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We examine the question of whether the formal expressions of equilibrium statistical mechanics can
be applied to time independent nondissipative systems that are not in true thermodynamic
equilibrium and are nonergodic. By assuming that the phase space may be divided into time
independent, locally ergodic domains, we argue that within such domains the relative probabilities
of microstates are given by the standard Boltzmann weights. In contrast to previous energy
landscape treatments that have been developed specifically for the glass transition, we do not impose
an a priori knowledge of the interdomain population distribution. Assuming that these domains are
robust with respect to small changes in thermodynamic state variables we derive a variety of
fluctuation formulas for these systems. We verify our theoretical results using molecular dynamics
simulations on a model glass forming system. Nonequilibrium transient fluctuation relations are
derived for the fluctuations resulting from a sudden finite change to the system’s temperature or
pressure and these are shown to be consistent with the simulation results. The necessary and
sufficient conditions for these relations to be valid are that the domains are internally populated by
Boltzmann statistics and that the domains are robust. The transient fluctuation relations thus provide
an independent quantitative justification for the assumptions used in our statistical mechanical
treatment of these systems. © 2007 American Institute of Physics. �DOI: 10.1063/1.2780161�

I. INTRODUCTION

The formal expressions of equilibrium statistical me-
chanics strictly apply only to ergodic systems that are in
thermodynamic equilibrium. Thus these expressions only
strictly apply to systems which are at the global free energy
minimum given the system Hamiltonian and the macroscopic
thermodynamic state variables �number of particles, tem-
perature and pressure, or density�. For such systems Gibb-
sian equilibrium statistical mechanics provides an exact pre-
scription for how to calculate the various thermodynamic
quantities.1 However, these prescriptions are routinely ap-
plied to systems that are not in true thermodynamic equilib-
rium �for example, to metastable liquids,2 glasses,3

polymorphs,4 and allotropes�. It is often observed empirically
that within experimental uncertainties many expressions for
thermodynamic quantities yield consistent results. In the
present paper we provide arguments for why many of the
results of equilibrium statistical mechanics can be applied to
such time independent nondissipative nonequilibrium sys-
tems. We also point out some of the limits inherent in the
application of the formulas of equilibrium statistical mechan-
ics to such systems.

We choose to study the isothermal isobaric ensemble5

�externally regulated pressure and temperature�. The meth-
ods and reasoning we use here can be directly transferred to
other ensembles such as the canonical �fixed volume and
externally regulated temperature�. The Gibbs free energy G,

which is the thermodynamic potential for the isothermal iso-
baric ensemble, is related to the partition function � by the
equation

G�N,P0,T� = − kBT ln ��N,P0,T� , �1�

and the partition function is given by the integral

� =� �
D

dVd� exp�− ��H0��� + P0V�� , �2�

where �= �q ,p� is the phase space vector describing the co-
ordinates q and momenta p, of all the N particles in the
system, P0 is the thermodynamic pressure, and �=1/kBT
where kB is Boltzmann’s constant and T is the temperature.
The integration domain D provides limits for both integrals
and extends over all the available phase space �� ,V�. This is
±� for every component of the generalized momentum, 0
→� for the volume V, and over the volume for the Cartesian
coordinates of the particles. Since the system Hamiltonian
H0�� ,V� is single valued, so too is the partition function and
in turn the free energy.

If we require the distribution function of a single ther-
modynamic phase it is necessary that other phases do not
contribute significantly to the partition function. The full in-
tegration domain D may include states that are characteristic
of crystalline states or fluids states. In the thermodynamic
limit this does not cause problems because, as we shall see,
the partition function will be completely dominated by those
microscopic domains that have the lowest free energy. How-
ever the application of these formulas to allotropes or meta-
stable systems does present a problem. The standard equilib-
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rium statistical mechanical expressions for variables such as
the enthalpy I, the average volume �V�, and second order
quantities such as the specific heat at constant pressure cP

may all be computed from a knowledge of the partition func-
tion �Eq. �2�� or equivalently the thermodynamic potential
�Eq. �1��. If other phases of lower free energy exist this com-
putation �from Eq. �2� as written� will strictly speaking be
incorrect.

It is well known that the formulas for thermal properties
such as entropy, free energy, temperature, and specific heat
do not hold for dissipative nonequilibrium systems outside
the linear response regime.6,7 In this paper we examine the
question of whether they are correct for any nondissipative
nonequilibrium systems such as allotropes, metastable sys-
tems, or history dependent glasses. We provide a statistical
mechanical theory of time independent, nondissipative, non-
equilibrium systems. The theory is based on the fact that
these systems are nonergodic and individual sample systems
comprise ergodic domains that do not span all of phase
space. We show that if these domains are robust with respect
to small changes in thermodynamic state variables, a suc-
cessful statistical mechanical treatment of these nonequilib-
rium systems can be given. We provide direct evidence, from
molecular dynamics simulations on a model glass former,
that the resulting statistical mechanical formulas are satisfied
within empirical errors. Finally we provide an independent
test of the two key elements of our theory: Boltzmann
weights within the phase space domains and the robustness
of those domains. It happens that these two elements are the
necessary and sufficient conditions for the application of the
transient fluctuation relation to finite thermodynamic
quenches �in temperature or pressure� for such systems.8

While the application of thermodynamics to a single time
averaged system is usually straightforward the application to
an ensemble, whose members may be locked in different
phase space domains, can require modification to the stan-
dard formulas.

In the case of glasses our treatment has some similarities
with the energy landscape approach of Stillinger and
Weber.3,9,10 However, there are significant differences; our
treatment makes no reference to the inherent structure and
imposes no a priori knowledge of the interdomain relative
population levels. The energy landscape approach has been
extended to account for the phenomena of aging or history
dependence by the addition of a fictive parameter.11 Sciortino
has convincingly shown that the addition of a single fictive
parameter is inadequate to deal with glasses, which may
have different properties at the same temperature and pres-
sure if they are prepared by a different protocol �different
history dependence� �Ref. 11� and poses the challenge to
recover a thermodynamic description “by decomposing the
aging system into a collection of substates.” The treatment
we present here succeeds in doing just that by providing a
rigorous development of equilibrium statistical mechanics
and thermodynamics for ensembles of systems where the
phase space breaks up into ensembles of domains whose in-
terdomain dynamics is nonergodic and whose interdomain
population levels may not be Boltzmann weighted.

II. CONDITIONS FOR EQUILIBRIUM

A dynamical system in equilibrium has the properties
that it is nondissipative and that its macroscopic properties
are time independent. Thus the N-particle phase space distri-
bution function f�� ,V , t� must be a time independent solu-
tion to the Liouville equation,7

�

�t
f���,t� = − �̇� · �f���,t� − f���,t�� = 0, �3�

where � is the phase space compression factor7 obtained by
taking the divergence of the equations of motion �see Eq.
�5�� and �� is the extended phase space vector which con-
sists of � and may include additional dynamical variables
such as the volume V. Since the system is assumed to be
nondissipative both the ensemble average ��� and the time

average �̄ of the phase space compression factor �which is
directly proportional to the rate at which heat is exchanged
with the fictitious thermostat� are zero. The time independent
solution to Eq. �3� depends on the details of the equations of
motion. Equilibrium solutions to Eq. �3� for the equations of
motion, suitable for use in molecular dynamics simulations,
are compatible with Gibbsian equilibrium statistical
mechanics.7

Microscopic expressions for mechanical properties such
as the pressure, the internal energy, the enthalpy, and the
volume can be derived without reference to Gibbsian statis-
tical mechanics and indeed can be proved to hold for non-
equilibrium systems including nonequilibrium dissipative
systems.

There are two ways in which the formulas derived from
Gibbsian equilibrium statistical mechanics can break down.
The most obvious way is that the relative weights of mi-
crostates may be non-Boltzmann and the exponential factor
exp�−�H0����, may be replaced by some other function �ei-
ther the exponential function itself may be modified as in
Tsallis statistics12 or the Hamiltonian may be modified to
some new function H0���→B�� , t�H0����. In either circum-
stance the standard expressions for the thermal quantities de-
rived from equilibrium Gibbsian statistical mechanics will
not be valid. This certainly happens in dissipative nonequi-
librium systems where the distribution function is not a time
independent solution to Eq. �3�.

In deterministic nonequilibrium steady states the phase
space may break down into ergodically separated domains
�Each of which will be fractal and of lower dimension than
the ostensible phase space dimension. This is a consequence
of dissipation.� However for these steady states, the domains
are always exquisitely sensitive to macroscopic thermody-
namic parameters since they are strange fractal attractors.13

Often a deterministic nonequilibrium steady state approaches
a unique fractal attractor. As time progresses the distribution
function collapses ever closer to �but never reaching� the
steady state attractor.

The second way that these expressions may fail is that
the system may become nonergodic. In this case three things
happen. �a� Most obviously time averages no longer equal
full �domain D� ensemble averages. �b� If we take an initial
microstate the subsequent phase space trajectory will span
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some phase space domain D� where the initial phase is la-
beled ����0�. In this case for nondissipative nonequilibrium
systems where the domains are robust �i.e., small changes in
thermodynamic state parameters to leading order do not
change the domain� the standard equations of equilibrium
statistical mechanics may continue to be valid but in a
slightly modified form. We will examine this in some detail
below. �c� Given robust domains the population densities be-
tween each domain may well depend on the history of the
system. The macroscopic history can be expected to condi-
tion the ensemble’s set of initial microstates �����0�	 from
which the macroscopic material is formed. This in turn can
be expected to condition the set of nonergodic domains �D�	
that characterize the ensemble. For a macroscopic sample
spanning a single ergodic domain D�, the free energy G�

then satisfies only a local extrema principle and thus looses
much of its thermodynamic meaning.

III. THEORY AND METHODS

A. Equations of motion

We use the constant pressure Nosé-Hoover equations of
motion by combining the Nosé-Hoover feedback mechanism
with the so-called SLLOD or DOLLS equations of motion,7

which are equivalent for dilation. It is known that these equa-
tions of motion do not produce artifacts in the systems linear
response to an external field and that to leading order the
effect on the dynamical correlation functions is at most
O�1/N�, where N is the number of particles.7 The equations
of motion are,

q̇i =
pi

m
+ �Vqi,

ṗi = Fi − �Vpi − �Tpi,

�̇V = 
 V�t�
NkBT

�P�t� − P0� +
1

N
�� �V

2 , �4�

�̇T = 
i=1
N pi · pi

3mNkBT
− 1 +

1

N
�� �T

2 ,

V̇ = 3�VV ,

where qi is the position, pi is the momentum, and Fi is the
force on the ith particle, m is the particle mass, �V is the
barostat time constant, �T is the thermostat time constant, T
is the input temperature, P0 is the input �thermodynamic�
pressure, and the instantaneous �mechanical� pressure is
given by P�t�= �i=1

N pi ·pi /m+i=1
N Fi ·qi� /3V. Because these

equations of motion have additional dynamical variables the
extended phase space vector is ��= �� ,V ,�V ,�T�. In order to
obtain the equilibrium distribution function we first define
the Hamiltonian, in the absence of any external fields, dila-
tion �V�t�=0, or thermostats �T�t�=0, as H0=�

+ 1
2i=1

N pi ·pi /m, where � is the total interparticle potential
energy. To proceed further we identify the extended Hamil-
tonian as HE=H0+ 3

2N�T
2�T

2kBT+ 3
2N�V

2�V
2kBT and then obtain

the phase space compression factor

� � � · �̇� = 
i=1

N


�=1

3
�q̇i,�

�qi,�
+ 

i=1

N


�=1

3
�ṗi,�

�pi,�
+

�V̇

�V
+

��̇V

��V

+
��̇T

��T
= ��ḢE + P0V̇� , �5�

where the index � sums over the components of the Carte-
sian position and momentum vectors. Using the Heisenberg
streaming representation �rather than the more usual
Schrödinger representation �Eq. �3��� of the Liouville equa-
tion

d

dt
ln�f����t�,t�� = − �����t�� , �6�

we can obtain the particular time independent solution for
the distribution function,

f���� 	 exp�− �I0�exp�− 3
2N��T

2�T
2 + �V

2�V
2�� , �7�

where I0�t�=H0�t�+ P0V�t� is the instantaneous enthalpy. The
second exponential on the right hand side of Eq. �7� with �V

and �T in the argument, which has no dependence on the
input temperature T or the input pressure P0, is statistically
independent from the rest of the distribution function, which
is the standard equilibrium isothermal isobaric distribution.
We can normalize Eq. �7� by integrating over all space to
obtain the thermodynamic equilibrium distribution function,

f���� =
3

2
N

�V�T



exp
−

3

2
N��T

2�T
2 + �V

2�V
2�� f0��,V� , �8�

where the standard isothermal isobaric distribution function
is

f0��,V� =
exp�− ��H0 + P0V��

�0
�dV�Dd� exp�− ��H0 + P0V��

. �9�

It should be emphasized that the derivation of Eq. �7� says
nothing about the existence or otherwise of any domains.
These must be considered when normalizing Eq. �7�, and
thus Eqs. �8� and �9� are only valid in thermodynamic equi-
librium. If we wish to use Eq. �7� outside thermodynamic
equilibrium we must consider domains.

We can also use the so called SLLOD equations of
motion7 to apply strain rate controlled Couette flow �planar
shear� to our equations of motion. The necessary modifica-
tions to the first two lines of Eq. �4� result in

q̇i =
pi

m
+ �Vqi + i�̇qyi,

�10�
ṗi = Fi − �Vpi − �Tpi − i�̇pyi,

where �̇ is the strain rate and the last three lines of Eq. �4�
remain unchanged.

B. Equilibrium statistical mechanics in a single
domain

As we have stated in the introduction, the full phase
space domain includes phase points from many different
thermodynamic phases �gases, liquids, and crystals�. In the
thermodynamic limit this does not cause problems. To under-
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stand this suppose we can label microstates to be in either of
two possible thermodynamic phases 1 or 2 bound by two
phase space domains D1 and D2. By assumption we are not
presently considering the possibility of coexistence. The sys-
tem is assumed to be ergodic: atoms in one thermodynamic
phase can, in time, transform into the other phase. Assume
that the two thermodynamic phases have different free ener-
gies: G1 is the Gibbs free energy of the first phase and G2 is
that of the second phase. For a sufficiently large N the free
energy �Eq. �1�� is an extensive variable. We may thus ex-
press the partition function as the sum of contributions from
the two phases

� = e−�G1 + e−�G2 = e−�Ng1 + e−�Ng2, �11�

where the lower case g on the second line is used to repre-
sent the intensive free energies which do not change with
system size N in the thermodynamic limit. If g1 is less than
g2 then in the thermodynamic limit, N→�, the only signifi-
cant contribution to the partition function � will be due to
the “equilibrium” phase, namely, phase 1. Thus although the
free energy defined in Eq. �2�, is given by an integral over all
of phase space D, in the thermodynamic limit this integral
can be approximated to arbitrary precision, as an integral
over the domain that includes the most stable phase. Suppose
D1 includes only crystalline phases and D2 includes only
amorphous phases and further suppose that a particular crys-
talline phase has a lower free energy than any amorphous
phase. According to Eq. �2�, we should calculate the free
energy by integrating over all crystalline and all amorphous
phases. In practice in the thermodynamic limit we can com-
pute the free energy to arbitrary accuracy by integrating Eq.
�2�, only over that part of phase space within which the ther-
modynamically stable state resides.

If we consider a nonergodic system that according to
different preparative protocols can be formed in either phase
1 or phase 2, after preparation, because the system is noner-
godic both phases are kinetically stable indefinitely. By re-
stricting the phase space integrals for the free energy to those
domains that contain the kinetically stable phase we can
compute the free energy of that phase. However, although it
may be possible to formally assign free energies to noner-
godic systems, these free energies clearly fail to satisfy any
global extremum principle. As we will show these partition
functions can be used formally to yield first and second order
thermodynamic quantities by numerical differentiation. The
metastable domain is a subset of the thermodynamic equilib-
rium domain which contains all possible atom positions in-
cluding the ones belonging to the metastable phase.

Within a single domain the system is, by construction,
ergodic. Thus for almost all microstates ����0��D�, en-
semble averages, of some variable B, �B�, equal time aver-

ages B̄, for phase space trajectories that start at time zero,

�B�� = B̄� � lim
t→�

1

t
�

0

t

dsB����s�;����0�� . �12�

Microscopic expressions for mechanical variables may be
used as a test of ergodicity in nondissipative systems which
are out of equilibrium. �Note that a nondissipative system

does not on average exchange heat with any thermal reser-
voir with which it has been in contact for a long time.� In the
case of metastable fluids or allotropes we may introduce a
single restricted domain and by construction the system re-
mains ergodic within this domain.

A gedanken experiment can be used to justify the Bolt-
zmann weighting and the applicability of the zeroth law of
thermodynamics for such systems. Consider a double well
potential with an inner and outer potential well. If the barrier
between the inner and outer wells is much greater than kBT,
so that over the duration of observation �which is much
greater than any relaxation time in the ergodically restricted
subsystem� no particles cross the barrier, then the system
considered as a double well system will be, by construction,
nonergodic. For systems composed of particles that are
solely found in the inner potential well, our hypotheses are
that the distribution of states in the inner well will be given
by a Boltzmann distribution taken over the inner domain
only and that, if such a system is in thermal contact with a
body in true thermodynamic equilibrium, then the tempera-
ture of the ergodically restricted system must equal that of
the system in true thermodynamic equilibrium. We can jus-
tify these hypotheses by considering a fictitious system that
only has the inner potential well and in which the potential
function is positive infinity for all separations that are greater
than the inner well �this includes the position of the outer
well�. In accord with Gibbsian statistical mechanics the dis-
tribution of states is canonical over this �single well� poten-
tial. Furthermore the zeroth law of thermodynamics will ap-
ply to this single well system. Now if we dynamically
generate the outer well, all the particles locked inside the
inner well cannot “know” that the outer well has been
formed so their dynamics will be completely unchanged by
the time dependent generation of the new outer well. The
generation of an inaccessible outer well will not alter the
distribution of states in the inner well nor will it cause any
flow of heat to the equilibrium heat bath surrounding the
system. This provides a compelling physical justification for
our domain hypotheses over a single ergodic subdomain of
phase space.

In order to recover many of the basic relationships of
Gibbsian statistical mechanics it is also necessary that the
system appears to be in dynamical equilibrium, i.e.,
�f��� , t�− f��� , t+�o���� , ∀�� , �D�, for some small �,
over the longest observation time �o. We use the definition of
the partition function �Eq. �2�� as before but now the domain
D� in the integral is over a single contiguous hypervolume in
the configuration space of the generalized position coordi-
nate q and volume V. The domain over the generalized mo-
mentum p and multipliers �V and �T remains unchanged. We
then obtain the Gibbs free energy by use of Eqs. �1� and �2�.
Thus far all we have altered is our definition of the domain.
In changing the definition of the domain we have opened a
potential problem for Gibbsian statistical mechanics. If we
change the temperature or the pressure of the system the
domain may also change. If the domain changes this may
make a contribution to the derivatives of the partition func-
tion, Eq. �2�, and the direct connection with the standard
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outcomes of macroscopic thermodynamics will be lost. Thus
the domains need to be robust with respect to changes in
thermodynamic state variables.

There are three means by which a system could have
robust domains. The first and most obvious is that the do-
main does not change when the pressure or the temperature
changes, �D��X ,Y� /�X=0, where X is a thermodynamic
state variable and Y is the other thermodynamic state vari-
ables. When we lower the temperature only the inverse tem-
perature � in Eq. �7� changes and when we change the pres-
sure only the parameter P0 changes. If the domain’s
boundary is determined by a surface on which I0���� always
has a very high value it will remain unchanged under infini-
tesimal changes in P0 or �. We will refer to a surface domain
that doesn’t change with the state variables as completely
robust. The second way is that the distribution function is
always identically zero on the domain boundary,

f0��,V� = 0 ∀ � � S�, �13�

where S� is the surface of the domain D�. Because the do-
main is contiguous �required for it to be ergodic� it must
have a single connected surface. Such a domain will be ro-
bust. The third way the domain can be robust is less restric-
tive and allows for the possibility that the domain does
change when the thermodynamic variables are changed sub-
stantially. If X is an infinitesimal change in a thermody-
namic state variable, then

D��X + X,Y� = D��X,Y� + O�X�n, �14�

where Y denotes the other thermodynamic state variables; we
require that n�2 for first order thermodynamic property for-
mulas to be correct, n�3 for second order property formulas
to be correct, etc. Obviously this third way will be satisfied
in the first two cases as well.

Later in the paper we will introduce an independent test
of domain robustness. However, if a system was not robust
then we would expect that small changes in the state vari-
ables would change the macroscopic properties of the sample
permanently—it would be as though the preparation history
of the sample was continuing even for small changes in the
state variable. Quite obviously if we produce huge changes
in the state variables we will of course permanently change
the properties of the system because we permanently deform
the ergodic domain. Experience shows, however, that very
many nondissipative nonequilibrium systems are quite robust
with respect to small changes in state variables. All that is
required for fluctuation formulas for first, second, and third
order thermodynamic quantities to be valid is that the do-
mains be unchanged, to first, second, or third order, by in-
finitesimal changes in the state variables. Obviously a robust
domain is an ideal construct. However, on the typical time
scale of interest, which is usually orders of magnitude less
than the time scale on which the system will change to a new
phase of lower free energy, this can be a very good approxi-
mation.

We are now able to recover most of the standard results
of Gibbsian equilibrium statistical mechanics. For example,
we may calculate the enthalpy �I�� from the partition func-
tion �, Eq. �2�, as

�I�� = kBT2
 � ln �D�

�T
�

=
� �D�

dVd�I0��,V�exp�− �I0��,V��

� �D�
dVd� exp�− �I0��,V��

= Ī�. �15�

Here we are considering an ensemble of systems which oc-
cupy a single ergodic domain D�. Since this domain is self-
ergodic the ensemble average is equal to the corresponding
time average.

The term on the right hand side of the second line is
obviously the average value of the instantaneous enthalpy
I0�� ,V�=H0�� ,V�+ P0V, obtained by using the equilibrium
distribution function, Eq. �9� or equivalently Eq. �8�, with the
integration limits restricted to the domain D�, where P0 is
the externally set thermodynamic pressure. We can also ob-
tain expressions for the average volume �V� and the constant
pressure specific heat cP by taking the appropriate deriva-
tives of the partition function, Eq. �2�. In other ensembles we
can use the same procedure to find other variables, e.g., the
internal energy, the average pressure, and the constant vol-
ume specific heat in the canonical �N ,V ,T� ensemble.

An important outcome is that this description remains
compatible with macroscopic thermodynamics. Here the
Gibbs free energy is defined as

G � U − TS + P0�V� , �16�

where U= �H0� is the internal energy and S is the entropy. If
we take the derivative of Eq. �16� with respect to one of the
isobaric isothermal ensemble conjugate variables �N , P0 ,T�
while keeping the others fixed we obtain


dG

dT
�

N,P0

= − S ,

�17�


 dG

dP0
�

N,T
= �V� .

We now write down the microscopic equilibrium equation
for the Gibbs entropy,

S = − kB� �
D�

dVd�f0��,V�ln f0��,V� . �18�

It is an easy matter to show that Eqs. �1�, �2�, and �18� are
consistent with the two derivatives given in Eq. �17�. Given
our condition of a robust boundary we thus have a form of
Gibbsian statistical mechanics for metastable states which
remains in agreement with macroscopic thermodynamics.

C. Multiple domains and nonergodicity

We now wish to consider an ensemble of systems which
is prepared from an initial ergodic �usually high temperature�
equilibrium ensemble. There is some protocol P, which in-
volves a temperature quench or a sharp pressure increase,
etc., which breaks the ensemble into a set of subensembles
characterized by different macroscopic properties. After the
protocol P has been executed we allow all the ensemble
members to relax to states which are macroscopically time
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independent, to within experimental tolerances. We assume
that the ensemble can be classified into a set of subensembles
�� ,�=1,ND	 whose macroscopic properties take on ND dis-
tinct sets of values. For the longest observation times avail-
able a macroscopic system classified as an � system is not
observed to transform into a � system, and vice versa. The
full ensemble of systems is thus nonergodic. However, in
each individual subensemble, say, subensemble �, the con-
stituent members are ergodic �by construction�. Thus we can
partition the full phase space into a set of domains �D�	.

From the arguments given above �in Sec. B�, after the
relaxation of initial transients, we expect to observe a Bolt-
zmann distribution of states within an individual domain
which is therefore independent of the quench protocol. How-
ever the distribution between domains cannot be expected to
be Boltzmann distributed and will instead be dependent on
the quench protocol. Within a given ensemble the proportion
of ensemble members ultimately found in domain D� is
given by a weight w��P� which is subject to the constraint


�=1

ND

w� = 1. �19�

We can calculate the full ensemble average of some macro-
scopic property B as

�B� = 
�=1

ND

w�

� �D�
dVd�B��,V�exp�− �I0�

� �D�
dVd� exp�− �I0�

. �20�

Since the full ensemble of states is nonergodic the phase
space breaks up into disjoint domains which in themselves
are ergodic. Thus each domain may be identified by any
point in phase space �� ,V� that is a member of it so the
subscript � is a function of the phase vector ��� ,V� allowing
the following expression for the distribution function:

f��,V� = 
�=1

ND

w�s��,D��f���,V� , �21�

where s�� ,D��=1 if ��D� and s�� ,D��=0, otherwise, and

f���,V� =
exp�− �I0��,V��

�0
�dV�D�

d� exp�− �I0��,V��
. �22�

The entropy is given by S=−kB�0
�dV�Dd�f ln�f� and using

Eq. �21� we have the following expressions for the multido-
main entropy:

S = − kB
�=1

ND

w��� �
DV

dV d�f� ln�f�� + ln�w���
= 

�=1

ND

w�S� − kB
�=1

ND

w� ln�w�� . �23�

The term −�=1
ND kBw� ln�w���SD is the interdomain entropy,

which is maximized by an even distribution of ensemble
members over all domains, while S� is the intraentropy of
domain � considered as a single N-particle system.

If we substitute Eq. �22� into Eq. �23� we find that

S = SD + T−1
�=1

ND

w��I0��

+ kB
�=1

ND

w� ln � �
D�

dV d� exp�− �I0��,V��

= SD + T−1�I0�

+ kB
�=1

ND

w� ln � �
D�

dV d�exp�− �I0��,V�� , �24�

where �B��=��D�
dVd�B���f��� ,V�. Combining Eq. �16�

with Eq. �24� we obtain the following expression for the
Gibbs free energy:

G = − kBT
�=1

ND

w��ln � �
D�

dVd� exp�− �I0� − ln�w���
= 

�=1

ND

w�G� − SDT . �25�

It is easy to verify that if we hold the local domain weights
fixed and then vary the temperature or the pressure Eqs. �23�
and �25� are compatible with Eqs. �17�. This means that if we
have a fixed number of robust domains, whose population
levels or weights are non-Boltzmann distributed, Eqs. �25�
and �23� provide a direct microscopic link to standard mac-
roscopic thermodynamics. On the extremely long time scale
the weighting functions w� may vary and the system will
tend towards the direction where the free energy �Eq. �25�� is
reduced. Without the interdomain entropy term SD, Eq. �25�
would be minimized when the domain with the lowest free
energy has all the ensemble members in it. It turns out that
Eq. �25� is minimized when all the domain weights are Bolt-
zmann distributed, i.e., when

w� =
� �D�

dVd� exp�− �I0�

�=1
ND � �D�

dVd� exp�− �I0�
. �26�

Here �i.e., upon obeying Eq. �26�� the entropy and free en-
ergy given by Eqs. �23� and �25� coincide with the standard
equilibrium expressions so the free energy must be a mini-
mum. To prove this we use Eq. �25� and we remove the first
weight w1=1−�=2

ND w�, so that the constraint �Eq. �19�� is
respected while the remaining weights are independent. This
means that the free energy can be written as G�1
−�=2

ND w� ,w2 ,w3 , . . .wND
�. The constrained partial deriva-

tives are then

� �G

�w�
�

c
=

�G

�w1

�w1

�w�

+
�G

�w�

= −
�G

�w1
+

�G

�w�

, � � 2

= − G1 − kT ln�w1� − kBT + G� + kBT ln�w��

+ kBT, � � 2. �27�

Using the fact that for Boltzmann weights, Eq. �26�,
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w� = exp���Geq − G��� , �28�

where Geq=−kBT ln �=0
ND ��D�

dVd� exp�−�I0� is the equilib-
rium free energy, we find that at equilibrium,

� �G

�w�
�

c
= 0, � � 2. �29�

It remains to be proven that this is indeed a minimum. Using
the same approach for treating the constraint, we continue
making the first weight a function of all the others and obtain

� �2G

�w��w�
�

c
=

�2G

�w1
2 −

�2G

�w��w�

−
�2G

�w��w1
−

�2G

�w1�w�

.

�30�

Using the Boltzmann weights it is easy to show that

�2G

�w1
2 =

kT

w1
= kBT exp���G1 − Geq�� ,

�2G

�w1�w�

=
�2G

�w��w1
= 0, �31�

�2G

�w��w�

= ��

kBT

w�

= ��kBT exp���G� − Geq�� .

From these results it is easy to see that the Hessian matrix
���2G /�w��w���c is positive definite, thus we have proven

the free energy to be a minimum for the case of equilibrium.
We can use a knowledge of the multiple domain thermo-

dynamic potential, Eq. �25�, to compute averages. As an ex-
ample we consider the average enthalpy again,

�I0� = − kBT2� ��G

�T
�

w�,P0,N
. �32�

Equation �32� can easily be derived from Eq. �16� and is in
essence the same as the first line of Eq. �15�. It is straight-
forward to see that upon using Eq. �25� to calculate the de-
rivative in Eq. �32� one obtains the average enthalpy as given
by Eq. �20�. One can do the same for other quantities such as
the specific heat, etc.

D. Application to molecular dynamics simulation

We are now in a position to test various outcomes, using
computer simulation, which may be derived by drawing on
the previous material. If we start with an ensemble of sys-
tems which are initially in equilibrium at temperature T=T0

and then at time t=0 we quench them by setting T=T1, we
can solve the Liouville equation �Eq. �6�� to obtain

f���t�,�V�t�,�T�t�,t� = f���0�,�V�0�,�T�0�,0�

� exp��1�I0�0� − I0�t��� , �33�

where �1=1/kBT1. This nonequilibrium distribution func-
tion, valid for t�0, explicitly requires the solution of the
equations of motion and is of limited utility. However, it
allows the identification of a formal condition to identify the
amount of time, which must elapse after the quench, before
Eqs. �7�, �9�, and �20�, or �21� can be applied to the en-

semble. That is, the quantity I0�t�=H0�t�+ P0V�t� must be
statistically independent of I0�0�. Thus we are interested in
the correlation function

C1�I0�t�,I0�0�� =
�I0�t�I0�0�� − �I0�t���I0�0��

C1,0
, �34�

where

C1,0 = ���I0�t�2� − �I0�t��2���I0�0�2� − �I0�0��2� . �35�

This function will equal 1 for a perfectly correlated system,
−1 for a perfectly anticorrelated system, and 0 for an uncor-
related system. When we consider an ensemble of systems,
occupying the various domains to different degrees, we see
that Eq. �34� may not decay to zero given that the trajectories
are unable to leave their domains. If the transients, due to the
quench, fully decay Eq. �34� will decay to zero and Eqs. �7�
and �9� will become valid for the ensemble.

If the correlation function, Eq. �34�, decays to a plateau
then we may have a situation where Eqs. �20� and �21� are
valid. It may be that the material can still slowly age, due to
processes, that occur on a time scale which is longer than the
one we are monitoring. For a glass we expect that correlation
function, Eq. �34�, will not fully decay on a reasonable time
scale. If we give the system time to age, such that it appears
to be time translationaly invariant and then compute the fol-
lowing correlation function,

C2�I0���,I0�0�� =
�=1

Nt �I0�t�I0�0��� − �I0�t����I0�0���

C2,0
,

�36�

where

C2,0 = 
�=1

Nt

���I0�t�2�� − �I0�t���
2���I0�0�2�� − �I0�0���

2� ,

�37�

we may observe a full decay. If this occurs Eqs. �20� and �21�
will be valid. To compute this correlation function Nt trajec-

tories are produced and for each of these the averages, �B̄��

�where B is an arbitrary dynamical variable, appearing in
Eqs. �36� and �37�� are approximately obtained by time av-
eraging. When the system is ergodic and time translationaly
invariant these two correlation functions, Eqs. �34� and �36�,
will give the same result. However, for a nonergodic system
C2 will decay to zero on a reasonable time scale while C1

will not. Rather C1 may decay to some plateau on a reason-
able time scale and then decay on a much slower time scale.
The preceding sections then rest on this clear separation of
time scales in the correlation function, Eq. �34�. For meta-
stable fluids and allotropes this separation is so extreme that
we probably cannot observe, even the early stages of, the
later slow decay on any reasonable experimental time scale.
Further for these systems there will only be a single domain
and thus they appear ergodic. For glasses some signs of the
later decay can often be observed; however, it is still very
much slower than the initial decay. In the field of glassy
dynamics the initial decay is often called the � decay and the
slower long time decay is often called the � decay. As the
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glass is further aged this second stage decay is observed to
slow down dramatically while the early decay does not
change very much.14

To allow the hypothesis of local phase space domains to
be tested we will now introduce several relations whose deri-
vation draws upon the equilibrium distribution function, Eq.
�9�. We will also discuss the effect of the phase space do-
mains on these relations.

First we introduce the configurational temperature,

kBT = −
�F · F�
�� · F�

, �38�

where F is a 3N dimensional vector representing the inter-
particle forces on each atom F=−��. This relation is easily
derived from Eq. �9� �set B to � ·F, integrate by parts, and
drop the boundary terms� and will remain valid for noner-
godic systems where Eq. �26� is not obeyed. The relation
involves the spatial derivative of the force, which is not zero
at the cutoff radius for the potential we use in our simula-
tions �see below�. This along with finite size effects can re-
sult in a small disagreement between Eq. �38� and the kinetic
temperature for our system when in equilibrium.

Equilibrium fluctuation formulas may be easily derived
from Eq. �20�; see Refs. 1 and 5 for some examples of how
this is done. We consider how the average enthalpy changes
with the temperature at constant pressure,

CP0
= �V�cP0

= � d

dT
�

N,P0

�I0� =
�

T
��I0

2� − �I0�2� , �39�

where cP0
is the constant pressure specific heat. The calcula-

tion of the right hand side of Eq. �39� using the ensemble
average given by Eq. �20� is subtle. If we simply calculate
�I0� and �I0

2� with the use of Eq. �20� and then plug the results
into Eq. �39� we obtain, what we will refer to as, a single
domain average which does not give us the correct change in
the average enthalpy for a history dependent equilibrium en-
semble. This is because the average �I0

2� superimposes across
the different domains while the quantity �I0�2 contains spuri-
ous cross terms. If we derive the heat capacity by taking the
second derivative of the Gibbs free energy for the multiple
domain distribution function, Eqs. �25� and �32�, with respect
to the temperature,

CP0
= − � �

�T
�

N,P0,w�

kBT2� ��G

�T
�

N,P0,w�

, �40�

we obtain the following:

CP0
= �V�cP0

=
�

T

�=1

ND

w���I0
2�� − �I0��

2� , �41�

where the quantity �I0
2��− �I0��

2 is obtained for each domain
separately �here �. . .�� represents an average taken where all
ensemble members are in the �th domain�. We will refer to
this as a multidomain average which is consistent with the
nonergodic statistical mechanics and thermodynamics that
we have introduced here. It is obvious that both a single and
multiple domain average will give the same result in the case
of thermodynamic equilibrium and metastable equilibrium

�single domain�. The transition from the single domain aver-
age producing the correct result to an anomalous result is
symptomatic of an ergodic to a history dependent nonergodic
transition. If we consider a large macroscopic system �the
supersystem� to be made of Ns independent subsystems the
multidomain average remains self-consistent. To see this we
apply Eq. �41� to fluctuations in the supersystem and then we
inquire how this relates to fluctuations in the subsystem. The
enthalpy of one instance of the supersystem will be given by
Is=�=1

Ns I�. In principle, an ensemble of supersystems can be
prepared by applying the same history dependent macro-
scopic protocol to all members of this ensemble. Due to the
statistical independence of the subsystems, upon taking an
ensemble average of supersystems, we have �I�I��S

= �I��S�I��S for all ���. Here the average �. . .�S is taken over
the ensemble of supersystems and the �th subsystem in each
supersystem is identified by its location. It is then easy to
show that the specific heat obtained from the ensemble av-
erage, Eq. �41�, of the supersystem is equivalent to that ob-
tained from the subsystem due to the two quantities �Is

2�S

= ���=1
Ns I��2�S and �Is�S

2= ��=1
Ns I��S

2 possessing identical cross
terms which cancel each other out �as a result of the inde-
pendence of the subsystems� upon applying Eq. �41�.

If we ignore finite size effects, due to assuming the
equivalence of ensembles, the constant volume specific heat
is related to the constant pressure specific heat by the equa-
tion

CV = �V�cV = CP − P�dV

dT
�

T
− 
� �H

�P
�

T
�� �V

�P
�

T
�� �V

�T
�

P
.

�42�

We may also obtain an expression for the constant volume
specific heat cV by deriving equilibrium fluctuation formula
for each of the derivatives appearing in Eq. �42� in lieu of
directly measuring them. We may then obtain a single do-
main expression for cV which does not work for the history
dependent glass and also a correctly weighted ensemble av-
erage �multidomain average� which does. This is completely
analogous to what has been shown in detail for cP. As the
equations are unwieldy and their derivation �given an under-
standing of the cP case� is straightforward, we will not re-
produce them here.

E. Test of domain robustness: Transient fluctuation
theorem

The application of the Evans-Searles transient fluctua-
tion theorem8,15,16 to the systems treated in this paper pro-
vides a sharp test of the assumptions used to develop the
theory given in this paper. The theorem describes a time
reversal symmetry satisfied by a generalized entropy produc-
tion, namely, the so-called dissipation function. The precise
mathematical definition of this function requires a knowl-
edge of the dynamics and also of the initial distribution func-
tion. The three necessary and sufficient conditions for the
fluctuation theorem to be valid are that the initial distribution
is known �here we assume the distribution is Boltzmann
weighted over some initial domain of phase space�, that the
dynamics is time reversible �all the equations of motion used
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here are time reversible�, and lastly that the system satisfies
the condition known as ergodic consistency. When applied to
the systems studied here this requires that the phase space
domains should be robust with respect to the sudden changes
imposed on the system and that the number of interdomain
transitions remain negligible on the time over which the
theory is applied. If any one of these three conditions fail
then the theorem cannot be applied to the system and the
corresponding fluctuation relation will not be satisfied.8

We can use the fluctuation theorem to obtain relations
for how the system responds upon suddenly changing the
input temperature or pressure for a system, which is initially
in equilibrium as specified by Eq. �7� or �8�. Firstly we con-
sider a change in the pressure, while holding the temperature
fixed, by changing the input variable P0 in Eq. �4� �thermo-
dynamic pressure� to P0= P2 at time t=0 for a system ini-
tially in equilibrium with P0= P1. The probability density
p��V=A� of observing a change in volume of �V�t�=V�t�
−V�0� relative to a change of equal magnitude but opposite
sign is then given by

p��V�t� = A�
p��V�t� = − A�

= exp���P2 − P1�A� . �43�

To derive this expression we have had to assume that the
intradomain populations are Boltzmann distributed according
to Eq. �7�. Ergodic consistency requires that, for any initial
phase space point ��0� that can be initially observed with
nonzero probability, there is a nonzero probability of initially
observing the time reversal map MT of the end point ��t�,
�i.e., ∀��0� such that f���0� ,0��0, f�MT���t�� ,0��0�.
This condition obviously requires that the phase space do-
mains remain robust and the number of interdomain transi-
tions remain negligible for at least a time t, after the pressure
�or temperature� quench.

If we sample all or our initial t=0, P0= P1 configurations
from the one trajectory which remains locked in a single
domain even after the quench, we expect Eq. �43� to be
valid. If we prepare an ensemble of initial configurations
using the same protocol we still expect Eq. �43� to remain
valid even with different domain weightings wi, as defined in
Eqs. �20� and �21�, provided that the domains are robust over
the time t appearing in Eq. �43�. Note that suddenly reducing
the pressure by a very large amount could result in a break-
down of the robustness condition. Equation �43� may be par-
tially summed to obtain what is referred to as the integrated
fluctuation theorem,

p��V�t� � 0�
p��V�t� � 0�

= �exp���P2 − P1��V���V�0. �44�

For the case where we change the input temperature T in
Eq. �4� while holding the input pressure P0 fixed we obtain a
relation for fluctuations in the extended instantaneous en-
thalpy IE�t�=HE�t�+ P0V�t�. We start with a system initially
in equilibrium at temperature T=1/ �kB�1� and we then sub-
ject it to a temperature quench by changing the input tem-
perature in Eq. �4� to T=1/ �kB�2�, at time t=0, while hold-
ing the input pressure fixed. The probability density

p��IE�t�=A� of observing a change in instantaneous enthalpy
�IE�t�= IE�t�− IE�0� relative to a change of equal magnitude
but opposite sign is then given by

p��IE�t� = A�
p��IE�t� = − A�

= exp���1 − �2�A� . �45�

Note that if we suddenly increase the temperature by a very
large amount we could expect to violate the robustness or the
negligible interdomain transition condition. In common with
Eq. �43� we expect that this expression will be valid when all
initial configurations are sampled from a single common do-
main and also when sampled from multiple arbitrarily popu-
lated domains under the assumption that the domains are
robust and the number of transitions are negligible over time
t. This equation may also be partially summed to obtain

p��IE�t� � 0�
p��IE�t� � 0�

= �exp���2 − �1��IE���IE�0. �46�

IV. SIMULATION DETAILS

For our simulations we use a variation on the Kob-
Andersen glass former17 featuring a purely repulsive
potential.18 The pairwise additive potential is

uij�rij� = 4����
���

rij
�12

− 
���

rij
�6

+
1

4
�,

∀ rij � �6 2���,

uij�rij� = 0, ∀ rij � �6 2���, �47�

where the species identities of particles i and j, either A or B,
are denoted by the subscripts � and �. The energy param-
eters are set �BB=0.5�AA, �AB=1.5�AA and the particle inter-
action distances �BB=0.88�AA, �AB=0.8�AA. The energy unit
is �AA, the length unit is �AA, and the time unit is �m�AA

2 /�AA

with both species having the same mass m. The composition
is set at X=NB /NA=0.2, the number of particles are N=NA

+NB=108, the pressure is set to P0=14�AA /�AA
3 , and the tem-

perature unit is �AA /kB. The time constants are set at �V

=5�N and �T=�N. Note that the energy parameters are
slightly different to the potential we used in Ref. 18 The
equations of motion were integrated using a fourth order
Runge-Kutta method.19 The time step used was dt=0.002
and sometimes dt=0.004 for very low temperatures.

From previous work on binary mixtures we know the
basic reason why this system is vary reluctant to
crystallize.20–23 The chosen nonadditivity of the species A-B
interaction makes the mixture extremely miscible; consider
the present value of �AB=0.8�AA relative to the additive
value of �AB=0.94�AA. This effect dominates over the choice
of the energy parameters. Due to this extreme miscibility the
relatively large composition fluctuations necessary, about the
average composition of X=0.2, to form the crystal phases
�either the pure species A, X=0, fcc crystal or the binary,
X=0.5, CsCl crystal� are strongly suppressed and crystalliza-
tion is strongly frustrated.

We identify the nominal glass transition by calculating
the diffusion coefficient as a function of temperature. This is
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shown for both species in Fig. 1 on a logarithmic plot dem-
onstrating how the diffusion coefficient approaches zero
critically, D��T�	 �T−Tg�b; where b is the critical exponent,
with a nominal glass transition temperature of Tg=0.435. It
would be, perhaps, more customary to obtain a nominal glass
transition temperature by analyzing the critical divergence of
the viscosity. Given that the Stokes-Einstein relation is
strongly violated upon approaching the glass transition one
might be concerned that this would give a very different
result. However, the violation of the Stokes-Einstein relation
can largely be attributed to the exponent b being different
between the viscosity and the diffusion coefficient rather
than the nominal glass transition temperature Tg.24

V. RESULTS AND DISCUSSION

The correlation functions given in Eqs. �34� and �36�
were calculated from ensembles of 100 independent simula-
tions at the two temperatures given in Fig. 2 �T=1 and T
=0.4�. In all cases the systems were subject to an instanta-
neous quench, from an initial equilibrium at T=5, by chang-
ing the value of the input temperature in Eq. �4�. The system
was then run for a significant time, in the case of the glass
ensemble �age�8�105, in an attempt to age it. Of course the
longest time that can be accessed in a molecular dynamics
simulation is rather short, and so the system is not very well
aged, but we are still able to meaningfully treat it as a time
invariant state. Each of the 100 independent simulations was
interpreted as being stuck in its own domain D� and the
correlation functions were calculated for each of these do-
mains using time averaging. The time averaging was ap-
proximately 100 times longer than the longest time t=800
that the correlation functions were calculated out to. Obvi-
ously in the limit of an infinite number of independent simu-
lations and the case where the domains are robust we will
obtain the exact multidomain average given by Eq. �20�. We
assume that our limited ensemble of simulations is represen-
tative of this. The data from each domain �independent simu-
lation� was then used to obtain the correlation functions, Eqs.

�34� and �36�, as seen in Fig. 2. At the higher temperature
T=1 it can be seen that the two functions are equivalent,
demonstrating how the system is ergodic. It can also be seen
that the correlation function has decayed on a time scale of
t�10 which is therefore �by Eq. �33�� the time scale on
which the ensemble becomes accurately represented by Eq.
�9� with only one domain D which does not necessarily ex-
tend over all phase space. The oscillations, which can be
seen in the correlation function, are due to both ringing in the
feedback mechanisms of Eq. �4� and the frequency depen-
dent storage component of the bulk viscosity. The statistical
uncertainty in the correlation function becomes larger than
these oscillations somewhere between a time of t=1 and 10.
If we constructed an experiment where the pressure was
regulated by a piston and a spring, the correlation functions,

FIG. 1. �Color online� A logarithmic plot of the self-diffusion coefficient for
both species A and species B particles as a function of the separation pa-
rameter T−Tg with Tg=0.435.

FIG. 2. �Color online� �a� The instantaneous enthalpy correlation functions
as defined by Eqs. �34� and �36� as a function of logarithmic time for the
temperature T=1. The calculation of the function was started after the fluid
had been given time to equilibrate. The strong agreement between the two
correlation functions is indicative of ergodicity. �b� The instantaneous en-
thalpy correlation functions as defined by Eqs. �34� and �36� as a function of
logarithmic time for the temperature T=0.4. The calculation of the correla-
tion function was started at various times after the quench, all approximately
at t=8�105, in an attempt to age the system. The difference between the
correlation functions is indicative of nonergodicity. Notice that C2 reaches a
near full decay between t=1 and 10, while C1 reaches a nondecaying
plateau.

184101-10 S. R. Williams and D. J. Evans J. Chem. Phys. 127, 184101 �2007�

Downloaded 08 Nov 2007 to 150.203.35.94. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Eqs. �34� and �36�, would depend on the details of the piston
and spring parameters in a similar way to the simulation
dependence on the details of the feedback mechanism.

When the system is quenched to the lower temperatures
�T=0.4� ergodicity is lost and we obtain a glass. The com-
plete decay of the first correlation function C1, Eq. �34�, may
no longer occur because the individual trajectories remain
stuck in local domains which have different average values
for �I0��. This is similar to the much studied density correla-
tion function25 �the intermediate scattering function� which
decays to a finite plateau for a glass or more generally a solid
material. On the other hand there is nothing to stop the sec-
ond correlation function C2, Eq. �36�; from fully decaying
when the system is nonergodic. If the second correlation
function fully decays while the first is only able to decay to
a plateau then we have a situation where Eqs. �21� and �20�
are valid as can be seen from Eq. �33�. In Fig. 2 it can be
seen that C1 does indeed fail to decay while C2 comes very
close to fully decaying at the time where C1 reaches the
plateau. The reason C2 does not fully decay here is due to the
fact that the interdomain transition rates, while small, are not
exactly zero. If the system had been aged more extensively
this problem would be significantly reduced. This effect is
exacerbated by the time averaging, used to form the averages
for each trajectory, being two orders of magnitude longer
than the longest time the correlation function was calculated
to. The effect of the state slowly evolving due to finite inter-
domain transition rates is too small to seriously compromise
the modeling of the system as obeying Eqs. �20� and �21�
and thus we have obtained direct evidence for the validity of
these equations. The height of the plateau for C1 will depend
on the history of the system, i.e., the protocol used to prepare
the ensemble.

We move on to a comparison between the kinetic tem-
perature and the configurational temperature, the results of
which may be seen in Fig. 3�a�. The input temperature ranges
from T=3 to T=0.3. Also shown are results for the system,
undergoing constant planar shear, Eq. �10�, with a strain rate
of �̇=0.5. At the higher temperatures we see a very small
relative discrepancy between the two types of temperatures,
which we attribute to the discontinuity in the first spatial
derivative of the interparticle force at the cutoff radius and to
finite size effects. These effects appear to diminish a little at
lower temperatures. For temperatures above T=1.5 the cho-
sen strain rate has no significant effect on the configurational
temperature, indicating that our system is in the linear re-
sponse domain.18 At the lowest temperatures, well below the
glass transition temperature, we observe good agreement be-
tween the configurational and input temperatures for the sys-
tem without shear. This provides further evidence of our as-
sertion that the system obeys Boltzmann statistics in the
glass, Eqs. �20� and �21�. However, at low temperatures, the
system that is undergoing shear shows an increasing relative
discrepancy between the two temperatures. At low tempera-
tures the system leaves the linear response domain,18 dem-
onstrating the fundamental difference between the nonequi-
librium distribution of the history dependent glassy state and
that of a strongly driven steady state. If we drive the system
hard enough, at any given temperature, we can always make

a disagreement between the two types of temperature due to
the steady state no longer being accurately represented by a
Boltzmann distribution, i.e., due to a breakdown in local
thermodynamic equilibrium. When the system is not driven
by an external field we have been unable to observe any
difference in the two temperatures by deeply supercooling a
glass forming mixture apart from the initial transient decay
immediately following the quench, which falls off surpris-
ingly rapidly.

In Fig. 3�b� results are presented for the heat capacities
�the specific heat multiplied by the volume� at both constant
pressure CP and constant temperature CV. Details of the pro-
tocol used to obtain these data are given in the end note.26

The estimates from the multidomain average are compared
with those from the single domain average. The results from
the multidomain averages exhibit the well-known peak,
which is a signature of the onset of the glass transition, and
has been observed directly by calorimetry in many experi-
ments on real glass forming materials.2 The temperature,
where the peak is observed, depends on the history of the

FIG. 3. �Color online� �a� The relative difference between the kinetic tem-
perature T �controlled directly by the Nosé-Hoover thermostat� and the con-
figurational temperature given by Eq. �38� as a function of the kinetic tem-
perature. The results for the system undergoing Couette flow �shear� are for
a constant strain rate of �̇=0.5. �b� The heat capacity calculated using the
equilibrium fluctuation formula by the single domain averaging method, Eq.
�39�, and the multidomain method, Eq. �41�. Also shown are data obtained
by numerically differentiating the enthalpy by central difference. At the
temperatures above the peak the three types of averages give very similar
results. Also shown are equivalent equilibrium fluctuation formula data for
the constant volume specific heat, Eq. �42�.
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system. No peak is observed for the single domain averages
which continue to increase as the temperature is lowered.
While the two methods for forming averages give the same
results at temperatures above the peak, they diverge at tem-
peratures below the peak. It is the multidomain average that
gives results consistent with the actual calorimetric behavior
of the system. This may be seen in the figure by comparing
the data which has been computed by numerically differen-
tiating the enthalpy using central difference. At the peak nei-
ther the central difference �due to rapid rate of change� nor
the multidomain average data �due to a lack of domain ro-
bustness� are reliable and they show significant differences.
However, below the peak they once again show quantitative
agreement, providing strong evidence that the domains are
robust in this region. If we substantially increase the duration
the time averages �for each domain� are constructed on, the
peak will be shifted to lower temperatures as previously
shown.27 This requires the time average to be constructed
over some two orders of magnitude more time than the decay
time for the correlation function in Eq. �34�. This is neces-
sary in order to obtain enough independent samples for a
meaningful estimate of the variance of the instantaneous en-
thalpy appearing in Eq. �39�. For a large macroscopic system
we would expect that the specific heat measured over the
entire ensemble would differ very little to that measured
from any one of its members. We are now in a position to
make an unambiguous interpretation of the peak in the spe-
cific heat. The peak is observed at the temperature where the
system leaves metastable equilibrium and enters a history
dependent state that requires averages to be computed by Eq.
�20� rather than by direct use of Eq. �9�. The calculation of
both �I0�� and �I0

2�� will be different for each domain. If we
use time averaging to calculate these variables on a time
scale that falls within the plateau region for Eq. �34�, see Fig.
2�b�, then the amount of time chosen to form the average is
not critical. The peak occurs because the various ensemble
members have become locked in local domains on the time
scale that we are able to access. Near the peak itself these
domains are not expected to be robust.

The multidomain average, Eq. �41�, gives the heat ca-
pacity for a glass with robust domains. At the lowest tem-
peratures the heat capacity reaches the beginning of a pla-
teau, Fig. 3�b�. For the constant volume heat capacity CV this
plateau �within uncertainties due to finite size effects� has a
value that is consistent with the Dulong-Petit law,28 as would
be expected for an amorphous solid where the potential en-
ergy surface can be modeled as harmonic upon transforma-
tion to the orthogonal independent basis set. This is exactly
what we would expect from our local domain model at low
temperatures.

Testing the integrated transient fluctuation theorem
�ITFT� for a sudden pressure change, Eq. �44�, and a sudden
temperature change, Eq. �46�, provides further evidence that
the Boltzmann distribution may be used to accurately de-
scribe intradomain statistics in the glassy state and also that
in a properly aged glass, the domains are robust with respect
to the pressure and temperature changes studied here, Fig. 4.
These equations remain valid whether we subject an en-
semble of simulations �multidomain� to a quench or we

sample from a single trajectory �single domain�, which re-
mains stuck in a single domain. The accuracy with which
these relations are satisfied is a powerful independent evi-
dence for the applicability of our assumptions to the systems
studied here. The fact that over the times shown in Fig. 4, the
ITFT does indeed yield correct results directly implies that,
within experimental tolerance of the data, the phase space
domains must be robust and the number of interdomain tran-
sitions must be negligible. Unlike the specific heat fluctua-
tion formula this requires that the domains are robust to finite
changes of the state rather than infinitesimal changes. Thus,
given that we have aged the glass sufficiently that domains
are robust and the number of transitions are negligible over
the longest time the fluctuation formulas are computed, we
expect Eqs. �44� and �46� to be correct. If we wished to apply
the steady state fluctuation theorem matters become more
difficult.18

FIG. 4. �Color online� Results from applying the fluctuation theorem to the
glass �T=0.3� for �a� a sudden pressure change of �P=1, where the symbols
are p��V�0� / p��V�0� and the solid line is �exp���P2− P1��V���V�0 and
�b� a sudden temperature change of �T=−0.025, where the symbols are
p��IE�0� / p��IE�0� and the solid line is �exp���2−�1��IE���IE�0. Results
from an ensemble of independent initial systems and in addition from a
single initial trajectory �with a time of t=5 being computed between each
transient trajectory� are shown for a total of 105 pressure or temperature
changes. The serial results have been shifted up, for clarity, by adding 0.2 to
the data.
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VI. CONCLUSIONS

We have presented a rigorous development of statistical
mechanics and thermodynamics for nonergodic systems
where the macroscopic properties are sensibly time indepen-
dent and the phase space for the ensemble is partitioned into
robust domains. Using computer simulation we have carried
out various tests on a glassy system and shown that apart
from the immediate vicinity of the glass transition, the com-
puted results are consistent with our theory. While the intra-
domain populations are individually Boltzmann distributed,
the interdomain populations are not.

A correlation function whose decay to zero requires glo-
bal Boltzmann weighting has been derived and it has been
shown that it decays on a reasonable time scale for ergodic
systems but not for nonergodic systems. A second correlation
function which decays to zero if the intradomain populations
are Boltzmann distributed, but globally the interdomain
populations are not, has also been defined. We have devel-
oped expressions for obtaining averages in a multiple do-
main ensemble and shown how single domain averages,
which always give correct results in metastable equilibrium,
can give spurious results in a history dependent nonergodic
ensemble. The statistical mechanics and thermodynamics de-
veloped here allow the derivation of expressions for multi-
domain ensemble averages which give the correct results for
time nondissipative nonequilibrium ensembles. The funda-
mental origin of the peak in the specific heat near the glass
transition has been unambiguously shown to be a signature
of a transition from metastable equilibrium to a nonergodic
multidomain ensemble.

We have shown that the transient fluctuation relations for
temperature and pressure quenches provide independent tests
of the fundamental hypotheses used in our theory: that intra-
domain populations are individually Boltzmann distributed,
that except in the immediate vicinity of the glass transition
the domains are robust with respect to small but finite varia-
tions in thermodynamic state variables, and that the interdo-
main transition rates are negligible.
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