Orbiting atoms and C 60 fullerenes inside carbon nanotori

Tamsyn A. Hilder and James M. Hill

Citation: Journal of Applied Physics 101, 064319 (2007); doi: 10.1063/1.2511490
View online: http://dx.doi.org/10.1063/1.2511490
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/101/6?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Oscillatory characteristics of carbon nanotubes inside carbon nanotube bundles

Diffusive growth of fullerenes and carbon nanotubes

Oscillatory behavior of gigahertz oscillators based on multiwalled carbon nanotubes
J. Appl. Phys. 98, 014301 (2005); 10.1063/1.1942648

Inserting Fullerene Dimers into Carbon Nanotubes: Pushing the Boundaries of Molecular Self-assembly

Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators
Appl. Phys. Lett. 84, 121 (2004); 10.1063/1.1638623
Orbiting atoms and C\textsubscript{60} fullerenes inside carbon nanotori

Tamsyn A. Hilder and James M. Hill
Nanomechanics Group, School of Mathematics and Applied Statistics, University of Wollongong, Wollongong NSW 2522, Australia

(Received 10 May 2006; accepted 29 December 2006; published online 29 March 2007)

The discovery of carbon nanostructures, such as carbon nanotubes and C\textsubscript{60} fullerenes, has generated considerable interest for potential nanoelectronic applications. One such device is the high frequency nanoscale gigahertz oscillator. Several studies investigating these oscillators demonstrate that sliding an inner-shell inside an outer-shell of a multiwalled carbon nanotube generates oscillatory frequencies in the gigahertz range. Research has shown that the oscillation is sensitive to the diameter and the helicity of the tube and that the inner tube length can be used to tune the frequency, such that the smaller the inner tube length the higher the frequency of oscillation, suggesting that a C\textsubscript{60} fullerene might provide the ultimate core. Recently, researchers have observed single continuous toroidal nanotubes with no beginning or end, effectively a single-walled carbon nanotube closed around onto itself so that the two open ends fuse together, stabilized by van der Waals forces alone, to form a perfect “nanotorus.” The question arises as to whether it is possible to create a C\textsubscript{60} nanotorus oscillator or orbiter, comprising a C\textsubscript{60} fullerene orbiting around the inside of a nanotorus. The C\textsubscript{60} nanotorus orbiter has yet to be constructed and the aim here is to assess its feasibility by examining the dominant mechanics of this potential nanoscale device. As in previous studies, the Lennard-Jones potential is used to calculate the interatomic forces acting on the fullerene due to the nonbonded interactions. Furthermore, other relevant forces are examined. Initially, we investigate the dynamics of an orbiting single atom followed by the corresponding analysis for an orbiting C\textsubscript{60} fullerene. The equilibrium position depends on the radius of the nanotorus tube for both the atom and the C\textsubscript{60} fullerene. Gravity is shown to be negligible, while the centrifugal forces are shown to move the orbiting body further from the center of the nanotorus. The theory also predicts that by changing the orbital position, the resulting frequencies, which are in the gigahertz range, may vary to as much as four times those obtained for the C\textsubscript{60}-nanotube oscillator.

I. INTRODUCTION

The discovery by Iijima1 in 1991 illustrating that carbon nanotubes could be synthesized without the need for a catalyst, paved the way for numerous proposals for nanoscale devices. Carbon nanotubes may be thought of as one or many graphene sheets rolled up into a seamless hollow cylinder, forming single-wall (SWNT) or multiwall (MWNT) carbon nanotubes, respectively. They have many fascinating and unique mechanical and electronic properties, including but not limited to, their high strength and flexibility, low density, completely reversible deformation and their ability to be metallic or semiconducting depending on their geometric structure. Both SWNT and MWNT hold promise for many new nanoelectronic applications. The potential use of carbon nanotubes as high frequency nanoscale oscillators is one demonstration of their outstanding properties. Micromechanical oscillators are unable to reach frequencies in the gigahertz range, however, nanoscale oscillators are able to achieve these high frequencies and have, therefore, been termed gigahertz oscillators. Potential applications of these gigahertz oscillators include ultrafast optical filters for fiber optic systems, nano-antennae sensitive to high frequency electromagnetic signals and increasing the computer chip’s speed in processing electronic signals.

Considerable research has been undertaken to further understand carbon nanotube’s unique properties. In an experiment investigating the strength and breaking mechanism of the MWNT under tensile load, Yu et al.2 observe low shear strength between layers. Cumings and Zettl3 subsequently investigate this result by controlled and reversible extrusion of the inner-shell, and demonstrate that the inner-shell resistance force against sliding of the core is negligibly small, realizing ultralow friction. Following this, Zheng and Jiang4 propose the idea of a nano-oscillator, in which the inner-shell buckyballs are encapsulated inside carbon nanotubes. Molecular-dynamics simulations4,5 show that oscillatory frequencies in the gigahertz range are generated. Legoas et al.5 observe frequencies as high as 38 GHz. Furthermore, Zheng and Jian4 observe that decreasing the length of the inner tube can further increase the oscillation frequency. The inner tube length can, therefore, be used to tune the oscillation frequency and a C\textsubscript{60} fullerene might provide the ultimate core in terms of realizing the highest possible frequency of oscillation.

These remarkable results combined with the discovery of peapods,8 which are C\textsubscript{60} fullerenes (buckyballs) encapsulated in carbon nanotubes, has motivated the interest in the C\textsubscript{60}-nanotube oscillator,7 comprising a buckyball oscillating inside a carbon nanotube. Molecular-dynamics simulations indicate that frequencies as high as 74 GHz may be obtained,7 and that the oscillation amplitude is almost con-
stant with no sign of decay. Such studies find that the oscillation is sensitive to both the diameter and the helicity of the tube (the orientation of the hexagonal units with respect to the tube axis). Specific combinations of nanotube diameter and buckyball diameter are found to minimize frictional effects, and the minimum potential energy of the system occurs when the distance between the tube and the buckyball is close to the interlayer distance of graphite. There also exists a minimum radius of the nanotube that may be filled with C_{60} fullerenes. In previous studies of the C_{60}-nanotube oscillator, it is shown that under certain circumstances the C_{60} fullerene may be sucked into the nanotube due to the highly attractive interatomic van der Waals forces. However, not all carbon nanotubes demonstrate this suction behavior. Cox, Thamwattana, and Hill formulate an acceptance condition, which prescribes whether or not the buckyball will be sucked into the nanotube by van der Waals forces alone. A fundamental practical issue is to determine an experimental procedure to set in motion these ultrahigh frequency oscillators in a controlled manner.

Recently, toroidal carbon nanotubes, termed fullerene “crop circles,” have been observed in experiments. Circular formations of SWNT ropes are regularly observed while examining laser-grown SWNT. Continuous toroidal nanotubes, with no beginning or end, with a tube diameter of approximately 10–12 Å and a ring diameter of approximately 3000–5000 Å are observed. After the ends of the tube touch, they align themselves due to the van der Waals interaction energy, knitting together seamlessly to form a perfect torus. Once formed, the rings are quite stable both chemically and physically. Martel, Shea, and Avouris form rings using straight SWNT whose ends fuse onto themselves so that the ring circumference is equal to the initial tube length. These ring ends stabilize by van der Waals forces alone. MWNTs are found to be less likely to form rings as they have a much larger diameter and a much higher flexural rigidity. The critical ring radius necessary to form thermodynamically stable rings is found to be 300 Å for single-walled tubes 14 Å in diameter. According to Martel, Shea, and Avouris much lower values of ring radius are energetically allowable than are actually observed, indicating that ring formation may be kinetically controlled. Using molecular-dynamics simulations Huhtala et al. and Han investigate the stability of these toroidal carbon nanotubes and also find much smaller ring diameters are possible than those observed experimentally. For example, Huhtala et al. find that a ring diameter of 220 Å must have a tube diameter below 13 Å for the nanotorus to remain stable. Similarly, Han finds ring diameters must be greater than 100, 200, and 400 Å for a nanotorus (5,5), (8,8), and (10,10), respectively, to remain energetically stable. Effectively, the toroidal nanotube structure can be thought of as a SWNT closed around onto itself into a perfect torus. In this paper the toroidal SWNT are referred to as nanotori.

The question arises as to whether it might be possible to close a nanotube into a nanotorus that already contains an oscillating C_{60} fullerene, or alternatively to inject a C_{60} fullerene into a torus just prior to closure and subsequently initiate the orbiting motion. For example, could this motion be effected by application of an electric field, or by a variable magnetic field or by chemical doping? Such techniques pose many practical challenges that will need to be overcome before an actual C_{60}-nanotorus oscillator or orbiter can be realized.

It is probable that the C_{60}-nanotorus orbiter will display the ultralow friction demonstrated by Cumings and Zettl and if so, the buckyball might orbit almost indefinitely inside the nanotorus. A sealed structure is ideal in terms of working devices, therefore, the C_{60}-nanotorus orbiter may well be the ultimate oscillator. A C_{60}-nanotorus orbiter has yet to be constructed and the aim here is to assess its feasibility from a consideration of the basic mechanics of such a system. Nanoscale oscillatory systems have been predominantly studied using molecular-dynamics simulations. In this paper we use elementary mechanical principles and classical applied mathematical modeling techniques, following those formulated by Cox, Thamwattana, and Hill. Despite the speculative nature of these potential nanoscale devices, such a study must necessarily precede any practical implementation.

Following Cumings and Zettl and as an initial attempt to model this system we ignore any frictional effects. Although we consider the effect of gravity, we show that for a horizontally inclined nanotorus the effects of gravity are considerably less than those arising from the Lennard-Jones potential and the centrifugal effect, and accordingly gravity may be neglected. Both the offset atom and the buckyball minimum energy (equilibrium) positions are found to depend on the nanotorus tube radius. This equilibrium position moves closer to the tube wall as the nanotorus tube radius increases. The centrifugal effect is shown to shift the equilibrium position of both the atom and the buckyball away from the center of the nanotorus ring and closer to the tube wall. The frequencies of the orbiting motion are found to be in the gigahertz range, and increase as the position of the orbiting body moves away from the center of rotation. These predicted frequencies may vary as much as four times those obtained by the C_{60}-nanotorus oscillator.

In this paper we investigate the mechanics of the motion of a single offset atom and following this we examine the motion of a C_{60} fullerene, both of which are assumed to be orbiting inside a single-walled carbon nanotorus. The following section outlines the Lennard-Jones potential, which is widely used to determine the interatomic forces in the modeling of nonbonded molecular interactions. Subsequently, a summary of the forces acting on the rotating body, such as gravity and the centrifugal force is given. The analysis for the minimum energy location of an offset atom, followed by a similar analysis for a C_{60} fullerene inside a nanotorus are given in Secs. III and IV, respectively. Numerical results for the angular velocity of the orbiting C_{60} molecule inside the nanotorus are outlined in Sec. V and the major implications of the model are summarized in Sec. VI.

II. MECHANICAL CONSIDERATIONS

In this section a summary of the Lennard-Jones potential and numerical values of the relevant model parameters are
A. Lennard-Jones potential function

The nonbonded interaction energy is obtained by a summation of the interaction energy between each atom pair

\[V_1 = \sum_i \sum_j \alpha(\rho_{ij}), \]

where \(\alpha(\rho_{ij}) \) is the potential function for atoms \(i \) and \(j \) at a distance \(\rho_{ij} \) apart. Following conventional practice, the continuum approximation assumes that the atoms are uniformly distributed over the surface of the molecule and the double summation in Eq. (2.1) is replaced by a double integral over the surface of each molecule, thus

\[V_1 = \eta_b \int \int \alpha(\rho)d\Sigma_b d\Sigma_i, \]

where \(\eta_b \) and \(\eta_i \) represent the mean surface density of the carbon atoms on the buckyball and nanotorus, respectively, and \(\rho \) represents the distance between the two typical surface elements \(d\Sigma_b \) and \(d\Sigma_i \) located on the two interacting molecules, in this case the C\(_{60}\) fullerene and the torus, respectively. Table I gives the numerical values for the various constants used in the model. Note that the mean surface density of the nanotorus is taken to be equal to that of graphene.

There are two major functional forms used in empirical models: The inverse power model and the Morse function model.\(^9\,17\,18\) The inverse power model, the so-called Lennard-Jones potential, is adopted in this investigation. The Lennard-Jones potential for two atoms a distance \(\rho \) apart is

\[\alpha(\rho) = -A\rho^{-6} + B\rho^{-12}, \]

where \(A \) and \(B \) are known as the attractive and repulsive constants, respectively, and are given in Table I. The equilibrium distance, \(\rho_0 \) between an atom pair is given by \(\rho_0 = (2B/A)^{1/6} \).

The Lennard-Jones potential has been used for a number of molecular configurations, and examples include two identical parallel carbon nanotubes, \(^6\) between two C\(_{60}\) fullerenes, \(^18\) and between a carbon nanotube and C\(_{60}\) (both inside and outside the tube).\(^6\,9\) Numerical values of the Lennard-Jones constants for atoms in graphene-graphene, C\(_{60}\)-C\(_{60}\) and C\(_{60}\)-graphene are shown in Table II. Note that in this investigation we use Lennard-Jones constants for the C\(_{60}\)-graphene case.

B. Force balance for orbiting motion

There are three forces acting on the orbiting atom or fullerene, the van der Waals force modeled by the Lennard-Jones potential, the centrifugal force and the force of gravity, and each has an associated potential energy function. As an initial attempt at modeling the motion, we assume that for both the offset atom and the buckyball, the frictional effects are negligible and can be ignored. Essentially, we assume that ultralow friction, as illustrated by Cumings and Zettl\(^3\) is also applicable here, so that friction is negligible in comparison to the other forces. Note that the plane of the torus is taken to be perpendicular to the direction of gravity so that the angle of inclination is zero.

The van der Waals interaction force is derived from the Lennard-Jones energy, thus \(F_v = -\nabla V_1(x,y,z) \), where \(x,y,z \) refer to the coordinates of the offset atom or C\(_{60}\) fullerene, and the three components of the van der Waals force are given by

\[F_v = -\frac{\partial V_1}{\partial x}, \quad F_v = -\frac{\partial V_1}{\partial y}, \quad F_v = -\frac{\partial V_1}{\partial z}. \]

As the C\(_{60}\) fullerene orbits around the nanotorus it experiences a centrifugal force. This is the force experienced by a body spinning on an axis and is directed away from the center of rotation. The centrifugal force is \(F_c = -mr\omega^2 \), where \(m \) is the mass of the rotating body, with corresponding energy \(V_2 = -mR\omega^2/2 \). The C\(_{60}\) fullerene also experiences a gravitational effect as it rotates, defined by \(F_g = -mg \), where \(m \) is the mass of the C\(_{60}\) fullerene and \(g \) is the acceleration due to gravity \(9.81 \text{ m/s}^2 \), with corresponding potential energy \(V_3 = -mgh \), where \(h \) is the height above some datum level, and assuming the plane of the nanotorus is positioned in a horizontal plane. Thus, the total energy becomes \(V = V_1 + V_2 + V_3 \), and the position of the orbiting atom or buckyball is located where this total energy is minimized. Namely, the three equations arising from Newton’s second laws for orbital motion, arise as a consequence of minimizing \(V \) [see, for example, Eq. (2.5) below for the atom].

We now give the force balance on a single atom rotating around the nanotorus. The position of the atom is assumed to be located at the point defined by the coordinates \((x_1,y_1,z_1) \). The forces acting on the body are the van der Waals interaction force, centrifugal force and gravity. Figure I illustrates the forces acting on an individual carbon atom, offset a dis-
distance e from the torus tube center, where $R_1 = c + e \cos \phi_1$. In cylindrical polar coordinates (R_1, θ_1, z_1), the three equations arising from Newton’s second law become
\[
m(R_1) \ddot{R}_1 - m R_1 \dot{\theta}_1^2 = - \frac{\partial V_1}{\partial R_1}, \quad m(R_1 \dot{\theta}_1 + 2 R_1 \dot{R}_1) = - \frac{1}{R_1} \frac{\partial V_1}{\partial \theta_1},
\]
\[
m(z_1 - g) = - \frac{\partial V_1}{\partial z_1},
\]
where the dot denotes differentiation with respect to time and m is the assumed mass. Now since we are assuming $R_1 = c + e \cos \phi_1$ and $z_1 = e \sin \phi_1$ are fixed in space and that the atom is orbiting around the z axis with constant angular velocity ω (i.e., $\dot{\theta}_1 = \omega$), the above three equations become
\[
\frac{\partial V_1}{\partial R_1} = m R_1 \omega^2, \quad \frac{\partial V_1}{\partial \theta_1} = 0, \quad \frac{\partial V_1}{\partial z_1} = mg,
\]
where $V_1(R_1, \theta_1, z_1)$ is the Lennard-Jones potential which we detail in Sec. III.

C. Initial orbiting velocity

In the present investigation we assume that it is possible to close a C$_{60}$-nanotube oscillator around onto itself so as to form the C$_{60}$-nanotube seamlessly. The vacuum effect, where a C$_{60}$ fullerene is sucked into one end of the nanotube, generating an initial velocity, is assumed to occur just prior to closure of the nanotube. The C$_{60}$-nanotube oscillator then consists of a fullerene orbiting at an initial velocity equal to the velocity of the C$_{60}$-nanotube oscillator, found to have a maximum velocity of 1214 m/s, approximately 800 m/s at suction and approximately 400 m/s steady-state velocity. This linear velocity may be converted into an equivalent angular velocity $\omega_0 = v_0 / R_1$, where v_0 is the initial velocity given above and $R_1 = c + e \cos \phi_1$, is the distance from the center of rotation to the center of the rotating body. This value for the velocity is used in the following sections to determine the position of the orbiting body.

III. EQUILIBRIUM OF OFFSET ATOM

In this section, we determine the Lennard-Jones energy for an offset carbon atom inside a carbon nanotorus and we ascertain the minimum energy (equilibrium) position. Figures 1 and 2 illustrate the offset position, the torus coordinate frame and coordinates used to define a typical point on the torus surface, which in Cartesian coordinates, (x, y, z) is given as
\[
x = (c + b \cos \phi) \cos \theta, \quad y = (c + b \cos \phi) \sin \theta,
\]
\[
z = b \sin \phi,
\]
where b is the nanotorus tube radius and c is the nanotorus ring radius. We fix the location of the offset carbon atom to be a distance e from the cross-sectional center of the torus, which in Cartesian coordinates is defined by
\[
x_1 = (c + e \cos \phi_1) \cos \theta_1, \quad y_1 = (c + e \cos \phi_1) \sin \theta_1,
\]
\[
z_1 = e \sin \phi_1.
\]
Using Eqs. (2.2) and (2.3) we calculate the Lennard-Jones energy between the carbon atom and the surface of the torus
\[
V_1 = \eta_k \int_0^{2\pi} \int_0^{2\pi} \left(-\frac{A}{r^6} + \frac{B}{r^2} \right) b(c + b \cos \phi) \sin^2(\theta - \theta_1) d\phi d\theta,
\]
and the distance between the torus surface element and the carbon atom is
\[
\rho^2 = (x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2
\]
\[
= (b - e)^2 + 4(c + b \cos \phi)
\]
\[
	imes (c + e \cos \phi_1) \sin^2[(\theta - \theta_1)/2]
\]
\[
+ 4b \epsilon \sin^2[(\phi - \phi_1)/2].
\]
Details for the evaluation of the integral Eq. (3.1) are given in Appendix A in terms of hypergeometric and Legendre functions. For the atom offset by an amount e from the tube center, the resulting Lennard-Jones energy is shown to be given by the elegant result
\[
V_1 = \frac{3 \pi^2 b c}{4(c + e)^1/2} \eta_k \left[-\frac{A}{(b^2 - e^2)^{3/2}} \frac{P_{3/2}(b^2 + e^2)}{b^2} + \frac{21B}{32(b^2 - e^2)^{11/2}} \frac{P_{9/2}(b^2 + e^2)}{b^2 - e^2} \right],
\]
where b is the tube radius, c is the nanotorus ring radius,
$P_n(c)$ is the Legendre function of the first kind, and η_i is the mean surface density of the carbon atoms on the nanotorus. We comment that under the assumption $\varepsilon < b \ll c$, Eq. (3.3) is an approximate formula and constitutes only the leading order terms of an integral involving several such terms and which are fully detailed in Appendix A.

Using the algebraic package, MAPLE, we plot the Lennard-Jones energy V_1 against the atom offset position ε as shown in Fig. 3. The equilibrium position is found to vary with the nanotorus tube radius b, and the atom moves closer to the tube wall as the radius b increases, where we assume a nanotorus ring radius c of 1500 Å from Liu et al.11 For a carbon nanotorus created by closing a (6, 6) carbon nanotube ($b=4.071$ Å) onto itself, we obtain the equilibrium position $\varepsilon=0$ Å, that is, the equilibrium location lies on the circle $R_1=c$. Similarly, for a nanotorus (10, 10) ($b=6.784$ Å) we obtain an equilibrium position $\varepsilon=3.29$ Å. These results compare well with Cox, Thamwattana, and Hill20 for the C\textsubscript{60}-nanotube oscillator. In fact, taking the limit as b goes to infinity gives the identical result for the offset atom of Cox, Thamwattana, and Hill.20 Their energy, given in terms of hypergeometric functions, can be transformed into precisely the formula Eq. (3.3).

Figures 4 and 5 illustrate the centrifugal and gravity energies, respectively, plotted against the atom offset position ε. To obtain the initial velocity used in these plots we set $\varepsilon=0$ and calculate the initial velocity from $\omega_0=v_0/R_1$, given in Sec. II C. It is important to note that from these figures the gravity potential which is of the order 10^{-15} eV is negligible in comparison to the centrifugal and Lennard-Jones energies.

Under the influence of centrifugal forces alone, the minimum energy position for the offset atom is as far from the center of the nanotorus as is possible, namely $\phi_1=0$ and $\varepsilon=b$. This is reasonable as the centrifugal force acts to push an orbiting body away from the center of rotation. The centrifugal potential influences the minimum energy position by a shift away from the nanotorus tube center, observed for angular velocities in the gigahertz range. For example, for the (10, 10) carbon nanotorus, to move the atom 0.5 Å further from the equilibrium position and away from the nanotorus center a frequency of 37 GHz is required. As the angular velocity increases the atom shifts further from the nanotorus tube center.

IV. EQUILIBRIUM OF C\textsubscript{60} FULLERENE

Here, we assume that the C\textsubscript{60} fullerene center is located at the position defined by (ε, ϕ_1). We apply the same technique as for the atom except that we must also integrate over the surface of the C\textsubscript{60} fullerene. We start by evaluating the interaction potential between the fullerene and an arbitrary surface. The distance from the surface of the fullerene to an arbitrary surface is $\rho^2=a^2+r^2-2ar \cos \beta$, where a is the C\textsubscript{60} fullerene radius, β is the angle shown in Fig. 6, and r is the distance from the center of the fullerene to an arbitrary point on the torus surface. The Lennard-Jones energy for the fullerene is

$$E_n = \int_0^\pi \frac{1}{\rho} 2\pi a^2 \sin \beta d\beta = \frac{2\pi a}{r} \int_{a-r}^{a+r} \rho^{1-n} d\rho$$

$$= \frac{2\pi a}{r} \left[\frac{\rho^{2-n}}{2-n} \right]_{a-r}^{a+r}.
$$

Here, we are interested in the two values $n=6$ and $n=12$ so...
that the energy of the buckyball, $E_{\text{bucky}} = -AE_0 + BE_{12}$ becomes

$$E_{\text{bucky}} = \frac{2\pi a \eta_b}{r} \left[\frac{A}{4} \left(\frac{1}{(r+a)^4} - \frac{1}{(r-a)^4} \right) - \frac{B}{10} \left(\frac{1}{(r+a)^2} \right) \right].$$

Note that from Appendix B we have

$$\left[\rho^{2n} \right]_{\alpha-r} = \left[\frac{1}{\rho^{2m}} \right]_{\alpha-r} = \frac{-2}{(r^2 - a^2)2m} \sum_{j=0}^{m-1} \left[\frac{2m}{(r^2 - a^2)^{2m}} \sum_{j=0}^{2j+1} a^{2m-2j+1} \right],$$

(4.2)

where $2m = n - 2$, so that we are interested in the two particular values $m = 2$ and $m = 5$. We now integrate over the surface of the torus so that we have

$$K_{2m} = \frac{2\pi a \eta_b \eta_t}{m} \int_0^{2\pi} \int_0^{2\pi} \frac{1}{(r^2 - a^2)^2m} \sum_{j=0}^{m-1} \left[\frac{2m}{(r^2 - a^2)^{2m}} \sum_{j=0}^{2j+1} a^{2m-2j+1} \right] \rho^2 \cos \phi d\theta d\phi,$$

(4.3)

where the energy is given by $V_1 = -AK_4 + BK_{10}$. Details for evaluating Eq. (4.3) are given in Appendix B, and both one and two variable hypergeometric functions are used. For the buckyball with the center located a distance e from the tube center, the resulting Lennard-Jones energy is shown to be given approximately by

$$V_1 = 256\pi^3 abc \eta_b \eta_t \left[-\frac{54a^2 + c^2}{2(4c + e + \delta)} \right]^{3/2} F_1 \left(\frac{1}{2}; \frac{3}{2}; \frac{7}{2}; 1; \alpha, \beta \right)$$

$$+ 155804B a^{19/3} \left[\frac{4c + e + \delta}{4c + e + \delta} \right]^{10/2} F_1 \left(\frac{1}{2}; \frac{3}{2}; \frac{19}{2}; 1; \alpha, \beta \right),$$

(4.4)

where b is the nanotorus tube radius, c is the nanotorus ring radius, a is the buckyball radius, $\delta = (b + e)^2 - a^2$, $\alpha = 4be/\delta$, $\beta = 4be/[4(c + e) + \delta]$, η_b, and η_t are the buckyball and nanotorus mean surface densities, respectively. Note that the energy given above is only valid for $|e| \leq |b-a|$ and $F_1(\alpha; \beta; \gamma; x, 0) = F_1(\alpha, \beta; \gamma; x)$.

In the limit as c tends to infinity for Eq. (4.4), we may use the result from Colavecchia, Gasaneo, and Miraglia to obtain the overall agreement with Cox, Thamwattana, and Hill for the C_{60}-nanotube oscillator. However, to obtain an equation for the Lennard-Jones energy of the buckyball, only the leading order contributions were retained and as a consequence there is a difference between the two models, which becomes smaller as the tube radius b increases.

V. ORBITING VELOCITY

Using the standard analysis from orbital motion we have that the angular momentum, L, for a circular orbit is $L = m\omega R^2$, where ω is the angular velocity and R is the distance from the center of rotation to the center of the rotating particle. Since the angular momentum is conserved for a circular orbit we can infer that R decreases with increasing ω. [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 130.56.106.27 On: Wed, 11 Nov 2015 00:12:02]
VI. CONCLUSIONS

Following Cumings and Zettl,3 and as an initial attempt to model a C\textsubscript{60}-nanonorutor orbiter we ignore any frictional effects. Although we consider the effect of gravity, we show that for a horizontal nanonorutor, the effects of gravity are considerably less than those arising from the Lennard-Jones energy and the centrifugal forces.

For a carbon nanotorus containing an offset atom, the equilibrium position is found to depend on the nanotorus tube radius \(b \), and the atom is shown to move closer to the tube wall as this radius increases. For example, for a carbon nanotorus created from closing a (6, 6) carbon nanotube \((b = 4.071 \text{ Å})\) onto itself, we obtain an equilibrium position \(\varepsilon = 0 \text{ Å} \). However, for a nanotorus \((10, 10) (b = 6.784 \text{ Å})\) we obtain \(\varepsilon = 3.29 \text{ Å} \). These results compare very well with the corresponding results of Cox, Thamwattana, and Hill20 for the C\textsubscript{60}-nanotube oscillator. In fact, in the limit as \(c \) tends to infinity our Eq. \((3.3)\) gives precisely the same formula as that given by Cox, Thamwattana, and Hill.20 The centrifugal effect is found to shift the minimum energy position of the atom away from the center of rotation at frequencies in the gigahertz range.

Similarly, the equilibrium position for the buckyball is found to depend on the nanotorus tube radius \(b \), and again the buckyball moves closer to the tube wall as the radius \(b \) increases. For example, for a carbon nanotorus created from closing a \((10, 10)\) carbon nanotube \((b = 6.784 \text{ Å})\) we obtain an equilibrium distance \(\varepsilon = 0.9 \text{ Å} \), while for a nanotorus \((16, 16) (b = 10.856 \text{ Å})\) we obtain \(\varepsilon = 5.25 \text{ Å} \). Again, a similar observation is made by Cox, Thamwattana, and Hill.20 Assuming that the angle \(\varphi_1 \) is zero, the inclusion of centrifugal energy affects the buckyball’s minimum energy position, causing the fullerene to move further from the center of the nanotorus (center of rotation) and hence closer to the tube wall. This effect varies with the nanotorus tube radius \(b \), and is more prominent as the angular velocity increases, and is observed for frequencies in the gigahertz range. In the limit as \(c \) tends to infinity, Eq. \((4.4)\) gives overall agreement with the results given by Cox, Thamwattana, and Hill20 for the C\textsubscript{60}-nanotube oscillator. However, for the nanotorus, in order to obtain Eq. \((4.4)\) for the Lennard-Jones energy of the buckyball, only leading order contributions were retained and as a consequence there is a small difference between the two models, which decreases as the tube radius \(b \) increases.

For any prescribed angular velocity we may determine the equilibrium position \(\varepsilon \) of the C\textsubscript{60} fullerene. Alternatively, for given \(\varepsilon \) the angular velocity may be determined. Frequencies in the gigahertz range are required to shift the orbiting body away from its equilibrium position. For example, the \((10, 10)\) carbon nanotorus, a frequency of 34 GHz is required to move the buckyball 0.4 Å and a frequency of 150 GHz is required to move 1 Å. Thus, by adjustment of the equilibrium location the C\textsubscript{60}-nanotorus orbiter may provide a wide range of frequencies for no fundamental change in geometric structure. We note that for the \((10, 10)\) carbon nanotube Cox, Thamwattana, and Hill20 find a frequency of 36 GHz for the C\textsubscript{60}-nanotube oscillator.
In summary, the key findings of the analysis presented here are:

- The effect of gravity is negligible;
- centrifugal forces affect the position of both the offset atom and the fullerene, shifting their minimum energy position away from the center of the nanotorus ring;
- the minimum energy position of both the offset atom and the buckyball depend on the nanotorus tube radius b;
- for both the energy and the location of both the offset atom and the C$_{60}$ fullerene, the model agrees with corresponding results from Cox, Thamwattana, and Hill20 in the limit as c tends to infinity;
- frequencies are obtained in the gigahertz range, as high as 150 GHz, and may possibly be controlled by changing the orbiting position ϵ.

We conclude by commenting that although the C$_{60}$-nanotorus orbiter is speculative in nature, and presents exciting possibilities, there are still many practical challenges that would need to be overcome before the C$_{60}$-nanotorus orbiter might be realized. However, the present theoretical study is a necessary precursor to any such developments.

ACKNOWLEDGMENTS

The authors are grateful to the Australian Research Council for support through the Discovery Project Scheme and the University of Wollongong for a University Postgraduate Award. The authors also wish to acknowledge Barry Cox, Duangkamon Baowan, and Ngamta Thamwattana for many helpful comments and discussions.

APPENDIX A: EVALUATION OF INTEGRALS FOR THE OFFSET ATOM

In this Appendix we evaluate the various integrals for the energy for an offset atom inside a nanotorus. In the first section we perform the θ integration for the integrals I_n with n being any positive integer. The section thereafter performs the φ integration.

1. Evaluation of θ integration

In this Appendix for arbitrary n we evaluate the integrals I_n defined by

$$I_n(\epsilon, \theta_1, \phi_1) = \int_0^{2\pi} \int_0^{2\pi} \frac{b(c + b \cos \phi)}{\rho^n} d\theta d\phi,$$ \hspace{1cm} (A2)

and it is a simple matter to show that $\partial I_n/\partial \theta_1$ is automatically zero as follows. From Eq. (A2) we have on formal differentiation with respect to θ_1

$$\frac{\partial I_n}{\partial \theta_1} = \int_0^{2\pi} \int_0^{2\pi} \frac{nb(c + b \cos \phi)}{2\rho^{n+2}}$$

$$\times M \cos[(\theta - \theta_1)/2] \sin[(\theta - \theta_1)/2] d\theta d\phi$$

$$= - \int_0^{2\pi} b(c + b \cos \phi) \left[\frac{1}{b^2} \frac{1}{\rho^{n}} \right]^{2\pi} \, d\phi,$$

and since $\sin(2\pi - \theta_1)/2 = \sin(\theta_1/2)$, it follows that the integrand is identically zero. The result $\partial I_n/\partial \theta_1 = 0$ implies that we may evaluate the integral Eq. (A2) for any convenient value of θ_1, say $\theta_1 = 0$. Thus Eq. (A2) becomes

$$I_n(\epsilon, \theta_1) = \int_0^{2\pi} \int_0^{2\pi} \frac{b(c + b \cos \phi)}{\rho^n} d\theta d\phi,$$ \hspace{1cm} (A3)

where now ρ is defined by $\rho = \sqrt{N + M \sin^2 \theta/2}$. We now let $x = \theta/2$ so that we have

$$I_n = 2 \int_0^\pi \frac{dx}{\rho^n} = 2 \left(\int_0^{\pi/2} \frac{dx}{\rho^n} + \int_0^{\pi/2} \frac{dx}{\rho^n} \right).$$

We now make the substitution $y = \pi - x$ for the integral from $[\pi/2, \pi]$ so that Eq. (A3) becomes

$$I_n = 4 \int_0^{\pi/2} \frac{dx}{\rho^n} = 4 \int_0^{\pi/2} \frac{dx}{(N + M \sin^2 x)^m}$$

$$= 4 \int_0^{\pi/2} \frac{dx}{(N + M \sin^2 x)^m},$$

where $n=2m$ and we are interested in the two values $m=3$ and $m=6$. On making the further substitution $t = \cot x$ we obtain

$$I_{2m} = 4 \int_0^{\pi/2} \frac{\csc^{2m-2} x \csc^2 x}{(N \csc^2 x + M)^m} dx$$

$$= 4 \int_0^{\pi/2} \frac{1}{(N \csc^2 x + M)^m} d(t \cot x)$$

$$= 4 \int_0^\infty \frac{(t^2 + 1)^{m-1}}{(N t^2 + N + M)^m} dt$$

$$= \frac{4}{(N + M)^m} \int_0^\infty \frac{1}{(1 + (\gamma - 1) t^2/(1 + t^2))^m} (t^2 + 1),$$

where $\gamma = N/(N + M)$. Now on writing this integral in the form

$$I_{2m} = \frac{4}{(N + M)^m} \int_0^\infty \frac{1}{[1 + (\gamma - 1) t^2/(1 + t^2)]^m} (t^2 + 1),$$

we are led to make the substitution

$$
\text{[This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to | IP: 130.56.106.27 On: Wed, 11 Nov 2015 00:12:02]}
\]
to obtain
\[I_{2m} = \frac{4}{(N + M)^m} \int_0^1 \frac{dz}{[1 + (1 - \gamma)z^M(1 - z^N)]^{1/2}} \]
\[= \frac{2}{(N + M)^m} \int_0^1 u^{(1/2) - 1/2^{(N + M)^m} du,} \]
where the final line follows on making the substitution \(u = z^2 \). From Gradshteyn and Ryzhik,\(^{22}\) we have
\[I_{2m} = \frac{2\pi}{N^m} F \left(\frac{m}{2}; 1; -\frac{M}{N} \right), \quad (A5) \]
where \(F(a, b; c; z) \) denotes the usual hypergeometric function and we have used \(\Gamma(1/2) = \sqrt{\pi} \). From Gradshteyn and Ryzhik,\(^{22}\) we have
\[F(a, b; c; z) = F(1 + z^a, c - b; c; \frac{z}{1 + z}), \]
where \(a = m, b = 1/2, c = 1, \) and \(z = M/N \), we may deduce from Eq. (A5)
\[I_{2m} = \frac{2\pi}{N^m} F \left(\frac{m}{2}; 1; -\frac{M}{N} \right). \]
Thus the integral Eq. (A3) becomes
\[I_{2m}(e, \phi_t) = 2\pi b \int_0^{z_M} \frac{2\pi}{N^m} F \left(\frac{m}{2}; 1; -\frac{M}{N} \right)(c + b \cos \phi) d\phi. \]
From Erdélyi et al.,\(^{23}\) the hypergeometric function appearing in this integrand can be shown to simplify to become
\[F \left(\frac{m}{2}; 1; \frac{z}{z} \right) = \sum^{\infty}_{k=0} \left(\frac{m + k - 1}{k} \right) \left(\frac{z}{4} \right)^k. \]
Using the algebraic package MAPLE we find that in our case \(F(m, 1/2; 1; -z) \) for the two values \(m = 3 \) and \(m = 6 \) become simply
\[F \left(\frac{3}{2}; 1; -z \right) = 3z^2 + 8z + \frac{8z}{(z + 1)^{3/2}}, \]
\[F \left(\frac{6}{2}; 1; -z \right) = \frac{63z^5 + 350z^4 + 800z^3 + 960z^2 + 640z + 256}{256(z + 1)^{3/2}(z^2 + 4z^2 + 12z + 1)}, \quad (A6) \]
where \(z = M/N \). Alternatively, this result can be found from Erdélyi et al.,\(^{23}\) by recognizing that the above hypergeometric function admits a quadratic transformation and is degenerate since one of either \(a, b, c-a, \) or \(c-b \) is an integer. Using the transformation \(F(a, b; c; -z) = (1 + z)^{c-a-b}F(c-a, c-b; c; -z) \) the hypergeometric function becomes
\[F \left(\frac{m}{2}; 1; -z \right) = (1 + z)^{1/2-m} F \left(1 - m, \frac{1}{2}; 1; z \right) \]
\[= (1 + z)^{1/2-m} \sum^{m-1}_{k=0} \left(1 - m \right) \frac{1}{k} \frac{(1)}{(1)_k} (-z)^k, \quad (A7) \]
where \(z = M/N \). This agrees with the result provided by MAPLE.

2. Evaluation of \(\phi \) integration

Using Eq. (A6) the integral for \(\phi \) becomes
\[V_1 = \eta \int_0^{2\pi} \left(\frac{1}{4}\pi^3 \frac{z^2 + 8z + 8}{4N^3} \right) \frac{63B}{128N^6} \frac{z + 1}{(z + 1)^{3/2}} \times b(c + b \cos \phi) d\phi, \]
where \(z = M/N \). By a comparison of the relative size of \(e, b, \)
and \(c \) assuming \(e < b < c \), the dominant terms of the above integral simply to give
\[V_1 = \frac{3\pi}{4} \int_0^{2\pi} \left[\left(\frac{1}{4}\pi^3 \frac{z^2 + 8z + 8}{4N^3} \right) \frac{63B}{128N^6} \frac{z + 1}{(z + 1)^{3/2}} \times b(c + b \cos \phi) d\phi. \]

Note that \(N \) and \(M \) are the same as defined previously in Eq. (A1). To simplify further we let \(\sigma = (b - e)^2, \gamma = 4eb, \) and \(\Sigma = 4(c + e \cos \phi) \). We also simplify the above integral by again comparing the relative size of terms, and we assume
that the radius c is dominant when compared to $b \cos \phi$ and so the integral becomes

$$V_1 = \frac{3 \pi b \eta c^{1/2}}{4 \Sigma^{1/2}} \int_0^{2\pi} \frac{A}{(\sigma + \gamma \sin^2((\phi - \phi_1)/2))^{3/2}}$$

$$+ \frac{21B}{32(\sigma + \gamma \sin^2((\phi - \phi_1)/2))^{1/2}} d\phi.$$

We know that gravity is negligible compared to the centrifugal and the Lennard-Jones potentials, so that the atom will locate itself in the plane of rotation so as to maximize the centrifugal effect and, therefore, $\phi_1 = 0$. We change the limits of integration, letting $x = \phi/2$ so that we now have

$$V_1 = \frac{3 \pi b c^{1/2} \eta}{2 \Sigma^{1/2}} \int_0^{\pi} \frac{A}{(\sigma + \gamma \sin^2 x)^{3/2}}$$

$$+ \frac{21B}{32(\sigma + \gamma \sin^2 x)^{1/2}} dx,$$

and we can evaluate the integrals for arbitrary n, thus

$$H_n = \int_0^{\pi} \frac{dx}{(\sigma + \gamma \sin^2 x)^{n/2}} = 2 \int_0^{\pi/2} \frac{dx}{(\sigma + \gamma \sin^2 x)^n},$$

where $n=2m$ and here we are interested in the two values $m=5/2$ and $m=11/2$. As above we may deduce

$$H_{2m} = \frac{\pi}{\sigma^m(1+z)^m} F\left(m, \frac{1}{2}; 1; -\beta \right),$$

where $F(a,b;c;z)$ denotes the usual hypergeometric function and we have used $\Gamma(1/2) = \sqrt{\pi}$. Again from Gradshteyn and Ryzhik, this can be written in the form

$$H_{2m} = \frac{\pi}{\sigma^m(1+z)^m} F\left(m, \frac{1}{2}; 1; \frac{z}{1+z} \right) = \frac{\pi}{\sigma^m} F\left(m, \frac{1}{2}; 1; -z \right),$$

where $z = \sqrt{\gamma}/\sigma$. From Erdélyi et al. and on recognizing two of the numbers $1-c$, $\pm(a-b)$, and $\pm(c-a+b)$ are equal to each other it can be shown that this result admits a quadratic transformation and is a Legendre function. Using the quadratic transformation

$$F(a,b;2b;4z/(1+z^2)) = (1+z)^{2a} F\left(a,a+1 \frac{1}{2}; b; b+\frac{1}{2}; z^2 \right),$$

we obtain

$$H_{2m} = \frac{\pi}{\sigma^m(1+\xi)^{2m}} F\left(m,m;1;\xi^2 \right),$$

where $-z=4\xi/(1+\xi^2)$ and $z = \gamma/\sigma$, so that $\xi = -\varepsilon/b$. Using the definitions from Gradshteyn and Ryzhik

$$P_n^\mu(z) = \frac{1}{\Gamma(1-\mu)} \left(\frac{z-1}{z+1} \right)^{\mu/2} \frac{z+1}{2}$$

$$\times F\left(-\nu, -\nu - \mu; 1 - \mu; \frac{z-1}{z+1} \right),$$

and

$$F(a,b;c;z) = (1-z)^{-a-b} F(c-a,c-b;c;z),$$

where $P_n^\mu(z)$ is a Legendre function of the first kind and in our case μ is zero, we obtain the integral in terms of the Legendre function given by

$$H_{2m} = \frac{\pi(1+\xi)^{2m}}{\sigma^m(1-\xi^2)^{m}} P_{m-1}^0 \left(\frac{1 + \xi^2}{1 - \xi^2} \right),$$

where we are interested in the two values $m=5/2$ and $m=11/2$. So that

$$V_1 = \frac{3 \pi b c^{1/2} \eta}{2 \Sigma^{1/2}} \left(-A H_5 + 21 B H_4 \right).$$

For the offset atom the resulting Lennard-Jones energy is given by

$$V_1 = \frac{3 \pi b c^{1/2} \eta}{2 \Sigma^{1/2}} \left[-A \pi(1+\xi)^5 \frac{1 + \xi^2}{(1-\xi^2)^{3/2}} \right]$$

$$+ \frac{21 B \pi(1+\xi)^{11}}{32 \sigma^{11/2}(1-\xi^2)^{11/2}} P_{9/2}^0 \left(\frac{1 + \xi^2}{1 - \xi^2} \right),$$

where $\Sigma = 4(c+\varepsilon), \sigma = (b-\varepsilon)^2$, and $\xi = -\varepsilon/b$. This can be simplified to

$$V_1 = \frac{3 \pi^2 b c^{1/2} \eta}{4(c+\varepsilon)^{1/2}} \left[-A \pi(1+\xi)^5 \frac{1 + \xi^2}{(1-\xi^2)^{3/2}} \right]$$

$$+ \frac{21 B \pi(1+\xi)^{11}}{32 \sigma^{11/2}(1-\xi^2)^{11/2}} P_{9/2}^0 \left(\frac{1 + \xi^2}{1 - \xi^2} \right).$$

APPENDIX B: EVALUATION OF INTEGRALS FOR FULLERENE

In this Appendix we evaluate the integrals arising from the interaction between a C$_{60}$ fullerene and a nanotorus. First we write the energy for the buckyball in terms of a summation and then in Appendix B 1 we perform the θ integration which results in hypergeometric functions. The following section (Appendix B 1) applies the hypergeometric functions of two variables.

From Eq. (4.1) we see that the energy for the buckyball is

$$E_n = \frac{2\pi a \eta b}{r(2-n)} \left(\frac{1}{(r+a)^{n-2}} - \frac{1}{(r-a)^{n-2}} \right),$$

where a is the radius of the buckyball, r is the distance from the center of the buckyball to an arbitrary surface defined by Eq. (3.2). We are interested in the two values $n=6$ and $n=12$, so that $E_{\text{bucky}} = -AE_{6} + BE_{12}$. Rearranging and using the binomial expansion this can be written

$$E_n = -\frac{2\pi a \eta b}{r(n-2)} \left(\frac{(r-a)^{n-2} - (r+a)^{n-2}}{(r^2-a^2)^{n-2}} \right)$$

$$= -\frac{2\pi a \eta b}{r} \left[\frac{1}{(r^2-a^2)^{n-2}} \sum_{k=0}^{p} \binom{p}{k} \frac{1}{r^k a^{n-k}} \right].$$

where $p=n-2$. We note that when $p-k$ is even the energy becomes identically zero. The two summation terms add when $p-k$ is odd, therefore $p-k=2j+1$ and we have

$$E_{2m} = \frac{2\pi a \eta}{rm} \frac{1}{(r^2 - a^2)^{2m}} \sum_{j=0}^{m-1} \left(\frac{2m}{2j+1} \right)^{2m-2j-1} \alpha^{2j+1},$$

where $p=2m$ and so $2m=n-2$. The total energy of the buckyball inside the torus is given by

$$K_{2m} = \frac{2\pi a \eta \eta b}{m} \int_0^{2\pi} \int_0^{2\pi} \frac{1}{r^2 - a^2} \sum_{j=0}^{m-1} \left(\frac{2m}{2j+1} \right) \times r^{2m-2j-1} \alpha^{2j+1} (c + b \cos \phi) d\theta d\phi,$$

where we are interested in $m=2$ and $m=5$, so that $V_1 = -AK_4 + BK_5$.

1. Evaluation of θ Integration

By expanding the integral, Eq. (4.3) for the two specific values of $m=2$ and $m=5$ the energy for the buckyball inside the nanotorus is

$$V_1 = 2\pi a \eta \eta b \int_0^{2\pi} \int_0^{2\pi} \left[-8Aa(r^2 + a^2) \frac{4(r^2 - a^2)^4}{(r^2 - a^2)^4} + 4Ba(5r^4 + 10r^2a^2 + a^4)(r^4 + 10r^2a^2 + 5a^4) \right] \times (c + b \cos \phi) d\theta d\phi.$$

Splitting the above integral we can integrate the first term

$$J_1 = \int_0^{2\pi} \frac{r^2 + a^2}{(r^2 - a^2)^4} \frac{d\theta}{r^2 - a^2} = 4 \int_0^{2\pi} \frac{d\theta}{(r^2 - a^2)^4} = 4 \int_0^{2\pi} \frac{d\theta}{(r^2 - a^2)^4} = 4 \int_0^{2\pi} \left[\frac{1}{(r^2 - a^2)^3} + \frac{2a^2}{(r^2 - a^2)^4} \right] \sin^2 \theta \sin \phi d\theta,$$

where we let $x = \theta/2$ and use partial fractions. Again we may evaluate these integrals using hypergeometric functions for arbitrary n where in the above $n=3$ and $n=4$, and

$$J_n = 4 \int_0^{2\pi} \frac{dx}{(r^2 - a^2)^n} = \frac{2\pi}{a^2} \int_0^{2\pi} \left(M \sin^2 \theta + N \alpha^2 \right)^{n/4} = \frac{2\pi}{a^2} \int_0^{2\pi} \left(\frac{1}{\cos^2 \theta} \right) \left(1 - \cos^2 \theta \right)^{n/4} = \frac{2\pi}{a^2} \int_0^{2\pi} \left(1 - \cos^2 \theta \right)^{n/4} \cos^{n/2} \theta d\theta,$$

where we let $u = \cot x, \alpha = N - a^2, \gamma = \alpha / (M + \alpha)$ and again $M = 4(c + b \cos \phi)(c + b \cos \phi)$, $N = (b - e)^2 + 4be \sin^2 \phi$ - and the integral becomes

$$J_n = \frac{2\pi}{a^2} \int_0^{2\pi} \left(\frac{1}{2, \nu + 1} \right) + \frac{4\pi a^2}{a^2} \int_0^{2\pi} \left(1 - \cos^2 \theta \right)^{n/4} \cos^{n/2} \theta d\theta,$$

where $z = M/\alpha$. We note that these are degenerate since from Erdélyi et al.23 either of $a, b, c - a, c - b$ in $F(a, b; c; z)$ are integers and using Eq. (A7) we can find the finite series. We now examine the second part of Eq. (B1) making the same substitution $x = \theta/2$.

$$J_2 = \int_0^{2\pi} \frac{(5r^4 + 10r^2a^2 + a^4)(r^4 + 10r^2a^2 + 5a^4) d\theta}{(r^2 - a^2)^{10}} = 4 \int_0^{2\pi} \frac{(5r^4 + 10r^2a^2 + a^4)(r^4 + 10r^2a^2 + 5a^4) dx}{(r^2 - a^2)^{10}}.$$

Using partial fractions this becomes

$$J_2 = 4 \int_0^{2\pi} \frac{5}{(r^2 - a^2)^3} + \frac{80a^2}{(r^2 - a^2)^3} + \frac{336a^4}{(r^2 - a^2)^9} \times \left(\frac{512a^6}{(r^2 - a^2)^9} + \frac{256a^8}{(r^2 - a^2)^9} \right) dx,$$

so that we can use the same result from the first integration for J_n, Eq. (B2) where here $n=6, 7, 8, 9, 10$, and J_2 now becomes

$$J_2 = \frac{10\pi}{a^8} F \left(6, \frac{1}{2}; \frac{1}{2}; -z \right) + \frac{160\pi a^2}{a^8} F \left(7, \frac{1}{2}; \frac{1}{2}; -z \right) + \frac{672\pi a^4}{a^8} F \left(8, \frac{1}{2}; \frac{1}{2}; -z \right) + \frac{1024\pi a^6}{a^8} F \left(9, \frac{1}{2}; \frac{1}{2}; -z \right) + \frac{512\pi a^8}{a^{10}} F \left(10, \frac{1}{2}; \frac{1}{2}; -z \right).$$

Again we note that these are degenerate hypergeometric functions from Erdélyi et al.23 and using Eq. (A7) we can find a finite series.

2. Evaluation of ϕ Integration

The integral for ϕ then becomes

$$V_1 = 2\pi a \eta \eta b \int_0^{2\pi} \left(-2AaJ_1 + \frac{1}{2}BaJ_2 \right) (c + b \cos \phi) d\phi,$$

where J_1 and J_2 are defined in the previous section as hypergeometric functions and $z = M/\alpha$. By a comparison of the relative size of e, b, c assuming $e < b < c$, and retaining only the leading order terms the above integral can be simplified to

$$V_1 = 2\pi abc \eta \eta b \int_0^{2\pi} \left[-10a^3 \lambda^3 \sin^2 \phi \right. \sin \phi d\phi,$$

where $\lambda = 4(e + c \cos \phi)$, $\lambda = (b - e)^2 + 4be \sin^2 \phi - (b - e)^2/2$, and c is dominant when compared to $b \cos \phi$. So we have the following integral for $n=7$ and 19 to evaluate

$$I_n = \int_0^{2\pi} \frac{d\phi}{(\lambda + \delta)^{n/2}}.$$

We now substitute the values for λ and δ into this integral and we let $x = \phi/2$. Note that we have set $\phi = 0$ since as previously shown gravity is negligible. So that in response to the centrifugal and the Lennard-Jones energies along the orbiting body’s position will be in the plane of rotation, and we have

\[I_n = 2 \int_0^\pi \frac{dx}{(\mu + v \sin^2 x)^{m/2}(\nu + v \sin^2 x)^{n/2}}, \]

where \(\nu = 4be, \ \sigma = \lambda + \mu, \ \mu = (b - e)^2 - a^2, \) and \(\lambda = 4(c + e). \) Splitting the integral again, letting \(n = 2m \) and making the substitution \(t = \cot x \) we obtain

\[I_{2m} = 4 \int_0^{\pi/2} \csc^{4m} x dx \]

becomes

\[= 4 \int_0^\infty \frac{(t^2 + 1)^{2m-1} dt}{(\mu^2 + \nu)^m(\sigma^2 + \nu)^m}, \]

where \(\alpha = \nu/(\nu + \mu), \ \beta = \nu/(\nu + \sigma), \) and we are interested in the two values \(m = 7/2 \) and \(m = 19/2. \) Now on writing this integral in the form

\[I_{2m} = \frac{4}{(\mu + \nu)^m(\sigma + \nu)^m} \int_0^\infty \frac{(t^2 + 1)^{-1/2} dt}{[1 - \alpha^2/(t^2 + 1)]^{m}[1 - \beta^2/t^2/(t^2 + 1)]^{m}}, \]

we are again led to make the substitution Eq. (A4)

\[I_{2m} = \frac{4}{(\mu + \nu)^m(\sigma + \nu)^m} \int_0^1 \frac{(1 - z^2)^{-1/2} dz}{(1 - \alpha^2)^m(1 - \beta^2)^m}, \]

where the final line follows on making the substitution \(u = z^2. \) From Bailey \[24\] we have

\[\int_0^1 \frac{u^{\tau}(1 - u)^{\rho - 1}}{(1 - ux)^{\beta}(1 - uy)^{\gamma - 1}} du \]

\[= \frac{\Gamma(\alpha)\Gamma(\gamma - \alpha)}{\Gamma(\gamma)} \]

\[\times \sum_{m=0}^\infty \frac{(\alpha)_{m+n}(\beta)_{m+n}}{(\gamma)_{m+n}} x^{m} y^{n}, \] (B3)

which is always convergent for \(|x| < 1, |y| < 1. \) The integral \(I_{2m} \) becomes

\[I_{2m} = \frac{2\pi}{(\mu + \nu)^m(\sigma + \nu)^m} \sum_{m=0}^\infty \frac{(\alpha)_{m+n}(\beta)_{m+n}}{(\gamma)_{m+n}} \]

\[\times \Gamma(\gamma + n) F_1(\alpha; \beta; \gamma; x, y), \]

where \(F_1 \) is the first Appell hypergeometric function of two variables defined from Bailey \[22\] by the double integral

\[F_1(\alpha; \beta; \gamma; x, y) = \sum_{m=0}^\infty \frac{(\alpha)_{m+n}(\beta)_{m+n}}{(\gamma)_{m+n}} x^{m} y^{n}, \] (B3)

and \(F_1(\alpha; \beta; \gamma; x, y) = 0 \) when \(m+n \neq 0. \)

In addition, from Gradshteyn and Ryzhik \[22\] we can make the transformation

\[F_1(\alpha; \beta; \gamma; x, y) =\]

\[= \frac{2\pi}{(\mu + \nu)^m(\sigma + \nu)^m} \sum_{m=0}^\infty \frac{(\alpha)_{m+n}(\beta)_{m+n}}{(\gamma)_{m+n}} \times \Gamma(\gamma + n) \]

\[\times F_1(\alpha; \beta; \gamma; x, y), \]

which results in one of the infinite summations in Eq. (B3) becoming finite. The resulting expression for the energy becomes

\[V_1 = 2\pi^2 \gamma \eta \eta_\eta \sum_{m=0}^\infty \frac{5\pi\lambda\alpha^3\beta^3}{(\mu + \nu)^{7/2}(\sigma + \nu)^{7/2}} \]

\[\times F_1(\frac{1}{2}, 3; 2; 1; 1; \alpha, \beta) + \frac{2431\pi\beta\alpha^5\lambda^9}{32(\mu + \nu)^{19/2}(\sigma + \nu)^{19/2}} \]

\[\times F_1(\frac{1}{2}, 19; 2; 1; 1; \alpha, \beta), \]

where \(\nu = 4be, \ \sigma = \lambda + \mu, \ \lambda = 4(c + e), \ \mu = (b - e)^2 - a^2, \ \alpha = \nu/(\nu + \mu), \) and \(\beta = \nu/(\sigma + \mu). \) Or more simply

\[V_1 = 256\pi^3 \gamma \eta \eta_\eta \sum_{m=0}^\infty \frac{5\alpha^3\beta^3(c + e)^3}{(s(4(c + e) + \delta))^{3/2}} \]

\[\times F_1(\frac{1}{2}, 3; 2; 1; 1; \alpha, \beta) + \frac{155484\beta\alpha\lambda\delta^3(c + e)^3}{(s(4(c + e) + \delta))^{19/2}} \]

\[\times F_1(\frac{1}{2}, 19; 2; 1; 1; \alpha, \beta), \]

where \(\delta = (b + e)^2 - a^2, \ \alpha = 4be/\delta, \) and \(\beta = 4be/(4c + e + \delta). \) We note that from kinematic or geometric constraints that this energy is only sensible for \(|e| \leq |b - a|. \)

16J. Han, Toroidal Single Wall Carbon Nanotubes in Fullerene Cop Circles, NAS Technical Report (1997).