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Direct measurements and modelling of neutral gas heating in a radio-frequency (13.56 MHz)

electrothermal collisional plasma micro-thruster have been performed using rovibrational band

matching of the second positive system of molecular nitrogen (N2) for operating pressures of

4.5 Torr down to 0.5 Torr. The temperature measured with decreasing pressure for 10 W power

input ranged from 395 K to 530 K in pure N2 and from 834 K to 1090 K in argon with 1% N2. A

simple analytical model was developed which describes the difference in temperatures between the

argon and nitrogen discharges. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818657]

Although mono- or bi-propellant chemical thrusters are

the basis of space propulsion, electric thrusters have become

more prevalent over recent years with several hundred now

in operation on commercial satellites.1–3 Micro-satellites,

generally with a total weight less than 120 kg, require low

power, small, lightweight micro-thrusters. Presently, the ma-

jority of micro-thrusters in use are cold gas thrusters or resis-

tojets. Cold gas thrusters, while not technically an electric

thruster, are the simplest form of propulsion where an inert

gas is expelled through a nozzle. However, as there is no

combustion or heating of the gas, thrust produced per kilo-

gram of propellant is low. Resistojets heat propellant through

contact with heated walls or a coil1,4 but this leads to short-

ened lifetimes due to thermal fatigue and requires power on

the order of 102 W.

Recently a low power radiofrequency (rf) capacitively

coupled plasma (CCP) micro-thruster, known as “Pocket

Rocket” has been discussed.5–7 The 20 mm long, 4.2 mm-

diam discharge operates at pressures around a few Torr and

is weakly ionized (less that 1%).6 Typical plasma densities6

for a 1.5 Torr argon plasma have been estimated at

2� 1012 cm�3. However, ions in the discharge would typi-

cally reach a Bohm velocity on the order of a few thousand

ms�1, an order of magnitude greater than a typical thermal

gas velocity of a few hundred ms�1, and ion-neutral charge

exchange collisions would yield neutral gas heating within

the discharge, hence thrust. It is expected the majority of

ion-neutral charge exchange collisions are occurring within

the main plasma bulk inside the discharge tube, with colli-

sions continuing into the expansion plume region down-

stream of the thruster, with decreasing frequency as distance

from the tube increases.8

Thrust from collisional plasmas has been analytically

discussed by Fruchtman9 and referred to as “neutral

pumping” which is effectively neutral gas heating. The qual-

itative results are in agreement with the development of

“Pocket Rocket” as a potential rf electrothermal collisional

plasma micro-thruster. Power balance calculations relating

the input power to discharge velocity (assuming 100%

efficiency) reported an estimated neutral gas temperature of

1430 K for a 10 W, 1.5 Torr argon plasma.6 Here direct

measurements of neutral gas heating are carried out using

optical emission spectroscopy (OES) and a basic model of

gas heating is derived for atomic and molecular gases.

The Pocket Rocket device, previously described in

depth,6 is shown in its present form in Figure 1, consisting of

a 4.2 mm inside diameter, 1 mm thick, 20 mm long alumina

sleeve connecting an upstream plenum cavity and downstream

expansion tube. Constant rf power of 10 W at 13.56 MHz is

capacitively coupled into the plasma through a copper rf elec-

trode surrounding the sleeve at the midpoint, with two

grounded aluminium electrodes placed at either end of the

tube. The discharge gas, pure nitrogen (N2) or argon with 1%

N2, is injected through the plenum chamber with operating

plenum pressures ranging from 0.5 Torr to 4.5 Torr.

The plenum cavity has a rear view port to allow optical

diagnostics of the discharge. Digital images, captured using

a digital camera in conjunction with a bandpass filter looking

through the view port, give radial intensity profiles of visible

emission lines across the discharge diameter. Depending on

the ionization model for the emission line imaged, the radial

distribution of electrons can be determined. The OES system

consists of a SPEX 500 M monochromator with 50 lm slit

width and 1200 groove/mm grating used in conjunction with

a 4 mm diameter fused silica fiber-optic cable to direct light

from the discharge onto an Ames Photonics Garry 3000 S

charged couple device (CCD) array. The CCD array captures

a 34 nm wavelength range spectra with 0.02 nm resolution.

The optical fiber was positioned looking though the plenum

view port directly down the alumina sleeve. As the optical

fiber diameter is approximately the same as the discharge di-

ameter, the resulting spectra are spatially averaged over the

discharge volume.

The non-invasive OES method used to determine the

neutral gas temperature of the discharge involves fitting

computer generated spectra to experimentally determined

rovibrational band spectra, produced by electronic transitions

from upper states (denoted by 0) to lower states (denoted

by 00) of diatomic molecules. The fitting estimates the

rotational temperature of the discharge gas, which isa)Electronic Mail: amelia.greig@anu.edu.au

0003-6951/2013/103(7)/074101/4/$30.00 VC 2013 AIP Publishing LLC103, 074101-1

APPLIED PHYSICS LETTERS 103, 074101 (2013)

http://dx.doi.org/10.1063/1.4818657
http://dx.doi.org/10.1063/1.4818657
http://dx.doi.org/10.1063/1.4818657
mailto:amelia.greig@anu.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4818657&domain=pdf&date_stamp=2013-08-13


approximately equal to the neutral gas temperature for the

conditions tested.10 This technique has been previously used

to determine the temperature of discharges ranging from

atmospheric pressure11 to around a Torr.12,13 Atomic species

do not produce rovibrational bands as no rotational and

vibrational modes exist. An alternate spectroscopic method

for determining gas temperature, including directly from

atomic species, is Doppler broadening where the change in

width of a spectral line is measured to infer temperature.14

However, for this discharge, an estimated temperature

increase of 1000 K results in an increase in line width of the

order of 1 pm, below the equipment resolution of 20 pm,

hence this method cannot be used. Therefore, to use the rovi-

brational OES technique for an argon plasma, trace amounts

of N2 (�1%) were added to the discharge instead.

The second positive system of N2 (C3Pu ! B3Pg) in

the wavelength region 372–381 nm to include the (0,2) and

(1,3) vibrational transitions was chosen for this work as this

region presents minimal interference from strong argon lines

and the required constants are readily available. The (2,4)

and (3,5) vibrational transition intensities were too low for

some pressures tested to allow a fitting, so for consistency

these transitions were omitted. Generation of the simulated

spectra is achieved by calculating the wavelengths of the

required transition lines and the related intensities, then

broadening the lines to match the experimentally determined

spectra.10 The wavelength (k) of an electronic transition

from the Cv0J0 to Bv00J00 state is

kCv0;J0

Bv0 0;J0 0 ¼ na

X
pq

YC
pq v0 þ 1

2

� �p

½J0ðJ0 þ 1Þ�q � YB
pq v00 þ 1

2

� �p

½J00ðJ00 þ 1Þ�q
" #�1

; (1)

where J represents the rotational state, v represents the vibra-

tional state and na is the refractive index of air. The constants

Ypq are Dunham coefficients15 taken from Bai et al.12 For

each wavelength calculated, the intensity of the spectrum is

determined using

ICv0;J0

Bv0 0;J0 0 ¼
D

k4
qv0;v0 0e

�Ev0
kTv SJ0;J0 0e

�EJ0
kTr ; (2)

where D is an arbitrary scaling constant, k is Boltzmann’s

constant, qv0;v0 0 are Franck-Condon factors (taken from Zare

et al.)16 and SJ0;J0 0 are Holn-London factors calculated from

Herzberg17 (p. 208). The rotational energy (EJ0) and vibra-

tional energy (Ev0) are also calculated from Herzberg17 (pp.

106–107, 552).

A Gaussian convolution kernel was used to broaden the

simulated spectral lines to match the equipment based line

broadening of the experimental spectra. An example fit

between experimental data and simulated spectrum is shown

in Figure 2 for a 10 W argon plasma with 1% N2 addition at

1.5 Torr. Monte Carlo Markov chains were used for fitting

the experimental and simulated data resulting in a range of

credible values for Tr. For this example fit, the estimated

temperature was 1090 6 35 K. Weak argon lines produced

minor interference at 373.8 nm, 376.5 nm, and 378.1 nm and

slightly enhanced rotational tail structures at lower wave-

lengths were caused by excess kinetic energy from Ar-N2

collisions being transferred into higher rotational states for

both vibrational bands.18 The estimated experimental error is

6 50 K based on repeatability of results giving a neutral gas

temperature estimate of 1090 6 85 K for a 10 W, 1.5 Torr ar-

gon discharge, which is lower than, but of the order of, the

gas temperature estimated through power balance calcula-

tions discussed previously6 (�1430 K). The power balance

calculations assumed 100% efficiency, whereas the experi-

mental power transfer efficiency would be considerably

lower, explaining the difference between the two tempera-

ture values.

Applying this method to pure N2 and argon (with

1% N2) discharges at 10 W for pressures ranging from

0.5 Torr to 4.5 Torr gave estimated neutral gas temperatures

as shown in Figure 3. The temperature of the N2 plasma

decreased from 430 K to 360 K as pressure increased from

0.5 to 4.5 Torr. The temperature of the argon plasma is con-

sistently 600–700 K (or about 2.2–2.5 times) higher than the

N2 plasma for all pressures tested with temperatures ranging

from 780 K to 1120 K. Comparing these results to other

works, Huang et al.13 found gas temperatures between 350 K

and 600 K for a 5 to 200 W mTorr dual frequency N2 CCP

discharge and Bai, Swann, and Cruden12 found gas tempera-

tures around 1860 K for a transformer coupled argon dis-

charge between 0.5 and 1 Torr at 1.6 kW. Interestingly,

comparison of the results to atmospheric pressure plasma jet

(APPJ) works with similar geometries to the Pocket Rocket

FIG. 1. Experimental setup of the Pocket Rocket plasma system.
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device but with smaller discharge diameters and different

discharge gases gave very different results, with air mixtures

usually reaching higher temperatures than noble gas dis-

charges of Helium and Neon,19,20 suggesting gas mixture,

pressure, discharge cavity dimensions, and power density

play a large role in the gas temperatures achieved.

To understand the difference in temperatures between

the N2 and argon discharges, a simplistic model of the neu-

tral gas heating mechanism was developed. The ionization

energies of argon (Ar) and N2 are 15.76 eV and 15.58 eV,

respectively, giving 0.18 eV of excess energy during an

Ar-N2 ion-neutral charge exchange collision, three orders of

magnitude lower than the translational kinetic energy of the

ion. As the N2 trace comprises only 1% of the total discharge

gas the resulting effects are expected to be negligible and the

argon with 1% N2 discharge model was based on pure argon.

During an ion-neutral charge exchange collision with a

low energy ion, it is assumed that half the kinetic energy

(KE) is transferred from the hot ion to the cold molecule,21

with KE ¼ 1
2

mv2 where m and v are the molecules mass and

velocity, respectively. The initial KE of the ions is based on

the Bohm velocity (vB), calculated using vB ¼
ffiffiffiffiffi
eTe

m

q
, where e

is the electron charge, Te is the electron temperature, and m
is the ion mass. The electron temperature was taken as

2.5 eV for both Ar and N2, based on previous reports,6 giving

vBAr
¼ 2450 ms�1 and vBN2

¼ 2930 ms�1. The KE for an

n-degree of freedom molecule is n
2

kT, where T is the tempera-

ture of the molecule. Argon gas contains atomic molecules

with three translational degrees of freedom to store energy

ðnAr ¼ 3Þ, while nitrogen gas contains diatomic molecules

with three translational, two rotational, and one vibrational

degrees of freedom ðnN2
¼ 6Þ, resulting in overall lower tem-

peratures for N2 when compared with Ar for the same colli-

sional KE transfer. This gives estimates of 4980 K and

2640 K for the temperature of the hot neutrals after the ion-

neutral charge exchange collision for Ar and N2, respectively.

However, as the discharge is weakly ionized not all cold neu-

trals undergo a charge exchange collision with a hot ion.

Ionization fractions (ni

ng
) were calculated from ion saturation

currents (Isat), measured using a Langmuir probe inserted

through the plenum view port, with the 1 mm diameter circu-

lar disc probe tip biased at �28 V, located on the central axis

of the discharge, directly in line with the center of the rf elec-

trode. Using ni

ng
¼ Isat

jevBALPng
where ALP is the area of the

Langmuir probe tip and j is a sheath collection area scaling

factor taken as 0.55,22 the calculated ionization fractions at

1.5 Torr and 10 W were 0.44% for Ar and 0.19% for N2.

The mean free path (k) for an ion-neutral charge

exchange collision is k ¼ 1
ngrCE

where ng is the neutral gas

density and rCE is the ion-neutral charge exchange collision

cross section taken from Phelps23 as 46 lm in Ar and 40 lm

in N2. This gives the total number of collisions across the

discharge diameter as 90 in Ar and 80 in N2 at 1.5 Torr.

However, the cross sections for elastic and ion-neutral

charge exchange collisions are approximately equal for both

Ar and N2, meaning half the collisions would be elastic,

resulting in 45 and 40 ion-neutral charge exchange collisions

across the discharge diameter for Ar and N2, respectively.

Combined with the ionization fraction, an estimated 20% Ar

and 8% N2 neutrals undergo an ion-neutral collision and

become hot neutrals in a 1.5 Torr discharge.

For the spatially averaged neutral gas temperature, as

measured by the OES method, it is assumed a sufficient

number of collisions between hot and cold molecules occur

for thermalization of the hot and cold neutral populations.

Assuming the majority of neutrals become heated at the loca-

tion of the rf electrode, there is 10 mm to travel before exit-

ing the discharge volume. Based on the hot neutral

temperatures above, the average velocity (v) of hot mole-

cules is 1760 ms�1 and 1533 ms�1 for Ar and N2, respec-

tively, and 432 ms�1 and 516 ms�1 for cold Ar and N2,

respectively (based on 300 K temperature). Using the aver-

age velocity of the hot and cold molecules, to find the time

between collisions (s ¼ 1
ngrnv

where r is the neutral-neutral

collision cross section) gives approximately 15 thermalizing

neutral-neutral collisions at 1.5 Torr for both Ar and N2

which is sufficient to assume thermalization occurs.

The estimated neutral gas temperatures using this sim-

plified model for Ar and N2 discharges with pressures from

FIG. 2. Example of experimental and simulated spectra fit for a 10 W,

1.5 Torr Ar plasma with 1% N2 addition. The experimental data points are

shown as closed blue circles, the simulated spectrum overlayered as a solid

black line.

FIG. 3. Experimental neutral gas temperatures for Ar with 1% N2 trace

added (open red circles) and N2 (open blue diamonds) discharges for pres-

sures ranging from 0.5 Torr to 4.5 Torr with 10 W power input. Estimated

neutral gas temperatures for Ar (red plus symbols) and N2 (blue crosses) dis-

charges for pressures ranging from 1 Torr to 4.5 Torr using a simplistic

model based on collisional and kinetic effects.
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1 Torr to 4.5 Torr are shown in Figure 3. Measurements of

the ion saturation current for pressures less than 1 Torr were

not possible in Ar as the discharge could not be maintained

at lower pressures with the Langmuir probe in place. For N2,

the discharge could not be maintained for pressures under

2 Torr with the Langmuir probe in place. Instead, the ion sat-

uration currents for 1 and 1.5 Torr in N2 were estimated

using the trend of the remaining results to allow the model to

be extended down to 1 Torr for both discharge gases. The

model predicts temperatures around 1200 K in Ar and 500 K

in N2 which are slightly higher than but similar to the experi-

mental results, with the Ar temperatures just over 2 times

higher than the N2 temperatures, also in agreement with the

experimental results. From the model, the difference

between Ar and N2 temperatures arises from the additional

degrees of freedom of N2 and the ionization fraction of N2

being just under half the ionization fraction of Ar.

In the Ar model, the predicted temperature drops rapidly

from 1200 K at 3 Torr to 780 K at 4.5 Torr. For an Ar dis-

charge with pressures less than 3 Torr, the electron distribu-

tion forms a peak on the central axis, but as the pressure

increases to over 3 Torr the electron distribution changes to

an annular configuration.6 When measuring the ion satura-

tion current, the Langmuir probe was inserted with the probe

tip lying on the central axis. For pressures over 3 Torr, the

majority of ions are located in the annular ring with the elec-

trons and not on the central axis, resulting in underestimates

of the ion saturation current, hence underestimates of the

neutral gas temperature by the model.

To confirm a similar issue is not occurring in the N2

model, radial intensity profiles across the discharge diameter

of the Nþ2 391nm line were captured using a digital camera

in conjunction with a 390 nm filter with 10 nm bandwidth

looking through the rear plenum view port, with the results

shown in Figure 4 for a 20 W N2 plasma. Assuming two step

ionization, the intensity profile represents n2
e , where ne is the

electron density. A mode change from a central peak elec-

tron density to annular electron density occurs, similar to the

Ar discharge, but the mode change occurs at a higher pres-

sure (between 4.8 and 6 Torr), outside the pressures used for

the experiment and model, therefore the mode change does

not affect the results for the N2 plasma.

In summary, the neutral gas temperature of an N2 dis-

charge at 10 W was found to be only slightly higher than the

temperature of a cold gas thruster (�300 K) for pressures

ranging from 0.5 Torr to 4.5 Torr. However, when using Ar

as the discharge gas, with pressures from 0.5 Torr to

4.5 Torr, the neutral gas temperature is between two to three

times higher than a cold gas thruster reaching temperatures

over 1100 K for 10 W input power. A simplistic model based

on collisional and kinetic effects within the discharge was

developed, showing the lower temperatures of the N2 dis-

charges being due to nitrogen gas having a lower ionization

fraction compared to argon gas and the additional degrees of

freedom in diatomic nitrogen molecules compared to atomic

argon molecules. Both the experimental results and the

model show that neutral gas heating is occurring within the

Pocket Rocket discharge for Ar. Confirmation of neutral gas

heating occurring within the discharge for Ar, combined

with the low power input, small volume, lack of exposed

electrodes and no requirement for an external neutralizer,

validates the Pocket Rocket concept as a viable radio-

frequency electrothermal plasma micro-thruster.

Aspects of this research made use of software developed

by the Inversion Laboratory (ilab). Ilab is part of the

Auscope AGOS project—an initiative of the Australian

Government funded through the Education Investment Fund.
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