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We describe perturbative methods for improving finite-basis Hartree–Fock calculations toward the
complete-basis limit. The best method appears to offer quadratic error reduction and preliminary
numerical applications demonstrate that remarkably accurate Hartree–Fock energies can be
obtained. © 2009 American Institute of Physics. �DOI: 10.1063/1.3152864�

I. INTRODUCTION

Nonrelativistic ab initio quantum chemistry is a two-
dimensional convergence problem, in which the first dimen-
sion corresponds to the correlation treatment and the second
to the basis set. The solution of the Schrödinger equation1 is
found by converging both limits simultaneously, which is
known as full configuration interaction at the complete basis
set �CBS� limit.

Our interest here, however, is Hartree–Fock �HF� with a
CBS, a theoretical model that is sometimes called the HF
limit. Unfortunately, because a CBS is necessarily infinite,
such calculations are impossible in practice and even near-
CBS calculations are limited to small systems because of the
high scaling of the computational cost with basis set size.

Basis set extrapolation offers one route to estimating the
HF/CBS energy and is now widely used.2–10 However, it has
a number of weaknesses: it lacks a rigorous theoretical foun-
dation, its error cannot be rigorously bounded, extrapolated
energies are nonvariational, and its reliability depends on the
use of large basis sets.

We favor a different pathway. It is well known that the
energy from a small-basis HF calculation is often close to the
CBS limit and we therefore believe that a perturbative ap-
proach is the natural framework for estimating the small dif-
ference between them.

In this communication, we study three approaches �HF
perturbative corrections or HFPCs� that estimate the HF/CBS
energy by diagonalizing the Fock potential from a small �pri-
mary� basis in a near-complete �secondary� basis. These are
related to the various dual-basis schemes that have been de-
veloped by King and co-workers,11,12 Jurgens-Lutovsky and
Almlöf,13 Wolinski and Pulay,14 and Head-Gordon and
co-workers,15–18 but our methods retain all quadratic contri-
butions to the energy correction. Moreover, our best methods
remove a previously overlooked self-interaction error and
achieve a quadratic reduction in the energy error. Atomic
units are used throughout.

II. HARTREE–FOCK THEORY

The exact RHF orbitals �i of a 2m-electron system sat-
isfy the integrodifferential eigenequation,

F�i = �i�i, i = 1,2, . . . ,m , �1�

where, using standard notation,19 the Fock operator is

F = h + �
j

m

�2J j − K j� , �2�

the one-electron operator h is independent of the orbitals,
and the Coulomb and exchange operators are defined by

J j f�r� = f�r�� � j�r��� j�r��
�r − r��

dr�, �3�

K j f�r� = � j�r�� � j�r��f�r��
�r − r��

dr�. �4�

The exact RHF energy from these orbitals is

E = 2�
i

m

hii + �
ij

m

�2Jij − Kij� . �5�

It is easy to see from Eqs. �3� and �4� that

�Ji − Ki��i = 0 �6�

and, because of this, HF theory avoids the self-interaction
error that plagues many density functional models.

In practice, however, most HF calculations are per-
formed in an incomplete �primary� basis of n functions using
variational formalisms introduced by Roothaan,20 Hall,21 and
Pople and Nesbet.22 These yield approximate orbitals �i

�0�

and an associated approximate energy,

E�0� = 2�
i

m

hii
�0� + �

ij

m

�2Jij
�0� − Kij

�0�� , �7�

but, contrary to popular misconception, the �i
�0� are not

eigenfunctions of their Fock operator,

F�0� = h + �
j

m

�2J j
�0� − K j

�0�� , �8�

unless the basis exactly spans the �i. Our HFPC approach is
motivated by the suspicion that the true eigenfunctions �i

�1�

of F�0�, which satisfya�Electronic mail: peter.gill@anu.edu.au.
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F�0��i
�1� = �i

�1��i
�1�, �9�

are superior to the �i
�0� and should yield a better energy. To

explore this, we diagonalize F�0� in a near-complete �second-
ary� basis of N functions and then examine three ways to
estimate E from the resulting �i

�1�.

III. PERTURBATIVE CORRECTIONS

A. HFPC†1‡

In our simplest and cheapest approach, HFPC�1�, we
find the energy E�1� directly from the orbitals obtained by
diagonalizing F�0� in the secondary basis. The key weakness
of this is that, although the �i

�1� are eigenfunctions of F�0�,
they are not self-consistent with it and so

�Ji
�0� − Ki

�0���i
�1� � 0. �10�

Each of the �i
�1� is therefore corrupted by self-interaction and

when they are used to compute the energy

E�1� = 2�
i

m

hii
�1� + �

ij

m

�2Jij
�1� − Kij

�1�� , �11�

it, too, necessarily inherits a self-interaction error.
Table I summarizes the required steps, using � and � to

index primary basis functions, a and b to index secondary
basis functions, and i and j to index molecular orbitals. As
the table shows, we compute the overlap Sab and orthonor-
malization Xab matrices in the secondary basis, form Cou-
lomb ��� �ab� and exchange ��a ��b� integrals23 to construct
the Fock matrix F of the primary potential in the secondary
basis, transform F into an orthogonal basis, diagonalize F�,
back transform to form the MO coefficients Cai, and, finally,
compute the energy.

B. HFPC†2‡

HFPC�2� addresses the shortcomings in HFPC�1� by re-
moving the offending self-interaction terms and forming a
different Fock operator,

Fi
�0� = F�0� − �Ji

�0� − Ki
�0�� , �12�

for each orbital and then solving

Fi
�0��i

�2� = �i
�2��i

�2�. �13�

As Table I shows, additional work is required to form and
diagonalize the m Fock matrices, but the remainder of the
algorithm is unchanged.

This is essentially the Perdew–Zunger self-interaction
correction24 and its key weakness is that the orbitals �i

�2� are
eigenfunctions of different Fock operators and therefore no
longer necessarily orthogonal. As a result, the use of the
standard HF energy formula,

E�2� = 2�
i

m

hii
�2� + �

ij

m

�2Jij
�2� − Kij

�2�� , �14�

is not strictly justified and E�2� is not variational.

C. HFPC†3‡

In HFPC�3�, we solve the nonorthogonality problem by
constructing a set of orthonormal orbitals �i

�3� that span the
same space as the occupied �i

�2�. As Table I shows, this in-
volves the construction and diagonalization of the overlap
matrix between the �i

�2�, but the additional cost is modest.
The orthonormalization reintroduces a tiny self-interaction
error and the final energy is

E�3� = 2�
i

m

hii
�3� + �

ij

m

�2Jij
�3� − Kij

�3�� . �15�

Because this expression is invariant to orbital rotations, E�3�

is independent of the orthonormalization procedure. Like
E�1�, it is also variational.

IV. NUMERICAL RESULTS

A. Computational details

Primary HF calculations used Jensen’s polarization-
consistent basis sets25–27 and the Q-CHEM 3.2 package.28 Cal-
culations on Li and N were spin unrestricted.

HFPC calculations used MATHEMATICA 6.0 �Ref. 29� and
our results are summarized in Table II. The secondary basis
consisted of 45 even-tempered Gaussians30 for He, Li, and
Be �augmented with five diffuse functions for He� and simi-
larly large basis sets from Jensen31 for H, N, and Ne. Though
none of these bases is complete,32 they are nearly so and
yield all of the digits in the “HF/CBS” energies in Table II.
They are all much larger than the pc-4 basis. Of course, for
routine HFPC calculations on larger systems, it will be im-
portant to choose secondary bases that exploit the full poten-
tial of HFPC while remaining computationally tractable. For
comparison, we also used the HF/pc-3 and HF/pc-4 energies
to generate the extrapolated7 energy

Eext =
EHF/pc-4 − e−2.5EHF/pc-3

1 − e−2.5 . �16�

B. Singlet He atom

The pc-0 basis for He consists of only two s functions
and the HF/pc-0 energy lies 28 mEh above the HF limit.
However, even this relatively crude starting point yields re-

TABLE I. Formal costs of steps in the three HFPC schemes �n is the size of
the primary basis and N is the size of the secondary basis�.

HFPC�1� HFPC�2� HFPC�3�

Primary SCF O�n4� O�n4� O�n4�
Form Sab O�N2� O�N2� O�N2�
Form Xab O�N3� O�N3� O�N3�
Form Fi O�n2N2� mO�n2N2� mO�n2N2�
Form Fi� O�N3� mO�N3� mO�N3�
Diagonalize Fi� O�N3� mO�N3� mO�N3�
Form Cai mO�N2� mO�N2� mO�N2�
Form ��i

�2� �� j
�2�	 m2O�N�

Form Xij m3O�1�
Orthogonalize Cai m2O�N�
Form E�1,2 or 3� O�N4� O�N4� O�N4�
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markably accurate HFPC energies. The best of these,
HFPC�3�/pc-0, is only 28 �Eh above the HF limit and is, in
fact, competitive with the HF/pc-3 energy. We found that
HFPC�3�/pc-1 is comparable to HF/pc-4 and that HFPC�3�/
pc-3 misses the CBS limit by only 20 picohartree.

C. Triplet He atom

The Rydberg orbitals of helium are very diffuse33 and it
is not surprising to find that the HF /pc-n energies of the 1s2s
triplet state are poor. Yet, Table II shows that HFPC is ca-
pable of yielding accurate energies, even from these bad
starting points. The HF/pc-0 energy is too high by roughly 1
hartree, but the HFPC�1�/pc-0 error is only 80 mEh, which is
comparable to HF/pc-3. The self-interaction error is evi-
dently significant because, when we move to HFPC�2�/pc-0,
the error drops to 2 mEh. The pattern is similar for larger
primary basis sets and suggests that HFPC is an effective
tool for improving both crude and accurate HF calculations.
It is reassuring to find that the HFPC�2� and HFPC�3� errors
are invariably close, for this indicates that the nonorthogo-
nality errors in HFPC�2� are small.

D. H2 molecule

We used the bond length R=1.4 bohr, targeting the HF
energy at the spd-limit using Cartesian d functions and drop-
ping the f and g functions from the pc-3 and pc-4 bases.
Table II shows that HFPC�3� gives improvements of two,
three, and four orders of magnitude when used with the pc-0,
pc-1, and pc-2 basis sets, respectively, and the HFPC�3�/pc-2
error is a mere 28 nEh. We are particularly encouraged by
the accuracy of HFPC�3�/pc-0 because this basis contains
only two s functions per hydrogen atom. To the extent that
we can generalize from this result, it suggests that accurate
HFPC results for molecular systems may not require a polar-
ized primary basis. This contrasts with the dual-basis
�DBHF� findings of Steele et al.,17 but these authors system-
atically ignore terms that are quadratic in the density matrix
improvement.

To explore this, we used DBHF and HFPC�1� to estimate
the HF /6-311++G�3df ,3pd� energy of the H2 molecule.
Using 6-311G� as the primary basis,17 DBHF gives an error
of 0.7 mEh. Remarkably, using STO-3G as the primary ba-
sis, HFPC�1� gives an error of 0.3 mEh.

TABLE II. Errors �hartrees� in E�0�, E�1�, E�2�, E�3�, and Eext for He, H2, Li, Be, N, and Ne

HF/CBS

Primary basis

�Eextpc-0 pc-1 pc-2 pc-3 pc-4

He �1S� �2.861 679 995 612a �E�0� 3�10−2 8�10−3 7�10−4 3�10−5 5�10−6 +3�10−6

�E�1� 2�10−4 6�10−5 3�10−6 6�10−8 1�10−8

�E�2� 3�10−5 7�10−6 1�10−7 2�10−11 2�10−12

�E�3� 3�10−5 7�10−6 1�10−7 2�10−11 2�10−12

He �3S� �2.174 250 78b �E�0� 1�10−0 7�10−1 2�10−1 7�10−2 4�10−2 +4�10−2

�E�1� 8�10−2 2�10−2 3�10−2 1�10−2 8�10−3

�E�2� 2�10−3 8�10−4 6�10−5 9�10−6 4�10−6

�E�3� 2�10−3 7�10−4 6�10−5 9�10−6 4�10−6

H2 �1S� �1.133 628 674 6c �E�0� 1�10−2 3�10−3 3�10−4 1�10−5 2�10−6 +2�10−6

�E�1� 2�10−4 4�10−5 4�10−6 4�10−8 8�10−9

�E�2� 9�10−5 2�10−6 3�10−8

�E�3� 9�10−5 2�10−6 3�10−8

Li �2S� �7.432 750 92 �E�0� 2�10−2 5�10−3 2�10−3 7�10−4 8�10−5 +3�10−5

�E�1� 3�10−4 4�10−5 5�10−5 4�10−6 3�10−7

�E�2� 5�10−6 3�10−7 2�10−6 2�10−7 3�10−8

�E�3� 5�10−6 4�10−7 2�10−6 2�10−7 3�10−8

Be �1S� �14.573 023 17d �E�0� 4�10−2 8�10−3 2�10−3 6�10−4 1�10−4 +9�10−5

�E�1� 1�10−3 3�10−5 3�10−5 2�10−6 3�10−7

�E�2� 4�10−5 3�10−6 4�10−6 2�10−7 2�10−8

�E�3� 4�10−5 3�10−6 3�10−6 1�10−7 2�10−8

N �4S� �54.404 548 301 �E�0� 2�10−1 3�10−2 4�10−3 5�10−4 4�10−5 −8�10−6

�E�1� 3�10−3 3�10−4 2�10−5 7�10−7 3�10−8

�E�2� 2�10−4 3�10−5 3�10−6 7�10−8 2�10−9

�E�3� 2�10−4 3�10−5 3�10−6 6�10−8 2�10−9

Ne �1S� �128.547 098 108 �E�0� 5�10−1 1�10−1 9�10−3 7�10−4 5�10−5 −7�10−7

�E�1� 4�10−3 4�10−4 2�10−5 4�10−7 5�10−8

�E�2� 5�10−4 6�10−5 2�10−6 1�10−7 2�10−9

�E�3� 5�10−4 7�10−5 2�10−6 1�10−7 2�10−9

aReference 37.
bReference 33.
cReference 38.
dReference 39.
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E. Larger atoms

The application of HFPC to Li, Be, N, and Ne atoms
yields HFPC�1� energies that are typically two orders of
magnitude more accurate than the corresponding HF ener-
gies and HFPC�2� energies that are usually one or two orders
of magnitude more accurate again. As we also observed for
the triplet He atom, the HFPC�3� results indicate that the
nonorthonormality of the HFPC�2� orbitals has negligible en-
ergetic effects.

V. CONCLUDING REMARKS

HFPCs are noniterative approaches that improve a finite-
basis HF calculation on a given molecule toward the CBS
limit. We have shown that they yield significant improve-
ments even if the primary basis is only of moderate quality
and our results suggest that, in the best cases, they offer a
quadratic reduction in the relative error. We will present a
theoretical rationalization of this unexpectedly good result in
a forthcoming paper.

We found that HFPC�1�/pc-0 is usually more accurate
than conventional HF/pc-2 and it follows, for example, that
HFPC�1� may allow HF energies of triple-zeta quality to be
obtained cheaply from single-zeta calculations, a possibility
with far-reaching practical applications.

The more complex corrections, HFPC�2� and HFPC�3�,
are even more accurate but require the formation of multiple
Fock matrices and are necessarily more expensive. We are
implementing all three methods in the Q-CHEM package and
will report comprehensive accuracy and timing benchmark-
ing on larger systems elsewhere. HFPC is a rigorous alterna-
tive to basis set extrapolation and should be useful in future
high-level composite methods such as the HEAT,34 Wn,35

and Gn �Ref. 36� families.
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