

D. Memory usage

The memory usage M of LALAPPS_WEAVE is
modeled by

M ¼ MF þMcache: ð26Þ

The first term on the right-hand side, MF , is the memory
usage of the F -statistic algorithm (which includes the
gravitational-wave detector data) and is further described in
Ref. [68]. The second term,Mcache, is the memory usage of
the cache of computed F -statistic values and is further
given by

Mcache ¼ Nmax
cachem2F

�
1þ Ndet if 2FX

sumrequired;

1 otherwise;
ð27Þ

where Nmax
cache is the maximum size of the cache (across all

segments) and m2F ≡ 4 × 2−20 mebibytes is the memory
required to store one 2F value as a 4 byte single precision
floating-point number. The maximum cache Nmax

cache cannot
easily be predicted from first principles, i.e., given the
search setup, parameter space, and other input arguments to
LALAPPS_WEAVE. Instead, it is measured by running
LALAPPS_WEAVE in a special mode which simulates the
performance of the cache but without computing any
F -statistic or derived values; essentially, it follows
Fig. 1 but with the first part of steps 9, 12, and 14 omitted.
Figure 7 plots the predicted memory usage of Eqs. (26)

and (27) against the measured memory usage of
LALAPPS_WEAVE, using the search setups detailed in
Table II. The F -statistic is computed using both the
resampling and demodulation algorithms: in the former

case, both Fmean and bBSGL are computed, thereby trigger-
ing the first case in Eq. (27); in the latter case, only Fmean is
computed, thereby triggering the second case in Eq. (27).
Good agreement between predicted and measured memory
usage is seen for both algorithms.
Equations (26) and (27) are also implemented in the

OCTAPPS script WEAVERUNTIME.M.

E. Input data bandwidth

Our final WEAVE model concerns what bandwidth of the
input gravitational-wave detector data is required to search
a given frequency range. For most continuous-wave search
pipelines, short (typically 1800 s) contiguous segments of
gravitational-wave strain data are Fourier transformed, and
the resulting complex spectra stored as short Fourier
transform (SFT) files. A continuous-wave search of a large
frequency parameter space will generally be divided into
smaller jobs, with each job searching a smaller partition of
the whole frequency parameter space. Each job therefore
requires that only a small bandwidth out of the full SFT
spectra be read into memory.
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Given an input frequency parameter space ½fmin; fmax�
and spin-down parameter space ½ _fmin; _fmax�, predicting the
bandwidth of the SFT spectra required by LALAPPS_WEAVE

proceeds in several steps. First, the input parameter spaces
are augmented to account for the extra padding of the
WEAVE template banks,

f0min ¼ ð1 − xpadÞfmin; f0max ¼ ð1þ xpadÞfmax; ð28aÞ

_f0min ¼ ð1 − _xpadÞ _fmin; _f0max ¼ ð1þ _xpadÞ _fmax; ð28bÞ

where xpad ≡ 10−3 and _xpad ≡ 10−10 are empirically
chosen. Next, the maximum frequency range ½f00min; f

00
max�

is found by evolving the frequency spin-down parameter

space ½f0min; f
0
max� ⊗ ½ _f0min; _f

0
max� from the reference time t0

to the start and end times of each segment, tstartl and tstopl ,
respectively:

f00min¼minff0minþ _f0minðt− t0Þjt∈ftstartl ;tstopl gN−1
l¼0g; ð29aÞ

f00max¼maxff0maxþ _f0maxðt− t0Þjt∈ftstartl ;tstopl gN−1
l¼0g: ð29bÞ

Finally, the SFT bandwidth ½fSFTmin ; f
SFT
max� of the SFT

spectra which is required by LALAPPS_WEAVE is given by

fSFTmin ¼ ð1 − xskyÞf00min − fF ; ð30aÞ

(a) (b) (c)

(d) (e) (f)

(h) (i)

FIG. 6. (a) Predicted vs measured total computational cost Ctot [Eq. (17)]. (b) Measured unmodeled computational cost Cother

[Eq. (17)] vs measured total computational cost Ctot. (c) –(i) Predicted vs measured values of the coherent computational cost C̃ of
Eq. (18) and of the components of the semicoherent computational cost Ĉ of Eq. (19). In (a)–(c), grey crosses and black crosses are used
to distinguish values computed using the demodulation and resampling F -statistic algorithms, respectively; otherwise, black crosses are
used for values which are independent of the choice of F -statistic algorithm. The search setups used in this figure are listed in Table II.
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fSFTmax ¼ ð1þ xskyÞf00max þ fF : ð30bÞ

The xsky enlarges ½f00min; f
00
max� to account for the maxi-

mum frequency-dependent Doppler modulation of a con-
tinuous-wave signal due to the sidereal and orbital motions
of the Earth and is given by

xsky ¼
2π

c

�
DES

1 year
þ RE

1 day

�
; ð31Þ

where c is the speed of light,DES is the Earth-Sun distance,
and RE is the radius of the Earth. Additional padding of
½f00min; f

00
max� is also required for use by the chosen F -

statistic algorithm and is given by fF ; see Ref. [68].
Figure 8 compares the model of Eqs. (28)–(31) against

the behavior of LALAPPS_WEAVE when run with the search
setups detailed in Table II. Note that the model satisfies

predicted fSFTmin −measuredfSFTmin ≤ 0;

i.e., all circles plotted in Fig. 8 are below the horizontal
axis, and

predicted fSFTmax −measuredfSFTmax ≥ 0;

i.e., all crosses plotted in Fig. 8 are above the horizontal
axis. The model is therefore conservative; i.e., it may
predict a slightly-larger SFT bandwidth than required but
should never predict a smaller SFT bandwidth, which
would cause a fatal error in LALAPPS_WEAVE. The model
is generally more conservative at higher frequencies, where
the Doppler modulation due to the Earth’s motion is higher.
Equations (28)–(31) are implemented in the OCTAPPS

script WEAVEINPUTSFTBAND.M.

V. DISCUSSION

This paper details the WEAVE implementation of a
semicoherent search method for continuous gravitational
waves. It focuses on all-sky surveys for isolated continu-
ous-wave sources, for which the parameter space is the sky
position and frequency evolution of the source. We note,
however, that the implementation is in fact indifferent to the

(a)

(b)

FIG. 7. Predicted memory usage of LALAPPS_WEAVE, against
its measured memory usage, when using the (a) demodulation
and (b) resampling F -statistic algorithms. The search setups used
in this figure are listed in Table II.

FIG. 8. Difference between predicted and measured fSFTmin
(circles) and fSFTmax (crosses), against the measured fSFTmin and
fSFTmax, respectively, for the demodulation (top plot) and resampling
(bottom plot) F -statistic algorithms. The search setups used in
this figure are listed in Table II.
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parameter space being searched, as long as the relevant
constant parameter-space metric is available. The imple-
mentation could therefore be adapted to search other
parameter spaces for continuous-wave sources such as
known low-mass x-ray binaries, for which the parameter
space includes the evolution parameters of the binary orbit,
using the metric of Ref. [71].
There is scope to improve the semianalytic models of the

behavior of LALAPPS_WEAVE presented in Sec. IV. In
particular, a more accurate model of the distribution of
F -statistic mismatches than that presented in Sec. IVA
would allow the sensitivity of a search to be more
accurately estimated without resorting to software injection
studies. The memory model of Sec. IV D would also be
improved if the maximum cache size Nmax

cache could be
predicted from first principles.
In a forthcoming paper [72], we plan to more fully

characterize the performance of the WEAVE implementation
and compare it to an implementation of the method of
Refs. [37,38] using a mock data challenge.
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APPENDIX: PROPERTIES OF EQUAL-AREA
SKY PATCHES

The search program LALAPPS_WEAVE allows the sky
search parameter space to be partitioned into K patches and
a patch selected by an index k. Tests of this feature found
that, provided K ≪ N 1

1 (the number of templates with just
one patch), the variation in the number of templates
between patches ΔN K is generally small and well approxi-
mated by

ΔN K¼
�
1.48×10−2þ5.35×10−4K K≤100;

8.48×10−2þ4.03×10−5K K>100:
ðA1Þ

The ratio
P

K−1
k¼0 N

k
K=N

1
1 of the number of templates in all

K patches to the number of templates with just one patch is
generally ≲7%. The union of all templates in a set of K
patches also faithfully reproduces the unpartitioned tem-
plate bank, i.e., with just one patch.
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