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Abstract

In Chapter 2, we consider estimation of dynamic models of recurrent events (event

histories) in continuous time using censored data. We develop maximum simulated

likelihood estimators where missing data are integrated out using Monte Carlo and

importance sampling methods. We allow for random effects and integrate out the

unobserved heterogeneity using a quadrature rule. In Monte Carlo experiments, we

find that maximum simulated likelihood estimation is practically feasible and performs

better than both listwise deletion and auxiliary modelling of initial conditions. In an

empirical application, we study ischaemic heart disease events for male Maoris in New

Zealand.

Chapter 3 describes how the risk of experiencing heart attacks varies across gen-

der and ethnicity in New Zealand. We analyse administrative data and estimate dy-

namic hazard models using maximum simulated likelihood methods to deal with left-

censoring. The models allow risk to vary with age, previous heart attack history, and

unobserved individual heterogeneity. We find that the risk of subsequent events is far

higher than the risk of the first event, and particularly high within 1 year after an

event. In most cases, male Maoris have the highest risk, followed by female Maoris,

then male Europeans, while female Europeans have the lowest risk.

Differently from the well-known propensity score (PS), the lesser known ‘prognostic

score (PGS)’ balances the potential untreated response. Chapter 4 shows that ‘double

robustness’ can be achieved by controlling both PS and PGS in various ways in a

method-blind manner.

In Chapter 5, we compare various treatment effect estimators through an extensive

simulation study using 64 designs and two empirical examples mimicking experiments.

In total, we examine 24 estimators based on matching, weighting, double robustness,

regression imputation/adjustment, ‘complete pairing’, and ‘propensity-score residual’.
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Our results show that, contrary to the common perception, doubly robust estimators

are not necessarily the best. In fact, our findings recommend a couple of non-doubly-

robust estimators, with a simple propensity-score-residual-based estimator being the

nearly dominant best estimator.
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Chapter 1

Introduction

Missing data problems are omnipresent in data analysis, even nowadays when available

data abound. Data are missing for natural, administrative, economic or behavioural

reasons. If the way data are missing is non-systematic and the proportion of missing

data is not considerable, ignoring missing data in analysis can be a first resort. However,

if the proportion of missing data is considerable, ignoring them in analysis can be

too costly although maybe not harmful. More importantly, if data are missing in a

systematic manner, analysing only complete cases and ignoring missing data could

provide misleading results. In many cases, therefore, handling these missing data is of

great importance in the analysis of available data.

There is a large literature on the problem of missing data. As of June 2019, the

online bibliographic database Scopus lists 14,782 journal articles with ‘missing data’ in

their title, keywords, or abstract (and written in English). Figure 1.1 shows the trend

by using the same list of journal articles. It is clear that the problem of missing data

has been discussed over several decades and shows no sign of being phased out.

Rubin [1976] formally provides the weakest conditions for when missing data can be

ignored. If these conditions hold, ignoring the missing data process is always innocuous

in the inference of the distribution of the data. Rubin’s formal definitions correspond

to the following statements with notation such that θ is the parameter of the data

generating process and φ is the parameter of the missing data process.

‘The missing data are missing at random if for each possible values of the

parameter φ, the conditional probability of the observed pattern of missing

1



2 Introduction

data, given the missing data and the value of the observed data, is the

same for all possible values of the missing data. The observed data are at

random if for each possible value of the missing data and the parameter φ,

the conditional probability of the observed pattern of missing data, given

the missing data and the observed data, is the same for all possible values

of the observed data’.

Figure 1.1: Search results from scopus.com using ‘missing data’

PS Matching means propensity score matching and is provided for comparison. The figures are the
number of journal articles including missing data or PS matching in title, keywords, abstract or only
in title (noted in the legend) and written in English.
Data source: publication data searched at online database www.scopus.com on June 2019

This thesis considers the cases where the distribution of the data is independent of

the missing data process. In particular, this thesis focuses on two important contexts

of missing data problems: censoring in the analysis of event history data and ‘missing

at random’ in the analysis of treatment effects.

This thesis considers the case where the distribution of the data is independent of

the missing data process but missing data occur in a systematic manner. In particular,
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this thesis focuses on two important contexts of missing data problems: censoring in

the analysis of event history data and ‘missing at random’ in the analysis of treatment

effects. Systematically missing data are handled by various modelling in the former

and by controlling observables in the latter.

First, censoring means a situation that in any periods of time an individual is

at risk of experiencing an event but is not under observation. If these periods are

before the start of observation and after the end of observation, the event histories

are left- and right-censored, respectively. If events are independent of each other, a

maximum likelihood approach where the likelihood function computed from available

data is straightforward and provides consistent estimates under standard assumptions

in the literature. However, when dynamic models are estimated with censored data,

especially left-censored data, a maximum likelihood approach is not straightforward

since the likelihood function is not analytically computable. While analysing a sub-

sample without missing data or maximising an approximate likelihood function using a

reduced-form model of missing data is suggested in the literature, consistent estimates

come at the cost of efficiency or additional assumptions. In this thesis, we consider

maximum simulated likelihood approach to overcome left-censoring problem.

Second, there are two potential outcomes when treatments are binary. Naturally,

only one of treated and untreated outcomes is observed, which is the problem of missing

data. Commonly, ‘missing at random’ (MAR), also known as selection-on-observables,

is assumed to hold in the analysis of treatment effects. The MAR assumption im-

plies that the process of data being missing depends on observables. Under the MAR

assumption, consistent estimates of treatment effects can be obtained by comparing

treated and untreated groups after controlling observables. A well-known balancing

score for controlling observables is propensity score and less known one is prognos-

tic score. Although it is possible in a nonparametric manner, often parametrically

estimated balancing scores are controlled. If misspecified, however, these parametric

balancing scores result in inconsistent estimates. In this thesis, we consider estimators
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doubly robust to possible misspecification.

This thesis includes four self-contained research papers. Chapters 2 and 3 (joint

work with Dr Tue Gørgens) concern estimation of dynamic models of recurrent events

using censored data, while Chapters 4 and 5 (joint work with Professor Myoung-jae Lee)

concern ‘doubly robust’ estimation by controlling both propensity score and prognostic

score at the same time.

In Chapter 2, we consider a general framework of censoring where multiple peri-

ods are under observation or not under observation in an alternating fashion and event

histories are available only on periods under observation. We consider estimation of dy-

namic models of recurrent events using censored data. In general, consistent estimates

can easily be obtained by maximising the likelihood if complete data are available. Due

to missing prior histories, however, the likelihood is not analytically computable. We

suggest using the maximum simulated likelihood (MSL) method where missing history

data are integrated out in the likelihood function using simulation techniques. In the

MSL method, we approximate the exact likelihood of observed histories via simulation

and maximise the arbitrarily accurate simulated likelihood function. Chapter 2 con-

firms that our proposed method is feasible in the context of continuous-time dynamic

models of recurrent events and is a substantial efficiency improvement on other alter-

natives. In an empirical application, we estimate a dynamic model of ischaemic heart

disease, using New Zealand data on hospital admissions and deaths. Consistent with

Monte Carlo results, we find that a substantial efficiency gain can be achieved via MSL

methods although the size of the gain varies.

In Chapter 3, we consider dynamic models of recurrent heart attack event in New

Zealand. The research question in this chapter is how heart attack risk varies with age

and prior history and how patterns in the risk differ across gender and ethnic groups.

We compare four groups: male and female people of Maori and European descent. We

use high-quality New Zealand administrative data on hospital admissions and deaths

and estimate dynamic models of heart attack using the MSL method developed in



5

Chapter 2. Our main finding is that prior history affects the risk pattern of heart

attack through changes in age dependence and dynamic effect as well as changes in

the basic risk level of heart attack. Overall, experiencing a heart attack increases the

risk of subsequent heart attacks, and it is particularly high within the first year after a

heart attack. In most cases, male Maoris have the highest risk of the first heart attack,

followed by female Maoris and then male Europeans, while female Europeans have the

lowest risk.

In Chapter 4, we consider binary treatment and control observables to estimate

the treatment effect. In treatment effect analysis, the propensity score measures the

probability of being treated given observables and controlling the propensity score is a

very popular way of controlling for observed heterogeneity. In contrast, the prognostic

score measures baseline potential outcomes – the untreated potential outcome in a

binary treatment. In this chapter, we propose ‘doubly robust estimation’ in a method-

blind manner. Double robustness means that estimation is consistent if either the

propensity or the prognostic score is correctly specified. In the literature, doubly

robust estimation is based on weighting. We theoretically prove that doubly robust

estimation can be achieved by controlling both propensity score and prognostic score,

regardless of the way this is done.

In Chapter 5, we provide comprehensive Monte Carlo simulation where 26 esti-

mators, only some of which are doubly robust, are compared and two empirical ap-

plications. In particular, we discover that estimators by controlling both propensity

score and prognostic score are doubly robust and that doubly robust estimators are

not necessarily better than estimators with propensity score or prognostic score alone

controlled.

This thesis concludes with a brief summary of the four research papers and a dis-

cussion of the future researches.
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Chapter 2

Estimation of dynamic models of

recurrent events with censored

data

2.1 Introduction

Data censoring is a pervasive problem in the analysis of the occurrence and timing

of events. Often the observation process is such that some individuals are not under

observation continuously during the time they are at risk, and therefore some events

may be missing in the data available for analysis. For example, the observation period

may begin and end at fixed calendar times and only events that occur within this

window are available for analysis. The event histories are said to be left-censored or

right-censored if events before the start or after the end of the observation period are

missing, respectively. In some longitudinal surveys, participants provide information

annually about events that have occurred in the previous year, and participants who

skip an interview will have a gap in their recorded event histories. The event histories

are said to be middle-censored if there is a gap in the middle of the recorded event

histories.

In practice, event history models are estimated by the method of maximum likeli-

hood (ML). Usually it is assumed that the observation process is independent of the

event process (and the former is not modelled). In this case, it is straightforward to

7



8 Estimation of dynamic models of recurrent events with censored data

include right-censored event histories, and gaps can be handled by artificially right-

censoring the histories at the start of the gap. If there are not too many gaps, the

data loss may be acceptable. However, left-censoring remains a difficult problem in

most applications, especially in dynamic models where prior events affect the timing

of subsequent events. Since consistent estimates can be obtained from the non-left-

censored histories, a common solution is simply to drop all left-censored histories from

the analysis. For example, Doiron and Gørgens [2008] and Cockx and Picchio [2012,

2013] studied transitions between labour force states and avoided the left-censoring

issue by focusing on young people who first entered the labour force during the obser-

vation period (so their initial labour market outcomes are observed). Similarly, Bhuller,

Brinch, and Königs [2017] studied dynamic aspects of the receipt of welfare benefits,

and selected a sample of individuals who turned 18 and thus became eligible for the

first time during the study period. Dropping left-censored histories from the analysis

comes at the cost of a smaller sample size. For example, by restricting their sample to

school leavers Doiron and Gørgens [2008] used only one third of the total sample.

The problem of left-censoring in event history analysis is related to the well-known

problem of initial conditions in discrete-time dynamic panel data models of binary re-

sponses or other limited dependent variables. In these models, the ‘structural’ equation

involves lagged dependent variables whose coefficients (or partial effects) are parame-

ters of interest. The dilemma is that the structural equation cannot be evaluated for the

initial observations since lagged information is not available, but conditioning on the

initial observations leads to inconsistent estimates in the presence of unobserved het-

erogeneity. In the context of a first-order Markov model of binary responses, Heckman

[1981] proposed to supplement the structural model with an approximate reduced-form

model for the initial conditions, based on exogenous information available for the initial

periods, a flexible specification of the influence of unobserved heterogeneity, and impos-

ing no parameter restrictions across submodels. Heckman’s method has been applied

for example in continuous-time duration analysis by Gritz [1993] and in discrete-time
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duration analysis by Ham and LaLonde [1996], Cappellari, Dorsett, and Haile [2010],

and Gørgens and Hyslop [2019].

In this chapter we consider estimation of continuous-time dynamic event history

models with censored data by maximising a simulated likelihood function using all

available data. The likelihood function is specified in terms of observed and unob-

served events, and unobserved events are then ‘integrated out’ using Monte Carlo and

importance sampling methods. We allow for unobserved heterogeneity in the form of

so-called random effects and integrate out unobserved heterogeneity using a Gaussian

quadrature rule. Our maximum simulated likelihood (MSL) estimator uses all available

data and does not involve additional functional-form assumptions or additional ad hoc

parameters. The method is applicable when the times during which individuals are at

risk of experiencing events are known.1 For simplicity, we focus on recurrent events.

This class of models covers a wide range of applications: purchases of specific goods

or services, health events such as heart attacks or dental fillings, child births, time

between earth quakes or geyser eruptions, etc.

The method of maximum simulated likelihood estimation has been successfully

applied in other contexts. For example, Lerman and Manski [1981] were the first

econometricians to consider the frequency simulator of (multinomial probit) choice

probabilities. Keane [1994] studied MSL estimation of binary response models with

serially correlated errors, with the multinomial probit model as the leading case. Mc-

Culloch [1997] considered latent class (mixture) models. Kamionka [1998] sketched a

general framework for continuous-time transition models and provided some simula-

tion results for estimating continuous-time time-homogeneous Markov processes using

data measured on a discrete time scale. Keane and Sauer [2010] developed a method

for estimating discrete-time dynamic panel data models with unobserved endogenous

state variables. Their method assumed that the dependent variables are measured

with error. Some authors have compared MSL estimation with estimation using the
1In a study of transitions into and out of female headship, Moffitt and Rendall [1995] were able to

integrate out unobserved events analytically because the distribution of missing data was discrete in
their model.
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EM algorithm and found that the latter performed better. Brinch [2012] argued that

the negative assessment of MSL estimation among some authors is at least partly due

to suboptimal choices made in the implementation.

The MSL approach has both advantages and disadvantages over the alternatives. As

mentioned above, dropping left-censored histories and middle-censored histories from

the analysis (listwise deletion) makes for easy ML estimation but can be very costly

in terms of sample size. Specifying auxiliary models for the distribution of the initial

conditions in terms of unobserved heterogeneity also allow for standard ML estimation,

but specification error potentially affects the bias and consistency of the estimates and

the additional parameters lead to a loss of degrees of freedom. The MSL approach is

expected to have higher efficiency, because the full data set can be used and because

no auxiliary parameters are involved. By increasing the number of simulations, MSL

estimates can be made arbitrarily close to the exact ML estimates. Since ML estimation

is asymptotically efficient, MSL estimates can also be asymptotically efficient.

A potential disadvantage of the MSL approach is computational difficulties. First,

numerical integration in high dimensions is known to be difficult, whether by quadra-

ture rules or Monte Carlo methods. In practice, limits on computing capacity may

restrict the level of accuracy that can be achieved within reasonable time. Second,

when the integration is carried out using Monte Carlo methods the simulated likelihood

function is discontinuous, which causes trouble for standard maximisation algorithms

such as Newton’s method. However, importance sampling methods can be used to

smooth the simulated likelihood function (see e.g. Gouriéroux and Monfort, 1991).

The present study contributes to the literature by showing how MSL estimation

can be applied in the context of dynamic models of recurrent events in continuous time

with censored data. We provide Monte Carlo evidence to show that MSL estimation

is practically feasible, and we confirm that MSL estimation can provide substantial

efficiency gains over listwise deletion and Heckman’s approximate reduced-form mod-

elling. Finally, we provide an empirical study of ischaemic heart disease events for male
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Maoris in New Zealand. The application shows that MSL estimation can help to deal

with a large (63%) left-censoring problem, and that MSL estimators can have much

smaller standard errors than alternative estimators.

The chapter is organised as follows. Section 2.2 sets up the notation and discusses

maximum likelihood estimation. Section 2.3 presents the results of our Monte Carlo

experiments. Section 2.4 provides our empirical application. Section 2.5 concludes.

2.2 Maximum likelihood estimation

2.2.1 The likelihood function

When analysing censored data, it is necessary to distinguish between the underlying

event process and the observation process. For example, the statistics literature talks

about time at risk and time under observation. Let time be partitioned into ji periods,

(cij−1, cij ] for j = 1, 2, . . . , ji, such that ci0 is the time individual i becomes at risk, ciji

is the last time individual i is both at risk and under observation, and the individual

is alternatingly either under observation or not during each period. Thus, individuals

are either under observation in all odd periods or in all even periods. Analysis time is

defined by normalising ci0 = 0.

The interaction between the event process and the observation process necessitates

notation which number event times within observation periods. Hence, let kij denote

the number of (observed or unobserved) events during individual i’s period j, and let

bijk for k = 1, . . . , kij denote event times within period j. For convenience, define the

vector bij = (bijkij , . . . , bij1); if kij = 0 then bij denotes a zero-dimensional vector.

To simplify certain expressions, define also bij0 by setting bij0 = cij−1. We assume

that the event process and the observation process are independent. We postpone the

discussion of observed and unobserved heterogeneity until later.2

In general, the likelihood of an event at any given time may depend on the history

of events prior to that time. Let si(t) denote all individual i’s history at time t. That
2See Figure 2.1 for examples of event history data.
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is, si(t) includes all event times until and including t, the fact that no events occurred

between the most recent event and time t, and the observation period boundaries.

Let h(t|s(t′), θ) for t > t′ denote the conditional hazard function for events evaluated

at time t given the history until time t′, s(t′), where θ is the unknown parameter

vector to be estimated. Also let H(t|s(t′), θ) for t > t′ denote the associated value

of the cumulative hazard function from time t′ until time t. That is, H is defined by

H(t|s(t′), θ) =
∫ t
t′ h(y|s(t′), θ) dy. Furthermore, let f(t|s(t′), θ) denote the conditional

event density at t given the history s(t′), and let F denote the corresponding cumulative

distribution function. Then we have the well-known result (see e.g. Lancaster, 1990)

that

f(t|s(t′), θ) = h(t|s(t′), θ) exp
(
−H(t|s(t′), θ)

)
, t > t′. (2.1)

Here the exponential term on the right-hand side captures the non-occurrence of events

during (t′, t]. Finally, let gj be the conditional joint density of events during period j

given previous events. Using bj without subscript i to denote a generic vector of event

times in period j and using kj for the corresponding number of events, we have

gj(bj |bj−1, . . . , b1, θ) =
( kj∏
k=1

f(bjk|s(bjk−1), θ)
)

exp
(
−H(cj |s(bjkj ), θ)

)
. (2.2)

The exponential term on the right-hand side represents the fact that no events occurred

during (bjkj , cj ] if kj > 0 or during (cj−1, cj ] if kj = 0. (Recall that we have defined

bj0 = cj−1.) By convention the product of the sequence on the right-hand side of (2.2)

is defined to be 1 if kj = 0 (and bj is zero-dimensional).

The likelihood contribution for individual i in terms of observed and unobserved

terms (i.e. the complete-data likelihood contribution, apart from right-censoring) is3

L?i (θ) =
ji∏
j=1

gj(bij |bij−1, . . . , bi1, θ). (2.3)

3This ignores the likelihood contribution of the entry and exit times, cij−1 and cij , which leads to
valid inference under the maintained assumption that these are independent of the event times. To
focus on computational aspects we assume θ is identified and do not further discuss this issue.
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The full complete-data likelihood function is defined as the product of L?i (θ) over i

L?(θ) =
N∏
i=1

ji∏
j=1

gj(bij |bij−1, . . . , bi1, θ), (2.4)

where N is the sample size.

The complete-data likelihood function given in (2.4) cannot be evaluated when the

data are not complete. Simply omitting terms that involve missing data in (2.3) and

maximising the computable part of the likelihood function generally does not yield a

consistent estimator of θ. This is because the resulting truncated sample may not be

representative of the population (see e.g. Moffitt and Rendall, 1995).

To get the likelihood contribution of the observed events, the unobserved events

must be integrated out. For an individual who is under observation during odd-

numbered periods (so ji is odd), the incomplete-data likelihood contribution is4

Li(θ) =
∫∫
· · ·
∫ ( ji∏

j=1:j odd
gj(bij |bj−1, bij−2, . . . , b2, bi1, θ)

)

×
( ji∏
j=1:j even

gj(bj |bij−1, bj−2, . . . , b2, bi1, θ)
)
dbji−1 . . . db4 db2

= EBθ
i2

[
· · ·EBθ

iji−1

[ ji∏
j=1:j odd

gj(bij |Bθ
ij−1, bij−2, . . . , Bθ

i2, bi1, θ) (2.5)

∣∣∣∣∣ Bθ
iji−2 = biji−2, . . . , Bθ

i2, Bθ
i1 = bi1

]
· · ·
∣∣∣∣∣ Bθ

i1 = bi1

]
,

where Bθ
ij denotes a random vector of potential event times for individual i in period j,

whose conditional probability density function given prior history is given in (2.2),

taking individual i’s realised observation period endpoints ci0, . . . , cji as given. The

superscript θ serves as a reminder that this distribution is governed by the θ at which

the likelihood contribution is evaluated, not the so-called true value behind the realised

events bij .
4Admittedly the notation is sloppy here, since the dimension of the terms integrated out are random,

and the limits of the definite integrals are omitted. The notation could be made formally correct by
conditioning on and summing over the possible dimensions of the vectors.
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Similarly, for an individual who is under observation during even-numbered periods

(so ji is even), the incomplete-data likelihood contribution is

Li(θ) =
∫∫
· · ·
∫ ( ji∏

j=1:j odd
gj(bj |bij−1, bj−2, . . . , bi2, b1, θ)

)

×
( ji∏
j=1:j even

gj(bij |bj−1, bij−2, . . . , bi2, b1, θ)
)
dbji−1 . . . db3 db1

= EBθ
i1

[
· · ·EBθ

iji−1

[ ji∏
j=1:j even

gj(bij |Bθ
ij−1, bij−2, . . . , bi2, Bθ

i1, θ) (2.6)
∣∣∣∣∣ Bθ

iji−2 = biji−2, . . . , Bθ
i2 = bi2, Bθ

i1

]
· · ·
]
.

Note the outermost expectation is unconditional here, since there is no history prior

to period 1.

The full incomplete-data likelihood function is defined as the product of Li(θ)

over i. Since this is the exact likelihood function for the observed data, the maximiser

is a consistent and asymptotically efficient estimator of θ. However, computing this

function is hampered by the fact that in general the integrals (expectations) cannot be

solved analytically. In typical model specifications, the event density function depends

non-linearly on previous events, and the integrals are not separable.

2.2.2 Monte Carlo integration

Our proposal is to use Monte Carlo simulation to integrate out the unobserved terms.

For each individual we draw R independent pseudo-histories for periods with missing

information. For a given value of θ, we then approximate the likelihood function

by averaging over the R pseudo-histories. That is, for an individual who is under

observation during odd-numbered periods, we compute

LMC
i (θ) =

1
R

R∑
r=1

ji∏
j=1:j odd

gj(bij |brij−1, bij−2, . . . , bri2, bi1, θ), (2.7)
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and for an individual who is under observation during even-numbered periods, we

compute

LMC
i (θ) =

1
R

R∑
r=1

ji∏
j=1:j even

gj(bij |brij−1, bij−2, . . . , bi2, bri1, θ), (2.8)

where for each r = 1, . . . ,R and j = 1, . . . , ji the brij are sequences of simulated event

times specific to individual i’s period j, compatible with the individual’s observed and

simulated event history, and compatible with the density evaluated at θ. That is, each

brij is drawn from the conditional distribution gj given in (2.2), with simulated prior

event times replacing actual times when the latter are unobserved, and using the θ at

which the likelihood function is evaluated. (For simplicity, the dependence of brij on θ is

suppressed in the notation.) Let krij denote the dimension of brij . Standard arguments

(the law of large numbers) imply that LMC
i converges to Li pointwise as R diverges to

infinity.

The dynamic nature of the density function gj means that the simulation must be

done sequentially. Recall that f denotes the conditional density of events, and F is the

corresponding cumulative distribution function. For common parametric specifications

of the hazard function, f , F and F−1 are easily evaluated using closed-form formulae.

Pseudo-histories can therefore be created using the inversion method.5

Suppose first that (ci0, ci1] is a period where individual i is not under observation.

To simulate a first event time for this individual, we draw a pseudo-random number

uri11 from the uniform distribution and then compute a candidate event time by bri11 =

F−1(uri11|si(ci0), θ). If bri11 > ci1, we decide that no events happened during (ci0, ci1]

and set kri1 = 0. If bri11 ≤ ci1, we keep bri11 and draw a second candidate event time. In

general, having drawn bri1k−1, . . . , bri11 with bri1k−1 ≤ ci1, we draw a candidate for the kth

event time by bri1k = F−1(uri1k|sri (bri1k−1), θ), where uri1k is another (independent) draw

from the uniform distribution and where sri (bri1k−1) includes the simulated previous
5Admittedly, misspecification of the models would deteriorate the performance of the MSL method

relative to common ML methods since the simulation procedure in the MSL method is based on the
models that are estimated.
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events bri1k−1, . . . , bri11. If bri1k > ci1, the rth pseudo-history is complete with kri1 = k− 1

and bri1 = (bri1kri1
, . . . , bri11). If bri1k ≤ ci1, we increment k and consider the next candidate

event time.

The simulation procedure is similar for other periods where an individual is not

under observation. The only difference is that the history includes the observed event

times during prior periods where the individual is under observation as well as simulated

event times during prior periods where the individual is not under observation. For

example, if individual i is under observation during (ci0, ci1] but not during (ci1, ci2],

then sri (bri2k−1) includes the simulated events bri2k−1, . . . , bri21 as well as the observed

events bi1.

As pointed out by several authors (see e.g. Stern, 1997; Brinch, 2012), it is es-

sential for successful numerical maximisation to use the same underlying draws from

the uniform distribution in all the evaluations of the likelihood function (including

computation of numerical derivatives).

The full incomplete-data simulated likelihood function is defined as the product of

LMC
i (θ) over i. Maximising the simulated likelihood function yields a consistent and

asymptotically efficient estimator under standard conditions provided
√
N/R → 0 as

N →∞ where N is the number of individuals in the sample [Gouriéroux and Monfort,

1991].

2.2.3 Importance sampling

The simulated likelihood contributions described above are not everywhere continu-

ous. Discontinuities occur when a small change in θ leads to a switch in the decision

of whether to retain or discard a candidate event time (brijk). These discontinuities

mean that standard maximisation methods for differentiable functions such as New-

ton’s method may not work well.

Since the magnitude of the discontinuities are of order 1/R, one approach to nu-

merical maximisation of the likelihood function is to use a standard derivative-based
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method with R very large, and increase R whenever a discontinuity is causing problems.

Another approach is to use a non-gradient method. These approaches will generally

lead to convergence, but are expected to be slow.

An appealing method is to smooth the likelihood contributions using importance

sampling techniques. In the present context, an importance sampling distribution for

bij can be any given conditional distribution of events during period j given previous

events. For concreteness, we choose gj evaluated at some fixed value θ∗. For an

individual who is under observation during even-numbered periods (the odd-numbered

case is similar), the incomplete-data likelihood contribution can be written as

Li(θ) =
∫∫
· · ·
∫ ( ji∏

j=1:j odd
gj(bj |bij−1, bj−2, . . . , bi2, b1, θ)

× gj(bj |bij−1, bj−2, . . . , bi2, b1, θ∗)
gj(bj |bij−1, bj−2, . . . , bi2, b1, θ∗)

)

×
( ji∏
j=1:j even

gj(bij |bj−1, bij−2, . . . , bi2, b1, θ)
)
dbji−1 . . . db3 db1

= EBθ∗
i1

[
· · ·EBθ∗

iji−1

[( ji∏
j=1:j odd

gj(Bθ∗
ij |bij−1, Bθ∗

ij−2, . . . , bi2, Bθ∗
i1 , θ)

gj(Bθ∗
ij |bij−1, Bθ∗

ij−2, . . . , bi2, Bθ∗
i1 , θ∗)

)
(2.9)

×
( ji∏
j=1:j even

gj(bij |Bθ∗
ij−1, bij−2, . . . , bi2, Bθ∗

i1 , θ)
)

∣∣∣∣∣ Bθ∗
iji−2 = biji−2, . . . , Bθ∗

i2 = bi2, Bθ∗
i1

]
· · ·
]
.

The corresponding simulated likelihood contribution is

LIS
i (θ) =

1
R

R∑
r=1

( ji∏
j=1:j odd

gj(brij |bij−1, brij−2, . . . , bi2, bri1, θ)
gj(brij |bij−1, brij−2, . . . , bi2, bri1, θ∗)

)

×
( ji∏
j=1:j even

gj(bij |brij−1, bij−2, . . . , bi2, bri1, θ)
)

,

(2.10)

where brij for r = 1, . . . ,R and j = 1, . . . , ji are drawn from the importance sampling

distribution gj(·|·, θ∗) instead of the ‘correct’ distribution gj(·|·, θ). The principle un-

derpinning importance sampling is that the ‘error’ can be fixed by reweighting using
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the ratio of correct density over the importance sampling density.

One of the advantages of the importance sampling approach is that the simulated

event times do not depend on the value of θ at which the likelihood contribution is

evaluated, and hence the simulated likelihood function is continuous and differentiable.

A potential drawback is that a very large R may be needed in order to achieve a good

approximation to the likelihood function. Keane and Sauer [2010] suggest that it may

be advantageous to scale the importance sampling weights to sum to R over r.6

2.2.4 Covariates

So far we have ignored covariates, in order to focus on missing event times. In practice,

covariates can be time-invariant or time-varying. Incorporating covariates is straight-

forward when the covariate paths are completely observed. Usually covariates with

incompletely observed paths can also be incorporated, using an extended simulation

procedure. For example, in some cases the observation process is such that time-varying

covariates are missing during the same periods when the event times are not observed.

These covariates can be incorporated by specifying an auxiliary model for their paths,

and using this model to integrate out the missing parts of the covariate paths.7

2.2.5 Unobserved heterogeneity

Allowing for individual-specific time-invariant effects is standard in the literature.

These effects capture correlation across event times. It is well-known that omitting

individual-specific time-invariant effects can lead to a bias towards negative duration

dependence (see e.g. Elbers and Ridder, 1982; Heckman and Singer, 1984a). The

effects are usually assumed to be independent of covariates (‘random effects’ in the

econometrics literature, ‘frailty’ in the statistics literature). The distribution of the

random effects is specified either as discrete (following Heckman and Singer, 1984b) or
6Hesterberg [1995] compare unnormalised importance sampling with several normalised importance

samplers for the problem of estimating certain aspects of a normal distribution. He finds that there is
no uniformly best method.

7See e.g. Keane and Sauer [2010] for a similar approach in a discrete-time setting.
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as continuous such as a normal distribution with mean 0.

Let vi denote the realised unobserved random effect for individual i, and consider

the complete-data likelihood function given in (2.3). Including and integrating out the

random effects gives

L?i (θ) =
∫ ∞
−∞

( ji∏
j=1

gj(bij |bij−1, . . . , bi1, v, θ)
)
dZ(v), (2.11)

where Z denotes the cumulative distribution function of vi, and implicitly θ has been

augmented to include unknown parameters of the distribution of vi. For simplicity, we

also reuse the symbols gj , f , h, and H to denote the corresponding functions which

depend on the random effect. The modification required to include a random effect is

similar in the other likelihood contributions given above.

In practice, if Z is continuous then the integration is carried out using Gaussian

quadrature. While straightforward, this increases the computational burden somewhat.

For example, with Q evaluation points v1, . . . , vQ and weights wi, . . . ,wQ, the simulated

likelihood contribution in (2.10) becomes

LIS
i =

Q∑
q=1

wq
1
R

R∑
r=1

( ji∏
j=1:j odd

gj(b
qr
ij |bij−1, bqrij−2, . . . , bi2, bqri1 , vq, θ)

gj(b
qr
ij |bij−1, bqrij−2, . . . , bi2, bqri1 , vq, θ∗)

)

×
( ji∏
j=1:j even

gj(bij |bqrij−1, bij−2, . . . , bi2, bqri1 , vq, θ)
)

,

(2.12)

where bqrij for q = 1, . . . ,Q, r = 1, . . . ,R and j = 1, . . . , ji are drawn from the impor-

tance sampling distribution gj(·|·, vq, θ∗) instead of the ‘correct’ distribution gj(·|·, vq, θ).

Note that the same underlying random draws from the uniform distribution can be used

for each q, but the simulated event times, and even the number of compatible simulated

event times, kqrij , will be different.
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2.2.6 Estimation based on Heckman’s method

The likelihood contribution for individual i’s period j given in (2.2) is made up of

subcontributions representing each of the events, and a term representing the final

right-censored period when no events occurred. In general, the hazard function at

any given time may depend on the entire previous history of events. However, in

many applications it can be assumed that the hazard function depends only on recent

history. For example, the hazard rate for an event occurring at time t may depend

only on whether or not an event occurred (or the number of events that occurred) in

the period (t− τ , t) for some fixed τ . In applications where the influence of history is

limited, missing data may affect only some and not all of the event subcontributions.

If so, then the terms in the likelihood function that do not depend on missing data are

‘computable’, and it may be feasible to handle the ‘uncomputable’ parts by adapting

the idea of Heckman [1981].

We compare MSL estimation with an implementation of Heckman’s method in our

Monte Carlo experiments and in our empirical application. To describe how Heckman’s

idea can be adapted, define dijk to be 1 if h(bijk|si(bijk−1), vi, θ) is computable, and

define dijk to be 0 otherwise. Define also dijkij+1 so that exp
(
−H(cij |si(bijkij ), vi, θ)

)
is computable if and only if dijkij+1 = 1.

It is helpful to begin with a simple two-period observation process, so suppose

individual i is under observation in period 2 but not in period 1. By definition, the

computable terms are those that do not depend on the unobserved events in period 1.

Since they don’t depend on period 1 events, they can be factored out of the integral in

the incomplete-data likelihood contribution for individual i. Allowing for unobserved
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heterogeneity, we have from (2.6) that

Li(θ) =
∫ ∞
−∞

{∫
g2(bi2|b1, v, θ)g1(b1|v, θ) db1

}
dZ(v)

=
∫ ∞
−∞

{[∫ ( ki2∏
k=1

f(bi2k|si(bi2k−1), v, θ)1−di2k

)

× exp
(
−H(ci2|si(bi2ki2), v, θ)

)1−di2k+1
g1(b1|v, θ) db1

]

×
(
ki2∏
k=1

f(bi2k|si(bi2k−1), v, θ)di2k
)

× exp
(
−H(ci2|si(bi2ki2), v, θ)

)di2k+1
}
dZ(v).

(2.13)

The integral with respect to b1 is uncomputable, because the necessary history is not

observed. Heckman’s idea was to approximate this using a reduced-form density that is

based on as much predetermined information as is available, incorporates unobserved

heterogeneity, and uses a flexible parametric specification. How much information is

available depends on the details of how the hazard rate depends on previous history.

Let h†(t|s(t′), v, ξ) for t > t′ be an approximate conditional hazard function evalu-

ated at time t given the event history until time t′. For simplicity, we do not introduce

new notation for the observed history itself. The principle is that h† is parameterised so

that it depend only on the part of s(t′) that is observed at time t′. Hence, h†(t|s(t′), v, ξ)

is computable even though s(t′) is not fully observed. For example, in our empirical

application no part of s(t′) is observed for left-censored histories, so we parameterise h†

in terms of t and v only. Let H† denote the corresponding cumulative hazard function

from time t′ to time t, and define f † by

f †(t|s(t′), v, ξ) = h†(t|s(t′), v, ξ) exp
(
−H†(t|s(t′), v, ξ)

)
, t > t′. (2.14)



22 Estimation of dynamic models of recurrent events with censored data

Then the hope is that given θ for some ξ we have that

∫ ( ki2∏
k=1

f(bi2k|si(bi2k−1), v, θ)1−dijk

)

× exp
(
−H(ci2|si(bi2ki2), v, θ)

)1−dijk+1
g1(b1|v, θ) db1

≈
(
ki2∏
k=1

f †(bi2k|si(bi2k−1), v, ξ)1−dijk

)
exp

(
−H†(ci2|si(bi2ki2), v, ξ)

)1−dijk+1 .

(2.15)

Substituting the approximation into (2.13) gives an approximate likelihood contribu-

tion as a function of (θ, ξ).

In the general multi-period case, the approximate likelihood contribution for an

individual who is under observation during even-numbered periods (the odd-numbered

case is similar) is

L†i (θ, ξ) =
∫ ∞
−∞

{ ji∏
j=1:j even

( kij∏
k=1

f(bijk|si(bijk−1), vi, θ)dijk

× f †(bijk|si(bijk−1), vi, ξ)1−dijk

)
exp

(
−H(cij |si(bijkij ), vi, θ)

)dijkij+1

× exp
(
−H†(cij |si(bijkij ), vi, ξ)

)1−dijkij+1
}
dZ(v).

(2.16)

Maximising the corresponding full likelihood function yields a consistent estimator of

θ, provided the approximate reduced-form model is in fact correctly specified. Gen-

erally the hope is that the approximation is good enough that the magnitude of the

inconsistency is acceptable.

2.3 Monte Carlo experiments

To investigate the performance of the MSL approach, we carried out a small set of

Monte Carlo experiments. The designs feature mixed proportional hazards with a
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Weibull baseline hazard function, a single time-invariant covariate, xi, and a continuous

random effect, vi. The covariate and the random effect are realisations from a standard

normal distribution.

Separate models are specified for the first event and for subsequent events. Current

duration dependence is captured in the baseline hazards. After the first event, the

hazard rates also depend on whether an event occurred or not during a recent period

of fixed length (i.e. a moving window). Specifically, the hazard function for the first

event is

h1(t|s(0),x, v, θ) = α1t
α1−1 exp(xβ1 + µ1 + vσ1), t > 0. (2.17)

With t′ representing the most recent event time before t, the hazard function for sub-

sequent events is

h2(t|s(t′),x, v, θ) = α2t
α2−1 exp(1(t < t′ + τ )γ + xβ2 + µ2 + vσ2), t > t′, (2.18)

where θ = (α1,β1,µ1,σ1,α2, γ,β2,µ2,σ2)′, and τ is a constant that varies across exper-

iments. We normalise σ1 ≥ 0 and σ2 ≥ 0. The parameters used in the data-generating

processes are fixed at α1 = 1, β1 = 0.2, µ1 = −0.5, α2 = 1, γ = 0.5, β2 = 0.2, and

µ2 = −0.5, while either σ1 = 0, σ2 = 0 (known) or σ1 = 1, σ2 = 1 (estimated) as

indicated in the tables.

Note that baseline time does not reset after an event in these designs. Alternatively,

the baseline hazard rate can be specified in terms of t− t′. More flexible models can

be obtained by specifying separate hazard functions for second events, third events,

etc. Less flexible models can be obtained by assuming α1 = α2, β1 = β2, µ1 = µ2, and

σ1 = σ2. In this case, the model effectively consists of a single hazard specification

since (2.17) is simply (2.18) with γ = 0. Such a specification was adopted for example

by Keane and Sauer [2010]. Our designs satisfy these restrictions, but we do not impose

them in the estimation.

The observation process mimics a sampling procedure where analysis time is age and
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data are collected from the population stock over a fixed calendar period. Specifically,

half the sample are observed over the age range (0, 1] while the other half is observed

over (1, 2]. That is, the former is right-censored at time 1 (and not left-censored),

while the latter is left-censored at time 1 and right-censored at time 2. The number

of non-left-censored individuals in the samples is N1 = 250 and while the number of

left-censored individuals is either N2 = 250 or N2 = 500 as indicated in the tables.

Across all designs, about half of the individuals in a sample do not have any events

during their observation period. For those who do have observed events, the mean

time until the first event is about 0.38. Since α1 = 1 and α2 = 1 imply memoryless

exponential hazard functions, these statistics apply to both the left-censored and the

non-left-censored.

We compute several estimators to compare the MSL approach with simple estima-

tors that may be considered in practice. Estimator ISU is an MSL estimator which uses

importance sampling techniques without scaling of the weights, while estimator ISN has

the weights normalised to sum to one. For simplicity, we use the true data-degenerating

process as the importance sampling distribution, and we set R = 100.

Estimator NLC uses only individuals with non-left-censored data (listwise deletion);

that is, half the sample in the experiments with N2 = 250 and a third of the sample

when N2 = 500.

Estimator HKM uses the approximate reduced-form idea of Heckman [1981] to han-

dle the left-censoring problem. For the designs considered here, the only uncomputable

term in the likelihood contribution for the left-censored individuals concerns the first

observed event in period 2, bi21. This is because we do not know whether or not the

first observed is the first actual event, while for subsequent observed events there is

no ambiguity. Since no useful information is available in s(1), we specify the auxiliary

hazard function for bi21 as

h3(t|s(1),x, v, ξ) = α3t
α3−1 exp(xβ3 + µ3 + vσ3), t > 0. (2.19)



§2.3 Monte Carlo experiments 25

The literature on dynamic panel data models usually does not distinguish between the

start of the event process and the start of the observation period, although these are

associated with conceptually distinct problems: at the start of the event process lags

cannot exist so logically a different structural equation is required, whereas at the start

of the observation period lags may exist so a method for dealing with missing data

is required. Here we maintain the distinction between left-censoring and genuine first

events. That is, our HKM implementation estimates the parameters of all three hazard

functions.

There are 1000 samples in each experiment.8 In designs with random effects, un-

observed heterogeneity is integrated out using Gauss-Hermite quadrature with Q = 10

evaluation points.

Table 2.1 shows root mean square errors (RMSEs) for the four estimators for de-

signs without random effects. The likelihood function is separable in the parameters

pertaining to the first and subsequent events, respectively. Consequently, the NLC

and HKM estimates for the parameters of the first hazard function are identical. The

RMSEs for the IS estimates are slightly lower. For the second hazard functions, the

HKM estimates improve dramatically on the NLC estimates. This is because the us-

able sample is twice as large, and the HKM involve only a few more parameters. The

RMSEs for the IS estimates are lower again, especially for γ and µ2.

The value of τ does not affect the first hazard function, but the higher τ , the

more history data are needed to estimate the second hazard function. The problem of

missing data therefore becomes more severe and higher RMSEs are expected. This is

confirmed in Table 2.1. The results for the first hazard function do not change, because

the same data are used. For the second hazard function, the RMSEs for lnα2 and β2

also remain roughly constant, while the RMSEs for γ and µ2 increase. The increase

occurs because the number of individuals with no recent events becomes small when

τ is large, and hence it becomes difficult to estimate µ2 accurately.9 Since individuals
8The results omit a few samples (max 3 per experiment) where the estimation procedure did not

converge in a sense that the estimates of σ1 and σ2 diverged to the negative infinity.
9In the extreme, if these individuals experience no further events, the estimated hazard should be



26 Estimation of dynamic models of recurrent events with censored data

who have recent events identify the sum γ + µ2, the uncertainty in the estimates of µ2

is mirrored in the estimates of γ. However, the HKM estimator is better than the NLC

estimator, since it uses much more of the sample, and the two IS estimators are better

than the HKM estimator, since they use the sample efficiently.

Table 2.2 shows results for designs with random effects. Looking first at the case

where τ = 0.3 and N2 = 250, the patterns are similar to those without random

effects. The HKM estimator improves on the NLC estimator and the IS estimators

perform better than the HKM estimator. Estimation of distributions of random effects

is notoriously difficult, so it is not surprising to find much higher RMSEs for ln σ1 and

ln σ2.

As τ increases, the results for the first-event parameters and for lnα2 and β2 do

not change much. Similar to the designs without random effects, estimation of γ and

µ2 becomes more difficult when τ is large, so the RMSEs for those parameters increase

for all estimators. The increase is very large for the NLC and HKM estimators but

only modest for the IS estimators, so the efficiency gain of the latter becomes more

substantial. The patterns for the RMSEs of ln σ1 and ln σ2 are complex and not

entirely intuitive. For example, the RMSEs for the NLC estimator of ln σ2 tend to

increase with τ , but decrease for the HKM estimator. Presumably this is because the

‘practical identification’ of these parameters is weak, so small approximation errors in

the simulated likelihood function can have large effects of the estimates.

When the number of left-censored individuals is increased from N2 = 250 to

N2 = 500, the results for the first-event parameters hardly change, while there is

some improvement for the parameters relating to the second hazard function. This is

particularly true for the difficult parameters ln σ1 and ln σ2, and to a lesser extent for

γ and µ2.

To conclude, it is clear that there are potentially large efficiency gains in using MSL

estimation over methods based on listwise deletion or Heckman’s approximate reduced-

form modelling of initial conditions. The gains are particularly high for parameters that

zero, which means µ̂2 = −∞.
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are difficult to estimate. The fact that the results for the ISU and ISN estimators are

not identical reveal a disadvantage of MSL estimation; namely, that numerical inte-

gration inevitably involves some approximation error. As a practical guide, we suggest

computing several MSL estimates, using different importance sampling distributions

with and without scaling of the weights. If the estimates are too different, then the

values of R and Q can be increased until all estimates are in sufficient agreement.

2.4 Empirical application

2.4.1 Modelling ischaemic heart disease risk

To investigate the performance of the MSL approach in a practical setting, we apply

the MSL estimation methods and the two alternative methods to a dynamic model of

ischaemic heart disease events (IHDs) for males of Maori descent in New Zealand.10

We combine nationwide administrative data on hospital admissions and death reg-

istrations during the period 2002–2012 with census data from 2001. The combined

data set is essentially representative of the population of New Zealand in 2002, except

that we exclude people with type 1 diabetes. For each IHD event (hospitalisation or

death), we have information on gender, ethnicity, date of birth, date of admission and

diagnoses if admitted, and date of death and cause of death if died. Since IHD events

are rare before age 40, we define analysis time 0 as age 40. We do not model risk after

age 85, because the population over age 85 is very small. However, the full population

is large, so our estimation sample is a randomly drawn subset consisting of 50,000

individuals.11

Table 2.3 shows summary statistics for the estimation sample. The number of
10In related research, we present a thorough investigation of the heart attack (acute myocardial

infarction) risk for New Zealanders of Maori and European descent using similar data [Lee and Gørgens,
2019], which is Chapter 3 of the thesis.

11IHD events appear in the data as codes I20–I25 according to the International Classification of
Diseases 10 Australian Modification. We treat events that occur within 29 days of each other as a
single event. Since the cause of death is in the register, death is not associated with underreporting
events; however, some cases are not acute and may not lead to a hospital admission, so it is likely that
some less severe events do not appear in the data.
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people decreases with age, and there are not many people aged 80–84 in the sample.

The total time at risk is 376,739 years, which is 7.5 years per person on average. The

total number of observed IHDs is 7,974. Whether looking at incidence rates or the

number of observed IHDs, it is clear that the IHD risk increases with age. The amount

of left-censoring in the estimation sample is very large, with about 63% of histories

being left-censored.

We consider a dynamic model of IHDs similar to the one in the Monte Carlo study,

except that the events follow Gompertz instead Weibull distributions in order to better

fit exponentially increasing risk. Let t denote the elapsed time since age 40 measured

in decades (i.e. t = (age− 40)/10), and let v denote the standardised random effect.

Then the hazard function for the first IHD event is

h1(t|v, θ) = exp(tα1 + µ1 + vσ1), t > 0, (2.20)

and the hazard function for subsequent IHDs is

h2(t|t′, v, θ) = exp(tα2 + 1(t ≤ t′ + τ )γ + µ2 + vσ2), t > t′, (2.21)

where t′ is the event time of the most recent IHD. The length of the high-risk period

is fixed at τ = 0.1 decade in our main estimates, but we also consider higher values.

In addition, the HKM estimator requires an auxiliary model for the left-censored event

times, which we specify as

h3(t|v, ξ) = exp(tα3 + µ3 + vσ3), t > 0. (2.22)

Below we discuss estimates from both models with and models without random effects.

The focus on this investigation is to compare the ISU and ISN estimators with

each other and with the NLC and HKM estimators. For the two MSL estimators,

we initially set R = 100 but report on other values later. In models without random

effects, we set the parameters of the importance sampling distributions, θ∗, equal to
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the HKM estimates. In models with random effects, we set Q = 10 and θ∗ equal

to the HKM estimates with σ∗1 and σ∗2 reset to low values as indicated in the table

notes. The modification of σ∗1 and σ∗2 reduces the number of events in the simulated

pseudo-histories for large values of v, which conserves computer memory and reduces

computing time. All reported standard errors are computed as the outer product of

the relevant score functions.

2.4.2 Estimated models without random effects

Table 2.4 shows the estimated parameters for models without random effects, and

Figure 2.2 shows the estimated hazard functions. The ISU and ISN estimates are

practically identical. The HKM estimates are virtually identical to the NLC for the

first event (as they should be), but similar to the ISU and ISN estimates for subsequent

events. The NLC estimates for the risk of subsequent events are absurd, as they suggest

risk declines with age.12

To summarise the ISU/ISN findings, note first that the risk of the first IHD event

is quite small around age 40 (µ1 ≈ −3.1), but increases with age (α1 ≈ 0.5). The risk

of a subsequent IHD event is generally much higher than for first IHD (µ2 ≈ 0.1), and

also increasing in age albeit at a slower rate (α2 ≈ 0.1). Having had an event, the risk

of another event during the following year is more than three times as large as having

it at any time later (γ ≈ 1.2).

The four estimation methods provide statistically similar results, in the sense that

the 95% confidence intervals overlap. It is not surprising that both the NLC and the

HKM estimates of µ1 and α1 are somewhat different from the ISU and ISN estimates,

since they rely on much less data. This is reflected in their standard errors, which

are large. For the risk of subsequent events, the NLC estimator stands out with a

large estimate of µ2 and a negative estimate of α2, but again these estimates are not

statistically significantly different from 0. The NLC estimator can only utilise the data
12ISU and ISN estimation of the model without random effects takes about 4 minutes each with

our computers and our code when R = 100 and 40 minutes when R = 1000, while NLC and HKM
estimation takes about 1 minute.
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for the age range 40–49, and this is a time when people are relatively healthy and few

experience multiple events.

The standard errors of the HKM, ISU and ISN estimators are very similar for the

parameters relating to the subsequent events. However, there are substantial efficiency

gains for the MSL estimators relative to the alternative methods for the parameters of

the risk of the first event. In fact, the standard errors for the ISU and ISN estimates

of the risk of the first event are as small as those of subsequent events. The efficiency

gain is expected, since the left-censored histories (about 63% of the estimation sample)

contribute fully in the MSL estimation, while in the alternative estimation methods

they contribute only if events occur during the observation period.

To examine the sensitivity of the MSL estimators to the number of simulated histo-

ries, Table 2.5 shows MSL estimation results for different values of R. (The first column

in Table 2.5 has the same estimates as shown in Table 2.4.) The estimates appear re-

markably insensitive. Looking across the columns, there are no practical difference

between the estimates, nor between the standard errors. (The difference between the

estimates for R = 100 and R = 1000 is at most 0.7 standard errors.) Clearly R = 100

is sufficient for this application.

Including an indicator function to capture the elevated risk for a period immediately

following an event is a simple way to distinguish between short-term and long-term

risks. In the health and medical literatures it is common to focus on outcomes during

a fixed period of a month or a year after an event. However, the one-year cutoff between

the two regimes for the risk of subsequent events is essentially arbitrary. Therefore we

briefly consider other values of τ .

Table 2.6 compares estimation results for the risk of subsequent events across differ-

ent values of τ . The precise interpretation of the parameters changes when τ changes,

so we expect to get different estimates across the different model specifications. As

previously discussed, the estimation of dynamic models is more difficult when τ is

large. The table shows that the overall pattern is the same for all values of τ : ISU and
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ISN estimates are nearly identical. The HKM estimates are similar to the NLC for

the first event, but similar to the ISU/ISN estimates for subsequent events. The NLC

estimates for the risk of subsequent events are absurd. In terms of standard errors,

the efficiency advantage in estimating the risk of the first event appears for all values

of τ . For the risk of subsequent events, notice that the standard errors are smaller for

the MSL estimators than for the HKM estimator, with a slightly larger gap for larger

values of τ .

2.4.3 Estimated models with random effects

We now turn to models which include random effects. Table 2.7 shows the estimated

parameters, and Figure 2.3 shows the corresponding hazard functions. Overall, the

patterns are similar to those for models without random effects. The exceptions are

that the ISU and ISN estimates are now numerically different from each other, but not

practically different, and they are substantially different from the HKM estimates for

the risk of subsequent events.13

To summarise the ISU/ISN findings, we find that the median risk of the first IHD

event is initially quite low (µ1 ≈ −3.3), but increases with age (α1 ≈ 0.6). The risk

of subsequent events is higher (µ2 ≈ −0.9), and increases with age at a slower rate

(α2 ≈ 0.2). The short-term increase in risk after an event is about two and half

times as high as the long-term increase (γ ≈ 0.9). The estimates suggest that there is

considerable unobserved heterogeneity in IHD risk, especially in the risk of subsequent

events (ln σ1 ≈ −0.5, ln σ2 ≈ 0.2). The largest differences between the ISU and ISN

estimates occur for ln σ1 and ln σ2. However, as shown in Figure 2.3, the risks at the

median of the estimated distribution of unobserved heterogeneity are similar.

Statistically, the different estimators are not completely in agreement in that the

95% confidence intervals do not overlap for some parameters. The standard errors of

the ISU and ISN estimates in Table 2.7 tend to be smaller than those of the alternative
13ISU and ISN estimation of the model with random effects takes about 90 minutes each on our

systems when R = 100 and about 25 hours when R = 1000, while NLC and HKM estimation takes
about 2 minutes each.
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methods, especially for the parameters relating to the first IHD event. This pattern is

consistent with the efficiency advantage of full ML estimation. The exception is the

standard errors for the estimates of ln σ1 and ln σ2, which are larger for ISU and ISN

estimates.

The different results for the different estimation methods is likely driven by differ-

ences in the estimates of ln σ1 and ln σ2. If the influence of the random effects is large,

then more observed IHD events are attributed to high values of the random effects

(high innate risk) than to base level risk, dynamic effects, and age. As mentioned, it is

generally difficult to estimate random effects distributions and, not unexpectedly, the

standard errors for the estimates of ln σ1 and ln σ2 tend to be larger than for the other

parameters.

The differences between the ISU and ISN estimates should diminish if the number

of simulated pseudo-histories is increased. Table 2.8 compares the MSL estimation

results for different values of R. (The first column in Table 2.8 is the same as ISU and

ISN estimates in Table 2.7.) Unfortunately, the differences between the ISU and ISN

parameter estimates remain nontrivial even for R = 1000, especially for the estimates

of ln σ1 and ln σ2. Note that the ISN estimates are more stable than the ISU estimates,

suggesting they are more reliable. However, this argument would be more convincing

if the ISU estimates moved towards the ISN estimates for larger R. Figures 2.4 and 2.5

show that the risks at the medians of the estimated distribution of random effects.

The stability of the ISN estimates is striking, while the jump in the ISU estimates for

R = 1000 is a concern. We leave the reconciliation of these findings to future research.

Table 2.9 shows estimation results for different model specifications with different

values of τ . The patterns from Table 2.7 are repeated: The NLC estimates are unre-

liable and their standard errors are high, while the HKM, ISU and ISN estimates are

qualitatively similar if not exactly identical. The standard errors tend to be slightly

lower for the ISU and ISN estimators. As before, it is the estimates of ln σ1 and ln σ2

that differ the most across methods, and their standard errors are relatively large.
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The problem of estimating models with random effects is not specific to MSL es-

timation, and it is not uncommon to find that different approaches give somewhat

different answers. For our random effects models of IHD events, we have more faith

in the MSL estimates on the grounds that theoretically full ML estimation is expected

to provide better results and practically the ISU and ISN estimates are substantially

similar.

2.5 Concluding remarks

This chapter considers ML estimation of dynamic models of recurrent events in contin-

uous time using censored data. We propose to deal with censoring by integrating out

missing data from the likelihood function using Monte Carlo simulation and impor-

tance sampling techniques. We compare MSL estimation with estimators that either

ignore left-censored individuals and middle-censored individuals (listwise deletion) or

deal with censoring using ad hoc modifications to the likelihood function (Heckman’s

method). The Monte Carlo results show that there can be substantial efficiency gains

in maximising the full simulated likelihood function. In an empirical application, we

study the risk of ischaemic heart disease using models with and without random effects.

We find that the MSL estimators typically have smaller standard errors, especially for

parameters relating to the risk of having the first event. In models without random

effects, the MSL estimators are clearly preferable. In models with random effects, we

find some contradictory patterns, but the MSL estimators are most likely preferable.

There is a large literature that is concerned with the choice of importance sampling

distributions in a variety of estimation problems. The question is difficult and the

answer tends to be model specific. We use importance sampling distributions that are

intuitively reasonable in that they tend to place most weight on outcomes that are

most likely. It is a topic for future research to investigate the trade off between the

choice of importance sampling distribution and the number of pseudo-histories needed

for reliable inference.
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We assume that the censoring and the event processes are independent, and we

focus on settings where time origins and covariate paths are known. We anticipate that

these assumptions can be relaxed, at the costs of further computational complications.

Given the encouraging results for models of recurrent events, it is also likely that similar

efficiency gains are available for example in multi-state transition models.
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Table 2.1: RMSE for designs without random effects
N2 = 250

Parameter NLC HKM ISU ISN
τ = 0.3
lnα1 0.083 0.083 0.073 0.076
β1 0.113 0.113 0.098 0.099
µ1 0.096 0.096 0.088 0.088
lnα2 0.281 0.149 0.148 0.149
γ 0.334 0.224 0.206 0.206
β2 0.168 0.101 0.092 0.092
µ2 0.338 0.252 0.238 0.239

τ = 0.5
lnα1 0.083 0.083 0.073 0.077
β1 0.113 0.113 0.098 0.098
µ1 0.096 0.096 0.088 0.088
lnα2 0.265 0.144 0.143 0.145
γ 0.467 0.299 0.246 0.247
β2 0.157 0.092 0.086 0.086
µ2 0.482 0.329 0.285 0.287

τ = 0.7
lnα1 0.083 0.083 0.075 0.079
β1 0.113 0.113 0.098 0.098
µ1 0.097 0.096 0.089 0.089
lnα2 0.256 0.140 0.139 0.140
γ 4.273 1.661 0.348 0.349
β2 0.151 0.091 0.084 0.084
µ2 4.267 1.665 0.380 0.382
The parameters used in the DGPs are fixed at α1 = 1, β1 = 0.2, µ1 = −0.5,
α2 = 1, γ = 0.5, β2 = 0.2, and µ2 = −0.5. RMSE indicates root mean square
errors. NLC and HKM indicate listwise deletion and Heckman’s approximate
reduced-form modelling, respectively. ISU and ISN indicate MSL estimators
which uses importance sampling techniques without and with scaling of the
weights, respectively. See text for DGP and implementation of estimators.
Results for the parameters in the HKM auxiliary equation not shown.
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Table 2.2: RMSE for designs with random effects
N2 = 250 N2 = 500

Parameter NLC HKM ISU ISN HKM ISU ISN
τ = 0.3
lnα1 0.139 0.132 0.126 0.123 0.131 0.128 0.120
β1 0.150 0.145 0.126 0.128 0.146 0.116 0.113
µ1 0.152 0.147 0.126 0.123 0.145 0.121 0.117
ln σ1 1.248 1.120 0.662 0.662 1.376 0.517 0.617
lnα2 0.135 0.112 0.107 0.110 0.117 0.112 0.104
γ 0.282 0.193 0.177 0.175 0.164 0.142 0.138
β2 0.153 0.137 0.090 0.114 0.107 0.074 0.086
µ2 0.340 0.267 0.225 0.242 0.249 0.204 0.211
ln σ2 0.336 1.593 0.304 0.344 0.532 0.284 0.316

τ = 0.5
lnα1 0.128 0.125 0.121 0.117 0.123 0.123 0.114
β1 0.147 0.143 0.125 0.125 0.144 0.116 0.113
µ1 0.151 0.146 0.126 0.124 0.143 0.118 0.116
ln σ1 1.379 1.000 0.490 0.491 0.939 0.491 0.452
lnα2 0.124 0.131 0.105 0.105 0.115 0.111 0.104
γ 0.439 0.300 0.261 0.256 0.240 0.221 0.213
β2 0.147 0.164 0.090 0.107 0.124 0.073 0.089
µ2 0.491 0.356 0.284 0.289 0.300 0.259 0.251
ln σ2 0.339 0.794 0.300 0.338 0.518 0.284 0.317

τ = 0.7
lnα1 0.163 0.121 0.119 0.115 0.120 0.121 0.111
β1 0.169 0.144 0.124 0.125 0.144 0.112 0.110
µ1 0.160 0.143 0.127 0.126 0.141 0.119 0.117
ln σ1 6.663 1.101 1.004 0.949 0.747 0.484 0.451
lnα2 0.133 0.101 0.104 0.103 0.120 0.109 0.102
γ 4.369 1.077 0.440 0.429 0.712 0.370 0.352
β2 0.193 0.096 0.089 0.103 0.117 0.072 0.092
µ2 4.359 1.094 0.444 0.433 0.727 0.391 0.364
ln σ2 0.584 0.338 0.304 0.335 1.538 0.288 0.322
The parameters used in the DGPs are fixed at α1 = 1, β1 = 0.2, µ1 = −0.5, σ1 = 1, α2 = 1,
γ = 0.5, β2 = 0.2, µ2 = −0.5, and σ2 = 1. RMSE indicates root mean square error. NLC and HKM
indicate listwise deletion and Heckman’s approximate reduced-form modelling, respectively. ISU and
ISN indicate MSL estimators which uses importance sampling techniques without and with scaling
of the weights, respectively. See text for DGP and implementation of estimators. Results for the
parameters in the HKM auxiliary equation not shown.
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Table 2.3: Summary statistics for the estimation sample
Age on 1 July 2002 30–39† 40–49 50–59 60–69 70–79 80–84 Total
Number of people 18,349‡ 15,030 8,957 5,257 2,104 303 50,000
Total time at risk 90,500 145,196 82,251 43,915 14,150 728 376,739
Number of IHDs 528 1,833 2,467 2,173 908 65 7974
Incidence rate (×100) 0.58 1.26 3.00 4.95 6.42 8.93 2.12

Distribution of people by the number of observed IHDs (%)
0 98.03 91.98 83.79 74.97 71.86 82.18 90.04
1 1.44 5.40 9.87 15.33 18.16 13.86 6.38
2 0.30 1.52 3.25 4.91 5.47 2.31 1.91
3+ 0.23 1.10 3.09 4.79 4.52 1.65 1.67

See text for abbreviations. The unit for total time at risk is 1 year. The incidence rate is the number
of IHDs divided by total time at risk. †The 30–39-year-olds become at risk when they turn 40; ‡Non-
left-censored histories.
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Table 2.4: Estimates for models without random effects
Parameter NLC HKM ISU ISN
First IHD event
α1 0.786 0.783 0.467 0.465

(0.212) (0.212) (0.018) (0.018)

µ1 −3.486 −3.485 −3.141 −3.138
(0.095) (0.095) (0.032) (0.032)

Subsequent IHD events
α2 −0.147 0.117 0.104 0.103

(0.211) (0.011) (0.010) (0.010)
γ 1.214 1.201 1.176 1.180

(0.142) (0.028) (0.027) (0.027)
µ2 0.167 0.013 0.056 0.056

(0.167) (0.034) (0.032) (0.033)

See text for abbreviations. Results for the parameters in the HKM auxiliary equation not
shown. An analysis time unit is 10 years. MSL estimation is implemented with R = 100,
τ = 0.1 decade, and θ∗ equal to the HKM estimates.
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Table 2.5: MSL estimates for models without random effects: different R
Parameter R=100 R=200 R=300 R=500 R=1000

ISU estimates
First IHD event
α1 0.467 0.460 0.458 0.455 0.453

(0.018) (0.018) (0.018) (0.018) (0.018)
µ1 −3.141 −3.131 −3.129 −3.124 −3.123

(0.032) (0.032) (0.032) (0.033) (0.033)
Subsequent IHD events
α2 0.104 0.104 0.104 0.104 0.104

(0.010) (0.010) (0.010) (0.010) (0.010)
γ 1.176 1.173 1.172 1.171 1.169

(0.027) (0.027) (0.027) (0.027) (0.027)
µ2 0.056 0.064 0.067 0.067 0.071

(0.032) (0.033) (0.033) (0.033) (0.033)

ISN estimates
First IHD event
α1 0.465 0.458 0.457 0.454 0.452

(0.018) (0.018) (0.018) (0.018) (0.018)
µ1 −3.138 −3.129 −3.128 −3.123 −3.121

(0.032) (0.032) (0.033) (0.033) (0.033)
Subsequent IHD events
α2 0.103 0.101 0.101 0.103 0.103

(0.010) (0.010) (0.010) (0.010) (0.011)
γ 1.180 1.175 1.174 1.174 1.171

(0.027) (0.027) (0.027) (0.027) (0.027)
µ2 0.056 0.071 0.074 0.070 0.074

(0.033) (0.033) (0.033) (0.033) (0.033)

See text for abbreviations. An analysis time unit is 10 years. MSL estimation is implemented with
τ = 0.1 decade and θ∗ equal to the HKM estimates.
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Table 2.6: Estimates for models without random effects: different τ
Parameter NLC HKM ISU ISN

τ = 0.5 decade
First IHD event
α1 0.784 0.784 0.529 0.528

(0.213) (0.212) (0.018) (0.018)
µ1 −3.485 −3.485 −3.192 −3.190

(0.095) (0.095) (0.032) (0.032)
Subsequent IHD events
α2 −0.693 0.108 0.088 0.086

(0.182) (0.010) (0.009) (0.009)
γ 0.940 1.246 1.228 1.231

(0.487) (0.080) (0.073) (0.074)
µ2 0.175 −0.557 −0.521 −0.517

(0.499) (0.083) (0.076) (0.077)

τ = 0.7 decade
First IHD event
α1 0.783 0.785 0.560 0.557

(0.216) (0.212) (0.019) (0.019)
µ1 −3.485 −3.485 −3.231 −3.230

(0.098) (0.095) (0.032) (0.032)
Subsequent IHD events
α2 −0.789 0.098 0.079 0.076

(0.180) (0.010) (0.009) (0.009)
γ 8.850 1.558 1.782 1.743

(∞) (0.181) (0.160) (0.165)
µ2 −7.713 −0.913 −1.127 −1.080

(∞) (0.183) (0.162) (0.167)

See text for abbreviations. Results for the parameters in the HKM auxiliary equation not
shown. An analysis time unit is 10 years. MSL estimation is implemented with R = 100
and θ∗ equal to the HKM estimates.



§2.5 Concluding remarks 41

Table 2.7: Estimates for models with random effects
Parameter NLC HKM ISU ISN
First IHD event
α1 0.833 1.051 0.614 0.591

(0.228) (0.231) (0.021) (0.023)
µ1 −3.891 −4.725 −3.357 −3.296

(0.489) (0.272) (0.066) (0.070)
ln σ1 0.242 0.804 −0.645 −0.403

(0.594) (0.106) (0.358) (0.242)
Subsequent IHD events
α2 −0.073 0.321 0.222 0.192

(0.348) (0.025) (0.026) (0.029)
γ 0.741 0.920 0.921 0.856

(0.191) (0.033) (0.032) (0.033)
µ2 −1.077 −1.781 −0.958 −0.778

(0.671) (0.102) (0.145) (0.147)
ln σ2 0.401 0.332 0.134 0.259

(0.160) (0.034) (0.034) (0.041)

See text for abbreviations. Results for the parameters in the HKM auxiliary equation not
shown. An analysis time unit is 10 years. MSL estimation is implemented with R = 100,
Q = 10, τ = 0.1 decade, and θ∗ equal to the modified HKM estimates with lnσ∗1 = lnσ∗2 =
−2.
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Table 2.8: MSL estimates for models with random effects: different R
Parameter R=100 R=200 R=300 R=500 R=1000

ISU estimates
First IHD event
α1 0.614 0.588 0.581 0.574 0.552

(0.021) (0.020) (0.021) (0.023) (0.021)
µ1 −3.357 −3.303 −3.290 −3.292 −3.241

(0.066) (0.060) (0.061) (0.072) (0.062)
ln σ1 −0.645 −0.849 −0.872 −0.708 −1.018

(0.358) (0.473) (0.512) (0.465) (0.712)
Subsequent IHD events
α2 0.222 0.214 0.209 0.202 0.189

(0.026) (0.025) (0.025) (0.025) (0.024)
γ 0.921 0.903 0.915 0.911 0.898

(0.032) (0.032) (0.032) (0.033) (0.033)
µ2 −0.958 −0.832 −0.798 −0.788 −0.655

(0.145) (0.145) (0.148) (0.154) (0.161)
ln σ2 0.134 0.093 0.074 0.057 0.029

(0.034) (0.035) (0.035) (0.036) (0.036)

ISN estimates
First IHD event
α1 0.591 0.573 0.583 0.575 0.567

(0.023) (0.023) (0.025) (0.023) (0.026)
µ1 −3.296 −3.261 −3.316 −3.289 −3.303

(0.070) (0.070) (0.081) (0.070) (0.085)
ln σ1 −0.403 −0.512 −0.299 −0.402 −0.292

(0.242) (0.302) (0.237) (0.241) (0.251)
Subsequent IHD events
α2 0.192 0.187 0.204 0.189 0.193

(0.029) (0.029) (0.030) (0.027) (0.030)
γ 0.856 0.845 0.852 0.847 0.832

(0.033) (0.033) (0.033) (0.032) (0.033)
µ2 −0.778 −0.703 −0.827 −0.777 −0.786

(0.147) (0.155) (0.158) (0.145) (0.166)
ln σ2 0.259 0.235 0.251 0.254 0.243

(0.041) (0.041) (0.042) (0.041) (0.043)

See text for abbreviations. An analysis time unit is 10 years. MSL estimation is implemented with
Q = 10, τ = 0.1 decade, and θ∗ equal to the modified HKM estimates with lnσ∗1 = lnσ∗2 = −2.
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Table 2.9: Estimates for models with random effects: different τ
Parameter NLC HKM ISU ISN

τ = 0.5 decade
First IHD event
α1 0.835 0.916 0.697 0.646

(0.223) (0.217) (0.026) (0.022)
µ1 −3.917 −4.299 −3.679 −3.426

(0.290) (0.193) (0.075) (0.062)
ln σ1 0.273 0.591 0.243 −0.121

(0.311) (0.108) (0.072) (0.115)
Subsequent IHD events
α2 −0.435 0.296 0.274 0.200

(0.310) (0.025) (0.022) (0.024)
γ 0.188 0.782 0.844 0.803

(0.516) (0.085) (0.076) (0.078)
µ2 −1.034 −2.325 −1.836 −1.556

(0.714) (0.131) (0.117) (0.136)
ln σ2 0.580 0.563 0.269 0.431

(0.155) (0.025) (0.028) (0.032)

τ = 0.7 decade
First IHD event
α1 0.835 0.893 0.706 0.661

(0.226) (0.215) (0.026) (0.021)
µ1 −3.918 −4.204 −3.636 −3.381

(0.291) (0.178) (0.071) (0.053)
ln σ1 0.273 0.529 0.154 −0.330

(0.310) (0.109) (0.079) (0.135)
Subsequent IHD events
α2 −0.429 0.269 0.258 0.154

(0.300) (0.025) (0.022) (0.025)
γ 8.032 0.937 1.176 1.181

(∞) (0.186) (0.156) (0.158)
µ2 −8.884 −2.512 −2.194 −1.827

(∞) (0.212) (0.178) (0.188)
ln σ2 0.581 0.607 0.301 0.467

(0.152) (0.024) (0.027) (0.031)

See text for abbreviations. Results for the parameters in the HKM auxiliary equation not
shown. An analysis time unit is 10 years. MSL estimation is implemented with R = 100,
Q = 10 and θ∗ equal to the modified HKM estimates with lnσ∗1 = lnσ∗2 = 0.
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-
analysis time (e.g. age)

odd-number period observed (ji = 1)

ci0 ci1bi1

even-number period observed (ji = 2)

ci0 ci1 ci2bi1 bi2

Figure 2.1: Examples of event history data

The two lines in the top describe example event histories, while the line in the bottom indicates
analysis time. Dotted line indicates unobserved period, while solid line indicates observed period. The
history in the top is right-censored at ci1, while the history in the bottom is left-censored at ci1 and
right-censored at ci2.

Figure 2.2: Estimated hazard functions for main models without random effects
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Figure 2.3: Estimated hazard functions for main models with random effects

Figure 2.4: Comparing ISU estimated hazard functions for models with random effects
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Figure 2.5: Comparing ISN estimated hazard functions for models with random effects



Chapter 3

Heart attack risk in New Zealand:

gender, ethnicity, age, and

previous heart attacks

3.1 Introduction

In the medical literature, a heart attack is referred to as an acute myocardial infarction

(AMI). AMIs are an important public health issue. It has been estimated that the

cost of the initial hospitalisation for an AMI in New Zealand is about 4,500 USD for

1999–2001, which is more than twice as large as the total health expenditure per capita

of about 1,600 USD in 1999/2000 and about 1,700 USD in 2000/2001.1 AMI is the

most important subclass of the ischemic heart diseases, followed by angina [Morrow,

2017]. In New Zealand, $228 million was spent on treating ischemic heart diseases in

hospitals in 2002/2003 [National Health Committee, 2013]. Ischemic heart diseases are

a leading cause of death in all of the developed world [Naghavi et al., 2015]. Using

administrative data on admissions and death registrations for the period 2002–2012,

we estimate that about 10% of all deaths in New Zealand were directly caused by AMI.

This chapter describes and quantifies how the risk of experiencing AMI events varies
1Ministry of Health [2012] estimates that health expenditure per capita in New Zealand was 1,600

USD in 1999/2000 and 1,700 USD in 2000/2001 using the concept of purchasing power parities; they
do not report figures specifically for AMIs. Based on information from nine countries about diagnosis-
related group codes, length of stay, and physician effort, Kauf et al. [2006] estimate that hospitalisation
costs was 4,500 USD per event in New Zealand in 1999–2001 with all costs adjusted for 2002 purchasing
power parities.

47
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across gender and ethnicity in New Zealand. Our data to be analysed is constructed

by combining nationwide administrative data on hospital admissions and death regis-

trations during 2002–2012 with census data from 2001 such that our analysis data have

the same population by age as the 2001 census. The data are a kind of unbalanced

panel data. Each observation corresponds to an AMI of some person and it provides

information on an exact date of the AMI event including the gender and ethnicity of

the person.

We consider several aspects of risk. Using event history (hazard) models, we de-

compose the risk into contributions from age, previous AMI history, and unobserved

individual heterogeneity. The decomposition indicates whether the risk is distributed

evenly within the population or concentrated among relatively few people, and whether

inequality is driven mainly by age, by history dependence, or by unobserved individual

heterogeneity. Furthermore, we consider three regimes of risk: the risk of experiencing

the first AMI, the risk of a subsequent AMI within 1 year following a previous attack,

and the risk of a subsequent AMI more than 1 year after a previous attack. We discuss

age-specific risk, and we also compute cumulative outcomes over the age range 40–80.

In general, the estimation of dynamic event history models is hampered by prob-

lems of missing data. Often the data available concern the events that happened for

a given population during a given period, and there is no information about events

that happened before or after the observation period. These problems are called left-

censoring and right-censoring, respectively. In the present study, left-censoring means

that we do not know which regime an individual is in during the first part of their

observation period, because we do not know whether the individual experienced any

events prior to their observation period, and if they did, whether that event is within

1 year of becoming under observation. We overcome the left-censoring problem by

estimating the models using maximum simulated likelihood (MSL) methods developed

by Lee and Gørgens [2017].2 The idea is that the same model that is used to explain

the observed patterns in the data can be used to simulate events that are unobserved.
2Lee and Gørgens [2017] is an earlier version of Chapter 2 in the thesis.
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Intuitively, the missing data are integrated out of the so-called complete-data likelihood

function by simulating pseudo-histories for each person whose history is left-censored.

In principle, the simulation technique allows us to compute an arbitrarily good approx-

imation to the exact likelihood function for the data that are observed. In practice,

available computing resources and time restrict the feasible accuracy. Regarding right-

censoring, we follow common practice and assume that individual observation periods

are exogenously determined.

We analyse AMI history data for four groups, namely male and female people

of Maori and European descent. Our main finding is that there are large gender

and ethnic disparities in AMI risk. The general ranking is that male Maoris tend to

have the highest risk, followed by female Maoris, then male Europeans, and finally

female Europeans have the lowest risk. The exceptions are that female Maoris and

male Europeans have similar risk-levels for the first event, and that the Europeans

catch up and overtake the Maoris after age 75 for the risk of events within 1 year

of a previous event and after age 80 for the risk of events more than 1 year after.

The risk increases strongly with age. This partly reflects biological effects as bodies

become older and partly time effects as different cohorts have been exposed to different

environments, made different life style choices, and had access to different medical

technologies. Regarding history dependence, in terms of the three regimes the risk is

lowest for the first AMI event, highest for events within 1 year after an event, while

still high for events more than 1 year after an event. In particular, for people below

the age of 70, the risk of a subsequent event is at least twice the risk of the first

event. Finally, it is notoriously difficult to obtain reliable estimates of the influence

of unobserved heterogeneity, but our results suggest that the within-group variation

in risk is far greater than the between-group differences since variations in risk from

random effects is larger than variations from the other sources.

Our modelling framework permits us to consider life-time perspectives, in addition

to age-specific outcomes. Using the estimated models, we run dynamic simulations of
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individual cumulative outcomes between ages 40 and 80, assuming no one dies. For the

extensive margin, we find that the overall proportion of people experiencing at least

one AMI event by age 80 is about 35% for male Maoris, 27% for female Maoris, 28% for

male Europeans, and about 16% for female Europeans. For the intensive margin, we

find that the overall average number of AMI events between ages 40 and 80 for those

who have at least one event is 3.7 for male Maoris, 4.7 for female Maoris, 3.1 for male

Europeans, and about 2.8 for female Europeans. The high average for female Maoris

is due to a small proportion of female Maoris with extremely high risk. When we

compare cumulative outcomes for people at the first, second, or third quartiles of the

distributions of unobserved heterogeneity, we find that male Maoris expect the highest

number of events, followed by female Maoris and male Europeans whose outcomes are

similar, and finally female Europeans expect the lowest number of events.

A limitation of our study is that the data do not allow us to explore the factors

that cause disparities across gender and ethnicity, such as biological, socioeconomic,

behavioural factors, etc. However, we allow for unobserved individual heterogeneity

(‘random effects’ in the econometrics literature, ‘frailty’ in the statistics literature),

and this may capture some of these factors so that the estimated risk distribution is

representative. Since we aim to understand the incidence of AMI rather than case

fatality, we simplify the analysis by assuming that the individual observation periods

are exogenous. In most cases, the observation period ends when the study period ends

on 30 June 2012, but some individuals die before this date and mortality risk and AMI

risk are likely to be correlated. However, the death rate is small, so we expect the

resulting bias to be negligible. Note that since we observe the cause of death, AMI

events are not systematically underreported in the data.

The rest of the chapter is organised as follows. Section 3.2 provides a review of

related literature. In Section 3.3, we explain the data construction and describe our

analysis data. In Section 3.4, we discuss the model specification and the estimation

methods. In Section 3.5, we present and discuss the estimation results. Section 3.6
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concludes.

3.2 Literature

The literature on gender and ethnic differences in the incidence and reoccurrence of

AMIs is relatively small. Wang et al. [2012] compare AMI incidence rates in the US and

discover that male whites have the highest risk, followed by male blacks, then female

blacks, and female whites have the lowest risk. Smolina et al. [2012] find a gender gap

for first AMIs but no gap for subsequent AMIs in the UK. For New Zealand, Chan et al.

[2008b] also distinguish between first and subsequent AMIs and find that the rate of

AMI readmissions per 100,000 population increases during the 1990s; however, they do

not consider gender and ethnic differences. The policy implications of high incidence

rates for first and subsequent AMI are different: the former supports primary pre-

vention and the latter supports secondary prevention [Avendano and Soerjomataram,

2008]. The distinction between the first and subsequent AMIs is becoming more im-

portant as more people survive AMIs and are at risk of having subsequent AMIs. Chan

et al. [2008a] study differences in AMI prevalence across gender and ethnic groups in

New Zealand, but do not distinguish between first and subsequent AMIs.

The literature on gender and ethnic differences in mortality during the first 30 days

or 1 year after an AMI event is larger than the literature on AMI incidence itself.

Gender disparities in mortality have been studied for many countries using different

kinds of data sets; e.g. nationwide data on Finland [Kytö et al., 2015], Israel [Gottlieb

et al., 2000], Scotland [MacIntyre et al., 2001], and England [Smolina et al., 2012], city-

level data in Germany [Herman et al., 1997], and hospital-level data in Vietnam [Nguyen

et al., 2014].3 Ethnic disparities in mortality have been studied for pertinent countries;

for example, disparities between blacks and whites for the US [Vaccarino et al., 2005],

between people of European, Chinese, and South Asian descent for Canada [Anand
3Further, some studies in the literature compare across countries; e.g. Abildstrom et al. [2003]

compare Denmark and Sweden and Tunstall-Pedoe et al. [1994] compare 21 countries. Gender and
ethnic disparities are also found in other areas of public health; e.g. health care utilisation [Card et al.,
2008], provider practice [Currie et al., 2016], and obesity [Zhang and Wang, 2004].
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et al., 2000], and between Chinese, Malay, and Indians for Singapore [Mak et al.,

2003].

While we do not consider mortality in this chapter, it is interesting to note that the

patterns in AMI incidence and AMI case fatality are not necessarily the same across

gender, ethnicity, and age. For example, Alderman et al. [2000] find that young black

males in the US have lower risk of AMI events than do young white males, but higher

30-day case fatality rates. Comparing US studies that focus on AMI incidence (e.g.

Wang et al., 2012) with those on case fatality (e.g. Manhapra et al., 2004) reveals

further instances where relatively low/high AMI incidence rates are associated with

opposite high/low case fatality rates.

The statistical methods used in this literature include mean comparison, logistic

regression, Kaplan-Meier estimation, and Cox regression. These methods are appro-

priate for summarising outcomes when there are no issues of missing data other than

right-censoring. For this reason, the literature has generally focused on outcomes that

are fully observed during a relatively short period, say 30 days or 1 year, following an

AMI event (e.g. Chang et al., 2006; Pokorney et al., 2012). A few small-scale follow-up

studies have been able to track patients for several decades (e.g. Klein et al., 1992).

Sometimes models of AMI risk allow for unobserved heterogeneity among families and

hospitals. We have found only one study that has considered individual-level unob-

served heterogeneity [Hougaard, 1986].

Our study contributes to the literature in several dimensions. This is the first

study to examine gender and ethnic disparities in AMI risk utilising a hazard approach.

We analyse high-quality nationally representative data from New Zealand. We show

that hazard models, in general, can be estimated using the MSL method, despite

overwhelming left-censoring. We use the estimated models to discuss and compare

different aspects of risk including age dependence, dynamic effects of the AMI history,

and the role of unobserved individual heterogeneity. We also use the estimated models

to examine the extensive and intensive margins of cumulative lifetime outcomes for
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representative persons and for synthetic cohorts.

3.3 Data

Our primary data source is the National Minimum Data Set (NMDS) provided by Min-

istry of Health New Zealand. The NMDS includes administrative data on all hospital

admissions in New Zealand (including both in-patients and day-patients). The original

NMDS was created in 1993. The current format with 20 diagnosis entries was intro-

duced in June 2002 [National Health Board Business Unit, 2011]. Our study period

is between 1 July 2002 and 30 June 2012. We merge the NMDS with death registra-

tions.4 The latter include information about the cause of death. These administrative

data are well suited for studying the incidence of AMI events, because everyone who

experiences an event usually present at an emergency department and are admitted to

the hospital, or they die on the way to the hospital and so appear in the death data.

About 60% of New Zealanders appear in the administrative data during the study

period. For example, there are 2.7 million people alive in the data in 2012 compared to

4.4 million estimated total population in 2012. We use the age distribution in the census

conducted on 6 March 2001 to add records for people with no hospital admission during

the study period. As a result, the combined data set has the same age distribution in

2002 as the 2001 census.5

Diagnosis and cause of death codes follow the International Classification of Dis-

eases 10 Australian Modification (ICD-10-AM). According to ICD-10-AM, codes I21

and I22 are ‘acute’ and ‘subsequent’ myocardial infarctions, respectively, where subse-
4The NMDS and the death registrations share unique (confidentialised) individual identification

numbers.
5The New Zealand censuses report population figures by age, gender, and ethnicity in five-year age

intervals until age 85 plus a single interval for those older than 85. We use the age distribution in
the 2001 census to add records representing people who were not admitted to a hospital during the
study period. We first convert the age intervals at the census date 6 March 2001 to age intervals in 1
July 2002. We then compute the difference between the census and the administrative data for each
interval, and add entries for people with no administrative records. The birthdays for the added entries
are uniformly distributed within each age interval. For the open age interval, birthdays are uniformly
distributed between age 86 years and 4 months to age 91 years and 4 months (their ages on 1 July
2002). People born before 6 March 1911 are dropped from the administrative data, and people aged
85 years or older are assumed to be less than 90 in the census data.
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quent here means within 4 weeks. We do not distinguish between I21 and I22, because

apparently the codes are not used consistently in our data. The hospital data contain

up to 20 diagnostic entries (for recording complications) for each admission, while the

death data have a single entry for the cause of death. We regard an admission and a

death with a code I21 or I22 in any of the entries as a distinct AMI event if there is no

AMI event within the last 29 days. That is, AMIs that occur within 29 days of each

other are considered a single event. There are three reasons for this. First, the risk of

subsequent AMIs are highly elevated during the first 29 days after an AMI event [Lee

et al., 1995]. Second, according to the pathological classification an infarct is consid-

ered healed after 29 days [Steg et al., 2012]. Third, many studies in the literature view

any hospital or death record within 30 days after an AMI occurs as related to the same

AMI (e.g. Smolina et al., 2012).

The combined data set includes date of birth, gender, ethnicity, date of admission

and diagnosis codes if admitted, and date of death and cause of death code if died.

Gender is the biological sex reported. Ethnicity is self-identified.6 Date of admission

is when patients are first seen by clinicians at a hospital. With the 29-day caveat, we

use time of admission or time of death as the timing of AMI events.7

To define the study population, we restrict the combined data set as follows. First,

we consider only European and Maori people.8 In the 2001 census, people of European

and Maori descent constitute 83% and 14%. Second, we exclude individuals with type

1 diabetes (about 0.1% of the Maoris and Europeans in the combined data set), whose

experiences are expected to be different. For estimation, we further restrict the data

to people over the age of 40 and under the age of 85. AMIs are quite rare before

age 40. These rare events are less important from a public health perspective, and
6In the few cases where date of birth, gender, or ethnicity change between admissions we use the

values reported at the last admission. For ethnicity, less than 5% of people in the combined data have
different codes across admission; for birth dates and gender, less than 0.1% have different codes.

7When multiple AMI events are treated as a single event with the 29-day caveat, we use the earliest
date as the timing of the combined event.

8The underlying question used to obtain ethnicity is the same in the NMDS data and 2001 census
(see Cormack and Robson, 2010). Healthcare users and census respondents can choose up to three
ethnicities. In our data, the responses have been prioritised roughly in the order of Maori, Pacific,
Asian, others, European.
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ignoring them simplifies the analysis. There is no detailed information about the age

distribution for those over 85 in the 2001 census and the sample sizes are small. It

is therefore difficult to estimate risk for people over age 85. We refer to the study

population over 40 and under 85 as the estimation sample.

Migration in and out of New Zealand is substantial, but we expect that this is less

of an issue for our analysis. Temporary emigration is common especially among young

people, but they are less likely to suffer AMIs. Also immigration of people over the age

of 40 of European and Maori descent is relatively low.9

Table 3.1 shows summary statistics for our study population and the estimation

sample. By construction, the study population is essentially representative of the New

Zealand population of Maori and European descent as of the census date, 6 March

2001, except people born between 6 March 2001 and 1 July 2012 are added (only)

if they have been admitted to a hospital after 1 July 2002. These added people are

younger than age 40 by 2012 and hence are not used for estimating the hazard models.

The first panel in Table 3.1 shows the study population by age on 1 July 2002. It

is clear that there are relatively fewer older people so the estimates for older people

will be more noisy. The next two panels show the number of people under age 40 and

over age 40 during their observed period by their number of observed AMIs. While

AMI events are quite rare for people under age 40, this is not the case for people over

age 40. Note that these are only the events that occur during the study period, and

many people will have experienced events before 2002 and after 2012. These events are

not observed in the data; these are the left- and right-censoring problems mentioned

in the Introduction. The next panel shows the average number of observed AMIs for

people who experienced at least one AMI in their observed period. The average number

increases as people age, from about 1.1–1.3 for people aged 30–39 to 1.5–1.6 for people

over 70. The last panel shows the number of people who died during their observed

period; overall, it is about 8.6% of people in the estimation sample. As mentioned,
9According to the 2001 census, about 7% of people aged 30–65 and 2% of people over age 65 lived

overseas five years ago. Figures by ethnicity are not available.
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right-censoring is less of an issue in this study, since we have data for most people until

the end of the study period on 30 June 2012 and we observe the cause of death for

those who die before that date.

Figure 3.1 compares the age-specific AMI incidence rate across gender and ethnic

groups. The incidence rate is computed as the ratio of the number of observed AMIs to

the total time ‘at risk’ (in years) in two-year age intervals. For ages under 80, Maoris

have higher AMI incidence rates than Europeans and males have higher rates than

females. In particular, male Maoris have the highest rates, while female Europeans

have the lowest rates. Female Maoris and male Europeans have similar rates. After

age 80, however, the gender and ethnic disparities become less clear. Partly, this is

because the number of people over 80 in the sample is small, so the estimates are noisy.

The incidence rates shown in Figure 3.1 provide a snapshot of the age-specific risk

of having an AMI event across the four subpopulations. We now turn to econometric

modelling in order to shed light on how events are distributed within each subpopula-

tion.

3.4 Model and estimation

In this section, we discuss our model specification and estimation methods. The most

important risk factor is age. As mentioned, age also captures time and cohort effects.

Therefore, we use age as analysis time. Specifically, we define analysis time as t =

(age− 40)/10 for age > 40. (Normalising the time unit to a decade makes the scale

of certain parameters more readable.) Also, it is well known that there are dynamic

patterns in risk. Those having experienced an AMI event are more likely to experience

subsequent events, and the risk is particularly high for some time immediately after

that event. Therefore, we specify separate models for the first and subsequent AMI

events, and the equation for subsequent AMIs is allowed to depend on the timing of

the most recent event. Heterogeneity in risk can be considerable. Unfortunately, we

do not have risk markers in our data, be they biological, socioeconomic, or behavioural
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factors. Therefore, we include so-called random effects (frailty) to capture the effect

of unobserved individual heterogeneity. Specifically, we include an unobserved random

variable v ∼ N(0, 1) in the model specifications. To allow for more flexibility, we

estimate a separate model for each gender and ethnic group. For notational simplicity,

we suppress subscripts indicating the groups in the following.

Each model consists of two equations. The first equation represents the hazard

function, h1, of the first AMIs:

h1(t|v, θ) = exp(tα1 + µ1 + vσ1), (3.1)

where θ denotes the entire unknown parameter vector to be estimated. Parameter α1

captures age dependence in the risk, parameter µ1 captures the median overall level of

risk for first AMIs, and parameter σ1 is the influence of the random effect. The second

equation represents the hazard function h2, of subsequent AMIs:

h2(t|t−, v, θ) = exp(tα2 + Recentγ + µ2 + vσ2), (3.2)

where t− is the timing of the most recent AMI and the variable Recent is defined by

Recent = 1(t ≤ t− + τ ) where the value of τ corresponds to 1 year (i.e. τ = 0.1).

Parameter α2 captures age dependence in the risk, parameter γ indicates the dynamic

effect of the most recent AMI, parameter µ2 embodies the median overall level of risk

of subsequent AMIs, and parameter σ2 is the influence of the random effect.

The Gompertz specifications embodied in (3.1) and (3.2) assume that the haz-

ard function progresses exponentially with age. The law of exponential progression

is suitable for many common age patterns in actuarial, biological, and demographic

applications (e.g. Wienke, 2010). It is also appropriate in the context of AMI risk until

age 85, as shown in Figure 3.1. We expect positive signs of α1 and α2 given that AMI

risk increases as people age. Note that analysis time is not reset after an AMI event.

We capture history dependence partly by distinguishing between h1 and h2 and
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partly by including the time-varying covariate Recent. The latter allows for elevated

risk proportional to eγ within 1 year following the most recent event. The cutoff

between the two regimes for the risk of subsequent events is somewhat arbitrary but

follows the literature.10 There is no theoretical basis for assuming an abrupt change in

risk after 1 year, but this specification allows us to distinguish short-term and long-term

risks in a simple way.

Since we estimate separate models for each group, effectively all parameters are

interacted with gender and ethnicity. In particular, gender and ethnicity are not as-

sumed to have a simple proportional effect on risk. Group-specific parameters mean

that differences in outcomes can arise because of a combination of differences in age

dependence, in the dynamic effect of the most recent AMI, and in the distribution of

the random effects.

As mentioned, the main problem for estimating the models is left-censoring. For

people whose histories are left-censored, we cannot tell whether the first observed AMI

is the first experienced AMI or a subsequent AMI, nor do we know the value of Recent

for the first 1 year of the observation period. Comparing the number of people aged

30–39 and 30–85 years in Table 3.1 reveals that about 75% of the AMI histories in our

analysis data are left-censored, so the problem is substantial.

Left-censoring and history dependence mean that the likelihood function for the

observed data is analytically intractable. Therefore, we estimate the models using the

maximum simulated likelihood (MSL) method developed by Lee and Gørgens [2017].

To discuss this method some additional notation is needed. Let Ci = 0 indicate that

the history for individual i is not left-censored, and let bi1 = (bi1ki1 , . . . , bi11) denote

their event history where each bi1k is the analysis time when person i had event k

and ki1 is their total number of events (possibly 0). Persons with Ci = 0 are under

age 40 on 1 July 2002, and bi1 is the analysis time of their AMI events from the date

they turn 40 until 30 June 2012 or until the analysis time of their death, whichever
10Many studies in the literature consider mortality during 1 year after an AMI event (see Introduc-

tion).
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is earlier. Let Ci = 1 indicate that the history for individual i is left-censored, and

let (bi2, bi1) = (bi2ki2 , . . . , bi21, bi1ki1 , . . . , bi11) denote their event history, where bi2 is

observed and bi1 is unobserved. Persons with Ci = 1 are those who are over age 40 on

1 July 2002, and bi2 is the analysis time of their AMIs from 1 July 2002 until 30 June

2012 or until their analysis time of death, while bi1 is the analysis time of their AMIs

from age 40 to 1 July 2002.

Let g1 and g2 denote density functions of bi1 and bi2. They can be derived from

the hazard functions given in Equations (3.1) and (3.2). To state the expressions

formally, let bi10 denote the beginning of analysis time, let bi20 denote analysis time

on 1 July 2002, and let bi30 denote analysis time on 30 June 2012 or on the date

of death. Furthermore, let H1(t|t−, v, θ) =
∫ t
t− h1(y|v, θ) dy for t > t− denote the

value of the cumulative hazard function from time t− until time t. Similarly, define

H2(t|t−, v, θ) =
∫ t
t− h2(y|t−, v, θ) dy for t > t−. Then the density g1 of bi1 evaluated at

b1 when k1 > 1 is

g1(b1|v, θ) = h1(b11|v, θ) exp
(
−H1(b11|b10, v, θ)

)
×
(

k1∏
k=2

h2(b1k|b1,k−1, v, θ) exp
(
−H2(b1k|b1,k−1, v, θ)

))
exp

(
−H2(b20|b1k1 , v, θ)

)
.

(3.3)

If k1 = 1, the product over k in the middle is void, and if k1 = 0, then only the very

last exponential term is present with H1 replacing H2. When k1 = 0 (so b1 is empty)

and k2 > 1, the conditional density g2 of bi2 given bi1 = b1 evaluated at b2 is

g2(b2|b1, v, θ) = h1(b21|v, θ) exp
(
−H1(b21|b20, v, θ)

)
×
(

k2∏
k=2

h2(b2k|b2,k−1, v, θ) exp
(
−H2(b2k|b2,k−1, v, θ)

))
exp

(
−H2(b30|b2k2 , v, θ)

)
,

(3.4)
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and when k1 > 0 and k2 > 1 we have

g2(b2|b1, v, θ) = h2(b21|v, θ) exp
(
−H2(b21|b1k1 , v, θ)

)
/ exp

(
−H2(b20|b1k1 , v, θ)

)
×
(

k2∏
k=2

h2(b2k|b2,k−1, v, θ) exp
(
−H2(b2k|b2,k−1, v, θ)

))
exp

(
−H2(b30|b2k2 , v, θ)

)
.

(3.5)

The modifications for individuals with other values of k2 are relatively straightforward;

see Lee and Gørgens [2017] for details.11

With these definitions, and letting Φ denote the standard normal cumulative dis-

tribution function, the log likelihood function for N observed histories can be written12

L(θ) =
N∑
i=1

[
(1−Ci) ln

∫
R
g1(bi1|v, θ) dΦ(v)

+Ci ln
∫

R

∫
Support(b1)

g2(bi2|b1, v, θ) g1(b1|v, θ) db1 dΦ(v)

]
. (3.6)

The first term in the sum on the right-hand side of Equation (3.6) is the likelihood

contribution if individual i is non-left-censored. The integral here is over the random

effect. The second term is the likelihood contribution if individual i is left-censored.

Here the outer integral is over the random effect and the inner integral is over the

unobserved history.

In Equation (3.6), we assume that right-censoring and AMIs events are conditionally

independent given previous event history, and we do not model the process of right-

censoring explicitly. As mentioned, most individuals are right-censored because the

study period ends on 30 June 2012, but a small number are right-censored when they die

before 30 June 2012. If mortality risk and AMI risk are correlated (e.g. competing risks
11It is necessary to keep track of whether (h1,H1) or (h2,H2) applies as well as the timing of the

most recent event t−.
12Lee and Gørgens [2017] consider a more general setup than is necessary here. For example, they

allow for multiple observation periods for each individual. In the present application, there is a single
observation period from 1 July 2002 until the earlier of 30 June 2012 and date of death. For simplicity,
we here use a simple indicator variable Ci to represent observed and unobserved periods. In the
terminology of Lee and Gørgens [2017], Ci = 0 corresponds to the case where odd-numbered periods
are observed and Ci = 1 the case where even-numbered periods are observed.
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correlated through the random effects), then the likelihood function is misspecified.

However, the misspecification bias is likely to be small since the death rate is small.

Note that right-censoring due to death here does not cause missing data, as the cause

of death is observed in all cases.

There are no closed-form solutions to the integrals and analytical evaluation of

the likelihood function is not possible. The solution investigated by Lee and Gørgens

[2017] is to use a combination of quadrature and simulation methods to evaluate L(θ).

The integrals over the random effects are one-dimensional and can be handled by e.g.

Gaussian quadrature. The integral over the unobserved history is difficult to evaluate,

essentially because the dimension of b1 is unknown. To handle that, we consider two

importance sampling simulation methods, unnormalised (ISU) and normalised (ISN).

For the ISU method, the simulated log likelihood function that we maximise is

L(θ) ≈
N∑
i=1

[
(1−Ci) ln

( Q∑
q=1

wq g1(bi1|vq, θ)
)

+Ci ln
( Q∑
q=1

wq
1
R

{
R∑
r=1

g2(bi2|bqri1 , vq, θ)
g1(bqri1 |vq, θ)
g1(bqri1 |vq, θ∗)

})]
, (3.7)

where the vqs are Gauss-Hermite quadrature points and the wqs are the corresponding

weights, and the bqri1 s are simulated pseudo-event histories. The idea of importance

sampling is to draw bqri1 from g1(·|vq, θ∗) using a fixed θ∗ instead of drawing from

g1(·|vq, θ) using the θ at which the likelihood function is evaluated, and correct the

‘mismatch’ through the adjustment factor g1(bqri1 |vq, θ)/g1(bqri1 |vq, θ∗).13 One of the

advantages of using importance sampling is that the simulated likelihood function is

continuous in θ, so gradient-based algorithms can be used to find the maximum. Since

event timings depend on prior history, it is not possible to draw an entire history

bqri1 from g1(·|vq, θ∗) in a single step. Instead, it is necessary to draw the individual
13In our empirical analysis, we set Q = 10 and R = 100. For θ∗, we use estimates obtained

using Heckman’s approach as discussed in Lee and Gørgens [2017], with the modification that lnσ∗1 =
lnσ∗2 = 0. When estimating a model without random effects for female Europeans, Heckman’s approach
resulted in non-sensible estimates, so we substituted the estimates for female Maoris. (Using estimates
for male Europeans gave similar final estimates.)
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pseudo-event timings sequentially; see Lee and Gørgens [2017] for details.

For the ISN method, the simulated log likelihood function is essentially the same;

the only difference is that the adjustment factors are normalised so that they sum to R.

That is, g1(bqri1 |vq, θ)/g1(bqri1 |vq, θ∗) in Equation (3.7) is replaced by

g1(bqri1 |vq, θ)
g1(bqri1 |vq, θ∗)

/
1
R

R∑
r=1

g1(bqri1 |vq, θ)
g1(bqri1 |vq, θ∗)

. (3.8)

Since ISU and ISN are just different ways of approximating the exact likelihood function

in Equation (3.6), both methods should provide similar results. In practice, there may

be some differences, and we report estimates from both methods in the discussion of

the results.

The MSL estimation method is computationally burdensome, because a large num-

ber of draws is required in order to obtain a satisfactory approximation to the exact

likelihood function for the observed data (large Q and large R). However, as we show in

related research, MSL estimation is more efficient in handling the left-censoring prob-

lem than the ad hoc solutions that previously have been considered in the literature

[Lee and Gørgens, 2017]. In the present context, this is particularly true for the risk of

the first event.

3.5 Results

3.5.1 Age-specific risk

Table 3.2 reports parameter estimates using both the ISU and ISN methods.14 The

two methods give estimates that are very similar, if not exactly the same. We begin

with a discussion of the ISU estimates, and comment on the ISN estimates at the end.

Recall that α captures differences in the levels of AMI risk across age groups, which

here represent the effects of biological age as well as time and cohort effects. The
14Since the full samples are too large for our limited computing resources, we base our estimation

on random sub-samples of 50,000 individuals in each gender and ethnic group. Standard errors are
computed as the outer product of the score functions.
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estimates of α1 in Table 3.2 are all positive, implying that older people have higher

risk than younger people in the same group. The magnitude of the age effects is broadly

similar for all groups, although largest for female Europeans. Recall that µ captures

the median overall levels of AMI risk at age 40. The estimates of µ1 in Table 3.2

are small (large negative), reflecting the low but not quite zero incidence rates around

age 40 (c.f. Figure 3.1). The estimates of µ1 are not the same, however, and imply

that male Maoris have the highest risk of experiencing the first event, followed by male

Europeans and female Maoris whose risk is similar, while young female Europeans have

the lowest risk. Since the estimate of µ1 is smallest and the estimate of α1 is largest for

female Europeans, it is possible that the risk gap between female Europeans and the

other groups vanishes for older people. However, as shown below, the differences in the

estimates of µ1 are too large and the differences in α1 are too small for this to happen

within ordinary human life times. Recall that σ captures the influence of unobserved

heterogeneity. The estimates of ln σ1 are largest for male Europeans and smallest for

female Europeans.

The estimates of α2 indicate that the risk for Europeans increases with age at about

double the rate than the risk for Maoris. The estimates of γ are similar for all four

groups and suggest that the risk during the first 1 year after an event is more than twice

as large as the risk more than 1 year after the event (e0.9 ≈ 2.5). The parameter µ2

essentially reflects the median risk of a subsequent event at age 40 for people who had

an event at or before age 39. Although this is out of sample, note that the estimates

tend to be a bit higher than the estimates for µ1. The estimate of ln σ2 is largest for

female Maoris and smallest for male Maoris.

Table 3.2 also reports χ2 statistics of the joint null hypotheses that the respective

parameters are the same across all four groups. The null is rejected for α1, α2, µ1 and

µ2, but not for γ, ln σ1 and ln σ2.

Since the model is non-linear and it is difficult to interpret some of the parameters,

we translate the estimates in Table 3.2 into hazard rates. Figure 3.2 shows the esti-
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mated hazards for the four groups, evaluated at the median of the random effects.15 A

general ranking appears: male Maoris tend to have the highest risk, followed by female

Maoris, then male Europeans, and finally female Europeans have the lowest risk. The

exceptions are that female Maoris and male Europeans have similar risk-levels for the

first event, and that the Europeans catch up and overtake the Maoris after age 75 for

the risk of events within 1 year of a previous event and after age 80 for the risk of

events more than 1 year after.

Regarding the three regimes of risk, it is clear from Figure 3.2, that the risk of

subsequent events within 1 year of an event is much larger than the risk of the first

event. The risk after 1 year is also higher, although the difference seems small for older

Maoris.

A different view is provided in Figure 3.3, which shows the risk of subsequent events

relative to the risk of the first event for the four groups, evaluated at the median of the

random effects. In our flexible two-equation systems, the effect of having the first event

is not restricted to be proportional to a given baseline risk. The relative change in risk

before and after the first event depends on age, history, and unobserved heterogeneity:

h2(t|t−, v, θ)
h1(t|v, θ) = exp

(
t{α2 − α1}+ Recentγ + {µ2 − µ1}+ v{σ2 − σ1}

)
. (3.9)

Figure 3.3 shows that the relative risk of subsequent events is extremely large for young

Maoris, but falls steeply with age. The effect of age is negative, because the estimates

imply α2 < α1. The relative risk is also large for Europeans, and falls with age at a

much slower rate. The nearly-proportional effect arises because the estimates imply

α2 ≈ α1. These conclusions are supported by Wald tests of the restrictions α2 = α1,

which are rejected for Maoris (p = 0.00) while not rejected for Europeans (p > 0.20).

It is well known that random effect distributions are difficult to estimate, so the
15Note that panels C and C’ in Figure 3.2 are the same except for the scale of the vertical axis.

Comparing the hazard functions for subsequent events across ages is slightly tricky. For example, in
panel C in Figure 3.2 the hazard rate at age 70 assumes a person has experienced at least one previous
event and that event is before age 69. The rate at age 80 assumes the person’s most recent event is
any time before 79.
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estimates of ln σ1 and ln σ2 may not be very reliable. Nevertheless, the estimates

may provide a ballpark measure of the influence of unobserved heterogeneity. Fig-

ures 3.4, 3.5, and 3.6 show the median hazard rates together with the first and third

quartile of the random effects. The main impression from the graphs is that there

are enormous differences between high- and low-risk people. Presumably it would be

possible to explain or reduce this variation if data were available on individual biology,

life style choices, etc.

The flexibility of our models means that the ranking of risk across regimes and across

groups may not be the same throughout the distribution of random effects. Figure 3.7

provides graphs equivalent to Figure 3.2, but evaluated at the 95th percentile of the

distribution of random effects. Not surprisingly, the risk-level is very high. While the

risk of a subsequent event within 1 year is still highest in all cases, the risk of the first

event is higher than that of subsequent events more than 1 year after for male Maoris

after age 65 and for male Europeans at all ages. Also, the risk of subsequent events

more than 1 year after a previous event for female Maoris exceeds that of the other

groups.

Finally, comparing the ISU and ISN estimates in Table 3.2, we see that the differ-

ences are very small for male and female Maoris. Importantly, this is also true for the

median estimated hazard functions, see Figure 3.8. For Europeans, the differences in

the parameter estimates for the risk of the first event are larger, but the median esti-

mated hazard functions are actually quite similar. In particular, the large differences

in the estimates of ln σ1 do not affect the medians. For Europeans’ risk of subsequent

events, the ISN estimates of µ2 tend to be higher and the estimates α2 tend to be

lower than the ISU estimates. The net result is that the ISN estimates of the median

estimated hazard functions tend to be slightly higher, especially between ages 65 and

85. As in our earlier work [Lee and Gørgens, 2017], apparently the differences between

the ISU and ISN estimates are caused by the inherent difficulty in estimating random

effects models. When we estimate models without random effects, the ISU and ISN
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estimates are identical for all practical purposes (see Appendix Table 3.A1). The esti-

mated models without random effects also imply unrealistically large risk of subsequent

events, about three times as large as the median risk in models with random effects,

which is why we do not further discuss them in this chapter.

3.5.2 Cumulative risk

So far we have compared outcomes across gender and ethnic groups in terms of age-

specific risk. The estimated models also allow us to compare cumulative, life-time

outcomes. We now discuss estimates of the average number of AMI events that a

representative person or a population will experience between ages 40 and 80.

Such an exercise raises two questions. First, the model is estimated on a cross-

section and may not be representative of any particular birth cohort. There may

have been significant changes in both life styles that affect risk and in the medical

know-how in treating symptoms and preventing disease. However, as in other areas of

demographic analysis, synthetic cohort analysis provides a useful summary of outcomes

during a given period of time. Besides, we are comparing four subpopulations which

have lived in similar environments and experienced similar changes.

The second question is what to do about differences in mortality across the four

groups. In reality, people do not live forever and mortality is likely to be related

to both a person’s innate frailty and to their previous medical history. It would be

possible to augment the current model with an equation representing mortality risk.

However, here we proceed by assuming no one dies until age 80, because this provides

a better foundation for comparing the risk of AMI events. Were we to implement

group-specific non-independent mortality, the internal composition of the four groups

in terms of high-risk and low-risk people would vary over time at differential rates. As

a result, the predicted outcomes would partly reflect differences in AMI risk and partly

differences in mortality (essentially a ‘selection’ effect).

We compute cumulative outcomes by dynamically simulating AMI events for each
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gender and ethnic group over the age range from 40 to 80. Technically, the simulation

method is the same as that used internally for computing the likelihood function when

we estimate the models. Here we generate 50,000 individual pseudo-histories for each

group using the ISU estimates.

The simulation results are summarised for age range 40–80 in Table 3.3. Part A of

Table 3.3 shows results from simulations of the entire subpopulation, under the assumed

normal distribution of the random effects. The first panel shows the distribution of the

cumulative number of AMI events. It is clear that a large fraction of the populations

do not experience any events. However, male Maoris are most likely to ever have an

AMI event, followed by female Maoris and male Europeans whose outcomes are similar,

while female Europeans are least likely to experience any events. All four distributions

are heavily skewed to the right, with a small fraction of people experiencing a large

number of events. This is particularly true for Maoris, where about 2.5% have 10 or

more events. The skewness implies that the mean number of events are much larger

than the medians (which are all 0). Specifically, the average number of AMIs for those

who have at least one (before age 80) is about 3.7 for male Maoris, 4.7 for female

Maoris, 3.1 for male Europeans, and 2.8 for female Europeans. Note here that the

ranking between male and female Maoris is switched for the intensive margin. This

happens because, as discussed in relation to Figure 3.7, the risk of subsequent events is

highest for the 5 percent female Maoris with the highest random effect values (innate

risk) than for the top 5 percent people in the other groups. In other words, a small

proportion, 5–10 percent, of female Maoris experience a comparatively large number of

events. The familiar ranking holds when the random effects are fixed at their quartile

values, as shown in panel B.

To get an idea of the range of experience within each group, part B of Table 3.3

shows results from simulations that hold the random effects constant at the first quar-

tile, the median, and the third quartile of the distribution. These quartiles represent

low-risk, middle-risk, and high-risk persons. The main conclusion is that the differences
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within each subpopulation are much larger than the differences between them.

Slightly more detailed views of the average outcomes are provided in Figure 3.9.

The left graph shows the proportion of people at different ages who have ever had an

AMI event (the extensive margin). The proportions are highest for male Maoris, since

they have the highest age-specific AMI risks. Then follow female Maoris and male

Europeans whose outcomes are similar, and finally female Europeans are least likely

to have had any AMI events. Note that the lines do not cross. The right graph shows

the average number of AMI events people have previously experienced when they reach

certain ages, for those who have experienced at least one AMI at that age (the intensive

margin). Male Maoris tend to have more events than Europeans, but not as many as

female Maoris. As mentioned along with Figure 3.7, female Maoris with high random

effect values have comparatively high risk.

Simulating histories from the estimated models can also be used as an informal check

of their within-sample fit. For this, we draw a random history for each of the 50,000

individuals in the estimation sample, taking their date of birth and their observation

period as given (including the date of death if they die before 30 June 2012). We

then compute summary statistics for the simulated sample and compare them with the

actual estimation sample. Table 3.4 shows the actual and the simulated distributions of

AMI events people experience between ages 40 and 85 during their observation period.

The fit is good, although all the estimated models tend to underpredict the proportion

of people with no events and overpredict the proportion with multiple events.

3.6 Conclusion

In this study, we investigate gender and ethnic disparities in several aspects of AMI

risk in New Zealand. Our study complements the literature on gender and ethnic

disparities in other areas of public health and health economics. AMIs, commonly

known as heart attacks, are one of the leading causes of disability and mortality and

therefore an important issue in public health.
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We estimate hazard models of AMI risk separately for male and female people

of Maori and European descent using high-quality administrative data on hospital

admissions and deaths combined with census data. Recent advances in econometric

methodology allow us to overcome a large left-censoring problem. Using these hazard

models, we examine how AMI risk is distributed within each subpopulation and we

compare patterns across subpopulations.

We find, as expected, that older people have much higher risk than younger people.

This partly reflects biological effects and partly time effects as different cohorts have

been exposed to different environments, made different life style choices, and had access

to different medical technologies. In terms of the three risk regimes, we find that there

are important dynamic effects in that the risk of experiencing the first AMI event is

much lower than the risk of having subsequent events, and the risk is particularly high in

the first year following an event. In addition, we find that there is considerable within-

group variation in risk, as measured by the influence of random effects. These two

aspects, history dependence and unobserved heterogeneity, pull in the same direction

of concentrating risk among relatively fewer people within the subpopulations.

Comparing the four gender and ethnic groups, we discover large disparities in AMI

risk between male and female people of Maori and European descent. Generally the

ranking is that male Maoris tend to have the highest risk, followed by female Maoris,

then male Europeans, and finally female Europeans have the lowest risk. However,

there are some exceptions. For example, the risk of subsequent events increases with

age more for Europeans than for Maoris, and it seems that the risk may actually be

higher for Europeans after age 75–80. The models allow the effect of having the first

event to be non-proportional. Comparing the risk of subsequent AMI events relative

to the risk of having the first event across the four groups, Maoris have larger relative

risk of subsequent events than Europeans before age 70. The level of the relative risk

for Maoris decreases as they grow older, so that Maoris have smaller relative risk of

subsequent events than Europeans after age 70.
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Using the estimated hazard models, we compute cumulative outcomes for synthetic

populations aged 40–80 in a world where nobody dies. Here, the gender and ethnic

disparities are also clear, at least for the extensive margin, where the proportion who

experience any event is highest for male Maoris, followed by female Maoris and male

Europeans who have similar proportions, while the proportion of female Europeans who

experience at least one event is the smallest. For the intensive margin, female Maoris

who have at least one event experience more events on average than the other groups.

This arises because the estimated proportion who experience a very large number of

events is largest for female Maoris.

Our findings motivate further research on gender and ethnic disparities. For ex-

ample, if the data are found or become available, it would be interesting and useful

to investigate potential biological, socioeconomic, or environmental factors which may

explain some of the heterogeneity in risk.
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Table 3.1: Summary statistics for the study population
Male Male Female Female
Maoris Europeans Maoris Europeans

N % N % N % N %

Number of people by age†
After 2002 71,284 21.4 170,452 10.8 66,219 19.5 161,935 9.9
Age 0–29 164,581 49.3 565,775 36.0 163,101 48.1 554,967 33.8
Age 30–39 36,283 10.9 198,814 12.6 41,691 12.3 220,047 13.4
Age 40–49 29,117 8.7 207,019 13.2 32,309 9.5 216,836 13.2
Age 50–59 17,420 5.2 175,447 11.2 18,299 5.4 178,981 10.9
Age 60–69 10,145 3.0 121,389 7.7 10,852 3.2 125,875 7.7
Age 70–79 4,045 1.2 91,753 5.8 4,896 1.4 105,395 6.4
Age 80+ 916 0.3 42,364 2.7 1,536 0.5 78,423 4.8
Total 333,791 100.0 1,573,013 100.0 338,903 100.0 1,642,459 100.0

Number of people under age 40 on 30 June 2012 by observed AMIs
None 235,763 100.0 736,005 100.0 229,277 100.0 716,847 100.0
1 94 0.0 207 0.0 41 0.0 50 0.0
2 6 0.0 13 0.0 2 0.0 4 0.0
3+ 2 0.0 2 0.0 0 0.0 1 0.0
Total 235,865 100.0 736,227 100.0 229,320 100.0 716,902 100.0

Number of people over age 40 and under 85 on 30 June 2012 by observed AMIs
None 91,626 94.4 767,461 93.8 104,609 96.3 852,156 96.2
1 4,579 4.7 42,576 5.2 3,280 3.0 28,275 3.2
2 658 0.7 6,028 0.7 514 0.5 3,779 0.4
3+ 211 0.2 1,934 0.2 203 0.2 1,304 0.1
Total 97,074 100.0 817,999 100.0 108,606 100.0 885,514 100.0

Average number of observed AMIs for those with at least one AMI by age†
Age 30–39 1.29 1.14 1.14 1.12
Age 40–49 1.34 1.19 1.47 1.15
Age 50–59 1.47 1.25 1.53 1.26
Age 60–69 1.41 1.38 1.52 1.36
Age 70–79 1.47 1.60 1.56 1.56
Age 80–84 1.19 1.35 1.30 1.30

Number of deaths in study population between ages 40–85
By AMI‡ 1,391 8,885 720 5,197
AMI 29 days‡ 1,426 9,060 750 5,305
Total 11,609 80,882 9,767 62,861

The study population excludes people born before 6 March 1911, ethnic groups other than Maoris and
people of European descent, and people with type 1 diabetes. †Age defined on 1 July 2002. ‡‘By AMI’:
people whose direct cause of death is AMI; ‘AMI 29 days’: people who have an AMI within 29 days of
(and including) their date of death.
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Table 3.2: Parameter estimates for models with random effects
Male Male Female Female χ2

Maoris Europeans Maoris Europeans

ISU estimates
α1 0.765 0.872 0.899 1.117 8.27

(0.076) (0.102) (0.076) (0.045) [0.04]
µ1 −4.672 −5.499 −5.571 −6.962 12.61

(0.347) (0.541) (0.409) (0.265) [0.01]
ln σ1 0.620 0.703 0.633 0.519 0.26

(0.199) (0.253) (0.212) (0.147) [0.97]
α2 0.363 0.791 0.455 1.024 45.36

(0.058) (0.072) (0.084) (0.083) [0.00]
γ 0.967 1.006 0.765 0.896 4.22

(0.079) (0.078) (0.084) (0.096) [0.24]
µ2 −2.761 −4.610 −3.247 −5.641 26.25

(0.317) (0.411) (0.513) (0.425) [0.00]
ln σ2 0.227 0.309 0.395 0.318 1.79

(0.101) (0.089) (0.118) (0.095) [0.62]

ISN estimates
α1 0.708 0.728 0.895 1.057 6.31

(0.078) (0.042) (0.080) (0.034) [0.10]
µ1 −4.404 −4.661 −5.544 −6.407 7.70

(0.368) (0.239) (0.433) (0.190) [0.05]
ln σ1 0.456 0.008 0.623 0.020 3.99

(0.280) (0.396) (0.229) (0.268) [0.26]
α2 0.345 0.680 0.481 0.937 24.17

(0.074) (0.071) (0.094) (0.091) [0.00]
γ 0.952 0.938 0.776 0.865 2.62

(0.081) (0.081) (0.088) (0.100) [0.45]
µ2 −2.737 −3.936 −3.446 −5.073 9.60

(0.413) (0.459) (0.570) (0.474) [0.02]
ln σ2 0.293 0.294 0.470 0.367 1.89

(0.100) (0.088) (0.112) (0.093) [0.59]

Standard errors in parentheses and p-values in brackets. χ2: test statistic for the null
hypothesis that the four parameter estimates are the same.
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Table 3.3: Summary of simulated cumulative outcomes
Male Male Female Female
Maoris Europeans Maoris Europeans

Part A: random effects v ∼ N(0, 1)

Proportion of people by number of AMI events (%)
None 65.3 71.9 72.8 83.9
1 15.0 13.5 11.6 8.4
2 6.8 5.8 5.0 3.2
3 3.9 2.8 2.7 1.6
4 2.2 1.7 1.8 0.8
5 1.6 1.1 1.1 0.5
6 1.1 0.7 0.9 0.4
7 0.7 0.5 0.6 0.3
8 0.5 0.4 0.4 0.2
9 0.4 0.3 0.3 0.1
10+ 2.5 1.4 2.6 0.7

Proportion of people with at least one AMI (%)
v ∼ N(0, 1) 34.7 28.1 27.2 16.1

Average number of AMIs for people with at least one AMI
v ∼ N(0, 1) 3.73 3.11 4.71 2.77

Part B: random effects fixed

Proportion of people with at least one AMI (%)
v = −0.674 6.8 3.8 4.1 2.4
v = 0 22.2 14.1 14.3 7.1
v = 0.674 58.0 44.4 41.5 20.1

Average number of AMIs for people with at least one AMI
v = −0.674 1.12 1.06 1.07 1.05
v = 0 1.27 1.17 1.19 1.12
v = 0.674 1.72 1.46 1.58 1.32
Events between age 40 and age 80 simulated using ISU estimates.
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Table 3.4: Summary of simulated within-sample outcomes
Male Male Female Female
Maoris Europeans Maoris Europeans

Proportion of people by number of AMI events (%)

Estimation sample
None 94.5 94.3 96.4 97.0
1 4.6 4.7 2.9 2.5
2 0.7 0.7 0.4 0.4
3+ 0.2 0.2 0.2 0.1

Simulated sample
None 91.7 91.6 94.4 95.6
1 5.2 5.7 3.2 2.8
2 1.6 1.4 1.0 0.7
3+ 1.5 1.3 1.3 0.9
Events between age 40 and age 85 simulated using ISU estimates.
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Figure 3.1: Incidence rates (per year)

Figure 3.2: Estimated median hazard functions (per 10 years)
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Figure 3.3: Ratio of median hazard functions for subsequent events over first event

Figure 3.4: Hazard functions for the first AMI (per 10 years)
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Figure 3.5: Hazard functions for within-1-year AMIs (per 10 years)

Figure 3.6: Hazard functions for after-1-year AMIs (per 10 years)



78 Heart attack risk in New Zealand

Figure 3.7: Estimated hazard functions at the 95th percentile random effect (per 10
years)

Figure 3.8: ISU and ISN estimates of median hazard functions (per 10 years)
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Figure 3.9: Simulated cumulative outcomes
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Appendix

Table 3.A1: Parameter estimates for models without random effects
Male Male Female Female χ2

Maoris Europeans Maoris Europeans

ISU estimates
α1 0.549 0.659 0.714 0.981 75.69

(0.024) (0.022) (0.026) (0.032) [0.00]
µ1 −3.707 −4.338 −4.556 −6.009 364.50

(0.045) (0.057) (0.059) (0.099) [0.00]
α2 0.196 0.583 0.266 0.759 114.73

(0.033) (0.034) (0.034) (0.065) [0.00]
γ 1.080 1.187 1.075 1.084 1.02

(0.079) (0.071) (0.079) (0.093) [0.80]
µ2 −1.120 −2.612 −1.164 −3.213 148.54

(0.090) (0.127) (0.104) (0.252) [0.00]

ISN estimates
α1 0.546 0.656 0.711 0.982 76.06

(0.024) (0.022) (0.026) (0.032) [0.00]
µ1 −3.703 −4.335 −4.553 −6.024 364.58

(0.045) (0.058) (0.060) (0.099) [0.00]
α2 0.195 0.591 0.265 0.764 117.54

(0.033) (0.034) (0.034) (0.065) [0.00]
γ 1.088 1.187 1.083 1.073 0.86

(0.080) (0.072) (0.080) (0.093) [0.84]
µ2 −1.121 −2.640 −1.163 −3.220 149.97

(0.091) (0.128) (0.105) (0.252) [0.00]

Standard errors in parentheses and p-values in brackets. χ2: test statistic for the null
hypothesis that the four parameter estimates are the same.



Chapter 4

Double Robustness without

Weighting

4.1 Introduction

In treatment effect analysis (Rosenbaum, 2002; Lee, 2005; and Imbens and Rubin,

2015, among others), matching is widely used. However, given a control group with

D = 0 and a treatment group with D = 1, to find the effects of the treatment D on a

response variable Y , matching has two well-known problems: the dimension problem

and the support problem. The former describes the dimension of X being too high,

which often occurs when we nonparametrically match individuals on covariates X to

make sure that two similar individuals are compared. In the latter, the supports of X

may not overlap well across the two groups.

Of the two problems, the dimension problem has been overcome using the propen-

sity score (PS) instead of X per se:

π(X) ≡ E(D|X).

PS matching [Rosenbaum and Rubin, 1983] has been very popular; see Stuart [2010],

Imbens and Rubin [2015], and references therein. PS matching works because (Y 0,Y 1) ⊥

D|X implies (Y 0,Y 1) ⊥ D|π(X), where (Y 0,Y 1) are the potential versions of Y cor-

responding to D = 0, 1 and ‘⊥’ stands for independence.

Yet another useful, but little known, score is the prognostic score (PGS) (for Y 0),
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say ψ(X), which satisfies Y 0 ⊥ X|ψ(X), where ψ(X) can be a vector. A prime

candidate for PGS is E(Y 0|X); see Hansen [2008] and references therein for PGS in

general. This chapter shows that controlling both PS and PGS makes an estimator

doubly robust (DR) in the sense that the correct parametric specification of either

PS or PGS, not necessarily both, makes the estimator consistent for the treatment

effect. This finding matters considerably because such a double protection holds for

non-weighting estimators, whereas the DR estimators in the literature are weighting-

based and thus tend to be numerically unstable due to near-zero denominators in the

weighting. See Robins et al. [1994, 2007], Scharfstein et al. [1999], Bang and Robins

[2005], Kang and Schafer [2007], Cao et al. [2009], Tan [2010], Rotnitzky et al. [2012],

Vermeulen and Vansteelandt [2015], and references therein for DR.

The DR property for controlling both PS and PGS without weighting was first

noted by Hu et al. [2012, 2014], only for the ‘regression imputation/adjustment’. We

establish the DR property for any approach controlling (i.e., conditioning on) both PS

and PGS, which includes matching, regression imputation, and complete pairing in Lee

[2009, 2012].

We assume two key conditions. First, for simplicity, assume the support overlap

0 < P (D = 1|X) < 1, (4.1)

although what is necessary is conditioning on only either PS or PGS, not on X. If

(4.1) is violated for some values of X, trim those values and redefine X; better yet,

trim only those values of X that make P (D = 1| · · · ) almost zero or one, given the

conditioning function(s) of X in use. Second, assume no unobserved confounder

(i) : Y 0 ⊥ D|X for the effect on the treated E(Y 1 − Y 0|D = 1); (4.2)

(ii) : Y 0 ⊥ D|X and Y 1 ⊥ D|X for the effect on the population E(Y 1 − Y 0).

Although we use independence because Rosenbaum and Rubin [1983] and Hansen [2008]
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used independence, our proofs in the next section essentially hold under mean inde-

pendence.

Is the finding that controlling both PS and PGS provides double robustness new?

The answer is yes and no. It is no because Rosenbaum and Rubin [1983] consid-

ered controlling functions of X other than π(X) and because Hansen [2008] wrote in

his concluding section “An attractive possibility is to match or subclassify on both

propensity and prognostic scores”. The answer is yes, however, because the motivation

to control anything other than π(X) in Rosenbaum and Rubin [1983] is to balance the

covariates that remain unbalanced despite π(X) being controlled and because Hansen

[2008] never contemplated double robustness underlying the idea of controlling both

propensity score and prognostic score.

The next section establishes the aforementioned DR property when both PS and

PGS are controlled.

4.2 Double Robustness Controlling PS and PGS

Let the parametrically specified π(X) and ψ(X) be π(X;α) and ψ(X;β) for param-

eters α and β. We first deal with ‘π(X;α) = π(X) but possibly ψ(X;β) 6= ψ(X)’

and then the opposite case, ‘ψ(X;β) = ψ(X) but possibly π(X;α) 6= π(X)’. To be

precise, we should write π̃(X;α) = π(X) for a specified parametric function π̃(X;α),

where π̃(X;α) 6= π(X) means no α in the parameter space A making π̃(X;α) = π(X).

‘π(X;α) = π(X) and π(X;α) 6= π(X)’ are shorthands for these, and this way of sim-

plifying notation applies to other functions, including ψ(X). We present two main

theorems, with the proofs following each theorem.

Theorem 1 Suppose Y 0 ⊥ D|X and (4.1) hold. If π(X;α) = π(X), then re-

gardless of ψ(X;β) = ψ(X), E(Y 1 − Y 0|D = 1) is identified by conditioning on

{π(X;α),ψ(X;β)} first and then integrating them out; if Y 1 ⊥ D|X holds addition-

ally, then E(Y 1 − Y 0) is identified.
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Suppose π(X;α) = π(X) but possibly ψ(X;β) 6= ψ(X). Under Y 0 ⊥ D|X,

‘Y 0 ⊥ D|π(X)’ holds [Rosenbaum and Rubin, 1983], and ‘Y 0 ⊥ D|{π(X), g(X)}’ holds

as well for any function g(X), as proven by Rosenbaum and Rubin [1983]. Observe

now

E{Y |D = 1,π(X;α),ψ(X;β)} −E{Y |D = 0,π(X;α),ψ(X;β)}

= E{Y 1|D = 1,π(X;α),ψ(X;β)} −E{Y 0|D = 1,π(X;α),ψ(X;β)}

= E{Y 1 − Y 0|D = 1,π(X;α),ψ(X;β)}. (4.3)

Integrating out {π(X;α),ψ(X;β)}|D = 1 gives E(Y 1 − Y 0|D = 1). If ‘Y 1 ⊥ D|X’

holds additionally, then ‘Y 1 ⊥ D|{π(X;α),ψ(X;β)}’ holds as well. This then turns

(4.3) into E{Y 1 − Y 0|π(X;α),ψ(X;β)}, which in turn leads to E(Y 1 − Y 0).

Theorem 2 (i) Suppose Y 0 ⊥ D|X, Y 0 ⊥ X|ψ(X) and (4.1) hold. If ψ(X;β) =

ψ(X), then E(Y 1−Y 0|D = 1) is identified by conditioning on {π(X;α),ψ(X;β)} and

then integrating them out; if Y 1 ⊥ D|X and Y 1 ⊥ X|ψ(X) additionally, E(Y 1 − Y 0)

is identified. (ii) Suppose Y 0 ⊥ D|X, Y 0 ⊥ X|ψ(X), Y 1 ⊥ D|X, (4.1) and Y 1 ⊥

X|{ψ(X),µ(X)} hold for some µ(X). If ψ(X;β) = ψ(X) and µ(X; θ) = µ(X),

then E(Y 1−Y 0) is identified by conditioning on {π(X;α),ψ(X;β),µ(X; θ)} and then

integrating them out.

‘Y 0 ⊥ X|ψ(X)’ means that ψ(X) is a PGS. Then, ‘Y 0 ⊥ D|ψ(X)’ holds because

E{D|Y 0,ψ(X)} = E{ E(D|Y 0,X) |Y 0,ψ(X)}

= E{ E(D|X) |Y 0,ψ(X)} = E{ E(D|X) |ψ(X)} = E{D|ψ(X)},

using Y 0 ⊥ D|X for the second equality and Y 0 ⊥ X|ψ(X) for the third.

Suppose ψ(X;β) = ψ(X) but possibly π(X;α) 6= π(X). Since ‘Y 0 ⊥ X|ψ(X)’

means that the distribution of Y 0|ψ(X) does not further depend onX, ‘Y 0 ⊥ X|{g(X),ψ(X;β)}’
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holds for any g(X). Hence, setting g(X) = π(X;α), {π(X;α),ψ(X;β)} is also a PGS,

which implies Y 0 ⊥ D|{π(X;α),ψ(X;β)}. We thus have (4.3) again. If Y 1 ⊥ D|X

and Y 1 ⊥ X|ψ(X) additionally, then the PGS ψ(X) for Y 0 is also a PGS for Y 1, which

means that D = 1 can be dropped from the last term of (4.3) to lead to E(Y 1 − Y 0).

Turning to THEOREM 2 (ii), {ψ(X;β),µ(X; θ)} is now a PGS for both Y 0 and

Y 1, which implies {π(X;α),ψ(X;β),µ(X; θ)} is a PGS regardless of π(X;α) = π(X).

This gives

E{Y |D = 1,π(X;α),ψ(X;β),µ(X; θ)} −E{Y |D = 0,π(X;α),ψ(X;β),µ(X; θ)}

= E{Y 1 − Y 0|π(X;α),ψ(X;β),µ(X; θ)},

and integrating out {π(X;α),ψ(X;β),µ(X; θ)} yields E(Y 1 − Y 0).

To get an idea about PGS in practice, suppose (Y 0,Y 1) depends on X only through

E(Y 0|X) and E(Y 1|X). Then, {E(Y 0|X),E(Y 1|X)} can be used for {ψ(X),µ(X)};

e.g. E(Y 0|X) = ψ(X) and E(Y 1|X) = ψ(X) + µ(X). Linear models may be used for

{E(Y 0|X),E(Y 1|X)}.
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Chapter 5

Comparison of Treatment Effect

Estimators: Matching,

Regression Imputation, Doubly

Robust Ones and More

5.1 Introduction

Finding the effect of a binary treatment D on a response variable Y is something that is

done in almost all disciplines of science. Unless D = 0, 1 is randomised, the treatment

group (‘T group’) with D = 1 tends to differ from the control group (‘C group’) with

D = 0 in observed covariates X and unobserved covariates ε, which can confound

the effect of D on Y . To prevent such a confounding, X can be controlled, but not

the unobserved ε. Hence, the treatment effect analysis typically proceeds under the

assumption of ‘no unobserved confounder’:

(Y 0,Y 1) ⊥ D|X (5.1)

where (Y 0,Y 1) are the potential versions of Y corresponding to D = 0, 1 and ‘⊥’

stands for independence. See Rosenbaum [2002], Lee [2005, 2016], Pearl [2009] and

Imbens and Rubin [2015], among others, for treatment effect analysis in general.
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Under (5.1), X can be controlled in various ways, which then leads to various

treatment effect estimators. Among them, the most popular approach in practice seems

to be matching. Matching has, however, two well-known problems: the dimension

problem and the support problem. The former is that, when we match individuals on

covariates X to make sure that two similar individuals are compared, the dimension of

X is often too high. The latter is that the supports ofX may not overlap well across the

two groups. Although there is no good solution to the support problem, the dimension

problem has been overcome using the propensity score (PS) π(X) ≡ E(D|X) instead

of X per se. Propensity score matching (PSM) [Rosenbaum and Rubin, 1983] has been

very popular; see, e.g. Stuart [2010], Imbens and Rubin [2015], and references therein.

PSM works because (5.1) implies (Y 0,Y 1) ⊥ D|π(X).

As well known, however, PSM requires the user to make several arbitrary decisions,

such as how many subjects in the opposite group to match, and how to set the value of

the ‘caliper’ (the tolerance threshold of mismatch), whether to match with or without

replacement, and so on. Also inference with PSM is difficult despite an advance made

in Abadie and Imbens [2016].

Call PSM with an upper bound on the PS distance ‘caliper PSM’, i.e., if the PS

distance between two subjects is greater than the caliper, then the two subjects are

regarded as non-matched; in no-caliper PSM, the closest subject is matched regardless

of the PS distance. Wu et al. [2015] noted that PSM has been applied 55 times in the

four best medical journals. Among the 55 studies, 21 studies used caliper PSM, 10 of

which used 0.2× Sd(logit PS) as the caliper, and 4 of which used 0.6× Sd(logit PS),

where Sd stands for standard deviation; 1:1 (i.e., pair) matching was the most popular.

Reviewing 47 earlier medical studies with PSM, Austin [2008] noted “only two studies

used appropriate statistical methods both for assessing balance in the matched sample

and for assessing the statistical significance of the treatment effect”. More recently,

Nayan et al. [2017] searched 114 studies with PS in urology to find that PSM was

the most popular (62 studies, 54.4%), the majority (77.4%) of which, however, used
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inappropriate statistical methods. These show that PSM is an important research tool,

and yet the degree of arbitrariness and inappropriate use is high.

Other than PSM (and matching in general), there are several types of treatment

effect estimators: inverse probability weighting (see Hirano et al., 2003 and references

therein), regression imputation/adjustment (to be explained in detail later), complete

pairing [Lee, 2009, 2012], PS-residual-based ordinary least squares estimator [Lee,

2018], and various doubly robust (DR) estimators. It is puzzling then why PSM is

so popular while the others are not. The reason could be lack of strong evidence that

some of the other estimators do much better than matching.

In the literature, there are many small-scale simulation studies whose designs differ

in complexity: Linden [2017] with a single regressor and its polynomial functions,

Waernbaum [2012] and Linden et al. [2016] with two regressors and their polynomial

functions, Kang and Schafer [2007] and Imai and Ratkovic [2014] with four regressors,

and Kreif et al. [2016] with eight regressors and their polynomial functions to imitate a

real data set. In this chapter, we compare 24 estimators in total through an extensive

simulation study with 64 designs and two empirical analyses mimicking experiments.

This chapter is organised as follows. Section 5.2 reviews ‘prognostic score (PGS)’,

because Section 5.3 introduces estimators using PS and PGS. Section 5.4 conducts

a simulation study, and Section 5.5 provides empirical analyses. Finally, Section 5.6

concludes.

5.2 Prognostic Score

A function ψ(X) is a PGS if ψ(X) satisfies Y 0 ⊥ X|ψ(X); see Hansen [2008] and

references therein. To understand PGS, consider a simple ‘intercept-shift model’:

Y 0
i = X ′iβ0 + Ui and Y 1

i = β∗ + Y 0
i , U ⊥ X (5.2)
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where β’s are parameters and U is an error. Here, ψ(X) = X ′β0 due to Y 0 ⊥ X|X ′β0,

and Y 1 ⊥ X|X ′β0 holds as well because Y 1 is an intercept-shifted version of Y 0. When

Y 1 is not an intercept-shifted version, we may need ‘an effect modifier’ µ(X) to achieve

Y 1 ⊥ X|{ψ(X),µ(X)} so that (Y 0,Y 1) ⊥ X|{ψ(X),µ(X)}. For instance, if

Y 0
i = X ′iβ0 + Ui and Y 1

i = X ′iβ1 + Y 0
i , U ⊥ X (5.3)

where β1 is a parameter, then µ(X) = X ′β1, and we have Y 1 ⊥ X|(X ′β0,X ′β1) so

that (Y 0,Y 1) ⊥ X|(X ′β0,X ′β1).

‘(Y 0,Y 1) ⊥ D|X’ in (5.1) allows (Y 0,Y 1) and D to be related only through X. If

(Y 0,Y 1) ⊥ X|ψ(X) holds as in (5.2), we then have

(Y 0,Y 1) ⊥ D|ψ(X) : (5.4)

the possible relation between (Y 0,Y 1) andD throughX is “severed” by conditioning on

ψ(X). Hence (Y 0,Y 1) is balanced across the two groups given ψ(X), just as (Y 0,Y 1)

is so given π(X). If (5.4) does not hold, but (Y 0,Y 1) ⊥ D|{ψ(X),µ(X)} does, then

(Y 0,Y 1) is balanced across the two groups given {ψ(X),µ(X)}.

Although we used ‘⊥’ above in introducing PGS to be “faithful” to the litera-

ture, in fact, we can use conditional independence throughout. To see why, consider

E(Y 0|D,X) = E(Y 0|X) that is weaker than Y 0 ⊥ D|X in (5.1), and E{Y 0|X,ψ(X)} =

E{Y 0|ψ(X)} in defining PGS that is weaker than Y 0 ⊥ X|ψ(X). Then, E(Y 0|D,X) =

E(Y 0|X) and E(Y 0|X) [= E{Y 0|X,ψ(X)}] = E{Y 0|ψ(X)} give

E{Y 0|D,ψ(X)} = E{E(Y 0|D,X)|D,ψ(X)} = E{E(Y 0|X)|D,ψ(X)} = E{Y 0|ψ(X)} :

given ψ(X), Y 0 is balanced across the two groups.

A prime candidate for PGS in practice is E(Y 0|X) as illustrated in (5.2), because

E{Y 0|ψ(X)} = E{E(Y 0|X)| ψ(X)} = E(Y 0|X) when ψ(X) = E(Y 0|X).
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Considering (5.3), we can also see that setting µ(X) = E(Y 1|X) gives E(Y 1|X) =

E{Y 1|ψ(X),µ(X)} in case E(Y 1|X) = E{Y 1|ψ(X)} fails. In short, two prime candi-

dates for PGS to balance Y 0 and Y 1 across the two groups are E(Y 0|X) and E(Y 1|X).

Y 0 and Y 1 being balanced given ψ(X) (or {ψ(X),µ(X)}) gives the key equation:

E{Y |D = 1,ψ(X)} −E{Y |D = 0,ψ(X)}

= E{Y 1|D = 1,ψ(X)} −E{Y 0|D = 0,ψ(X)}

= E{Y 1|ψ(X)} −E{Y 0|ψ(X)} = E{Y 1 − Y 0|ψ(X)}. (5.5)

Integrating out ψ(X) gives E(Y 1 − Y 0). If only Y 0 is balanced given ψ(X), we get

E{Y |D = 1,ψ(X)} −E{Y |D = 0,ψ(X)} = E{Y 1 − Y 0|D = 1,ψ(X)}. (5.6)

Integrating out ψ(X)|D = 1 then gives E(Y 1 − Y 0|D = 1).

5.3 Review of Estimators to Be Compared

This section reviews five types of estimators to be compared. Certainly, this chapter

alone cannot cover all treatment effect estimators that ever appeared, as there are

more elaborate estimators than to be reviewed here. The hope is that our selection of

estimators is wide enough to address various issues/concerns with treatment effect es-

timators. Although we can go fully nonparametric, most estimators in practice specify

either PS π(X) or the PGS E(Y |X,D = d); we will examine only such estimators.

Let the pooled sample be indexed by i = 1, ...,N , the treatment group by t = 1, ...,N1,

and the control group by c = 1, ...,N0; N = N0 +N1.

To ease comparing estimators below, we impose some restrictions. First, we use

probit for π(X). Second, we mostly examine γ ≡ E(Y 1−Y 0), not E(Y 1−Y 0|D = d);

nevertheless, γ equals E(Y 1 − Y 0|D = d) for a constant effect (i.e. parallel shift), for

which ‘effect-on-treated’ estimators can be used as well. Third, we use the linear
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specification E(Y |X,D = d) = X ′βd for a parameter βd. Fourth, for matching, we

consider only 1:1 and 1:5 matchings following Rubin and Thomas [2000], and use a

caliper of size 0.2 with the matching PS (or PGS) standardised, again following Rubin

and Thomas [2000]. Fifth, for weighting with PS, we trim the observations so that

0.001 ≤ π(X) ≤ 0.999. Sixth, we use two bandwidths for kernel smoothing based on

a ‘rule-of-thumb’ bandwidth N−1/5, with the smoothing variable(s) standardised: 0.5

and 1.5 times N−1/5 to have relative under-smoothing and over-smoothing.

5.3.1 Regression Imputation (RI)

Under E(Y |X,D = d) = X ′βd, d = 0, 1, the simplest treatment effect estimator is

gri−lin ≡
1
N

N∑
i=1

X ′iβ̂1 −
1
N

N∑
i=1

X ′iβ̂0 =
1
N

∑
i

X ′i(β̂1 − β̂0) (5.7)

where β̂d is the ordinary least squares estimator (OLS) of Y on X using the D = d

subsample. This ‘regression imputation/adjustment (RI)’ estimator is consistent for

E{E(Y |X,D = 1)−E(Y |X,D = 0)} = E{E(Y 1|X)−E(Y 0|X)} = γ.

An alternative to gri−lin specifying E(Y |X,D = d) as linear is replacing E(Y |X,D =

d) with E{Y |π(X),D = d} after specifying π(X) as probit/logit as in Imbens [2000].

A series-approximation estimator for this (using an estimator π̂(X) for π(X)) is

gri2−ps ≡
1
N

∑
i

{ξ̂10 + ξ̂11π̂(Xi) + ξ̂12π̂(Xi)
2} − 1

N

∑
i

{ξ̂00 + ξ̂01π̂(Xi) + ξ̂02π̂(Xi)
2}

where (ξ̂d0, ξ̂d1, ξ̂d2) is the OLS of Y on {1, π̂(X), π̂(X)2} for the D = d subsample;

using π̂(X)3 additionally gives gri3−ps. Note the critical difference between gri−lin and

gri2−ps (and gri3−ps): the former specifies the PGS’s as linear functions of X, whereas

the latter specifies PS. As (5.6) shows, we can also use ψ(X) instead of π(X): let

the analog of gri2−ps and gri3−ps using an estimator ψ̂(X) for ψ(X) be gri2−pgs and



§5.3 Review of Estimators to Be Compared 93

gri3−pgs.

Recently, Lee and Lee [2019] showed that controlling both PS and PGS makes

an estimator DR.1 Hence, let gri2−ppgs be the DR estimator analogous to gri2−ps and

gri2−pgs which uses the second order polynomials of π̂(X) and ψ̂(X) including the

interaction π̂(X)ψ̂(X); we do not consider the cubic version, as this results in too

many terms compared with gri3−ps and gri3−pgs.

RI may look like matching, but it is not, because the two terms in each RI estimator

are separately averaged for E(Y 1) and E(Y 0). Overall, we use 6 RI’s: RI-lin gri−lin

in (5.7) which is the simplest, RI2-ps gri2−ps and RI3-ps gri3−ps specifying PS, RI2-

pgs gri2−pgs and RI3-pgs gri3−pgs specifying PGS, and RI2-ppgs gri2−ppgs that is DR

specifying both PS and PGS.

5.3.2 Matching and Bias Correction

Let δi = 1 if observation i meets the “caliper condition” for a chosen caliper (and

0 otherwise): having one nearest subject in the opposite group within the caliper

distance for 1:1 matching, and five subjects for 1:5 matching; let Nδ ≡
∑N
i=1 δi. A

“with-replacement” (i.e., a single subject can match multiple subjects in the opposite

group) pair-matching estimator using PS is

gm1−ps ≡
1
Nδ

N∑
i=1

δi(Ŷ
1
i − Ŷ 0

i ) with Ŷ 1
i ≡ DiYi+(1−Di)Yt(i), Ŷ 0

i ≡ (1−Di)Yi+DiYc(i)

where t(i) is the matched treated subject for control i, and c(i) is the matched control

for treated i; t(i) and c(i) are chosen to minimise |π̂(Xi) − π̂(Xt(i))| and |π̂(Xi) −

π̂(Xc(i))|. Define gm1−pgs analogously using ψ̂(X) instead of π̂(X). Going further,

define DR gm1−ppgs analogously using both ψ̂(X) and π̂(X) to choose t(i) minimising

max{
|π̂(Xi)− π̂(Xt(i))|

Sd{π̂(X)}
,
|ψ̂(Xi)− ψ̂(Xt(i))|

Sd{ψ̂(X)}
}. (5.8)

1The introduction and the theoretical proof in Lee and Lee [2019] is presented in Chapter 4 of the
thesis.



94 Comparison of Treatment Effect Estimators

For 1:5 matching, Yt(i) and Yc(i) are replaced with the average of the five closest subjects.

A bias-corrected version of gm1−ps [Abadie and Imbens, 2011] is

gm1−bc ≡ 1
Nδ

∑N
i=1 δi(Ỹ

1
i − Ỹ 0

i ) with Ỹ 1
i ≡ DiYi + (1−Di)(Yt(i) +X ′iβ̂1 −X ′t(i)β̂1),

Ỹ 0
i ≡ (1−Di)Yi +Di(Yc(i) +X ′iβ̂0 −X ′c(i)β̂0);

we consider only 1:1 matching for bias-correction. Combining matching with bias-

correction makes gm1−bc DR as Abadie and Imbens [2011] noted. Our gm1−bc differs

from Abadie and Imbens’ [2011] original formulation in two aspects. First, we use linear

models for E(Y |X,D = d) in bias correction, whereas Abadie and Imbens [2011] used

nonparametric estimators. Second, we use π̂(X) in selecting t(i) and c(i), whereas

Abadie and Imbens [2011] used X per se. Abadie et al. [2004] implemented a version

of gm1−bc in STATA using linear models for the matched samples only, whereas gm1−bc

estimates linear models for the full control and treatment samples.

Instead of matching on population, we also do matching on the treated, for which

we do ‘without-replacement’ matching, as this may better reflect the way matching

is done in practice. Let δ1i = 1 if treated subject i satisfies the caliper condition;

Nδ1 ≡
∑
i∈{D=1} δ1i. Define

gmt1−ps ≡
1
Nδ1

∑
i∈{D=1}

δ1i(Yi − Yc(i)),

and its PGS and PPGS versions gmt1−pgs and gmt1−ppgs. For matching on the treated,

Sd{π̂(X)|D = 0} and Sd{ψ̂(X)|D = 0} are used instead of Sd{π̂(X)} and Sd{ψ̂(X)}.

Overall, we use 9 matchings: M1-ps gm1−ps, M1-pgs gm1−pgs , M1-ppgs gm1−ppgs that

is DR, M5-ps gm5−ps , M5-pgs gm5−pgs, M1-bc gm1−bc that is DR, Mt1-ps gmt1−ps,

Mt1-pgs gmt1−pgs, and Mt1-ppgs gmt1−ppgs that is DR.
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5.3.3 Weighting and Doubly Robust Estimators

A weighting (or inverse probability weighting) estimator for γ is

1
N

∑
i

{ Di

π̂(Xi)
− 1−Di

1− π̂(Xi)
}Yi →p E{ DY

π(X)
− (1−D)Y

1− π(X)
} = E(Y 1 − Y 0) = γ.

Let δπi ≡ 1[0.001 ≤ π̂(Xi) ≤ 0.999], where 1[B] = 1 if B holds and 0 otherwise. A

normalised version of the weighting estimator with δπ is

gwgt ≡
∑
i

δπi
DiYi
π̂(Xi)

�
∑
i

δπi
Di

π̂(Xi)
−
∑
i

δπi
(1−Di)Yi
1− π̂ (Xi)

�
∑
i

δπi
1−Di

1− π̂ (Xi)

which is our weighting estimator ‘Wgt’ to be used in simulation.

A “canonical” DR estimator obtains by modifying the first weighting estimator:

gdr−c ≡ Ê(Y 1)− Ê(Y 0) where Ê(Y 1) ≡ 1
Nπ

∑
i

δπi{
DiYi
π̂(Xi)

− Di − π̂(Xi)

π̂(Xi)
X ′iβ̂1},

Nπ ≡
∑
i

δπi, Ê(Y 0) ≡ 1
Nπ

∑
i

δπi{
(1−Di)Yi
1− π̂(Xi)

− π̂(Xi)−Di

1− π̂(Xi)
X ′iβ̂0}

and DR-c stands for ‘DR-canonical’. DR estimation was proposed originally by Robins

et al. [1994], and many variations of DR-c can be seen in Scharfstein et al. [1999], Bang

and Robins [2005], Robins et al. [2007], Cao et al. [2009], Tan [2010], Rotnitzky et al.

[2012], Vermeulen and Vansteelandt [2015], Lee and Lee [2019], and references therein.

Overall, we consider 2 weighting-based estimators: Wgt gwgt and DR-c gdr−c.

5.3.4 Complete Pairing (CP)

Instead of selecting a few matched individuals, one may wonder why not use all possible

pairs across the two groups; N0N1 pairs in total. This is the idea of complete pairing

(CP) in Lee [2009, 2012]. Whereas Lee [2009, 2012] followed a two-sample framework

for more generality, we adopt the usual one-sample framework.
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Suppose X is discretely distributed. A marginal effect estimator using all pairs is

LN ≡
(N0N1)−1∑

t∈T
∑
c∈C 1[Xc = Xt](Yt − Yc)

(N0N1)−1∑
t∈T

∑
c∈C 1[Xc = Xt]

where ‘t ∈ T ’ means belonging to the treatment group, and ‘c ∈ C’ the control group.

Let xr, r = 1, ...,R, be the common support points across the two groups. With

pdr ≡ P (X = xr|D = d), it holds that

LN →p L ≡
∑
r

E(Y 1− Y 0|X = xr)ω(r) as N →∞ where ω(r) ≡ p1rp0r∑
r p1rp0r

; (5.9)

L is a marginal effect defined as the “ω-weighted average” of the X-conditional effects.

When p0r = 0 6= p1r, an additive weight such as (p1r + p0r)/
∑
r(p1r + p0r) is

not zero, but p1rp0r/
∑
r p1rp0r in (5.9) is. The latter is preferable because the two

groups are not comparable on X = xr. The product weight p1rp0r for LN thus ensures

comparing E(Y 1−Y 0|X = x) only on the common support, which is a built-in feature

of CP to guard against the support problem.

If X is continuous with dimension k× 1, then instead of LN , we can use

MN ≡
(N0N1)−1∑

t∈T
∑
c∈C h

−kK{(Xc −Xt)/h}(Yt − Yc)
(N0N1)−1∑

t∈T
∑
c∈C h

−kK{(Xc −Xt)/h}

whereK is a kernel such asN(0, 1) density. Since this has the nonparametric dimension

problem, we use PS or PGS instead of X per se. MN is similar to ‘kernel matching’

as in Heckman et al. [1997], but the difference is that kernel matching uses a kernel-

weighed average of matched subjects to construct the counter-factual, which is not

the case in MN . In total, we consider 6 CP estimators where the number after ‘CP’

indexes bandwidths 1 and 2 for relative under- and over-smoothing: CP1-ps gcp1−ps

and CP2-ps gcp2−ps with π̂(X), CP1-pgs gcp1−pgs and CP2-pgs gcp2−pgs with ψ̂(X),

and CP1-ppgs gcp1−ppgs and CP2-ppgs gcp2−ppgs with π̂(X) and ψ̂(X) that are DR.
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5.3.5 OLS with PS-Residual

Lee [2018] proposed a simple OLS using PS residual: obtain the probit estimator α̂

under π(X) = Φ(XTα) where Φ is the N(0, 1) distribution function, and then do the

simple OLS of Y − Ȳ on D−Φ(XT α̂) to estimate the treatment effect γ, where Ȳ is

the sample mean of Y . Lee [2018] generalised this simple OLS by obtaining the OLS

(ζ̂0, ζ̂1, ..., ζ̂q) of Y on {1, XT α̂, ..., (XT α̂)q} and then doing the OLS of

Y −
q∑
j=0

ζ̂j(X
T α̂)j on D−Φ(XT α̂)

which includes the simple OLS as a special case when q = 0. All estimators with q

require the correctly specified PS, but when the PS is misspecified, those with q 6= 0

are likely to be less biased than the simple OLS with q = 0. Lee [2018] proposed to set

q = 2, 3, and we use the estimator OLS-ps gols−ps with q = 2.

The main advantage of OLS-ps is its simplicity in requiring only probit (or logit)

and OLS, and the ease in estimating its asymptotic variance. Among the estimators

we consider, the only other estimator as simple as OLS-ps in getting the asymptotic

variance is RI-lin in (5.7). However, the critical difference between the two estimators

is that OLS-ps specifies PS whereas RI-lin specifies PGS.

OLS-ps has further advantages. First, OLS-ps does not require any tuning constant

such as a caliper—the q above is not a tuning constant, because OLS-ps is consistent

for any value of q = 0, 1, 2, ... Second, it is numerically stable, unlike Wgt and DR-c.

Third, it works for non-continuously distributed responses as well, and can be easily

extended to multiple treatments. In a small-scale simulation study in Lee [2018], OLS-

ps performed far better than the other estimators compared there.
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5.4 Simulation Study

5.4.1 Designs and Main Findings

Since we compare as many as 24 estimators, we keep the basic design simple with three

regressors, but vary its parameters in diverse ways to accommodate 32 or 64 designs.

With N = 400, 800 and the number of Monte Carlo data sets 10, 000, our base design

is:

D = 1[α1 + (α2X2 + α3X3 + α4X4)/
√
α2

2 + α2
3 + α2

4 + ε > 0];

X ≡ (X2,X3,X4)
′ are iid N(0, 1), ε ∼ N(0,σ2

ε ) ⊥ X with σε = 1, 2;

α1 = −0.674, 0, α2 = 1, α3 = 1, α4 = −1, 1;

Y 0 = ψ(X) + U , Y 1 = Y 0 + 1, ψ(X) = β1 + (β2X2 + β3X3 + β4X4)/
√
β2

2 + β2
3 + β2

4 ;

U ∼ N(0,σ2
u) ⊥ X with σu = 0.5, β1 = 0, β2 = 2, β3 = 1, β4 = 1.

As can be seen in this display, we normalise the regression function forD (other than

α1) and ψ(X) so that their mean and Sd are always 0 and 1, because, otherwise, changes

in parameters affect not only the PS and PGS overlaps, but also the variations explained

by X in the treatment and response models. In some designs, Z ≡ (Z2,Z3,X4)′ is

observed instead of X, where Z2 = {1 + exp(X2)}−1 and Z3 = exp(X3/2). As in

Kang and Schafer [2007], π(Z) and ψ(Z) are then moderate misspecifications of π(X)

and ψ(X).

The above setting results in 32 (= 2 × 2 × 2 × 2 × 2) factorial designs: (1) the

control group size being three times greater than or the same as the treatment group

size with α1 = −0.674, 0; (2) poor or good PS overlap with σε = 1, 2; (3) good or poor

PGS overlap with α4 = −1, 1; (4) π(X) or π(Z) used; and (5) ψ(X) or ψ(Z) used.2

We use the 32 designs first, and then consider an effect modifier, which results in 64

designs in total. The simulation results not presented below (including all N = 800

results) are either in the appendix or available from the authors upon request.
2We include a constant term in the regression of PS and PGS models.
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About (2), the PS overlap is good when σε = 2 because X becomes less relevant

for D = 0, 1, compared with when σε = 1. Regarding (3), although α4 appears in

the D equation, not in the Y equation, α4 affects the PGS overlap by altering the

treatment and control groups; the PGS overlap is good when α4 = −1 (compared with

when α4 = 1) because large X2 and X3 values get cancelled by a large X4, which also

makes X less relevant for D = 0, 1. Figure 5.A1 in the appendix illustrates (2) and (3),

using simulated data with N0 ' N1. As for (4) and (5), we consider the four cases of

PS and PGS correctly or wrongly specified depending on whether X or Z is observed.

Figure 5.A2 in the appendix shows with the same simulated data that Z looks good

enough in explaining Y so that the researcher may not detect the misspecification.

Presenting our main simulation findings in advance, first, OLS-ps performs overall

the best, followed by RI-lin; both are easy to obtain with simple asymptotic variance

estimators. Second, the DR estimators do not perform well when both PS and PGS

are misspecified, and when only one is misspecified, the DR estimators work well, but

hardly ever better than OLS-ps or RI-lin; among the DR estimators, we recommend

RI2-ppgs and CP1-ppgs. Third, OLS-ps dominates all the other PS-based estimators.

Fourth, RI-lin does mostly better than the other PGS-based estimators, but occasion-

ally RI-lin does worse than some. Fifth, multiple matching performs better than the

popular pair matching, but overall, matching is inferior to OLS-ps and RI-lin.

5.4.2 Simulation Tables

Table 5.1 shows results for four base designs with good PS and PGS overlaps, where

PS and PGS are correctly specified or moderately misspecified as described above:

column (1) for both PS and PGS correct; (2) for PGS wrong; (3) for PS wrong; and

(4) for both wrong. The PS-based estimators are in the upper third, the PGS-based

estimators are in the middle third, and the DR ones are in the lower third. For all

tables in this chapter, the reported bias, Sd, and root mean squared error (rmse) are

scaled up 100 times to avoid too many zeros.
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5.4.2.1 Results for base designs

In column (1) with both scores correct, most estimators perform not much differently

in terms of rmse, with almost no bias except for CP2; the best performing estimators

are the two simplest ones, OLS-ps and RI-lin, followed by RI2-ppgs and DR-c. In

column (2) with PGS misspecified, OLS-ps does clearly best, followed by RI2-ps and

RI2-ppgs; despite the misspecified PGS, RI-lin still performs hardly any worse than

these two. In column (3) with PS misspecified, RI-lin does best, followed by RI2-ppgs

and RI2-pgs; although all PS-based estimators are heavily biased, OLS-ps does best in

that group, and better than several PGS-based or DR estimators. In column (4) with

both PS and PGS misspecified, OLS-ps and RI-lin perform best, followed by RI2-pgs

and RI2-ppgs.

In the following, we make comments on each type (RI, matching, weighting, ...)

and each group (PS-based, PGS-based and DR) of estimators. The comments are

based, not just on Table 5.1, but also on Tables 5.2–5.4 below. This way, we do not

have to make similar comments again for Tables 5.2–5.4, where we focus on a few

best-performing estimators.

Examining each type of estimators in turn, for regression imputation, RI2 and RI3

do similarly, with RI3 less biased but more variable than RI2, and RI2 and RI3 are

mostly dominated by RI-lin. For matching, MT1 performs mostly a little better than

M1 or similarly to M1; M1-ps and M1-pgs do worse than M5-ps and M5-pgs, respec-

tively (see also Table 5.A1 in the appendix); and M1-bc performs overall comparably

to M1-ppgs and MT1-ppgs. For Wgt and DR-c, DR-c performs mostly better than

Wgt. For complete pairing, CP1 and CP2 show a trade-off between bias and efficiency,

but CP1 does overall better than CP2.

Looking at the three groups in turn, among the PS-based estimators which are un-

derstandably biased when the PS is misspecified in columns (3) and (4), OLS-ps dom-

inates by a big margin. Among the PGS-based estimators which are understandably

biased when the PGS is misspecified in columns (2) and (4), RI-lin mostly dominates,
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but RI2-pgs comes close. Among the DR estimators, RI2-ppgs dominates in Table 5.1,

but CP1-ppgs mostly dominates in Tables 5.2–5.3 where the support overlaps are not

good; recall that CP has a built-in protection against the support problem. The DR

estimators are not biased when only one of the PS and PGS is misspecified, but when

both PS and PGS are misspecified in column (4), the DR estimators are as biased as

the other estimators.

Summarising Table 5.1 with good PS and PGS overlaps, OLS-ps, RI-lin and RI2-

ppgs are the three best estimators.

5.4.2.2 Results for poor PGS or PS overlap

Table 5.2 is for the poor overlap of only one of PS and PGS, and there are four different

designs: column (1) for poor PGS overlap with both scores correct; (2) for poor PGS

overlap with both scores wrong; (3) for poor PS overlap with both scores correct; and

(4) for poor PS overlap with both scores wrong. The appendix presents rmse’s for the

omitted cases such as only one score wrong.

In column (1) for poor PGS overlap with both scores correct, most estimators

perform similarly with the only exception being CP2 that tends to be more biased.

Compared with column (1) of Table 5.1 with good PGS overlap, PGS overlap does

not seem to matter much, because columns (1) in Tables 5.1 and 5.2 are similar. The

best performing estimators are OLS-ps and RI-lin, closely followed by RI2-pgs and

RI2-ppgs.

In column (2) for poor PGS overlap with both scores wrong, all estimators exhibit

a bias, although the Sd’s do not differ much from those in column (1). OLS-ps and

RI-lin do best, closely followed by CP1-ppgs, RI2-pgs, M5-pgs, and RI2-ppgs.

In column (3) for poor PS overlap with both scores correct, OLS-ps and RI-lin still

perform best, with no other estimator coming close.

In column (4) for poor PS overlap with both scores wrong, compared with column

(4) of Table 5.1, PGS-based estimators exhibit only minor deterioration, whereas the
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PS-based estimators show much worse performance except OLS-ps and CP1-ps. DR

estimators do reasonably well, except DR-c that is the worst performing. RI-lin per-

forms best, closely followed by RI2-pgs, M5-pgs and CP1-pgs, and then by RI3-pgs,

OLS-ps and CP2-ppgs.

Summarising Table 5.2 with only one score poorly overlapping, OLS-ps and RI-lin

perform best.

5.4.2.3 Results for poor PGS and PS overlap

Whereas Table 5.2 is for poor overlap in only one of PGS and PS, Table 5.3 is for poor

overlap in both scores, with the control group size being as big as (in the left half) or

three times bigger than (in the right half) the treatment group size. There are four

columns in Table 5.3: column (1) for both scores correct and N0 ' N1, (2) for both

scores wrong and N0 ' N1, (3) for both scores correct and N0 ' 3N1, and (4) for both

scores wrong and N0 ' 3N1. The other omitted cases such as only one score wrong

can be found in the appendix where only rmse’s are presented.

In column (1) for both scores correct and N0 ' N1, the PS-based estimators do

worse than the PGS-based ones that perform comparably to the DR estimators. OLS-

ps and RI-lin perform best, and no other estimator comes close.

In column (2) with both scores wrong and N0 ' N1, OLS-ps and CP1-ppgs do best,

followed by RI-lin. No other estimator comes close.

In columns (3) and (4) with N0 ' 3N1, the number of the treated remains the

same whereas the control group reservoir goes up from about 200 to 600, which is

supposed to give an advantage to MT1. Note that PS and PGS overlaps in columns

(3) and (4) are worse than in columns (1) and (2). Compared to columns (1) and (2),

indeed, MT1 in columns (3) and (4) does better with smaller rmse’s, but MT1 is never

best-performing. In column (3), OLS-ps does best followed by CP1-pgs. In column

(4), again OLS-ps does best, closely followed by MT1-pgs and CP1-ppgs, and then by

M5-pgs, CP1-pgs and MT1-ppgs. Differently from the other designs, RI-lin does not
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do as well.

Summarising Table 5.3 with both scores overlapping poorly, OLS-ps performs best,

and sometimes best by far, to be followed by RI-lin, CP1-pgs and CP1-ppgs.

5.4.2.4 Results with/without modifier µ(X)

So far, Y 1 has been an intercept-shifted version of Y 0, with no effect modifier. In

Table 5.4, we consider an effect modifier µ(X) in two settings: with κ2 = 1,κ3 = 1,

Heterogeneous effect : Y 0 = ψ(X) + U , Y 1 = Y 0 + 1− κ2X2;

Heteroskedasticity : Y 0 = ψ(X) + U , Y 1 = Y 0 + 1 + (κ2X2 + κ3X3)U ;

the heteroskedastic error is normalised so that its marginal Sd becomes one. In Ta-

ble 5.4, column (1) does not use µ(X) = E(Y 1 − Y 0|X) in estimation. In contrast,

except for the PS-based estimators, column (2) uses µ(X) along with PS or PGS, and

its ‘ratio’ column shows the ratio of the rmse of column (2) (not shown separately) rel-

ative to the rmse of column (1). Columns (3) and (4) can be understood analogously,

with the only difference being µ(X) = Sd(Y 1|X).

In column (1) for heterogeneous effect, all estimators do worse than in column (1)

of Table 5.1, and all PGS-based estimators except RI-lin are much biased. RI-lin does

best, followed by DR-c and RI2-ppgs.

In column (2) for heterogeneous effect with using µ(X), using µ(X) additionally

improves the PGS-based estimators by removing the biases, except for RI-lin and M5-

pgs; it makes no difference for RI-lin, and it worsens M5-pgs by increasing its Sd much.

Surprisingly, judging from the ratio column, the performance of M1-ppgs, MT1-ppgs

and CP1-ppgs deteriorates much by using µ(X). Since the biases are almost zero for

most estimators except for CP2, we can take the Sd’s as the rmse’s. RI-lin still does

best, closely followed by RI2-pgs and RI3-pgs, and then by RI2-ppgs and DR-c.

In column (3) for heteroskedasticity, ignoring µ(X) makes hardly any difference

from column (1) of Table 5.1, and OLS-ps, RI-lin and CP2-ppgs perform best.
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In column (4) for heteroskedasticity with using µ(X), judging from the ratio col-

umn, using µ(X) makes little difference for the PS-based estimators, improves some

PGS-based estimators, but worsens some DR estimators. RI-lin does best, closely

followed by OLS-ps, CP2-ppgs, and then by CP1-pgs.

Summarising Table 5.4 with heterogeneity or heteroskedasticity, regardless of using

modifiers or not, RI-lin does best, followed by OLS-ps, RI2-ppgs and DR-c.

5.5 Empirical Analyses

This section presents two empirical examples, for which we drop 7 estimators among

the 24 estimators whose performance were almost dominated by others: RI3-ps, Wgt,

CP2-ps, RI3-pgs, CP2-pgs, M1-bc, and CP2-ppgs. The two empirical example data

were originally used for ‘fuzzy regression discontinuity (RD)’ design, where the treat-

ment of interest involves a known cutoff, say c. In fuzzy RD, the main concern is how

to overcome the endogeneity of the treatment using a local sample around c. The 17 es-

timators cannot, however, address treatment endogeneity, as they all require treatment

exogeneity. Hence, we put aside the endogeneity issue, and instead focus on generating

artificial experiment settings using the two data sets as follows.

Since we do not know the true model in real data, we set up an OLS model for Y

and apply a nonparametric model specification test in Stute [1997] to ensure that the

model is not rejected, and then we check out how close the 17 estimates are to the OLS

effect estimate. The model for Y is also used for PS and PGS specifications, which

may put the PS-based estimators at a disadvantage. In the first empirical example,

the treatment is not binary, but we transform the treatment into binary in 8 different

ways and use the full data. In the second example, the treatment is already binary,

and we use 8 different bandwidths h around c to generate 8 local samples.
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5.5.1 Class Size Effect on Reading Score

Our first example uses the same data as used in Angrist and Lavy [1999], where the

treatment is class size, Y is a reading test score of fifth graders in Israeli public schools,

and the observation unit is a class. We transform class size into a binary variable using

a threshold τ such that D = 1[class size≤ τ ]. This amounts to assuming that the class

size effect is constant with a jump at τ . Since this may result in a misspecification,

we apply the Stute test to set τ = 28 ∼ 35, for which the OLS model is not rejected;

out of this range of τ , the OLS model is either rejected, or one group is too small/big

relative to the other group. There are two covariates: the number of enrolled students

in the school (‘enrol’) and the percentage of poor students (‘poor’). Table 5.5 provides

descriptive statistics and the OLS result for τ = 35 with the regressors 1, D, enrol,

enrol2/100, enrol3/10000, poor, poor2/100, poor3/10000, enrol×poor/10000.

The p-values of the Stute test for τ = 28, 29, ..., 35, and the OLS effect of D and

its t-value are in Table 5.6. The OLS effects are all small (0.11∼0.47) and statistically

insignificant. The p-value of the Stute test is computed with a bootstrap following

Stute et al. [1998], with the bootstrap repetition number 2000. The tests are barely

non-rejecting for some values of τ , which is understandable because we are using only

a binary transformation of class size, not the class size itself.

Table 5.7 presents the 17 estimates and their t-values for τ = 30, 35, where the

‘Mean bias’ column is the average of 8 proportional biases defined as |effect−OLS

effect|/|OLS effect| for τ = 28 ∼ 35. The t-values are computed using the bootstrap

Sd based on 500 repetitions (i.e., the Sd of 500 pseudo bootstrap estimates), except

for OLS-ps and RI-lin whose t-values use asymptotic variance estimators. Taking the

mean bias column as the main performance criterion, OLS-ps has the smallest number

(0.16), which is much smaller than the other mean biases, and OLS-ps is followed by

RI2-ppgs (0.39), CP1-ppgs (0.40) and CP1-pgs (0.44). RI-lin does not do well with

mean bias 0.93. M1-ps does worst (3.98), and the performances of M5-ps (2.86) and

DR-c (1.95) are also poor. As a group, the PS-based estimators do worst with highly
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varying mean biases, and the PGS-based estimators do best with low varying mean

biases; if we exclude DR-c, however, the DR estimators do best.

5.5.2 Retirement Effect on Home Food Expenditure

In our second example, we examine the effect of retirement on monthly home food

expenditure in Euros, the logarithm of which is Y . Our data are drawn from the

Survey of Health, Ageing and Retirement in Europe (SHARE) which is cross-national

panel data on health and socioeconomic status of individuals aged 50 or higher. SHARE

covers 27 European countries and consists of 6 waves from 2004 to 2015, and we use

Estonia for the last two waves because Estonia entered SHARE late. Although our

data are panel data, we pool the data to use them as a single cross-section.

The observation unit is a single-earner household. D = 1 if the household head

is retired, where retirement is defined as non-working and receiving the pension. We

control 3 covariates: household size (size), monthly household income including the

pension in Euros (income), and marital status of the household head (married). Al-

though other covariates may affect Y , controlling only these three is justified due to

the RD nature that using a local sample around c tends to balance most covariates.

We use the localising bandwidth h = 1.1 ∼ 1.8 years around the retirement age

c = 63, which gives 8 experiments depending on h; the number of the local observations

seems too small for h < 1.1, and the Stute test rejects the OLS model for h > 1.9.

Table 5.8 presents descriptive statistics and the OLS result for h = 1.8 with the OLS

regressors 1, D, ln(income), married, size and married×size. The OLS R2 is 0.42,

similar to the R2 in the first empirical example.

Table 5.9 shows h, the local sample size with h, Stute test p-value based on 2000

bootstrap repetitions, OLS effect and its t-value. The local sample sizes are 195 ∼

307. The Stute test is non-rejecting with the p-value 0.10 or greater, and the p-

value decreases as h increases. The OLS effects are all negative and significant: as the

household head retires, the household home food expenditure drops by about 13 ∼ 20%.
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Table 5.10 presents the 17 estimates and their t-values for h = 1.4, 1.8. Differently

from Table 5.7, the bootstrap to get the Sd’s for the 17 estimates ran into troubles

due to the small sample sizes. It happened sometimes that (i) the PS could not be

estimated, when the pseudo sample was highly unbalanced in D; (ii) there were no

matching subjects in the opposite group for matching, which occurred mostly for the

1:5 matchings; and (iii) the OLS could not be implemented for RI estimators because

the regressor matrix was not invertible. To avoid the problem (i), we drew pseudo

samples separately from the D = 0 and D = 1 groups so that P (D = 1) stays the

same. As for (ii) and (iii), whenever they occurred, the pseudo sample was dropped

and then redrawn. As in Table 5.7, the Sd’s for OLS-ps and RI-lin were obtained with

their asymptotic variance estimators.

In Table 5.10, OLS-ps has the smallest mean bias (0.29) by far, followed by DR-c

(0.39), MT1-pgs (0.48), M5-pgs (0.50) and RI-lin (0.51). Differently from Table 5.7

for the first empirical example, RI-lin does almost third best, and surprisingly, DR-c

does second best. As a group, the PGS-based estimators do best with the group-

averaged mean bias 0.58, whereas the PS-based estimators and the DR estimators

perform similarly with the group-averaged mean biases 0.88 and 0.89, respectively.

Combining the Tables 5.7 and 5.10 findings with the summaries of the simulation

tables, the best performing estimator is clearly OLS-ps, next to which RI-lin, RI2-

ppgs, CP1-pgs and CP1-ppgs come. Bear in mind though that there are other factors

to take into account in choosing an estimator, such as the requirement of choosing a

tuning constant and the ease in estimating the asymptotic variance. Since CP1 needs

a bandwidth, all in all, we would recommend OLS-ps, followed by RI-lin and RI2-ppgs,

which are simple estimators with the asymptotic variances easily estimable; although

the order 2 in RI2-ppgs is a bandwidth, practitioners may not see it that way.
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5.6 Conclusions

This chapter compared various treatment effect estimators of different types, depending

on whether the estimator specifies PS or PGS; the estimators examined in this chapter

specifying both PS and PGS are doubly robust (DR). Broadly viewed, we compared

five approaches: regression imputation (RI), matching, weighting, complete pairing,

and OLS with PS residual. We then carried out an extensive simulation study to com-

pare 24 estimators in 32 or 64 factorial designs to see which estimator performs best.

Overall, the OLS with PS residual in Lee [2018] did best which is PS-based. Next to

this estimator, RI with linear regression functions did well, which is PGS-based. Both

estimators are not DR, but they are simple to obtain with easy-to-compute asymptotic

variance estimators. Next to these two, we recommend RI using second-order poly-

nomial functions of PS and PGS, which is DR. These conclusions notwithstanding, a

particular method may work better than others in a given data set, which may be seen

by a real-data mimicking simulation.
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Table 5.1: Bias, Sd, Rmse (×100) for Base Design (N = 400)
(1) π(X), ψ(X) (2) π(X), ψ(Z) (3) π(Z), ψ(X) (4) π(Z), ψ(Z)
bias sd rmse bias sd rmse bias sd rmse bias sd rmse

Estimators with only PS controlled
RI2-ps −0.9 5.9 6.0 −0.9 5.8 5.9 −2.7 6.0 6.6 −2.7 6.1 6.7
RI3-ps 0.1 6.2 6.2 0.0 6.1 6.1 −2.7 6.3 6.9 −2.7 6.4 7.0
M1-ps −0.1 8.8 8.8 −0.2 8.8 8.8 −2.8 9.0 9.4 −2.7 9.1 9.5
M5-ps −0.1 6.6 6.6 −0.1 6.5 6.5 −2.6 6.8 7.2 −2.5 6.9 7.3
MT1-ps −0.3 7.9 7.9 −0.4 7.7 7.7 −2.7 8.0 8.4 −2.7 8.0 8.4
Wgt 0.0 6.4 6.4 −0.1 6.3 6.3 −2.0 7.4 7.7 −2.0 7.6 7.8
CP1-ps −0.3 6.5 6.5 −0.4 6.5 6.5 −2.6 6.6 7.1 −2.6 6.7 7.2
CP2-ps −3.3 6.2 7.0 −3.4 6.2 7.0 −5.5 6.3 8.4 −5.4 6.4 8.4
OLS-ps 0.2 5.4 5.5 0.2 5.4 5.4 −2.3 5.6 6.1 −2.3 5.7 6.2

Estimators with only PGS controlled
RI-lin 0.1 5.4 5.4 −2.3 5.7 6.1 −0.1 5.3 5.3 −2.3 5.8 6.2
RI2-pgs 0.0 5.7 5.7 −1.4 6.0 6.2 −0.1 5.6 5.6 −1.5 6.1 6.3
RI3-pgs 0.0 5.7 5.7 −1.3 6.1 6.3 −0.1 5.7 5.7 −1.4 6.2 6.4
M1-pgs −0.1 6.5 6.5 −1.7 6.8 7.0 −0.2 6.5 6.5 −1.8 6.9 7.1
M5-pgs −0.1 6.0 6.0 −1.6 6.2 6.4 −0.2 5.9 5.9 −1.7 6.2 6.5
MT1-pgs −0.3 6.1 6.1 −1.8 6.4 6.7 −0.5 6.0 6.0 −1.9 6.4 6.7
CP1-pgs −0.4 6.1 6.1 −1.6 6.2 6.4 −0.5 6.0 6.0 −1.7 6.2 6.4
CP2-pgs −3.2 6.0 6.8 −4.4 6.1 7.5 −3.3 5.9 6.8 −4.5 6.1 7.6

Doubly robust estimators
RI2-ppgs 0.1 5.6 5.6 −0.3 5.9 5.9 −0.1 5.5 5.5 −2.1 5.9 6.3
M1-ppgs 0.1 6.6 6.6 0.0 6.8 6.8 −0.1 6.5 6.5 −1.9 6.8 7.1
MT1-ppgs 0.1 6.8 6.8 0.0 7.0 7.0 −0.1 6.7 6.7 −1.9 7.1 7.3
M1-bc 0.1 6.4 6.4 0.0 6.7 6.7 −0.1 6.3 6.3 −2.4 6.8 7.2
DR-c 0.1 5.6 5.6 0.1 6.0 6.0 −0.1 5.7 5.7 −3.4 7.4 8.2
CP1-ppgs 0.1 6.4 6.4 −0.1 6.5 6.5 −0.1 6.4 6.4 −1.8 6.6 6.8
CP2-ppgs −0.3 5.9 6.0 −0.6 6.0 6.0 −0.6 5.9 5.9 −2.2 6.1 6.5

The size of the effect to be estimated is 1. On average, the control group is as large as the treatment
group (N0 ' N1). π(X) and ψ(X) indicate correct specifications of PS and PGS while π(Z) and ψ(Z)
indicate mild misspecifications of PS and PGS. RI# indicates regression imputation with polynomial
#; M1 and M5 indicate 1:1 and 1:5 matching, respectively; MT1 indicates 1:1 matching for the effect
on the treated; Wgt indicates weighting; CP# indicates complete pairing with bandwidth #; OLS-ps
indicates an OLS estimator with PS residual; bc indicates bias-corrected version; DR-c indicates a
‘canonical’ DR estimator.
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Table 5.2: Bias, Sd, Rmse (×100) for Poor PGS or PS Overlap (N = 400)
poor PGS but good PS overlap poor PS but good PGS overlap

(1) π(X), ψ(X) (2) π(Z), ψ(Z) (3) π(X), ψ(X) (4) π(Z), ψ(Z)
bias sd rmse bias sd rmse bias sd rmse bias sd rmse

Estimators with only PS controlled
RI2-ps −1.7 5.8 6.0 −3.2 6.0 6.8 −7.1 8.9 11.4 −8.4 8.7 12.1
RI3-ps 0.1 5.7 5.7 −2.4 6.1 6.5 0.0 10.3 10.3 −4.8 10.2 11.3
M1-ps −0.1 7.0 7.0 −2.4 7.2 7.6 −1.4 12.9 13.0 −5.7 12.5 13.7
M5-ps −0.1 5.8 5.8 −1.9 6.1 6.4 −0.2 7.7 7.7 −4.3 7.9 9.0
MT1-ps −0.5 6.4 6.4 −2.3 6.6 7.0 −0.4 9.9 9.9 −4.2 10.0 10.8
Wgt −0.2 7.1 7.1 −2.1 8.1 8.4 −1.8 15.3 15.4 −3.0 18.7 18.9
CP1-ps −0.7 5.8 5.8 −2.2 6.0 6.4 −1.1 6.6 6.7 −4.8 6.8 8.4
CP2-ps −6.6 5.7 8.7 −8.2 5.9 10.1 −7.0 6.5 9.5 −10.1 6.6 12.0
OLS-ps 0.3 5.4 5.4 −1.8 5.7 5.9 0.1 6.2 6.2 −3.9 6.5 7.6

Estimators with only PGS controlled
RI-lin 0.1 5.4 5.4 −2.2 5.7 6.1 0.0 6.1 6.1 −3.5 6.4 7.3
RI2-pgs 0.1 5.5 5.5 −2.1 6.0 6.3 −0.1 6.9 6.9 −1.3 7.4 7.5
RI3-pgs 0.1 5.7 5.7 −1.8 6.1 6.4 −0.1 6.9 6.9 −1.0 7.5 7.6
M1-pgs −0.1 6.4 6.4 −2.1 6.8 7.1 −0.2 7.5 7.5 −1.7 8.0 8.1
M5-pgs −0.2 5.8 5.8 −2.1 6.0 6.3 −0.3 7.0 7.0 −1.6 7.3 7.5
MT1-pgs −0.6 6.1 6.1 −2.6 6.3 6.8 −0.7 7.2 7.3 −1.8 7.6 7.8
CP1-pgs −0.8 5.8 5.9 −2.9 5.9 6.6 −0.8 7.0 7.1 −1.6 7.3 7.5
CP2-pgs −6.9 5.8 9.0 −8.6 5.9 10.4 −5.4 6.8 8.7 −6.3 7.0 9.4

Doubly robust estimators
RI2-ppgs 0.2 5.6 5.6 −1.9 5.9 6.3 0.0 7.2 7.2 −3.3 7.6 8.3
M1-ppgs 0.1 6.3 6.3 −1.7 6.5 6.7 0.0 7.5 7.5 −3.3 7.7 8.4
MT1-ppgs 0.1 6.4 6.4 −1.4 6.4 6.6 0.0 8.0 8.0 −3.0 8.2 8.8
M1-bc 0.1 6.5 6.5 −2.4 6.7 7.1 0.0 8.5 8.5 −4.9 8.9 10.1
DR-c 0.1 5.6 5.6 −3.3 7.5 8.2 0.0 9.8 9.8 −9.3 22.1 24.0
CP1-ppgs 0.0 6.1 6.1 −1.5 6.0 6.2 −0.1 7.1 7.1 −3.1 7.3 7.9
CP2-ppgs −2.2 5.7 6.1 −3.9 5.8 7.0 −0.8 6.5 6.6 −3.6 6.7 7.6

The size of the effect to be estimated is 1. On average, the control group is as large as the treatment
group (N0 ' N1). π(X) and ψ(X) indicate correct specifications of PS and PGS while π(Z) and ψ(Z)
indicate mild misspecifications of PS and PGS. RI# indicates regression imputation with polynomial
#; M1 and M5 indicate 1:1 and 1:5 matching, respectively; MT1 indicates 1:1 matching for the effect
on the treated; Wgt indicates weighting; CP# indicates complete pairing with bandwidth #; OLS-ps
indicates an OLS estimator with PS residual; bc indicates bias-corrected version; DR-c indicates a
‘canonical’ DR estimator.
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Table 5.3: Bias, Sd, Rmse (×100) for Poor PGS and PS Overlap (N1 = 200)
poor PGS,PS overlap; N0 ' N1 poor PGS,PS overlap; N0 ' 3N1

(1) π(X), ψ(X) (2) π(Z), ψ(Z) (3) π(X), ψ(X) (4) π(Z), ψ(Z)
bias sd rmse bias sd rmse bias sd rmse bias sd rmse

Estimators with only PS controlled
RI2-ps −14.0 8.4 16.3 −14.9 8.5 17.2 −20.2 7.9 21.7 −20.0 7.6 21.4
RI3-ps 0.3 8.2 8.2 −5.3 8.5 10.0 −6.6 8.1 10.5 −10.9 7.9 13.5
M1-ps −2.6 9.4 9.8 −7.3 9.8 12.3 −5.9 12.5 13.9 −9.1 11.4 14.6
M5-ps −0.4 6.8 6.8 −3.8 7.0 7.9 −4.5 8.3 9.5 −7.0 7.9 10.5
MT1-ps −0.9 7.7 7.8 −3.8 7.8 8.7 −0.3 6.2 6.3 −4.3 6.4 7.7
Wgt −3.8 19.4 19.8 −5.6 21.4 22.1 −3.9 21.9 22.3 −8.7 20.5 22.2
CP1-ps −2.2 6.3 6.7 −5.2 6.5 8.4 −4.9 6.4 8.1 −6.9 6.4 9.4
CP2-ps −14.0 6.4 15.3 −16.3 6.5 17.6 −18.5 6.2 19.5 −20.7 6.2 21.6
OLS-ps 0.2 6.2 6.2 −3.4 6.4 7.2 0.0 4.9 4.9 −4.3 5.2 6.7

Estimators with only PGS controlled
RI-lin 0.1 6.1 6.1 −3.5 6.5 7.4 0.0 5.9 5.9 −6.2 6.0 8.6
RI2-pgs −0.1 7.1 7.1 −3.6 7.9 8.6 −0.1 7.3 7.3 −2.5 7.8 8.2
RI3-pgs −0.1 8.1 8.1 −2.7 9.1 9.5 −0.1 9.6 9.6 −6.8 9.3 11.6
M1-pgs −0.6 7.6 7.6 −3.4 8.1 8.7 −0.5 7.1 7.1 −3.9 7.3 8.2
M5-pgs −0.5 6.7 6.7 −3.5 6.9 7.7 −0.5 5.6 5.6 −3.8 5.7 6.9
MT1-pgs −1.1 7.2 7.3 −4.3 7.4 8.6 −0.7 5.7 5.7 −3.3 6.0 6.8
CP1-pgs −1.8 6.5 6.7 −5.0 6.6 8.3 −1.4 5.2 5.3 −4.4 5.3 6.9
CP2-pgs −13.3 6.4 14.8 −15.8 6.5 17.1 −10.9 5.1 12.1 −13.3 5.2 14.2

Doubly robust estimators
RI2-ppgs 0.1 7.4 7.4 −3.5 7.9 8.6 0.0 7.9 7.9 −2.6 9.0 9.4
M1-ppgs 0.1 7.6 7.6 −3.1 7.6 8.2 −0.2 7.3 7.3 −3.8 7.3 8.3
MT1-ppgs 0.0 7.5 7.5 −2.5 7.6 8.0 −0.1 6.0 6.0 −3.1 6.1 6.9
M1-bc 0.2 8.5 8.5 −4.7 8.9 10.1 0.0 10.4 10.4 −6.4 10.3 12.1
DR-c 0.1 8.9 8.9 −9.5 24.2 26.0 −0.1 10.0 10.0 −9.7 17.1 19.7
CP1-ppgs −0.1 6.7 6.7 −2.6 6.7 7.2 −0.2 6.0 6.0 −3.1 6.1 6.8
CP2-ppgs −4.3 6.3 7.6 −7.1 6.3 9.5 −3.8 5.5 6.6 −7.0 5.5 8.9

The size of the effect to be estimated is 1. On average, the control group is as large as the treatment
group in columns (1) and (2) (N0 ' N1), while the control group is three times larger than the
treatment group in columns (3) and (4) (N0 ' 3N1). π(X) and ψ(X) indicate correct specifications
of PS and PGS while π(Z) and ψ(Z) indicate mild misspecifications of PS and PGS. RI# indicates
regression imputation with polynomial #; M1 and M5 indicate 1:1 and 1:5 matching, respectively; MT1
indicates 1:1 matching for the effect on the treated; Wgt indicates weighting; CP# indicates complete
pairing with bandwidth #; OLS-ps indicates an OLS estimator with PS residual; bc indicates bias-
corrected version; DR-c indicates a ‘canonical’ DR estimator.
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Table 5.4: Bias, Sd, Rmse (×100) with/without modifier µ(X)

µ(X) = 1−X2 for E(Y 1−Y 0|X) µ(X) = |1 +X2+X3| for Sd(Y 1|X)
(1) µ(X) not used (2) µ(X) used (3) µ(X) not used (4) µ(X) used
bias sd rmse bias sd ratio bias sd rmse bias sd ratio

Estimators with only PS controlled
RI2-ps −0.5 7.7 7.8 −0.3 7.8 1.00 −0.9 5.0 5.1 −0.9 5.0 0.99
RI3-ps −0.2 7.9 7.9 0.1 7.9 1.00 0.0 5.3 5.3 0.0 5.2 0.98
M1-ps −0.3 9.9 9.9 0.1 9.8 0.99 −0.2 8.0 8.0 −0.1 7.8 0.98
M5-ps −0.2 8.7 8.7 0.0 8.6 0.99 −0.2 5.6 5.6 −0.1 5.6 0.99
MT1-ps −0.1 9.4 9.4 0.1 9.3 0.99 −0.3 7.2 7.2 −0.1 7.1 0.99
Wgt −0.2 8.2 8.2 0.0 8.2 1.00 −0.1 5.7 5.7 −0.1 5.6 0.98
CP1-ps −0.3 8.4 8.4 −0.1 8.4 1.00 −0.4 5.4 5.5 −0.4 5.4 0.99
CP2-ps −1.4 8.1 8.2 −1.3 8.1 0.99 −3.4 5.2 6.2 −3.4 5.2 1.00
OLS-ps 0.0 7.9 7.9 0.2 7.8 1.00 0.1 4.4 4.4 0.2 4.4 1.00

Estimators with only PGS controlled
RI-lin −0.1 7.3 7.3 0.0 7.3 1.00 0.0 4.4 4.4 0.0 4.3 1.00
RI2-pgs 6.9 7.8 10.4 0.1 7.4 0.71 0.0 4.9 4.9 0.0 4.7 0.95
RI3-pgs 6.9 7.9 10.5 0.1 7.4 0.71 −0.1 5.0 5.0 0.0 4.9 0.99
M1-pgs 6.8 8.9 11.2 0.1 9.2 0.82 −0.1 5.6 5.6 0.3 5.1 0.92
M5-pgs 6.8 8.6 10.9 0.1 15.2 1.39 −0.2 5.0 5.0 0.3 5.0 1.01
MT1-pgs 6.8 8.9 11.2 0.1 9.5 0.85 −0.5 5.4 5.4 0.5 5.4 1.01
CP1-pgs 6.6 8.8 11.0 −0.1 9.6 0.88 −0.5 4.8 4.8 0.5 4.5 0.93
CP2-pgs 5.0 8.5 9.9 −1.2 8.7 0.89 −3.3 4.8 5.8 0.8 4.6 0.80

Doubly robust estimators
RI2-ppgs 0.1 7.6 7.6 0.0 7.5 0.99 0.0 4.6 4.6 0.0 4.7 1.01
M1-ppgs −0.1 9.5 9.5 0.4 15.3 1.61 −0.1 5.2 5.2 0.0 5.9 1.12
MT1-ppgs 0.0 10.0 10.0 0.3 16.3 1.63 −0.1 5.7 5.7 0.1 6.6 1.14
M1-bc −0.1 8.3 8.3 0.1 8.2 0.99 0.0 5.2 5.2 0.1 5.2 1.00
DR-c −0.1 7.4 7.5 0.0 7.5 1.00 0.0 4.7 4.7 0.0 4.8 1.00
CP1-ppgs 0.0 9.6 9.6 0.2 12.7 1.32 0.0 4.7 4.7 0.1 5.2 1.11
CP2-ppgs 0.5 8.6 8.7 0.0 9.3 1.07 −0.4 4.3 4.4 0.3 4.4 1.01

The size of the effect to be estimated is 1 although the effect is heterogeneous in columns (1) and (2)
and the error term in Y 1 is heteroskedastic in columns (3) and (4). On average, the control group is as
large as the treatment group (N0 ' N1). ‘µ(X) not used’ means that a modifier µ(X) is not controlled in
estimation and vice versa. π(X) and ψ(X) indicate correct specifications of PS and PGS while π(Z) and
ψ(Z) indicate mild misspecifications of PS and PGS. RI# indicates regression imputation with polynomial
#; M1 and M5 indicate 1:1 and 1:5 matching, respectively; MT1 indicates 1:1 matching for the effect on
the treated; Wgt indicates weighting; CP# indicates complete pairing with bandwidth #; OLS-ps indicates
an OLS estimator with PS residual; bc indicates bias-corrected version; DR-c indicates a ‘canonical’ DR
estimator.
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Table 5.5: Descriptive Statistics & Estimate (t-value) for OLS with τ = 35
Variable Mean (Sd) Min,Max Regressor Est. (tv) Regressor Est. (tv)
Score Y 74 (7.7) 35, 94 D 0.47 (1.4) poor -0.95 (-13)
Class size 30 (6.6) 5, 47 enrol -0.016 (-0.42) poor2/102 1.8 (7.3)
Enrol 77 (37) 5, 208 enrol2/102 -0.019 (-0.48) poor3/104 -1.4 (-5.1)
Poor 14 (14) 0, 76 enrol3/104 0.015 (1.2) enrol×poor/104 11 (2.2)

The outcome variable Y is reading test score and the treatment variable is D = 1[class size≤ τ ]. Enrol
indicates # enrolled in the school; Poor indicates the percentage of poor students in the school; the
OLS estimate of an intercept is not shown; Est indicates estimates; tv indicates t-value. R2 = 0.41 and
N = 1963.

Table 5.6: Nonparametric Specification Test & OLS Effect
τ 28 29 30 31 32 33 34 35

Stute test p-value 0.053 0.086 0.12 0.12 0.12 0.11 0.076 0.050
OLS effect of D 0.26 0.11 0.11 0.11 0.35 0.39 0.42 0.47
effect t-value 0.72 0.32 0.35 0.36 1.12 1.26 1.35 1.41

Class size is transformed into a binary variable at threshold τ (i.e. D = 1[class size≤ τ ]).
OLS effect of D indicates the OLS estimates of the effect of the treatment D.
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Table 5.7: Class Size Effect Estimates & T-Value (tv)
Effect (tv): τ = 30 Effect (tv): τ = 35 Mean bias
Estimators with only PS controlled

RI2-ps 0.03 (0.06) 0.54 (1.00) 0.78
M1-ps 1.65 (2.10) 2.02 (2.44) 3.98
M5-ps 0.85 (1.42) 1.52 (2.12) 2.86
MT1-ps 0.11 (0.24) -0.07 (-0.17) 0.71
CP1-ps -0.13 (-0.36) 0.26 (0.52) 1.10
OLS-ps 0.14 (0.44) 0.43 (1.29) 0.16

Estimators with only PGS controlled
RI-lin 0.37 (0.86) 0.71 (1.39) 0.93
RI2-pgs 0.01 (0.02) 0.63 (1.03) 0.73
M1-pgs 0.31 (0.66) 0.66 (1.08) 1.04
M5-pgs 0.29 (0.68) 0.55 (1.03) 0.79
MT1-pgs 0.04 (0.08) 0.35 (0.74) 0.58
CP1-pgs 0.19 (0.51) 0.61 (1.36) 0.44

Doubly robust estimators
RI2-ppgs 0.21 (0.54) 0.80 (1.41) 0.39
M1-ppgs 0.23 (0.50) 0.49 (0.88) 0.89
MT1-ppgs 0.31 (0.71) 0.48 (1.05) 0.96
DR-c 0.61 (1.28) 0.75 (1.35) 1.95
CP1-ppgs 0.21 (0.52) 0.56 (1.19) 0.40

Class size is transformed into a binary variable at threshold τ (i.e. D =
1[class size≤ τ ]). RI# indicates regression imputation with polynomial #;
M1 and M5 indicate 1:1 and 1:5 matching, respectively; MT1 indicates 1:1
matching for the effect on the treated; CP# indicates complete pairing
with bandwidth #; OLS-ps indicates an OLS estimator with PS residual;
D = 1[class size ≤ τ ]; mean bias indicates the average of 8 proportional
biases.

Table 5.8: Descriptive Statistics & Estimate (t-value) for OLS with h = 1.8
Variable Mean (Sd) Min, Max Regressor Est. (tv)
exp(Y ) 219 (198) 57.5, 3196 D -0.16 (-2.86)
Retired (D) 0.78 (0.42) 0, 1 ln(income) 0.14 (2.76)
Income 724 (850) 128, 9587 married 0.87 (5.13)
Married 0.56 (0.50) 0, 1 size 0.35 (5.10)
Size 1.79 (0.66) 1, 5 married×size -0.31 (-3.42)

Descriptive statistics are computed from a local sample with a bandwidth 1.8 years
around retirement age of 63 (h = 1.8 and c = 63) and the size of the local sample is
307 (N=307). Outcome variable Y is ln(food expenditure) and the treatment is the
retirement of the household head; size indicates household size; the OLS estimate of an
intercept is not shown; Est indicates estimates; tv indicates t-value; R2=0.42.



§5.6 Conclusions 115

Table 5.9: Nonparametric Specification Test & OLS Effect
h 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Local sample size 195 210 221 234 261 275 291 307
Stute test p-value 0.65 0.56 0.43 0.28 0.14 0.12 0.13 0.10
OLS effect of D -0.15 -0.13 -0.18 -0.20 -0.19 -0.20 -0.18 -0.16
effect t-value -2.0 -1.9 -2.6 -3.0 -3.1 -3.3 -3.0 -2.9

The figures in the table are computed from local samples with different bandwidths (h′s)
from 1.1 to 1.8 years around retirement age of 63. OLS effect of D indicates the OLS
estimates of the effect of the treatment D.

Table 5.10: Retirement Effect Estimates & T-Value (tv)
Effect (tv): h = 1.4 Effect (tv): h = 1.8 Mean bias
Estimators with only PS controlled

RI2-ps -0.02 (-0.22) -0.04 (-0.51) 0.89
M1-ps 0.04 (0.40) -0.06 (-0.68) 1.26
M5-ps 0.05 (0.40) -0.03 (-0.26) 1.00
MT1-ps -0.01 (-0.06) -0.04 (-0.36) 0.77
CP1-ps 0.02 (0.18) -0.04 (-0.43) 1.06
OLS-ps -0.12 (-2.19) -0.13 (-2.46) 0.29

Estimators with only PS controlled
RI-lin -0.10 (-1.75) -0.09 (-1.66) 0.51
RI2-pgs -0.08 (-1.05) -0.06 (-1.04) 0.66
M1-pgs -0.06 (-0.84) -0.10 (-1.53) 0.70
M5-pgs -0.05 (-0.46) -0.10 (-1.26) 0.50
MT1-pgs -0.10 (-1.10) -0.07 (-0.93) 0.48
CP1-pgs -0.08 (-0.84) -0.05 (-0.71) 0.65

Doubly robust estimators
RI2-ppgs -0.02 (-0.34) -0.00 (-0.01) 0.99
M1-ppgs 0.04 (0.42) -0.02 (-0.26) 1.17
MT1-ppgs 0.02 (0.19) 0.01 (0.08) 0.98
DR-c -0.11 (-0.52) -0.08 (-0.82) 0.39
CP1-ppgs -0.03 (-0.27) -0.02 (-0.25) 0.94

Outcome variable Y is ln(food expenditure) and the treatment is the re-
tirement of the household head. RI# indicates regression imputation with
polynomial #; M1 and M5 indicate 1:1 and 1:5 matching, respectively; MT1
indicates 1:1 matching for the effect on the treated; CP# indicates com-
plete pairing with bandwidth #; OLS-ps indicates an OLS estimator with
PS residual; mean bias indicates the average of 8 proportional biases.
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Appendix

Figure 5.A1: PS and PGS overlaps depending on σε = 1, 2 and α4 = −1, 1

Good PS overlap indicates that σε = 2 (the variance of error terms in D), while poor PS overlap
indicates that σε = 1. Good PGS overlap indicates that α4 = −1 (the slope of X4 in D), while
poor PGS overlap indicates that α4 = 1. Poor PS overlap is shown whereas PGS overlap is good in
(b); poor PGS overlap is shown whereas PS overlap is good in (e). On average, E(π(X)|D = 0) and
E(π(X)|D = 1) (Sd’s) are about 0.4 and 0.6 (0.03 and 0.03) for good PS overlap; E(π(X)|D = 0) and
E(π(X)|D = 1) (Sd’s) are about 0.3 and 0.7 (0.03 and 0.03) for poor PS overlap; E(ψ(X)|D = 0) and
E(ψ(X)|D = 1) (Sd’s) are about −0.2 and 0.2 (0.1 and 0.1) for good PGS overlap; E(ψ(X)|D = 0)
and E(ψ(X)|D = 1) (Sd’s) are about −0.3 and 0.3 (0.1 and 0.1) for poor PGS overlap. The exceptions
are that the differences of π(X) and ψ(X) between D = 0, 1 increase with the combination of poor PS
and poor PGS overlap and with N0 ' 3N1.

In Table 5.A1 with four panels, we compare M1 to M5 and RI2 to RI3 using relative

rmse ratios; the left half is for N0 ' N1, and the right half is for N0 ' 3N1. In the first

panel for good PGS and PS overlap, the column ‘False↓’ shows what is misspecified,

and the two columns for M1/M5 show the rmse ratios for matching using PS or PGS;

the other three panels can be analogously understood. When N0 ' N1 in the left half,

M5 is better, which is also the case when N0 ' 3N1 in the right half. Regarding RI2 v.

RI3, RI3 is mostly better when PS is used, but RI2 is better when PGS is used. Gaps
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Figure 5.A2: Similarity between X & Z (upper) and Z explaining Y well (lower)

Outcome variable Y is linear in (X2,X3). Variables (Z2,Z3) are observed, while variables (X2,X3) are
not observed. The relationship between X’s and Z’s is that Z2 = {1+ exp(X2)}−1,Z3 = exp(X3/2).

between RI2 and RI3 become larger when both scores overlap poorly.

Tables 5.A2–5.A5 show rmse’s for the 32 designs where no effect modifier appears.

These tables supplement the tables in the main text, because results for certain designs

were not presented in the main text to save space; the four columns for ‘Base Design’

repeat the rmse columns in Table 5.1. For example, no result was shown for when only

one of PGS and PS is misspecified in Table 5.2 with only PGS overlapping poorly, and

if the reader desires the rmse’s when only PGS is wrong and N0 ' N1 with only PGS

overlapping poorly, then the desired rmse’s can be found in the PGS column within

the ‘Poor PGS overlap’ column of Table 5.A2.
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Table 5.A1: Rmse Ratio Comparison of 1:1 v. 1:5 Matchings & RI2 v. RI3
N0 ' N1 N0 ' 3N1

M1/M5 RI2/RI3 M1/M5 RI2/RI3
False↓ PS PGS PS PGS False↓ PS PGS PS PGS

For 1.33 1.09 0.97 1.00 1.45 1.12 0.98 0.99
good PGS 1.34 1.09 0.97 0.99 PGS 1.44 1.12 0.99 0.99
pgs,ps PS 1.30 1.09 0.96 0.99 PS 1.34 1.11 1.01 0.99
overlap Both 1.30 1.10 0.96 0.99 Both 1.33 1.11 1.01 0.99

For 1.20 1.11 1.05 0.98 1.26 1.17 1.19 0.95
poor PGS 1.19 1.11 1.06 0.99 PGS 1.26 1.15 1.19 0.95
pgs PS 1.19 1.11 1.04 0.98 PS 1.24 1.15 1.16 0.95
overlap Both 1.19 1.12 1.05 1.00 Both 1.22 1.13 1.15 0.95

For 1.69 1.07 1.11 0.99 1.77 1.11 1.21 0.98
poor PGS 1.68 1.08 1.10 0.99 PGS 1.75 1.13 1.20 0.99
ps PS 1.53 1.07 1.07 0.99 PS 1.50 1.12 1.21 0.98
overlap Both 1.52 1.08 1.07 0.99 Both 1.49 1.12 1.22 0.99

For 1.44 1.14 1.98 0.87 1.46 1.27 2.07 0.76
poor PGS 1.44 1.14 2.03 0.91 PGS 1.44 1.21 2.07 0.69
pgs,ps PS 1.53 1.14 1.74 0.87 PS 1.35 1.25 1.58 0.76
overlap Both 1.54 1.13 1.72 0.91 Both 1.39 1.20 1.59 0.71

The first column in the table indicate the overlap of PS and PGS. PS and PGS in the head of
the table indicate scores to be controlled, while PS and PGS in the second and seventh columns
indicate scores with misspecifications. RI# indicates regression imputation with polynomial #;
M1 and M5 indicate 1:1 and 1:5 matching, respectively.
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Table 5.A2: Rmse (×100) for good PS/PGS overlap and poor PGS overlap (N0 ' N1)
Base Design Poor PGS Overlap

False: PGS PS Both PGS PS Both
Estimators with only PS controlled

RI2-ps 6.0 5.9 6.6 6.7 6.0 6.1 6.8 6.8
RI3-ps 6.2 6.1 6.9 7.0 5.7 5.7 6.5 6.5
M1-ps 8.8 8.8 9.4 9.5 7.0 6.9 7.5 7.6
M5-ps 6.6 6.5 7.2 7.3 5.8 5.8 6.4 6.4
MT1-ps 7.9 7.7 8.4 8.4 6.4 6.4 7.0 7.0
Wgt 6.4 6.3 7.7 7.8 7.1 7.1 8.8 8.4
CP1-ps 6.5 6.5 7.1 7.2 5.8 5.9 6.4 6.4
CP2-ps 7.0 7.0 8.4 8.4 8.7 8.8 10.0 10.1
OLS-ps 5.5 5.4 6.1 6.2 5.4 5.4 5.9 5.9

Estimators with only PGS controlled
RI-lin 5.4 6.1 5.3 6.2 5.4 6.2 5.4 6.1
RI2-pgs 5.7 6.2 5.6 6.3 5.5 6.4 5.6 6.3
RI3-pgs 5.7 6.3 5.7 6.4 5.7 6.5 5.7 6.4
M1-pgs 6.5 7.0 6.5 7.1 6.4 7.0 6.4 7.1
M5-pgs 6.0 6.4 5.9 6.5 5.8 6.4 5.7 6.3
MT1-pgs 6.1 6.7 6.0 6.7 6.1 6.9 6.1 6.8
CP1-pgs 6.1 6.4 6.0 6.4 5.9 6.6 5.8 6.6
CP2-pgs 6.8 7.5 6.8 7.6 9.0 10.5 9.0 10.4

Doubly robust estimators
RI2-ppgs 5.6 5.9 5.5 6.3 5.6 5.9 5.6 6.3
M1-ppgs 6.6 6.8 6.5 7.1 6.3 6.5 6.4 6.7
MT1-ppgs 6.8 7.0 6.7 7.3 6.4 6.5 6.3 6.6
M1-bc 6.4 6.7 6.3 7.2 6.5 6.9 6.4 7.1
DR-c 5.6 6.0 5.7 8.2 5.6 6.1 5.9 8.2
CP1-ppgs 6.4 6.5 6.4 6.8 6.1 6.0 6.1 6.2
CP2-ppgs 6.0 6.0 5.9 6.5 6.1 6.3 6.3 7.0

RI# indicates regression imputation with polynomial #; M1 and M5
indicate 1:1 and 1:5 matching, respectively; MT1 indicates 1:1 matching
for the effect on the treated; Wgt indicates weighting; CP# indicates
complete pairing with bandwidth #; OLS-ps indicates an OLS estimator
with PS residual; bc indicates bias-corrected version; DR-c indicates a
‘canonical’ DR estimator.
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Table 5.A3: Rmse (×100) for poor PS overlap and poor PS/PGS overlap (N0 ' N1)
Poor PS Overlap Poor PGS, PS Overlap

False: PGS PS Both PGS PS Both
Estimators with only PS controlled

RI2-ps 11.4 11.3 12.1 12.1 16.3 16.4 17.2 17.2
RI3-ps 10.3 10.3 11.3 11.3 8.2 8.1 9.9 10.0
M1-ps 13.0 12.9 13.7 13.7 9.8 9.8 12.2 12.3
M5-ps 7.7 7.7 9.0 9.0 6.8 6.8 8.0 7.9
MT1-ps 9.9 9.8 10.8 10.8 7.8 7.7 8.7 8.7
Wgt 15.4 14.8 18.3 18.9 19.8 19.3 22.2 22.1
CP1-ps 6.7 6.6 8.4 8.4 6.7 6.7 8.3 8.4
CP2-ps 9.5 9.5 12.0 12.0 15.3 15.4 17.6 17.6
OLS-ps 6.2 6.3 7.6 7.6 6.2 6.2 7.2 7.2

Estimators with only PGS controlled
RI-lin 6.1 7.4 6.1 7.3 6.1 7.3 6.1 7.4
RI2-pgs 6.9 7.5 6.9 7.5 7.1 8.8 7.1 8.6
RI3-pgs 6.9 7.6 7.0 7.6 8.1 9.7 8.1 9.5
M1-pgs 7.5 8.2 7.6 8.1 7.6 8.8 7.6 8.7
M5-pgs 7.0 7.6 7.1 7.5 6.7 7.7 6.7 7.7
MT1-pgs 7.3 7.8 7.3 7.8 7.3 8.6 7.3 8.6
CP1-pgs 7.1 7.5 7.2 7.5 6.7 8.3 6.8 8.3
CP2-pgs 8.7 9.4 8.7 9.4 14.8 17.1 14.9 17.1

Doubly robust estimators
RI2-ppgs 7.2 7.7 7.2 8.3 7.4 8.4 7.3 8.6
M1-ppgs 7.5 7.8 7.5 8.4 7.6 7.7 7.4 8.2
MT1-ppgs 8.0 8.4 8.0 8.8 7.5 7.6 7.5 8.0
M1-bc 8.5 9.0 8.4 10.1 8.5 9.1 8.2 10.1
DR-c 9.8 11.9 11.9 24.0 8.9 10.7 13.4 26.0
CP1-ppgs 7.1 7.4 7.1 7.9 6.7 6.7 6.8 7.2
CP2-ppgs 6.6 6.8 6.6 7.6 7.6 8.0 8.0 9.5

RI# indicates regression imputation with polynomial #; M1 and M5
indicate 1:1 and 1:5 matching, respectively; MT1 indicates 1:1 matching
for the effect on the treated; Wgt indicates weighting; CP# indicates
complete pairing with bandwidth #; OLS-ps indicates an OLS estimator
with PS residual; bc indicates bias-corrected version; DR-c indicates a
‘canonical’ DR estimator.
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Table 5.A4: Rmse (×100) for good PS/PGS overlap and poor PGS overlap (N0 ' 3N1)
Base Design Poor PGS Overlap

False: PGS PS Both PGS PS Both
Estimators with only PS controlled

RI2-ps 6.0 5.9 6.9 6.9 6.3 6.3 7.1 7.1
RI3-ps 6.1 6.0 6.8 6.8 5.3 5.3 6.1 6.2
M1-ps 8.7 8.8 9.5 9.3 6.4 6.5 7.0 6.9
M5-ps 6.0 6.1 7.1 7.0 5.1 5.1 5.6 5.7
MT1-ps 7.2 7.2 8.0 7.9 5.6 5.6 6.3 6.3
Wgt 7.4 7.5 7.4 7.5 9.1 9.4 8.6 8.7
CP1-ps 5.7 5.6 6.6 6.7 5.0 5.0 5.5 5.6
CP2-ps 6.5 6.4 8.2 8.3 8.5 8.5 10.0 10.1
OLS-ps 4.4 4.4 5.3 5.3 4.3 4.3 5.1 5.1

Estimators with only PGS controlled
RI-lin 4.7 5.9 4.7 6.0 4.7 6.0 4.6 6.0
RI2-pgs 4.5 5.1 4.5 5.1 4.9 5.7 4.8 5.6
RI3-pgs 4.5 5.1 4.5 5.1 5.1 6.0 5.1 5.9
M1-pgs 5.2 5.8 5.2 5.8 5.5 6.3 5.4 6.2
M5-pgs 4.6 5.2 4.6 5.2 4.7 5.5 4.7 5.4
MT1-pgs 5.2 5.8 5.2 5.8 5.1 5.8 5.1 5.9
CP1-pgs 4.7 5.1 4.7 5.1 4.7 5.5 4.7 5.6
CP2-pgs 5.3 6.2 5.4 6.3 7.3 8.8 7.3 8.9

Doubly robust estimators
RI2-ppgs 4.9 5.1 4.8 5.5 5.0 5.2 4.9 5.9
M1-ppgs 5.4 5.5 5.4 5.9 5.3 5.5 5.4 5.9
MT1-ppgs 5.6 5.7 5.6 6.1 5.3 5.4 5.4 5.8
M1-bc 5.8 6.2 5.8 6.7 5.8 6.2 5.8 6.6
DR-c 5.1 5.6 4.9 6.6 5.0 5.6 4.9 6.7
CP1-ppgs 5.3 5.4 5.3 5.7 5.0 5.0 5.1 5.4
CP2-ppgs 5.0 5.0 5.0 5.6 5.1 5.3 5.3 6.1

RI# indicates regression imputation with polynomial #; M1 and M5
indicate 1:1 and 1:5 matching, respectively; MT1 indicates 1:1 matching
for the effect on the treated; Wgt indicates weighting; CP# indicates
complete pairing with bandwidth #; OLS-ps indicates an OLS estimator
with PS residual; bc indicates bias-corrected version; DR-c indicates a
‘canonical’ DR estimator.
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Table 5.A5: Rmse (×100) for poor PS overlap and poor PS/PGS overlap (N0 ' 3N1)
Poor PS Overlap Poor PGS, PS Overlap

False: PGS PS Both PGS PS Both
Estimators with only PS controlled

RI2-ps 13.6 13.5 15.0 15.0 21.7 21.7 21.4 21.4
RI3-ps 11.2 11.2 12.4 12.3 10.5 10.4 13.6 13.5
M1-ps 18.7 18.7 18.5 18.4 13.9 13.7 14.4 14.6
M5-ps 10.6 10.7 12.3 12.4 9.5 9.5 10.7 10.5
MT1-ps 8.3 8.2 9.6 9.7 6.3 6.3 7.9 7.7
Wgt 17.7 17.8 17.6 17.1 22.3 21.9 22.4 22.2
CP1-ps 8.1 8.1 10.2 10.3 8.1 8.1 9.5 9.4
CP2-ps 11.5 11.5 14.5 14.5 19.5 19.5 21.7 21.6
OLS-ps 5.0 5.0 7.1 7.1 4.9 5.0 6.8 6.7

Estimators with only PGS controlled
RI-lin 5.8 8.6 5.9 8.6 5.9 8.6 5.9 8.6
RI2-pgs 5.2 5.8 5.2 5.8 7.3 8.1 7.2 8.2
RI3-pgs 5.3 5.8 5.3 5.9 9.6 11.6 9.5 11.6
M1-pgs 5.9 6.5 5.8 6.5 7.1 8.3 7.0 8.2
M5-pgs 5.3 5.8 5.2 5.8 5.6 6.9 5.6 6.9
MT1-pgs 5.7 6.2 5.7 6.2 5.7 6.9 5.8 6.8
CP1-pgs 5.3 5.6 5.3 5.7 5.3 6.9 5.4 6.9
CP2-pgs 6.7 7.5 6.7 7.6 12.1 14.2 12.1 14.2

Doubly robust estimators
RI2-ppgs 6.4 7.0 6.3 7.2 7.9 7.8 7.5 9.4
M1-ppgs 7.0 7.3 6.9 8.1 7.3 7.5 7.3 8.3
MT1-ppgs 6.4 6.7 6.5 7.4 6.0 6.2 6.1 6.9
M1-bc 10.4 11.1 9.9 11.8 10.4 11.0 9.8 12.1
DR-c 9.9 11.6 9.9 19.4 10.0 11.5 9.5 19.7
CP1-ppgs 6.5 6.7 6.5 7.4 6.0 6.0 6.2 6.8
CP2-ppgs 5.8 6.1 5.9 7.2 6.6 7.2 7.1 8.9

RI# indicates regression imputation with polynomial #; M1 and M5
indicate 1:1 and 1:5 matching, respectively; MT1 indicates 1:1 matching
for the effect on the treated; Wgt indicates weighting; CP# indicates
complete pairing with bandwidth #; OLS-ps indicates an OLS estimator
with PS residual; bc indicates bias-corrected version; DR-c indicates a
‘canonical’ DR estimator.



Chapter 6

Conclusion

This thesis has discussed MSL estimation when dynamic models of recurrent events

are estimated with censored data and doubly robust estimation when treatment effects

are estimated with missing data at random.

In Chapter 2, we develop MSL estimation in the context of estimation of continuous-

time dynamic models of recurrent events using censored data. In MSL estimation,

missing data due to censoring are integrated out of the likelihood function via Monte

Carlo and importance sampling techniques. In particular, we focus on the importance

sampling method and we consider an idea of normalising the likelihood ratio of the true

distribution to importance sampling distributions. The main difficulty in this context is

the unknown dimension of missing data as well as the unknown values of missing data.

For comparison, we consider ML estimation using only the data that are complete until

the end of the observation period or using a reduced form approximation for missing

data. We conduct a small Monte Carlo study with information on the true parameter.

In an empirical application, we analyse New Zealand administrative data to estimate

a dynamic model of an IHD event. We find that MSL estimation is feasible in this

context and that there is substantial efficiency gain from MSL estimation relative to

alternative methods in both the Monte Carlo study and the empirical application.

In Chapter 3, we describe and quantify the risk of experiencing AMI event among

male and female people of European and Maori descent in New Zealand. We analyse

high-quality administrative data on hospital admissions and death registrations and

estimate dynamic models of AMI events. The analysis data include plenty of left-
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censored histories so we employ the MSL estimation method developed in Chapter 2.

The models allow risk to vary with age, previous AMI history, and unobserved hetero-

geneity. Our main findings are as follows. The risk of subsequent events is far higher

than the risk of the first event, and particularly high within 1 year after an event. In

most cases, male Maoris have the highest risk, followed by female Maoris, then male

Europeans, while female Europeans have the lowest risk. The risk increases strongly

with age. The large influence of the random effects and the dynamic effects of previous

AMI history imply that the risk tends to concentrate on the small proportion of high

risk people.

In Chapter 4, we develop the formal theory of ‘doubly robust’ estimation. Formally,

we show that ‘double robustness’ can be achieved by controlling both PS and PGS in

various ways, regardless of controlling methods.

In Chapter 5, we compare various treatment effect estimators through an extensive

simulation study using 64 designs and two empirical examples mimicking experiments.

In total, we examine 24 estimators based on matching, weighting, double robustness,

regression imputation/adjustment, ‘complete pairing’, and ‘propensity-score residual’.

Our results show that contrary to the common perception, doubly robust estimators are

not necessarily the best. In fact, our findings recommend a couple of non-doubly-robust

estimators, with a simple propensity-score-based estimator being the nearly dominant

best estimator.

6.1 Future Work

In future research, I am considering extending MSL estimation in Chapter 2 in two

directions. One relates to the choice of good importance sampling distributions in the

same context. In the present study, the choice of importance sampling distribution is

heuristic. There exists a substantial literature on the choice of importance sampling

distributions. General ideas in the literature, however, do not seem to work in a

complex setting, which is the case in the present study. A methodical approach to
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choose a good importance sampling distribution is likely to improve MSL estimation

in this context.

The other extension I am considering relates to multi-state models. I am considering

extending MSL estimation to continuous-time or discrete-time multi-state event history

models. Multi-state event history models are important in empirical research as they

are widely used to model employment status, poverty status, welfare status, etc. My

hope is that there will be substantial efficiency gains in multi-state models similar to

those we found for recurrent event models in Chapter 2. In particular, while there

are many studies on discrete-time duration models in the literature, the extension

to continuous-time multi-state dynamic models will be the first paper to apply MSL

method in the context of continuous-time multi-state dynamic event history models.

As for Chapter 3, I am considering augmenting the dynamic models of an AMI

event with mortality models. In the present study, we focus on the distribution of AMI

risk across gender and ethnic groups and highlight cumulative life-time outcomes in a

so-called experimental setting where no one dies using the estimated models. However,

if mortality models are augmented, the dynamic models of an AMI event will be more

useful from the perspective of policy makers. Further, I am considering estimating a

competing risk model of death using the same data, probably with more variables. The

research question is to describe how the cause-specific death rates differ across gender

and ethnic groups and explain how the differences in the cause-specific risks contribute

to differences in the overall distribution of cause of death.

Regarding doubly robust estimation, I am considering extending the present studies

to multi-valued treatments. In reality, treatments are often multi-valued. Also, com-

paring potential outcomes for multi-valued treatments is not as simple as for binary

treatments. Therefore, the extension to multi-valued treatments is worth investigating.

In addition, the prognostic score itself has an interesting feature: it does not involve

treatment variables. Therefore, the prognostic score approach may be applicable to

regression discontinuity designs where controlling the propensity score is difficult or
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infeasible. I believe this topic may also be interesting and worthwhile investigating in

the future.



Bibliography

Abadie, A.; Drukker, D.; Herr, J. L.; and Imbens, G. W., 2004. Implementing

matching estimators for average treatment effects in Stata. Stata Journal, 4, 3 (2004),

290–311. (cited on page 94)

Abadie, A. and Imbens, G. W., 2011. Bias-corrected matching estimators for av-

erage treatment effects. Journal of Business & Economic Statistics, 29, 1 (2011),

1–11. (cited on page 94)

Abadie, A. and Imbens, G. W., 2016. Matching on the estimated propensity score.

Econometrica, 84, 2 (2016), 781–807. (cited on page 88)

Abildstrom, S. Z.; Rasmussen, S.; Rosen, M.; et al., 2003. Trends in incidence

and case fatality rates of acute myocardial infarction in Denmark and Sweden. Heart,

89, 5 (2003), 507–511. (cited on page 51)

Alderman, M. H.; Cohen, H. W.; and Madhavan, S., 2000. Myocardial infarction

in treated hypertensive patients: The paradox of lower incidence but higher mortality

in young blacks compared with whites. Circulation, 101, 10 (2000), 1109–1114. (cited

on page 52)

Anand, S. S.; Yusuf, S.; Vuksan, V.; et al., 2000. Differences in risk factors,

atherosclerosis, and cardiovascular disease between ethnic groups in Canada: The

Study of Health Assessment and Risk in Ethnic groups (SHARE). Lancet, 356, 9226

(2000), 279–284. (cited on page 51)

Angrist, J. D. and Lavy, V., 1999. Using Maimonides’ rule to estimate the effect of

class size on scholastic achievement. Quarterly Journal of Economics, 114, 2 (1999),

533–575. (cited on page 105)

Austin, P. C., 2008. A critical appraisal of propensity-score matching in the medical

literature between 1996 and 2003. Statistics in Medicine, 27, 12 (2008), 2037–2049.

127



128 BIBLIOGRAPHY

(cited on page 88)

Avendano, M. and Soerjomataram, I., 2008. Monitoring trends in acute coronary

syndromes: Can we use hospital admission registries? Heart, 94, 12 (2008), 1524–

1525. (cited on page 51)

Bang, H. and Robins, J. M., 2005. Doubly robust estimation in missing data and

causal inference models. Biometrics, 61, 4 (2005), 962–973. (cited on pages 82

and 95)

Bhuller, M.; Brinch, C. N.; and Königs, S., 2017. Time aggregation and state

dependence in welfare receipt. Economic Journal, 127, 604 (2017), 1833–1873. (cited

on page 8)

Brinch, C. N., 2012. Efficient simulated maximum likelihood estimation through

explicitly parameter dependent importance sampling. Computational Statistics, 27

(2012), 13–28. (cited on pages 10 and 16)

Cao, W.; Tsiatis, A. A.; and Davidian, M., 2009. Improving efficiency and

robustness of the doubly robust estimator for a population mean with incomplete

data. Biometrika, 96, 3 (2009), 723–734. (cited on pages 82 and 95)

Cappellari, L.; Dorsett, R.; and Haile, G., 2010. State dependence and un-

observed heterogeneity in the employment transitions of the over-50s. Empirical

Economics, 38, 3 (2010), 523–554. (cited on page 9)

Card, D.; Dobkin, C.; and Maestas, N., 2008. The impact of nearly universal

insurance coverage on health care utilization: Evidence from Medicare. American

Economic Revew, 98, 5 (2008), 2242–58. (cited on page 51)

Chan, W. C.; Wright, C.; Riddell, T.; et al., 2008a. Ethnic and socioeconomic

disparities in the prevalence of cardiovascular disease in New Zealand. New Zealand

Medical Journal, 121, 1285 (2008). (cited on page 51)

Chan, W. C.; Wright, C.; Tobias, M.; et al., 2008b. Explaining trends in

coronary heart disease hospitalisations in New Zealand: Admissions and incidence

can trend in opposite directions. Heart, 94, 12 (2008), 1589–1593. (cited on page



BIBLIOGRAPHY 129

51)

Chang, W.-C.; Kaul, P.; Fu, Y.; et al., 2006. Forecasting mortality: Dynamic

assessment of risk in ST-segment elevation acute myocardial infarction. European

Heart Journal, 27, 4 (2006), 419–426. (cited on page 52)

Cockx, B. and Picchio, M., 2012. Are short-lived jobs stepping stones to long-

lasting jobs? Oxford Bulletin of Economics and Statistics, 74, 5 (2012), 646–675.

(cited on page 8)

Cockx, B. and Picchio, M., 2013. Scarring effects of remaining unemployed for

long-term unemployed school-leavers. Journal of the Royal Statistical Society Series

A, 176, 4 (2013), 951–980. (cited on page 8)

Cormack, D. and Robson, C., 2010. Classification and output of multiple ethnici-
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