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Communication: Efficient counterpoise corrections
by a perturbative approach
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We investigate the use of Hartree-Fock and density functional perturbative corrections for estimating
the counterpoise correction (CPC) for interaction energies at the self-consistent field level. We test
our approach using several popular basis sets on the S22 set of weakly bound systems, which can ex-
hibit large basis set superposition errors. Our results show that the perturbative approaches typically
recover over 95% of the CPC and can be up to twelve times faster to compute than the conventional
methods and therefore provide an attractive alternative to calculating CPCs in the conventional way.
© 2011 American Institute of Physics. [doi:10.1063/1.3632054]

I. INTRODUCTION

The interaction energy of a weakly bonded system is of-
ten found by the so-called supermolecular approach, which
uses the energy difference

Eint = EAB(A ∪ B) − EA(A) − EB(B), (1)

between the entire system and its subsystems, where sub-
scripts denote the (sub)system, parentheses denote the basis
set, and the fragment structures are taken from the complex.1

However, this straightforward approach is complicated by the
basis set imbalance between the system and its subsystems;
subsystem A is modelled by the basis functions A ∪ B in the
supermolecule, but only those in A in the isolated subsystem.
This inconsistency systematically overestimates the interac-
tion energy and gives rise to the so-called “basis set super-
position error” (BSSE).2, 3 The BSSE is largest when small
basis sets are used, and can become large enough to prevent a
qualitative characterization of the interaction energy.

Because BSSE is a consequence of basis set incomplete-
ness, it vanishes in the complete basis set limit. Therefore, a
straightforward solution to reducing this error is to perform
the calculations in sufficiently large bases. However, such a
brute force approach is impractical for large systems and al-
ternative methods for removing the BSSE must be used. The
most important of these are the a priori Chemical Hamil-
tonian Approach (CHA),4 Symmetry-Adapted Perturbation
Theory (SAPT),5 and the a posteriori counterpoise correc-
tion (CPC) of Boys and Bernardi.6 Because of its conceptual
simplicity, and ease of implementation, the CPC is the most
widely used method and is also the focus of this present work.

For a system, AB, consisting of two subsystems A and B,
the CPC is defined as

ECPC = EA(A) − EA(A ∪ B) + EB(B) − EB(A ∪ B),
(2)

where, for example, EA(A ∪ B) is the energy of A calculated
using the basis functions for both A and B. Because the basis

a)Electronic mail: peter.gill@anu.edu.au.

functions associated with B have no nuclei in that calculation,
they are referred to as ghost functions.

The cost of calculating the CPC is typically greater than
that of calculating the original interaction energy. Given that
the CPC provides only an estimate of the BSSE, it seems
wise to consider approximate methods which mitigate this
additional cost. Recently, we developed perturbative meth-
ods that “bootstrap” a small-basis calculation toward a cor-
responding large-basis calculation7–10 and these approaches
(and the related dual-basis methods11–16) have proven useful
in approximating large-basis results at greatly reduced cost.
Errors due to this formalism have been shown to be small,
while reducing the computational cost by factors between
3 and 10. Originally proposed for Hartree-Fock theory, the
techniques have been extended to density functional theory,9

second-order Møller-Plesset perturbation theory (MP2)
(Refs. 10 and 14) and, recently, to complete active space self-
consistent field (CAS-SCF) theory.17

Although the ghost functions are a large fraction of the
basis in a CPC calculation, their energetic contribution is
small and such calculations are therefore ideal candidates
for our perturbative methods or, indeed, for other dual-basis
schemes.11–16 In this Communication, we use our Hartree-
Fock perturbative correction (HFPC) (Refs. 7 and 8) and
density functional perturbative correction (DFPC) (Ref. 9)
schemes to evaluate the effect of the ghost functions in CPC
calculations.

Because of their inability to capture long-range disper-
sion effects, many SCF methods are poorly suited to describ-
ing weakly bound systems. However, this deficiency is ame-
liorated in the empirical DFT-based methods such as DFT-D
(Refs. 18–20) and, because of their cost effectiveness, such
methods are likely to continue to be popular for the study
of systems with several dozen atoms. Accordingly, we focus
on HF and DFT levels of theory and apply these to the S22
dataset21 of weakly bounded complexes.

II. THEORY

The theory and performance of HFPC and DFPC calcula-
tions are described in detail in Refs. 7–9. Here we outline the
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HFPC scheme and refer the interested reader to our earlier
papers for details.

An HFPC calculation begins with a converged SCF cal-
culation in a primary basis of n functions, yielding molecular
orbitals and an associated density matrix P. P is then used to
build the new Fock matrix

F
[1]
ab = hab +

n∑
λσ

Pλσ

[
(ab|λσ ) − 1

2
(aλ|bσ )

]
, (3)

where λ, σ denote primary basis functions and a, b denote
functions in a larger (N > n) secondary basis. Diagonaliza-
tion of F[1] yields improved molecular orbitals and an im-
proved density matrix P[1]. The HFPC energy

EHFPC =
N∑
ab

P
[1]
ab hab + 1

2

N∑
abcd

P
[1]
ab P

[1]
cd [(ab|cd) − 1

2
(ac|bd)],

(4)
is more accurate7, 8 than that from other dual-basis methods
because of its use of P[1]P[1], rather than PP[1].

Although HFPC (and DFPC) are able to jump between
any two basis sets, the selection of an optimal primary basis
for a given secondary basis and accuracy threshold normally
requires careful calibration studies. However, in the case of
the CPC calculation of EA(A ∪ B), it is it is natural to adopt
A as the primary basis and A ∪ B as the secondary basis, be-
cause the ghost functions, B, perturb the energy only slightly.
Moreover, such a basis pairing leads to a large N/n ratio
which yields significant savings in computational time.

III. RESULTS

A. Computational details

We considered three standard basis sets: 6-31G(d), 6-
31+G(d), and 6-31+G(2df, p). For each of these, we cal-
culated the exact CPC using fully converged SCF calcula-
tions and used these results as our reference values. The CPCs
were also estimated using our perturbative schemes, which re-
quired evaluating each of the energies in Eq. (2) using either
the HFPC or DFPC method. The accuracy was measured by
the percentage of the CPC that was recovered by the pertur-
bative method.

For the DFT calculations we used the B3LYP hybrid
functional and the SG-1 quadrature grid.22 In addition to the
BSSE, Kohn-Sham CPC calculations are also affected by an
analogous grid superposition error (GSE). Both the GSEs for
the conventional and perturbative calculations were corrected
in the same way using a counterpoise correction.

CPC values were calculated for the weakly bound sys-
tems in the S22 dataset,21 which features a diverse selection
of non-bonded interactions and a range of system sizes. All
calculations were performed using a locally modified copy of
the Q-Chem program23 and the raw energies of all the systems
are provided in the supplementary material.24

B. Accuracy

Columns 2–7 of Table I list the CPCs and the percent-
age recovered by the HFPC method for all the systems in

the S22 set and for the three basis sets considered. BSSE re-
flects basis set incompleteness and our results confirm that
CPCs typically decrease from 6-31G(d) to 6-31+G(d) to 6-
31+G(2df, p). This effect led Antony and Grimme to argue
that polarized triple-ζ basis sets are sufficiently large that one
can dispense with the CPC altogether25 but, unfortunately,
such basis sets are impractical for large systems.

Increasing the basis set size also systematically improves
the relative performance of the HFPC method. Larger basis
sets reduce the usefulness of the ghost functions and thereby
allow HFPC to capture greater proportions of the BSSE. This
improvement in relative performance is also a feature of the
original HFPC method.7 We see that, even for the small 6-
31G(d) basis, where the CPCs are the largest, the HFPC
method is still able to capture around 95%. For the larger basis
sets, the percentage recovery is even better.

In absolute terms, the error introduced by using HFPC
to calculate the CPC can be as large as 0.75 kJ/mol for
the 6-31G(d) basis. The errors for formamide dimer, indole-
benzene and adenine-thymine are all large. For 6-31+G(d)
the maximum error reduces to 0.2 kJ/mol and, given that the
counterpoise procedure is only an estimate of the BSSE, this
discrepancy will be tolerable in many chemical applications.

Columns 8–13 of Table I show analogous results using
DFPC with the B3LYP functional. The DFPC and HFPC re-
sults show similar trends but there are two significant differ-
ences. First, the B3LYP CPCs are significantly larger than
those from HF. This observation was also made by Garza
et al.26 who attributed it to the tendency of DFT orbitals to
be more diffuse than HF orbitals. Second, our perturbative
approach recovers a greater percentage of the B3LYP CPCs
than of the HF CPCs. Even for 6-31G(d), DFPC recovers at
least 98% of the CPC and, for the larger basis sets, the re-
covery is usually >99.9%. This is consistent with our earlier
results9 and can be attributed to the fact that DFT energies
tend to converge slightly faster than HF energies with respect
to basis set size.

C. Efficiency

Calculating the exact CPC by Eq. (2) requires two addi-
tional calculations that use all of the basis functions in the sys-
tem. This is expensive, typically taking almost twice as long
as the calculation of the uncorrected interaction energy (1).
Our perturbative schemes are much cheaper because the pri-
mary density matrix is generated as part of the interaction
energy calculation, and therefore the computational overhead
associated with our perturbative schemes amounts to a single
Fock build and energy evaluation in the secondary basis.

The final columns of Table I show timing comparisons
between CPC calculations via the conventional and pertur-
bative approaches. The time taken to calculate the interac-
tion energy, T int, is simply the time required to compute the
four energy terms in Eq. (1) but, because we can reuse some
of these terms, the overhead of calculating Eq. (2) is only
T CPC = tEA(A∪B) + tEB(A∪B). Columns 14–19 show the timing
ratios T CPC/T int where, for example, a ratio of 1 implies that
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TABLE I. For the systems in the S22 dataset: (Columns 2–7) counterpoise corrections (kJ/mol) at the HF level for various basis sets and the percentage
recovered by HFPC; (Columns 8–13) counterpoise corrections (kJ/mol) at the B3LYP level for various basis sets and the percentage recovered by DFPC; and
(Columns 14–19) timing ratios for conventional and perturbative counterpoise calculations using the 6-31+G(2df, p) basis.

HF B3LYP T CPC/T int

6-31G(d) 6-31+G(d) +G(2df, p) 6-31G(d) 6-31+G(d) +G(2df, p) Exact Perturbative Pert./exact

Complex CPC % CPC % CPC % CPC % CPC % CPC % HF B3LYP HF B3LYP HF B3LYP

Ammonia dimer (C2h) 4.29 92.1 1.15 95.7 0.58 96.6 6.82 98.4 1.09 99.1 0.65 100.0 2.24 2.88 0.59 0.37 0.26 0.13
Water dimer (Cs) 3.90 93.6 4.48 95.5 1.72 96.5 6.80 98.4 4.57 99.3 1.63 99.4 1.34 1.49 0.38 0.21 0.28 0.14
Formic acid dimer (C2h) 11.06 94.4 7.30 97.7 2.92 97.9 17.53 98.5 5.45 99.8 2.07 100.0 2.18 1.97 0.38 0.29 0.17 0.15
Formamide dimer (C2h) 10.68 93.0 4.09 97.8 1.86 98.4 17.36 98.0 3.30 100.0 1.83 100.0 2.63 2.24 0.33 0.25 0.13 0.11
Uracil dimer (C2h) 9.16 94.1 5.18 98.1 2.40 98.3 14.82 98.3 3.95 100.0 2.39 100.0 1.59 2.19 0.25 0.24 0.16 0.11
2-Pyridoxine 9.48 93.5 4.94 98.0 1.99 98.0 15.15 98.2 3.68 100.0 2.34 100.0 1.22 1.08 0.15 0.12 0.13 0.11

2-aminopyridine (C1)
Adenine thymine WC (C1) 11.15 94.0 5.59 98.2 2.11 100.0 17.97 98.4 4.25 100.0 2.63 100.0 1.23 1.03 0.17 0.09 0.14 0.09
Methane dimer (D3d) 0.44 95.5 0.14 100.0 0.11 100.0 0.95 98.9 0.12 100.0 0.09 100.0 2.94 2.65 0.64 0.36 0.22 0.14
Ethene dimer (D2d) 3.33 93.7 0.68 97.1 0.50 96.0 3.84 99.0 0.70 100.0 0.67 100.0 2.93 2.62 0.72 0.42 0.24 0.16
Benzene methane (C3) 2.05 95.6 0.57 98.2 0.48 97.9 2.64 99.2 0.68 100.0 0.64 100.0 1.89 0.82 0.34 0.14 0.18 0.17
Benzene dimer (C2h) 9.34 93.5 1.67 98.2 1.52 96.7 9.57 99.1 2.49 100.0 2.50 100.0 2.35 3.74 0.56 0.41 0.24 0.11
Pyrazine dimer (Cs) 8.21 94.4 3.24 97.8 1.91 97.9 8.38 99.2 2.25 100.0 1.87 100.0 1.74 1.60 0.25 0.22 0.15 0.14
Uracil dimer stack (C2) 11.92 95.6 6.81 97.9 4.54 98.0 14.75 99.3 5.52 100.0 4.39 100.0 2.00 2.21 0.37 0.24 0.19 0.11
Indole benzene stack (C1) 11.82 93.7 3.02 98.0 2.56 98.0 11.52 98.9 2.80 100.0 2.86 100.0 1.13 1.03 0.21 0.12 0.18 0.12
Adenine thymine stack (C1) 15.36 95.1 8.58 98.0 4.73 98.1 18.06 99.1 5.37 100.0 4.08 100.0 1.43 1.80 0.17 0.14 0.12 0.08
Ethene ethyne (C2v) 2.67 92.1 0.52 98.1 0.38 97.4 2.80 98.6 0.81 100.0 0.64 100.0 1.57 1.27 0.36 0.18 0.23 0.14
Benzene water (Cs) 3.62 96.1 2.49 96.8 1.27 96.9 4.61 99.3 2.56 99.6 1.49 99.3 0.81 0.70 0.14 0.11 0.17 0.15
Benzene ammonia (Cs) 2.71 95.9 1.66 97.0 0.85 96.5 3.57 99.4 1.78 99.4 1.16 100.0 0.96 1.09 0.22 0.17 0.23 0.15
Benzene HCN (Cs) 2.93 96.2 1.16 98.3 0.83 97.6 3.29 99.4 1.27 100.0 1.19 100.0 1.17 1.51 0.23 0.22 0.20 0.15
Benzene dimer (C2v) 3.68 95.4 1.18 98.3 1.17 98.3 3.69 99.2 1.43 100.0 1.59 100.0 1.72 2.11 0.35 0.32 0.20 0.15
Indole benzene T-shape (C1) 6.08 95.2 2.33 97.9 1.77 98.3 6.66 99.2 2.55 100.0 2.36 100.0 1.02 1.05 0.17 0.14 0.17 0.13
Phenol dimer (C1) 7.52 95.3 5.31 97.4 2.52 97.2 10.86 99.0 5.28 99.8 3.02 100.0 0.89 1.19 0.14 0.17 0.16 0.14

Minimum 92.1 95.5 96.0 98.0 99.1 99.3 0.81 0.70 0.14 0.09 0.12 0.08
Mean 94.5 97.7 97.8 98.9 99.9 99.9 1.68 1.74 0.32 0.22 0.19 0.13
Maximum 96.2 100.0 100.0 99.4 100.0 100.0 2.94 3.74 0.72 0.42 0.28 0.17

the CPC is as expensive to obtain as all the energy terms in
Eq. (1).

Interestingly, not only does the DFPC approach capture
a slightly higher fraction of the CPC, it does so at a lower
relative cost compared to HFPC. This is primarily because
the DFT calculations employing ghost functions take longer
to converge making the SCF calculation of EA(A ∪ B) and
EB(A ∪ B) more expensive. Our perturbative scheme effec-
tively includes only one of these SCF cycles and is therefore
not plagued by this slower convergence.

IV. CONCLUDING REMARKS

Computational studies of weakly bound systems are im-
portant, especially in biological contexts and, in order to
calculate accurate interaction energies in these systems, the
BSSE must be corrected. This is usually done via the CPC
and, in the past, this has necessitated calculations that are sig-
nificantly more expensive than calculating the original inter-
action energy. In this work, we have applied the HFPC and
DFPC perturbative schemes to estimate the CPC at between
1/4 and 1/12 of the cost of a conventional CPC calculation.
Tests on the S22 set of weakly bounded complexes indicate
that these schemes recover almost all of the CPC and often
introduce no significant error at all.

Recently, other forms of CPCs, mainly dealing with in-
tramolecular BSSEs, have been proposed.27, 28 These proce-
dures involve dividing the molecule into many fragments and
calculate each using a large fraction of the full basis. Our ap-
proach applies immediately to such calculations and offers
major computational savings.

We conclude that the HFPC and DFPC schemes are ef-
fective tools for evaluating counterpoise corrections for both
HF and DFT calculations.
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