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An ion beam generated by an annular double layer has been measured in a helicon thruster, which

sustains a magnetised low-pressure (5.0� 10�4 Torr) argon plasma at a constant radio-frequency

(13.56 MHz) power of 300 W. After the ion beam exits the annular structure, it merges into a solid

centrally peaked structure in the diffusion chamber. As the annular ion beam moves towards the

inner region in the diffusion chamber, a reversed-cone plasma wake (with a half opening angle of

about 30�) is formed. This process is verified by measuring both the radial and axial distributions

of the beam potential and beam current. The beam potential changes from a two-peak radial profile

(maximum value� 30 V, minimum value� 22.5 V) to a flat (�28 V) along the axial direction;

similarly, the beam current changes from a two-peak to one-peak radial profile and the maximum

value decreases by half. The inward cross-magnetic-field motion of the beam ions is caused by a

divergent electric field in the source. Cross-field diffusion of electrons is also observed in the inner

plume and is determined as being of non-ambipolar origin. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4885350]

The annular configuration of plasma sources has

attracted great interests over the past few years with the clas-

sic annular configuration for Hall thrusters being widely

used in the electric propulsion industry.1 It has been sug-

gested that preionisation for Hall thrusters would be benefi-

cial and this could be obtained by using an annular helicon

source.2 A double layer generated ion beam has been experi-

mentally shown in a cylindrical helicon thruster by Charles

and Boswell.3 While small probes (<1 cm diameter) could

be inserted through the center of the double layer without

discernible perturbation, could an annular double layer, i.e.,

a robust double layer with a large inner area, exist in an an-

nular helicon thruster? And how would the generated ion

beam expand away from the annular region? This paper

focuses on these questions and presents our experimental

results.

The present experiment is based on the Chi Kung reactor

(previously described),3 which has been modified to consist

of an annular helicon source and a contiguously attached 30-

cm long, 32-cm diameter, earthed aluminium diffusion

chamber [Fig. 1(a)]. The annular source is constructed by

inserting a 31-cm long, 5-cm diameter glass tube, sealed at

the internal vacuum end, into the original Chi Kung 13.8-cm

diameter glass tube. The resulting annulus has a width of

4.5 cm. A 20-cm long double-saddle antenna surrounds the

outer tube in the annular region, operating at a constant

radio-frequency power of 300 W at 13.56 MHz fed through a

matching network. Two solenoids placed around the source

(top solenoid current 0 A and exit solenoid current 9 A) gen-

erate the calculated magnetic field shown in Fig. 1(b). The

field decreases from more than 300 G in the source to only a

few Gauss in the diffusion chamber. Argon gas is fed to the

side wall of the diffusion chamber along with the turbo-

molecular pump. The base pressure and the operating gas

pressure are 6.6� 10�6 Torr and 5.0� 10�4 Torr, measured

with an ion gauge and a baratron gauge, respectively.

A source-facing retarding field energy analyser (RFEA)

and an emissive probe (EP) can be mounted onto a vacuum

slide on the backplate of the diffusion chamber.4 The slide

structure allows the probes to move along both the axial and

radial directions for two dimensional measurements without

FIG. 1. (a) Annular helicon thruster, showing the major components and

diagnostic probes. (b) Contour plot of the calculated magnetic field in the

thruster.a)yunchao.zhang@anu.edu.au
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breaking the vacuum (except when changing the probe). The

probe shaft and diffusion chamber are grounded and con-

nected to the clean earth of the building similarly to the pre-

vious ion beam experiment investigation for the helicon

double layer thruster.3,5 In the latter configuration, it was

shown that immersing the helicon double layer thruster in a

1.4-m long, 1-m diameter space-simulation vacuum chamber

did not affect the existence of the ion beam.6 In this experi-

ment, an energy analyser consisting of four grids and a col-

lector plate is used.7 The RFEA measures the collector

current versus discriminator voltage characteristics I(Vd) and

from the corresponding derivative, the ion energy distribu-

tion function (IEDF) can be obtained. The I(Vd) curve gives

the total ion current I(Vd¼ 0 V) and beam current I(Vd¼Vb).

The IEDF is modelled by a sum of one to three Gaussians

and determines the plasma potential and beam potential. The

EP is used to measure the local plasma potential with the

floating potential method. It eliminates the sheath around the

tungsten wire by emitting electrons, and pushes the probe

floating potential to equal the plasma potential. The EP can

also be used as a Langmuir probe (no emitting current) to

define the ion saturation current at a negative bias voltage

from the I(V) curve.8 For the present experiment, the energy

resolution of the RFEA is expected to be less than 1 eV.9 A

heating current between 2.6 A and 2.8 A is applied for the EP

to reach the floating potential saturation, resulting in a volt-

age drop of about 2.3 V across the tungsten filament; hence,

the plasma potential measurement from the EP has an uncer-

tainty of 61.2 V.10 The experimental uncertainty in the total

ion current measured by the RFEA and the ion saturation

current measured by the EP is estimated at 615% from

repeating the measurements multiple times.

The plasma in the source is formed between the walls of

the inner closed cylinder and the outer tube [Fig. 1] and oper-

ates in an inductive mode similarly to the experiment previ-

ously reported for the cylindrical helicon double layer

thruster.5 It is a low-pressure weakly collisional discharge

with an ion-neutral mean free path of ki� 6 cm comparable

with the radial characteristic size of the source (annulus

width of 4.5 cm). Fig. 2(a) presents the axial EP measure-

ment of the plasma potential along r¼�4 cm and r¼ 4 cm,

showing a high potential of 30–35 V in the source decreasing

to 18–20 V in the diffusion chamber. A source-facing RFEA

mounted through the side wall of the diffusion chamber is

used as a witness probe to detect whether the EP positioned

in the source dramatically perturbs the plasma or not. The

results from the witness probe keep constant when the EP

moves from the source into the diffusion chamber, showing

that the presence of the EP in the source has little influence

on the plasma and the EP gives reliable measurements.

Measurements from the EP are in good agreement with the

RFEA, showing the symmetry of the annular thruster, and

suggesting a stable, 5-cm wide double layer;11 the beam

potential (�30 V) measured by the RFEA is detected from

z¼ 1 cm and is consistent with the upstream plasma potential

measured by the EP in the source; the plasma potentials

measured by the two probes in the diffusion chamber are

also in good agreement. The high plasma potential and nega-

tive floating potential in the source region indicate that hot

electrons are bounded and repelled by the double layer.12

The total ion current and beam current of the RFEA I(Vd)

curve are determined as I(0 V) and I(30 V), respectively,3

while the ion saturation current from the EP is determined

with an applied bias voltage of �80 V as a Langmuir probe.8

The ion currents along r¼�4 cm and r¼ 4 cm, including the

ion saturation current from the EP and the total ion current

and beam current from the RFEA, are scaled for comparison

as they are collected from two different probes [Fig. 2(b)].

The formulae for the scaling are given below and since the

RFEA measurements range from z¼ 1 cm to 10 cm, the

mean value of ion currents in this range can be used as the
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FIG. 2. For simplicity, N and P are used to represent the axial measurements

along r¼�4 cm (negative) and r¼ 4 cm (positive), respectively, as shown

in Fig. 1. (a) Axial plasma potential measured by EP (� [N], � [P]), RFEA

(þ [N], • [P]), floating potential measured by EP (* [N], � [P]) and beam

potential measured by RFEA (� [N], � [P]). (b) Axial ion saturation current

measured by EP (� [N], � [P]), total ion current measured by RFEA

(þ [N], • [P]) and beam current measured by RFEA (� [N], � [P]); the

inset in (b) is a zoomed figure for the range of z¼ 1 cm to 10 cm.
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denominator for the scaled ion current to form a ratio param-

eter. For the ion saturation current,

Î sat ¼
Isat;r

hIsat;r¼�4iz¼1!10

; (1)

for the total ion current and beam current,

Î tot ¼
Itot;r

hItot;r¼�4iz¼1!10

; Î beam ¼
Ibeam;r

hItot;r¼�4iz¼1!10

: (2)

Fig. 2(b) presents the ion saturation current decreasing from

the source into the diffusion chamber after passing through

the throat of the magnetic nozzle at z � �10 cm, where the

magnetic field is strongest and the ion current peaks. In the

inset of Fig. 2(b), the total ion current from the RFEA gives

consistent results with the ion saturation current from the EP

(no emitting current). Their profiles show a slight dip at z
� 3 cm, and the dip is also observed in other double layer

experiments.13 The beam current decreases axially due to

ion-neutral charge exchange collisions.

Figs. 3(a) and 3(b) show the radial profiles of the beam

potential and beam current (measured by the RFEA) for an

increasing axial positions at every 2 cm from z¼ 1 cm to

7 cm. The radial profile of the beam potential in Fig. 3(a)

shows that, along the axial direction, the two peaks gradually

decrease while the center segment gradually increases until

the profile becomes flat at z¼ 7 cm. The beam potential pro-

file changes from a two-peak distribution with maximum

value� 30 V, minimum value� 22.5 V to a flat distribution

of �28 V as the ion beam propagates from the annular source

into the diffusion chamber. The radial profile of the beam

current in Fig. 3(b) exhibits a similar behaviour along the

axial direction: the two peaks of the beam current profile

gradually decrease and disappear while the center segment

increases in magnitude and the whole changes from a con-

cave shape to a convex shape. The beam current profile

changes from a two-peak distribution to a one-peak distribu-

tion, indicating that a plasma wake exists downstream of the

inner closed cylinder and the wake is gradually filled along

the axial direction. The maximum value of the beam current

profile at z¼ 7 cm is half of that at z¼ 1 cm and the average

level of the beam current also decreases axially due to charge

exchange collisions. The boundary of the ion beam and the

wake geometry is presently characterised by the threshold

current integration method

g ¼

ðR

�R

f IbeamðrÞ½ � drðR

�R

IbeamðrÞ dr

; (3)

f IbeamðrÞ½ � ¼
IbeamðrÞ IbeamðrÞ � I	

0 IbeamðrÞ < I	:

(
(4)

The boundary of the ion beam is determined by

Ibeam(r)¼ I* and the threshold current I* can be solved once

the integration percentage g is set. This procedure is similar

to the idea of Lebesgue integration: the integration

percentage g accounts for the contribution of the beam cur-

rent from maximum to minimum. For a given g, the ion

beam is defined by the highest beam current regions, which

fits the main body of the radial beam distribution. Fig. 3(b)

shows a good symmetry of the beam current distribution.

Fig. 4 shows the negative side of the radius [Fig. 1] and the

boundary of the annular ion beam derived from this method.

The inner edges of the annular ion beam (from r¼�2.5 cm,

z¼ 1 cm) move inward along the axial direction and merge

on the central axis (r¼ 0 cm), showing that the beam ions

from the annular aperture converge into the central region

downstream of the source. The ion beam changes to a solid

structure after the wake region, which is identified to be a

reversed cone with a half opening angle of about 30�. When

g decreases, the outer boundary shrinks, while the inner

boundary broadens, making the beam into a thinner annulus.

The inward motion of the ion beam is more clearly seen than

the outward divergence of the ion beam (the outward diver-

gence of an ion beam in a cylindrical system has been
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FIG. 3. (a) Radial potential measurement (solid markers for beam potential

and open markers for plasma potential) and (b) radial beam current measure-

ment along z¼ 1 cm (�), z¼ 3 cm (�), z¼ 5 cm (�), and z¼ 7 cm (�),

respectively, measured with the RFEA.
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studied by Cox et al.5). If the ion beams were only influenced

by the Lorentz force, its trajectory would not move towards

the central region, and the axial component of the velocity

would remain dominant.14 For the magnetic field shown in

Fig. 1(b), its effect on the ions mainly occurs in the source

region with a Larmor radius rci< 1 cm. As the magnetic field

decreases in the diffusion chamber, the Larmor radius rap-

idly increases to the level of the ion-neutral mean free path

and of the chamber length further out. Hence, the magnetic

field would have a relatively weak effect on the ion motion

in the diffusion chamber.

The potential (the beam potential and plasma potential

measured by the RFEA, the plasma potential measured by

the EP) and the ion current (the beam current and total ion

current measured by the RFEA, the ion saturation current

measured by the EP) along the central z-axis (r¼ 0 cm) are

shown in Fig. 5. The ion current is scaled using the same

method as Eqs. (1) and (2) except for a denominator being

the mean value along z-axis. Collision15 and plasma expan-

sion16 are not considered to be key factors contributing to

the merging of the annular ion beam at z � 6 cm in the cen-

tral region. If ion collisions dominate in the inner region of

the plume and yield an inward motion of the ion beam, the

beam potential should decrease along z-axis as the ions suf-

fer more collisions and lose beam energy. However, Fig.

5(a) shows that the beam potential increases along the z-axis

until it matches the beam potential along r¼�4 cm and

r¼ 4 cm [Fig. 2(a)] at z � 6 cm. The momentum equation in

the plasma expansion model is based on ambipolar diffusion

with an electric field, but in the present system the radial dis-

tribution of the plasma potential is flat in the central region

of the diffusion chamber [Fig. 3(a)] showing small or no ra-

dial electric field. Hence, the plasma potential distribution in

the source is thought to be the main effect contributing to the

inward motion of the ion beam. A divergent electric field is

identified in the annular source from the potential contours

shown in Fig. 4. The field region near the inner closed cylin-

der (�5 cm< r<�2.5 cm) has an inward component, which

will accelerate the beam ions towards the central region

downstream of the source. The beam current shows a vaulted

profile that increases between z¼ 2 cm and 6 cm and then

decreases, displaying a different behaviour from that along

r¼�4 cm and r¼ 4 cm with a monotonic decrease as shown

in the inset of Fig. 2(b). The increasing segment corresponds

to the transfer region between the wake and the solid ion

beam. The location (z¼ 6 cm, r¼ 0 cm) where the beam cur-

rent is maximum approximately determines the edge of the

wake shown in Fig. 5(b), which is in agreement with the

beam merging location in Fig. 4.

Electrons are well confined by the expanded magnetic

field line from the source into the diffusion chamber with a

gyration radius rce< 1 mm. The electrons within the wake

have a lower energy compared with the electrons outside the

wake, which is deduced from two experiments: first, the

FIG. 4. Bottom half of the system (negative radius) showing the boundary

of the annular ion beam with the integration percentages of 90% (�), 75%

(�), and 60% (�). Contours of plasma potential are shown in the annular

source region. The magnetic field lines are represented by the dashed lines.
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FIG. 5. (a) Axial plasma potential along the z-axis (r¼ 0 cm) measured by

EP (�), RFEA (�), floating potential measured by EP(þ) and beam poten-

tial measured by RFEA (�). (b) Axial ion saturation current measured by

EP (�), total ion current measured by RFEA (�) and beam current meas-

ured by RFEA (�).
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difference between the measured plasma potential and float-

ing potential is theoretically estimated to be 5.2Te. In both

Figs. 4 and 5, the plasma potential measured by the RFEA

shows a good agreement with that measured by the EP, and

the plasma potential keeps a mean value of 19 V with a small

variance. The floating potential along the z-axis (r¼ 0 cm) is

higher than the floating potential along r¼�4 cm and

r¼ 4 cm in the axial wake range (0 cm< z< 6 cm, r¼ 0 cm),

with a maximum difference about 5 V at z¼ 2 cm and 3 cm

[Fig. 5]. Hence, the electron temperature at z¼ 3 cm,

r¼�4 cm is about 1 eV higher than that at z¼ 3 cm, r¼ 0 cm

(within the wake). The difference between the plasma poten-

tial and floating potential at z¼ 3 cm, r¼ 0 cm is about 15 V,

so the electron temperature will be 3 eV. Second, analysis of

the I(V) curve17 measured with the EP yields an electron tem-

perature of 2.7 eV at z¼ 3 cm, r¼ 0 cm (within the wake) and

3.7 eV at z¼ 3 cm, r¼�4 cm (out of the wake). The results

of the two experiments are in good agreement, showing that a

relatively cold electron population exists in the wake region.

The electrons must experience a cross-field diffusion to enter

the inner plume region. The cross-field diffusion is identified

to be a non-ambipolar diffusion18 from the flat radial distribu-

tion of plasma potential shown in Fig. 3(a). Further study is

required to determine the mechanism of this diffusion such as

the electron collisions or the eddy current effects.15

In summary, a robust annular double layer which gener-

ates an annular ion beam has been measured in a helicon

thruster. The ion beam diverges to form a solid structure in

the inner plume as well as a plasma wake. Cross-field motion

of ions and electrons is observed in the plasma plume. It is

difficult to do a complete analytical model for the cross-field

motion in the system; however, our experimental results

make some contributions to understand this physical proce-

dure. The cross-field motion of ions is thought to be domi-

nated by the potential distribution in the source, not by

ambipolar diffusion or collisions. The cross-field diffusion of

electrons is identified to be non-ambipolar but the related

mechanism is still unclear.
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