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Fast, scalable master equation solution algorithms. IV. Lanczos iteration
with diffusion approximation preconditioned iterative inversion
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In this paper we propose a second linearly scalable method for solving large master equations
arising in the context of gas-phase reactive systems. The new method is based on the well-known
shift-invert Lanczos iteration using the GMRES iteration preconditioned using the diffusion
approximation to the master equation to provide the inverse of the master equation matrix. In this
way we avoid the cubic scaling of traditional master equation solution methods while maintaining
the speed of a partial spectral decomposition. The method is tested using a master equation
modeling the formation of propargyl from the reaction of singlet methylene with acetylene,
proceeding through long-lived isomerizing intermediates2@3 American Institute of Physics.
[DOI: 10.1063/1.1628214

I. INTRODUCTION dratic dependence on the number of energy grains to be a
. ) _ scalable operation.
The master equatioME) formulation for solving gas- In this series of papers we have made significant

phase chemical kinetics problems is well-known and comprogress toward general scalable ME solution methods. The
monly employed.” While the smallest eigenvalue of the first papef® presented one of the first successful scalable
energy grained ME matrix is often all that is required in methods by generalizing the well-known and highly success-
simpler applications, the transient behavior of the systemy| Nesbet method. However this method, denoted the
commonly becomes the primary focus in more complex apHONE method, has the deficiency that some high-quality
plications. Determining the transient behavior requires fainjtial data must be available. Specifically, the eigenvalues
more information than just the smallest eigenvalue and corand the relatively large magnitude elements of the eigenvec-
responding eigenvectdihich only describe the long-time tors must be known. In that regard, multi-well systems are
behavioy, usually with a disproportionate increase in the particularly problematic as there may be multiple numeri-
amount of computational effort required. Determining tran-cajly difficult small eigenvalues. The second pdpeerved
sient behavior is particularly important in multi-well systems |argely to set the scene for what was to come by surveying
describing isomerization between a number of isomersyhe effectiveness and speed of a number of standard methods
which are increasingly being modeled with ME meth8dS.  sed for solving multi-well MEs. The conclusions of the sec-
The matrices arising from multi-well MEs are signifi- ond paper were that the fastest method that was robust over
cantly larger than unimolecular ME matrices, as are the mag| the temperature and pressure ranges tested was direct time
trices arising from two-dimension&®-D) MEs resolved in  propagation using a stiff ordinary differential equation
angular momentum as well as enetdy.° One can easily (ODE) integration algorithm, while in high temperature
construct a 2-D or multi-well ME discretized over tens of cases a Spectra' approach using a shift-invert Lanczos itera-
thousands of points. The potential also exists to construgion could be orders of magnitude faster. All of the methods
2-D multi-well MEs, with a corresponding further increase in tested in Paper Il formally scale with® [denoted ag)(n®)
the size of the discretization. For such large problems to bgperations, whera is the size of the ME matrixand are
tractable requires an effective method requiring calculatiomence inappropriate for solving large problems.
time that isscalable That is, one needs a method that not  |n paper 11f? we proposed a method that maintains the
only works, but also one that does not result in a vast inyohustness of standard direct time propagation with a stiff
crease in the computational effort required for a modest iNODE integrator while maintaining scalability for large prob-
crease in the size of the problem. Throughout this Work, WQems_ The Component of a Strﬁ ODE integrator Wh|Ch im-
use the ternscalable methodbosely to mean a method that poses the®(n3) scaling on the calculation is solving the
scales significantly better than the cubic scaling of traditionaﬁon”near correction equation by Newton's method. In the
ME solution methods. While scaling with the square of thefirst-order linear case of the ME,
size of the system/discretization falls into this loose catego-
rization, we aim for global linear scaling. Specifically, we d_P:B (1)
consider the matrix-vector product with its linear dependence  dt P,

on the number of isomers being modeled and, at worst, qua- . . .
g q applying Newton’s method to the correction equation re-

quires solving the linear system,
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with arbitrary y andb. The standard approach is to factorize aromatic hydrocarbons and thus polycyclic aromatic hydro-
| — yB with a dense factorization before solving for—an  carbons and soé8>2The major route to propargyl proposed
O(n®) operation and the lion’s share of the computationalby Miller and Meliu€® involves the insertion of singlet me-
effort in the numerical integration. In the work of Paper lll, thylene into acetylene to forms€,, which isomerizes be-
the direct solution of Eq(2) was replaced by using a pre- fore decomposing to propargyl:
conditioned iterative solver, with the preconditioning bein 1 N
provided by direct factorization of the matrix arising fromg CH+ CoHp=CsHa— CgHa +H. @
the diffusion approximation to the ME. Thus ti®(n®) di-  The rate constant for the reaction of singlet methylene with
rect solution was replaced by a method that scales with thecetylene to form ¢H, and eventually propargyl has been
same scaling as the matrix-vector product: better tAam’) measured experimentally by several different methods over
and approximately linearly with the number of isomers in thethe past 20 years. A good summary is given by Biital*®
system being modeled. The direct factorization of the diffu-While it appears that a single time-independent bimolecular
sion approximation matrix required for the preconditioningrate constant is appropriate for the disappearanctCef,
can be achieved witlP(n) computational effort. Although under pulsed conditions, the behavior of the remainder of the
derived independently, it turns out that using an iterative sosystem is not yet well established. The modeling of the
lution method within Newton’s method for solving a nonlin- 1CH,+ C,H, system in this work is similar to that used in
ear system has been used previously in the context of solvingrevious ME studiés”**34and identical to the test problems
multicomponent solidification and fluid flow problerfis®*  used in Papers Il and Il

While Paper Il aimed for a robust and scalable method  The structure of the paper is as follows: In the next sec-
by building on the best robust method identified in Paper Il tion we review the ME generally, including an overview of
the current work starts with the fastest available method athe diffusion approximation. In Sec. Il we develop the new
the expense of robustness. To that end, the starting point withethod, replacing the linear system solve in the shift-invert
be partial spectral decomposition using a shift-invert LancLanczos algorithm. In Sec. IV we discuss the application of
zos iteration, the fastest of the methods tested in Paper Ithe new method to théCH,+ C,H, system. In Sec. V we
Once more, the most time-consuming part of the calculatiorliscuss the new method specifically in terms of the amount
is finding the solution to a linear system. In the shift-invert of computer time required to solve ME problems. In Sec. VI
Lanczos case the system to be solved is similar to that for thee sum up, including a concise recap of the method.
Newton’s method case of Paper [HEq. (2)], taking the form

(B—ol)z=Dh, (3)  Il. REVIEW OF THE MASTER EQUATION

where o is the spectral shift and agaim is arbitrary. The The ME is well-known and described in detail
obvious approach to solving E(B) is by direct factorization elsewheré;>"%so only some details pertinent to the current
and triangular solves, similar to the standard approach téase shall be pointed out here. The energy grained multi-well
solving Eq.(2) used in a stiff ODE integrator. This is the ME discretized over a set of energy graips (with each
approach taken in the work of Paper Il. As in Paper IlI, thisisomer described by a subset of thegrains p;) can be
linear system solve can be replaced by a preconditioned itwritten as a series of equations of the form
erative method. dp;
In this work and that presented in Paper Ill, we utilize ~ —==w sED, Pjp;—op—p; 2 ki=0+2> k®p; |
the diffusion approximation to the ME to speed the solution ! ' '
of the full ME by using it as a preconditioner. Unlike previ- )
ous applications of the diffusion approximation to the ME,where w is the collision frequency$E is the energy grain
the problem ultimately being solved is the full ME, not the size andP;; describes collisional energy transfer within each
diffusion approximation to the ME. The diffusion approxi- species. Thé&("" andk{®" are microscopic rate constants
mation matrix is a very good candidate for applying as afor the interconversion reactions, wittSL'r) describing the
preconditioner: the approximation is quite good, yet the nu+ate of loss of population from grainand ki(G") describing
merical effort required to perform operations such as inverthe rate of gain of population to grain from graini; .
sion is much lower than for the full ME matrix. As a precon- Clearly, k- andk{®") are related by detailed balance. The
ditioner the diffusion approximation is used selectively.sum overj is over all energy grains belonging to the same
Rather than precondition the whole problem—the solution ospecies as grainwhile the sums over are over all reactive
the ME—we focus on a specific bottleneck in a well-knownchannels. For notational simplicity the explicit time depen-
solution method and use the diffusion approximation to predence ofp; has not been shown.
condition that step. Without the preconditioning the problem-  Bimolecular reactions are easily incorporated if they are
atic step(in this case a linear system solveannot be com- modeled under pseudo-first-order conditigmgich makes
pleted in a fast and efficient manner. the reaction linear ip;).23 The first two terms on the right of
To test the new method developed here, we model th&qg. (5) do not apply in the bimolecular case if the reactant
reaction between singlet methylene and acetylene. This reaoeot in excess is assumed to maintain its equilibrium distribu-
tion is believed to be an important source of propargyl radition, which is a reasonable assumption. Kie" andk(®"
cals (GHs) in flames?®?® The formation of propargyl is terms for reactions from bimolecular states are then formed
believed to be a significant step in the formation of simpleby the microscopic rate constant for the reaction multiplied
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by the total population of the bimolecular species assumed tapproximation matrix. As described elsewh&feearranging
be in excess and the normalized Boltzmann population of théhe ordering of the energy grains within the state sgate
reactant not in excess. As usual, detailed balance can be ibfing grains of the same energy together results in a banded
voked to determine the rate constants for the reverse reamatrix with the bandwidth equal to the number of isomers
tion. being modeledp. A banded matrix of this type can be fac-
Equation(5) can be written as a simple first-order linear torized with computational effort scaling &(np?), a vast
matrix ODE to facilitate matrix analysis methods. Particu-improvement over the?)(n®) standard solve as usually
larly when employing spectral solution methods, the effi-<n. The increased well-structured sparsity of the matrix also
ciency and stability of the solution can be improved by sym-leads to a significant reduction in the memory needed to
metrizing the coefficient matrix before solving the ME store the matrix, with the required storage scalin@énp).
(though the symmetric form of the ME is not automatically Including linearized bimolecular reactions changes the
the best choic®@39. If f is the vector describing the Boltz- banded matrix arising from the diffusion approximation to a
mann population of the system and the diagonal m&rix  banded “arrowhead” matrix, with nonzero rows and col-
given by umns added to the bottom and right of the banded matrix.
s, = f-112 ©) Critically, the factorization of such an arrowhead matrix does
L not lead to fill-in outside of the arrowhead structure so that
then transforming the original population vecfprand ME  bimolecular channels do not alter the basic scaling of solving

ODE coefficient matrixA according to linear systems involving the diffusion approximation ME.
p=5Sp (7)
and
_ 1
B=SAS (8 |1l DEVELOPING THE SOLUTION METHOD
yields the ODE already given as E@.), with the matrixB _ _
symmetric(such thaB=BT). When the symmetrized ME is Rather than develop an entirely new methodology, in

solved, it yields transformed “populationgi(t), which are this_work we aim to adapt and combine existing techniques
transformed back to the real, observable population distributo yield a fast and scalable method. A key component of our

tions via approach is the utilization of the diffusion approximation to
. the ME3® While using the diffusion model to approximate
p(t)=S""p(1). ) the full ME has shown promi&&1636-3%t has not previ-

In this work, the symmetrized representation of the matrix isously been used to facilitate the fast and accurate solution of
used to improve the stability of the spectral decompositionthe full, dense ME.

(Symmetric matrices are guaranteed to have purely real ejx The diffusion approximation matrix

genvalues and eigenvectors. ) ! )

The first term on the right of Eq5) describes collisional ~ AS one would expect, the matrix derived from the diffu-
energy transfefCET) within each isomer and manifests it- SIon @pproximation to the full ME is an approximation to the
self within the ME matrix as a dense block. Invoking the Matrix derived from the full ME. While one could consider
diffusion approximation describes CET as derivatives of parthis approximation from the point of view of the individual
ticular energy-dependent functions. Using finite differenceléments of the matrices, it is more useful to consider the
to approximate the derivatives gives CET modeled by Action of the matrix. IfB is the full ME matrix,D is the

purely local process symmetrized diffusion approximation ME matrix awdis
some vector, the is an approximation t@ in the sense
that
2}_: Pijpj~aipi—1+bip;+Cipi+1, (10
Dv~Buv. (13)

where the constants; , b; andc; depend on the particulars
of the diffusion approximation and finite difference schemeSimilarly, the inverseD ~! is an approximation t® . The
used. Green, Robertson and PilffRgoncluded that of the value in using the diffusion approximation to the full ME
various diffusion approximation formulations available, comes from the fact that bothv and D ~v can be calcu-
drift-determined diffusion gave the best results for unimo-lated much faster thaBv andB~1v, and with much better
lecular MEs. Substituting Eq10) into Eq. (5) yields tridi-  scaling as the size of the discretization of the ME increases.
agonal blocks replacing the dense blocks in the ME matrix.  Generally speaking, there are two subtly different ap-
The well-defined sparse structure of the diffusion approximaproaches to using such an approximation to speed up the
tion matrix allows matrix-vector products with both the ma- solution of a problem. While you could use a solution to the
trix and its inverse to be calculated very quickly. While solv- approximation to the original problem to build a solution to
ing the diffusion version of the ME is clearly an the original problem, in this work we use the widely known
approximation to the solution of the full ME, this approxi- technique of preconditioning. The philosophy behind precon-
mation has proved useffil:16:36-39 ditioning is simple: use an available approximation to trans-
One of the keys to the scalability of the methods pre-form a problem that is hard to solve into a problem that is
sented in the current work is the inversion of the diffusioneasier to solve.
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B. Iterative inversion of B for shift-invert Lanczos GMRES method?* as implemented in the Sparse Linear
Algebra PackagésLap) of sLAaTEC.*

In its pure form, the GMRES algorithm requires only the
atrix-vector product and some relatively minor operations
build and solve the system in a small Krylov subspace. A
E solution methodology can then be implemented as code
to first construct the ME matriXusing whatever storage
N scheme or decompositions are required to fit the matrix into

the available memory and give a fast matrix-vector multipl

P(“:; @ XN, (12 routing before coml[nyencing the Lanczos iteration. At e:c)é
iteration of the Lanczos method, the GMRES routine is
called to solve Eq(3) using the matrix-vector product spe-

_ ; ; : ific to the implementation of the ME matrix. This approach
and a;=(y;,p(0)). While Eq.(12) is exact for all timeg, ¢l )
for medium- to long-time behavior only a limited number of will be denoted the Lanczos/GMRES method. As the size of

the eigenpairs oB are required, being those with the small- the ME being solved changes, the scaling of such a scheme
est eigenvalues is dominated by the scaling of the specific matrix-vector

Krylov subspace based methods, such as the Lancz(ggoduct routine, or approximately linearly with the number

method, tend to converge the extremes of the eigenvalu% isomers being modeled.

spectrum first, particularly for large magnitude eigenvalues.t \:th%n an ?_asn)t/ mvert(ter(]j f‘pprox'ma“‘;!" IS tavallable, d'.tt.'s
It has been found that despite the desired smallest eigenv tandard practicé 10 use that approximation 1o précondition

ues being extremal, the fact that these eigenvalues are de iterative. solutiof? T_his is;mparticularly common In quan-
many orders of magnitude smaller than the eigenvalues at tﬁgr? tscattferlng t(;alcylai[(lorf‘é; where tlhg sh|Gft—|nv?rt spec-t
other extreme of the spectrum, combined with the spread otfad rans ozjrgfa |ont |fs now? as aprc)j.)t/.lng' reens ozersl ?r:
magnitudes in the eigenvectors, means that full convergen many difierent forms of preconditioning are used, bo
of these eigenpairs is nearly impossible to achivao physically basedslmllar to the _current cagand chosen on
combat this, we turn to a shift-invert spectral purely mathematical or numerical grounds.

transformatiorf’#' As an eigenvalue. of B becomes an ei- A _Tl;’ precondtmon a I|ne3rt_sy§tem S?r:\\;etr? ftt_he form of
genvalue 1/ — o) of (B— o)~ ! with an unchanged eigen- z=D one wants a preconditioning ma atis an ap-

vector, the shift-invert transformation transforms eigenvalue?rox"nn"’Itlon toA so that
of B near o to be those of largest magnitude oB (
— 1)1, and hence those expected to converge the fastest. A

shift-invert strategy is often used to find eigenpairs on th§¢ o 4yailable approximation is not easy to invert then it is
interior of the spectrum, as these normally converge slowl ot useful—formingM ~* must be significantly faster than

with Krylov subspace based methods. In this case the smal orming AL, as the latter is the problem we are trying to

est elgenvalues are proplematl_c. H(_ence we wish to tr,anSfor'Qccelerate. In the current case an easily inverted approxima-
the matrix so that the eigenpairs with the smallest eigenvalg, jg readily available in the banded arrowhead matrix de-

ues become those with the largest eigenvalues, making #ed from the diffusion approximatiorD is a sparse ap-
selection ofe=0 appropriate. In difficult cases when con- proximation toB, so that

vergence of required interior eigenpairs is problematican

be set appropriately to focus on these slowly converging (D—al) " YB=ol)=~I, (14)
eigenpairs. We demonstrated in Paper |l that the zero-shift

shift-invert transformation makes the application of theto give an appropriate preconditioning matrix Bs-ol.

Lanczos method to this ME possible, and in fact leads to fasgpecifically, the preconditioned GMRES method requires the
convergence of the Lanczos iteration, at the cost of solvingg|ytion of

Eq. (3) at each iteration. Despite the lack of a spectral shift,

We showed in Paper Il that a very fast way of solving
multi-well ME problems—provided the temperature being
modeled is high enough—is to generate a partial spectraﬂ1
decomposition of the population evolution operator using th%\?l
Lanczos iteration. The full spectral expansion is given by

where\; andy; are then eigenvalues and eigenvectorskf

M~ IA~]. (13

we continue to refer to the zero-shift case as a shift-invert (D—¢l)c=d, (15)
method and generally present the method retainingBhe
—ol andD — ¢l notation. for c. In the general case, the presence of a nonzedoes

In Paper Il thearPAck?® package was used as the imple- not alter the structure of the diffusion approximation matrix
mentation of the Lanczos method as this package has sevesd thatD — ol can still be permuted to banded arrowhead
useful features such as implicit restarting and eigenpair lockform, factorized and solved quickly and with good scalabil-
ing. The zero-shift case of E¢3) was solved directly via a ity. In this work the asymmetrit. U factorization was used
general triangular factorization. Similarly to Paper lll, hereto factorizeD — ¢l rather than the faster Cholesky factoriza-
we replace this direct linear system solve with an iterativetion. While the Cholesky factorization is only appropriate for
method. Generally, iterative solution methods require littledefinite matrices(matrices whose eigenvalues are all of the
more than the matrix-vector product, giving them similarsame sign and nonzerwhich is not guaranteed for general
scaling. In this case the matrix-vector product involving thego, recall that we taker=0 here, exposing the underlying
full ME matrix scales well: approximately linearly with the definiteness oD. TheLU factorization is much more toler-
number of isomers being modeled. In this work we use thaant of near singularity than the Cholesky factorization and
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was found to be much more stable. The extra work required A

1
) o S CH,+C,H,
in not exploiting symmetry was not significant to the overall 1 mol!
ion ti 7 kT mel C.H,+H
calculation time. T \ sty
. . . . =) \ |
Each GMRES iteration requires one matrix-vector mul- g ! 2766 1) o 358.4 kJ mol
tiply with B— ol and one solution of Eq(15), the latter = \ 2=
. . . . . Iy \ g —
effectively two band triangular substitutions. Provided the & ! 25441 mol"
. . 1
number of isomers is smaller than the number of energyé § " Y ,I’/
. g » . . 1 A
grains describing each isomer, tBe- ol matrix-vector mul- B v ,v" I\ /,"
. . . . .- \l
tiply is the more computationally demanding of the two and & \ H \\\ ,;/ .
. . . . -1 / N wH
dominates the calculation time required. Thus the computa- & C93-Zkl mol Y JHE e
. . . . . -1
tional effort required for each GMRES iteration scales in a veopropene 5.kl mol , Allene
similar manner to theB— ol matrix-vector multiply: ap- Ho M 0.0 kJ mol”, Propyne P
proximately linearly with the number of isomers being mod- H,c’=‘c\H HoO=C—Coi
eled. This scaling dominates the solution of Eg), and

hence the Lanczos iteration and overall master equation SE4G. 1. Schematic reaction scheme for the modéf@l,+ C,H, reaction.
lution.

While using a preconditioned GMRES iteration to re- .

place the inversions required for shift-invert Lanczos and?/lene and propyne was modeled according to the expres-
those required for stiff ODE integraticias per Paper ljlare ~ Sions of Harding and KI|ppen_stefﬁ:In all cases, the initial
similar in principle, there is at least one significant differ- POPUlation represented the dissociated state of singlet meth-
ence. In the stiff integration case, the matrix being inverted//€né with no GH, present. Under all of the conditions
changes for each inversion, as theof Eq. (2) generally tested in this work(300-2000 K and 1-1000 Torrthe
changes for each successive right hand &iden the other population profiles of the five species involved can readily be
hand, in the current shift-invert Lanczos case the shift rec@lculated by other means, as demonstrated in Paper II.
mains fixed for the duration of the calculation. Hence when ~ While the methylene plus acetylene channel was linear-
using direct factorization in the shift-invert Lanczos case thdZ€d and treated reversibly under pseudo-first-order condi-
matrix B— ol need be factorized once only, whereas for thelions, our previous work shows that at low temperatures
stiff integration the matrix — yB must be factorized for each tréating the propargyl formation reaction in a similar manner
time step. While the factorization will dominate for large Significantly alters the dynamics through the reformation of
systems in the shift-invert Lanczos case, a much greater pré&sHa-~ Explicitly including the products of irreversible re-
portion of the calculation will be spent doir@(n?) triangu- actions prevents the symmetrization Qf the I\gE matrix and
lar system solves than for the stiff integration case. Thi€€Xcludes spectral approaches to solving the MEws the
means that while the scaling of the method will be improvedProPargyl population was calculated by consideration of con-
by replacing direct factorization with preconditioned Servation of the total population.

GMRES in the present case, the resulting method is less

likely to be significantly faster than the direct factorization B. Lanczos /GMRES solution in double precision
version than was the case for the stiff ODE integrator results Fresh modeling based on the full eigendecomposition of
of Paper lil. the ME calculated in high precision indicates that 10 eigen-
pairs is sufficient to yield accurate population profiles over a
IV. RESULTS FOR THE CH,+C,H, REACTION reasonable range of times at all temperatures and pressures
A The model modeled in this work. Throughout this work, tharPACK

routines were called with the arguments set to calculate the
In previous work®?12234ye have modeled the propar- ten largest magnitude eigenvalues &-{ol) ! with the

gyl formation reactioiEq. (4)] using various multi-well ME ~ corresponding eigenvectors, from a Krylov subspace of di-
methods. The reaction proceeds through a multi-well colli-mension 20. This is different to the 5 or 25 eigenpairs used in
sion complex. The ¢H, species exists as three interconvert-Paper Il and was chosen for consistency across the pressure
ing isomers: regime. As previously stated;=0 was used throughout this
work.
propyne=cyclopropene-=allene. (16

One would expect that the capabilities of the Lanczos/
The 'CH,+ C,H, reaction produces the cyclopropene iso-GMRES method be similar to those reported in Paper Il for

mer, which must isomerize to allene or propyne before irrethe zero-shift shift-invert Lanczos method with the standard
versibly decomposing to the propargyl product. This reactiorsolution by triangular factorization. That is, in double preci-
scheme is summarized in Fig. 1. sion arithmetic the method should be accurate at high tem-
An energy grain size of 200 cit was used throughout, peratures and pressures, but less reliable at lower tempera-
giving a matrix of order 714. The collision frequency wastures and pressures unless one resorts to increasing the
taken as the Lennard-Jones value. The rotational constangsecision of the entire calculation.

and vibrational frequencies were taken from Kaetial*’ For the double precision calculations, the GMRES solu-
The 1CH,+ C,H, microscopic rate constants were derivedtion was deemed converged when the error norm was less
from the data of Blitzet al>* The propargyl formation from than 10 3. Unless otherwise stated, all GMRES calculations
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FIG. 3. As per Fig. 2 but modeling 1200 K and 1 Torr using double preci-
FIG. 2. Population profiles for the five species involved in fi@H, sion arithmetic(Sections of the population profiles that were calculated as
+C,H, reaction modeled at 1600 K and 1000 Torr. Accurate populationsbeing negative are not shown.
from the full spectral solution and populations calculated with the truncated
expansion from the Lanczos/GMRES method.

time populations of the £H, isomers are significantly in
error, the calculated long-time populations are very low and

) . . . likel insignifi i ical lication.
were restarted after 20 iterations. This should be cons@ered%re lkely to be insignificant in any practical application

very frequently restarted GMRES calculation, which in gen-
eral can lead to convergence difficulties.

The behavior of the GMRES solution of E¢3) was
similar to that reported in Paper Il for the solution of Eg. When the temperature being modeled was reduced to
(2). That is, without preconditioning tens of thousands 0f900 K, the double precision Lanczos/GMRES calculated so-
iterations were required to converge the solution, even withution was slightly less stable than the standard full inversion
very loose convergence criteria and irrespective of the reshift-invert Lanczos approach. In the 1000 Torr case, while
starting strategy. Preconditioning the iterative solution withthe calculated population profiles of propyne, allene, the pro-
the arrowhead diffusion approximation matrix lead to rapidpargyl product and the methylene reactant were accurate
convergence, taking between 20 and 500 iterations to corfrom times around 10% s, the calculated population of cy-
verge in all cases. clopropene, significantly lower than the other isomers, was

Figure 2 shows the population profiles for the system agenerally in error by around an order of magnitude. When
1000 Torr and 1600 K modeled using the new Lanczosthe cyclopropene population was calculated to be larger than
GMRES method in double precision. The results shown irbx 10 7 at simulation times in the region of 16-103 s
Fig. 2 are typical of the results of modeling at 100 Torr orthe error was smaller. At 100 Torr, the 900 K results were
1000 Torr and 1200, 1600, or 2000 K. In all of these casesess reliable still, with all three £4, isomer population pro-
the population profiles calculated with the Lanczos/GMRESfiles being significantly in error for at least some significant
method are indistinguishable from those calculated via starportion of the chemically interesting timescales. At tempera-
dard shift-invert Lanczos with the inversion being performedtures lower than 900 K the population profiles calculated in
through a dense factorization. That is, the deviation from thelouble precision were erroneous.
accurate model population profiles at short tinjas times At both 10 and 1 Torr and temperatures of 900 K or less
shorter than around 18° s for the 1000 Torr and 1600 K the calculated populations were largely spurious. At 900 K
case shown in Fig.)ds due to the truncation of Eq12), not  only the GH, isomer populations were affected, with the
any effect of using GMRES iteration to solve HS). methylene reactant disappearance and the propargyl product

With some caveats, the double precision implementatiomproduction not significantly in error. At lower temperatures
of the Lanczos/GMRES method behaves similarly whemo accurate population profiles were produced.
modeling pressures of 10 or 1 Torr to when modeling higher  Implementing the Lanczos/GMRES method in qua-
pressures. When modeling 1200 K or above, the method pedruple precision gives the same range of applicability as the
forms reasonably well. Typical results are shown in Fig. 3 forstandard shift-invert Lanczos indicated in Paper Il. That is,
1200 K and 1 Torr. the method produces accurate population profilgthin the

The long-time behavior is not being accurately modelediruncated spectral expansjaat temperatures down to 600 K.
This is a common mode of failure of this type of multi-well For these calculations the error norm convergence tolerance
ME including a bimolecular reactant source, where the exwas maintained at 102 The population profiles were not
pansion coefficients; in Eq. (12) are determined solely by significantly different to those calculated using the triangular
the element of the eigenvector corresponding to the bimofactorization inversion reported in Paper Il, meaning that
lecular species. When this particular element is determinedven at 1 Torr the last 15 of the 25 eigenpairs included in the
inaccurately, as in this case, the calculated population prafruncated spectral expansion of the work in Paper Il had little
files exhibit systematic errors, sometimes globally, someeffect.
times in particular regimes. In this case, the long-time popu-  Achieving accurate modeling of the population profiles
lations are inaccurate, giving too large and sometimest a temperature of 300 K required a very substantial invest-
negative populations. As indicated in Fig. 3, while the long-ment in computational effort. Increasing the numerical pre-

C. Using higher precision to model lower
temperatures
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10000 . T S invert Lanczos approach when solving problems three to
AN L en g 35 Quodruple precison ning times larger than the current three isomer, 714 energy
% 1000} RaEE Mmoo s N grain case.
2 © Lonczos,/GNRES Once the temperature being modeled is decreased to a
Z 00k B GMRES siff integration | point where the double precision implementation of the
5 e —BAg - —F— -0 Lanczos/GMRES method is unable to accurately model the
ol . ] population profiles, a large penalty is paid in terms of execu-
o tion time. The CPU time required for the quadruple precision
00 oo 00 2000 solution was over 1000 s, more than 30 times greater than
Temperature (K) that required to solve the problem with the stiff integrator

FIG. 4. CPU time required to solve tH€H,+ C,H, ME as a function of using GMRES. However’ it should be recalled that the re-
the modeled temperature at 1000 Torr. The fainter dashed lines indicate tHeHItS presenteq In nger Il show the .penalty for moving to
CPU times for the method at various precisions. The solid line indicates th€juadruple precision is not nearly as high on a 64 bit proces-

times required for accurate modeling, taking into consideration the level olgqr (such as the HP Alpha or SGI R14008s on the 32 bit
numerical precision required as the temperature changes. The time requir . . .

for modeling using the stiff ODE integrator with the GMRES solve of Paperwentlum processors used in this work.
Il shown for reference. Intel Pentium 4 1.9 GHz CPU.

VI. SUMMARY

cision well beyond quadruple precision was required. The 1o ajd in the implementation of the new Lanczos/
MPFUN package of Baile} was used to implement the GMRES method, our procedure is restated Héaring in
Lanczos/GMRES method with arbitrary floating point preci- mind when referring back to Eqg3) and (15) that o=0].

sion. We have usedPFUN in the past to circumvent extreme ) ]

ill-conditioning in spectral solutions to MEs, with 50 decimal (1) Set up multi-well ME, storing only the dense blocks on
digits of precision usually being sufficient to solve room  theé main diagonal of the ME matrix, the off-block-
temperature problems, including the curré@H,+ C,H., diagonal interconversion terms and the “arrowhead”
multi-well systerf?°2134|n the current case at 300 K the terms associated with the bimolecular reactions for an
GMRES iteration would not converge to a solution with the  €fficient and fast specialized matrix-vector product.
specified error norm of 10" when 50 digit arithmetic was (2) Set up the _dlffusmn approximation matrix from the full
used, even when 200 GMRES iterations were allowed before ~ Matrix, storing the matrix permuted to a banded arrow-
restarting. The GMRES method did achieve convergence to head matrix in a number of vectors. .

the 1022 error norm level when 100 digit arithmetic was (3) Factorize the diffusion approximation using a nonsym-
used and the restart frequency was increased to 200 itera- Metric LU factorization, overwriting the diffusion ap-
tions. Shifting the calculated spectrum away from zero Proximation storage. _ _ .
(through a nonzerar parameter did not lead to an easier (4) Loop over calls to theRPACK drlver routine, requesting
calculation. Despite the relatively low GMRES convergence ~ convergence of the largest magnitude eigenvalatthe

threshold of 1023 (compared to the numerical model main- _ inverted matrix with corresponding eigenvectors.

taining precision to approximately one part in'49, the (5) When thEARPA_CK routine returns and requests a matrix-

population profiles calculated at 300 K were accurate. vector multiplication, call thesL.aAp GMRES routine to
solve Eq.(3).

V. SPEED OF THE NEW METHOD (6) The matrix-vector multiply routine passed to the

GMRES routine should utilize the structure of the multi-

When implemented in double precision, the Lanczos/  well matrix to calculateBv as quickly as possible.
GMRES method is indeed fast. Figure 4 shows Sample tlm(7) The preconditioning routine passed to the GMRES rou-
ings of the Lanczos/GMRES method to solve the model tine to solve Eq(15) should first permutei to the order
problem when implemented on an Intel Pentium 4 1.9 GHz  giving the banded arrowhead structure of the diffusion
CPU. Shown for comparison are the times published in paper  approximation matrix before solving E¢L5) from the
1l for the stiff ODE integrator using the GMRES iteration to factorized D and permuting the solution back to the
solve the correction equation. Note that the vertical CPU  original ordering.
time axis of Fig. 4 is a logarithmic axis. (8) After convergence of the Lanczos iteration, call the

In double precision, the Lanczos/GMRES method is  arpack post-processing routine and propagate the initial
much faster than the integration method of Paper Ill, taking  population vector using a truncated version of Etf).
arourd 5 s of CPUtime compared to the latter’s 30-50 s.
Both of these methods should have similar scaling, approxi- The importance of an algorithm to solve the ME at or
mately that of the matrix-vector product or approximatelynear linear scaling with the system size cannot be overstated
linear in the number of isomers being modeled. This 5 sn the context of solving large problems. Curreitn®) al-
execution time is significantly slower than the standard shiftgorithms simply cannot be used effectively when dealing
invert Lanczos method reported in Paper Il, which requiredwith 2-D, multi-well or even 2-D multi-well MEs discretized
around 0.5 s to solve the ME. When one considers the scabver tens of thousands of points. The methods presented here
ing of solving Eq.(3) for the two approaches, the current and in Paper Il are very significant steps toward solving
Lanczos/GMRES should be faster than the standard shiftarge ME problems. The key to these new methods is using
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the GMRES method to iteratively solve linear systems in-?°T. J. Frankcombe and S. C. Smith, Comput. Phys. Comridd, 159
volving the ME matrix, which is only feasible when using 21(2003- _

the diffusion approximation to provide fast and effective pre- (TZ'OJ()';ra”kcombe and S. C. Smith, J. Theor. Comput. Cr&mi.79
conditioning. While not as robust as the method based o®r j Frankcombe and S. C. Smith, J. Chem. PhgS, 12729 (2003,
direct integration presented in Paper Ill, the Lanczos/ preceding paper.

GMRES method presented here is an order of magmtud@D A. Knoll, D. B. Kothe, and B. Lally, Numer. Heat Transfer, Par8B,

faster with the same scaling when the conditions being mod;,
eled are sufficiently high in temperature and pressure to al-

439(1999.
D. A. Knoll, W. B. Vanderheyden, V. A. Mousseau, and D. B. Kothe,
SIAM J. Sci. Comput(USA) 23, 381(2001).

low an accurate solution to be calculated in double precisiore®y. A. Miller and C. F. Melius, Combust. Flangd, 21 (1992.
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