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Fast, scalable master equation solution algorithms. IV. Lanczos iteration
with diffusion approximation preconditioned iterative inversion

Terry J. Frankcombea) and Sean C. Smithb)

Centre for Computational Molecular Science, Chemistry Building 68, University of Queensland,
Brisbane, 4072, Australia

~Received 25 July 2003; accepted 30 September 2003!

In this paper we propose a second linearly scalable method for solving large master equations
arising in the context of gas-phase reactive systems. The new method is based on the well-known
shift-invert Lanczos iteration using the GMRES iteration preconditioned using the diffusion
approximation to the master equation to provide the inverse of the master equation matrix. In this
way we avoid the cubic scaling of traditional master equation solution methods while maintaining
the speed of a partial spectral decomposition. The method is tested using a master equation
modeling the formation of propargyl from the reaction of singlet methylene with acetylene,
proceeding through long-lived isomerizing intermediates. ©2003 American Institute of Physics.
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I. INTRODUCTION

The master equation~ME! formulation for solving gas-
phase chemical kinetics problems is well-known and co
monly employed.1–5 While the smallest eigenvalue of th
energy grained ME matrix is often all that is required
simpler applications, the transient behavior of the syst
commonly becomes the primary focus in more complex
plications. Determining the transient behavior requires
more information than just the smallest eigenvalue and c
responding eigenvector~which only describe the long-time
behavior!, usually with a disproportionate increase in t
amount of computational effort required. Determining tra
sient behavior is particularly important in multi-well system
describing isomerization between a number of isome
which are increasingly being modeled with ME methods.6–13

The matrices arising from multi-well MEs are signifi
cantly larger than unimolecular ME matrices, as are the m
trices arising from two-dimensional~2-D! MEs resolved in
angular momentum as well as energy.14–19 One can easily
construct a 2-D or multi-well ME discretized over tens
thousands of points. The potential also exists to const
2-D multi-well MEs, with a corresponding further increase
the size of the discretization. For such large problems to
tractable requires an effective method requiring calculat
time that isscalable. That is, one needs a method that n
only works, but also one that does not result in a vast
crease in the computational effort required for a modest
crease in the size of the problem. Throughout this work,
use the termscalable methodloosely to mean a method tha
scales significantly better than the cubic scaling of traditio
ME solution methods. While scaling with the square of t
size of the system/discretization falls into this loose cate
rization, we aim for global linear scaling. Specifically, w
consider the matrix-vector product with its linear depende
on the number of isomers being modeled and, at worst, q
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dratic dependence on the number of energy grains to b
scalable operation.

In this series of papers we have made signific
progress toward general scalable ME solution methods.
first paper20 presented one of the first successful scala
methods by generalizing the well-known and highly succe
ful Nesbet method. However this method, denoted
HONE method, has the deficiency that some high-qua
initial data must be available. Specifically, the eigenvalu
and the relatively large magnitude elements of the eigenv
tors must be known. In that regard, multi-well systems
particularly problematic as there may be multiple nume
cally difficult small eigenvalues. The second paper21 served
largely to set the scene for what was to come by survey
the effectiveness and speed of a number of standard met
used for solving multi-well MEs. The conclusions of the se
ond paper were that the fastest method that was robust
all the temperature and pressure ranges tested was direct
propagation using a stiff ordinary differential equatio
~ODE! integration algorithm, while in high temperatur
cases a spectral approach using a shift-invert Lanczos it
tion could be orders of magnitude faster. All of the metho
tested in Paper II formally scale withn3 @denoted asO(n3)
operations, wheren is the size of the ME matrix# and are
hence inappropriate for solving large problems.

In Paper III22 we proposed a method that maintains t
robustness of standard direct time propagation with a s
ODE integrator while maintaining scalability for large pro
lems. The component of a stiff ODE integrator which im
poses theO(n3) scaling on the calculation is solving th
nonlinear correction equation by Newton’s method. In t
first-order linear case of the ME,

dr

dt
5Br, ~1!

applying Newton’s method to the correction equation
quires solving the linear system,

~ I 2gB!z5b, ~2!
1 © 2003 American Institute of Physics
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12742 J. Chem. Phys., Vol. 119, No. 24, 22 December 2003 T. J. Frankcombe and S. C. Smith
with arbitraryg andb. The standard approach is to factori
I 2gB with a dense factorization before solving forz—an
O(n3) operation and the lion’s share of the computatio
effort in the numerical integration. In the work of Paper I
the direct solution of Eq.~2! was replaced by using a pre
conditioned iterative solver, with the preconditioning bei
provided by direct factorization of the matrix arising fro
the diffusion approximation to the ME. Thus theO(n3) di-
rect solution was replaced by a method that scales with
same scaling as the matrix-vector product: better thanO(n2)
and approximately linearly with the number of isomers in t
system being modeled. The direct factorization of the dif
sion approximation matrix required for the preconditioni
can be achieved withO(n) computational effort. Although
derived independently, it turns out that using an iterative
lution method within Newton’s method for solving a nonlin
ear system has been used previously in the context of sol
multicomponent solidification and fluid flow problems.23,24

While Paper III aimed for a robust and scalable meth
by building on the best robust method identified in Paper
the current work starts with the fastest available method
the expense of robustness. To that end, the starting point
be partial spectral decomposition using a shift-invert La
zos iteration, the fastest of the methods tested in Pape
Once more, the most time-consuming part of the calcula
is finding the solution to a linear system. In the shift-inve
Lanczos case the system to be solved is similar to that for
Newton’s method case of Paper III@Eq. ~2!#, taking the form

~B2sI !z5b, ~3!

where s is the spectral shift and againb is arbitrary. The
obvious approach to solving Eq.~3! is by direct factorization
and triangular solves, similar to the standard approach
solving Eq. ~2! used in a stiff ODE integrator. This is th
approach taken in the work of Paper II. As in Paper III, th
linear system solve can be replaced by a preconditione
erative method.

In this work and that presented in Paper III, we utili
the diffusion approximation to the ME to speed the solut
of the full ME by using it as a preconditioner. Unlike prev
ous applications of the diffusion approximation to the M
the problem ultimately being solved is the full ME, not th
diffusion approximation to the ME. The diffusion approx
mation matrix is a very good candidate for applying as
preconditioner: the approximation is quite good, yet the
merical effort required to perform operations such as inv
sion is much lower than for the full ME matrix. As a preco
ditioner the diffusion approximation is used selective
Rather than precondition the whole problem—the solution
the ME—we focus on a specific bottleneck in a well-know
solution method and use the diffusion approximation to p
condition that step. Without the preconditioning the proble
atic step~in this case a linear system solve! cannot be com-
pleted in a fast and efficient manner.

To test the new method developed here, we model
reaction between singlet methylene and acetylene. This r
tion is believed to be an important source of propargyl ra
cals (C3H3) in flames.25,26 The formation of propargyl is
believed to be a significant step in the formation of sim
Downloaded 09 Mar 2010 to 150.203.243.38. Redistribution subject to AI
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aromatic hydrocarbons and thus polycyclic aromatic hyd
carbons and soot.25–32The major route to propargyl propose
by Miller and Melius25 involves the insertion of singlet me
thylene into acetylene to form C3H4, which isomerizes be-
fore decomposing to propargyl:

1CH21C2H2
C3H4→C3H31H. ~4!

The rate constant for the reaction of singlet methylene w
acetylene to form C3H4 and eventually propargyl has bee
measured experimentally by several different methods o
the past 20 years. A good summary is given by Blitzet al.33

While it appears that a single time-independent bimolecu
rate constant is appropriate for the disappearance of1CH2

under pulsed conditions, the behavior of the remainder of
system is not yet well established. The modeling of t
1CH21C2H2 system in this work is similar to that used i
previous ME studies6,7,33,34and identical to the test problem
used in Papers II and III.

The structure of the paper is as follows: In the next s
tion we review the ME generally, including an overview
the diffusion approximation. In Sec. III we develop the ne
method, replacing the linear system solve in the shift-inv
Lanczos algorithm. In Sec. IV we discuss the application
the new method to the1CH21C2H2 system. In Sec. V we
discuss the new method specifically in terms of the amo
of computer time required to solve ME problems. In Sec.
we sum up, including a concise recap of the method.

II. REVIEW OF THE MASTER EQUATION

The ME is well-known and described in deta
elsewhere,1–5,7,8so only some details pertinent to the curre
case shall be pointed out here. The energy grained multi-w
ME discretized over a set of energy grainspi ~with each
isomer described by a subset of then grains pi) can be
written as a series of equations of the form

dpi

dt
5v dE(

j
Pi j pj2vpi2pi(

r
ki

(L,r )1(
r

ki
(G,r )pi ri

,

~5!

wherev is the collision frequency,dE is the energy grain
size andPi j describes collisional energy transfer within ea
species. Theki

(L,r ) andki
(G,r ) are microscopic rate constan

for the interconversion reactions, withki
(L,r ) describing the

rate of loss of population from graini andki
(G,r ) describing

the rate of gain of population to graini from grain i ri .
Clearly,ki

(L,r ) andki
(G,r ) are related by detailed balance. Th

sum overj is over all energy grains belonging to the sam
species as graini while the sums overr are over all reactive
channels. For notational simplicity the explicit time depe
dence ofpi has not been shown.

Bimolecular reactions are easily incorporated if they a
modeled under pseudo-first-order conditions~which makes
the reaction linear inpi).

13 The first two terms on the right o
Eq. ~5! do not apply in the bimolecular case if the reacta
not in excess is assumed to maintain its equilibrium distri
tion, which is a reasonable assumption. Theki

(L,r ) andki
(G,r )

terms for reactions from bimolecular states are then form
by the microscopic rate constant for the reaction multipl
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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12743J. Chem. Phys., Vol. 119, No. 24, 22 December 2003 Master equation solution algorithms. IV
by the total population of the bimolecular species assume
be in excess and the normalized Boltzmann population of
reactant not in excess. As usual, detailed balance can b
voked to determine the rate constants for the reverse r
tion.

Equation~5! can be written as a simple first-order line
matrix ODE to facilitate matrix analysis methods. Partic
larly when employing spectral solution methods, the e
ciency and stability of the solution can be improved by sy
metrizing the coefficient matrix before solving the M
~though the symmetric form of the ME is not automatica
the best choice20,35!. If f is the vector describing the Boltz
mann population of the system and the diagonal matrixS is
given by

Sii 5 f i
21/2, ~6!

then transforming the original population vectorp and ME
ODE coefficient matrixA according to

r5Sp ~7!

and

B5SAS21 ~8!

yields the ODE already given as Eq.~1!, with the matrixB
symmetric~such thatB5BT). When the symmetrized ME is
solved, it yields transformed ‘‘populations’’r(t), which are
transformed back to the real, observable population distr
tions via

p~ t !5S21r~ t !. ~9!

In this work, the symmetrized representation of the matrix
used to improve the stability of the spectral decompositi
~Symmetric matrices are guaranteed to have purely rea
genvalues and eigenvectors.!

The first term on the right of Eq.~5! describes collisiona
energy transfer~CET! within each isomer and manifests i
self within the ME matrix as a dense block. Invoking th
diffusion approximation describes CET as derivatives of p
ticular energy-dependent functions. Using finite differenc
to approximate the derivatives gives CET modeled by
purely local process,

(
j

Pi j pj'aipi 211bipi1cipi 11 , ~10!

where the constantsai , bi andci depend on the particular
of the diffusion approximation and finite difference schem
used. Green, Robertson and Pilling36 concluded that of the
various diffusion approximation formulations availabl
drift-determined diffusion gave the best results for unim
lecular MEs. Substituting Eq.~10! into Eq. ~5! yields tridi-
agonal blocks replacing the dense blocks in the ME mat
The well-defined sparse structure of the diffusion approxim
tion matrix allows matrix-vector products with both the m
trix and its inverse to be calculated very quickly. While so
ing the diffusion version of the ME is clearly a
approximation to the solution of the full ME, this approx
mation has proved useful.6,7,16,36–39

One of the keys to the scalability of the methods p
sented in the current work is the inversion of the diffusi
Downloaded 09 Mar 2010 to 150.203.243.38. Redistribution subject to AI
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approximation matrix. As described elsewhere,6,7 rearranging
the ordering of the energy grains within the state spacep to
bring grains of the same energy together results in a ban
matrix with the bandwidth equal to the number of isome
being modeled,p. A banded matrix of this type can be fac
torized with computational effort scaling atO(np2), a vast
improvement over theO(n3) standard solve as usuallyp
!n. The increased well-structured sparsity of the matrix a
leads to a significant reduction in the memory needed
store the matrix, with the required storage scaling atO(np).

Including linearized bimolecular reactions changes
banded matrix arising from the diffusion approximation to
banded ‘‘arrowhead’’ matrix, with nonzero rows and co
umns added to the bottom and right of the banded mat
Critically, the factorization of such an arrowhead matrix do
not lead to fill-in outside of the arrowhead structure so t
bimolecular channels do not alter the basic scaling of solv
linear systems involving the diffusion approximation ME.6,7

III. DEVELOPING THE SOLUTION METHOD

Rather than develop an entirely new methodology,
this work we aim to adapt and combine existing techniqu
to yield a fast and scalable method. A key component of
approach is the utilization of the diffusion approximation
the ME.36 While using the diffusion model to approximat
the full ME has shown promise6,7,16,36–39it has not previ-
ously been used to facilitate the fast and accurate solutio
the full, dense ME.

A. The diffusion approximation matrix

As one would expect, the matrix derived from the diff
sion approximation to the full ME is an approximation to th
matrix derived from the full ME. While one could conside
this approximation from the point of view of the individua
elements of the matrices, it is more useful to consider
action of the matrix. IfB is the full ME matrix, D is the
symmetrized diffusion approximation ME matrix andv is
some vector, thenD is an approximation toB in the sense
that

Dv'Bv. ~11!

Similarly, the inverseD21 is an approximation toB21. The
value in using the diffusion approximation to the full M
comes from the fact that bothDv and D21v can be calcu-
lated much faster thanBv andB21v, and with much better
scaling as the size of the discretization of the ME increas

Generally speaking, there are two subtly different a
proaches to using such an approximation to speed up
solution of a problem. While you could use a solution to t
approximation to the original problem to build a solution
the original problem, in this work we use the widely know
technique of preconditioning. The philosophy behind prec
ditioning is simple: use an available approximation to tra
form a problem that is hard to solve into a problem that
easier to solve.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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B. Iterative inversion of B for shift-invert Lanczos

We showed in Paper II that a very fast way of solvi
multi-well ME problems—provided the temperature bei
modeled is high enough—is to generate a partial spec
decomposition of the population evolution operator using
Lanczos iteration. The full spectral expansion is given by

r~ t !5(
i 51

n

a i exp~l i t !yi , ~12!

wherel i andyi are then eigenvalues and eigenvectors ofB
and a i5^yi ,r(0)&. While Eq. ~12! is exact for all timest,
for medium- to long-time behavior only a limited number
the eigenpairs ofB are required, being those with the sma
est eigenvalues.

Krylov subspace based methods, such as the Lan
method, tend to converge the extremes of the eigenv
spectrum first, particularly for large magnitude eigenvalu
It has been found that despite the desired smallest eigen
ues being extremal, the fact that these eigenvalues ar
many orders of magnitude smaller than the eigenvalues a
other extreme of the spectrum, combined with the sprea
magnitudes in the eigenvectors, means that full converge
of these eigenpairs is nearly impossible to achieve.21 To
combat this, we turn to a shift-invert spectr
transformation.40,41As an eigenvaluel of B becomes an ei-
genvalue 1/(l2s) of (B2s)21 with an unchanged eigen
vector, the shift-invert transformation transforms eigenval
of B near s to be those of largest magnitude of (B
2sI )21, and hence those expected to converge the faste
shift-invert strategy is often used to find eigenpairs on
interior of the spectrum, as these normally converge slo
with Krylov subspace based methods. In this case the sm
est eigenvalues are problematic. Hence we wish to transf
the matrix so that the eigenpairs with the smallest eigen
ues become those with the largest eigenvalues, makin
selection ofs50 appropriate. In difficult cases when co
vergence of required interior eigenpairs is problematic,s can
be set appropriately to focus on these slowly converg
eigenpairs. We demonstrated in Paper II that the zero-s
shift-invert transformation makes the application of t
Lanczos method to this ME possible, and in fact leads to
convergence of the Lanczos iteration, at the cost of solv
Eq. ~3! at each iteration. Despite the lack of a spectral sh
we continue to refer to the zero-shift case as a shift-inv
method and generally present the method retaining thB
2sI andD2sI notation.

In Paper II theARPACK40 package was used as the impl
mentation of the Lanczos method as this package has se
useful features such as implicit restarting and eigenpair lo
ing. The zero-shift case of Eq.~3! was solved directly via a
general triangular factorization. Similarly to Paper III, he
we replace this direct linear system solve with an iterat
method. Generally, iterative solution methods require li
more than the matrix-vector product, giving them simi
scaling. In this case the matrix-vector product involving t
full ME matrix scales well: approximately linearly with th
number of isomers being modeled. In this work we use
Downloaded 09 Mar 2010 to 150.203.243.38. Redistribution subject to AI
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GMRES method,42,43 as implemented in the Sparse Line
Algebra Package~SLAP! of SLATEC.44

In its pure form, the GMRES algorithm requires only th
matrix-vector product and some relatively minor operatio
to build and solve the system in a small Krylov subspace
ME solution methodology can then be implemented as c
to first construct the ME matrix~using whatever storage
scheme or decompositions are required to fit the matrix i
the available memory and give a fast matrix-vector multip
routine! before commencing the Lanczos iteration. At ea
iteration of the Lanczos method, the GMRES routine
called to solve Eq.~3! using the matrix-vector product spe
cific to the implementation of the ME matrix. This approa
will be denoted the Lanczos/GMRES method. As the size
the ME being solved changes, the scaling of such a sch
is dominated by the scaling of the specific matrix-vec
product routine, or approximately linearly with the numb
of isomers being modeled.

When an easily inverted approximation is available, it
standard practice to use that approximation to precondi
the iterative solution.43 This is particularly common in quan
tum scattering calculations,45,46 where the shift-invert spec
tral transformation is known as applying Green’s opera
and many different forms of preconditioning are used, b
physically based~similar to the current case! and chosen on
purely mathematical or numerical grounds.

To precondition a linear system solve of the form
Az5b one wants a preconditioning matrixM that is an ap-
proximation toA so that

M 21A'I . ~13!

If the available approximation is not easy to invert then it
not useful—formingM 21 must be significantly faster tha
forming A21, as the latter is the problem we are trying
accelerate. In the current case an easily inverted approx
tion is readily available in the banded arrowhead matrix
rived from the diffusion approximation.D is a sparse ap-
proximation toB, so that

~D2sI !21~B2sI !'I , ~14!

to give an appropriate preconditioning matrix asD2sI .
Specifically, the preconditioned GMRES method requires
solution of

~D2sI !c5d, ~15!

for c. In the general case, the presence of a nonzeros does
not alter the structure of the diffusion approximation mat
so thatD2sI can still be permuted to banded arrowhe
form, factorized and solved quickly and with good scalab
ity. In this work the asymmetricLU factorization was used
to factorizeD2sI rather than the faster Cholesky factoriz
tion. While the Cholesky factorization is only appropriate f
definitematrices~matrices whose eigenvalues are all of t
same sign and nonzero! which is not guaranteed for gener
s, recall that we takes50 here, exposing the underlyin
definiteness ofD. TheLU factorization is much more toler
ant of near singularity than the Cholesky factorization a
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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was found to be much more stable. The extra work requ
in not exploiting symmetry was not significant to the over
calculation time.

Each GMRES iteration requires one matrix-vector m
tiply with B2sI and one solution of Eq.~15!, the latter
effectively two band triangular substitutions. Provided t
number of isomers is smaller than the number of ene
grains describing each isomer, theB2sI matrix-vector mul-
tiply is the more computationally demanding of the two a
dominates the calculation time required. Thus the comp
tional effort required for each GMRES iteration scales in
similar manner to theB2sI matrix-vector multiply: ap-
proximately linearly with the number of isomers being mo
eled. This scaling dominates the solution of Eq.~3!, and
hence the Lanczos iteration and overall master equation
lution.

While using a preconditioned GMRES iteration to r
place the inversions required for shift-invert Lanczos a
those required for stiff ODE integration~as per Paper III! are
similar in principle, there is at least one significant diffe
ence. In the stiff integration case, the matrix being inver
changes for each inversion, as theg of Eq. ~2! generally
changes for each successive right hand sideb. On the other
hand, in the current shift-invert Lanczos case the shift
mains fixed for the duration of the calculation. Hence wh
using direct factorization in the shift-invert Lanczos case
matrix B2sI need be factorized once only, whereas for t
stiff integration the matrixI 2gB must be factorized for eac
time step. While the factorization will dominate for larg
systems in the shift-invert Lanczos case, a much greater
portion of the calculation will be spent doingO(n2) triangu-
lar system solves than for the stiff integration case. T
means that while the scaling of the method will be improv
by replacing direct factorization with preconditione
GMRES in the present case, the resulting method is
likely to be significantly faster than the direct factorizatio
version than was the case for the stiff ODE integrator res
of Paper III.

IV. RESULTS FOR THE 1CH2¿C2H2 REACTION

A. The model

In previous work7,8,21,22,34we have modeled the propa
gyl formation reaction@Eq. ~4!# using various multi-well ME
methods. The reaction proceeds through a multi-well co
sion complex. The C3H4 species exists as three interconve
ing isomers:

propyne
cyclopropene
allene. ~16!

The 1CH21C2H2 reaction produces the cyclopropene is
mer, which must isomerize to allene or propyne before ir
versibly decomposing to the propargyl product. This react
scheme is summarized in Fig. 1.

An energy grain size of 200 cm21 was used throughout
giving a matrix of order 714. The collision frequency w
taken as the Lennard-Jones value. The rotational cons
and vibrational frequencies were taken from Karniet al.47

The 1CH21C2H2 microscopic rate constants were deriv
from the data of Blitzet al.33 The propargyl formation from
Downloaded 09 Mar 2010 to 150.203.243.38. Redistribution subject to AI
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allene and propyne was modeled according to the exp
sions of Harding and Klippenstein.48 In all cases, the initial
population represented the dissociated state of singlet m
ylene with no C3H4 present. Under all of the condition
tested in this work~300–2000 K and 1–1000 Torr!, the
population profiles of the five species involved can readily
calculated by other means, as demonstrated in Paper II.

While the methylene plus acetylene channel was line
ized and treated reversibly under pseudo-first-order co
tions, our previous work shows that at low temperatu
treating the propargyl formation reaction in a similar mann
significantly alters the dynamics through the reformation
C3H4.8 Explicitly including the products of irreversible re
actions prevents the symmetrization of the ME matrix a
excludes spectral approaches to solving the ME.7 Thus the
propargyl population was calculated by consideration of c
servation of the total population.

B. Lanczos ÕGMRES solution in double precision

Fresh modeling based on the full eigendecomposition
the ME calculated in high precision indicates that 10 eig
pairs is sufficient to yield accurate population profiles ove
reasonable range of times at all temperatures and press
modeled in this work. Throughout this work, theARPACK

routines were called with the arguments set to calculate
ten largest magnitude eigenvalues of (B2sI )21 with the
corresponding eigenvectors, from a Krylov subspace of
mension 20. This is different to the 5 or 25 eigenpairs use
Paper II and was chosen for consistency across the pres
regime. As previously stated,s50 was used throughout thi
work.

One would expect that the capabilities of the Lancz
GMRES method be similar to those reported in Paper II
the zero-shift shift-invert Lanczos method with the stand
solution by triangular factorization. That is, in double pre
sion arithmetic the method should be accurate at high t
peratures and pressures, but less reliable at lower temp
tures and pressures unless one resorts to increasing
precision of the entire calculation.

For the double precision calculations, the GMRES so
tion was deemed converged when the error norm was
than 10213. Unless otherwise stated, all GMRES calculatio

FIG. 1. Schematic reaction scheme for the modeled1CH21C2H2 reaction.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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were restarted after 20 iterations. This should be consider
very frequently restarted GMRES calculation, which in ge
eral can lead to convergence difficulties.

The behavior of the GMRES solution of Eq.~3! was
similar to that reported in Paper III for the solution of E
~2!. That is, without preconditioning tens of thousands
iterations were required to converge the solution, even w
very loose convergence criteria and irrespective of the
starting strategy. Preconditioning the iterative solution w
the arrowhead diffusion approximation matrix lead to rap
convergence, taking between 20 and 500 iterations to c
verge in all cases.

Figure 2 shows the population profiles for the system
1000 Torr and 1600 K modeled using the new Lancz
GMRES method in double precision. The results shown
Fig. 2 are typical of the results of modeling at 100 Torr
1000 Torr and 1200, 1600, or 2000 K. In all of these ca
the population profiles calculated with the Lanczos/GMR
method are indistinguishable from those calculated via s
dard shift-invert Lanczos with the inversion being perform
through a dense factorization. That is, the deviation from
accurate model population profiles at short times~at times
shorter than around 10210 s for the 1000 Torr and 1600 K
case shown in Fig. 2! is due to the truncation of Eq.~12!, not
any effect of using GMRES iteration to solve Eq.~3!.

With some caveats, the double precision implementa
of the Lanczos/GMRES method behaves similarly wh
modeling pressures of 10 or 1 Torr to when modeling hig
pressures. When modeling 1200 K or above, the method
forms reasonably well. Typical results are shown in Fig. 3
1200 K and 1 Torr.

The long-time behavior is not being accurately model
This is a common mode of failure of this type of multi-we
ME including a bimolecular reactant source, where the
pansion coefficientsa i in Eq. ~12! are determined solely by
the element of the eigenvector corresponding to the bim
lecular species. When this particular element is determi
inaccurately, as in this case, the calculated population
files exhibit systematic errors, sometimes globally, som
times in particular regimes. In this case, the long-time po
lations are inaccurate, giving too large and sometim
negative populations. As indicated in Fig. 3, while the lon

FIG. 2. Population profiles for the five species involved in the1CH2

1C2H2 reaction modeled at 1600 K and 1000 Torr. Accurate populati
from the full spectral solution and populations calculated with the trunca
expansion from the Lanczos/GMRES method.
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time populations of the C3H4 isomers are significantly in
error, the calculated long-time populations are very low a
are likely to be insignificant in any practical application.

C. Using higher precision to model lower
temperatures

When the temperature being modeled was reduced
900 K, the double precision Lanczos/GMRES calculated
lution was slightly less stable than the standard full invers
shift-invert Lanczos approach. In the 1000 Torr case, wh
the calculated population profiles of propyne, allene, the p
pargyl product and the methylene reactant were accu
from times around 10210 s, the calculated population of cy
clopropene, significantly lower than the other isomers, w
generally in error by around an order of magnitude. Wh
the cyclopropene population was calculated to be larger t
531027 at simulation times in the region of 1026– 1023 s
the error was smaller. At 100 Torr, the 900 K results we
less reliable still, with all three C3H4 isomer population pro-
files being significantly in error for at least some significa
portion of the chemically interesting timescales. At tempe
tures lower than 900 K the population profiles calculated
double precision were erroneous.

At both 10 and 1 Torr and temperatures of 900 K or le
the calculated populations were largely spurious. At 900
only the C3H4 isomer populations were affected, with th
methylene reactant disappearance and the propargyl pro
production not significantly in error. At lower temperatur
no accurate population profiles were produced.

Implementing the Lanczos/GMRES method in qu
druple precision gives the same range of applicability as
standard shift-invert Lanczos indicated in Paper II. That
the method produces accurate population profiles~within the
truncated spectral expansion! at temperatures down to 600 K
For these calculations the error norm convergence tolera
was maintained at 10213. The population profiles were no
significantly different to those calculated using the triangu
factorization inversion reported in Paper II, meaning th
even at 1 Torr the last 15 of the 25 eigenpairs included in
truncated spectral expansion of the work in Paper II had li
effect.

Achieving accurate modeling of the population profil
at a temperature of 300 K required a very substantial inv
ment in computational effort. Increasing the numerical p

s
d

FIG. 3. As per Fig. 2 but modeling 1200 K and 1 Torr using double pre
sion arithmetic.~Sections of the population profiles that were calculated
being negative are not shown.!
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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cision well beyond quadruple precision was required. T
MPFUN package of Bailey49 was used to implement th
Lanczos/GMRES method with arbitrary floating point pre
sion. We have usedMPFUN in the past to circumvent extrem
ill-conditioning in spectral solutions to MEs, with 50 decim
digits of precision usually being sufficient to solve roo
temperature problems, including the current1CH21C2H2

multi-well system.8,20,21,34In the current case at 300 K th
GMRES iteration would not converge to a solution with t
specified error norm of 10213 when 50 digit arithmetic was
used, even when 200 GMRES iterations were allowed be
restarting. The GMRES method did achieve convergenc
the 10213 error norm level when 100 digit arithmetic wa
used and the restart frequency was increased to 200 i
tions. Shifting the calculated spectrum away from ze
~through a nonzeros parameter! did not lead to an easie
calculation. Despite the relatively low GMRES convergen
threshold of 10213 ~compared to the numerical model mai
taining precision to approximately one part in 10100), the
population profiles calculated at 300 K were accurate.

V. SPEED OF THE NEW METHOD

When implemented in double precision, the Lancz
GMRES method is indeed fast. Figure 4 shows sample t
ings of the Lanczos/GMRES method to solve the mo
problem when implemented on an Intel Pentium 4 1.9 G
CPU. Shown for comparison are the times published in pa
III for the stiff ODE integrator using the GMRES iteration t
solve the correction equation. Note that the vertical C
time axis of Fig. 4 is a logarithmic axis.

In double precision, the Lanczos/GMRES method
much faster than the integration method of Paper III, tak
around 5 s of CPUtime compared to the latter’s 30–50
Both of these methods should have similar scaling, appr
mately that of the matrix-vector product or approximate
linear in the number of isomers being modeled. This 5
execution time is significantly slower than the standard sh
invert Lanczos method reported in Paper II, which requi
around 0.5 s to solve the ME. When one considers the s
ing of solving Eq.~3! for the two approaches, the curre
Lanczos/GMRES should be faster than the standard s

FIG. 4. CPU time required to solve the1CH21C2H2 ME as a function of
the modeled temperature at 1000 Torr. The fainter dashed lines indicat
CPU times for the method at various precisions. The solid line indicates
times required for accurate modeling, taking into consideration the leve
numerical precision required as the temperature changes. The time req
for modeling using the stiff ODE integrator with the GMRES solve of Pa
III shown for reference. Intel Pentium 4 1.9 GHz CPU.
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invert Lanczos approach when solving problems three
nine times larger than the current three isomer, 714 ene
grain case.

Once the temperature being modeled is decreased
point where the double precision implementation of t
Lanczos/GMRES method is unable to accurately model
population profiles, a large penalty is paid in terms of exe
tion time. The CPU time required for the quadruple precis
solution was over 1000 s, more than 30 times greater t
that required to solve the problem with the stiff integrat
using GMRES. However, it should be recalled that the
sults presented in Paper II show the penalty for moving
quadruple precision is not nearly as high on a 64 bit proc
sor ~such as the HP Alpha or SGI R14000! as on the 32 bit
Pentium processors used in this work.

VI. SUMMARY

To aid in the implementation of the new Lanczo
GMRES method, our procedure is restated here@bearing in
mind when referring back to Eqs.~3! and ~15! that s50].

~1! Set up multi-well ME, storing only the dense blocks o
the main diagonal of the ME matrix, the off-block
diagonal interconversion terms and the ‘‘arrowhea
terms associated with the bimolecular reactions for
efficient and fast specialized matrix-vector product.

~2! Set up the diffusion approximation matrix from the fu
matrix, storing the matrix permuted to a banded arro
head matrix in a number of vectors.

~3! Factorize the diffusion approximation using a nonsy
metric LU factorization, overwriting the diffusion ap
proximation storage.

~4! Loop over calls to theARPACK driver routine, requesting
convergence of the largest magnitude eigenvalues~of the
inverted matrix! with corresponding eigenvectors.

~5! When theARPACK routine returns and requests a matri
vector multiplication, call theSLAP GMRES routine to
solve Eq.~3!.

~6! The matrix-vector multiply routine passed to th
GMRES routine should utilize the structure of the mul
well matrix to calculateBv as quickly as possible.

~7! The preconditioning routine passed to the GMRES ro
tine to solve Eq.~15! should first permuted to the order
giving the banded arrowhead structure of the diffusi
approximation matrix before solving Eq.~15! from the
factorized D and permuting the solution back to th
original ordering.

~8! After convergence of the Lanczos iteration, call t
ARPACK post-processing routine and propagate the ini
population vector using a truncated version of Eq.~12!.

The importance of an algorithm to solve the ME at
near linear scaling with the system size cannot be overst
in the context of solving large problems. CurrentO(n3) al-
gorithms simply cannot be used effectively when deal
with 2-D, multi-well or even 2-D multi-well MEs discretized
over tens of thousands of points. The methods presented
and in Paper III are very significant steps toward solvi
large ME problems. The key to these new methods is us
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the GMRES method to iteratively solve linear systems
volving the ME matrix, which is only feasible when usin
the diffusion approximation to provide fast and effective p
conditioning. While not as robust as the method based
direct integration presented in Paper III, the Lancz
GMRES method presented here is an order of magnit
faster with the same scaling when the conditions being m
eled are sufficiently high in temperature and pressure to
low an accurate solution to be calculated in double precis
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